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Non-Uniform Rational B-Spline Basis Functions and Isogeometric Analysis
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Figure 1: Piece-wise polynomial basis functions.

Classical Finite Element Analysis (FEA) uses typically C 0-continuous basis functions across the elements which
also attain low polynomial order, see Figure 1(a), for numerically confronting Boundary Value Problems (BVPs).
On the other hand, Isogeometric Analysis (IGA), proposed first in [1], makes use of high order functions the so-
called Non-Uniform Rational B-Spline (NURBS) basis functions which in addition attain higher than C 0-continuity
across the elements. Using the NURBS basis functions it can be also parametrized the low order basis functions.
Then, the NURBS basis functions can be iteratively computed in 1D as:

Ni ,0 (ξ) =

{
1 if ξ ∈ [ξi , ξi+1[ ,
0 elsewhere ,

and Ni ,p (ξ) =
ξ − ξi
ξi+p − ξi

Ni ,p−1 (ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1 (ξ)

Ri ,p (ξ) =
Ni ,p (ξ)∑n

j=1Nj ,p (ξ)wj

where ξ ∈ Ξ, Ξ denotes the so-called knot vector of the NURBS patch, Ni ,p, Ri ,p and wi are the are the B-Spline
basis functions, the corresponding NURBS basis functions and their weights, respectively. In more than one
dimensions, the NURBS basis functions are constructed as a tensor product of the 1D basis functions.

(a) NURBS model of a wind turbine blade (b) IGA applied on the wind turbine blade model

Figure 2: IGA performed on the wind turbine blade model.

The main feature of IGA is the employment of the geometry parametrization basis functions, namely the NURBS,
for the interpolation of the physical field. Among others, significant implications of the method is the preservation
of the geometrical model throughout the analysis, see Figure 2, and the high convergence rates, see [1].
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Figure 3: Infinite plate with circular hole subject to to constant pressure load at X 1 = −∞.

Consider the two domain decomposed problem of an infinite plate with a circular hole subject to constant pressure
load at X 1 = −∞ solved with the Nitsche method [2] as depicted in Figure 3. Left patch is modelled using a
C 2,3-continuous basis whereas right patch is modelled using a C 1,0-continuous basis. The results suggest that
high order basis produce highly improved results compared to low order C 0-continuous basis, see Figure 3(c).

Partitioned Fluid-Structure Interaction
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Figure 4: Fluid-Structure Interaction scenario using IGA

Assume the typical Fluid-Structure Interaction (FSI)
scenario, as depicted in Figure 4, when using IGA for
the structural domain. The interface conditions which
ensure compatibility of the velocities and the tractions
over the FSI boundary ΓFSI are

u− ḋ = 0 ,

t(S) + t(F) = 0 ,

where u and d are the fluid velocities and the struc-
tural displacements, respectively. Assuming further
that there exists a structural solver S

(
t(S)
h|ΓFSI

)
= dh,

solving the weak equilibrium equation W (S)
(
d̃h,dh

)
= 0 over the structural domain and one fluid solver

F (dh) = t(S)
h|ΓFSI

, solving the weak momentum balance and weak continuity equations W (F) (ũh, p̃h,uh, ph) = 0
over the fluid domain, where the subscript h and the tilde stand for the equivalent discretized variables and their
corresponding variations. Then, the following Fixed-Point (FP) problem can be formulated:

S ◦ F (dh) = dh ,

which can be solved iteratively with the partitioned Gauss-Seidel scheme depicted in Figure 5. Typically, the
structural BVP in Ω(S) is solved as a Neumann problem on the interface ΓFSI meaning that it receives forces
exerted by the fluid whereas the fluid BVP in Ω(F) is solved as a Dirichlet problem on the interface ΓFSI, that is,
a mesh motion is prescribed on the fluid grid as a result of the structural displacement.
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Figure 5: Partitioned Gauss-Seidel scheme

Additionally, an under-relaxation
factor can be applied to the FP
iterative scheme for the update
of the state variables. A suit-
able estimation for the under-
relaxation factor can be com-
puted using the so-called Aitken

relaxation method, see [3]. This factor accelerates and stabilizes the convergence of the FP iterations.

Non-Matching Grid Transfer using Isogeometric Analysis

Figure 6: Projection phase

The method of choice within this study is the so-called mortar method,
which is based on the minimization of the gap function d(S)

h − d(F )
h in

the L2 (ΓFSI) space, namely:〈
d(S)
h − d(F )

h ,µ
〉
0,ΓFSI

= 0 ∀µ ∈
(
L2 (ΓFSI)

)3
.

The mortar-based method, in its discrete form, writes:

d̂(F) =
(
C(F)

)−1
C(S)d̂(S) ,

where the hat in the above vectors indicates that they contain the re-
spective degrees of freedom. The coupling matrices are given by:

C(S) =

∫
ΓFSI

(Nµ)T R dΓ and C(F) =

∫
ΓFSI

(Nµ)T N(F) dΓ ,

Nµ, R and N(F) being the basis function matrices for the Lagrange multiplier field µ, the structural displacement
and the fluid velocity field, respectively. It must be noted that within the mortar method it is chosen Nµ = N(F)

so that the transformation matrix T =
(
C(F)

)−1
C(S) is symmetric, positive definite and diagonally dominant.

The typical scenario on the interface for an FSI problem is depicted in Figure 6, where the interface grids are
non-matching. However, a unique interface must be identified so that the above integrals can be evaluated. For
this reason each fluid node has to be projected onto the NURBS surface. This is done minimizing the distance
of the fluid nodes from the NURBS surface in the Euclidean space, namely:

xp
0 = argmin

x∈S
‖x− x0‖2 ⇒ r (ξ, η) =

[
(x− x0) · x,ξ
(x− x0) · x,η

]
= 0 ,

where xp
0 denotes the projected fluid node onto the NURBS surface denoted by S, see also Figure 6. The latter

equation system is nonlinear, and provided that the surface is locally convex, it can be found its unique solution
using the Newton-Raphson scheme.
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Figure 7: Clipping of the projected fluid elements

Then, once projec-
tion phase has been
finalized integration
must be carried
through, which is
performed at the
sub-element level,
see Figure 7. If the
discrete virtual work

over the interface is to be preserved, namely δW (S) = δW (F) on ΓFSI, then matrix TT can be used for the force
transfer from the fluid to the structure.

Fluid-Structure Interaction Simulations

u (t) = 1− cos 2πt
5

N
o-slip

B
C

u
=

0 N
o-
sli
p
B
C

u
=

0

Membrane

X (u)

Y (v)

(a) Problem placement (b) FSI simulation at t = 20 s
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Figure 8: Cavity flow with flexible membrane structure at its bottom

The cavity flow with a flexible bottom problem placement is shown in Figure 8(a). The fluid BVP is solved using
the Finite Volume (FV) scheme within the openFOAM software. The flexible bottom is modelled with a membrane
structure within the Carat++ software†. Then, the isogeometric coupling scheme has been implemented in the
EMPIRE software†. Figure 8(b) shows the numerical result at the end time of the simulation, namely at t = 20
s. Different mesh grids and polynomial orders have been compared and shown in Figure 8(c).
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Figure 9: Turek benchmark

The Turek benchmark problem setting, as proposed first in [4], is shown in Figure 9(a). In this case the structure
is modelled with a NURBS-based linear solid element. The displaced structure and the magnitude of the fluid
velocity field is then shown in Figure 9(b). Additionally, a comparative study is performed for different polynomial
degrees of the structural model, see Figure 9(c), demonstrating robustness of the proposed method.
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