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a b s t r a c t 

Lattice Boltzmann methods (LBM) are used for massively parallel computational fluid dynamics simula- 

tions since they are easily parallelizable with a perfectly parallel and local in space collision step and a 

streaming step that only transfers data between neighboring grid points. Current CPU hardware architec- 

tures focus on increasing parallelism through additional CPU cores and wider vector instruction sets. To 

benefit from these developments parallel LBM schemes need to be designed with these concepts of par- 

allelism in mind. This paper presents a new easily automatically vectorizable LBM streaming scheme for 

directly addressed grids which is based on the A-A pattern streaming algorithm. Combined with several 

implementation techniques the new algorithm provides a speedup of more than three compared to an 

unvectorized implementation. The algorithm also provides implementation benefits compared to the A-A 

pattern algorithm. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Today’s processors are based on multiple cores each contain-

ng advanced vector instruction sets for single instruction multi-

le data (SIMD) processing. Benefiting from these processors re-

uires the use of parallel algorithms combined with implementa-

ions that efficiently use the vector instruction sets [1] . SIMD in-

tructions can be added to an implementation through assembler

nstructions, compiler intrinsics or through automatic vectorization

y the compiler. While intrinsics and assembler provide the de-

eloper with full control over the used vector instructions, they

lso require regular adaption of the code to new instruction sets

hereas automatic compiler vectorization is able to target all avail-

ble instruction sets. Automatic vectorization by the compiler is

upported by many modern compilers but is has been shown that

ompilers have problems with complex memory access patterns or

omplicated control flows [2] . 

Lattice Boltzmann methods (LBM) [3] are inherently paral-

el methods through their purely local collision step and a data

treaming that only transfers data between neighboring grid

oints. LBM are used for simulations in math [4] , engineer-

ng [5] and medicine [6] as well as quantum mechanics [7] . Exist-
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ng streaming schemes of the LBM can be separated into one grid

nd two grid algorithms. The classical two grid algorithms sep-

rate read and write operations through the use of independent

rids. The one grid algorithms require complex strategies to deal

ith the resulting data dependencies, nevertheless they are able to

se the available memory more efficiently [8] . Two commonly used

ully parallel one grid streaming schemes have been described: A-A

attern by Bailey et al. [9] and esoteric twist by Geier et al. [10] . 

This work presents a new parallel LBM streaming scheme for

irectly addressed one grid implementations with focus on easy

ectorization and simplified memory access based on the par-

llel LBM streaming scheme A-A pattern. The potential for effi-

ient auto-vectorization is achieved by providing the data for the

ollision step always locally and therefore avoiding the necessity

or A-A pattern’s two collision implementations. The streaming in

he new algorithm is handled through a pointer shift and pointer

waps inside of the mandatory structure of arrays data structure. 

Based on a two dimensional test case with a BGK model [11] on

 128x128 grid, a speedup of more than 3.4 is measured compared

o an unvectorized implementation and a factor of 2.5 compared

o an array of structure with a collision optimized swap stream-

ng [12] based implementation. The features of the new streaming

lgorithm, which allows efficient auto-vectorization and the pos-

ibility for simple collision implementations, make the new algo-

ithm a good candidate for general purpose GPUs. Through a do-

ain decomposition approach with shrinking [13] the advantages
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Fig. 1. The A-A pattern algorithm. The processing order is bottom left to top right and the currently processed grid point is in the center. 
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of the new algorithm can be combined with the advantages of an

indirect addressing scheme. 

2. The lattice Boltzmann methods 

LBM are a set of mesoscopic approaches that discretize the

Bolzmann equation in time and space. The general form of the LBM

can be written as 

f i (x + c i �t, t + �t) = f i (x, t) + �( f i (x, t)) 

with f i being the discrete particle disribution functions (PDF), x be-

ing the discrete position in space, c i being the discrete velocity, t

being the current discrete point in time, �t being the time step

(usually �t = 1 ). � represents a the collision operator which in

the following work will be the BGK collision operator. 

Usually LBM equations can be split into a collision part (c) and

a streaming part (s) as 

f ∗i (x, t) = f i (x, t) + �( f i (x, t)) , (c)

f i (x + c i �t, t + �t) = f ∗i (x, t) . (s)

The collision formula only uses data of each grid point whereas

the streaming step exchanges the post-collision data with neigh-
oring grid points. The data exchange between the grid points in-

roduces data dependencies between these grid points that needs

o be resolved by the implementation (cf. Section 3 ). 

Besides the collision operator LBM models are also character-

zed by the selected discrete velocity set. Usually the velocity sets

re written in a form D d Q q with the d standing for the dimen-

ion (one dimensional, 2-dimensional or 3-dimensional) and the

 value for the number of dicrete velocity directions ( c i with i =
 , . . . , q − 1 ). Common LBM velocity sets are D1Q3, D2Q9, D3Q19

nd D3Q27, however more complex models have been proposed

n the literature [14,15] . While the following work uses the D2Q9

elocity set the analyzed streaming schemes support any LBM ve-

ocity set. 

. Novel streaming scheme 

The LBM streaming schemes can be classified into one grid and

wo grid schemes based on whether they require one or two sets

f the grid data. Two grid streaming schemes are perfectly paral-

el by using separate grids for reading and storing the PDFs. One

rid schemes need to resolve the data dependencies that appear

n the streaming equation of the LBM through the streaming al-

orithm. One grid algorithms provide several benefits, especially

ower memory requirements and better cache utilization, however
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Fig. 2. The memory access for the new streaming algorithm. Figs. 2 a and b represent a normal collision step. Figs. 2 c, d and e represent the pointer operations necessary to 

shift the PDFs from their old location to the new location for the next collision. 
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hey require more complex implementations. An extensive analysis

f existing LBM streaming algorithms can be found in [8] . 

.1. A-A pattern streaming 

The A-A pattern streaming scheme by Bailey [9] is a one grid

treaming scheme that resolves the data dependencies through dif-

erent memory access patterns for even and odd time steps. As

 parallel one grid streaming scheme the A-A pattern algorithm
s a popular choice for GPU based LBM implementations. During

he even time step the memory is read from its natural locations

 Fig. 1 a) and written back to the opposite direction ( Fig. 1 b). There-

ore during the even time step the algorithm only performs a col-

ision step and accesses memory only on the local grid point. In

ontrast to the even time step, during the odd time step memory

s read from the grid points surrounding the grid point ( Fig. 1 c)

nd written back to the cells on the opposite side after the colli-

ion ( Fig. 1 d). The odd time step can also be interpreted as a com-
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Fig. 3. The control structure in the SSS algorithm before and after the pointer swap 

for a D2Q5 stencil on a 3 × 3 grid. The memory with the green pattern represents 

the memory location that corresponds to the grid point in the middle in the new 

time step. The dotted memory locations represent the locations that don’t corre- 

spond to the 9 grid points but are necessary due to the shift. q0 to q4 are the 

pointers of the control structure. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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bination of a streaming step, a collision step and another streaming

step. 

The A-A pattern algorithm provides several benefits from an

implementation standpoint, starting with the property that only q

load and q store operations are necessary. As both even and odd

time steps only write back to memory locations that have just

been read there is no need for non-temporal stores. Due to the

different memory access patterns for even and odd time steps, A-

 pattern based implement ations usually require two implemen-

tations for each collision and boundary model which can signifi-

cantly increase the code complexity and make maintenance more

costly. 

3.2. New streaming scheme 

The new streaming scheme, named shift and swap streaming

algorithm (SSS), uses the same memory locations as the A-A pat-

tern algorithm combined with a directly addressed grid and a

mandatory structure of array (SoA) data layout where each PDF di-

rection is stored in a separate array. The algorithm’s even time step

looks exactly the same as the A-A pattern’s even time step for the

same data layout ( Figs. 2 a b). In contrast to A-A pattern’s streaming

through switching the memory access pattern, the new algorithm

updates the control structure of the SoA data structure. After the

switch from the even to the odd time step the data is in the same

positions as in the A-A pattern’s pre-collision location ( Fig. 2 c). As

part of the next step the pointers to the arrays for opposite di-

rections are exchanged, resulting in Fig. 2 d. During the final step,

the starting point of the arrays are shifted to provide the same in-

dex based access to the data for all PDF directions ( Fig. 2 e). The

steps for the SoA data updates during streaming can also be seen

in Fig. 3 . After these data array updates the data is in the same

locations for the collision as during the even time step of the A-A

pattern streaming scheme. 

The SSS shares many properties with the A-A pattern streaming,

especially the perfect parallel execution and having only q load and

q store operations. In addition the algorithm only requires one col-

lision and boundary implementation as even and odd time steps

use the same data access patterns. 

3.3. Techniques for improved auto-vectorization 

The proposed algorithm already allows efficient vectorized exe-

cution of the collision step. However, in a directly addressed grid

the data contains also the data for boundary grid points and points

not belonging to the simulation domain. In non-vectorized imple-

mentations these cases can be handled through explicit or im-

plicit – e.g. virtual function calls – branching whereas the new

algorithm’s vectorization potential depends on the absence of any

branching. By introducing a binary mask that stores whether a grid

point is a fluid grid point, the branching can be simplified to an

unconditional fluid collision whose result is thrown away for non-

fluid grid points. The ignored boundary grid points can be pro-

cessed after all the fluid nodes have been processed. In addition,

explicit fixed size loops are introduced that combine the update

of several consecutive grid points. The additional loops with fixed

width support the automatic vectorization by simplifying the in-

structions that the compiler should vectorize. Listing 1 shows the

combination of these techniques based on a simplified implemen-

tation. 

For A-A pattern and the new streaming scheme unaligned

memory access can not be avoided during odd time steps. How-

ever, AVX and AVX2 in modern Intel processors have relaxed the

alignment requirements [16] which provides improved automatic

vectorization possibilities for the new algorithm. 
. Numerical results 

The SSS’s vectorization is evaluated based on a 2-dimensional

28x128 grid point double precision test case with a BGK colli-

ion model. The test case is implemented as part of the OpenLB

BM framework [17] . The OpenLB framework uses a direct address-

ng mode and allows the selection of several different collision and

oundary models as well as the selection between single and dou-

le precision calculations. The Intel compiler version 14 is used

ith optimization settings O3 and xHost on a Intel i7-4770K pro-
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Listing 1. Structure of the code supporting automatic vectorization across grid points. 
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Fig. 4. Performance in MLUPs for the test problem based on the explicit fixed width loop as measured on a Intel i7-4770K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E  

r

5

 

f  

a  

s  

s  

s  

m  

a  

s  

b  

t  

p  

g  

t  

g

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cessor. For the performance evaluation the existing AoS data struc-

tures in OpenLB 1.2 are changed to a SoA data layout and the fixed

loop width pattern described in Section 3.3 is used with various

loop widths. The performance for the same test case based on the

existing swap [12] and AoS based implementation of OpenLB re-

lease 1.2 is 34 million lattice updates per second (MLUPs). 

Fig. 4 shows the performance in MLUPs for the selected explicit

loop width. The graph shows that the new implementation with

larger explicit loop widths is faster than the old implementation.

The optimal performance is achieved for a loop width of 16 which

is 4 times larger than the native vector instruction set width of 4

for double precision numbers. For a loop width of one the perfor-

mance of the new implementation is slightly worse than the old

implementation, however for a loop width of 16 the performance

of the new implementation is about 2.5 times faster. 

The unexpected result that the performance is optimal for a

loop width of 16 appears to be related to the unaligned memory

access during odd time steps. The larger loop width results in a

loop unrolling effect with 4 equal instructions being performed af-

ter each other which reduces some of the unaligned cache access

problems. The results show that using an additional explicit fixed

size loop is a mandatory step to improve the performance for the

new implementation. 

4.1. Bandwidth 

An efficient LBM implementation is expected to be memory

bandwidth limited [18–20] . For the new algorithm the bandwidth

is compared against the theoretical maximum memory bandwidth

to show that the implementation easily saturates the available

memory bandwidth. The used D2Q9 model for double precision

data requires 9 ∗ 8 = 72 bytes for both reading and writing the data

for each grid point for a combined 144 bytes per time step and

grid point. Based on the 88 MLUPs reached with a loop width of

16 the used bandwidth can be calculated as: 

Bandwith = 144 

bytes 

point 
∗ 88 ∗ 10 

6 points 

s 
= 11 . 8 

GB 

s 
. 

The Intel i7-4770K processor used for the experiments has a

theoretical memory bandwidth for the whole processor (4 cores)

of 25.6 GB/s which implies that already with 2 cores the memory

bandwidth would be saturated. Based on the measurements even

processors with larger memory bandwidth limits like Intel Xeon
5-2699v4 (22 cores and 76.8 GB/s bandwidth) can be easily satu-

ated. 

. Conclusions and outlook 

The paper introduces a new LBM streaming scheme adapted

rom the A-A pattern scheme for directly addressed grids with

 SoA data layout. Additionally, the paper shows that the new

treaming scheme is vectorizable by the compiler if combined with

imple additional implementation techniques. Based on the mea-

ured performance parallel implementations are expected to be

emory bandwidth bound which suggests that more computation-

lly complex collision models might benefit from this streaming

cheme. Initial tests with complex test cases including complex

oundaries have shown that the new algorithm is also applicable

o complex geometries. As the algorithm exhibits all the necessary

roperties for an efficient GPU LBM streaming scheme – being one

rid without data dependencies based on a SoA data layout – fur-

her research needs to be done to analyze the usability of the al-

orithm for current GPU hardware. 
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