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Abstract  

 

The diagnosis of mitochondrial disorders underwent a tremendeous change towards the Next 

generation sequencing (NGS) methods in recent years. Decreasing cost of rapid sequencing 

methods make them available for increasing number of patients. The NGS techniques free the 

patients from the biopsy testing unless absolutely necessary. Yet, unfortunately, half of the 

cases still remains undiagnosed. The mitochondrial research provides opportunity to cover this 

unmet need. Future development lays in improvements of NGS techniques together with 

functional validations of genes previously not associated with a disease. 

In this thesis, I focused on two crucial aspects of mitochondrial biology. Energy production in 

mitochondria is ensured by the activity of oxidative phosphorylation system (OXPHOS). 

Complexes of the OXPHOS are among other functions producing reactive oxygen species 

(ROS), which gains its importance mainly during stress conditions. However, ROS must be 

sustained at certain level and that is ensured by enzymes and molecules of ROS defence system. 

Additionally, the activity of OXPHOS complexes strongly depends on cofactors, among others 

flavin adenine dinucleotide (FAD). FAD is a part of the catalytically active site of Complex I 

and II as well as of about a hundred of other enzymes, primarily located in mitochondria. In 

any case, FAD must be syntesized in humans from its precursor riboflavin (vitamin B2). Based 

on the crucial function of ROS defence or production of cofactors for mitochondrial and cellular 

homeostasis, it was unexpected to find any disturbances in either of the systems. Yet, whole 

exome sequencing analysis at the Institute of Human Genetics found loss-of-function mutations 

in TXN2 and FLAD1. Neither of the genes have previously been assocciated with a 

mitochondrial disease based on a proper experimental validation.  

My task was to functionally validate the sequencing findings. In the case of variant in TXN2, 

thioredoxin 2 (TXN2) protein is a key enzyme of ROS defence located in mitochondria. In this 

project, investigations of patient cells showed an absence of TXN2 protein and subsequently a 

lack of its enzymatic activity, together with increased ROS, and impaired OXPHOS function. 

Most importantly, lentiviral expression of a wild type TXN2 copy restored all these parameters 

and hence validated the mutational cause in disease development in patient. Moreover, because 

the patient presented with an infantile-onset neurodegenerative disorder with severe cerebellar 

atrophy, I validated the importance of TXN2 function in neuronal development. Above that, 

my functional observations led to investigation of antioxidant supplementation that effectively 

improved cell viability and suppressed cellular ROS levels. Finally, 15 years after the disease 

onset, I could suggest a rational antioxidant therapy to the patient, which resulted in significant 

mitigation of clinical symptoms and improved quality of life of the whole family. 

In the second case, variants in FLAD1 were associated with combined respiratory chain 

deficiency and multiple acyl-CoA dehydrogenase deficiency. Altogether, in six out of seven 

families, a predicted loss-of-function null-variant in FLAD1 was found to be located in the first 

part of the gene, possibly disrupting the resulting protein function. Flavin adenine dinucleotide 

synthase 1 (FLAD1) is the main and potentially only cellular producer of FAD. However, 

sufficient amounts of FAD levels were observed in patients. The investigations of the genetics 
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of FLAD1 unravelled a novel RNA isoform, which resulted in a discovery of enzymatically 

active truncated protein. The activity of truncated FLAD1 explained the utility of recommended 

riboflavin suplementation in patients.  

To conclude, the functional validations presented here helped to label both genes as novel 

mitochondrial disease genes. My investigations led to an explanation of phenotypic-genotypic 

correlation in both cases. Most importantly, I was able to suggest a rational treatment based on 

the experimental observations and enzymatic function. Both genes are now connected to a 

treatable mitochondrial disorders. My observations will help to initiate the therapy early enough 

in any potential future patients carrying malfunctioning TXN2 or FLAD1. 
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Abstrakt 
 

Die Diagnostik mitochondrialer Erkrankungen wird in den letzten Jahren immer mehr von Next 

Generation Sequencing (NGS) -Methoden bestimmt. Sinkende Kosten für schnelle 

Sequenzierungsmethoden machen sie für eine wachsende Anzahl von Patienten verfügbar. Die 

NGS-Techniken ersparen den Patienten aufwendige Biopsien, sofern dies nicht unbedingt 

erforderlich ist. Leider wird dennoch in der Hälfte der Fälle keine Diagnose gefunden. Die 

Mitochondrienforschung bietet die Möglichkeit, einen Teil davon zu lösen. In Zukunft werden 

sowohl die NGS-Techniken noch als auch funktionelle Validierungen von Genen, die zuvor 

nicht mit einer Krankheit assoziiert waren, weiter verbessert werden. 

In dieser Arbeit konzentrierte ich mich auf zwei entscheidende Aspekte der Biologie der 

Mitochondrien. Die Energieproduktion in Mitochondrien wird durch das oxidative 

Phosphorylierungssystems (OXPHOS) sichergestellt. Die Komplexe des OXPHOS erzeugen, 

neben anderen Aufgaben, reaktive Sauerstoffspezies (ROS), die vor allem unter 

Stressbedingungen an Bedeutung gewinnen. ROS müssen jedoch auf einem bestimmten Niveau 

gehalten werden. Dies wird durch Enzyme und Moleküle des ROS-Abwehrsystems 

sichergestellt. Darüber hinaus hängt die Aktivität von OXPHOS-Komplexen stark von 

Cofaktoren ab, darunter Flavinadenindinukleotid (FAD). FAD ist ein Teil des katalytisch 

aktiven Zentrums von Komplex I und II sowie von etwa hundert anderen Enzymen, die sich 

hauptsächlich in Mitochondrien befinden. FAD muss beim Menschen aus seinem Vorläufer 

Riboflavin (Vitamin B2) synthetisiert werden. Gemessen an der wichtigen zentralen Funktion 

der ROS-Abwehr oder der Produktion von Cofaktoren für die mitochondriale und zelluläre 

Homöostase, war es daher unerwartet, in einer der beiden Systeme Störungen zu finden. Die 

Analyse des Whole Exome Sequencing am Institut für Humangenetik ergab jedoch Loss-of-

function Mutationen in TXN2 und FLAD1. Keines der Gene wurde zuvor mit einer 

mitochondrialen Erkrankung assoziiert basierend auf einer ordnungsgemäßen experimentellen 

Validierung.  

Meine Aufgabe bestand darin, die Ergebnisse der Sequenzierung funktional zu überprüfen. Im 

Falle der Variante in TXN2 ist das Thioredoxin 2 (TXN2)-Protein ein Schlüsselenzym der ROS-

Abwehr in Mitochondrien. In diesem Projekt zeigten Untersuchungen von Patientenzellen ein 

Fehlen des TXN2-Proteins und dadurch eine fehlende enzymatische Aktivität zusammen mit 

einer erhöhten ROS-Produktion und einer verminderten OXPHOS-Funktion. Am wichtigsten 

war jedoch, dass die lentivirale Expression einer Wildtyp-TXN2-Kopie alle diese Parameter 

wiederherstellte und somit die Mutationsursache in der Krankheitsentwicklung beim Patienten 

bestätigte. Da der Patient eine neurodegenerative Erkrankung mit Beginn im Kleinkindalter und 

eine schwere Kleinhirnatrophie aufwies, bestätigte ich außerdem die Bedeutung der Funktion 

von TXN2 in der neuronalen Entwicklung. Darüber hinaus führten meine funktionellen 

Beobachtungen zur Untersuchung einer antioxidativen Supplementierung, die die 

Zelllebensfähigkeit effektiv verbesserte und die zellulären ROS-Spiegel verminderte. 

Schließlich, 15 Jahre nach Beginn der Erkrankung, konnte ich dem Patienten eine rationale 

antioxidative Therapie vorschlagen, die zu einer deutlichen Abschwächung der klinischen 

Symptome und einer Verbesserung der Lebensqualität der gesamten Familie führte. 
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Im zweiten Fall waren die Varianten in FLAD1 mit einem kombinierten Mangel der 

Atmungskette und einem mehrfachen Acyl-CoA-Dehydrogenase-Mangel verbunden. 

Insgesamt wurde in sechs von sieben Familien Loss-of-function Varianten in FLAD1 gefunden. 

Alle Varianten wurden im ersten Teil des Gens gefunden, wodurch möglicherweise die 

resultierende Proteinfunktion gestört wird. Flavin-Adenin-Dinukleotid-Synthase 1 (FLAD1) ist 

der Haupt- und möglicherweise der einzige zelluläre Produzent von FAD. Bei den Patienten 

wurden jedoch ausreichende Mengen an FAD gemessen. Die Untersuchungen der Genetik von 

FLAD1 enthüllten eine neuartige RNA-Isoform, die zur Entdeckung eines enzymatisch aktiven 

verkürzten Proteins führte. Die Aktivität des verkürzten FLAD1 erklärte die positive Wirkung 

der empfohlenen Riboflavinsuplementation bei Patienten. 

Zusammenfassend kann gesagt werden, dass die hier vorgestellten funktionalen Validierungen 

dazu beigetragen haben, beide Gene als neuartige mitochondriale Krankheitsgene zu 

kennzeichnen. Meine Untersuchungen führten in beiden Fällen zu einer Erklärung der 

phänotypisch-genotypischen Korrelation. Am wichtigsten war, dass ich aufgrund der 

experimentellen Beobachtungen und der enzymatischen Funktion eine rationelle Behandlung 

vorschlagen konnte. Beide Gene sind jetzt mit einer behandelbaren mitochondrialen 

Erkrankung verbunden. Meine Beobachtungen werden dazu beitragen, die Therapie in Zukunft 

bei Patienten, die Mutationen in TXN2 oder FLAD1 tragen, früh genug zu initiieren.  
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1 Introduction 

 

Inherited mitochondrial diseases affect at least 20 individuals per 100.000 people (Gorman et 

al. 2016). Mitochondrial disorders possess genetic and clinical heterogenity as they appear at 

any age, present with various phenotypes affecting any organ and are caused by any mode of 

inheritance. What mitochondrial diseases have in common characteristically, is impairment of 

respiratory chain activity, which is responsible for more than 90% of energy production within 

cells. With the introduction of Next generation sequencing techniques in patients with 

respiratory chain deficiencies, it has become possible to screen all genes in one step and to 

identify pathogenic variants in genes which are predicted to play a role in mitochondrial 

homeostasis, but are not yet associated with a disease.  

 

The core of a proper mitochondrial function lays in the respiratory chain. The correct enzymatic 

activity of complexes of the respiratory chain is secured by cofactor availability, among others. 

Furthermore, one of the products of such enzymatic reactions is the production of reactive 

oxygen species. Both of these aspects are reflected in my work, described in results section 

(chapter 5) and evaluated in the discussion (chapter 6). Therefore, the basics of mitochondrial 

disorders and their diagnosis, followed by introductions to reactive oxygen species and cofactor 

metabolism will be reviewed. 

 

1.1 Mitochondria 

Mitochondria are ancient organelles fundamental for normal physiology and health (Henze and 

Martin 2003). They typically form a network, which occupies a substantial part of the cytosol 

(e.g. about 20% of the cell volume in human liver cells; Alberts et al. 1994). According to the 

endosymbiotic theory, these organelles developed from proteobacteria by absorption into a 

eukaryotic cell (Margulis 1975). Consequently, they present with very specific attributes such 

as having their own circular genome, double membranes, a different type of ribosome, and 

presence of cardiolipin. 

Mitochondria are responsible for various functions essential for cellular metabolism. The 

respiratory chain, localized to the inner mitochondrial membrane, generates approximately 90% 

of cellular energetic currency, adenosine triphosphate (ATP), via oxidative phosphorylation 

(OXPHOS; Rich 2003). The OXPHOS system is constituted from five membrane complexes 

and two mobile electron carriers (coenzyme Q and cytochrome c), whereby some of these 

complexes can form higher molecular assemblies called supercomplexes (Wittig et al. 2006b). 

In addition to the respiratory chain and ATP production itself, mitochondria host additional 

functions such as the tricarboxylic acid cycle (i.e. Krebs cycle), the urea cycle, gluconeogenesis 

and ketogenesis, enzymes of calcium signalling, adaptive thermogenesis, ion homeostasis, fatty 

acid oxidation, amino acid metabolism, lipid metabolism, proteins involved in the biosynthesis 
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of steroids, haem and iron–sulfur clusters, in a programmed cell death and others (Voet et al. 

2013).  

 

1.1.1 Mitochondrial genetics 

Mitochondrial structure and function are under the control of two genomes, the nuclear and 

mitochondrial. The mitochondrial DNA (mtDNA, Figure 1), is 16.569 base pairs long in 

humans. Unlike the nuclear genome, mtDNA exists in up to several thousand copies per cell, 

depending on the cell type (Sciacco et al. 1994; Taylor and Turnbull 2005). Most of the mtDNA 

sequence is coding and lacks an intron–exon structure, with the majority of the genes located 

on the one strand of the DNA molecule. This strand is also known as the heavy strand due to 

the higher proportion of heavier nucleotides - adenine and guanine (Gorman et al. 2016). 

However, several genes are coded by the other DNA strand, conversely known as the light 

strand. Two of the genes are even overlapping. In addition, replication, transcription and 

translation of mtDNA are all controlled by a single non-coding region, known as the 

displacement loop (‘D loop’ in short; Gorman et al. 2016). As shown in Figure 1, mtDNA 

encodes 13 mitochondrial proteins, two ribosomal RNAs (rRNAs), and 22 transfer RNAs 

(tRNAs). Due to the fact that most of the mtDNA is RNA coding, mutations in the majority of 

the sequence can give rise to mitochondrial genetic disorders. A comprehensive collection of 

data on human mitochondrial DNA variations are being summarized by MITOMAP, which 

currently reports polymorphisms and mutations from more than 47.000 human mtDNA 

sequences (http://www.mitomap.org/ [January 25th, 2019]). 

 

Figure 1: Structure of the human mitochondrial DNA molecule (from Gorman et al. 2016). 

MtDNA consists of two strands with different loads of coding genes. Altogether mtDNA encodes 

13 proteins of the OXPHOS, two ribosomal RNAs, and 22 transfer RNAs. The D loop in the 

upper part is responsible for the regulation of replication, transcription and translation. 
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The available evidence indicates that mtDNA is constantly undergoing mutagenesis, for 

example point mutations, deletions, rearrangements and copy number variations. Because these 

acquired mutations occur at random, they are often present at a very low level and therefore 

might not be detected (Taylor and Turnbull 2005). Hence, it is considered that most people have 

only one type of mtDNA. Generally, this condition is called homoplasmy. However, in case of 

clonal expansion of a single mutation with one of the many copies of mtDNA existing per 

mitochondria and per cell, the variant itself will occur in a higher proportion (> 10%) of the 

mtDNA molecules. This effect is known as heteroplasmy (Gorman et al. 2016). 

If the percentage of heteroplasmy surpasses a certain level, called a threshold, a mitochondrial 

disorder can manifest. For some common mitochondrial diseases the threshold level is known. 

Typically, a high proportion of mutated mtDNA (> 60%) is a prerequisite of cellular defects 

(Koene and Smeitink 2011). For example, the phenotypic threshold level for mtDNA deletions 

is around 60% (Grady et al. 2014). For point mutations observed in cases with defective 

tRNALys, 90% heteroplasmy is required (Shoffner et al. 1990). In other cases of disease caused 

by mitochondrial tRNA mutations, almost 100% of mutant mtDNA is required, as the cell is 

able to compensate the defect by supporting the expression of the healthy tRNAs (Chomyn et 

al. 2000). Typically, the various clinical presentations of mutations in mitochondrial DNA 

manifest as a direct consequence of the heteroplasmy level in the specific tissue (Stewart and 

Chinnery 2015). A schematic representation of levels of heteroplasmy is shown in Figure 2. 

 

 

Figure 2: Different levels of heteroplasmy, threshold effect, and a disease manifestation (from 

https://clinicalgate.com/mitochondrial-encephalopathies/). Very low levels of heteroplasmy 

(on the left) result in normal mitochondrial function. Heteroplasmy on such a level is not usually 

detected. The heteroplasmy in the middle and on the right typically results in a disorder, 

depending on the type and severity of the variant. 
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MtDNA codes for only 13 proteins in total. Proper mitochondrial function is therefore 

dependent on the nuclear genes, responsible for about 99% of the mitochondrial proteome 

(Chacinska et al. 2009). Due to the bi-genomic control of mitochondrial function, all modes of 

inheritance are seen in mitochondrial diseases. MtDNA is inherited exclusively in humans from 

the mother (Giles et al. 1980). In the case of nuclear encoded variants, the disease can be 

monogenic or polygenic. In the case of monogenic disorders, the mode of inheritance is either 

dominant or recessive. Additionally, X-linked mitochondrial disease genes are also known. 

Defects in PDHA1, coding for a subunit of pyruvate dehydrogenase complex, is the most 

frequent example of an X-linked mitochondrial disorder (Sperl et al. 2015). These disease 

causing variants are not all necessarily inherited, some may also appear de novo.  

 

1.2 Mitochondrial disorders 

Mitochondrial disorders present the most heterogeneous group of metabolic diseases and are 

among the most common forms of inborn errors of metabolism and inherited neurological 

disorders (Smeitink 2003; Thorburn 2004; Mayr et al. 2015; Gorman et al. 2016). It is estimated 

that mitochondrial disorders manifest in five to 15 children out of 100.000. The pediatric cases 

are most often caused by a mutation with a recessive mode of inheritance, typically presenting 

with a severe and progressive phenotype (Scaglia et al. 2004). The adult-onset mitochondrial 

diseases are typically caused by a variant in the mtDNA and affects ten in 100.000 individuals, 

or three out of 100.000 in the case of nuclear genes (Skladal et al. 2003; Thorburn 2004; Gorman 

et al. 2016). To date, variants in more than 300 nuclear genes have been reported as disease 

causing (Stenton and Prokisch 2018). The analysis of monogenic mitochondrial diseases has 

considerably enhanced general knowledge of the cellular pathophysiology of mitochondrial 

(dys)function. 

The first mitochondrial patient was described in 1959. The uncoupling of respiratory chain and 

ATP production was causing a severe hypermetabolism, weakness, increased perspiration and 

reduced body weight despite polyphagia (Ernster et al. 1959; Luft et al. 1962). Traditionally, 

mitochondrial disorders have been associated with an impaired OXPHOS system. Surprisingly, 

most patients do not possess variants within the limited number of OXPHOS genes. In addition 

to defects in the OXPHOS subunits and their assembly factors, impairments can be found in 

substrate generation upstream of the OXPHOS, hence the Krebs cycle, pyruvate dehydrogenase 

complex or the import of substrates. Similarly, in defective cofactor biosynthesis and 

malfunctioning mitochondrial DNA, RNA and protein synthesis. Finally, defects in 

mitochondrial maintenance such as biogenesis, fusion and fission, protein import and 

processing of lipids may all be responsible for the disorder (Mayr et al. 2015).  

With regards to the OXPHOS complexes themselves, defects are most frequently found in 

Complex I (Lazarou et al. 2009). In about half of the cases (49%), a further defect of more than 

one of the other respiratory complexes manifests. These combined defects of Complexes I, III, 

IV and V are usually caused by defects in mitochondrial replication, transcription or translation, 

as the core subunits are encoded by the mtDNA (Mayr et al. 2015; Ghezzi and Zeviani 2018). 
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1.2.1 Clinical diagnosis and the phenotypic spectrum of mitochondrial disorders 

The diagnosis of mitochondrial diseases is challenging due to the large number of genes 

involved. Additionally, the phenotypic presentation is highly heterogeneous. As an example, a 

common disease-causing mtDNA mutation m.3243A>G in MTTL1 coding for tRNALeu (1 in 

400 cases) is associated with mitochondrial encephalopathy, lactic acidosis and stroke-like 

episodes (MELAS; OMIM #540000). However, the mutation is also responsible for maternally 

inherited deafness and diabetes, progressive external ophthalmoplegia either isolated or in any 

combination of phenotypes. Moreover, about a third of patients with MTTL1 variants present 

with clinical manifestations that are currently not recognised as a classical mitochondrial 

disease and 9% of the mutation carriers are asymptomatic (Nesbitt et al. 2013).  

Similarly, mutations in the nuclear DNA in POLG, coding for the mitochondrial DNA 

polymerase gamma, are responsible for mitochondrial disease in about one fourth of adult 

patients. Different mutations in POLG are associated with a variety of phenotypes. The most 

commons falls under the phenotypic decription of Alpers syndrome (OMIM #203700), 

characterized by seizures, liver degeneration, and psychomotoric deterioration. The seizures 

can rapidly progress and the hepatopathy often results in liver failure (Saneto et al. 2013). 

Mutations in POLG can, however, also result in myopathy, ataxia, ptosis, deafness, 

ophthalmoplegia, parkinsonism, premature ovarian failure, hypogonadism, and/or 

gastrointestinal dysmotility (Tchikviladze et al. 2015).  

Hence, in some genes the mutations give rise to many common clinical syndromes. 

Unfortunately, the reverse is also true. Consequently, some of the mitochondrial disease 

syndromes can have a very multifarious genetic background. As an example, Leigh syndrome 

(OMIM #256000) has been reported to be caused by mutations in 75 genes located across 

the mitochondrial and nuclear genomes (Lake et al. 2016). Leigh syndrome is a severe 

neurological disorder with typical onset during the first year of life, characterized by a 

progressive mental retardation and a psychomotor regression. The magnetic resonance imaging 

of patients reveals symmetrical lesions in the brainstem or basal ganglia. The first symptoms 

include vomiting, diarrhea and dysphagia resulting in failure to thrive. Associated 

manifestations are hypotonia, dystonia, ataxia and peripheral neuropathy. In many individuals 

the symptoms include degeneration of the optic nerve (i.e. optic atrophy) together with 

nystagmus or ophthalmoparesis. Some patients develop a hypertrophic cardiomyopathy or 

suffer from lactic acidosis. Very often the symptoms worsen in the following years and result 

in death due to acute respiratory failure (Baertling et al. 2014).  

Despite the above mentioned difficulties in diagnosis, there are several recognizable clinical 

manifestations established for the diagnosis of a mitochondrial disease. Examples of adult-onset 

disorders include chronic progressive external ophthalmoplegia (CPEO; OMIM #609286 and 

#157640), Kearns-Sayre syndrome (a clinical subtype of CPEO and/or pigmentary retinopathy 

with cerebellar ataxia, cardiomyopathy, dementia, deafness, short stature, and endocrine 

abnormalities; OMIM #530000; Shemesh & Margolin 2018) and Leber’s hereditary optic 

neuropathy (LHON syndrome; OMIM #535000), a common mitochondrial disease, 

characterized by a bilateral visual loss. This vision loss is more frequent in males and begins in 

one eye, with the second affected within the following weeks to months (Dimitriadis et al. 
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2014). Additionally, MERRF syndrome (myoclonic epilepsy with ragged-red fibers; OMIM 

#545000) is caused by a point mutation m.8344A>G coding for tRNALys in about 90% of cases. 

MERRF phenotypes include involuntary twitching of a muscle (i.e. myoclonus), epilepsy, 

ataxia and the presence of ragged red fibers on muscle biopsy (Lorenzoni et al. 2014). Last but 

not least, the NARP syndrome (neuropathy, ataxia and retinitis pigmentosa; OMIM #551500) 

is associated with neurogenic muscle weakness and sensory neuropathy with ataxia and 

pigmentary retinopathy. Onset of NARP is mostly during childhood causing learning 

difficulties (Thorburn et al. 1993). 

The most commonly and severely affected tissues in mitochondriopathies are the high energy 

demanding tissues, such as the brain, retina, kidney, liver and skeletal or cardiac muscle. Hence, 

patients present with neurodegenerations, in many cases in combination with muscle weakness, 

cardiomyopathy, optic athrophy, or liver failure. This frequently makes mitochondriopathy a 

multisystemic disorder. Although, most mitochondrial disorders are progressive, there are many 

which manifest with a more stable course over decades, or even see amelioration of their 

symptomes (Koene and Smeitink 2011). Moreover, mitochondrial impairment is often observed 

in association with common disease, very often Parkinson’s, Alzheimer’s and Huntington’s 

disease (Hadrava Vanova et al. 2020). 

Figure 3 summarizes the frequent symptoms. When at least three of the organs are affected, the 

diagnosis of a mitochondrial disorder is very likely (Koene and Smeitink 2011). The 

observation that the phenotypic spectrum of mitochondrial disorders is extremely broad and 

that the clinical symptoms can affect any single tissue or organ or their combination at any age 

of onset was summarized by Munnich and Rustin. They postulated that mitochondriopathies 

appear with ‘any symptom, in any organ or tissue, at any age, with any mode of inheritance’ 

(Munnich and Rustin 2001).  
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Figure 3: Phenotypic spectrum of mitochondrial diseases (from Koene and Smeitink 2011). 

Mitochondrial disorders affect various organ systems of the human body. If at least three of the 

phenotypes highlighted in bold are involved, mitochondrial impairment is highly suspected. 

 

1.2.2 Metabolic diagnosis 

Mitochondrial disorders are traditionally associated with a malfunctioning OXPHOS system. 

To overcome the energetic debt, the cells boost glycolysis to increase ATP production (Haas et 

al. 2008). In normal conditions the glycolytic pathway converts one molecule of glucose into 

two molecules of pyruvate in order to produce two molecules of ATP and two molecules of 

NADH. Resulting pyruvate is then transformed by a complex reaction of pyruvate 

dehydrogenase into acetyl coenzyme A (CoA) whose energy is subsequently used in reactions 

of Krebs cycle and the respiratory chain. In case of blockage of the acetyl-CoA utilization, 

pyruvate is increasingly reduced to lactate to recycle NAD+. Therefore, lactic acidosis or 

hyperlactatemia has become the most apparent and common biomarker for mitochondrial 

dysfunction (Stacpoole 1997). Lactate level is therefore often measured when a 



Eliška Koňaříková  INTRODUCTION 
 

8 

 

mitochondriopathy is suspected. Some patients may, however, show increased lactate levels 

only when undergoing a metabolic crisis or directly after a physical exercise (Debray et al. 

2007). Nevertheless, lactic acidosis may occur with other phenotypes such as systemic and 

metabolic disorders and a variety of other conditions (infection of central nervous system, 

stroke, inflammation, malignancy, and seizures) and is therefore non-specific in nature. This, it 

is recommended to measure lactate repeatedly (Chow et al. 2005). 

Mitochondrial disorders often result in alternated levels of various products of metabolism. As 

an example, a mitochondrial disease may be reflected by change in the levels of amino acids. 

Typically, elevation of alanine, but also proline, glycine, and sarcosine has been reported as 

well as elevated tyrosine in newborn screening studies (Wolf and Smeitink 2002; Phoenix et al. 

2006; Shatla et al. 2014). Similarly, investigation of organic acids levels gives valuable 

information about the proper functioning of metabolism. Organic acids are produced as a result 

of catabolism of proteins, carbohydrates and fatty acids. High levels of excreted organic acids 

directly indicate an inborn error of metabolism. Specifically, ethylmalonic acid or 3-methyl 

glutaconic as products of Krebs cycle; or C6-C10 dicarboxylic acids (i.e. adipic-suberic-

sebacic) from fatty acids oxidation were connected to mitochondrial disorders (Divry et al. 

1983; Gibson et al. 1991; Barshop 2004). Additionally, a strong correlation between levels of 

specific analytes, mainly fumarate and malate, and mitochondrial metabolic disorder have been 

found (Barshop 2004).  

Furthermore, Krebs cycle arrest may result in elevated levels of ketone bodies, hence 

acetoacetate, β-hydroxybutyrate, acetone and their breakdown products. Upon disease 

conditions, ketone bodies are produced in the liver from acetyl-CoA and are excreted into the 

blood stream. However, ketone bodies also arrise in healthy individuals during periods of 

starvation (Smeitink et al. 2006; Shatla et al. 2014). The advantage of the above mentioned 

investigations is their very low invasivity. The levels of lactate, amino and organic acids or 

ketone bodies can be analyzed from a blood and/or urine sample. The handling and storage of 

the samples is crucial, as it may result in false positive or false negative results (Haas et al. 

2008).  

In order to detect inborn errors of metabolism, of which mitochondriopathies present a 

significant part, a newborn screening of carnitines and acylcarnitines from blood droplets was 

established (Jones et al. 2010). Carnitines and acylcarnitines are essential compounds for the β-

oxidation of fatty acids, which is typically highly active in heart or muscle tissue. Carnitine 

deficiency has also been connected to primary OXPHOS disorders. Screening of these 

compounds is able to identify many affected individuals before the onset of the first symptoms 

(Kompare and Rizzo 2008).  

Imaging also plays an important role in mitochondrial disease diagnosis. Wong et alii showed 

that investigation of the brain with magnetic resonance imaging (MRI) of the mitochondrial 

patient, is able to assess disease severity, monitor disease progression, and measure effects of 

provided treatment (Wong et al. 2017). Evaluation of brain anatomy is an established approach 

in neurometabolic disorders. However, when considering mitochondrial disorders, MRI 

features may change over time (Barkovich et al. 1993; van der Knaap et al. 1996; Valanne et 

al. 1998). Thus, a new neuroimaging technique called proton magnetic resonance spectroscopy 



Eliška Koňaříková  INTRODUCTION 
 

9 

 

(MRS) has been developed. MRS is able to capture the behavior of small chemical compounds, 

such as lactate, N-acetyl-L-aspartate, succinate, creatine, choline, and myo-inositol. Therefore, 

MRS possesses the posibility to visualize metabolic changes, especially in the areas that 

otherwise appear normal. It also helps to non-invasively track metabolites in neurometabolic 

disorders (Bianchi et al. 2003; Dinopoulos et al. 2005). 

In the course of the search for a biomarker in human mitochondrial disorders, an evaluation of 

fibroblast growth factor 21 (FGF-21) has been assessed. FGF-21 functions as a metabolic 

regulator, influencing glucose homeostasis and lipid metabolism (Choi et al. 2018). Dr. Anu 

Suomalainen and her co-workers aimed to reduce the need of muscle biopsy in the cases of 

suspected mitochondrial diseases affecting skeletal muscle. Evaluation of patients with 

confirmed respiratory chain deficiencies revealed elevated FGF-21 with a sensitivity of 92,3%, 

therefore suggesting FGF-21 as a strong biomarker (Suomalainen et al. 2011). Unfortunately, 

recent publications have conversly identified FGF-21 as a weak biomarker for mitochondrial 

inborn errors of metabolism (Finsterer and Zarrouk-Mahjoub 2018). 

Similarly, growth differentiation factor 15 (GDF-15) has been reported to be significantly 

elevated in the serum of patients with mitochondrial disorders. When compared with other 

biomarkers (FGF-21, lactate, pyruvate, or creatine kinase), GDF-15 showed highest sensitivity 

(98%) and specificity (86%; Yatsuga et al., 2015). Both FGF-21 and GDF-15 showed high 

yield in the specific cases of mitochondrial respiratory chain deficiencies. However, it must 

always be kept in mind that mitochondrial disorders consist of a large number of other 

deficiencies and can therefore not all be addressed with a single investigation. 

 

1.2.3 Biochemical diagnosis 

As mentioned, about half of the known mitochondrial disorders are caused by genetic defects 

in the OXPHOS complexes, whereof isolated or combined deficiency of Complex I in muscle 

is the most frequent biochemical finding (Mayr et al. 2015). In mitochondrial disorders, muscle 

tissue (i.e. skeletal or cardiac muscle) is typically affected due to the high energy demand 

(Larsson and Oldfors 2001). Measuring the enzymatic activities of individual or coupled 

complexes in samples from muscle biopsy became a gold standard for mitochondrial diagnosis 

in the era before massive usage of genetical testing (Wortmann et al. 2017).  

The first systematic biochemical and morphological testing was set in 1970s and led to a 

description of a number of new metabolic defects, including deficiencies of pyruvate 

dehydrogenase complex, palmitoylcarnitine transferase, carnitine, as well as defects of 

Complexes III and IV (DiMauro and Garone 2010). Taken together, they highlight the very 

heterogeneous cause of mitochondrial disorders. Therefore, especially in the pre-genetic era, 

biochemical and morphological investigations of muscle biopsies were essential for disease 

diagnosis. In particular, certain other neuromuscular diseases can be omitted by investigations 

of a muscle biopsy (Parikh et al. 2015).  

In early days, the OXPHOS function was analyzed polarographically. This method measures 

oxygen consumption and allows to study coupling between electron transport through 
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Complexes I to IV as well as the ATP synthesis in a sample of freshly isolated mitochondria 

(Rustin et al. 1991). Later, this technique further developed and expanded as the Oroboros 

Oxygraph Instrument by the group of Erich Gnaiger (Haller et al. 1994) or as Seahorse XF 

Analyzer (Rogers et al. 2011).  

Histochemical staining of the enzymatic activity of Complexes II and IV and/or V in muscle 

fibres has also proven to be a valuable method in the diagnosis of mostly paediatric cases with 

mitochondrial myopathy (Oldfors et al. 1991). Alternatively, a double staining of Complex II 

and IV activities stains the ragged muscle fibres blue, whereas the healthy fibres appear brown. 

If this double staining of a muscle reveals a mixed picture in a sample from one patient, mtDNA 

mutations can be assumed. This is a direct consequence of a heteroplasmic pattern in the muscle 

cells (Sciacco et al. 1994).  

Additionally, immunohistochemical studies are able to detect decreased content of respiratory 

chain complexes. Also, enzymatic activities can be measured by in-gel functional assays (Wittig 

et al. 2007) and electron microscopy may reveal abnormalities in mitochondrial ultrastructure 

pointing to a cause of the myopathy (Oldfors et al. 1991; Larsson and Oldfors 2001).  

 

1.2.4 Genetic diagnosis of mitochondrial disorders 

1.2.4.1 Single gene diagnostics 

The importance of genetic testing in mitochondrial disease diagnosis has been growing over 

time. In the late years, sequencing techniques have become the state of the art tool to diagnose 

mitochondrial disorders. The era ‘from function to gene’ supported the approach of biochemical 

investigation first, followed by a targeted Sanger sequencing of candidate genes (Wortmann et 

al. 2017). Sanger sequencing is a technique developed in 1977 by Frederick Sanger and his co-

workers. It is based on a chain termination protocol during in vitro DNA polymerization, where 

labeled dideoxynucleotides are incorporated (Sanger et al. 1977). Nowadays, instead of the 

original radioactive labelling, each of the four nucleotide is labeled by a different fluorescent 

dye, subsequently visualized as peaks for sequence determination. 

Sanger sequencing is at the present time used in laboratory practice to confirm findings from 

the Next generation sequencing (NGS). This method has the advantage of obtaining results 

within hours to days and is easy and reliable to interpret. Moreover, in the setting of strong 

suspicion for a variant in a limited number or even in a single gene, for example due to family 

history, Sanger sequencing is still a beneficial first-tier apporach. As an example, LHON is 

caused by only three distinct mtDNA point mutations in more than 95% of cases (Yu-Wai-Man 

et al. 2002). Next, MELAS was reported to be caused by a variant in MTTL1 coding for tRNALeu 

in about 80% of the patients (Goto et al. 1990), or the Sengers syndrome which is genetically 

associated with variants in AGK (Haghighi et al. 2014). Each of which is a good candidate for 

Sanger sequencing before more holistic apporaches such as NGS. 

Based on the nature of Sanger sequencing utilization, requiring selection of candidate genes, 

this method is unable to unravel new disease causing genes. Sanger sequencing was reported to 

reach a diagnostic yield of only 11% for mitochondrial diseases (Neveling et al. 2013). Other 
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disadvantages become striking with the incorporation of NGS techniques. As shown, the 

phenotypic-genotypic correlation is rather weak in the case of mitochondrial disorders (Haack 

et al. 2012b). Moreover, an incorrect interpretation of previous biochemical findings, can 

mislead the choice of candidate genes (Taylor et al. 2014). Subsequent sequencing of series of 

genes is laborious, time-consuming, not to mention expensive. Above that, many patients with 

clinically suspected mitochondrial disease are carrying mutations in genes not yet associated 

with a mitochondriopathy (Stenton and Prokisch 2018). 

 

1.2.4.2 Methods based on Next generation sequencing 

In case of searching for the genetic cause of a disease without a previously suspected gene, 

Sanger sequencing methods have been replaced by NGS approaches. The rapid development of 

high-throughput NGS techniques deems them the method of choice in the diagnosis of 

mitochondrial disorders (Wortmann et al. 2017). One striking advantage is the rapidly reducing 

cost of NGS, which has dropped to approximately 700€ per whole exome sequencing and about 

2.000€ per whole genome sequencing at the Institute of Human Genetics (Dr. Riccardo Berutti, 

personal communication). Not to mention the overall advantage of a wider information burden. 

To briefly introduce the principle of NGS, these methods are based on massive parallel 

sequencing of short reads coming from a fragmented target DNA. In the case of Illumina 

sequencing-by-synthesis method (Figure 4), individual DNA fragments are provided with 

specific adapters, immobilized on a flow cell matrix and clonally amplified. Sequencing cycles 

include incorporation of fluorescently labelled nucleotides, which are detected by a digital 

imaging system. The results are two, generally non-overlapping reads. Short reads are aligned 

to a reference genome. The defined length of the reads and the adapter sequence with a known 

insert size serves as an internal control measure (Illumina 2016). Different companies have 

developed different sequencing approaches, however the market is dominated by Illumina (van 

Dijk et al. 2018). Other main representatives include 454 pyrosequencing based on luciferase 

by Roche, SOLiD sequencing by ligation owned now by Life Technologies or single-molecule 

real-time sequencing approach used by Pacific Biosciences.  
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Figure 4: Overview of Next generation sequencing technology (from Illumina 2016). The DNA 

fragments (A) are ligated with adapters, (B) bound to the flow cell and locally amplified to 

create clonal clusters of identical fragments. (C) For every sequencing cycle, fluorescently 

labelled nucleotides are incorporated and detected by an imaging software. (D) Fragment 

sequences are aligned to the reference genome. 

 

NGS gene panels 

Current NGS approaches may be divided into targeted (panels, MitoExome and whole exome 

sequencing) and non-targeted (whole genome sequencing) sequencing. Targeting is usually fast 

and cost-effective in obtaining results, but due to the pre-defined gene set, the so called ‘panel’, 

novel disease causing genes will be missed. For nuclear genes coding for mitochondrial proteins 

a comprehensive inventory of 1.158 human proteins, i.e. MitoCarta2.0, was compiled by the 

group of Vamsi Mootha (Calvo et al. 2016). Based on their list with the addition of other genes 

D. Alignment & Data Analysis C. Sequencing 

A. Library Preparation B. Cluster Amplification 
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causing diseases similar to mitochondriopathies, a panel called MitoExome was created. It is a 

combination of sequencing mtDNA together with approximately 1.600 nuclear genes to unravel 

disease causing genes in patients with suspected mitochondrial disorders (Lieber et al. 2013).  

However, the panel sequencing used for patients with suspected mitochondrial disorders was 

unable to achieve a high diagnostic yield. The rates of correct identification of a causative 

mutation were only 8,8% when using a 447-gene panel (DaRe et al. 2013) or 15,2% with 132 

genes (Legati et al. 2016). However, both groups analyzed only about 130 previously 

undiagnosed patients. The application of MitoExome could identify an already known disease 

gene in 24% of the cases and a new potential disease causing gene in 31% of the patients (Calvo 

et al. 2012). In the meantime, fifteen new disease causing genes associated with a mitochondrial 

disorder, that are currently not included in the MitoExome list, have been discovered (Stenton 

and Prokisch 2018). 

 

WES 

The principle of the whole exome sequencing (WES) approach is to capture and sequence the 

exonic regions, encompassing about 1,6% of total human DNA length (Carroll et al. 2014). It 

is estimated that 85% of disease causing variants are located in such exonic coding regions 

(Lindor et al. 2017). Soon after the implementation of WES in 2009 (Choi et al. 2009), the very 

first gene connected to a mitochondrial disorder was reported. Dr. Tobias Haack and co-workers 

identified variants in ACAD9 as the cause of Complex I deficiency in three unrelated families 

by using the WES technique (Haack et al. 2010). Later, WES became clinically available and 

has become increasingly used diagnostic tool for patients with suspected mitochondrial disease 

(Falk et al. 2012; Wong 2013). Since then, NGS techniques as a part of molecular diagnostics 

was involved in an identification of about 300 new disease causing genes (Ohtake et al. 2014; 

Taylor et al. 2014; Wortmann et al. 2017). Moreover, it was accredited as a routine diagnostic 

tool for mitochondrial disorders in The Netherlands (Wortmann et al. 2015). 

The diagnostic yield of Sanger sequencing has been easily overtaken by WES. As an example, 

a study of 113 paediatric patients reported up to 59,3% of the likely causative mutations 

including variants in mitochondrial and nuclear genome. Half of the identified variants were 

novel and 18 genes were newly connected to a mitochondrial disorder (Pronicka et al. 2016). 

Another large scale study provided a firm genetic diagnosis in 34,5% of patients with the 

discovery of 37 novel mutations, three novel causative genes and three chromosomal 

aberrations in the cohort (Kohda et al. 2016). Similarly, a study comparing WES and a panel 

with 238 genes for mitochondrial disorders revealed a diagnostic yield of 38,5%, which would 

be only half of it in the case of the panel. In this study, when taken additional clinical, 

histochemical, biochemical, and neuroradiological findings, a diagnosis for 57% of the patient 

was reached (Wortmann et al. 2015). 

Despite the fact that the implementation of WES significantly increased the diagnostic yield, a 

large cohort of patients still remain undiagnosed. Either the variant can be misidentified as a 

variant of unknown significance, or it is located in the 98,4% of non-sequenced DNA (Stenton 

and Prokisch 2018). 
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WGS 

Whole genome sequencing (WGS), is an untargeted approach which aims to obtain the full 

genomic sequence information. It possesses the potential to disclose all genetic variants hidden 

in the human genome, including structural variants and breakpoints. This is mainly possible 

due to new techniques sequencing (ultra-)long reads (Jain et al. 2018). A diagnostic application 

of WGS has the potential to facilitate the identification of copy number variations and deep 

intronic mutations missed by exome capture (Lightowlers et al. 2015). Nevertheless, especially 

in long repetitive elements or complex regions, the coverage remains incomplete (Dewey et al. 

2014; Goodwin et al. 2016).  

The 1000 Genomes Project Consortium claims that a typical genome differs from the reference 

human genome at 4,1 million to 5,0 million sites (Auton et al. 2015), whereas WES starts on 

about 70.000 variants in an individual in comparison to a reference genome. The amount of 

variants together with incomplete annotations present a challege in variant prioritization 

(Biesecker and Green 2014) 

Both WES and WGS approaches provide a full coverage of the mtDNA. This comes at very 

high coverage in WGS experiments (typically hundred to thousand times as many as the 

genomic coverage) and at a good coverage in WES (typically half of the exomic coverage) as 

an unspecific off-target product of the capture, due to the high copy number of mtDNA (Picardi 

and Pesole 2012). The range of different sequencing strategies is schematically depicted in 

Figure 5. 

 

 

Figure 5: Sequencing strategies in human genetics. Sequencing of gene, panel, exome or 

genome covers different range of sequenced genomic DNA and therefore results in a different 

amount of data. 

 

1.2.4.3 Variant prioritization 

Variant filtering for whole exome sequencing has been developed to unravel the causal 

variant(s) (Haack et al. 2010). As seen in Figure 6, comparing a patient sequence with the 

reference genome, several thousands (~85.000) single nucleotide variants are typically found 

in the whole exome sequencing of an individual. By filtering for only rare variants (minor allele 

frequency < 0,01) with predicted impact on protein function, this large number of variants can 

be reduced to about two hundreds (~200). The following filtering steps focus on a recessive 
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type of inheritance because of a severe and early-onset presentation of a suspected rare genetic 

mitochondrial disorder. This is typically requiring two hits in a gene – compound heterozygous 

or homozygous variants – which leads to only a few candidates (~5-20). For the final selection 

four main points can be considered: whether the gene is coding for a mitochondria-related 

protein; whether the variant is predicted to impair the function; the lack of variants in a control 

population; and phenotypic-genotypic correlation. 

In order not to miss or overestimate causal variants, several points must be kept in mind. Genes 

differ markedly in their tolerance to variation (Bustamante et al. 2005) and rare variants 

predicted to be damaging in disease-associated genes are often observed even in population 

controls (MacArthur et al. 2012). Furthermore, about half of healthy individuals carry at least 

one de novo protein-altering mutation (Veltman and Brunner 2012). In many cases, strong 

evolutionary sequence conservation helps to indicate relevant protein-coding and non-coding 

variations (Cooper and Shendure 2011).  

Specifically, many mitochondrial gene and/or protein sequences are highly conserved. In the 

case of a known animal model, observed phenotypes can be compared and validated. Next, 

statistical support must be always considered. The larger the cohort of patients sharing the same 

phenotype and genotype, the more accurate the variant identification becomes. Publicly 

available datasets and databases provide useful aggregated information to increase filtering 

power and evaluate variants, both with predictions and statistical information (e.g. on predicted 

vs. observed frequency of loss-of-function variants on each gene like Exome Aggregation 

Consortium – ExAC or genome aggregation database – gnomAD). 

 

Figure 6: Overview of analysis workflow. Several filtration steps typically lead to a manageable 

number of potential gene candidates. By comparison to the phenotype, a known disease gene 

can emerge. In the case of a novel variant or a suspicion in a completely new disease gene, 

further analysis is required. 
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1.2.4.4 Functional studies to validate the WES/WGS findings 

The molecular findings obtained by whole exome sequencing need to be validated. Firstly, 

Sanger sequencing of the identified variant is required to confirm the WES finding and to avoid 

sequencing errors or sample mixing (Haack et al. 2010). Segregation analysis done by a targeted 

sequencing of the affected allele(s) should follow Mendel's Law of segregation. The segregation 

itself does not prove the variant causality. However, if variants segregate with the disease within 

a family, then such variants are highly likely to be disease causing. At the same time, if the 

variants do not segregate, they can be inmediatelly excluded (Sosnay and Cutting 2014). 

Based on the variant itself, a prediction of the effect on the protein function can be sought. For 

example, a stop codon producing variant either results in a truncated protein or complete loss 

of the protein. A variant in the functional domain can dramatically alter the enzymatic activity. 

These assumptions must however be confirmed in a functional assay (Haack et al. 2010). To 

study the transcript or protein stability, experiments such as real time PCR, RNA sequencing 

or Western blot analysis can be utilised. Quantitative proteomics presents a further possible 

solution. 

In the case of mitochondrial disorders, measurements of the enzymatic activity of the individual 

or coupled respiratory chain complexes are available (Spinazzi et al. 2012). To monitor the 

overall function of the respiratory chain it is feasible to quantify the oxygen consumption rate. 

In this case, Oroboros Oxygraph Instrument and Seahorse XF Analyzer replaced the original 

Clark-type oxygen electrode developed to measure the mitochondrial respiration (Brand and 

Nicholls 2011; Yepez et al. 2018). Staining of Complex II and IV visualizes their stability and 

the mitochondrial content (Sciacco and Bonilla 1996). Moreover, an advanced method 

developed specifically to study mitochondrial disorders is a blue-native electrophoresis giving 

the information about functional composition of respiratory chain complexes (Wittig et al. 

2006a). 

All functional assays require biological material. A tissue biopsy, typically muscle, is the 

established gold standard for mitochondrial diagnosis and to observe alteration in respiratory 

chain enzymes activities (Wortmann et al. 2017). As a side product of a muscle biopsy, a culture 

of skin fibroblasts may be established. These cells represent a valuable tool for numerous 

standard biochemical and histological assays (e.g. mitochondrial morphology, reactive oxygen 

species and calcium levels, ATP handling, etc.). Moreover, the defect of OXPHOS found in 

skeletal muscle is frequently reflected in the fibroblasts, representing a valuable resource in 

connecting pathogenicity to new mutations (Koopman et al. 2012; Gorman et al. 2016). The 

fibroblast cells can also be used for genetic complementation experiments. The wild-type DNA 

copy of the candidate gene is introduced into those patient-derived cells by lentiviral delivery. 

If the proper mitochondrial function is sufficiently restored, the pathogenicity of the variant is 

demonstrated (Danhauser et al. 2011).  
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1.3 Treatment of mitochondrial disorders 

Unfortunately, the increased success of diagnosis has not been reflected by the increased 

success in treatment of mitochondrial diseases. The number of drugs and therapies suitable for 

the majority of mitochondrial diseases is still very restricted (Lightowlers et al. 2015). 

Moreover, the variety of mitochondrial disease connected phenotypes complicates the situation. 

The first choice in suspected mitochondrial disorders, for instance, is a cocktail of nutritional 

supplements and vitamins, typically provided to any patient for a limited period of time 

(Chinnery and Turnbull 2001; Koene and Smeitink 2011; Pfeffer et al. 2012). The exact 

composition varies among clinicians and is based on the specific patient’s needs. Most 

commonly the cocktail includes L-arginine (for metabolic strokes), coenzyme Q10 (in the form 

of ubiquinol or ubiquinone), creatine (to facilitate recycling of ATP), and L-carnitine (as an 

antioxidant and energy source; Enns 2014). 

As an example, a rational therapy is currently available for coenzyme Q10 (CoQ) biosynthesis 

defects. The CoQ biosynthetic pathway consists of ten consecutive enzymatic reactions, where 

each of them can be dysfunctional. The supplementation of CoQ may overcome the insufficient 

natural production (Hargreaves 2014; Awad et al. 2018). Next, thiamine, vitamin B1, is 

beneficial in patients with a defective cerebral thiamine transporter, where it was reported to 

prevent further neurological deterioration (Haack et al. 2014). Thiamine supplementation also 

helps to correct some metabolic disorders, such as maple syrup urine disease and Leigh 

syndrome (Jauhari et al. 2017). The derivatives of thiamine play a role in several metabolic 

pathways, above all in the enzymatic reactions of sugar and amino acids catabolism or alcoholic 

fermentation.  

Another member of vitamin B family is riboflavin, vitamin B2. It is recommended to modulate 

mitochondrial electron transfer flux for patients with impaired flavoproteome. Riboflavin itself 

or its derivatives take part in more than 100 enzymatic reactions, including function of 

Complexes I and II of the respiratory chain and their assembly factors (Lienhart et al. 2013). 

As an example, the riboflavin therapy was effective and mitigated symptoms in a deficiency of 

flavin adenine dinucleotide-containing acyl-CoA dehydrogenase 9 (ACAD9). This enzyme is 

involved in β-oxidation as well as in assembling of Complex I (Haack et al. 2010; Schiff et al. 

2015; Repp et al. 2018).  

The last example here of a supplement from the vitamin B family is nicotinamide riboside, a 

form of vitamin B3. Nicotinamide riboside is a nicotinamide adenine dinucleotide (NAD+) 

precursor. NAD+ (or NADH if reduced) acts as a coenzyme in redox reactions or as a donor of 

ADP-ribose (Billington et al. 2006). Additionaly, mitochondria and especially the OXPHOS 

require organic and inorganic cofactors for their proper function. Therefore, vitamins such as 

biotin, niacin, riboflavin or thiamine or non-vitamin cofactors CoQ or heme can be 

administrated. Also, several metal inorganic cofactors may be beneficial in some cases, for 

example copper, iron, magnesium, molybdenum, and zinc. These cofactors are not connected 

to any harmful side effects (Distelmaier et al. 2017).  

Mitochondrial disorders are often associated with increased levels of reactive oxygen species 

(ROS). A defective respiratory chain is prone to leak a superoxide; or the natural removal of 
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ROS is malfunctioning, both leading to an increase of oxidative stress. To restore the balance 

between their production and removal, various antioxidants exist. Due to their nature, it is ‘any 

substance that delays, prevents, or removes oxidative damage to a target molecule’ (Halliwell 

and Gutteridge 2015). The naturally-derived antioxidants include vitamin C (ascorbic acid) and 

E (tocopherol), glutathione or CoQ (Marshall 2014). Based on their properties, artificial 

antioxidants have been produced, e.g. Trolox (analogue of vit. E), Idebenone and MitoQ 

(analogues of CoQ). Also, compounds such as N-acetylcysteine and α-lipoic acid are able to 

boost the glutathione biosynthesis (Magalhaes et al. 2016). The group of antioxidant drugs also 

includes L-carnitine, resveratrol, vitamin K1, or commercially produced EPI-743 (a para-

benzoquinone analogue), BendaviaTM (a peptide binding to cardiolipin; Enns 2014) or the 

currently tested KH176 (derivative of Trolox; de Haas et al. 2017; Koene et al. 2017). 

Another treatment example is that of endurance exercise, demonstrated to have an advantage in 

mitochondrial myopathies. In principal, endurance exercise training delays deconditioning and 

progressive deterioration and has been shown to improve exercise capacity over time. It was 

reported that endurance training improved mitochondrial function in muscle biopsies by an 

increase in total mitochondria content and by their increased activity visualized by staining of 

the COX activity. Consequently, it facilitated improvement in maximal oxygen uptake, 

peripheral muscle strength, not to mention the overall improvement of clinical symptoms 

(Taivassalo et al. 2006; Safdar et al. 2016). 

The next option is a ketogenic diet, which is mainly suitable for patients suffering from epileptic 

seizures or pyruvate dehydrogenase defect. The principle lays in carbohydrate fasting replaced 

by a high-fat diet. The lack of carbohydrates, hence glucose, leads to an increased liver 

utilization of fats, and production of fatty acids and ketone bodies. Biochemically, the function 

of PDH is bypassed by energy production coming from β-oxidation. Patients with 

mitochondrial neurodegeneration characterized by seizures as well as other neurodegenerative 

disorders such as Amyotrophic Lateral Sclerosis, Parkinson’s, Alzheimer’s and Huntington’s 

disease, may benefit from the ketogenic diet, because the alternative energy source forces brain 

tissue to utilize other metabolic pathways. The ketogenic diet was described to prevent 

formation of abnormal mitochondrial ultrastructures, to induce mitochondrial biogenesis via 

activation of AMPK and PGC1α and to decrease oxidative stress (Paoli et al. 2014; Koppel and 

Swerdlow 2018) in mouse models (Ahola-Erkkila et al. 2010; Sperl et al. 2015) as well as in 

children with various respiratory complex defects (Kang et al. 2007; Kossoff et al. 2014; Vidali 

et al. 2015). 

A completely different approach is realized by gene therapy. There are several principles, 

suitable for different types of disorders. Gene replacement is effective in monogenic disorders; 

gene addition may help in complex disorders such as heart failure and cancer or infectious 

diseases; gene expression alteration by RNA interference resulting in a removal of a target 

malfunctioning RNA; or genome editing via zinc finger endonucleases (ZFNs), TALENs 

(transcription activator-like effectors nucleases), or CRISPR (clustered regularly interspaced 

palindromic repeat)/Cas9 systems (Baker 2012; Hsu et al. 2014; Wang and Gao 2014). In the 

case of mitochondrial disorders, specifically in LHON syndrome, a gene therapy approach is 

being investigated in an ongoing clinical trial, currently in phase 3. Patients are injected with a 
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wild type ND4 protein into the healthy eye. As reported, their visual acuity improved and visual 

field was enlarged (Wan et al. 2016). Furthermore, the CRISPR/Cas9 editing system was 

reported in a model of CoQ deficiency, where it succesfully corrected a mutation in the gene 

coding for an enzyme COQ4 (Romero-Moya et al. 2017). 

Genome editing systems are being used in manipulation of mtDNA heteroplasmy. Briefly, the 

mutated mtDNA is targeted for removal, and is hence kept under the threshold level. As an 

example, restriction endonuclase SmaI reduced levels of mtDNA carrying m.8399T>G 

mutation that resulted in an increased ATP production (Tanaka et al. 2002a). Next, ZFNs and 

TALENS have been manipulated for mitochondrial localization. MtZFNs in vivo succesfully 

reduced pathogenic mtDNA with m.8993T>G and m.5024C>T point mutations or with a large 

"common deletion" (Gammage et al. 2014; Gammage et al. 2018). The MitoTALENs were able 

to target mtDNAs with various point mutations and deletions in patient cells (Bacman et al. 

2013). The current limitation of this approach for clinical usage lays in the theoretical danger 

of rapid depletion of mtDNA (Hirano et al. 2018). 

Recently in 2015, a mitochondrial donation, whereby mtDNA is obtained from a donor mother, 

has been permitted in the United Kingdom (Lightowlers et al. 2015; Gorman et al. 2016). If a 

mother is at risk of transmitting mutated mtDNA to her offsprings, she can take the advantage 

of mitochondrial donation techniques. Either a maternal spindle transfer or pronuclear transfer 

is used, differing in the timing of the transfer, whether it is perfomed pre- or post-fertilization. 

In principle, the nuclear material (i.e. spindle or pronuclei) is removed from a mother’s oocyte 

and transferred into a donor denucleated oocyte, where the healthy mitochondria are already 

located in cytoplasm (Rai et al. 2018). 

 

1.4 Introduction to reactive oxygen species (Thioredoxin 2 project) 

Thioredoxin 2 (TXN2) is one of the enzymes removing reactive oxygen species, the production 

of which is an important by-product of the mitochondrial respiratory chain. For a long time, 

ROS have been seen only as dangerous agents that attack proteins, lipids and nucleic acids. 

However, in the last two decades, the importance of ROS in several signalling pathways has 

been described. Among others, homeostatic levels of ROS were shown to be required for correct 

differentiation during embryonic expansion of stem cells (Bigarella et al. 2014).  

The first intensive debate about ROS started after the Denham Harman’s publication Aging: a 

theory based on free radical and radiation chemistry (Harman 1956). In this work it was shown 

that about 2% of the oxygen being transferred through the respiratory chain in mitochondria 

may leak. Such free oxygen molecules can, in the environment of the respiratory chain, rapidly 

consume a single electron in order to create a highly reactive superoxide radicalanion O2
•−. 

Therefore, it is supposed that most of the reactive oxygen species production is coming from 

the electron transport chain in mitochondria, in addition to some ROS produced in the cell 

cytosol. A number of enzymes within the cell were described to produce ROS. However, the 

precise proportion of ROS originating from all of the different sites remains not yet fully 

determined. ROS production also depends on the cell type, microenvironment, and fitness. 
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1.4.1 Sites of reactive oxygen species production 

Energy production in mitochondria is part of aerobic cellular metabolism. The superoxide or 

hydrogen peroxide production is in most cases a result of imperfect oxidation of oxygen to 

water in the mitochondrial respiratory chain. Among the ROS producing sites (Fig. 7), 

respiratory chain complexes are believed to be the central producers. Two out of eight iron-

sulphur clusters and a flavin mononucleotide (FMN) site in Complex I are prone to leak an 

electron, and hence produce ROS (Genova et al. 2001; Kushnareva et al. 2002; Kussmaul and 

Hirst 2006; Esterhazy et al. 2008; Koopman et al. 2010). Also, several subunits of Complex III 

have a tendency to leak electrons, but their role in the respiratory chain is based on reaction 

cycles with coenzyme Q (Boveris et al. 1976; Turrens et al. 1985; Raha et al. 2000). Complex 

II is not a classical ROS producer, however a mutated protein (Guo and Lemire 2003; Slane et 

al. 2006) or low substrate conditions (Quinlan et al. 2012) can change this behaviour. There are 

also other minor ROS producers within mitochondria, for example electron transfer 

flavoprotein (ETF) and ETF ubiquinone oxidoreductase (Ruzicka and Beinert 1977), 

glycerolphosphate dehydrogenase (Drahota et al. 2002), a multisubunit pyruvate 

dehydrogenase complex (Starkov et al. 2004) or α-ketoglutarate dehydrogenase (Starkov et al. 

2004), or aconitase (Vasquez-Vivar et al. 2000) and potentially also Complex IV (Koopman et 

al. 2010). 

Several ROS producing sites are also described in the cytoplasm (Fig. 7). First of all, the family 

of NADPH oxidases, proteins able due to an increased ROS production to kill unwanted 

microorganisms during phagocytosis (Hampton et al. 1998). Stress conditions cause an increase 

in the production of ROS in other organelles: the unfolded protein response in the endoplasmic 

reticulum and in peroxisomes as a part of the long-chain fatty acid oxidation (Holmstrom and 

Finkel 2014). Additional ROS producers are located in the cytoplasm, such as cyclooxygenase, 

cytochrome P450 monoxygenase, D-amino acid oxidase as well as lipoxygenase or xanthine 

oxidase (Holmstrom and Finkel 2014). Similarly, reactive nitrogen species are a product of 

nitric oxide synthase (Koopman et al. 2010).  
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Figure 7: Sites of ROS production (modified from Holzerova and Prokisch 2015). Most of the 

enzymes responsible for ROS production are located in mitochondria: Complex I (I), Complex 

II (II), Complex III (III), Complex IV (IV); α-ketoglutharate dehydrogenases (α-KGDH), 

aconitase, alternative oxidase (AO), cytochrome (cyt) b5 reductase, dihydroorotate 

dehydrogenase (DHODH), electron transfer flavoprotein (ETF) and ETF ubiquinone 

oxidoreductase (ETF-QO), external NADH dehydrogenase (NADH DH), mitochondrial 

glycerophosphate dehydrogenase (mGPDH), monoamine oxidase (MAO), protein p66Shc, and 

pyruvate dehydrogenase (PDH). Additional ROS producers are located in cell cytosol, 

including nitric oxide synthase (NOS), a producer of reactive nitrogen species (ONOO−) by 

reaction with H2O2. Respiratory chain complexes are depicted in blue, other ROS contributors 

in green, organelles in violet. Reactive oxygen or nitrogen species are portrayed as yellow 

stars. Enzymes produce typically either superoxide anion O2
•− or hydrogen peroxide. Their 

transformation is ensured by superoxide dismutases, manganese (MnSOD) in mitochondria or 

copper-zinc (Cu/ZnSOD) in inner membrane space and cytosol. ER – endoplasmic reticulum, 

IMM – inner mitochondrial membrane, LCFA – long chain fatty acid, OMM – outer 

mitochondrial membrane. 
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1.4.2 Principles of reactive oxygen species scavenging and signalization 

Redox-sensitive proteins contain thiol groups, which are able to scavenge the presence of ROS 

that they can use also for an active signalling. The redox changes mostly affect cysteine residues 

of the thiol groups, in particular cysteines with low pKa and a thiolate anion (S−) at a 

physiological pH. However, methionines, tryptophans and tyrosines are also sensitive to redox 

imbalance. Likewise, enzymes with iron–sulphur clusters, such an aconitase, typically provide 

the sulphur from their cysteine residues (Holzerova and Prokisch 2015).  

The active thiol group in cysteines can undergo a peroxide attack, resulting in a formation of 

reversible sulphenic acid (-SOH). This highly reactive group forms a disulphide bridge if 

another -SOH is present. Likewise, a sulphonamide (-SN-) is created as a result of reaction with 

an amine, e.g. at the end of an amino acid (Fig. 8). Both changes are reversible redox 

modifications, which can be restored by molecules or proteins of the ROS scavenging systems 

(Fig. 9). However, continuing exposure to hydrogen peroxide in the redox environment will 

further oxidize the sulphenic groups, and irreversible sulphinic (-SO2H) or sulphonic (-SO3H) 

acids will be created (Kiley and Storz 2004). Irreversibly produced proteins are potentially 

dangerous, if their removal is malfunctioning.  

 

Figure 8: Molecular mechanisms of reactive oxygen species scavenging mechanism (modified 

from Holzerova and Prokisch 2015). Redox environment produces either reversible or 

irreversible changes in redox sensitive proteins. The available sulphur in cysteines undergoes 

oxidation in the presence of hydrogen peroxide. Reversible modifications are restored by 

enzymes and molecules displayed in Figure 9. Ongoing oxidative environment depicted by 

↑H2O2 results in production of end products with sulphinic (-SO2H) or sulphonic (-SO3H) acids. 

 

As most of ROS production occurs in mitochondria, a complex defence system has developed 

therein. There are two main groups of enzymes, so called glutathione or thioredoxin (including 

TXN2) pathways. Both groups cooperate in a way to keep ROS at a manageable level. 

Peroxiredoxin and glutathione peroxidase in mitochondria directly react with hydrogen 

peroxide in order to decompose it into molecules of water (Fig. 9). The enzymes are oxidized 

as a result of the reaction. Proteins of the peroxiredoxin family (mostly PRDX3) form 

homodimers in the redox environment via disulphide bridges, which are subsequently oxidized 

by thioredoxins (TXN2 in mitochondria). Cells with peroxiredoxin monomers are sufficiently 

ready to fight ROS. Oxidized thioredoxin molecules are later on reduced by the reaction of 
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thioredoxin reductase (TXNRD2 in mitochondria) with the reduction equivalents provided by 

NADPH.  

Likewise, oxidized glutathione peroxidase (GPx) is reduced by molecules of glutathione, a 

tripeptide antioxidant with high cellular concentration of 1-10 mM (Gilbert 1990; Schafer and 

Buettner 2001). In the redox environment, glutathione forms homodimers (GSSG) or is attached 

to another protein via a disulphide bridge. Restoration of glutathione monomers (GSH) is then 

ensured by glutathione reductase (GSR). GPx can also be reduced by glutaredoxin (GLRX). 

GLRX is responsible for crosstalk with the thioredoxin pathway, while it can reduce the PRDX3 

dimers (Gladyshev et al. 2001; Lundberg et al. 2001; Hanschmann et al. 2010). Likewise, 

TXNRD2 is able to directly reduce peroxiredoxin dimers. Moreover, GLRX or glutathione can 

reduce TXN2 (Casagrande et al. 2002). 

Glutathione or thioredoxin form the main molecules of the ROS scavenging mechanism. The 

whole machinery is mostly active in mitochondria, but the same or analogous enzymes exist in 

the cytosol. For instance, thioredoxin 1 or thioredoxin reductase 1. In particular, peroxisomes 

produce ROS to maintain their function, hence they also developed a complex defence system. 

Catalase is also an enzyme responsible of disassembly of hydrogen peroxide into oxygen and 

water; however, it is primarily found and active in peroxisomes (Kirkman and Gaetani 1984). 

 

Figure 9: Reactive oxygen species scavenging pathways (modified from Holzerova and 

Prokisch 2015). ROS, thus superoxide radicalanion (O2
•−) or hydrogen peroxide (H2O2) are 

produced by enzymatic activities of respiratory chain complexes as well as other enzymes. In 

mitochondria is superoxide converted to hydrogen peroxide either spontaneously or by the 

reaction of manganese superoxide dismutase (MnSOD). ROS scavenging systems are displayed 

as molecules of the thioredoxin (on the right part in blue) and glutathione (on the left part in 

green) systems. Within mitochondria, hydrogen peroxide is reduced by enzymatic reaction of 

peroxiredoxin 3 (PRDX3) and oxidation of PRDX3 is reduced by thioredoxin 2 (TXN2), 

thioredoxin reductase 2 (TXNRD2) and NADPH. In the glutathione pathway, glutathione 

peroxidase (GPx) reduces H2O2 into water and it is reduced by glutathione (GSH) molecule, 

which forms dimers (GSSG). Glutathione reductase (GSR) reduces dimers of GSH by using 

reducing equivalents of NADPH. Similarly, GPx can be reduced by a molecule of glutaredoxin 
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(GLRX). The crosstalk of the pathways and the minor reactions are depicted by light blue 

arrows. 

 

1.4.3 Redox imbalance causes ROS-dependent signalling 

In the case of supposedly malfunctioning TXN2, part of the defence system, imbalance of ROS 

levels and following signalling pathways was suspected. In theory, redox environment causes 

an oxidation of thiol groups in proteins, which inactivates several enzymes that actively block 

particular signalling pathways. Such indirect inhibition is then responsible for activation of 

ROS signalling. Protein phosphatases are an example of a group of enzymes, which are 

inactivated by H2O2. As a result, the level of phosphorylated proteins in the cell increases (Meng 

et al. 2002). Likewise, protein tyrosine phosphatases are reversibly inactivated in redox 

environment (Denu and Tanner 1998). Also, a receptor tyrosine kinase is directly approached 

by ROS, hence the kinase signalling is affected (Truong and Carroll 2013). A burst of ROS 

generation is then responsible for a stimulation by a growth factor, followed by an increased 

tyrosine phosphorylation, leading to a signal transduction (Sundaresan et al. 1995; Bae et al. 

1997).  

Reactive oxygen species, among others, attack DNA, but the redox signalling affects 

transcription factors, such as bacterial OxyR. OxyR is a redox sensitive protein with the ability 

to promote the antioxidant stress response. Oxidation of cytosine residues in OxyR creates an 

intra-molecular disulphide bond that locks the transcription factor in its active form 

(Xanthoudakis and Curran 1992; Lee et al. 2004).  

An antioxidant pathway of a nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like 

ECH-associated protein 1 (Keap1) is an example of a general ROS defence (Fig. 10). This 

pathway is activated in a presence of oxidative or electrophilic environment as well as nutrition 

or artificial drugs. Upon normal conditions, Nrf2 is found in cytosol and bound to Keap1. 

However, activating stimuli cause Nrf2 release and its translocation to the nucleus. Therein, 

Nrf2 forms a heterodimer with musculoaponeurotic fibrosarcoma (Maf) that together mount to 

antioxidant response element (ARE) in DNA. This stimulates transcription of antioxidant 

enzymes such as catalase, glutathione peroxidase or glutathione S-transferase (Lee et al. 2011). 
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Figure 10: Nrf2-Keap1 antioxidant pathway (from Lee et al. 2011). Several different, typically 

redox stress stimuli (in blue boxes) affect the complex of nuclear factor erythroid 2-related 

factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1). Once the Nrf2 is released, 

immediately translocates to cell nucleus, where it forms dimer with musculoaponeurotic 

fibrosarcoma (Maf). This dimer is then effectively bound to DNA in a position of antioxidant 

response element (ARE) that starts transcription of antioxidant genes, e.g. catalase, heme 

oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase-1 (NQO-1), glutathione peroxidase 

(GPx), or glutathione S-transferase (GST). 

 

Numerous other pathways and proteins are connected to ROS production. Such as actin 

polymerization, DNA binding of transcription factors activator protein 1, activity of the 

calcium/calmodulin-dependent kinase, or forkhead box protein O, and nuclear factor erythroid 

2-related factor 2, essential autophagy protein ATG4 (Holmstrom and Finkel 2014). In many 

scenarios, increased ROS production triggers mitophagy, an effective quality control system.  

 

1.4.4 Impairment of ROS scavenging system 

Mitochondrial dysfunction is traditionally linked to an increased ROS production, and vice 

versa. The missing enzymatic reaction of TXN2 can possibly trigger a burst of ROS; however, 

the evidence in literature is not that concrete. So far, no patient with loss-of-TXN2 has been 

reported, however variants in cooperating proteins have been found or modelled.  

Interestingly, no increased ROS generation was observed in a so called mutator mouse model. 

This model accumulates mutations in the mtDNA due to an inactivation of proofreading 

function of mitochondrial DNA polymerase (Trifunovic and Larsson 2008; Bratic and Larsson 

2013). Over time the mutator mouse showed a variety of ageing phenotypes, such as 

osteoporosis, greying of the hair, hair loss, reduction of weight and decreased fertility. 

However, minor or no increase of oxidative stress has been observed (Trifunovic et al. 2004). 



Eliška Koňaříková  INTRODUCTION 
 

26 

 

The same conclusion has been reached in a mouse model with dysfunctional Complex I subunit 

NDUFS4 (Chouchani et al. 2014).  

The increase of ROS in mitochondria can happen due to various reasons, some of which might 

not be known to date. In terms of the defence mechanism, responsible for keeping ROS at a 

certain level, full or partial inactivity can occur. Accordingly, several disorders in the 

scavenging mechanism have been described. Recently, a homozygous variant in the 

mitochondrial selenoprotein thioredoxin reductase (TXNRD2; OMIM #617825) has been 

observed. This mutation was found to be associated with a familial glucocorticoid deficiency 

in seven individuals from a consanguineous family (Prasad et al. 2014). This was the first 

observation of a homozygotic variant in enzymes of the thioredoxin ROS defence pathway 

causing an inherited disorder in living patients.  

On the contrary, Txnrd2 knockout (KO) mouse model presented with an embryonic lethality 

(Conrad et al. 2004). The mouse embryos died at embryonic day 13 and were significantly 

smaller, severely anaemic and showed increased apoptosis in the liver. It appeared that Txnrd2 

played a key role in haematopoiesis and above all in a correct heart development and function. 

As reported, heterozygous mutations in TXNRD2 were observed in patients with dilated 

cardiomyopathy (OMIM #115200; Sibbing et al. 2011). Both observations suggest that the 

embryonic lethality is likely a consequence of an inability to restore the Txnrd2 function leading 

to a cardiac arrest. To study this phenotype, the group of Dr. Marcus Conrad created a mouse 

model with a cardiac cell-specific inactivation of the Txnrd2 gene. Accordingly, these mice 

developed a fatal dilated cardiomyopathy and died shortly after birth. Further investigations 

unravelled the role of Txnrd2 in the removal of ROS and the maintenance of mitochondrial 

homeostasis. The in vitro experiments showed that the glutathione system is incapable to 

compensate for the TXNRD2 loss leading to a growth of ROS levels (Conrad et al. 2004). 

Similarly, mouse embryos lacking cytosolic thioredoxin reductase (Txnrd1) showed limited 

cell proliferation resulting in a severe growth retardation and early embryonic lethality 

(Jakupoglu et al. 2005). Such observations were described as well in thioredoxin 1 (Txn1) 

knockout mice. Txn1 KO died shortly after implantation because of proliferation defect of their 

inner mass cells. Txn1 is therefore essential for early morphogenesis and differentiation of the 

mouse embryo. In opposite, heterozygotes Txn1+/− are viable, fertile, and seem normal (Matsui 

et al. 1996). 

In the glutathione ROS defence pathway, a consanguineous family with a frameshift mutation 

has been reported. The variant, more specifically a duplication of one thymine at position c.714, 

was found in glutaredoxin domain-containing cysteine-rich protein 2 (GRXCR2; Imtiaz et al. 

2014). It affects the cysteine-rich region of GRXCR2 and results in abnormal extension of the 

C-terminus. The patients suffer from early onset, bilateral and progressive hearing loss (OMIM 

#615837). The phenotype can be explained by the localization of the wild type GRXCR2 in the 

microvilli of sensory hair cells in the inner ear (Odeh et al. 2010), where in contrast the mutated 

GRXCR2 is unstable and was found predominantly in cytosol (Imtiaz et al. 2014). However, 

ROS levels were not analysed in this study. 
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Furthermore, a mouse model with glutathione deficiency was induced by administration of 

buthionine sulfoximine, a selective inhibitor of gamma-glutamylcysteine synthetase. These 

mice presented with decreased glutathione levels in cerebral cortex and enlargement and 

degeneration of mitochondria. The authors suggest that lower GSH levels lead to an increased 

mitochondrial and cell damage due to higher ROS occurrence (Jain et al. 1991; Martensson et 

al. 1991). Later, a mouse model lacking the catalytic subunit of glutamate cysteine ligase 

showed the essentialness of GSH synthesis, as mouse embryos died before birth (Dalton et al. 

2000). 

The mentioned GSH deficiency model aims to help the study of various defects of human GSH 

synthesis. The production of glutathione is assured by six enzymes, for which five hereditary 

deficiencies have been described. Most of the mutations are leaky, hence the enzymes have 

residual activity. Nevertheless, all are very rare and autosomal recessive. The phenotypes differ 

from haemolytic anaemia, metabolic acidosis, 5-oxoprolinuria to disorders of the central 

nervous system and neuromuscular function (OMIM #266130; #230450; #231900; Ristoff & 

Larsson 2007). 

Next, acatalasemia is a state characterized by very low levels of catalase (OMIM #614097). It 

develops as a result of homozygous mutations in the CAT gene, in which 12 mutations have 

been described to date (Goth and Nagy 2012). Acatalasemia causes increased ROS levels, 

which play a role in the pathogenesis of several diseases. As an outcome, it increases the risk 

of developing a disorder, particularly in a combination of an additional impairment (Terlecky 

et al. 2006). 

Last but not least, a general increased ROS production has been described in neurodegenerative 

disorders, such as Alzheimer’s, Parkinson’s or Huntington’s disease (Manoharan et al. 2016). 

 

1.4.5 Thioredoxin 2 in detail 

Thioredoxin 2 is encoded by a nuclear TXN2 gene located on chromosome 22q12.3. It is a 13-

kDa redox protein with an active site Trp-Cys-Gly-Pro-Cys at positions 89 to 93. Its first 59 

amino acids represent a mitochondrial targeting sequence responsible for the subcellular 

localization (Spyrou et al. 1997). Unlike the TXN1, TXN2 does not create intermolecular 

dimers, however such polymerization still occurs in the crystal structure mainly as a result of 

hydrophobic contacts. Moreover, the TXN2 crystal structure reveals possible interaction 

domains and helps in further studies of the enzymatic activity (Fig. 11; Smeets et al. 2005). 

Within the redox environment the cysteine residues create an intramolecular disulphide bond 

that needs to be reduced by thioredoxin reductase and NADPH (Holmgren 1985; Arner and 

Holmgren 2000). 
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Figure 11: Crystal structure of human TXN2 protein (modified from Smeets et al. 2005). Crystal 

of reduced and oxidized human thioredoxin 2 were described at 2,0 and 1,8 Å resolution. (A) 

Superposition of oxidized (red) and reduced (blue) molecules of TXN2. The side chains of redox 

active cysteines are depicted as yellow balls. (B) The Ca chain of residues 27–38 counted 

without the mitochondrial targeting sequence, hence in the full-length protein residues 86–97. 

The side chains of Trp30 (resp. 89), Cys31 (90), and Cys34 (93) are also shown. Red coloured 

chain presents the oxidized TXN2, green the reduced one, altogether after superposition of 12 

molecules. (C) Crystal dimerization of oxidized TXN2 led by hydrophobic interactions. The side 

chains of following amino acids are also presented: Trp30 (89), Cys31 (90), Cys34 (93), and 

Asp60 (119). 

 

TXN2 is ubiquitously expressed with high expression primarily in tissues with increased 

metabolic activity, both in the adults and the foetus. The highest expression levels were 

observed in the brain tissue and neurons (Rybnikova et al. 2000), but also in others organs with 

high metabolic demand, including the stomach, testis, ovary, liver, heart, and adrenal glands.  

Beyond the maintenance of ROS homeostasis, TXN2 regulates apoptosis induced by the 

oxidative environment (Damdimopoulos et al. 2002; Tanaka et al. 2002b; Lu and Holmgren 

2012). Interestingly, a pharmacological inhibition of the mitochondrial thioredoxin system 

leads to decreased oxygen consumption together with decreased ATP/ADP ratios, and 

increased formation of lactate in human endothelial cells (Lowes and Galley 2011). Likewise, 
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the thioredoxin system was shown to regulate glucose homeostasis, thus subsequently affect 

mitochondrial bioenergetics. Thioredoxin has hence been exposed as the linkage between 

antioxidant defence, cell survival, and energy metabolism (Yoshioka and Lee 2014). 

Additionally, it was observed that enzymes of the Krebs cycle and collaborating mitochondrial 

pathways harbour thioredoxin binding sites. This points to a potential role in redox regulation 

by oxidative signalling, specifically the regulation of the Complex II, fumarase and citrate lyase 

was described (Daloso et al. 2015). 

Next, it was reported that TXN2 interacts with thiols of the membrane adenine nucleotide 

translocator (ANT). Oxidation of cysteine residues in ANT and their crosslinking converts ANT 

into an open unspecific pore that causes mitochondrial membrane permeabilization (Vieira et 

al. 2000; Chen et al. 2002; Halestrap et al. 2002). This leads into a release of, among others, 

cytochrome c and a launch of the apoptotic cascade. TXN2 also affects apoptosis by inhibition 

of apoptosis stress kinase-1 (ASK1). ASK1 is activated upon oxidative stress by its dissociation 

from a complex with thioredoxin. Subsequently, ASK1 triggers mitochondrial-dependent 

apoptotic cell death (Zhang et al. 2004; Huang et al. 2015). 

A knockout mouse model of the thioredoxin 2 had been created (Nonn et al. 2003), but the 

Txn2−/− embryos died between embryonic days 10,5 and 12,5. Hence, similarly to Txnrd1, Txn1 

and Txnrd2 KO models, Txn2 is crucial for prenatal development, thus for proliferation and 

protection from apoptosis. The most striking phenotype is an open anterior neural tube together 

with massively increased apoptosis at the tenth day postcoitus. The anterior neural tube is a 

precursor for the brain development, which forms itself, once the tube closes. Moreover, 

exencephaly occurs (Harris and Juriloff 1999). As has been reported, between the tenth and 

twelfth day of embryogenesis, mitochondria mature rapidly and begin to utilize the OXPHOS 

and the Krebs cycle (Shepard et al. 1998). Because of the embryonic lethality of Txn2 KO, 

Nonn and colleagues also studied the Txn2+/− mice. These heterozygous mice appeared normal 

and were fertile. Only the levels of thioredoxin RNA and protein were decreased (Nonn et al. 

2003). 

Cardiac-specific Txn2 KO mice were studied as a model for patients with dilated 

cardiomyopathy resulting from reduced expression levels of TXN2 in the heart. The mice 

developed dilated cardiomyopathy at one month of age together with several additional cardiac 

impairments, resulting in death by four months of age. Mitochondria in such hearts lost their 

ultrastructure, integrity, membrane depolarization and ability to maintain ROS at eligible levels. 

The morphological alteration was accompanied by reduced protein expression of OXPHOS 

subunits and increased electron leakage. Additionally, ATP production was reduced and 

apoptosis occurred more often (Huang et al. 2015).  

Studies of the conditionally Txn2 deficient chicken β-cells observed an accumulation of ROS, 

which was in contrast with a decrease of the total and mitochondrial GSH levels in such an 

environment. As a result, these cells more often underwent apoptosis. Hence, Tanaka et alii 

claimed that functioning Txn2 is essential for cell viability (Tanaka et al. 2002b). 

On the contrary, overexpression of Txn2 in human HEK 293 cells was described to increase 

protection against etoposide-induced toxicity as well as to increase sensitive to rotenone. Also, 
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a connection between Txn2 and the transmembrane potential has been described. Likewise, 

thioredoxin 2 interfered with the ATP synthase and played an important role in interaction with 

specific components of the respiratory chain (Damdimopoulos et al. 2002). 

 

1.4.6 Principles of antioxidant therapies for mitochondrial disorders of the redox 

system 

Understanding the mechanism of ROS defence and scavenging helps to describe specific 

impairments and to suggest suitable rational therapies. Utilization of antioxidants seems as a 

reasonable treatment for disorders with increased ROS levels, as suspected in the patient with 

variant in TXN2. Therefore, several of the available antioxidants are here described in detail: 

Glutathione, chemically glutamyl-L-cysteinyl-glycine, is a tripeptide with a gamma peptide 

linkage (Fig. 12). GSH is a natural antioxidant present in plants, animals, fungi, some bacteria, 

and archaea. Its main role is to reduce disulfide bonds in proteins by serving as an electron 

donor and to neutralize ROS. After such reaction, glutathione itself becomes prone to react, in 

such cases a dimerization is plausible due to the high concentration of glutathione in cells (up 

to 10 mM; Kaplowitz 1981). In healthy environment, more than 90% of GSH is in the reduced 

form (Halprin and Ohkawara 1967). The ratio of reduced to oxidized glutathione within cells 

is used as an indication of cellular oxidative stress (Pastore et al. 2001; Lu 2013). Glutathione 

can theoretically be obtained as a dietary supplement; however, it is a target of proteases and 

there are no specific glutathione carriers in cell membranes (Witschi et al. 1992; Allen and 

Bradley 2011). 

 

Figure 12: Chemical structure glutamyl-L-cysteinyl-glycine, glutathione in short. 

 

Glutathione is part of the cellular non-enzymatic antioxidant system also containing 

carotenoids, flavonoids and vitamins C and E (Koopman et al. 2010). 

Vitamin E, usually in the form of γ-tocopherol or α-tocopherol is obtained from nourishment 

(Fig. 13; Reboul et al. 2006). It supresses the propagation of ROS through biological 

membranes or fats, mostly because vitamin E is lipophilic and incorporates into membranes. 

The reactive oxygen species or the reactive lipid radicals are made to react with vitamin E to 

create a tocopheryl radical that is being reduced by a hydrogen donor (Brigelius-Flohe and 

Traber 1999). No significant benefit of vitamin E administration has been observed in healthy 

individuals (Bieri 1974). 
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Figure 13: Chemical structure of the α-tocopherol form of vitamin E. 

 

Trolox is a cell-permeable, water-soluble analogue of vitamin E (Fig. 14), also used as an 

antioxidant to reduce oxidative stress. It was reported that Trolox decreases lipid peroxidation, 

cytotoxicity, and levels of apoptosis in Hep G2 cells (Chen and Cederbaum 1998). Likewise, 

Trolox was shown to quench free radicals and inhibit reactive oxygen species generation in rat 

glial cells (Kaur et al. 2010). It also enhances treatment of lymphoma, while protecting against 

liver toxicity (Diaz et al. 2007). However, Trolox is mainly used in a method called Trolox 

equivalent antioxidant capacity that is a standard method of measuring antioxidant capacity, 

mostly in food and supplements (Cos et al. 2003; Huang et al. 2005; Prior et al. 2005). 

 

Figure 14: Chemical structure of Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic 

acid). 

 

Another group is that of coenzyme Q10 (CoQ10) and its synthetic analogues (Fig. 15). CoQ10 

is a coenzyme that is ubiquitously expressed in animals and most bacteria. Its main role is in 

the transfer of up to two electrons per molecule in the electron transport chain. CoQ10 has not 

been approved as a drug by the Food and Drug Administration. Nevertheless, it is sold as a food 

supplement (Garrido-Maraver et al. 2014). Coenzyme Q10 is typically well tolerated (Wyman 

et al. 2010; Acosta et al. 2016), however it is insoluble in water. Therefore, its hydrophilic 

analogue with only one isoprene repeat in the tail, CoQ1, is administered to patients or used in 

in vitro experiments. It is estimated that the daily intake of CoQ10 is about 3 to 6 mg per day, 

mostly from meat (Pravst et al. 2010). 

 

Figure 15: Chemical structure of coenzyme Q. This antioxidant varies in the number of isoprene 

repeats, e.g. rats contain nine repeats, humans ten. 
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MitoQ is an artificial mitochondrially targeted CoQ analog, mitoquinone mesylate in the full 

name (Fig. 16). It mimics the role of CoQ and moreover it aims to augment the antioxidant 

capacity. MitoQ was developed to cure the Parkinson's disease and liver damage caused by 

Hepatitis C viral infection (Tauskela 2007). Administration of MitoQ in healthy wild type mice 

did not alter the mitochondrial function (Rodriguez-Cuenca et al. 2010). However, daily 

administration of a 100 μM dose to a mouse model of Alzheimer's disease improved their 

memory, cognitive behaviour and reduced lipid peroxidation (McManus et al. 2011).  

 

Figure 16: Chemical structure of MitoQ. MitoQ results from a conjugation of coenzyme Q and 

triphenylalkylphosphonium ion. This ion helps to locate MitoQ into mitochondria due to the 

gradient of mitochondrial membrane potential. 

 

Last but not least, Idebenone is a drug originally developed to treat Alzheimer's disease and 

similar cognitive defects (Fig. 17; European Medicines Agency 2008). Later, clinical trials tend 

to use Idebenone for patients with Friedreich's ataxia and Duchenne muscular dystrophy, 

however usage in all settings has not been successful or approved (Buyse et al. 2003; Di 

Prospero et al. 2007; Tonon and Lodi 2008). Despite this, Idebenone was approved as a 

treatment for Leber's hereditary optic neuropathy in Europe showing a discontinuation of 

further visual impairment (Klopstock et al. 2011). Idebenone can by-pass malfunctioning 

Complex I and can feed electrons directly to Complex III. It is also recapturing electrons outside 

the inner mitochondrial membrane to prevent ROS production. Idebenone can easily be 

administered with fatty food and it is well absorbed into cells, but less than 1% is able to pass 

through the liver into circulation. 

 

Figure 17: Chemical structure of Idebenone. 

 

1.4.7 Inhibitors connected to the ROS production and ROS defence system 

Artificial deficiencies of the ROS defence system can be created by using inhibitors of specific 

enzymes. This helps in in vitro experiments, where models are not available, costly, or results 

are needed in a limited time frame. Inhibitors of such system further challenge the 

interconnected enzymes and help to unravel the essence of human disorders of ROS 
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homeostasis. In our cellular model with loss-of-TXN2, I could take the advantage of available 

inhibitors to study the ROS system and to validate the effect of a potential antioxidant treatment. 

 

Figure 18: Schematic representation of OXPHOS, enzymes of the ROS defence system and their 

inhibitors (modified from Holzerova et al. 2016). In red are depicted various inhibitors that 

block the activity of either OXPHOS or components of the ROS scavenging system. The 

crosstalk of the pathways and the minor reactions are depicted by light blue arrows. Details 

about the course of their action are described in text. 

 

First of all, rotenone and Antimycin A are two of many inhibitors of complexes of the 

respiratory chain. Rotenone is a natural substance that blocks the electron transfer from iron-

sulphur clusters in Complex I to coenzyme Q in the membrane. This causes, on one hand, 

reduced ATP production as a result of limited formation of the proton gradient; on the other 

hand, impaired electron transfer makes the cell prone to produce ROS (Caboni et al. 2004; 

Heinz et al. 2017). Similarly, Antimycin A interacts with electrons leaving Complex III at the 

so called QI site. Equally, electrons tend to leak from the membrane microenvironment, and the 

proton gradient is not being efficiently built (Kim et al. 1999). Both inhibitors are used in 

experimental conditions to stimulate ROS production in the investigated system. 

Secondly, 2,4-dinitrochlorobenzene or DNCB is used as an inhibitor of the GSH defence 

system. It is used in settings where it is essential to distinguish the contribution of glutathione 

and thioredoxin ROS defence systems (Aon et al. 2012). It has a GSH depleting effect as well 

as it inhibits glutathione reductase (Jocelyn and Cronshaw 1985). The inhibition of GSR was 

described to increase levels of glutathione disulphide, consequently to increase ratios of 

NADH/NAD+ and NADPH/NADP+, and to increase the level of protein glutathionylation. 

However, solely inhibition of GSR does not affect ROS production nor expression of enzymes 

of the ROS defence pathways (Zhao et al. 2009). 
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Next, buthionine sulfoximine (BSO) is a selective inhibitor of gamma-glutamylcysteine 

synthetase, hence the production of GSH (Bailey 1998). This reaction is also the limiting step 

of GSH biosynthesis. BSO has been tested as an anti-cancer drug that enhances the effect of 

many cytotoxic agents (O’Dwyer et al. 1996). 

Phenylarsine oxide (PAO) is a phosphotyrosine phosphatase inhibitor that cross-links vicinal 

thiol groups, thereby inactivating phosphatases possessing XCysXXCysX motifs. It forms 

stable complexes with neighboring cysteine residues, as it possesses high affinity towards 

sulphur, particularly in organic compounds (Gerhard et al. 2003; Verspohl 2006).  

The lastly mentioned inhibitor, auranofin, is a molecule containing a gold atom in its structure. 

It is established as an antirheumatic agent (Bernhard 1982). Auranofin is an inhibitor of 

selenocysteine enzymes, hence thioredoxin reductase and glutathione peroxidase. Different 

concentration can selectively inhibit either the first or both enzyme systems (Venardos et al. 

2004a). Due to its targets, auranofin prevents removal of ROS leading to an oxidative stress 

and increased apoptosis (Rigobello et al. 2005; Venardos et al. 2004b). Also, the inhibition of 

TXNRD2 leads to increased levels of oxidized thioredoxin 2 that is in such status more 

accessible for degradation (Chen et al. 2014). 

 

1.5 Introduction to riboflavin metabolism (Flavin adenine dinucleotide 

synthase 1 project) 

1.5.1 Acquisition and transport of riboflavin 

Riboflavin, or vitamin B2, is a water-soluble precursor for flavin mononucleotide (FMN) and 

flavin adenine dinucleotide (FAD), essential cofactors of numerous enzymes involved in 

cellular metabolism. Riboflavin is synthetized in bacteria, plants and fungi; however, this ability 

has been lost in higher organisms (Kaiser et al. 2002). It must therefore be obtained from food, 

mainly seafood, meat, milk, eggs, leaf vegetable and mushrooms (Phillips and Shephard 1993).  

Once in the digestive system, riboflavin is released from dietary proteins by their denaturation 

and from non-covalently bound complexes by the action of phosphatases (Said 2011). Next, 

riboflavin is absorbed into cells via a specific transporter in the small intestine. In the 

enterocytes, it is either directly converted into FMN and FAD; or it is transferred across the 

basolateral membrane into the blood stream (Powers 2003). Therein, riboflavin is bound to 

albumin or immunoglobulins and subsequently distributed throughout the whole body (Said 

2011).  

To date, three specific riboflavin translocators have been identified: hRFT1, hRFT2 and hRFT3 

(Moriyama 2011), as well as a multidrug transporter ABCG2, primarily expressed in the 

mammary gland (Vlaming et al. 2009). The three members of the riboflavin transporter (RFT) 

family differ in their amino acid sequence and transport mechanism, but mainly in their tissue 

specific expression (Subramanian et al. 2011). hRFT1 is predominantly found in the basolateral 

membrane of enterocytes, while hRFT2 is primarily found on the apical side; hRFT3 however 

is present in intracellular vesicles, salivary glands and brain (Fig. 19; Yonezawa & Inui 2013; 

Haack, Makowski, et al. 2012). 
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Within cells riboflavin undergoes rapid transformation into its catalytically active cofactors. As 

riboflavin is soluble in water, hence in cytosol or plasma; and moves across membranes, the 

conversion mechanism is able to trap required flavins within cells and use it further. There is 

little or no deposition in the body, so any riboflavin surplus is rapidly derived into its catabolites 

and excreted in urine (Zempleni et al. 1996). 

 

Figure 19: The path of riboflavin in human metabolism (from Haack, Makowski, et al. 2012). 

Riboflavin is taken up from the diet by human riboflavin transporter 2 (hRFT2) on the intestinal 

side of epithelial cells. It is released from those cells on the other side by hRFT1 into the blood 

stream. Uptake into the target cells occurs via passive diffusion or, most likely, yet unknown 

transporters. hRFT3 is highly expressed in the brain tissue and is responsible for the uptake of 

riboflavin into neuronal cells, where it is converted into FMN and FAD. The consequences of 
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riboflavin shortage are depicted on the upper part. Lack of FAD, as the conversion product of 

riboflavin, causes disturbed acyl-coenzyme A dehydrogenation, leading to increased levels of 

acylcarnitines. CACT - carnitine-acylcarnitine translocase; CPT2 - carnitine O-palmitoyl 

transferase 2; ETF - electron transfer flavoprotein; ETFDH - ETF-dehydrogenase; MIM - 

mitochondrial inner membrane 

 

1.5.2 Metabolic conversion of riboflavin into FMN and FAD 

Riboflavin is formed by a tricyclic heterocycle isoalloxazine bound to a ribityl residue. Within 

cells, riboflavin kinase (RFK) converts riboflavin into FMN. In this reaction, a phosphoryl 

group originating from ATP is added to the last hydroxyl group of the ribityl residue. Most of 

the FMN molecules are then adenylated to form FAD by FAD synthase (or FLAD1), also in 

ATP-dependent manner (Fig. 20; Depeint et al. 2006).  

 

Figure 20: Structure of flavins. Riboflavin serves as a precursor for FMN and FAD. Riboflavin 

kinase catalyses an ATP-dependent phosphorylation of riboflavin in order to form FMN. FAD 

synthase, also known as FLAD1, is then responsible for adenylation most of the FMN molecules 

in order to create FAD. 

 

In bacteria, riboflavin conversion to FAD is catalyzed by a bifunctional protein, such as RibF 

in Escherichia coli or RibC in Bacillus subtilis. In such enzymes, the C-terminal domain 

catalyzes riboflavin phosphorylation, whereas the N-terminus part is responsible for FMN 

adenylation. While the RFK activity exists also alone, no observation of an isolated FAD 

synthase enzyme in bacteria has been reported (Herguedas et al. 2010; Abbas and Sibirny 2011).  
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In eukaryotes, two families of enzymes with distinct activities developed, hence either RFK or 

FAD synthase. It was reported that RFK is the rate-limiting step in FAD production, while FAD 

synthase strictly requires Mg2+ for its activity (McCormick et al. 1997; McCormick 2000; 

Giancaspero et al. 2009). Moreover, FAD and FMN hydrolysis take place to keep flavin 

cofactors at certain pool homeostasis. The first reaction is catalyzed by FAD pyrophosphatase 

(EC 3.6.1.18), located in the outer mitochondrial membrane; the second by FMN 

phosphohydrolase (EC 3.1.3.1) in the intermembrane space (Fig. 22; Vergani et al. 1999; Barile 

et al. 1997).  

 

1.5.3 The domains and isoforms of Flavin Adenine Dinucleotide Synthase 1 

Human FAD synthase enzyme, in short FLAD1 or FADS, is encoded by FLAD1 located on 

chromosome 1, position 1q21.3. It was found based on a homology search by using yeast Fad1p 

as a template (Brizio et al. 2006). Unlike the yeast protein, FLAD1 contains two domains: a 

domain with FAD synthase activity at the C-terminus, and a molybdopterin binding domain at 

the N-terminal side. These two domains are distinct from the bi-functional prokaryotic enzyme 

containing RFK and FAD synthase activity on one strand.  

The FAD synthase domain is also known as 3'-phosphoadenosine-5'-phosphosulfate (PAPS) 

reductase domain. As the two FLAD1 domains exist as separate proteins in lower organisms, 

they were both intensively studied. Human PAPS domain shares similarities with the yeast 

Fad1p. It has been described that the isolated human FAD synthase domain is sufficient to 

catalyze FAD synthesis by itself with almost the same Km as the wild type enzyme (0,24 vs. 

0,35 μM for FMN and 6,23 vs. 15,3 μM for ATP). The molybdopterin binding (MPTb) domain 

is therefore not strictly required for the reaction (Miccolis et al. 2012).  

Based on the protein sequence, the MPTb domain, is similar to a plant Cnx1 G domain that 

binds molybdopterin with high affinity and supports the catalysis of molybdenum insertion 

(Kuper et al. 2004). Molybdopterin is a complex tricyclic heterocycle that itself does not bind 

molybdenum. The insertion of molybdenum into the molybdopterin results in a complete ligand 

called molybdenum cofactor. This is an essential cofactor of the active site of all molybdenum-

dependent enzymes (Hover et al. 2015). Until recently, the role of the molybdopterin binding 

domain in the human FAD synthase was unknown. However, it was shown, that MPTb domain 

stabilizes the FAD synthase domain and has a positive effect on its activity. Moreover, the 

MPTb domain was unravelled as a domain with FAD hydrolase activity (Giancaspero et al. 

2015). 

The FLAD1 transcript covers seven exons. The MPTb domain is coded by exons 1 and 2, 

whereas PAPS is coded by exons 3 to 7. According to UCSC Genome Browser, FLAD1 codes 

for seven distinct RNAs. These RNAs differ in number of exons and in coding of the two 

functional domains (Fig. 21). Likewise, NCBI Entrez Gene and UniProt databases list four, 

resp. five FLAD1 RNA and/or protein isoforms. Isoform 1 codes for the longest protein, other 

variants differ in 5' and 3' ends and use an alternative start codon, some of them also partially 

use another reading frame. So far, only one experiment was reported to observe a concurrent 
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presence of isoforms 1, 3 and 4 at transcript level. This experiment used the human colon 

adenocarcinoma cell line HT29 (Barile et al. 2013). 

However, only isoforms 1 and 2 were studied in detail. In the longer isoform, isoform 1, a 

mitochondrial targeting sequence was described. Based on computer prediction, the first 

17 amino acids represent the mitochondrial targeting peptide (Torchetti et al. 2010). Isoform 1 

is considered as the canonical full-length RNA. The resulting protein consists of 587 amino 

acids with a predicted molecular mass of 65,3 kDa. The shorter isoform, isoform 2, starts at 

methionine at position 98 and has been predicted to localize in the cytosol (Brizio et al. 2006; 

Galluccio et al. 2007; Torchetti et al. 2011). Thus, isoform 2 contains only 490 amino acids 

with a weight of 54,2 kDa. Moreover, FAD synthesis and degradation were reported in the cell 

nucleus. Although the nuclear isoform has not been described yet, the enzyme is responsible 

for a local flavin cofactor pool (Giancaspero et al. 2013). 

 

Figure 21: Schematic presentation of FLAD1 gene and protein isoforms. FLAD1 is organized 

into seven exons that code for several different isoforms. Structures from USCS Genome 
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Browser and NCBI Entrez Gene represent exons and introns with highlighted translated 

regions. Translated protein isoforms show data from UniProt server. RNA isoform 1 

(NM_025207.4) is coding for the longest protein (NP_079483.3) containing at the N-terminus 

a mitochondrial targeting sequence (MTS). Other isoforms use alternative start codons and/or 

alternative open reading frame. Within the first protein sequence, the numbers represent the 

very first and last position of amino acids as well as position of starts and ends of the 

highlighted functional domains, molybdopterin binding domain in violet and FAD synthase 

domain in orange. 

 

1.5.4 FMN and FAD transport and delivery to flavoproteins 

Once synthesized, FAD must be delivered to client apo-flavoproteins. Based on observations 

with other organic cofactors (Padovani and Banerjee 2009), FAD release from FLAD1 requires 

well-defined states and conditions, among others this includes correct redox state. At the same 

time, apo-flavoproteins must be protected from premature degradation.  

In the case of mitochondrial proteins, the apo-proteins are bound to heat shock protein 60 

(Hsp60) chaperones during the import to mitochondria. Already in several examples, FAD was 

acting as a chaperon-like molecule per se, helping Hsp60 to fold and assemble particular 

enzymes. Flavinylation improves molecular stability and enzymatic activity and prevents 

proteolytic degradation in several proteins, namely electron transfer flavoprotein and the 

electron transfer flavoprotein:ubiquinone oxidoreductase (Olsen et al. 2007; Henriques et al. 

2009), apoptosis inducing factor (Ghezzi et al. 2010), medium-chain acyl-CoA dehydrogenase 

(Saijo and Tanaka 1995), short-chain acyl-CoA dehydrogenase or glutaryl-CoA dehydrogenase 

(Lucas et al. 2011). All of these proteins bind flavin non-covalently into a site that is created 

after protein folding. This is true for the vast majority of flavoenzymes (about 90%). Some 

flavoproteins bind FAD covalently. Typical covalent bond is created between one methyl group 

of the isoalloxazine ring and, in most cases, a histidine residue, but also tyrosine or cysteine 

(Mewies et al. 1998). 

FAD and FMN are synthesized in the cell cytosol as well as in the mitochondrial matrix. 

However, to retain the flavin cofactors homeostasis and presence in all cell compartments, 

targeted transport must occur. For example, a human multi-cofactor peroxisomal carrier 

(SLC25A17) has been found (Agrimi et al. 2012). As most flavoproteins play a role in 

mitochondria, the transport in and out has been studied in detail. A riboflavin importer was 

described by the group of Dr. Maria Barile, but export remained questionable. Also, they 

observed only mitochondrial FAD export (Barile et al. 2000). Just recently, a human 

mitochondrial FAD importer coded by SLC25A32, located at the inner mitochondrial 

membrane was found (Schiff et al. 2016). Figure 22 summarizes the flavin cofactors cycle 

occurring between mitochondrial matrix, intermembrane space and cytosol. 

 



Eliška Koňaříková  INTRODUCTION 
 

40 

 

 

Figure 22: Riboflavin, FMN and FAD transport cycle in mitochondria (modified from Barile 

et al. 2000). Riboflavin is transported into mitochondria via a specific carrier (I). Therein, it is 

converted into flavin cofactors FMN and FAD by action of RFK (1) and FLAD1 (2). Client apo-

proteins are meanwhile transported into mitochondrial matrix by post-translational transport 

based on mitochondrial targeting sequence. Apo-flavoproteins together with FAD form a 

functional holo-flavoprotein. To sustain a flavin cofactor homeostasis, FAD can by degraded 

into FMN or to riboflavin by enzymatic activity of FAD pyrophosphatase (3) and FMN 

phosphohydrolase (4). Membrane transporter marked I and II ensure the riboflavin and FAD 

transport across the membrane. IMM – inner mitochondrial membrane, IMS – intermembrane 

space, OMM – outer mitochondrial membrane 

 

1.5.5 Human flavoproteome 

The human flavoproteome contains altogether around a hundred enzymes described so far, 

showing the importance of riboflavin conversion products in cellular maintenance. In the case 

of human enzymes, 84% necessitate FAD cofactor and 16% FMN, only a very small minority 

has a requirement for both. Except for chromosomes 13, 18, 21 and Y, the flavoprotein coding 

genes are uniformly distributed over the genome (Fig. 23; Lienhart et al. 2013). Deep study of 

374 flavin-dependent enzymes from 22 archaeal, eubacterial, protozoan and eukaryotic 

genomes confirmed that even among different species, more than 90% of those proteins are 

oxidoreductases. The principle of such reactions is based on the fact that the isoalloxazine ring 

is able to reversibly accommodate one or two electrons at the two available nitrogen atoms. The 

acceptance of electrons is reflected in optical properties of flavins or flavoproteins, respectively. 

While oxidized cofactors are yellow, and fully reduced colorless, the semi-reduced form is blue 

or red depending on pH (Gibson et al. 1962). 

Interestingly, overall non-covalent binding is preferred (about 90%). While the vast majority of 

FAD-dependent protein binds the cofactor into a Rossman fold protein structure, FMN-

containing enzymes prefer a (βα)8-(TIM)-barrel-like or flavodoxin-like fold. Only six enzymes 
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have been described to bind FAD covalently (Lienhart et al. 2013). However, quite a variety of 

structures appears in flavoproteins, because very specialized biological reactions mostly tend 

to call for unusual folds. Interestingly, when compared to other species, the number of human 

genes coding for flavin-dependent protein is around the average. That is because some 

organisms developed a very flavin-dependent life style, based of oxidoreductases. However, 

when compared within a particular genome, flavoprotein-coding genes present less than 0,3% 

(Macheroux et al. 2011). 

 

Figure 23: Chromosomal map of genes encoding flavoproteins (from Lienhart et al. 2013). 

Genes encoding the human flavoproteome are distributed among 19 autosomes (apart from 13, 

18 and 21) and the sex chromosome X. 

 

The redox reactions of flavins are often coupled with electron transfer to iron-sulphur clusters 

within complex enzymes. Accordingly, that is used typically in complexes of the mitochondrial 

respiratory chain, namely Complex I and II as well as in associated enzymes like electron 

transferring flavoprotein or mitochondrial glycerophosphate dehydrogenase. The reactions of 

flavoenzymes play a role also in other cellular pathways, such as the citric acid cycle, β-

oxidation, ROS defence, iron-sulphur cluster biosynthesis and delivery or degradation of amino 

acids. They are also found in biosynthesis of other essential cofactors and hormones such as 

coenzyme A, coenzyme Q, heme, pyridoxal 5'-phosphate, steroids and thyroxine or regulation 

of folate metabolites (De Colibus and Mattevi 2006; Joosten and van Berkel 2007). All known 
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flavoenzymes, their localization and some of the pathways are schematically depicted in Figure 

24. 

 

Figure 24: The human flavoproteome (based on Lienhart et al. 2013, Schiff et al. 2016 and 

Mayr JA personal communication). 99 different depicted enzymes create a various human 

flavoproteome. The central pathway of FMN and FAD production is depicted only in cytosol 

for space reasons, but simultaneously occurs also in mitochondria. The localization and 

function of flavoenzymes is displayed schematically. The inner field color code represents their 

affiliation to different pathways or organelles, where particular enzymes play their role; see 

the descriptions within Figure. Grey color stands for other or not yet clear function. Colours 

of the field borders represent the needed cofactor – red is for FAD, green for FMN, and yellow 

for combinations FAD and/or FMN and/or riboflavin. The underlined enzyme abbreviations 

have been described to be connected to a human disorder. 

ACAD8-11 - acyl-CoA dehydrogenase isoforms 8-11; ACADS - short-chain acyl-CoA 

dehydrogenase; ACADSB - 2-methylbutyryl-CoA dehydrogenase; ACADL - long-chain acyl-

CoA dehydrogenase; ACADM - medium-chain acyl-CoA dehydrogenase; ACADVL - very long-

chain acyl-CoA dehydrogenase; ACOX1-3 - acyl-CoA oxidase1-3; AGPS - 

alkyldihydroxyacetone phosphate synthase; AIFM1, 2 - apoptosis inducing factor mitochondria 

associated 1, 2; AOX1 - aldehyde oxidase; BLVRB - biliverdin reductase B; c7orf10 - glutaryl-

CoA oxidase; CHDH - choline dehydrogenase; COQ6 - coenzyme Q6 monooxygenase; CRY1, 

2 - cryptochrome circadian regulator 1, 2; CYB5R3 - cytochrome-b5 reductase; CYBB - 

cytochrome b-245, beta chain; D2HGDH - L-2-hydroxyglutarate dehydrogenase; DAO - D-
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amino acid oxidase; DDO - D-aspartate oxidase; DHODH - dihydroorotate dehydrogenase; 

DLD - dihydrolipoyl dehydrogenase; DMGDH - dimethylglycine dehydrogenase; DPYD - 

dihydropyrimidine dehydrogenase; DUOX1, 2 - dual oxidase 1, 2; DUS2L - dihydrouridine 

synthase 2; ETFA, B - electron transferring flavoprotein subunit A, B; ETFDH - electron-

transferring flavoprotein ubiquinone oxidoreductase; FDXR - ferredoxin-NADP+ reductase; 

FLAD1 - FAD synthase; FMO1-5 - flavincontaining monooxygenase isoforms 1-5; FOXRED1, 

2 - FAD-dependent oxidoreductase 1, 2; GCDH - glutaryl-CoA dehydrogenase; GFER - growth 

factor, augmenter of liver regeneration; GPD2 - glycerol 3-phosphate dehydrogenase; GSR - 

glutathione-disulfide reductase; HAO1, 2 - (S)-2-hydroxy-acid oxidase; IL4I1 - interleukin 4 

induced 1; IVD - isovaleryl-CoA dehydrogenase; IYD - iodotyrosine deiodinase; KDM1A - 

lysine-specific histone demethylase 1A; KMO - kynurenine 3-monooxygenase; L2HGDH - L-2-

hydroxyglutarate dehydrogenase; LAO - L-amino acid oxidase; LDHD - D-lactate 

dehydrogenase; MAOA, B - monoamine oxidase isozyme A, B; MICAL1-3 - microtubule 

associated monooxygenase, calponin and LIM domain containing 1-3; MTHFR - N-5,10-

methylenetetrahydrofolate reductase; MTRR - methionine synthase reductase; NDOR1 - 

NADPH-dependent diflavin oxidoreductase 1; NDUFV1 - NADH-ubiquinone oxidoreductase 

of Complex I, subunit UQOR1; NOS1-3 - nitric-oxide synthase 1-3; NQO1, 2 - NAD(P):quinone 

oxidoreductase 1, 2; PCYOX1 - prenylcysteine oxidase; PIPOX - L-pipecolate oxidase; PNPO 

- pyridoxal 5'-phosphate oxidase; POR - P450 oxidoreductase; PPCD - 4'-

phosphopantothenoylcysteine decarboxylase; PPOX - protoporphyrinogen IX oxidase; 

PRODH - proline dehydrogenase; RFK - riboflavin kinase; RNLS - renalase, FAD dependent 

amine oxidase; SARDH - sarcosine dehydrogenase; SDHA - succinate dehydrogenase subunit 

A; SLC25A32 - solute carrier family 25 member 32; SLC52A1-3 - riboflavin transporter 1-3; 

SMOX - spermine oxidase; SQLE - squalene monooxygenase; STEAP3 - ferrireductase 

(biliverdin IX beta reductase); TXNRD1-3 - thioredoxin reductase 1-3; XDH - xanthine 

dehydrogenase 

 

1.5.6 Disorders connected to the flavin cofactors 

Generally, riboflavin shortage causes biochemical defects on the molecular level, which is 

reflected by a phenotypic spectrum. The most common symptoms in humans are various 

dermatitis conditions, mostly affecting the mouth, tongue, face, sides of the nose or scalp, 

together with lens opacity or cataracts. Long-lasting avitaminosis results in more severe 

conditions, e.g. abnormal fetal development. Also, inadequate intake has been observed to be 

connected to anaemia, cancer, neurodegeneration, cardiovascular disease and migraine (Powers 

2003).  

The obvious results of riboflavin deficit are decreased levels of FMN and FAD. Interestingly, 

in such conditions, special changes arise in the cellular distribution of the flavin cofactors, 

resulting in a specific hierarchical response to this deficiency. Some of the cellular pathways 

are supported and preserved, such as the OXPHOS system, and contrarily others are diminished 

(Ross and Hansen 1992). Riboflavin depletion in Caco-2 and HepG2 cells in vitro increased the 

expression of riboflavin uptake and metabolism enzymes. Moreover, it resulted in cell cycle 

arrest and halted proliferation. FAD-dependent production of glutathione was also stopped 
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leading into DNA oxidative damage (Said and Ma 1994; Werner et al. 2005; Manthey et al. 

2006). Next to riboflavin deficiency, in over 60 flavoenzymes, an allelic variant affecting the 

function has been described. As any excess of riboflavin is excreted in the urine, a number of 

such disorders is treated by riboflavin intake and early variant identification helps to start the 

necessary treatment (Horvath 2012).  

The riboflavin-related defects of respiratory chain complexes include mainly deficiencies of 

Complex I and II. Both complexes consist of several subunits and a number of flavin-dependent 

assembly factors is required, they also both use flavin cofactor in their electron transferring 

path. Moreover, in the case of Complex I, two different genomes are involved. An example, 

one for all, a deficiency in ACAD9 (acyl-CoA dehydrogenase 9; OMIM #611126) has been 

described already in 70 patients (Repp et al. 2018). ACAD9 is involved in β-oxidation, but 

more importantly, it is a FAD-containing assembly factor for Complex I (Haack et al. 2010; 

Schiff et al. 2015). In this example as well as in several others, riboflavin therapy was effective 

and mitigated symptoms. Increased FAD availability improved protein folding and stability 

(Bernsen et al. 1993; Gerards et al. 2011). Complex II deficiencies are rare, causing progressive 

motor and mental deterioration. However, riboflavin supplementation moderately improved the 

neurological conditions. In vitro studies reported 2-fold increase of Complex II activity in 

patient cells (Bugiani et al. 2006). The inefficient enzyme activities of respiratory chain 

complexes can cause Leigh syndrome (OMIM #256000) or other related deficiencies. 

Historically, riboflavin treatment was connected to Brown-Vialetto-Van Laere syndrome 

(BVVLS; OMIM #211530). BVVLS is a rare autosomal recessive disorder characterized by 

hearing loss and a variety of cranial nerve palsies. The typical onset of the disease is within the 

first two years of life or during the teenage years. By studying a large consanguineous family 

with many affected individuals, it was shown that BVVLS is caused by mutations in the 

SLC52A3 gene coding for riboflavin intestinal transporter hRFT2 (Green et al. 2010). High-

dose riboflavin treatment in some patients rapidly improved observed clinical symptoms (Bosch 

et al. 2011; Anand et al. 2012), yet in one patient had no effect (Koy et al. 2012). Likewise, 

BVVL syndrome was found in a patient with compound heterozygous mutations in the 

SLC52A2 gene coding for riboflavin transporter 3. Also here, riboflavin treatment was effective 

(Haack et al. 2012b). The third known riboflavin transporter (SLC52A2 and hRFT1) was also 

connected to BVVLS, also presenting with symptoms of multiple acyl-CoA dehydrogenase 

deficiency. The newborn patient fully recovered after riboflavin supplementation (Chiong et al. 

2007; Ho et al. 2011). To note, BVVLS is phenotypically very similar to Fazio-Londe disease 

(OMIM #211500), apart from the hearing loss. Fazio-Londe disease was also described to be 

caused by a homozygous mutation in the SLC52A3 gene and to be riboflavin responsive (Dipti 

et al. 2005; Bosch et al. 2011; Bosch et al. 2012). 

Consequently, other riboflavin responsive pathologies connected to shortage of flavin cofactors 

must be considered. X-linked mitochondrial encephalomyopathy (OMIM #300614) is caused 

by a deletion in a gene coding for apoptosis inducing factor (AIF). Upon apoptogenic stimuli, 

AIF is released by proteolytic cleavage and translocates from the mitochondria into the nucleus, 

stimulating DNA fragmentation. The positive response to riboflavin treatment probably reflects 

the protein stabilization after FAD binding (Ghezzi et al. 2010).  
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Next, two riboflavin responsive neuro-metabolic acyl-CoA dehydrogenase deficiencies were 

connected to variants in L-2-hydroxyglutaric dehydrogenase (OMIM #236792; Yilmaz 2009) 

and short acyl-CoA dehydrogenase (OMIM #201470; Kmoch et al. 1995). Both enzymes 

require FAD for their function and deficiency causes glutaric aciduria or epilepsy. 

Likewise, Friedreich ataxia (OMIM #229300), a neurodegenerative disorder caused by 

decreased expression of frataxin, has been linked to lack of riboflavin. Frataxin is involved in 

the biogenesis of iron-sulphur clusters, therefore assuring proper mitochondrial function. It 

physically interacts with the FAD-dependent subunit of Complex II. The in vitro experiments 

with frataxin knock-down seemed to respond to FAD supplementation (Gonzalez-Cabo et al. 

2010). 

The variety of flavoproteome is reflected in the vast genotypic-phenotypic spectrum. Allelic 

variants were found, for example, in genes for FOXRED1 (OMIM #252010; Fassone et al. 

2010), DMGDH (OMIM #605850; Moolenaar et al. 1999), FMO3 (OMIM #602079; Treacy et 

al. 1998), SARDH (OMIM #268900), MTHFR (OMIM #607093; Frosst et al. 1995), PPOX 

(OMIM #176200; Sassa 2006), PNPO (OMIM #603287; Mills et al. 2005), COQ6 (OMIM 

#614647; Heeringa et al. 2011), DUOX2 (OMIM #606759; Moreno et al. 2002), and IYD 

(OMIM #612025; Afink et al. 2008; Moreno et al. 2008). 

 

1.5.7 Multiple acyl-CoA dehydrogenase deficiency 

Multiple acyl-CoA dehydrogenase deficiency (MADD; OMIM #231680), or glutaric aciduria 

type 2, is a clinically and biochemically heterogeneous disorder of cellular metabolism with 

disturbed fatty-acid oxidation, amino acid and choline metabolism, combined respiratory chain 

deficiency, increased production of reactive oxygen species, and a complex neuromuscular 

phenotype. MADD can be mild or severe and has both neonatal and adult onset of the disease. 

Patients typically present with muscular lipid storage, muscle weakness and most importantly 

high plasmatic and urinary levels of acylcarnitine and organic acids. Both sets of compounds 

are ordinarily investigated within newborn screening (Barile et al. 2013; Olsen et al. 2016). The 

very first patient was described by Niels Gregerson and coworkers. A 3-years old boy presented 

with severe hypoglycemia, metabolic acidosis and unexplained attacks of lethargy and 

hypotonia (Gregersen et al. 1982).  

In most cases, MADD is caused by a mutation in one of two genes coding for electron 

transferring flavoprotein ETFA or ETFB or in the gene for electron-transferring flavoprotein 

ubiquinone oxidoreductase ETF:QO (or ETFDH; Olsen et al. 2007; Olsen et al. 2016; Cornelius 

et al. 2014; Horvath 2012). ETF and ETFDH are central players in mitochondrial metabolism, 

collecting superfluous electrons from other flavoproteins to restore their enzymatic activity. 

Moreover, MADD was connected to dysfunctions of the riboflavin transporter genes SLC52A1, 

SLC52A2, and SLC52A3 (Bosch et al. 2011; Ho et al. 2011; Foley et al. 2014; Mosegaard et al. 

2017) or the mitochondrial FAD transporter gene SLC25A32 (Schiff et al. 2016) as well as with 

alteration in FAD pyrophosphatase activity (Vergani et al. 1999). 
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To note, some MADD patients respond well to riboflavin supplementation. Such a responsive 

condition is then called RR-MADD, read: riboflavin-responsive. RR-MADD can be explained 

on the molecular level as a chaperone-like role of the FAD cofactor. Its increased availability 

supports the folding, function and stability of various flavoproteins, hence restoring the 

mitochondrial and cellular homeostasis (Gianazza et al. 2006; Cornelius et al. 2014). 

 

1.5.8 Pathologies associated with FAD synthesis by alterations in RFK and FLAD1 

So far, RFK, the first enzyme of FAD synthesis, has not been connected to any pathogenic 

variant in humans. The enzyme activity of RFK seems to be too essential for normal 

development, to an extent that complete loss of function would not be compatible with life. And 

indeed, the only study describing RFK deficiency in higher organisms demonstrated that 

complete loss of RFK resulted in an embryonic lethality in mice (Yazdanpanah et al. 2009). 

Already in 1985, changes in flavin cofactor levels in rats were induced by thyroid hormone 

quantity. In hyperthyroid animal, activities of RFK and FLAD1 were increased, and in 

hypothyroid decreased (Lee and McCormick 1985). These observations were utilized in the 

treatment of six hypothyroid human adults, where thyroxine therapy resulted in normal flavin 

levels (Cimino et al. 1987). Similarly, phenobarbital administration led to increased activity of 

RFK as well as FLAD1, therefore inducing FAD synthesis in rats (Hamajima et al. 1979). 

Reduced FLAD1 expression level was also connected to two broad human pathologies: 

amyotropic lateral sclerosis (ALS; OMIM #105400) and cancer. ALS is a neurodegenerative 

disease connected on the molecular level to oxidative stress, mitochondrial dysfunction, altered 

RNA processing or neuroinflammation. The study of FLAD1 mRNA unravelled simultaneous 

decreased expression of RFK, CYC1 (cytochrome c1), and SDHB (succinate dehydrogenase 

complex subunit B; Lin et al. 2009). It is however not clear whether decreased RNA levels are 

the cause of the disease, or a secondary consequence. Nevertheless, the result of impaired 

flavoproteome was described as diminishing patients’ fitness and causing their motoneurons to 

be vulnerable to degenerate. Also, a connection to cancer has been described in several cases; 

however, none of them with a clear explanation (Powers 2003; Nakano et al. 2011; Barile et al. 

2013). 

The only animal model presenting with non-functioning FAD synthesis, was prepared by 

silencing of the FAD synthase gene R53.1 in C. elegans. It is a classical model of 

neurogenerative disease, aiming to obtain more information about ALS and flavin 

homeostasis/flavoenzyme biogenesis. Impaired locomotion and flavoprotein levels were 

described, together with increased oxidative stress (Liuzzi et al. 2012). 
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2 Aims of the Thesis 

 

The main aim of this thesis is to provide convincing evidence in order to be able to label a gene 

as a new disease gene. Variants in TXN2 and FLAD1 were found to be likely pathogenic by 

analysis of whole exome sequencing at the Institute of Human Genetics, but have not yet been 

associated with a mitochondrial disease. These genes were selected based on their clinical 

picture of a mitochondrial disorder and were highly ranked to be disease causing. I aim to 

validate these two potential novel mitochondrial disease genes by carrying out functional 

validation. 

My task is to prove that TXN2 and FLAD1 are the causal genes in both cases and to investigate 

if there is phenotypic-genotypic correlation. Since mitochondrial disorders often display rather 

weak association between phenotype and genotype, validation and collection of evidence for 

the candidate genes constitutes the core part of this thesis. Multiple classes of functional 

approach will help to explain the pathogenicity at the level of both the gene and the protein, and 

include genetic, informatic and experimental data. 

Another crucial task is to suggest a rational treatment based on the experimental observations 

and enzymatic function. The search for rational therapy in the presented cases expands the 

utilization of this work for future patients carrying the same or similar variants. 

 

 Thioredoxin 2 protein is part of the reactive oxygen species defence within mitochondria. 

To determine the outcome of predicted loss-of-function mutation, I aim to assess TXN2 

availability and (a lack of) enzymatic activity. To better understand the observed 

mitochondrial dysfunction, it is necessary to investigate the connection between TXN2, 

OXPHOS and the ROS defence pathway in detail. Furthermore, I have to analyse imbalance 

in the ROS levels and to explore efficacy of potential antioxidant treatment in vitro and in 

the best case in vivo. 

 

 Flavin adenine dinucleotide synthase 1 is the main and potentially only producer of cellular 

cofactor FAD in humans. Predicted loss-of-function mutation is possibly responsible for lack 

of FAD, a cofactor needed in about 100 enzymes, primarily located in mitochondria. To 

ensure their enzymatic reactions, I aim to look for feasible manners of FAD production. In 

order to investigate any residual FLAD1 activity, I will further inspect the two functional 

domains of FLAD1. Furthermore, as riboflavin (vit. B2) is a FAD precursor; I plan 

to investigate its therapeutic potential. 
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3 Material and Methods 

 

3.1 Material 

3.1.1 Nucleic acids 

3.1.1.1 DNA 

The investigated DNA of controls and patients with suspected mitochondrial disorders are part 

of the DNA collection of the Institute of Human Genetics. For all samples, informed consent 

was obtained. 

 

3.1.1.2 cDNA 

TXN2 cDNA (catalog number: HSH006764-31-LvnU6) was purchased from GeneCopoeia 

(Rockville, MD, USA). FLAD1 cDNA (plasmid ID HsCD00039838) was obtained from 

DNASU Plasmid Repository (Tempe, AZ, USA). The cDNAs for truncated FLAD1 isoforms 

were cloned from the DNASU plasmid containing wild type FLAD1 by using self-designed 

primers. 

 

3.1.1.3 Oligonucleotides 

The oligonucleotides were synthesized by Metabion (Planegg, DE). 

FLAD1 M98 forward  5’-CGCCATGACATCTAGGGCCT-3’ 

FLAD1 M268 forward 5’-CGCCATGAAGGGACTATTCC-3’ 

FLAD1 M355 forward  5’-CGCCATGCCCAACGCTGTGG-3’ 

FLAD1 M355org forward  5’-CCCCTACATGCCCAACGCTGTGG-3’ 

FLAD1 reverse  5’-TCATGTGCGGGAGTTCCGCT-3’ 

FLAD1 variant seq forward 5’-AGGGACACACTCAGGACACC-3’ 

FLAD1 variant seq reverse 5’-AGTCAGGGTAGGAACCCAGG-3’ 

 

TXN2 forward  5’-CGCCATGGCTCAGCGACTTCTTCTGAGG-3’ 

TXN2 reverse   5’-TCAGCCAATCAGCTTCTTCAGGAAGGCC-3’ 

TXN2 variant seq forward  5’-CTGAGCCCTGAGTACTCCCC-3’ 

TXN2 variant seq reverse  5’-TGAGCAGCATAGAACATGGC-3’ 

 

CMV     5’-CGCAAATGGGCGGTAGGCGTG-3’ 

V5     5’-ACCGAGGAGAGGGTTAGGGAT-3’ 

 

3.1.2 Cell lines 

Following cell lines were used for the experiments: 

NHDFneo   normal human dermal fibroblasts derived from neonatal foreskin – 

   used as a control cell line (Lonza) – referred as NHDF or control 



Eliška Koňaříková  MATERIAL AND METHODS 
 

49 

 

HEK 293 FT  clonal isolate derived from human embryonal kidney cells   

   transformed with the SV40 large T antigen to facilitate lentiviral  

   experiments (Life Technology) – also referred as HEK 293 

Patient cell lines fibroblasts derived from a skin biopsy, in many cases the culture was 

   started by colleagues at the Institute of Human Genetics 

 

3.1.3 Antibodies and ladder 

The primary antibodies were used as follows: anti-TXN2 (HPA000994, rabbit polyclonal, 

Sigma-Aldrich), anti-FLAD1 antibody (HPA028563, rabbit polyclonal, Sigma-Aldrich), anti-

β-actin (A5441, mouse monoclonal, Sigma-Aldrich), anti-SDHA (ab14715, mouse 

monoclonal, Abcam) and a previously described self-made anti-peroxiredoxin-3 antibody 

(Godoy et al. 2011) as a kind gift from Dr. Marcus Conrad.  

The secondary antibodies were purchased from Jackson Immuno Research Laboratories (West 

Grove, PA, USA). Both antibodies – anti-rabbit (111-036-045) and anti-mouse (115-036-062) 

are conjugated with horseradish peroxidase (HRP) for visualization. 

PageRuler™ Plus Prestained Protein Ladder 10 to 250 kDa (catalog number: 26619) was 

obtained from Thermo Scientific. 

 

3.1.4 Chemicals and solutions 

The standard laboratory chemicals or solutions were purchased from Sigma-Aldrich (St. Louis, 

MO, USA) or Merck (Darmstadt, Germany). Most of the chemicals for cell culture were 

obtained from Gibco or Invitrogen, both parts of Thermo Fisher Scientific (Waltham, MA, 

USA). Other providers are stated in the particular method description.  

 

3.2 Methods 

All methods as described below were performed by myself if not stated otherwise. 

 

3.2.1 Cell culture 

3.2.1.1 Media and chemicals 

Dulbecco’s modified Eagle medium (High Glucose; 4.500 mg/l) was supplemented with 10% 

Fetal Bovine Serum, 1% Penicillin‐Streptomycin (100 X; 5.000 U/ml) and 200 μM Uridine – 

referred as DMEM+. All obtained fibroblast cell lines were tested for mycoplasma 

contamination by using the MycoAlert Mycoplasma detection kit (Lonza, Basel, Switzerland). 

For the test, 2 ml samples of medium in which the cell lines had been growing for at least two 

days were taken and then the manufacturer’s protocol was followed. 
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3.2.1.2 Cell stock deposition 

To keep aliquots of cells of a low passage number, freezing in 10% dimethyl sulfoxide (DMSO) 

in DMEM+ was applied. 1,5 ml of cell suspension was transferred into cryo vials and stored in 

-20 °C for at least 2 hours, then in -80 °C for at least 24 hours and finally transferred into liquid 

nitrogen for a long-term storage. 

For further work, cell aliquots were slowly warmed up. After thawing the cell suspension, cells 

were transferred into 75 cm2 flask with 15 ml of DMEM+. The culturing medium was changed 

the following day to wash out DMSO, which is used as a cryo preservant. 

 

3.2.1.3 Cell maintenance 

Cells were kept in 75 cm2 or 175 cm2 culturing bottles suitable for adherent cells. The medium 

was exchanged every second or third day. If necessary, cells were split by washing once with 

PBS and detached by Trypsin-EDTA solution (2,5 ml for 75 cm2 flask, 3,5 ml for 175 cm2). 

When all detached, cells were transferred by excess of DMEM+ into 15 ml Falcon tube and 

centrifuged for 3,5 min at 500 rpm. The supernatant was discarded, and cell pellet was dissolved 

in DMEM+ and one third or one fourth of the cell suspension was transferred back into the 

culturing flask. The rest was either divided into additional bottles or used for other experiments. 

Optionally, cell pellets were used for further experiments. In this case cells were washed in 1 ml 

PBS and centrifuged once more. 

 

3.2.1.4 Determination of a cell number 

For several experiments it was important to determine the cell number. It was also a principle 

of the growth curve experiment. To do this, the cell pellet was then dissolved in 5 ml of 

DMEM+. To determine the cell concentration, the cell suspension was dissolved 1:10 in PBS 

to a total volume of 200 µl in a 1,5 ml Eppendorf tube. This was analyzed by Scepter™ 

Handheld Cell Counter with 60 μm Scepter™ Sensors by following instruction on the 

instrument. The cell number was typically measured in duplicates. 

 

3.2.2 Extraction of DNA and RNA from human fibroblasts 

Cell pellet was washed once in PBS, subsequently dissolved and lysed in RLT buffer and froze 

at -20 °C. Cell homogenate was further disrupted by using a QIAshredder column. DNA and 

RNA were extracted from the lysate by using AllPrep DNA / RNA mini kit from Qiagen. The 

isolation was done according to the manufacturer’s protocol. The purity and concentration and 

of resulting DNA and RNA were determined by using the ND-1000 UV-Vis Spectrophotometer 

NanoDrop (Thermo Scientific). DNA was then stored at 4 °C, RNA at -80 °C. 
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3.2.3 Expression of a wild type copy of a gene of interest in human fibroblasts 

3.2.3.1 Primer design 

To amplify a wild-type copy of a cDNA, specific primers were designed. To secure the 

expression Kozak consensus sequence (CGCC, alternatively CACC) was added at the 

beginning of the forward primer directly before the start ATG codon. The reverse primer was 

designed by starting at the stop codon (eg. TGA in TXN2). Specificity of the primers was 

verified by UCSC In-Silico PCR (https://genome.ucsc.edu/cgi-bin/hgPcr), melting temperature 

was determined by NEB Tm calculator (http://tmcalculator.neb.com/). The melting 

temperatures of both primers should be different by maximum of 5 °C. From the lower melting 

temperature of both primers, the annealing temperature was calculated (Ta = Tm_lower + 3 °C). 

 

3.2.3.2 PCR amplification of the gene of interest 

Purchased cDNA copies were used for amplification of a wild-type copy of a gene of interest 

in peqSTAR Thermocycler. 

PCR reaction   

10x High Fidelity PCR Buffer       1 μl  (final concentration: 1x) 

2 mM dNTP mix         1 μl  (0,2 mM each) 

50 mM MgSO4         0,4 μl  (2 mM) 

10 μM forward primer        0,2 μl  (0,2 μM) 

10 μM reverse primer         0,2 μl  (0,2 μM) 

cDNA           0,2 μl  (<5 ng) 

Platinum® Taq DNA Polymerase High Fidelity (5 U/μL)  0,04 μl  (0,2 U) 

Ultrapure H2O       to 10 μl 

 

PCR program 

Heat lid   110 °C 

Denature   95 °C  2 min 

30x cycles: Denature 95 °C  30 s 

  Anneal  64,4 °C 30 s or 65,6 °C  30 s 

  Extend  68 °C  45 s 

Extend    68 °C  10 min 

Store    8 °C  forever  

 

The PCR products were checked for the correct size on an agar gel. To add A-end to the 

products, 0,2 μl of Taq polymerase was added to the samples and kept for 10 min at 72 °C. A-

ends are essential for correct insertion into vector by a TOPO cloning procedure. 

 

3.2.3.3 TOPO cloning 

This procedure was followed as suggested in User Manual for pLenti6.3/V5-TOPO® TA 

Cloning Kit (Invitrogen #K531520). 

https://genome.ucsc.edu/cgi-bin/hgPcr
http://tmcalculator.neb.com/
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Fresh PCR product    0,5 μl or 1 μl 

Salt solution    1 μl 

pLenti 6.3/V5 TOPO® vector 1 μl 

Sterile water    to 5 μl 

 

This mixture was kept for 5 min at room temperature. 3 μl of the mixture was transferred into 

a vial of One Shot® Stbl3™ chemically competent E. coli cells and mix gently followed by an 

incubation on ice for 30 min. Next, heat-shock of the cells was performed for 30 s at 42 °C in 

a pre-warmed water bath. Another incubation on ice for 2 min. Next, 225 μl S.O.C. medium 

(kept at room temperature) was added to the cell vial. Then, E. coli with S.O.C. were shaken 

horizontally at 37 °C, 45% shaking in Heiz Thermomixer HTML 133 for at least 1 hour. 50 μl 

and 100 μl of the cell suspension were spread on a pre-warmed LB Ampicillin agar plates and 

incubated overnight at 37 °C. The remaining transformation mixture was kept at 4 °C for plating 

additional cells if necessary. 

 

3.2.3.4 Colony PCR 

Distinct colonies were selected and transferred into 20 μl of HPLC water and spread on a new 

agar plate for further usage with a proper labelling. 1 μl of the HPLC water mixture with E. coli 

colony was used for a colony PCR reaction to determine clones with correct size and orientation 

of the insert. Typically, 20-50 colonies were picked up. 

The amplified copy of the gene of interest can be inserted in both directions, the TOPO cloning 

is not specific in this step; or the amplified PCR product can be shortened or disrupted. The 

pLenti 6.3/V5 TOPO vector contains two strong primer binding sites – CMV before the site of 

insertion and V5 after. 

Therefore, to ensure the size and orientation, specific combination of primers was used: CMV 

primer with gene specific reverse primer; and gene specific forward primer with V5. Schematic 

presentation is shown in Fig 25. 

 

Figure 25: Schematic presentation of the cloning vector and its insert (Gene of Interest). CMV 

and V5 as well as F (forward) and R (reverse) are two pair of primers used in the insertion and 

sequencing strategies. 
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PCR reaction  (x n+1 amount of colonies)  

10x PCR Buffer  1 μl (final concentration: 1x) 

2 mM dNTP mix  1 μl (0,2 mM each) 

10 μM forward primer 0,2 μl (0,2 μM) CMV F-TXN2 

10 μM reverse primer  0,2 μl (0,2 μM) R-TXN2   V5 

colony    1 μl  

Taq DNA Polymerase  0,04 μl (0,2 U) 

Ultrapure H2O   to 10 μl 

  

PCR program 

Heat lid   110 °C 

Denature   95 °C 2 min 

30x cycles: Denature 95 °C 30 s 

  Anneal  65 °C 30 s 

  Extend  72 °C 1 min 

Extend    72 °C 10 min 

Store    8 °C forever  

 

The length of the PCR products was analyzed on a 1,5% agarose gel. 

Expected size (analogously for FLAD1):  

CMV – TXN2 cDNA reverse = 162 bp + 505 bp = 667 bp 

TXN2 cDNA forward – V5 = 505 bp + 96 bp = 601 bp 

 

Positive clones (up to 10) were selected for further amplification. For that, the rest of HPLC 

water with the clone mixtures were transferred into 5 ml of LB medium with Ampicillin and 

cultured overnight at 37 °C while being shaken.  

 

3.2.3.5 Extraction of DNA from 5 ml E. coli colonies  

Overnight cultures of the E. coli clones were pelleted by centrifugation at >8.000 rpm for 3 min 

at room temperature. 

The plasmids were purified exactly as described in QIAprep® Miniprep Handbook (Qiagen 

#27104 or #27106). 

The plasmid DNA was eluted by 50 μl of Buffer EB (10 mM TrisCl, pH 8,5). DNA 

concentration was subsequently measured in 1 μl samples by NanoDrop ND-1000 

Spectrophotometer. 

 

3.2.3.6 Sanger sequencing 

Sequence of the purified plasmid DNA was assessed by a standard Sanger sequencing.  

For the sequencing PCR reaction 10 ng / 100 bp was needed: 
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pLenti6.3/V5 TOPO vector + insert (TXN2) = 7.692 bp + 505 bp = 8.197 bp 

→ cca 800 ng/1 ul is necessary, but typically 80 – 400 ng/μl were obtained 

For the sequencing reaction, the BigDye® v3.1 Terminator Sequencing Kit from Applied 

Biosystems was used. All samples are sequenced twice – either from the forward or from the 

reverse primer.  

PCR reaction 

Purified plasmid DNA    4 μl (up to 200 ng/μl) or 1 μl (800 ng/μl) 

10 μM CMV primer OR 10 μM V5 primer  2 μl (final concentration: 2 μM) 

Big Dye Terminator v.3.1 Ready Reaction mix 1 μl 

Big Dye Terminator 5x Sequencing Buffer  3 μl 

Ultrapure H2O      to 10 μl 

 

PCR program - sequencing 

Heat lid   110 °C 

Denature   96 °C 2 min 

25x cycles: Denature 96 °C 10 s 

  Anneal  50 °C 5 s 

  Extend  60 °C 4 min 

Extend    60 °C 10 min 

Store    8 °C forever  
 

PCR product was further cleaned before sent for sequencing. The products were transferred into 

a new 96-well plate with 25 μl of 100% EtOH per well and left for 15-30 min at room 

temperature without any light access. Next, the plate was centrifuged at 3.000 rpm for 30 min 

at 10 °C. The EtOH supernatant was removed and exchanged by 125 μl of a fresh 75% EtOH 

and centrifuged again at 2.000 rpm for 30 min at 10 °C. Ethanol was again removed and shortly 

spinned for the last time. The plate was left at a dark place for at least 10 min to let the residual 

ethanol evaporate. Lastly, the samples were dissolved in 40 μl H2O and the plate was sealed by 

an adhesive foil. 

 

3.2.3.7 Midi prep 

After identification of clones with correct insert without mutations, E. coli were amplified in a 

100 ml overnight culture with 1% ampicillin. Next day, they were pelleted by centrifugation at 

6.000 rpm at 4 °C for 10 min. The purification of the plasmid was assess as described in 

QIAprep® Midiprep Handbook. After the last centrifugation step, DNA pellets were dried out 

under the cell culture hood to avoid any contamination coming from air. DNA concentration 

was determined by NanoDrop ND-1000 Spectrophotometer. 
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3.2.3.8 Transduction and transfection 

The following media were filtered through a 0,22 µm filter using a SteriCup® and SteriTop® 

from Millipore. 

Medium 1: DMEM, 10% (vol/vol) FBS 

Medium 2: DMEM, 10% (vol/vol) FBS, 1% (vol/vol) penicillin-streptomycin and 200 μM  

 Uridine 

Medium 3: DMEM 

Medium 4: DMEM, 2% (vol/vol) FBS  

Medium 5: normal fibroblast cell culture medium (nonfiltered) – DMEM+ 

 

HEK 293 FT cells were thawed and kept in medium 1. The next day HEK 293 were placed on 

a 10 cm dish with approximately 8 ml of medium 1. One dish of HEK 293 is sufficient for the 

transduction of two cell lines (typically patient and control). The cells should be 70-80% 

confluent in the evening on the following day. Too confluent HEK 293 cells form a monolayer 

that easily detaches from surface. 

The transfection procedure itself is carried out on the following day. Before, medium 1 and 3 

are warmed up and Packaging Mix is thawed on ice. The required amount of vector in µl equals 

3.000 ng / plasmid concentration measured in ng/µl. In 15 ml Falcon tube 1,5 ml of medium 3 

with 36 µl of Lipofectamine are mixed and incubated at room temperature for 5 min. 

Meanwhile, 1,5 ml of medium 3 is enriched by 9 µl of Packaging Mix and 3 µg of pLenti vector 

(as calculated previously). This mixture is dropwise added to the solution with Lipofectamine 

and gently mixed by inverting the tube. Next, it is incubated for 20 min at room temperature. 

The whole procedure leads to an enclosing of the vector DNA into small packages that can be 

transferred in the target cells by lipofection, thus making small holes in the lipid layer of the 

cell. 

In the meantime, the medium of HEK cells prepared the previous day is aspirated and provided 

with 5 ml of fresh medium 1. After the 20 min incubation, the solution with the vector is 

dropwise added to the HEK 293 cells. All steps are carried out carefully to avoid the detachment 

of the cells. HEKs are then incubated overnight at 37 °C. From this moment, HEK 293 are a 

biosafety level 2. 

On the next day, the patient and control cells are prepared to be 70-80% confluent in two or 

three days. For each cell line a 10 cm dish with 8 ml of medium 2 is required. The medium of 

transfected HEK cells is carefully replaced by 7 ml of medium 4, then incubated for 72 hours. 

In two or three days, the procedure continues. First, the centrifuge must be cooled down to 4 °C 

and medium 2 warmed up. The supernatant from HEK cells is transferred into 15 ml Falcon 

tubes and centrifuged supernatant at 2.000g for 15 minutes at 4 °C. 3-4 ml of medium 2 are 

prepared in a 50 ml Falcon tube. After centrifugation, supernatant is filtered through a 45 µm 

filter into the 50 ml Falcon tube and then mixed gently with medium 2. The medium from 

fibroblasts is aspirated and interchanged with the of viral supernatant. The excess of viral 

supernatant can be stored in cryotubes at -80 °C.  
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On the following day the medium is replaced by medium 5. In two days, the selection is started 

by addition of blasticidine in a final concentration of 5 µg/ml. The cells are typically virus free 

in 2 weeks. 

 

3.2.4 Determination of oxygen consumption rate by Seahorse XF Analyzer 

The seahorse medium (SH medium; vial of sodium bicarbonate free DMEM powder dissolved 

in 900 ml ultrapure H2O, with 10 mM sodium pyruvate and 22,5 ml 20% glucose; pH = 7,2; 

filled up to 1 l with H2O) is stored as 50 ml aliquots at -20 °C. One aliquot per one cell plate is 

thawed up directly before the experiment. 

For accessing the cell respiration by Seahorse instrument, cells were collected and 20.000 cells 

per well in 80 μl DMEM+ were plated onto the XF96 Cell Culture Microplate. The corner wells 

(A1, A12, H1, H12) were filled with DMEM+ only and the plate was incubated at 37 °C and 

5% CO2 overnight.  

A calibration of the XF96 utility plate was done for every plate to be measured at least one day 

before the measurement. 200 µl of XF calibrant solution per well was prepared and the utility 

plate was incubated at 37 °C overnight. 

On the day of the experiment, the cells on the XF96 Cell Culture Microplate were inspected 

under the microscope to ensure they formed a monolayer in each well. Then, 60 μl of the media 

was aspirated from each well, 150 μl of the Seahorse media was added and removed again, and 

160 μl were added to end up with 180 μl in each well before the measurement. This procedure 

was done very carefully to avoid scratching off the cells from the surface. 

The oxygen consumption rate (OCR) was then measured by using a XF96 Extracellular Flux 

Analyzer (Seahorse Biosciences). OCR was determined without supplements (basal), after 

addition of oligomycin (1 mM), after addition of carbonyl cyanide-4-

(trifluoromethoxy)phenylhydrazone (FCCP, 0,4 mM), and after addition of rotenone (2 mM). 

The data were assessed and analysed by the software provided by Seahorse Biosciences. 

 

3.2.4.1 Determination of cell number by CyQuant assay 

The cells attach with a different strength and multiplicate with a different grow rate, therefore 

the cell number must be again determined after finishing the Seahorse assay. For the 

determination by CyQuant assay, the cells were washed in PBS and frozen at -20 °C to disrupt 

the cell membrane directly after the OCR determination. The cell number quantification by the 

CyQuant Cell Proliferation Kit (Thermo Fisher Scientific, Waltham, MA, USA) was done 

according to the manufacturer’s protocol. 

 

3.2.5 Cell viability and antioxidant treatment 

3.000 cells per well in 100 μl DMEM+ were seeded on a 96-well plate, typically 3 rows per cell 

line, one control cell line and three different patient cell lines. Then, cell attached over night at 
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37 °C, 5% CO2. After overnight culture, cells were ready for a 72 hours drug exposure (e.g. 

2,4-dinitrochlorobenzene (DNCB), inhibitor of glutathione reductase). 100 μl DMEM+ were 

added to the first row to see the basal condition. Next, solution with the highest needed 

concentration was prepared (row 8 in Table 1, ‘new stock solution’). As an example, 100 mM 

stock solution (in DMSO) is diluted to obtain the highest needed concentration (40 μM), which 

was further mixed in with the fresh DMEM+ according to the table. Several dilutions of drug 

solutions were prepared for each well. As there were already 100 μl of DMEM+ from the 

previous day, it was necessary to calculate the two-fold concentration, indicated as ‘Needed 

concentration’ in the Table 1. 

Row 

Desired 

concentration 

[µM] 

Needed 

concentration 

[µM] 

Volume per 

plate [µl] 

Volume of 

new stock 

solution [µl] 

DMEM+ [µl] 

1 0 0 1.300 0 1.300 

2 1 2 1.300 65 1.235 

3 2 4 1.300 130 1.170 

4 4 8 1.300 260 1.040 

5 6 12 1.300 390 910 

6 8 16 1.300 520 780 

7 10 20 1.300 650 650 

8 20 40 1.300 1.300 0 

Table 1: Concentration of the working solution of DNCB. 

 

Final solutions of DNCB in DMEM are prepared in the increasing concentration by mixing 

DMEM+ and a ‘new stock solution’ with the highest needed concentration. 100 μl of the drug 

dilutions were added to each well. Cells were then kept at 37 °C, 5% CO2 for 72 hours. 

After 72 hours after treatment, cell viability is assessed using Aquabluer Kit as an indicator of 

viable cells according to the manufacturer's recommendations (MultiTarget Pharmaceuticals 

LLC, available at http://www.aquaplasmid.com/). 

First, a working Aquabluer solution as 1:100 dilution in pre-warmed DMEM+ was prepared. 

Aquabluer is light-sensitive, therefore it is necessary to work without direct exposure to light 

and to decrease the light access to minimum. Next, medium from cells was removed and 100 μl 

of Aquabluer-DMEM+ solution was added to each well and then kept for at least 3 hours at 

37 °C, 5% CO2. The survival rate was determined by measuring the changes in colour in a plate 

reader. Excitation 540 nm, emission 590 nm. To analyse the results, values were compared 

within each cell line with the first line, where no drug was added. 

According to the design of the experiments, different drugs or antioxidants were added to the 

medium (rotenone, phenylarsine oxide, auranofin, Idebenone). The concentrations are indicated 

in the result section.  
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3.2.6 SDS PAGE and Western blot analysis 

Cell pellets were resuspended in 100 µL RIPA buffer (50 mM Tris-HCl pH 7,4, 150 mM NaCl, 

1% (v/v) NP-40, 0,1% (w/v) SDS, 0,5% (w/v) Deoxycolate) supplemented with 1:100 Protease 

Inhibitor Cocktail Set III, Animal-free (Calbiochem, an affiliated of Merck, Darmstadt, 

Germany). All samples were then incubated on a rotating wheel for 1h at 4 °C to be disrupted 

chemically. Optionally, the lysates were homogenized by 10 strokes with a 0,30 x 8 mm 

syringe.  

The samples were centrifuged for 10 min at 15.000 g at 4 °C to remove the unbroken cells. In 

the supernatant the whole protein amount was quantified by using the Bradford assay. 

Subsequently, samples were adjusted to 1,5 µg protein/µL in 1x Laemmli buffer (5% (w/v) 

SDS, 250 mM Tris-HCl pH 6,8, 50% (v/v) glycerol, 500 mM ß-mercaptoethanol, 0,025% (w/v) 

bromphenol blue) and heated for 10 min at 50 °C. Designated protein amounts were loaded on 

precast gels (Lonza, Basel, Switzerland). Electrophoresis was running in 1x ProSieve EX 

Running buffer (Lonza, Basel, Switzerland) at 40 V for 30 min in the beginning. After the 

samples slowly and completely entered into the gel, the electrophoresis was continued at 120 V 

for 60 min. The separated protein samples were subsequently transferred by semi-dry method 

to PVDF membranes (GE Healthcare Life Sciences, Chalfont St. Giles, UK) using 1x ProSieve 

EX Western Blot Transfer buffer (Lonza, Basel, Switzerland) at a constant voltage of 25 V for 

10 min. The membranes were blocked in 5% non-fat milk (Bio Rad) in TBS-T (150 mM NaCl, 

30 mM Tris base, pH 7,4, 0,1% Tween 20) for at least 1 h and immunoblotted by using primary 

antibodies. Their binding was visualized by incubation with HRP-conjugated goat anti-rabbit 

and goat anti-mouse secondary antibodies and by using ECL Plus Western Blotting Detection 

System (GE Healthcare Life Sciences, Chalfont St. Giles, UK) on the Vilberscan Fusion FX7. 

Alternatively, Ponceau or Trihalo staining were used as loading controls. These stainings 

unspecifically color proteins transferred to the PVDF membrane. 

 

3.2.7 Statistical analysis 

Where the statistics is indicated, to determine the statistical significance the two-tailed two-

sample Student’s t-test was followed, assuming a normal distribution. Indicated error bars show 

standard deviation and standard error of mean. A p value of < 0,05 was considered statistically 

significant (*p < 0,05; **p < 0,01; ***p < 0,001). 

 

3.2.8 Methods done in collaboration 

3.2.8.1 Exome sequencing 

The techniques of the NGS are a standard at the Institute of Human Genetics. A whole 

department led by Dr. Tim-Matthias Strom is responsible for the sample collection, preparation, 

handling, sequencing and the data processing. In brief, DNA samples were enriched by using 

the SureSelect Human All Exon kit from Agilent (Agilent Technologies, Santa Clara, CA, 

USA) and sequenced as 100 bp paired-end runs on Illumina HiSeq2000 and Illumina 

HiSeq2500 (AG_50MB_v4 and AG_50MB_v5 exome kit samples) or as 76 bp paired-end runs 
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on the Illumina GAIIx (AG_38MB_v1 and AG_50MB_v3 exome kit samples; Illumina, San 

Diego, CA, USA). Resulting reads were aligned to the human reference genome (UCSC 

Genome Browser build hg19) using Burrows-Wheeler Aligner. Single nucleotide variants or 

small insertions and deletions were detected with SAMtools.  

 

3.2.8.2 RNA sequencing and transcriptome analysis 

Similarly, RNA sequencing was performed as 100 bp paired-end runs on an Illumina 

HiSeq2500 platform. RNA-seq reads were mapped to the hg19 genome assembly. Fragments 

per kilobase of transcript per million mapped reads were calculated as previously described 

(Mortazavi et al. 2008) by using Perseus. The algorithms allowing a systematic analysis were 

optimized by the group of Prof. Dr. Julien Gagneur (Department of Informatics, Technical 

University of Munich), as described (Kremer et al. 2017). The visualization via Sashimi plots 

and the quantitative imagining of splice junctions of the alignments was assessed in the 

Integrative Genomics Viewer (Robinson et al. 2011). 

 

3.2.8.3 Determination of total glutathione  

Together with Dr. Sho Kobayashi (Institute of Developmental Genetics, Helmholtz Zentrum 

München), total glutathione levels were analysed as he previously described (Kobayashi et al. 

2015). In brief, cells were seeded on a 6-well plate in DMEM+ and cultured for 24 hours at 

37 °C, 5% CO2. Next, cells were washed three times with ice-cold PBS, extracted with 5% 

trichloroacetic acid. The samples were then treated with ether to eliminate trichloroacetic acid. 

The total glutathione levels were assessed in the aqueous layer. The final analysis is based on 

an enzymatic method of the catalytic action of glutathione in the reduction of 5,5′-dithiobis(2-

nitrobenzoic acid) by the glutathione reductase system (Tietze 1969). 

 

3.2.8.4 Determination of ROS levels 

Measurement and analysis of the ROS production was mainly prepared in the collaboration 

with Dr. Katharina Danhauser and Dr. med. Felix Distelmaier (Department of General 

Paediatrics, Neonatology and Paediatric Cardiology, University Children’s Hospital, Heinrich-

Heine-University Düsseldorf). Cells were seeded on a 96-well plate in DMEM with low glucose 

and no phenol red for 24 hours at 37 °C, 5% CO2. Next, cells were washed with PBS and 

incubated in 5-(and-6)-chloromethyl-20,70-dichlorodihydrofluorescein diacetate (CM-

H2DCFDA; 10 mM for 20 min) in HEPES-Tris medium (132 mM NaCl, 4,2 mM KCl, 1mM 

MgCl2, 5,5 mM D-glucose, 10 mM HEPES, 1 mM CaCl2, pH 7,4). The fluorescence 

measurements were achieved within 10 min (Tecan Infinite M200 Multiplate reader; excitation 

485 nm, emission 520 nm). The normalization was done by CyQuant as described above. 
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3.2.8.5 HPLC quantification of riboflavin, FAD and FMN 

The sample preparation and quantification of riboflavin, FAD and FMN was done in the group 

of Dr. Johannes A. Mayr by Dr. Lavinija Mataković (Department of Paediatrics, Paracelsus 

Medical University Salzburg). For the analysis, EDTA blood from subjects was separated into 

plasma, mononuclear cells, and enriched erythrocytes purified by Ficoll gradient centrifugation. 

50 ml of each sample was mixed with 375 ml of 10% trichloroacetic acid and 75 ml of water 

and incubated on ice for 5 min. Next, after centrifugation at 13.000 g for 5 min, the supernatant 

was extracted with equal amounts of diethyl ether twice, and 100 ml was applied to HPLC 

separation on a reversed-phase column (Agilent, Eclipse Plus C18, 5 mm, 4,6 x 150 mm) for 

measuring riboflavin, FMN, and FAD. 

 

3.2.8.6 qRT PCR 

Also, the real-time PCR experiment was assessed in a collaboration with Dr. Johannes A. Mayr 

and Dr. Lavinija Mataković (Department of Paediatrics, Paracelsus Medical University 

Salzburg). RNA sample for the qRT-PCR analysis (iQ SYBR Green Supermix, iCycler, Bio-

Rad) was prepared as described above. To analyse FLAD1, primers covering all coding regions 

were designed. Threshold cycles (Ct) were normalized (ΔCt) to housekeeping genes HPRT and 

RPL27. The PCR products expression was then compared to corresponding samples of control 

fibroblasts (ΔΔCt).  

 

3.2.8.7 Mass spectrometry 

The samples for the mass spectrometry and the analysis of results was done in collaboration 

with Signe Mosegaard, Dr. Rikke K.J. Olsen and Dr. Niels Gregersen (Research Unit for 

Molecular Medicine, Department of Clinical Medicine, Aarhus University). 80 mg of protein 

samples and SDS-PAGE separation were done as described above. The bands of ~60, 50, 37, 

32, and 27 kDa were cut out and processed by an in-gel trypsin-digestion protocol as described 

previously (Hansen et al. 2011). The selection of peptides, development method and analysis 

of data were obtained with a Skyline software (MacLean et al. 2010). Five peptides were 

analyzed by liquid chromatography coupled with the TSQ Vantage Triple Quadrupole Mass 

Spectrometer (Thermo Fisher Scientific). Four or more transitions were detected for each 

peptide, and synthetic isotopically labelled tryptic peptides (SpikeTide from JPT Peptide 

Technologies) were added to each sample for quality assurance.  

 

3.2.8.9 FACS and determination of response to sulphoraphane treatment 

Together with Dr. José Pedro Friedmann Angeli (Institute of Developmental Genetics, 

Helmholtz Zentrum München), we analysed a treatment with sulphoraphane and its influence 

on ROS production. ROS measurements were performed according to manufacturer‘s 

instructions for MitoSOX Red using flow cytometry analysis (FACSCanto II, BD Biosciences) 

after an overnight treatment with 10 µM sulphoraphane. A representative experiment is done 
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for 10.000 analysed cells per cell line (excitation 488 / emission 617). The experiment was 

performed as described previously (Mandal et al. 2010). 
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4 Case Reports  

 

Both projects arise from collaborations with clinicians, who are seeing the patients. Their 

detailed descriptions of symptoms and measurements observed in muscle biopsy or brain 

imaging are typically a starting point for my functional validations and further biochemical 

investigations. Our cooperations also tend to suggest correct treatment options. 

 

4.1 Thioredoxin 2: Case report  

The following case report was prepared by Prof. Dr. Felix Distelmaier (University Children’s 

Hospital, Heinrich-Heine-University Düsseldorf). The report and Figure 26 were published as 

a part of publication Human thioredoxin 2 deficiency impairs mitochondrial redox homeostasis 

and causes early-onset neurodegeneration by Holzerova E. et alii printed in Brain, 2016; doi: 

10.1093/brain/awv350. 

 

The boy is the first child of healthy, non-consanguineous German parents. Prenatal ultrasound 

at 16 weeks gestation revealed bilateral subependymal cysts and brachycephaly but was 

otherwise normal. The child was born at term without complications. Apart from primary 

microcephaly, no specific dysmorphic features or anomalies were seen. However, the parents 

noted that the child appeared relatively quiet and less active.  

At the age of 6 months, the child was severely microcephalic (head circumference 4 cm below 

3rd percentile) and showed a reduced spontaneous movement pattern. Brain magnetic resonance 

imaging detected an abnormally increased T2 signal intensity of the cerebellum and indicated 

global brain atrophy. In addition, abnormal hippocampal shape and bilateral subependymal 

cysts were seen (Fig. 26). Lumbar puncture and analysis of cerebrospinal fluid revealed 

elevated lactate (4,6 mmol/L, norm <2,8 mmol/L) and protein (67 mg/dl; norm <50 mg/dl) 

levels. In addition, blood lactate was repeatedly increased (up to 3,1 mmol/L, norm <1,6 

mmol/L).  

Follow-up at the age of 14 months revealed impaired psychomotor development characterized 

by markedly disturbed muscle tone and movement coordination. Brain MRI demonstrated a 

rapid progression of cerebellar atrophy and indicated delayed myelination. At the age of 22 

months, a muscle biopsy with biochemical analysis of the oxidative phosphorylation system 

revealed reduced activities of mitochondrial Complex I (56 mU/U CS, norm 70-250) and 

Complex III (1.500 mU/ UCs, norm 2.500-6.610) and a reduced global ATP production rate 

(9 mmol ATP/mU CS; norm 42-81), confirming a mitochondrial disorder. 

The further clinical course was characterized by severely disturbed global development with a 

spastic-dystonic movement disorder. Starting from the age of 4 years, the boy developed severe, 

drug-resistant epilepsy. Feeding difficulties required placement of a percutaneous endoscopic 

gastrostomy. The patient developed a gastrointestinal motility disturbance most likely due to 
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autonomic neuropathy. Clinical follow-up at the age of 12 years revealed severe optic 

neuropathy and retinopathy. Nerve conduction studies demonstrated peripheral neuropathy 

with axonal degeneration (Fig. 26). MR-spectroscopy was without pathological findings.  

 

 

Figure 26: Brain imaging (from Holzerova et al. 2016). (A) Brain MRI, T2-weighted image, 

axial view at the age of 6 months demonstrating bilateral abnormal hippocampal shape (black 

arrows). Moreover, an abnormally increased T2 signal intensity of the cerebellum is observed. 

(B and C) T1-weighted images, sagittal view at the age of 6 months (B) and 12 years (C) 

showing the development of severe cerebellar atrophy (cerebellum is marked by asterisks). (D) 

T2-weighted image, axial view at the age of 6 months demonstrating large bilateral 

subependymal cysts (black arrows). (E and F) T2-weighted images, right (E) and left (F) 

parasagittal view at the age of 12 years, also depicting the bilateral subependymal cysts. 
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4.2 Flavin adenine dinucleotide synthase 1: Case reports  

The following case reports were published as a part of Supplemental Data in publication 

Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-

CoA Dehydrogenase and Combined Respiratory-Chain Deficiency by Olsen RK, Koňaříková 

E et alii printed in American Journal of Human Genetics, 2016; doi: 

10.1016/j.ajhg.2016.04.006. 

Altogether, nine cases from seven unrelated families derived from metabolic centers in seven 

countries were described. The affected individuals presented with muscle symptoms and 

multiple-respiratory-chain deficiency, some responded well to riboflavin treatment. Personally, 

in the beginning I was performing experiments on a cell line coming from an Austrian patient 

of a Turkish origin (Family 4). She and her sister were recruited by collaborators Dr. Vassiliki 

Konstantopoulou and Dr. Dorothea Möslinger from Vienna and Dr. Johannes A. Mayr from 

Salzburg as potential mitochondrial patients. However, later I was performing experiments with 

samples coming from other families, as well. Pedigrees of the families and a schematic 

presentation of variants is depicted in Figure 45. 

 

Family 1 (F1) described by Dr. Avihu Boneh, Murdoch Children’s Research Institute and 

University of Melbourne, Australia. Subject S1a, a boy of Turkish consanguineous parents 

presented with cardiorespiratory collapse at 32 hours of life and died 3 days later. A metabolic 

post-mortem analysis, done immediately after his death, showed elevated C5-, C8-, C14-

carnitines and slightly elevated C5-DC/glutaryl-carnitine in blood spots. Urine organic acids 

revealed markedly elevated ethylmalonic acid and adipic acid, elevated suberic and dehydro-

sebacic acids and slightly elevated hexanoylglycine levels. ETF and ETFDH activities in 

cultured fibroblasts were within control range. Muscle and liver respiratory chain complexes 

activities were within control range. Family history revealed an older sister (individual S1b), 

who had been treated for cardiomyopathy in the first year of her life. Screening of this girl 

showed elevated C4-carnitine on a blood acylcarnitine profile, and urine organic acids showed 

elevation of ethylmalonic acid and trace methylsuccinic acid. After treatment with riboflavin 

all metabolites normalized. Compliance with treatment was variable; in periods without 

treatment high urinary ethylmalonic acid was found, accompanied by episodes of 

supraventricular tachycardia. She was treated with riboflavin again and urinary metabolites 

decreased to control range. She is currently 22 years old and doing well with a 

pacing/defibrillator device. There were four miscarriages between individual S1a and his sister, 

S1b. 

Family 2 (F2) described by Dr. Mari Auranen, Clinical Neurosciences, Neurology, University 

of Helsinki and Helsinki University Hospital, Finland and Dr. Tiina Tyni, Department of 

Pediatric Neurology, Helsinki University Central Hospital, Finland. Subject S2’s 

developmental milestones were normal. During childhood she was able to run but was slower 

than her peers and experienced symptoms of illness during long-lasting exercise. First evident 

muscle weakness was observed at age 20 years as she carried heavy bags. Thereafter, she 

experienced muscle discomfort and weakness during physical activity, and after strenuous 
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exercise she had occasional muscle pain, vomiting and loss of weight. She had tachycardia and 

used beta blocking medication. During her pregnancy at age 30, one month before the delivery, 

her muscle weakness drastically deteriorated with a raise in creatine kinase (CK) activities 

ranging between 5.000-6.612 U/l (control range 35-210 U/l). It was difficult for her to control 

her head. She had swallowing and speech difficulties and a prominent scoliosis. No hearing or 

visual impairments were found. She was advised to follow a high carbohydrate, moderate 

protein and low-fat diet (dietary fat max. 20 g/day), which ameliorated her symptoms. Blood 

analysis revealed increases in C8- and C10-acylcarnitine species, and urine analysis showed 

increased amount of lactate, mildly increased ethylmalonic acid, an increased 2-

hydroxyglutarate combined with a low/normal 2-ketoglutarate excretion that was consistent 

with MADD. Fibroblast fatty acid oxidation flux studies and Western blot analysis of ETF and 

EFTDH protein were found to be within control range. Multiple respiratory chain deficiency 

with lipid storage myopathy was detected in a muscle biopsy. Riboflavin therapy (100 mg daily) 

was introduced, and she continued the dietary therapy. This resulted in drastic amelioration of 

muscle symptoms and increase in muscle strength.  

Family 3 (F3) described by Dr. Lodovica Vergani, Neuromuscular Center, Department of 

Neurosciences, University of Padova. Subject S3 is a 56-year-old woman, who was born at term 

after an uneventful pregnancy from non-consanguineous Italian parents. Early psychomotor 

development was normal. In the teens a mild scoliosis was diagnosed that did not require 

surgical or medical correction. At 45 years the affected individual presented with exercise 

intolerance, gait difficulties, weakness in both arms and muscle hypotrophy prevalent in the 

shoulder girdle. Her symptoms progressed since then and prompted neurological evaluation at 

age 46. Neurological examination revealed a mild waddling gait with bilateral foot drop. 

Standing or walking on heels was impossible. Scapular winging with hypotrophy of upper 

limbs, calf pseudohypertrophy and scoliosis were noticed. She was not able to lift her arms to 

the horizontal level, but was able to rise from the floor with Gowers maneuver. Lower limb 

weakness, graded using the medical research council (MRC) scale, involved iliopsoas and 

tibialis anterior muscles (4/5 MRC). In the upper limb, deltoid and teres muscles were the 

weakest (3+/5 MRC), while biceps and triceps were mildly affected (4+/5 MRC). A mild 

weakness in the orbicularis oris was observed. A needle EMG showed mild myopathic changes 

in the proximal muscles. CK was mildly elevated at 380 U/L (control range <170 U/L). 

Acylcarnitine profile showed increased C5-, C8-, C10-, C10:1-, and C14-carnitines in blood 

and glutaryl-carnitine in urine. Urine organic acid revealed elevated ethylmalonic acid and 

presence of tiglylglycine. A muscle biopsy showed a vacuolar myopathy with fiber size 

variation. No muscle fiber necrosis or regeneration was observed. Oil Red O staining showed 

lipid storage myopathy. Several cytochrome c oxidase (COX) negative fibers were also 

observed. Fatty acid oxidation analysis in a fresh muscle biopsy showed a reduced oxidation of 

C8 and C16 but not of C4. Activity of CI+CIII and CII+CIII Complexes were reduced compared 

to control, whereas citrate synthase activity was augmented. Heart and respiratory evaluations 

were normal. Lipid storage myopathy was diagnosed and supplementation with riboflavin (100 

mg/day) and carnitine (2 g/day) was initiated. At follow up evaluation, 7 months later, the 

affected individual reported a complete resolution of exercise intolerance and improvement of 

muscle strength. She was able to walk on her heels, to lift her arm above the horizontal level, 
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and to rise from the floor with minimal support of one hand. Muscle weakness was limited to 

deltoid, teres, and iliopsoas muscles and graded 4+/5 MRC. Muscle hypotrophy and scapular 

winging did not improve. An acylcarnitine/free carnitine ratio within control range, and normal 

respiratory chain and citrate synthase activities were found in a post-treatment muscle biopsy, 

but with reduced total carnitine (7,6 nM/mg protein; control range: 10,5-29,5 nM/mg protein). 

Currently, 10 years after initial diagnosis, she is stable and still on riboflavin and carnitine 

supplementation. 

Family 4 (F4) described by Dr. Johannes A. Mayr, Department of Paediatrics, Paracelsus 

Medical University Salzburg, Austria. S4a, a girl of consanguineous Turkish parents, presented 

after term delivery and uneventful neonatal period with increasing muscle hypotonia within the 

first months of life. Metabolic work up showed moderate elevation of acylcarnitines from C4 - 

C18:2 without the full pattern of MADD. Urine organic acids revealed variable ketosis and 

excretion of adipic and suberic acids in early age and moderate ethylmalonic acid and 

methylsuccinic acid excretion later. Activities of muscle respiratory chain enzymes were 

reduced, mainly for Complexes I, II. Pyruvate dehydrogenase was also reduced. Family history 

revealed an older sister (affected individual S4b), who also suffered from severe muscle 

hypotonia, which was diagnosed in the first year of life after term delivery and uneventful 

neonatal period. Metabolic follow-up showed either normal acylcarnitines, but also a 

measurement with an increase of multiple acylcarnitines (C4-OH, C5, C6, C8, C10, C14:1, 

C16:1). Variable mild ketosis was seen in organic acid evaluation. Both girls presented with 

severe muscle hypotonia and weakness, and S4b developed massive scoliosis. Tube feeding 

was necessary to avoid aspiration. Both sisters had reduced speech capacity. S4b was mentally 

able to finish elementary school training, whereas her sister S4a attended special school due to 

global developmental delay. Brain MRIs performed at the age of 6 years (S4a) or 16 years (S4b) 

revealed no abnormalities. Investigations of nerve conduction velocity (NCV) of peripheral 

nerves (tibial nerve, median nerve) were normal. No hearing or visual impairments were found; 

however, eyelid ptosis was observed on both eyes. Riboflavin (3 x 60 mg daily) was introduced 

in the treatment of S4a, but could not correct biochemical abnormalities such as acylcarnitine 

profiles. Clinical improvement of hypotonia was however obvious. The riboflavin treatment of 

the older sister was discontinued due to side effects. Unfortunately, S4b died at the age of 16 

years after pneumonia and subsequent septicaemia. The family also had one older son, who 

died at the age of 4 years with similar symptoms and suspicion of mitochondrial disorder as 

well, but no detailed clinical or biochemical data are available (S4c). There is also one healthy 

son in this family, who is heterozygous for the FLAD1 mutation. 

Family 5 (F5) described by Dr. Rita Horvath, Wellcome Trust Centre for Mitochondrial 

Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK. 

Subject S5 is a boy, who was born at 31st week of gestation following a twin pregnancy from 

Turkish consanguineous parents. He presented with poor sucking and hypotonia in the first few 

months of life and was hospitalized due to pulmonary infection at age of 6 months. During the 

hospital course, he developed sudden cardiac arrest few times. Holter monitoring revealed 

pause and pacemaker was implanted. Multiple respiratory chain deficiency with lipid storage 

myopathy and faint COX staining was seen in skeletal muscle. Blood analysis revealed increase 

in C3, C5, C6 and C8:1 acylcarnitine species with a low free carnitine, and urine analysis 
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showed increased amount of adipic acid. He died of multiorgan failure at 7 months of age. Post-

mortem examination showed mild macrovascular steatosis in the liver, acute lung injury, 

nephrolithiasis and hemorrhagic necrosis of the kidney and spleen. There were no features of 

cardiomyopathy and COX staining was normal in heart. 

Family 6 (F6): described by Dr. Daniele Ghezzi, Molecular Neurogenetics Unit, Foundation 

IRCCS Neurological Institute C. Besta, Milan, Italy. Subject S6 is a girl born to Italian non-

consanguineous parents at 33 weeks after pregnancy complicated with uterine contractions. The 

mother had a previous miscarriage at 10 weeks. Soon after birth she presented with hypotonia, 

poor sucking, frequent vomiting episodes, and gastro-esophageal reflux. She was repeatedly 

hospitalized because of bronchiolitis and severe respiratory insufficiency. Due to persistent 

hypotonia with no head control, a suspicion of muscle disease was raised at age 5 months, and 

the girl underwent muscle biopsy. The spectrophotometric determination of respiratory chain 

complex activities in the muscle biopsy displayed a severe reduction of Complex II and 

Complex II+III activities, with a marked increase of citrate synthase, suggesting mitochondrial 

proliferation. She was treated with riboflavin, but with bad compliance and without response. 

She died aged 9 months due to septic shock following pneumonia. 

Family 7 (F7) described by Dr. Cecile Acquaviva, Service Maladies Héréditaires du 

Métabolisme et Dépistage Néonatal, Centre Hospitalier Universitaire Lyon, France. Subject S7, 

a girl of Turkish consanguineous parents, presented with severe neonatal hypotonia and muscle 

weakness with elevated plasma CK activity (717 U/L – control range < 240). When she was 2 

months old she was hospitalized for swallowing difficulties, requiring nasogastric feeding. 

Outcome was severe with a sudden respiratory deterioration at 4 months of age, requiring non-

invasive ventilation and leading to death. Acylcarnitine profile in plasma revealed increase in 

C10-, C12-, C14:1-, C16:1-, C16- and C18:1-carnitines and to a lesser extent in C4-, C6-, C8- 

and C10:1-carnitines. Urine organic acids revealed markedly elevated ethylmalonic and 2-

hydroxyglutaric acid. Muscle biopsy revealed major lipid accumulation and a faint SDH 

staining with normal COX. 
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5 Results 

 

5.1 Results of Thioredoxin 2 project 

5.1.1 Genetic analysis reveals a premature stop codon in TXN2 

Whole exome sequencing of a patient suffering from neurodegeneration at our institute 

identified a homozygotic variant in the TXN2 gene. To confirm the variant, I performed a Sanger 

sequencing analysis. Also, to exclude de novo mutations, I used DNA samples from blood of 

the parents and the patient. The analysis revealed an adenine (A) base at position 71 instead of 

guanine (G) in the patient’s sample and purine (R) in the parents’ samples. Hence, both non-

consanguineous parents carry the variant. The variant produces a premature stop codon at the 

mRNA level by changing a tryptophan codon UGG into UAG ‘amber’ stop codon (Fig. 27). 

 

Figure 27: Sanger sequencing analysis showing the variant on the DNA level (modified from 

Holzerova et al. 2016). Parents are heterozygotic carriers, they have both – guanine and 

adenine base at the suspected position. The patient carries a homozygotic variant at position 

71, leading into a premature stop codon on a protein level. 

 

In about 7.000 exomes (in-house database of the Institute of Human Genetics) only this patient 

was identified with a homozygous loss-of-function variant. The Exome Aggregation 

Consortium lists only eight different loss-of-function variants in TXN2 (three at splice acceptor 

site, three stop gained variants and two frameshifts), altogether observed in 12 alleles out of 

121.412. The Genome Aggregation Database constituting 123.136 exomes and 15.496 genomes 

covers 16 different loss-of-function variants (six frameshifts, six stop gained variants, three at 

splice acceptor site and one at\ splice donor) in 225 alleles. However, 204 of them represent a 

relatively common variant in a non-canonical transcript. None of the rare loss-of-function 

variants nor any other rare missense variant is reported to be homozygous. The same is true for 
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the ClinVar database. Only larger heterozygous copy number variants were recorded to include 

the TXN2 gene, seven duplications and one deletion. 

 

5.1.2 The observed variant does not allow expression of a functional enzyme 

TXN2 is located on chromosome 22 and consists of four exons, the first of which is not 

translated. As depicted in Figure 28, the observed variant is located in the first half of exon 2. 

On the protein level, it affects the mitochondrial targeting sequence (MTS), consisting of the 

first 59 amino acids (uniprot database; Vaca Jacome et al. 2015). On the lower part of Figure 

28, a blue star indicates the redox-active site of TXN2 at the beginning of exon 3. This site 

consists of two cysteine residues at positions 90 and 93, specifically Trp-Cys-Gly-Pro-Cys. 

During the enzymatic reaction of TXN2, they form a disulfide bridge, which reduces the 

reaction target, in this context PRDX3 or PRDX5. Unfortunately, no in-frame start codon is 

located between the c.71G>A observed variant and the downstream active site, which would 

allow to produce a truncated active enzyme.  

 

Figure 28: Schematic interpretation of thioredoxin 2 gene (NC_000022.11) and protein 

(CAG30487; modified from Holzerova et al. 2016). Exon 1 is not translated into a protein. The 

observed variant is highlighted in red. Protein N-terminus contains mitochondrial targeting 

sequence (MTS). The TXN2 active site is marked by a blue star at the beginning of exon 3. 

 

5.1.3 The TXN2 protein is undetectable 

To validate the predicted loss of protein, I performed an immunoblot analysis. Lysates of patient 

fibroblast were separated by a gel electrophoresis, transferred to a PVDF membrane and the 

protein samples were detected by specific antibodies. Anti-TXN2 antibody detected a single 

protein band at the expected molecular weight of about 13 kDa in the control sample. This 

polyclonal antibody covers 138 amino acids out of 166, thus most of the protein (83%). As no 

band was observed in patient samples in several subsequent experiments, the protein is either 

not present at all or below the detection limit of the antibody. Therefore, the full function of 

TXN2 is not present in such cells. Subunit A of Complex II (SDHA) and beta-actin were used 

as mitochondrial and cytosolic loading controls (Fig. 29). 
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Figure 29: Loss of TXN2 protein. Anti-TXN2 antibody did not detect any TXN2 band in the 

patient cell line. Anti-SDHA and anti-Actin antibodies were used as loading controls. 

 

5.1.4 Mitochondrial function is impaired due to an interference with respiratory 

chain complexes 

As thioredoxin 2 is active in mitochondria and it was reported that the patient has reduced 

activities of mitochondrial Complex I and III, I analysed the cell energy metabolism. The 

fibroblast cell line underwent a cell mitochondrial stress test, which confirmed decreased 

oxygen consumption rate capacity (Fig. 30A). Several parallel measurements revealed that a 

basal respiration and a maximal respiration of the patient cells were reduced to 55,1%, resp. 

52,5% when compared to the control cell line and after subtraction of non-mitochondrial 

respiration (Fig. 30B). TXN2 is one of the key enzyme of mitochondrial ROS defence, while 

Complexes I and III are main ROS producers (Holzerova and Prokisch 2015). The ROS 

imbalance can therefore have an effect on the activity of both Complexes (Korge et al. 2015).  
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Figure 30: Oxygen consumption rate assessed by the Seahorse XF Analyzer. (A) Cell 

mitochondrial stress test profile after correction to the cell number showed decreased 

respiration capacity in the patient cell line. (B) Non-mitochondrial respiration was subtracted 

from the values for basal and maximal respiration. Both were significantly reduced in the 

patient cell line (to 55,08%, resp. 52,51%). 

 

5.1.5 PRDX3 monomers are not restored due to lack of TXN2 function 

The role of TXN2 in ROS defence lays in the reduction of intermolecular disulphide bridges, 

which are formed upon oxidation between two molecules of PRDX3. In an oxidative 

environment, two cystein residues 108 and 229 undergo an attack of the peroxide bond, which 

leads to the formation of reversible sulphenic acid (-SOH). This is highly reactive and can 

rapidly create a disulfide bridge. Therefore, in the oxidative environment PRDX3 typically 

forms intermolecular homodimers (Fig. 31A). Efficient cycling and thus recovery of reduced 

and active peroxiredoxins is a key step in the ROS defence. 

A 
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Immunoblot detection of the PRDX3 monomer and dimer signals is therefore a proxy analysis 

of the TXN2 function. I used this approach to observe if the ROS defence and the collaboration 

between TXN2 and PRDX3 is impaired. I detected a substantial amount of PRDX3 dimers in 

the protein samples from the patient cell line, whereas no dimers were observed in the control 

sample under standard growth conditions (Fig. 31B). TXN2 is mainly responsible for the 

reduction of PRDX3 dimers. Therefore, the observed PRDX3 dimers are a direct consequence 

of TXN2 loss on the cellular level. However, to sustain the cellular maintenance in patient cells, 

the PRDX3 cycling can be partially overtaken by enzymes TXNRD2 or GLRX2 or by the 

molecule of NADPH (Fig. 9; Hanschmann et al. 2010). 

 

 

 

Figure 31: Cycling of PRDX3 in the oxidative environment (modified from Holzerova et al. 

2016). (A) Schematic interpretation of PRDX3 reaction. PRDX3 undergoes formation of 

intermolecular disulphide bridges after reduction of H2O2 into water molecules. Mainly TXN2, 

but also other enzymes or molecules, are responsible for the restoration of PRDX3 monomers. 

(B) Increased amount of PRDX3 dimers is observed in patient cells with malfunctioning TXN2. 

Anti-SDHA and anti-Actin antibodies were used as loading controls. 

A 

B 
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5.1.6 Patient cells are highly sensitive to mitochondrial inhibitors 

In order to stimulate the ROS defence system and to further challenge it, the cells underwent 

treatment with several inhibitors. My idea was to observe the vulnerability of the interconnected 

pathways with a missing TXN2 piece. The control cells should be less affected by inhibition of 

individual enzymes. 

I left the cells for three days in the toxic conditions and observed their survival rate. In this 

experiment, cells were treated with DNCB, an inhibitor of glutathione reductase; rotenone, an 

inhibitor of Complex I and inducer of ROS production; PAO, an inhibitor of glutathione; and 

auranofin, an inhibitor of thioredoxin reductase (in detail in chapter 4.1.7). All incubations 

showed higher sensitivity of the patient cell line towards the additional stress. The cell 

environment and the ROS defence system in the patient cell line are impaired; therefore, further 

inhibition or extra ROS production leads to increased lethality in such experiments (Fig. 32). 

Increased sensitivity towards DNCB and PAO indicates the interconnection between 

thioredoxin and glutathione ROS defence systems. The cells cannot cope with the additional 

inhibition on the glutathione part of the pathways. Lethality caused by auranofin supports the 

idea that TXNRD2 reduces other enzymes than just TXN2 as suggested on ROS defence 

scheme (Fig. 9). No effect of auranofin would point to a sole enzymatic activity of TXNRD2, 

hence the reduction of TXN2. Rotenone most likely kills the cells due to additional ROS 

production, with which the cells cannot cope (Fig. 32). 

 

Figure 32: Cell sensitivity test of mitochondrial inhibitors. Cells were incubated for three days 

in an increasing concentration of various inhibitors, specifically, DNCB, rotenone, PAO, and 

auranofin. After the treatment, the amount of survived cells was analysed. In general, the 

patient cells show higher sensitivity towards all tested inhibitors. 
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5.1.7 The expression of wild type TXN2 is stable in both cell lines 

To validate if the loss of TXN2 function is responsible for the observed phenotype and to see 

if re-expression of TXN2wt can restore decreases parameters, I expressed a wild-type cDNA 

copy of TXN2 from a cDNA sample obtained from a healthy control cell line. The primers were 

designed to cover TXN2 from the start codon till the stop codon, thus exactly 501 base pairs. I 

added the optimized Kozak sequence CGCC right before the first ATG to ensure better 

expression. The PCR product of TXN2wt was inserted into a vector, sequenced and validated, 

amplified, cleaned and transfected into the patient and the control cell line. 

Stable expression of TXN2 protein was investigated via immunoblot analysis. Strong bands of 

the TXN2wt overexpression of the correct size of 13 kDa were observed in protein samples from 

patient and control cell lines with TXN2wt (Fig. 33). 

 

Figure 33: Immunoblot analysis of cell lines (modified from Holzerova et al. 2016). Anti-TXN2 

antibody detected a single band in samples from controls and in samples, where TXN2 was 

expressed artificially. No signal was detected in patient samples. Visualization of actin was 

used as a loading control. 

 

5.1.8 TXN2wt restores mitochondrial respiration 

First, I analysed if the expressed wild type copy of TXN2 is active and if the re-expression 

restores the observed phenotypes. The patient was diagnosed with a mitochondrial disorder, 

therefore the reestablishment of the activity of mitochondrial respiratory chain after expression 

of TXN2wt confirms the phenotype and correct diagnosis. I measured again the oxygen 

consumption rate and the values for basal and maximal respiration were restored to the control 

values upon complementation (Fig. 34). The recovery of the respiratory chain function suggests 

that the malfunctioning TXN2 is responsible for the observed phenotype, however the exact 

mechanism is still to be examined. 
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Figure 34: Oxygen consumption rate assessed by the Seahorse instrument. Basal and maximal 

respiration after correction to the cell number and subtraction of non-mitochondrial 

respiration showed decreased respiration capacity in the patient cell line and the restoration 

in cells with expression of TXN2wt.  

 

As a result of decreased mitochondrial respiration and overall cell fitness, my collaborators 

from Düsseldorf (Dr. Katharina Danhauser and Prof. Dr. Felix Distelmaier) measured lower 

ATP production in the patient cell line. Likewise, the expression of TXN2wt led to normalisation 

of ATP values (Holzerova et al. 2016). Both above mentioned experiments suggest that a 

constant control of mitochondrial H2O2 levels is necessary for prevention of OXPHOS 

dysfunction. 

 

5.1.9 PRDX3 dimers are reduced by the reexpressed wild type TXN2 

The investigation of the activity of TXN2 via PRDX3 dimers, confirmed the involvement of 

TXN2wt in the TXN2-PRDX3 cycle (Zhang et al. 2007; Hanschmann et al. 2010). In the cell 

line with expression of TXN2wt, PRDX3 dimers almost disappeared as observed in several 

parallel experiments. The immunoblot analysis in Figures 33 and 35 shows that the TXN2wt is 

highly expressed. And moreover, is active in the sense of reducing PRDX3 intermolecular 

disulphide bridges and hence restoring the PRDX3 monomer pool (Fig. 35).  

In the same experiment, I tried to boost the dimer formation by 5 μM H2O2 with an increasing 

incubation time, however this did not have any effect in the setting I chose. The standard SDS-

PAGE creates such an environment in which any residual PRDX3 dimers are reduced. 

Nevertheless, such parallel experiments show repeatedly observed PRDX3 dimers in the 

samples from patient cell line and lack of their presence in the control samples and samples 

with TXN2wt. 
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Figure 35: Immunoblot analysis of PRDX3 dimers (modified from Holzerova et al. 2016). Cells 

were incubated in 5 μM H2O2 for an indicated time, then the protein samples were prepared 

and separated by gel electrophoresis. Anti-PRDX3 antibody detected monomers and dimers of 

PRDX3. Anti-TXN2 was used as a cell line and a loading control. Anti-SDHA was used as a 

loading control. 
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5.1.10 Total glutathione levels stay unchanged among cell lines 

Reduction of PRDX3 dimers indicates a direct effect of TXN2 on the thioredoxin part of the 

pathway. Therefore, I aimed to explore whether there is a compensation by the glutathione part 

of the pathway.  

Glutathione serves as the major redox buffer in the cellular environment (Mailloux and Treberg 

2016). It was reported that levels of oxidized (GSSG) and reduced (GSH) glutathione and the 

GSH/GSSG ratio are important indicators of cellular health (Enns and Cowan 2017). Moreover, 

while Saccharomyces cerevisiae contains the highest amount of glutathione in mitochondria 

(Zechmann et al. 2011), human-derived cells show equal distribution in all of the cellular 

compartments (Ault and Lawrence 2003). Nevertheless, these human cells showed a 

glutathione depletion in an oxidative environment. 

Therefore, together with Dr. Sho Kobayashi (Institute of Developmental Genetics, Helmholtz 

Zentrum München), I measured the glutathione levels directly in the investigated cell lines. I 

expected either increased level of GSH in the patient cell line as a result of a compensatory 

effect or decreased level as a consequence of overall inhibition of the ROS defence system or 

unduly oxidative conditions. Surprisingly, the levels of total glutathione were equal in all 

analysed cell line (Fig. 36). To further investigate glutathione levels, a mitochondrial isolation 

would be necessary as well as the analysis of isolated GSH and GSSG. 

 

Figure 36: Concentrations of total glutathione in studied cell lines. Cells were grown on a small 

dish and subsequently the total glutathione was isolated. The levels show that glutathione is 

intact towards the TXN2 insufficiency. 

 

Similarly, I tried to analyse proteome and transcriptome of the patient cell line in order to 

observe any compensatory mechanism or impairment caused by the mutation on the RNA and 

protein level. However, no striking results in the known component of ROS defence system 

were observed.  
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5.1.11 Expression of wild type TXN2 protects the cells against inhibition of ROS 

defence pathways 

Next, I re-analysed the cell survival rate. It was important to validate that the increased death 

rate of the patient cell line is not due to a generally decreased fitness of the patient cell line, but 

specifically caused by the mutation in TXN2. I treated the cells for three days with DNCB, 

auranofin, and PAO, and afterwards I determined the number of living cells (Fig. 37). Fully 

active wild type copy of TXN2 led in the patient cells to a higher survival rate. As the cells with 

re-expressed TXN2wt were able to cope with all the toxic conditions similarly as the control 

cells, the increased sensitivity in patient is due to an impairment in TXN2 activity. 

Unfortunately, I was not able to repeat the experiment with rotenone. 

 

Figure 37: Cell sensitivity test in cell lines (modified from Holzerova et al. 2016). Inhibitors of 

mitochondrial ROS defence components were administered for three days to the cells. The 
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patient cell line showed a higher lethal level than control and especially than the cell line with 

TXN2wt. Increasing concentrations of all drugs, (A) DNCB, (B) auranofin, (C) PAO, were used. 

 

5.1.12 Antioxidants serve as an effective therapy for patients with defective TXN2 

The previously described experiments suggested that the cause of the mitochondrial disorder 

was the lack of TXN2 activity, and subsequent insufficient ROS defence. Increased amount of 

ROS over years most likely caused the neurodegeneration observed in the patient. Therefore, 

finding an effective treatment is important in such cases. Luckily, several antioxidants are 

available on the market.  

Together with collaborators in Düsseldorf (Dr. Katharina Danhauser and Prof. Dr. Felix 

Distelmaier), we tested MitoQ, Idebenone and Trolox and their effect on ROS production in 

the cell environment. Basal measurement of ROS levels confirmed previous observations; 

hence the relative concentration of ROS is increased in the patient cell line in comparison with 

the control cell line and the patient cell line transduced with TXN2wt. As depicted in Figure 38, 

treatment with the antioxidants significantly decreased in all cases the amount of detected 

reactive oxygen species in the patient cell line.  

 

Figure 38: ROS production in the cells and effect of antioxidants (from Holzerova et al. 2016). 

The amount of ROS was detected with 5-(and-6)-chloromethyl-20,70-

dichlorodihydrofluorescein diacetate (CM-H2DCFDA). Treatment with indicated antioxidants 

(MitoQ, Idebenone, Trolox) significantly decreased observed levels of ROS in patient cell line. 

 

5.1.13 Idebenone as a successful rational therapy 

Together with Prof. Dr. Felix Distelmaier and Dr. Holger Prokisch we decided to further 

evaluate the therapeutic potential of Idebenone only, since it is clinically available and approved 

for the treatment of patients. Therefore, I tested cell sensitivity towards DNCB with and without 

the addition of Idebenone. In the experimental conditions, I observed significantly increased 

cell viability when cells were treated both with DNCB and Idebenone at the same time (Fig. 

39) when compared to exclusive DNCB inhibition. This indicates that additional inhibition of 

GSR can be reverted by using of antioxidants. Such result corresponds to the effect of TXN2wt, 
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with antioxidant administration as the rational treatment strategy accessible rather than a gene 

therapy. 

 

Figure 39: Effect of Idebenone in cells treated with DNCB (modified from Holzerova et al. 

2016). 2 and 4 μM was added to a medium with or without 200 nM Idebenone and incubated 

for three days. Afterwards, the cell amount was determined showing better survival rate of 

patient cells upon Idebenone treatment. 

 

The positive effect of Idebenone in cell culture motivated Prof. Dr. Felix Distelmaier to start a 

rational therapy with Idebenone, specifically 900 mg/day in a compassionate use setting. After 

a relatively short time of administration, several improvements were observed. After ten months 

of drug supplementation, the parents reported improved feeding behaviour (less tube feeding 

required). He gained weight from 39,5 kg (BMI < 3rd percentile) to 47 kg at 16 years of age. 

Simultaneously a sustained improvement in physical capability together with significantly 

reduced frequency of respiratory infections was observed. 

 

5.1.14 General antioxidative pathways do not decrease ROS levels 

Additionally, I was interested if a stimulation of general antioxidative pathways will affect the 

ROS levels in our experimental model. Together with Dr. José Pedro Friedmann Angeli 

Institute of Developmental Genetics, Helmholtz Zentrum München), I followed a 

complementary approach by applying an overnight treatment with sulphoraphane (SFN). SFN 

is used as a small molecule able to induce the cellular antioxidant response (Holland and 

Fishbein 2010). 

SFN is a potent natural antioxidant response element (ARE) activator that functions by 

modifying Kelch-like ECH-associated protein 1 (Keap1) cysteine residues, which releases it 

from its complex with Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and allows the 

translocation of Nrf2 to nucleus thus activating genes with an ARE binding site. Among the 

early responsive genes to Nrf2 induction are SLC7a11, heme-oxygenase 1, γ-glutamyl cysteine 

ligase and members of the glutathione peroxidase family. 

I first established non-toxic SFN treatment conditions (10 µM for 24 hours) which did not 

impair survival of the cells but increased cellular antioxidant response. As a control experiment, 
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I measured the release of thiols into the medium, which was increased by 25-44% in all cell 

lines. Detection of free thiols indicates an increased oxidative environment in the cell cytosol. 

However, the measurements did not reveal any relevant effects on mitochondrial ROS levels in 

patient cells, which is in contrast to the treatment by mitochondrial targeted ROS scavengers 

(Fig. 40).  

 

Figure 40: Sulphoraphane treatment. (A-C) Reactive oxygen species were analysed by 

MitoSOX Red using flow cytometry analysis after an overnight treatment with 10 µM SFN. 

10.000 cells per cell line were analyzed. (D) Increased extracellular thiols observed after SFN 

treatment (10 µM) confirmed overexpression of anti-oxidant pathways; however, the ROS 

levels stayed intact.  
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5.2 Results of Flavin adenine dinucleotide synthase 1 project 

5.2.1 Genetic analysis of the first family reveals a frameshift in FLAD1 

Consanguineous Turkish parents with two daughters suffering from a severe muscle hypotonia 

within the first months of life have been seen at the Medical University of Vienna (detailed case 

report as Family 4 in chapter 4.2). In the beginning of the FLAD1 project, I obtained 

information and samples only from this family. 

Genetic analysis via whole exome sequencing revealed a deletion of 12 base pairs in exon 2 in 

positions 526 till 537 combined with an insertion of ‘CA’ when compared to isoform 1 of 

FLAD1. This variant causes a frameshift resulting in a premature stop codon occurring eight 

amino acids after the beginning of the variant. Both parents were identified as heterozygotic 

carriers and both sisters were homozygotes. One healthy older brother carries only one copy of 

this mutation. Unfortunately, no sample was available for the oldest deceased sibling to analyse. 

Figure 41B shows confirmation of this variant by a Sanger sequencing analysis. 

 

Figure 41: Pedigree of the Turkish family from Vienna and Sanger sequencing of FLAD1 

(modified from Olsen et al. 2016). (A) The consanguineous parents are heterozygotes for the 

same mutation c.[526_537delinsCA], presenting on the protein level as p.[Ala176Glnfs*8]. 

Both sisters carry the homozygous variant, the older brother is a heterozygotic carrier. The 

sequence for the oldest son was not determined (n.d.). (B) Sanger sequencing confirmed a 

deletion in positions 526 to 537 with an insertion of nucleotides C and A therein. 

 

5.2.2 The variant causes a reduction of the cytosolic FLAD1 protein 

By using the cell line derived from skin of the younger daughter, I could perform several studies 

and further explore this new genotype. First of all, an immunoblot detection of FLAD1 was 

performed to validate the effect of the variant on a protein level (Fig. 42). A clear reduction of 

the 54 kDa band was observed. This corresponds to the shorter cytosolic version of FLAD1 

protein, also called isoform 2. Several other bands were additionally detected by the C-terminus 

antibody and studied in detail in following experiments. Most of them were observed in the 

patient as well as in the control sample, suggesting either unspecific staining or expression of 
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alternative isoforms. I tried to confront the observation by using a N-terminal antibody, but 

unfortunately that antibody provided only unspecific staining (not shown).  

 

Figure 42: Immunoblot analysis of FLAD1 protein (modified from Olsen et al. 2016). Western 

blot with the C-terminus anti-FLAD1 antibody revealed a clear reduction of a 54 kDa band 

corresponding to a cytosolic variant of the FLAD1 protein (marked with an arrow). Other 

detected bands correspond either to other isoforms or are unspecific. Anti-β-actin antibody was 

used as a loading marker. 

 

5.2.3 Cells show decreased multiplication rate 

Secondly, to study cell viability, I performed a growth curve experiment. The idea was to 

analyse the fitness of the cell line and to observe response to riboflavin supplementation. 

Alteration of the growth rate upon addition of riboflavin would point to a leaky mutation, 

expression of a truncated variant, or presence of an alternative FAD production pathway. 

However, it must be considered that the cells may be adapted to restricted FAD availability or 

the reduced growth rate may reflect artefacts of the cell line establishment. 

Typical growth curve results are shown in Figure 43. 40.000 of cells were plated and measured 

after two days at approximately the same time for five following days (Day 4-8) plus a 

subsequent Monday (Day 11). The patient cell line had reduced basal growth rate when 

compared to the control one. I tried to boost growing by addition of riboflavin into the culture 

media. Firstly, I added riboflavin on the Day 1 together with cells (indicated as ‘DMEM + 

riboflavin’). However, the measurement of cell amount, did not reveal any improvement in the 

cell growth. As seen in Figure 43, cells reached plateau after 6 days of growing independently 

of the addition of riboflavin or in the course of basal conditions. 

Therefore, I proposed that riboflavin could be used up by the exponentially growing cells and 

experimented with the addition of riboflavin both on Day 1 and 6. This experiment did not 

increase cell growth. In fact, it appeared that the patient cell line was different from the control 

cell line and could not grow to such density. While the control cells multiplied more than 17 

times, patient cells only reached a fivefold change. Regardless of cell line, both growth rates 
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were reduced upon riboflavin depletion. The patient cell line did not outreach a treble of the 

original amount (maximum 2,99 times higher). Moreover, repetitions of the experiment showed 

a toxic effect of the riboflavin depletion on both cell lines.  

 

Figure 43: Fibroblasts growth curves. An 11-days growth experiment detected slower 

multiplication of the patient cell line. Supplementation of riboflavin did not alter the growth 

rate, in contrast with the riboflavin depletion. Cell amounts were detected for several following 

days at approximately same time. 

 

5.2.4 HPLC quantification revealed a sufficient concentration of FAD in blood 

derived from both patients 

To directly observe the results of FLAD1 enzymatic activity, FAD levels can be investigated 

in blood samples. Despite the observed loss-of-function mutation and a clear reduction of both 

FLAD1 protein and the cell viability, our collaborators in Salzburg (Dr. Lavinija Mataković 

and Dr. Johannes A. Mayr) were able to detect significant amounts of FAD compound in blood 

derived from both patients (Figure 44). Surprisingly, FAD levels of both sisters were similar to 

control levels in blood plasma or in enriched erythrocytes. The younger sister was supplemented 

with riboflavin (3 x 60 mg daily), seen as a peak in Figure 44A. The administration of riboflavin 

to the older sister was discontinued due to side effects.  
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Figure 44: HPLC quantification of riboflavin, FMN and FAD in (A) blood plasma and (B) 

erythrocytes (modified from Olsen et al. 2016). Samples of EDTA blood were derived from a 

control, the younger sister under riboflavin treatment and the older sister.  

 

5.2.5 A collaborative effort exposed genotypic and phenotypic similarities in families 

with defective FLAD1 

Continuing investigation led us to start collaborations with medical centres located in Austria, 

Australia, Finland, France, Italy, and Turkey, and in the end, six other affected families were 

collected. All pedigrees and variants are depicted in Figure 45.  

The collection of affected families allowed us to compare phenotypes and genotypes. Families 

carrying variants in the FAD synthase domain presented with milder phenotypes. Typically 

suffering from exercise intolerance and muscle weakness, mainly during physical activity and 

scoliosis. All were successfully supplemented with riboflavin that ameliorated the symptoms. 

They also reached adulthood and furthermore the patient from Family 2 went on to have healthy 

children (full report found in chapter 4.2). With regards to the genetics, the variant was either 

an in-frame deletion (Ser495del, Family 1), or a missense mutation (Arg530Cys, Family 2 and 

3). Family 2 and 3 were, however, also carrying a frame-shift variant in exon 2. This is 

presumably compensated by the functioning protein with the missense mutation. 

On the other hand, individuals from the four other families were severely affected. Most of the 

patients presented with multiorgan dysfunction, had an early age of onset, were hospitalized 

several times and were deceased in the early years of life (detailed case reports in chapter 4.2). 

The variants found in these families were all frameshift mutations located in exons 1 or 2, 

leading to a premature stop codon. The Turkish family, previously mentioned here in detail, is 

Family 4 (marked red). 
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Figure 45: Pedigrees of investigated families and localization of studied variants (modified 

from Olsen et al. 2016). (A) Overall, seven unrelated families were collected. The investigation 

showed two groups of phenotypes – mildly (Families 1-3) and severely (Families 4-7) affected 

individuals. (B) Schematic interpretation of FLAD1 isoforms and localization of specific 

mutations, where homozygous variants are underlined. Variants affecting exons 1 and 2 cause 
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frameshift mutations resulting into premature stop codons. All of them are localized within or 

close to the molybdopterin binding domain in violet. Mutations affecting FAD synthase domain 

(in orange) are an in-frame deletion or a missense mutation, both in a highly conserved region 

among eukaryotic species. Methionine residues at positions M98, M268 and M355 are 

highlighted in yellow. In my functional studies, I mostly focused on family F4, marked red in 

both (A) and (B). 

 

5.2.5.1 Newborn screening can give warning of patients with defective FLAD1 

In addition to the various phenotypes, this group of patients revealed similarities in biochemical 

screenings, carried out as standard practice in many countries, such as during a newborn 

screening. In all eight patients, where data were available, increased plasma acylcarnitines were 

observed. Typically, octanoylcarnitine, decanoylcarnitine or tetradecanoylcarnitine were 

increased. Similarly, several organic acids in urine had elevated levels. For example, in six 

cases ethylmalonic acid was observed, adipic in three, often also suberic, dehydrosebacic, 

methylsuccinic, glutaric acids, hexanoylglycine, and lactate. These patterns usually indicate 

MADD or associated disorders. However, decreased activities of respiratory chain complexes 

in five cases and faint SDH and COX staining together in four suggested a mitochondrial defect. 

Additionally, lipid storage myopathy was found in six cases out of seven. Altogether, these 

combinations of biochemical findings can help to find the correct diagnosis and provide 

treatment in the future. The full collection of data is summarized in Table 2. 

 

Table 2 was published in publication Riboflavin-Responsive and -Non-responsive Mutations in 

FAD Synthase Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain 

Deficiency by Olsen RK, Koňaříková E et alii printed in American Journal of Human Genetics, 

2016; doi: 10.1016/j.ajhg.2016.04.006. 
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Table 2: Genetic, clinical and biochemical findings in individuals with FLAD1 mutations (modified from Olsen et al. 2016).   

 
 
 
 

         

 

 

ID 
Family 

Sex/ 
Consang. 

FLAD1 mutations  
cDNA (NM_025207.4) 
protein (NP_079483.3) 

Affected 
domain 

AoO Status 
Riboflavin 
responsive 

Increased 
plasma 
acylcarnitines 

Elevated organic 
acids in urine 

Respiratory 
chain activities 
in muscle 

Other 
mitochondrial 
enzymes 

Muscle histology 

S1a 
F1 

♂/Yes 
c.[1484_1486delCCT]; 
[1484_1486delCCT] 
p.[Ser495del];[Ser495del] 

FADS 32 h 
Dead  
3 d 

NA 

C5, C8, C14, 
C5-DC, 
glutaryl 
carnitine 

Ethylmalonic, adipic, 
suberic, 
dehydrosebacic, 
hexanoylglycine 

normal NA 
Vacuoles in muscle 
fibres (EM not done) 

S1b 
F1 

♀/Yes 
c.[1484_1486delCCT]; 
[1484_1486delCCT] 
p.[Ser495del];[Ser495del] 

FADS 3 m 
Alive 
22 y 

Yes C4 
Ethylmalonic and 
methylsuccinic acid 

NA NA NA 

S2 
F2 

♀/No 

c.[568_569dupGC]; 
[1588C>T] 
p.[Val191Glnfs*10]; 
[Arg530Cys] 

MPTb 
(fs), 
FADS 

20 y 
Alive 
44 y 

Yes 
C8, C10, 
C10:1, C12:1, 
C16:1 

Ethylmalonic and 2-
hydroxyglutaric acid, 
lactate 

CII↓, CIII↓, CIV↓ CS↑ 
Lipid storage 
myopathy; 
faint COX staining 

S3 
F3 

♀/No 

c.[836delT]; 
[1588C>T] 
p.[Phe279Serfs*45]; 
[Arg530Cys] 

MPTb 
(fs), 
FADS 

44 y 
Alive 
56 y 

Yes 
C5, C8, C10, 
C10:1, C14 

Ethylmalonic acid 
and tiglylglycine 

CI+III↓, CII+III↓ 
normal uder 
treatment 

CS↑ 
ß-oxidation of 
C8 and C16 

Lipid storage 
myopathy, muscle 
beta oxidation C4: 
132%; C8: 15%; 
C16: 56% 

S4a 
F4 

♀/Yes 

c.[526_537delinsCA]; 
[526_537delinsCA] 
p.[Ala176Glnfs*8]; 
[Ala176Glnfs*8] 

MPTb 
(fs) 

4 m 
Alive 
8 y 

Yes 

C4, C6, C8, 
C10, C14, 
C14:1, C14:2, 
C16:1, C18, 
C18:1, C18:2 

Adipic, suberic, and 
ethylmalonic acid 
and 
methylsuccinate, 
ketosis 

CI↓, CII↓ PDH↓ 
Lipid storage 
myopathy 

S4b 
F4 

♀/Yes 

c.[526_537delinsCA]; 
[526_537delinsCA] 
p.[Ala176Glnfs*8]; 
[Ala176Glnfs*8] 

MPTb 
(fs) 

8 m 
Dead 
16 y  
 

Discon-
tinued 
(side efects) 

Normal or C4-
OH, C5, C6, 
C8, C10, 
C14:1, C16:1 

NA NA NA NA 

S5 
F5 

♂/Yes 

c.[397_400delTTCT]; 
[397_400delTTCT] 
p.[Phe134Cysfs*8]; 
[Phe134Cysfs*8] 

MPTb 
(fs) 

6 m 
Dead 
6 m 

NA 
C3, C5, C6, 
C8:1 

Adipic acid CI↓, CII+III↓ CS↑ 
Lipid storage 
myopathy, faint COX 
staining 

S6 
F6 

♀/No 

c.[324delG]; 
[498delC] 
p.[Arg109Alafs*3]; 
[Ser167Profs*20] 

MPTb 
(fs) 

birth 
Dead 
9 m 

No NA NA CI↓, CII+III↓ CS↑ 

Lipid storage 

myopathy; 

absent SDH 
staining; 
Several NADH and 
COX-negative fibers 

S7 
F7 

♀/Yes 

c.[397_400delTTCT]; 
[397_400delTTCT] 
p.[Phe134Cysfs*8]; 
[Phe134Cysfs*8] 

MPTb 
(fs) 

2 m  
Dead 
4 m 

NA 

C4, C6, C8, 
C10, C10:1, 
C12, C14:1, 
C16, C16:1, 
C18:1 

Ethylmalonic and 2-
hydroxyglutaric acid 

NA NA 

Lipid storage 
myopathy, faint SDH 
staining, normal 
COX staining 
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Abbreviations for Table 2: ↓ - decrease; ↑ - increase; ♀ - female; ♂ - male; AoO - age of onset; 

C4 - butyrylcarnitine; C4-OH - OH-butyrylcarnitine; C5 - isovalerylcarnitine; C5-DC - 

glutarylcarnitine; C6 - hexanoylcarnitine; C8 - octanoylcarnitine; C10 - decanoylcarnitine; 

C10:1 - decenoylcarnitine; C12 - dodecanoylcarnitine; C14 - tetradecanoylcarnitine; C14:1 - 

tetradecenoylcarnitine; C14:2 - tetradecadienoylcarnitine; C16 - hexadecanoylcarnitine; 

C16:1 - hexadecenoylcarnitine; C18 - octadecanoylcarnitine; C18:1 - octadecenoylcarnitine; 

C18:2 - octadecdienoylcarnitine; CI–CIV, respiratory chain complexes I–IV; COX - 

cytochrome c oxidase; CS - citrate synthase; EM - electron microscopy; F - female; FADS - 

FAD synthase domain; fs - frameshift; h - hours; m - months; M - male; MPTb - molybdopterin 

binding domain; NA - not available; PDH - pyruvate dehydrogenase; SDH - succinate 

dehydrogenase; y -years 

 

5.2.6 The particular variant types present with an unequal distribution along 

the gene 

The unequal distribution of different types of variants, led me to further study this phenomenon. 

Six out of eight variants were located in exons 1 and 2 and all were predicted to cause a 

frameshift. The other two variants targeted the FAD synthase domain in exons 5 and 6 and only 

caused a minor change in the resulting protein, despite affecting a very conserved region. None 

of the predicted loss-of-function frameshift variants was present in our in-house database of 

about 7.000 distinct WES records and also not in more than 120.000 alleles in the Exome 

Aggregation Consortium (ExAC) server. Furthermore, no other predicted loss-of-function 

variant was found to be homozygous. At the date of the study, the c.1588C>T (p.Arg530Cys) 

variant was listed three times and the c.508T>C (p.Phe170Leu) variant was recorded twice in 

a heterozygote state in all 121.408 alleles studied by ExAC Browser.  

 

To investigate the mutation load of FLAD1, I separated the FLAD1 gene in two parts. The first 

part covers exon 1 and 2 coding for the molybdopterin binding domain with a length of 1.117 bp. 

The second part covers exons 3 to 7 that code for the FAD synthase domain and consists of 647 

bp. ExAC Browser registers an equal distribution of missense and synonymous variants among 

the first (0,178 variants/bp) and the second part of the gene (0,156 variants/bp). It also records 

47 alleles with predicted loss-of-function variants affecting exon 1 or 2; however, only two loss-

of-function variants were found to have an effect on exons 3 to 7. This examination revealed a 

significant accumulation of loss-of-function mutations in exon 2, respectively in the first part of 

the protein, which points to an evolutionary tendency to suppress loss-of-function mutations 

within the FAD synthase domain. My observation is consistent with the concept of independent 

function of the FAD synthase domain (Miccolis et al. 2012). The existence of a truncated protein 

would also explain the residual FAD production observed in the Turkish family. These 

speculations led to experiments expressing functional proteins translated by using the 

downstream ATGs, producing proteins starting at M98, M268 and M355. 
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5.2.7 Truncated FLAD1 isoforms are stably expressed 

In order to verify the pathogenicity of identified variants in the FLAD1 gene and to study 

possible truncated products, I performed rescue experiments. First of all, by using lentiviral 

transduction experiments, I expressed the wild type copy of the cytosolic FLAD1 isoform in a 

patient (subject S4a) and a control cell line. Following this, as I suspected a potential role of 

truncated copies starting from ATGs before the FAD synthase domain, I expressed proteins 

starting from methionines at positions 298 and 355 (numbering according to the long 

mitochondrial isoform 1 of the FLAD1 protein, NP_079483.3). Directly before every construct 

I added an artificial Kozak sequence. The consensus ‘CGCC’ may however vary and the 

specific sequence before the first ATG only affects the strength of recognition and binding of 

the ribosome, indicating the translational start site. For this reason, I prepared a construct, 

supposed to produce a protein starting at M355 without artificial Kozak sequence, but with 

original wild type sequence right before the ATG (marked as M355org in Figure 46). This 

sequence ‘CCCCTAC’ is cytosine-rich, a nucleotide often found in the Kozak sequence.  

Subsequently, I verified the expression of long (wt) and all shorter forms in cells by an 

immunoblot detection (Figure 46). The expression of shorter variants was performed only in 

the control cells (M268 even in two control cell lines) due to faster duplication and better fitness 

of such a cell line. All constructed proteins were stably produced. The M355org construct 

presented with a very faint signal when compared to constructs with the strongest known Kozak 

sequence. But when compared to the signal of wild type FLAD1 expression, which can be 

observed as a weak band at 54 kDa in all control samples on the left side of Figure 46, M355org 

appears to be produced at the same level or even more highly. Previously observed ‘unspecific’ 

bands are below the detection limit of this image. Appropriately, no FLAD1 signal was 

observed in the sample derived from patient cells. 

 

Figure 46: The expression of different FLAD1 isoform detected by immunoblotting. The 

constructs carrying different FLAD1 isoforms were cloned, transferred and expressed in 

control and patient fibroblasts. Protein isoforms starting at methionines M98 (wt), M268, M355 

and M355org without an artificial Kozak sequence were all stably expressed and detected by 

anti-FLAD1 antibody. The wild type cytosolic variant presented with correct size of 54 kDa. 

The strong band on the right size of the picture corresponds to a weak band of a standard 



Eliška Koňaříková  RESULTS 

91 

 

expression in all control samples on the left. M268 construct has predicted size of 36 kDa and 

the M355 of 26 kDa. Anti-β-actin antibody was used as a loading marker. 

 

5.2.8 A 26-kDa isoform was proved to contain FLAD1 specific peptides 

In the course of the search for a truncated FLAD1 protein, our collaborators in Aarhus (Dr. 

Rikke K.J. Olsen, Signe Mosegaard and Prof. Dr. Niels Gregersen) carried out a mass 

spectrometry experiment. The gel bands marked with an asterisk in Figure 47A together with 

the FLAD1 band were analysed and compared to specific synthetic peptides coming from the 

FLAD1 sequence as schematically marked in Figure 47B. The presence of all peptides was 

confirmed in the FLAD1 band. On top of this, they detected peptides P3 and P4 in the ’26 kDa 

FLAD1’ band, which points to a truncated protein. However, peptide P5 was considered as a 

nonsignificant hint because it was identified at the detection border in all analysed gel bands.  

On the right section of Figure 47A, the artificially expressed FLAD1 proteins starting at 

methionines M98, M268 and M355 run next to the control sample. The concentrations of these 

samples were reduced to obtain similar intensities of all bands, especially when compared to 

the control and patient samples. However, the truncated isoforms M268 and M355 did not 

correspond to any of the studied gel bands. Computer predictions estimated 35,92 kDa for the 

protein starting at M268 and 26,31 kDa for M355 one, respectively. The actual weight 

difference between the M268 or M355 protein and the ’26 kDa FLAD1’ lies most likely in a 

post-translational modification of the specific protein. Of note, as measured in Olsen et al. 2016, 

the expression of the M268 isoform resulted in an increase of FAD production. 

 

Figure 47: Immunoblot detection of FLAD1 protein and its truncated variants (modified from 

Olsen et al. 2016). (A) Control (C1-C3) and patient (from families F1, F2 and F4) samples 

were analyzed. In family F1, the in-frame deletion allows expression of FLAD1. Several bands 
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were detected with the anti-FLAD1 antibody. Band marked as FLAD1 corresponds to the 

cytosolic 54 kDa protein. It is of the same size as a wild type copy expressed as M98 protein or 

the purified human FLAD1 indicated by ‘hF’. All labelled gel bands (‘*’ plus ‘FLAD1’ band) 

were analyzed by mass spectrometry. (B) Schematic locatization of peptides (P1-P5) for 

comparison of specificity. Exons of FLAD1 described by numbers, molybdopterin binding 

domain in violet, FAD synthase domain in orange. 

 

5.2.9 Several alternative start codons can secure a functional FLAD1 isoform while 

avoiding the mutation hot-spot region 

Since I was able to prepare artificial truncated FLAD1 proteins and the ’26 kDa FLAD1’ was 

confirmed by mass spectrometry, it was necessary to investigate FLAD1 on the mRNA level. 

In accordance with the UCSC Genome Browser, NCBI Entrez Gene and UniProt, FLAD1 

produces several different isoforms by using alternative start codons (Fig. 21). Some of the 

transcripts, however, use an intronic ATG or even another open reading frame. Nevertheless, I 

searched for an in-frame isoform able to transcribe an intact FAD synthase domain. 

For that reason, I analysed RNA sequencing data from controls to study FLAD1 mRNAs 

represented as Sashimi plots (Figure 48 and 49). In brief, mRNA molecules are cut into short 

chains, sequenced and aligned back to the genome (represented as mRNA reads in the lower 

part of Figure 48). Due to mRNA properties, the intronic sequence is missing. The reads starting 

at one exon and continuing on the next exon are called ‘split-reads’. They carry information 

about the continuity of exons. In the simplest case, the mRNA follows the ‘text-book’ splicing 

and the full mRNA results in: ‘exon 1-exon 2-exon 3’ (as in the upper part of Figure 48). 

However, several split-reads can skip one of the exons producing an alternatively spliced 

mRNA. In the end, the number of events is counted and reported in the resulting Sashimi plots. 

A simplified scheme is presented in Figure 48. 

 

Figure 48: Schematic representation of Sashimi plots. Distinct mRNA parts are sequenced and 

aligned back to the reference genome. The split-reads that are skipping the intronic areas, 

represent the occurring splicing events (see the lower part). The number of such events is 

counted and displayed as shown in the upper part of the picture. 
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I was looking therefore, for a split-read among the FLAD1 mRNAs, skipping the area 

harbouring all of the frameshift variants (exon 1 and 2) with the potential to produce an active 

protein. Interestingly, the majority of mRNAs resulted in a transcript coding for the cytosolic 

FLAD1 isoform (isoform 2; Fig. 21, 45 and 49). On the transcript level, isoform 2 contains a 

non-translated region of exon 1, labelled as ‘1a’. Typical example presents C1 control fibroblast 

cell line. However, many other possible transcripts were identified as well, as seen in Figure 

49, including several novel FLAD1 transcripts in control fibroblast and blood samples, 

confirming the expression of the truncated isoforms.  

In control C2 fibroblasts I identified an isoform, named isoform 5, utilizing the ‘1a’ part of exon 

1. The split-reads are skipping exons 1b and 2 and continue directly on to exon 3. They represent 

about 2% of all the split-reads at a given location (marked red in the green sample in Fig. 49B). 

Since the first downstream in-frame ATG is located in exon 5 at position 460, deep in the FAD 

synthase domain, I suggested usage of an upstream start codon. In Figure 49A the resulting 

methionine residue is marked as M-X. I choose to label the methionine ‘M-X’ as it lies out-

frame in respect to the isoform 1. More precisely, it lies 212,3 amino acids upstream of M1, 

which makes it 637 bases in total. The coding and protein sequences are displayed in Figure 

49C, as based on the UCSC Genome Browser. The exon 1a produces 16 amino acids in-frame 

with exon 3. Importantly, no stop codon is located therein (Fig. 49C). Such a protein codes an 

intact FAD synthase domain starting within exon 3 and with an approximate predicted size of 

26,11 kDa. 

Next, similarly to isoform 5, in control C3 blood sample I identified isoform 6 that allows 

production of a truncated functional protein. About 10% of detected split-reads in control C3 

connect exon 1a directly with exon 2 (marked red in the blue sample in Fig. 49B). In this case, 

I assume the utilization of downstream methionine M268. Starting at M268 or even M355 

allows the production of an active FAD synthase domain. This transcript can also use the 

methionine M-X, however in such cases, translation is blocked in all of the frameshift 

mutations. Moreover, as tested in vivo, the sequence right before M355 can serve as the Kozak 

sequence and produces a stable protein. As reported above, this protein without 

posttranslational modification would have approximately 36 kDa (M268), or 26 kDa (M355) 

respectively. 

As a result of these observations, together with Dr. Holger Prokisch we suggested the existence 

of two new isoforms 5 and 6. Isoforms 3 and 4 were already established in databases. Isoforms 

3 and 4 as reported in UCSC Genome Browser, NCBI Entrez Gene and UniProt do not possess 

the FAD synthase domain and so I did not consider them as transcripts responsible for the 

functioning enzyme. Overall, the ’26 kDa FLAD1’ band is most likely based on isoform 5 

and/or a proteolytically processed isoform 6. Nevertheless, exact identification requires further 

experiments. 
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Figure 49: FLAD1 transcript isoforms and their predicted products (modified from Olsen et al. 

2016). (A) Two known (1 and 2) and two newly predicted (5 and 6) isoforms of FLAD1 

transcript. The numbers represent the FLAD1 exons, in violet is the molybdopterin binding 

domain, in orange the FAD synthase domain, in green positions of individual methionines. (B) 

RNA sequencing of FLAD1 depicted as Sashimi plots. RNA is cut into pieces and sequenced 

and each transcript is plotted. The height of the plot reflects the abundance of each sequence. 

Connecting lines represent split-reads, where one part of the RNA is in one exon and continues 

in the next exon. The exonic order is depicted in the lower part, also the Sashimi plots 

correspond to the schematic gene image in the upper (A) part. Two control fibroblast and one 

blood sample posses the evidence of alternative splicing occurring in FLAD1. (C) Beginning 

of the sequence of a suspected isoform 5. Protein starting at methionine M-X continues in-frame 

directly at exon 3 (based on UCSC Genome Browser). 
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5.2.10 Real time PCR confirms the presence of the newly identified isoform 6 

To confirm the presence of the specific isoforms in vivo, our collaborators in Salzburg (Dr. 

Lavinija Mataković and Dr. Johannes A. Mayr) performed a quantitative real time PCR 

experiment. As seen in Figure 50A, primers were designed to cover the whole of FLAD1. qPCR 

analysis (Fig 50B) revealed stable FLAD1 transcription with reduction of about 50% when 

compared to the control sample. The RNA is therefore not degraded by a nonsense mediated 

decay. By using the same pairs of primers, the resulting qRT-PCR products were amplified, 

loaded on an agarose gel, separated and visualized. The highlighted primer pair 2 can amplify 

either the cytosolic isoform 2 with 307 bp, or the newly observed isoform 6 with 82 bp. Both 

the control and patient sample contained substantial amount of both isoforms in vivo (Fig. 50C, 

all details in Olsen et al. 2016). 

 

Figure 50: Quantitative real time PCR of FLAD1 (modified from Olsen et al. 2016). (A) 

Schematic visualization of primer pairs binding. All nine primer pairs cover the whole FLAD1. 

(B) qRT-PCR analysis revealed stable transcription in both samples. Patient RNA is reduced 

by about 50% when compared to the control sample and two housekeeping genes (RPL27 and 

HPRT). (C) qRT-PCR products visualized on an agarose gel. Primer pair 2 amplifies two 

distinct products, corresponding to isoforms 2 (307 bp) and 6 (82 bp). This experiment was 

conducted with a help of Dr. Lavinija Mataković and Dr. Johannes A. Mayr. 
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5.2.11 Patient RNA is sufficiently expressed, however does not reveal the exact 

mechanism of FAD production 

Because Figure 49 only shows control samples, I was interested to see the result of RNA 

sequencing of the younger sister (S4a) from family F4. Furthermore, I intended to compare it 

to the qRT-PCR results from Salzburg (Fig. 50). In Figure 51 a Sashimi plot of RNA sequencing 

from the patient fibroblast cell line is shown. A black arrow marks a clear deletion, which was 

also seen in WES. As already seen by qRT-PCR, the RNA is stable, hence not completely 

degraded by a nonsense mediated decay. Therefore, the expression of FLAD1 protein is 

possible and most likely the ’26 kDa FLAD1’ is responsible for the residual activity. 

Unfortunately, I could not identify clear evidence for the existence of the truncated isoform 5 

in the RNA sequencing from the patient. However, as reported above, the patient fibroblasts 

produce substantial amounts of FLAD1 isoforms 2 and 6. 

 

Figure 51: RNA sequencing of the fibroblast sample derived from the younger sister (S4a) from 

the Turkish family (Family 4). RNA was found stable, not degraded by a nonsense mediated 

decay. A clear homozygotic deletion c.[526_537delinsCA] is marked by a black arrow. 
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6 Discussion 

 

6.1 Current shift in the diagnosis of mitochondrial disorders  

Mitochondria are complex dynamic organelles whose maintenance requires collaboration of 

proteins encoded by two genomes. Disruptions in any of these proteins can have a direct effect 

on mitochondrial homeostasis and overall cellular maintenance. In this thesis, I focused on two 

crucial aspects of mitochondrial biology, ROS production and cofactor metabolism. Two genes 

from these two pathways have been for the first time diagnosed and validated as disease 

causing. 

Methods for the diagnosis of mitochondrial disorders have undergone a tremendous shift in the 

recent years. Traditionally, mitochondrial disorders are defined by a malfunctioning OXPHOS 

and hence impaired energy production. They have therefore been conventionally diagnosed by 

analysis of enzymatic activies of respiratory chain complexes, characteristically in samples 

from muscle biopsy (Larsson and Oldfors 2001; DiMauro and Garone 2010). Additionaly, 

biomarkes such as lactate, amino and organic acids or carnitines have been usually analyzed in 

blood or urine samples (Stacpoole 1997; Barshop 2004; Jones et al. 2010; Shatla et al. 2014). 

However, mitochondrial disorders represent an extremely diverse group of inborn errors 

of metabolism presenting with clinical, biochemical, and genetic heterogeneity and can 

manifest at any age. 

Since the implementation of Next generation sequencing techniques, such as whole exome 

sequencing in 2009 (Choi et al. 2009), diagnosis by a molecular-genetic approach is now 

preferred. This fundamental change in approach not only frees the patients from muscle biopsy 

testing unless absolutely necessary, but offers a diagnosis with much low invasivity. 

Consequently, genetic testing allows rapid initiation of a rational therapy and further also 

genetic counseling or prenatal testing (Wortmann et al. 2017). Whole exome sequencing has 

been demonstrated as an effective tool allowing diagnosis of about 50% of patients with 

suspected mitochondrial disorders. However, this means that half of the patients remains 

undiagnosed, leaving room for an improvement. WES-based analysis faces technical and 

analytical limitations. Some might be overcome by introduction of WGS, such as detection of 

indels and copy-number variations as well as the detection of non-coding variants. Given the 

reducing costs of NGS techniques, WGS will soon replace WES. However, the search deep 

within the non-coding regions will still remain challenging. 

With the acceleration of the discovery of novel variants in known disease genes as well as 

potential new disease causing genes, comes the neccessity of comprehensive experimental 

validation (Haack et al. 2010; Wortmann et al. 2017). It is estimated that there are about 1.600 

genes involved in the proper mitochondrial function (Lieber et al. 2013). Counting together 

both involved genomes, mutations in already 360 genes have been reported to date to cause a 

mitochondrial disease (Mayr et al. 2015; Rahman and Rahman 2018; Stenton and Prokisch 

2018). There are therefore many potential novel disease gene discoveries awaiting validation. 
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The work presented here has made a small, but important contribution to the expansion of 

knowledge of disease assocciated genes. 

 

6.2 Functional validation of novel mitochondrial disease genes 

Functional validation of variants in novel disease genes represents the core of this thesis. 

Disruption in the ROS defence system caused by a variant in TXN2 has been investigated. 

Likewise, mitochondrial biology strongly depends on cofactors; however, potential loss-of-

function in FLAD1 results in lack of FAD that affects about 100 enzymes. The consequences of 

FLAD1 variants were studied in this work. TXN2 was associated with a mitochondriopathy for 

the first time, FLAD1 has already been reported as potentially pathogenic, however this report 

lacked validation of any kind (Taylor et al. 2014). WES analysis found clear hints in TXN2 and 

FLAD1, which immediately delineated the investigation path corresponding to observed 

phenotypes.  

 

6.2.1 ROS defence is a crucial mechanism, therefore any disruptions are improbable 

Despite the knowledge of reactive oxygen species existence for about 60 years, their exact 

purpose has not yet been completely unravelled. Indeed, their increased levels harm proteins, 

lipids or nucleic acids. However, the potential importance of ROS lays in redox signalization 

as well as e.g. organismal protection via ROS production by NAPDH oxidases. The rapid and 

reversible or non-reversible changes of redox sensitive proteins contribute to spreading of 

oxidative stress signal. This results in enhanced transcription to fight additional ROS increase 

or even the preparation of cells for autophagy (Holzerova and Prokisch 2015). The remaining 

questions ask how we benefit from ROS and how can we influence their levels? Redox biology 

is a broad field awaiting further research. 

Thioredoxin 2 is one of the key players in the reactive oxygen species defence. Its role is to 

restore PRDX3 or PRDX5 monomers that actively remove H2O2 from the mitochondrial 

environment. The ROS defence system consists of highly interconnected enzymatic activities 

(in detail in chapter 1.4). According to the study provided by Nonn et alii, it was considered 

that TXN2 function is crucial for organismal development and that absence of TXN2 was 

improbable. The Txn2−/− knockout mouse model was embryonic lethal. The embryos were 

found nonviable with an open anterior neural tube and eminently increased apoptosis at the 

tenth day post-coitus (Nonn et al. 2003). This is also the period of mitochondrial maturation 

(Shepard et al. 1998). Additionally, a huge difference between the outcomes of variants in 

TXNRD2 vs. in TXN2 was observed, pointing to a very thin line between variants in genes 

responsible for the same pathway. Malfunctioning TXNRD2 causes a mild phenotype (Prasad 

et al. 2014), while the TXN2 patient suffers from severe brain deterioration. 

Yet, WES analysis at our institute found the very first patient carrying a homozygous loss-of-

function variant in TXN2. The main observed phenotype was an early-onset neurodegeneration 

together with rapid progression of cerebellar atrophy and delayed myelination (detailed case 

report in chapter 4.1). Based on the high expression of TXN2 in the brain (Rybnikova et al. 
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2000), it seems that thioredoxin-based antioxidation is predominant therein. Moreover, brain 

tissue uses up about 20% of total basal oxygen to assure its activity (Cobley et al. 2018). 

Therefore, together with the faulty ROS defence system, the observed progressive 

neurodegeneration is probably caused by long-term ROS exposure.  

Although, one may speculate, that men and mice differ in many biological aspects, rodents have 

been proposed as a suitable model to study brain development (Semple et al. 2013). In general, 

animal models are enormously useful in translational research, nevertheless no one should 

overestimate the outcomes.  

 

6.2.2 Lack of TXN2 activity affects mitochondrial homeostasis 

In the first step, I confirmed the variant by Sanger sequencing with both nonconsanguineous 

parents being heterozygotic carriers. The patient was the very first in our database to carry a bi-

allelic variant. Likewise, no homozygous subject had been reported in public databases. The 

clear homozygotic variant in TXN2 was – based on the database search – marked as likely 

pathogenic due to the production of a stop codon in the first translated exon of TXN2. Based on 

my search, no alternative truncated transcript has been observed. However, its product would 

lack enzymatic function, because the first possible in-frame transcription side lies downstream 

from the cysteine active side. This isolated information, however, does not prove the variant 

causality. Nevertheless, the resulting premature stop codon was reflected in the absence of 

protein as seen by an immunoblot analysis. The anti-TXN2 antibody covers 83% of amino 

acids, hence any truncated in-frame protein would be most likely detected.  

TXN2 interferes with the respiratory chain complexes and affects overall mitochondrial 

bioenergetics. So far, all studies have described the connection between the thioredoxin system 

and OXPHOS rather vaguely. Inhibition of the thioredoxin system led to decreased oxygen 

consumption and ATP/ADP ratios (Lowes and Galley 2011); the thioredoxin system was shown 

to affect glucose homeostasis, and hence the energy production (Yoshioka and Lee 2014); and 

a connection between TXN2 and Complex II, fumarase and citrate lyase has been reported 

(Daloso et al. 2015). The case report in chapter 4.1 lists the reduced activities of respiratory 

chain Complexes I, III and V together with repeatedly increased blood lactate. Consequently, 

mitochondrial involvement was suspected. This observation was reproduced in fibroblasts by 

decreased basal and maximal oxygen consumption rate as well as decreased ATP production.  

The exact interconnection between OXPHOS and ROS defence enzymes is however still not 

sufficiently understood. It was described that adequate ATP production, hence OXPHOS 

function, is important for correct anatomic development of the cerebellum during pregnancy 

(Baertling et al. 2016). Therefore, our experimental material provides a valuable resource for 

further investigations. 
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6.2.3 Expression of wild type TXN2 validates the causality of the gene and helps to 

find the treatment strategy 

Additional experimental validation was facilitated by the successful establishment of a patient 

cell line with a wild type copy of TXN2. The function of TXN2 can be vicariously assessed by 

immunoblot analysis of PRDX3 dimers. In the healthy environment the vast majority of PRDX3 

dimers is reduced into monomers. However, in the patient’s mitochondria I observed increased 

levels of dimers indicating TXN2 malfunction and hence reduced ROS defence capacity. More 

importantly, the reduction to monomers was re-established by the TXN2wt. In line with this, the 

oxygen consumption rate, reflecting the OXPHOS function, was restored to control levels in 

the cells expressing TXN2wt.  

Significant results were also obtained by the drug sensitivity assay. Overall cell fitness was 

challenged by several mitochondrial inhibitors. In the diseased cell line, increased ROS (by 

inhibition of Complex I through rotenone) or inhibition of TXNRD2 (by auranofin), glutathione 

(by PAO) or GSR (by DNCB) caused lower survival rate when compared to the control cell 

line. These experiments confirmed the existence of crosstalk between ROS defence pathways 

by affecting the overall system. Most interestingly, the inhibition of TXNRD2 showed the 

interconnection of the reductase with the rest of the system, even though the connecting piece 

TXN2 is malfunctioning. Also, the additional interference by PAO and DNCB demonstrated 

the cell vulnerability. Accordingly, when the glutathione pathway was inhibited, the cells could 

not cope with such stress any further. The cell fitness was improved by TXN2wt. Most 

outstandingly, the cell survival rate improved significantly with administering of Idebenone 

into the cell medium. Idebenone was subsequently suggested as a rational therapy for the 

patient.  

 

6.2.4 A system with malfunctioning TXN2 presents a valuable experimental model 

of ROS defence pathways 

Altogether, I was able to provide a variety of evidence to further confirm the underlying cause 

of the suspected mitochondrial disorder. Above that, I was provided by a unique experimental 

material of malfunctioning ROS defence system. Based on the interplay between glutathione 

and thioredoxin pathways (Zhang et al. 2007; Hanschmann et al. 2010), I expected increased 

levels of cellular glutathione. However, this was not proven. To further address this question, 

it would be necessary to distinguish between mitochondrial and cytosolic glutathione. And 

particularly in isolated mitochondria in order to separate the oxidized and reduced glutathione 

pool and/or to determine the GSH:GSSG ratio. This ratio when measured in blood serum was 

proven to be a valuable biomarker of oxidative stress (Zitka et al. 2012). Interestingly, analysis 

of conditionally Txn2 deficient chicken β-cells, revealed decreased total and mitochondrial 

GSH levels, but increased ROS production (Tanaka et al. 2002b).  

The analysis of PRDX3 dimers, indeed, confirmed the insufficient and subsequently restored 

enzymatic activity of TXN2. Immunoblot detection after the H2O2 incubation, however, did not 

reveal any influence of the additional treatment. This is most likely due to the experimental set 

up. Western blot samples were prepared through a denaturation step as for any other sample for 



Eliška Koňaříková  DISCUSSION   

101 

 

SDS electrophoresis. It is probable that the cells contain even higher concentrations or 

exclusively the PRDX3 dimers and their reduction is only an artefact of sample preparation. 

Here, further experimental evidence, including e.g. non-reducing conditions, would be 

necessary.  

Inactivation of further enzymes of the ROS defence system in this natural experimental model, 

could provide a deeper insight into the interconnections between both pathways. I assumed that 

the non-lethal loss-of-TXN2 function was due to this high linkage. In particular, the reduction 

of PRDX3 dimers is probably preserved by the action of TXNRD2 or GLRX2, or by the 

molecule of NADPH (Conrad et al. 2004; Zhang et al. 2007). Therefore, switching off 

additional players e.g. by gene-editing techniques, could unravel novel connections or 

redundancies of the ROS defence pathways. 

 

6.2.5 Further experimental potential lays in a study of the affected tissue as well as 

in investigations of any future patient 

The additional experimental evidence of the whole system could be carried out by studying the 

most affected tissue, hence the brain. TXN2 is highly expressed in the brain, which also points 

to the importance of ROS scavenging therein (Rybnikova et al. 2000). However, obtaining 

neuronal cells from our living patient is not possible due to obvious reasons. Nevertheless, it is 

well established that patient-derived primary human skin fibroblasts represent valid model 

system for studying mitochondrial (patho)physiology and they are ideally suited for a broad 

range of live cell assays (e.g. mitochondrial morphology, ROS, calcium/ATP handling, etc.; 

summarized in e.g. Koopman et al. 2012). Therefore, I tried to establish an efficient knock-

down model in SH-SY5Y neuroblastoma cell line (Berger et al. 2004). Unfortunately, I was not 

able to obtain an effective knock-down.  

The main limitation of this project is coming from a single-patient based observations, as 

collection of multiple cases provides further evidence for pathogenicity. The crucial validation 

of the variant causality was however carried out by expression of the wild type gene in the 

patient cell line and subsequent restoration of all measured values. This is, in general, a 

recommended standard approach in cases of rare diseases (Gorman et al. 2016). 

 

6.2.6 FAD cofactor affects the stability and activity of about 100 enzymes, hence 

lack of FAD is highly unexpected 

In higher organisms, riboflavin (vitamin B2) must be obtained from the diet (Kaiser et al. 2002). 

Its conversion products FMN and FAD present cofactors of more than a hundred of proteins 

forming various enzymatic pathways of the complex cellular metabolism. FAD is found in 

about 84% of all flavoproteins (Lienhart et al. 2013). It was shown, that a number of 

flavoproteins undergo a fast degradation under depletion of riboflavin or flavin cofactors (Wu 

et al. 1995; Efimov et al. 1998; Solovieva et al. 2003; Henriques et al. 2010).  

Riboflavin avitaminosis or inefficient turnover of riboflavin, FMN and FAD, is potentially 

harmful for a number of enzymes and subsequently the cellular homeostasis. Hence, the correct 
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function of riboflavin kinase and FAD synthase, an enzyme coded by FLAD1, is crucial for cell 

maintenance. I was among the first to identify a potential loss-of-function variant in the gene 

coding for this key protein. The first identification of a variant in FLAD1 as potentially disease 

causing in patients from Vienna (Family 4) came shortly before the publication from Dr. Robert 

Taylor and his colleagues (Taylor et al. 2014). However, it took us some time to collect 

additional patients and most importantly to provide enough experimental validation. The patient 

presented in publication from Dr. Taylor is the same person as patient from Family 5 presented 

in this thesis (Taylor et al. 2014; Olsen et al. 2016). 

The insertion deletion variant found in FLAD1 at our institute was predicted to cause a 

frameshift resulting in a premature stop codon. Based on the essence of FAD necessity, the 

observed loss-of-function variant was highly unexpected. The variant manifested as a reduction 

of FLAD1 protein detected by immunoblotting, where the cytosolic protein was absent in 

contrast to the control sample. The antibody repeatedly showed several additional bands of 

different sizes, both in patient and control samples. Unfortunately, this result could not be 

confronted by another antibody, since it gave a very unspecific signal. I could not detect a clear 

signal of the mitochondrial isoforms from either of the samples. This might be, however, 

fibroblast specific. The whole matter of several FLAD1 isoforms requires extensive further 

research involving different tissue samples, especially the affected muscle tissue.  

 

6.2.7 Cells with affected FAD production are highly sensitive towards lack of 

riboflavin; however, FAD production was confirmed in patient blood samples 

Cell fitness was analysed by a growth curve experiment. The patient cells showed a slower 

multiplication rate in comparison to the control cell line. I may hypothesize that the patient cells 

are adapted to a slower growth condition. To properly address this question, a broad range of 

controls would be necessary. The control cell line I used tends towards rapid and extensive 

growth. It covers the surface as prolongated cells closely attached to one another. The patient 

cell line also covered the whole surface; however, lower cell numbers were detected. This may 

be due to a different inner morphology, for example various mitochondrial structures have been 

observed upon different (patho)physiological conditions (Yoon et al. 2011; Galloway et al. 

2012; Picard et al. 2013). The main purpose was to observe the result of riboflavin 

supplementation and depletion. While addition of riboflavin, even repeatedly, did not alter the 

growth rate, most likely due to the saturation of the presumed riboflavin conversion pathway; 

the depletion essentially halted cell growth. This shows the crucial role of riboflavin for cellular 

maintenance.  

Despite clear genetic variant and immunoblot observations, the HPLC detection of riboflavin 

and its conversion products revealed high levels of all compounds. With my collaborators in 

Salzburg Dr. Lavinija Mataković and Dr. Johannes A. Mayr, I observed a sufficient 

concentration of FAD in blood plasma or in enriched erythrocytes derived from two of the 

patients. This result shows existence of the FAD synthase enzymatic activity. Also, the FMN 

peak was not significantly increased, which would point to a reduction in FAD synthase 
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activity. The height of the FMN peak only reflected the administration of riboflavin to the 

patient. 

 

6.2.8 Fusion of FLAD1 domains was repeated during evolution 

The riboflavin conversion to FAD is in prokaryotes catalyzed by a bifunctional protein 

(Herguedas et al. 2010; Abbas and Sibirny 2011). However, in higher mammals such as 

humans, rats or mice, the FAD synthase domain is fused to MPTb. Drosophila melanogaster, 

Caenorhabditis elegans or Saccharomyces cerevisiae for example, do not possess the N-

terminal part, only the FAD synthase domain (Krupa et al. 2003). Similarly, plant flavin adenine 

dinucleotide synthetases in chloroplasts contain highly conserved N-terminal FAD synthase 

domain. Though the C-termini of these enzymes among plant species differ, they still contain 

a putative catalytic activity distinct from the prokaryotes. According to Yruela et alii, this 

function is either FMN hydrolase or FAD pyrophosphatase or the plant C-terminus has a 

nonenzymatic regulatory role or is an evolutionary relic (Sandoval et al. 2008; Yruela et al. 

2010). Altogether, fusion of the FAD synthase domain to another is not essential, yet it 

developed simultaneously more times in evolution with not exactly known function. 

In general, eukaryotic FADS are unrelated to prokaryotic ones (Brizio et al. 2006; Huerta et al. 

2009; Torchetti et al. 2010) and if fused to another domain, these domains presumably present 

a regulatory element (Giancaspero et al., 2015). Overall gene and protein fusion is a major 

contributor to protein evolution, it expands the functional repertoire of an organism and 

contributes to increase complexity (Koonin et al. 2002; Bornberg-Bauer et al. 2005; Pasek et 

al. 2006). 

 

6.2.9 The mutation load acknowledges the role of both FLAD1 domains 

As I was unable to find any alternative human riboflavin conversion pathway in the literature, 

I started to further study FLAD1. The mRNA consists of seven exons and the resulting protein 

has two distinct domains. Specifically, the first two exons code for molybdopterin binding 

domain, exons 3 to 7 code for the FAD synthase domain. Previous observations confirmed that 

the isolated human FAD synthase domain can sufficiently synthesize FAD by itself (Miccolis 

et al. 2012). The role of MPTb is in stabilizing the enzyme and it potentially has FAD hydrolase 

activity (Giancaspero et al. 2015) or is needed for optimal FAD transfer into apoproteins 

(Torchetti et al. 2011). According to the sequence, expression of the fully active FAD synthase 

domain is possible with in-frame start codons at protein positions M98 (also the start of the 

cytosolic protein), M268 and M355. 

During the course of this project, additional patients with variants in FLAD1 have been 

identified. The collaborative effort collected seven families with ten affected individuals in 

total. I noticed a broad range of phenotypes, from exercise intolerance and muscle weakness to 

multiorgan lapse resulting in death in early years of life. The phenotypic spectrum was reflected 

by the type of the mutation and its position. While the mildly affected patients carried an in-

frame deletion (Family 1) or a missense mutation (Family 2 and 3) in the FAD synthase domain; 
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the severely affected patients with an early-onset all carried frameshift mutations (Families 4 

to 7) located in the exons 1 or 2, leading to a premature stop codon. 

The projection of observed variants on the gene structure, unravelled a significant accumulation 

of frameshift variants in the exon 1 or 2, hence in the MPTb domain. The other observed 

variants were located in exons 5 and 6 in the FAD synthase domain and caused only minor 

changes in the resulting protein. It is an in-frame deletion of 3 bases, hence serine 495 and a 

missense mutation changing arginine 530 to cysteine, an amino acid with a shorter side chain. 

The database search showed accumulation of loss-of-function variants in the exon 1 and 2 in 

respect to the rest of the gene (47 vs 2). This is underlining an evolutionary suppression of the 

loss-of-function variants in the FAD synthase domain. 

 

6.2.10 Residual production of FAD led to the identification of novel isoforms and 

final explanation of the observed phenotype 

Based on the observed variant distribution and enzymatic independency of the FAD synthase 

domain (Miccolis et al. 2012), I expressed functional proteins translated by using the 

downstream ATGs, producing proteins starting at M98, M268 and M355. Mainly the M268 and 

the M355 truncated isoforms can overgo the frameshift variants and produce the fully active 

FAD synthase domain. All of the isoforms were stably expressed and detected by anti-FLAD1 

antibody. This included the M355org isoform, before which I did not add a Kozak sequence 

that is typically attached to ensure the expression.  

The further study of additional bands observed by immunoblotting confirmed presence of a 

truncated ’26 kDa FLAD1’ isoform containing an intact FAD synthase domain. This isoform 

was present in all available samples – both in controls and patients. However, the 26 kDa protein 

does not exactly correspond to shortened versions starting at M268 – 36 kDa and M355 – 

26 kDa, even though the predicted sizes are similar. Consequently, I searched for a possible 

explanation on the RNA level. Newly identified isoforms 5 and 6 would allow expression of 

proteins that would skip the ‘frameshift area’. Nevertheless, both isoforms lack the MPTb 

domain, the activity of which is significant for proper function. 

In addition to the already predicted M268 and M355 (coming from isoform 6) proteins, a new 

M-X was found, also resulting in a functional protein of predicted 26 kDa (from isoform 5). 

Hence, the ’26 kDa FLAD1’ is most likely post-translationally modified (e.g. phosphorylation 

or glycosylation) and/or a proteolytically processed result of alternative isoforms 5, 6 or others 

not yet identified. Importantly, all truncated proteins did not contain the mitochondrial targeting 

sequence. This presumably alters the FMN/FAD pool within the cellular environment, 

specifically in mitochondria, where most of the flavoenzymes are localized. Mitochondria 

would therefore be dependent on cytosolic FAD production. 

The finding of additional isoforms was experimentally validated by PCR experiments 

confirming the presence of RNA isoform 6 in vivo in the control as well as in the patient cell 

line. Further analysis of RNA sequencing of the patient, however, did not bring any new 

observation. Interestingly, in this case, the RNA sequencing alone would probably not find the 
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right gene as the transcript in the patient was not significantly degraded. Therefore, combination 

of approaches and a proper validation is essential. This result demands further comparison to 

control samples as well as RNA sequencing of additional tissues, to bring tissue-specific 

expression of isoforms to light.  

My findings were followed by the expression of truncated isoform 6 in a bacterial model (Leone 

et al. 2018). Leone et alii demonstrated that this isoform was sufficiently synthesizing FAD. 

With respect to the full-length protein, the enzymatic activity of the truncated enzyme was 

decreased to about 70%. The authors however speculate about the cytosolic localization of such 

a protein and the import of FAD into mitochondria via a recently identified transporter (Schiff 

et al., 2016). The relevance lays in the lack of FAD production in mitochondria, a place, where 

many flavoproteins are localized (Lienhart et al. 2013). Leone and co-workers marked the 

truncated FLAD1 as an ‘emergency protein’, because its existence, though in small quantity, 

allowed the survival of patients carrying variants in FLAD1. This isoform could even find its 

usability in gene therapy. 

 

6.2.11 Information burden of public databases 

In the course of identification and validation of novel disease genes, databases provide a great 

amount of information. Publicly available resources prove themself important when no other 

information is available, especially for the identification of genes not previously associated with 

a disease. The description of enzymatic function is valuable in the first explanation of genotype-

phenotype correlation. However, ongoing research may change predicted data. This has been 

exemplified by a proteomic based study in which a patient with a variant in NDUFA4 reassigned 

this protein as a subunit of Complex IV rather than Complex I (Balsa et al. 2012). 

Typically, I was searching for pathogenic variants and additional known transcripts, as well as 

functional domains of proteins or their structure. As an example, in my work the resulting 

protein of FLAD1 is responsible for FAD production, however the observed variant according 

to my first prediction did not allow enzymatic function. In the case of FLAD1, information of 

possible transcripts reported in databases was insufficient, insomuch as the critical transcript 

was not annotated. One must keep in mind that loss-of-function variants sometimes affect only 

specific transcripts of an essential gene. The experiments proved on both the RNA and protein 

level that a not yet described transcript is responsible for a truncated functional protein. Hence, 

not all loss-of-function variants lead to a degradation of the transcript by nonsense mediated 

decay deeming translation of the proteins impossible. My observations were submitted for 

addition into ClinVar database to make them available for further research. 

Additionally, as TXN2 and FLAD1 are now established as ‘known’ disease genes, my 

observations enriched the Online Mendelian Inheritance in Man database. TXN2 is now 

connected to OMIM number #616811, meaning ‘Combined oxidative phosphorylation 

deficiency 29’. However, due to the limitation of a single-patient based observation, OMIM 

marked this relationship between the phenotype and gene as provisional and will change it only 

after publication of reports describing additional patients (Joanna Amberger from OMIM, 

personal communication). In the case of FLAD1, the first note in OMIM was already made after 
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the first mentioning in the literature (Taylor et al. 2014). However, this publication only 

mentioned the possible pathogenicity and very briefly described the patient. Only the 

contribution of my work and experimental validation of my collaborators connected FLAD1 to 

#255100: ‘Lipid storage myopathy due to flavin adenine dinucleotide synthetase deficiency’ 

without any doubts. 

In general, it is important to support the expansion of public databases and datasets. We consider 

that mitochondrial disorders affect at least 20 individuals per 100.000 people (Gorman et al. 

2016). However, with about 83 million inhabitants in Germany and only about 1.500 patients 

listed in any mitochondrial registry (mostly in mitoNET - German Network for Mitochondrial 

Disorders, Dr. Holger Prokisch, personal communication), there is still quite a space for 

improvement. A collaborative effort proved itself important in the case of explanation of FLAD1 

variants. The collection of several families guided me towards the comprehensive analysis of a 

mutational hot-spot. 

 

6.2.12 All predicted loss-of-function variant must be carefully inspected 

The observation of predicted loss-of-function mutations in an essential gene turned into a 

completely new approach of isoform validation. One must keep in mind that predicted loss-of-

function variants sometimes affect only specific isoforms of an essential gene. In general, loss-

of-function variants are seen in the context of severe Mendelian disease. Yet, recent large-scale 

genotyping projects have revealed a large number of such variants in the genomes of healthy 

individuals. On average, approximately 100 loss-of-function variants per genome were found, 

including about 30 homozygotic variants (MacArthur and Tyler-Smith 2010; Auton et al. 2015). 

The introduction of loss-of-function variants is one of the evolutionary tools. Interestingly, it 

has proven to be beneficial in several examples. Such as a single nucleotide polymorphism in 

CASP12, increasing survival rate due to the decreased chance of sepsis (Saleh et al. 2004). Or 

a nonsense variant in ACTN3 is connected to improved human muscle performance in non-

African populations (MacArthur et al. 2007; MacArthur and North 2007). And lastly, a variant 

in UGT2B17 causes a complete absence of its transcript. Resulting protein is metabolizing 

steroid hormones (e.g. testosterone) and a vast number of xenobiotics; however, this enzyme 

tends to be removed in Asian population (Xue et al. 2008).  

Such observations are in line with the ‘less is more’ hypothesis, highlighting evolutionary 

advantages of transcript reduction (Olson 1999). Maynard V. Olson claims that: “If, as I suggest, 

less is often more, where gene function is concerned, adaptive loss of function may occur 

frequently and may spread rapidly through small populations.” Altogether, next to genetic 

polymorphisms or sequencing and annotation errors, loss-of-function mutations can be valuable 

(MacArthur and Tyler-Smith, 2010). 

 

http://omim.org/entry/255100
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6.3 Unravelling of a rational therapy for both novel mitochondrial disease 

genes 

One of the aims of this thesis was to suggest a rational treatment based on experimental 

observations and enzymatic functions. The discovery of a molecular defect was crucial to 

indicate the specific treatment options. The search for a rational therapy in the presented cases 

expands the utility of this work for future patients carrying the same or similar variant in 

presented genes.  

After publication of both projects, these diagnoses were subsequently marked as ‘treatable 

mitochondrial diseases’. It was highlighted that the clinical symptoms may be mitigated by a 

simple action such as antioxidant and vitamin intake. Therefore, the recognition of the target 

patients, especially when clinically ill, must be accelerated to its maximum to avoid any delay 

in initiation of treatment (Davison and Rahman 2017; Distelmaier et al. 2017; Udhayabanu et 

al. 2017).  

 

6.3.1 Functional validation helped to provide a cure to the patient with defective 

ROS defence 

The biggest achievement in the project dealing with defective ROS defence, lays in the genetic 

identification of disease cause after 15 years from its first evidence. For the patient with variant 

in TXN2 an antioxidant supplementation was tested and introduced with beneficial outcome. 

Daily intake of Idebenone led to improvements in physical capability, slowed down possible 

further damage due to the course of the disease and generally improved the quality of life of the 

whole family without reported side effects.  

Any other patient with a defective TXN2 or even ROS defence in general might therefore 

benefit from immediate antioxidant therapy. Distelmaier et alii observed that (dys)regulation 

of reactive oxygen species has critical consequences on mitochondrial function and that 

oxidative stress may impair the OXPHOS (Distelmaier et al. 2012). The early implementation 

of antioxidant therapy could decelerate disease progression and minimalize brain damage, 

mainly cerebellar atrophy and global brain atrophy. 

However, no additional patient carrying a variant in TXN2 has been found, pointing to the 

developmental importance of such a gene. My study suggests a critical role for thioredoxin 2 

in the human neurodevelopment and neuronal maintenance and reactive oxygen species 

homeostasis, similarly to the one seen in Txn2−/− mouse model (Nonn et al. 2003). The 

importance of a functional thioredoxin pathway for cerebellar development is as well supported 

by a mouse model with nervous system-specific deletion of Txnrd1. These mice were 

significantly smaller and developed a tremor and ataxia together with cerebellar hypoplasia 

(Soerensen et al. 2008). Potential treatment could therefore include gene therapy in the neuronal 

tissue, when diagnosed early.  

In general, single-patient based observations complicate the feasibility and confidence of 

clinical trials. Randomized double-blind studies are impossible in these cases (Misra 2012). 

Nevertheless, based on my results, various authors speculate the possible involvement of 
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defective TXN2 in many common diseases, such as neurodegeneration with brain iron 

accumulation (Tello et al. 2018), epilepsy (Kudin et al. 2017) and Alzheimer’s disease 

(Stachowicz et al. 2017). Therefore, early recognition of the disease cause and therapy initiation 

could mitigate possible detrimental outcomes. 

 

6.3.2 Riboflavin supplementation mitigated possible adverse outcomes in the 

following cases  

Genotype-phenotype correlation was validated in patients with variants in FLAD1. 

Nevertheless, the phenotypic spectrum varied from severe respiratory chain complex disorders 

to milder multiple acyl-CoA dehydrogenation deficiencies. MADD caused by variants in 

FLAD1 is a potentially treatable inborn error of metabolism. Importantly for patients, a clear 

pattern of abnormality for the disease was observed in standardly assessed newborn screening, 

namely increased blood acylcarnitines and elevated organic acids. This can in future identify 

FLAD1 deficiency in the very early days of life and subsequently help to start rational riboflavin 

supplementation, which was in our hands beneficial in five out of six cases.  

No human disorder was directly linked to malfunctioning FLAD1 prior to this project. 

Likewise, variants in FLAD1 had not been previously associated with MADD or respiratory 

chain complex deficiencies. Both were historically connected to a particular flavoprotein (e.g. 

ETF and ETFDH in case of MADD or FMN in Complex I), but not to the synthesis of FAD 

itself (Olsen et al. 2007). Similarly, the only animal model of FAD synthase deficiency was 

established in Caenorhabditis elegans. Due to the obvious difference between neuronal systems 

of worms vs. human, silencing of FAD synthase in higher animals would possess new insights 

into the complexity of flavoproteins. For example, FAD shortage could unravel the hierarchy 

of preferred pathways. Also, based on our observation, expression of truncated FLAD1 variants 

in animal models on a FLAD1-null background could help to measure the specific enzyme 

activities. Or to further investigate the exact function of MPTb domain. 

The successful implementation of riboflavin treatment was later followed up by several studies. 

First of all, Dr. Mari Auranen and coauthors described a significant benefit from long-term 

riboflavin therapy. For one additional year, they studied the riboflavin effect in the patient from 

Family 2 carrying compound heterozygous variants in FLAD1 described here. In this case, 

disease symptoms ameliorated and the patient did not observe any progression of the disease. 

This was confirmed also by the normal excretion of metabolites in urine and decreased lipid-

storage myopathy (Auranen et al. 2017).  

Most importantly, my results led to identification of the causal gene in an additional four 

patients. First of all, a 7-years-old girl presenting with a similar pattern of urine metabolites and 

acylcarnitines, carrying two novel loss-of-function mutations in FLAD1. One of them in MPTb 

and the other possibly creating aberrant splicing within FAD synthase domain. Most likely due 

to the secondly mentioned variant, this patient did not respond to riboflavin, even at higher 

doses (Garcia-Villoria et al. 2018). Significantly, in two reports the clinicians investigated 

patients with MADD, with sequencing of ETFA, ETFB and ETFDH not revealing any causal 



Eliška Koňaříková  DISCUSSION   

109 

 

variant. These genes are more often MADD-associated and correlation with FLAD1 seems 

rather rare. 

The authors in both cases confirm that only after the publication Olsen et alii 2016 they 

successfully found variants in FLAD1 (Yildiz et al. 2018; Ryder et al. 2019). Yildiz et alii 

analysed, post-mortem, two siblings carrying compound heterozygous variants and described 

the same loss-of-function variants as we observed in Families 5 and 7 (Yildiz et al. 2018). Dr. 

Ryder and her co-workers found a novel riboflavin-responsive variant in FLAD1 in an 8-years-

old boy. This was an additional homozygous loss-of-function variant resulting in stop codon in 

exon 2. The authors claim that early riboflavin therapy mitigated otherwise severe symptoms 

(Ryder et al. 2019) 

 

6.3.3 Early implementation of riboflavin therapy is highly recommended 

Riboflavin therapy is, in general, beneficial and without side effects. Its surplus is naturally 

removed from the body; hence no artificial deposits are created. Riboflavin was marked as 

generally safe for children and adults by the Food and Drug Administration (Electronic Code 

of Federal Regulations 2018). In six out of already eight cases riboflavin therapy was favorable; 

however, in one of our patients carrying a loss-of-function mutation in FLAD1 riboflavin intake 

was terminated due to side effects. 

Taken altogether, it is recommended to sequence FLAD1 in all cases of MADD as well as to 

start riboflavin supplementation pre-emptively in case the FLAD1 variant is confirmed (Olsen 

et al. 2016; Auranen et al. 2017; Garcia-Villoria et al. 2018; Yildiz et al. 2018; Ryder et al. 

2019). Beneficially for any future patient, a clear pattern of the disease can be observed in 

standardly assessed newborn screening as increased blood acylcarnitines and elevated organic 

acids. Such accessible biomarkers are rare in mitochondriopathies and therefore treatment may 

be implemented in the very early days of life. It has even been suggested to initiate the riboflavin 

treatment while awaiting final diagnostic confirmation (Davison and Rahman 2017). 

 

6.4 Future outlook 

Overall, validation of a novel gene for a suspected mitochondrial disease might be delicate. 

This study highlights the necessity of a broad biochemical procedure in a single-case project. 

As well as the value of reproduction of the findings in additional independent cases presenting 

with analogous genotype-phenotype evidence. Both projects have broadened the spectrum of 

mitochondrial disease genes. Moreover, the published data have already been reflected in 

almost 70 following publications. 

 

6.4.1 Towards the omics era and personalized medicine 

The era of Next generation sequencing continuously brings molecular diagnosis to patients. In 

combination with the clinical presentation of the patients, this allows for a better estimation of 

genotype-phenotype correlation. RNA sequencing in combination with quantitative proteomics 
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and quantitative metabolomics are on the way to accelerate the diagnostic process, initiating 

the multi-omics era.  

During the course of my work, I was also involved in a project aiming to identify novel causal 

variants by using combination of complementary approaches: RNA sequencing, proteomics 

and metabolomics (Kremer et al. 2017). The publication by Dr. Laura Kremer et alii laid the 

foundation of RNA sequencing analysis as an alternative approach which provided molecular 

diagnose for patients with inconclusive WES. Likewise, they used proteomic and metabolomic 

profiling in order to provide a diagnosis. This new combination of techniques improves the 

interpretation of variants of unknown significance identified by genotyping. In my thesis, RNA 

sequencing and proteomic experiments helped to explain the genotypic-phenotypic 

observations in patients with variants in FLAD1.  

In general, the omics techniques are widely spread, aiming to fully describe all biological 

processes and to produce surge of complex data on various levels by combination of high-

throughput analytical approaches for every single individual. At the same time, bioinformatic 

tools need to be improved and accelerated to combine data and obtain results within a relevant 

time frame. The synthesis of such data will lead towards a personalized medicine in the future. 

This concept was first proposed in 1990s during the course of the human genome project. As 

close association between individual genetic features and clinical manifestations has been 

observed and described for the first time. They brought the basics of studying single nucleotide 

polymorphisms among individuals (Giacomini et al. 2007). Personalized medicine is, however, 

the future of medical approach, aiming to provide individually optimized treatment avoiding 

poor efficacy or serious side effects. 

 

6.4.2 Further development of treatment strategies 

The potential for future development lays also in discovery of new therapeutic options. The 

phenotypic and genotypic range of mitochondrial disorders complicates therapeutic 

approaches. Evidently, the final decision for a specific treatment must reflect the cause of the 

disease. Principally, rare mitochondrial disorders demand ‘rare’ treatment tactics, hence 

personalized medicine. Luckily, drug development is a rapidly evolving field (e.g. KH176; de 

Haas et al. 2017; Koene et al. 2017). It is unlikely that there will be a drug to address the 

treatment of a broad range of mitochondrial disorders. Yet, the principles or disease outcomes 

(such as decelerated glucosis, increased ROS production, lack of a specific vitamin/cofactor) 

may be similar, revealing potential selective therapeutic directions as well.  

Together with novel approaches including gene therapy (Bacman et al. 2013; Gammage et al. 

2014; Gammage et al. 2018) or mitochondrial donation (Lightowlers et al. 2015; Gorman et al. 

2016), a definitive cure is becoming available for increasing number of patients (Rai et al. 

2018). It is therefore important to recognize patients that could profit from any supplementation, 

such as vitamins or antioxidants, as early as possible, in order to maximize treatment benefits 

(Distelmaier et al. 2017). 
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