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Abstract— Subretinal injection is known to be a complicated
task for ophthalmologists to perform, the main sources of
difficulties are the fine anatomy of the retina, insufficient visual
feedback, and high surgical precision. Image guided robot-
assisted surgery is one of the promising solutions that bring
significant surgical enhancement in treatment outcome and
reduces the physical limitations of human surgeons. In this
paper, we demonstrate a robust framework for needle detec-
tion and localization in subretinal injection using microscope-
integrated Optical Coherence Tomography (MI-OCT) based
on deep learning. The proposed method consists of two main
steps: a) the preprocessing of OCT volumetric images; b) needle
localization in the processed images. The first step is to coarsely
localize the needle position based on the needle information
above the retinal surface and crop the original image into a
small region of interest (ROI). Afterward, the cropped small
image is fed into a well trained network for detection and
localization of the needle segment. The entire framework is
extensively validated in ex-vivo pig eye experiments with robotic
subretinal injection. The results show that the proposed method
can localize the needle accurately with a confidence of 99.2%.

I. INTRODUCTION

Subretinal injection is a typical vitreoretinal surgery with a
delicate and complex workflow, which needs critical surgical
skills and considerations. Despite its difficulties, the subreti-
nal injection is an important ophthalmic procedure since it
enables delivery of the drug directly into the retinal layers
to provide more effective treatments [1]. As an example,
Fig. 1 shows a subretinal injection of Tissue Plasminogen
Activator (tPA) to dissolve the clotted blood under the retina.
This injection is performed for a subretinal hemorrhage case.
Subretinal hemorrhage results from various eye diseases such
as Retinal Vessel Occlusion (RVO); Aged-related Macular
Degeneration (AMD); and Diabetic Retinopathy (DR). Re-
cently, subretinal injection has also been proposed to deliver
the stem cell and gene cargo under the retina for curing AMD
which is one of the leading causes of blindness in developed
countries (15% incidence rate with people age over 65 years
old).

The main challenges of manual subretinal injection are the
low position ability of human hand and limited visual feed-
back from conventional microscope images. The reported
hand tremor of an ophthalmic surgeon is 182 µm RMS in
amplitude [2] while the acceptable precision for subretinal
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Fig. 1. The setup for subretinal injection in a subretinal hemorrhage case.

injection is 25 µm with 250 µm average thickness of the
retina. Furthermore, the en-face view from conventional
microscope is not able to provide position information of
the needle tip under the translucent retina. Consequently,
subretinal intervention is a demanding operation requiring a
surgeon with excellent physical condition and abundant clin-
ical experience, only a limited number of surgeons around
the world fulfill these capabilities.

Recently, robot-assisted surgery (RAS) setups are known
as the solution for reducing the work intensity, increasing
the surgical outcomes and prolonging the service time of
experienced surgeons in ophthalmic surgery [3]–[8]. Over
the years, these setups are getting closer to clinical trials.
In September 2016, surgeons at Oxford’s John Radcliffe
Hospital performed the world’s first robotic eye surgery.
The eye surgical robot named Robotic Retinal Dissection
Device (R2D2) with 10 µm accuracy was used in the
clinical trials for subretinal injection [1]. They used the
microscope-integrated Optical Coherence Tomography (MI-
OCT) (RESCAN 700, Carl Zeiss Meditec AG., Germany) to
enhance the visual feedback during needle insertion under
the retina. Although intraoperative MI-OCT setups show
several benefits in ophthalmic applications for operations
both by human and robot, all the current intraoperative MI-
OCT setups are adjusted manually and do not have the
automatic needle detection and positioning function which
extends the surgery time and also distracts the surgeon’s
attention. In parts of the procedure where OCT is needed
the most, it is distracting the most. For instance, during the
needle insertion, the surgeon needs to pay attention to a lot
of information e.g. the tool pose and position information,
tool shadow information for estimation the distance of the
tool tip to retina, and also the B-scan image from X or Z
direction for estimation the needle tip depth under the retina
(see Fig. 2). During the injection, another assistance may
need to manually localize the needle tip by adjusting the
scan window position.

To localize the needle tip for subretinal injection, Zhou et
al. [9] proposed an algorithm to predict the needle tip under
retina using the geometrical information of the needle. The
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Fig. 2. The current OCT scan setup. The surgeon needs to pay attention
to several information points labeled with the yellow arrow.

main premise is that the needle does not have large deforma-
tion during the insertion. However, the thin needle can bring
better clinic performance for reducing injection trauma to
the retina. The latest clinical subretinal microcannula used
in clinic operation is 40-41 gauge (Ø=0.16-0.15mm) while
previously available cannulas were only 32G (Ø=0.235mm).
Furthermore, soft material for the needle tip part e.g. teflon
is used instead of metal. Therefore, the premise does not
meet very well with the thinner needle used in the current
clinical operation which introduces significant deformation
during puncture and retinal insertion.

In order to have a more universal framework with the va-
riety of needles compatibility, and to improve the efficiency
of the robot-assisted subretinal injection and furthermore, to
give the surgeon enhanced information about the needle tip
under the retina, we propose a novel framework to robustly
localize needle segment under the retina using volumetric
OCT images. The contributions of this paper are in two
aspects: first and foremost, we take advantage of the needle
information above the retina in B-scan images to coarsely
predict the needle position under the retina and crop the
original high-resolution image into a small region of interest
(ROI). A convolutional neural network (CNN) is adopted to
train on the cropped ROI images with the benefit of fore-
ground and background balance, moreover, cropped images
significantly reduce noise and reflection from the original B-
scan images to enable facilitating very high accuracy results.
Secondly, we create original and cropped datasets with 3811
OCT B-scan images in several ex-vivo pig eyes. The original
image trained model and cropped image trained model are
compared and evaluated. The results show that the cropped
image trained model can localize the needle accurately with
a confidence of 99.2%.

The remainder of the paper is organized as follows: in the
next section, we briefly present related work. The proposed
method is described in Section III. In Section IV, the perfor-
mance of the proposed method is evaluated and discussed.
Finally, Section V concludes this paper and presents the
future work.

II. RELATED WORK

Having the benefit of suitable resolution and radiationless
imaging mechanism, the OCT imaging modality now is
popular not only in the ophthalmologic diagnostics but also
in the intraoperative operation to enhance the visual feedback
for the surgeon. Edwards et al. [1] performed the first
subretinal injection with the robotic assistance under MI-
OCT guidance which focuses on the human clinical trials
and safety assessment. However, the OCT images could be

processed to localize the needle segment instead of continues
manually tracking the needle tip, which can further improve
the system accuracy and reduce the surgical time without
creating distraction for the surgeon. To track and localize the
needle in vitreoretinal surgery, the possible method currently
is based on either microscope or MI-OCT [9] providing ap-
propriate precision. The single microscope camera was first
introduced to track the needle pose in ophthalmic surgery
using either color-based or geometry-based features [10].
However, localization of the needle in 3D with only a
single view is not practically possible. Probst et al. [11]
introduced a deep learning based method to localize the
forceps in stereo microscopic images. This method has the
advantage of low device cost, however, it faces challenges
including the illumination varies and difficulty of detection
instrument underlying tissue. Here we analyze the related
work in two aspects which are the instrument pose estimation
in ophthalmic surgery and the state of art for object detection.

The research on instrument localization in OCT images
has attracted the attention of researchers. Zhou et al. [12]
introduced a fully conventional neural network to segment
the needle in volumetric OCT images when the needle is
above the tissue. Weiss et al. [13] introduced a method to
estimate the 5 DoF needle pose for navigation of subretinal
injection. Gessert et al. [14] introduced a 3D convolutional
neural network to directly estimate the 6D pose of the marker
from the OCT volume. They used a marker with obvious
geometrical features instead of a surgical instrument to sim-
plify the problem. All of these methods focus on the needle
localization above the tissue. For cases where the needle is
below the retina, Zhou et al. [9] proposed a geometrical
based method to calibrate the needle before insertion and
then predict the needle tip position under retina during the
injection. This method could be used when the needle has
the geometrical feature to be tracked and the deformation
of the needle is ignored. However, with thin needle diameter
and soft material, which are becoming popular in ophthalmic
applications, this method will be limited.

In order to have a versatile method to localize the needle
under the retina, we propose detection and localization of
the needle directly in B-scan images from OCT volume.
Therefore, the problem is transformed into the object de-
tection task. The object detection is rapidly developing
specifically because of the advancements in deep learning
technology and improvement in computational power. The
two-stage detectors and one-stage detectors are the dominant
object detectors in modern objection detection [15]. Recently,
Lin et al. proposed a one-stage detector RetinaNet [16]
to surpass the two-stage detector in accuracy and remain
the speed advantage of one-stage detector with focal loss
principle. Based on these advancements, we propose a robust
needle localization framework for subretinal injection. The
prosperity of our method is having the capability to localize
the deformed needle under retina without geometrical feature
which can be more versatile and feasible in the current and
future clinic application.

III. METHOD

The overall framework contains two parts: the first part
is the robust ROI crop; and the second part is the deep
learning based needle localization as shown in Fig. 3. The
volumetric images are captured by the MI-OCT by scanning
the injection area. The original B-scan images are processed
with the ROI crop method to significantly reduce the size

8728

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:40:23 UTC from IEEE Xplore.  Restrictions apply. 



+

+

Class+box
subnets

Class+box
subnets

Class+box
subnets

Robust 
ROI crop

Robust ROI 
crop

NN

Robust 
ROI crop

NN NUR NAR

Original image (512×1024)

Cropped image (120×240)

Subretinal injection

OCT scan

ResNet
Feature pyramid net

Output

Scan in 
selected area

X

Y

Z

Fig. 3. The proposed framework. ResNet, feature pyramid net, and class+box subnets constitute RetinaNet. The output has three categories, no needle
(NN), needle above retina (NAR) which means needle has no interaction with retinal tissue, and needle under retina (NUR) which means needle has
interaction with retinal tissue.

of the image from 512×1024 to 120×240. Furthermore,
cropped images are fed into the RetinaNet for needle segment
detection and localization.

A. Robust ROI Crop
The microscope used in this work is an OPMI LUMERA

700 with integrated RESCAN 700 OCT. The OCT engine has
a wavelength of 840 nm and a scanning speed of 54000 A-
scans per second. Due to the fact that the intended surgical
area for subretinal injection is usually very small, we set
the OCT engine to obtain the scan area 3 mm×3 mm×2
mm with the highest resolution of 128 B-scans, each with
512 A-scans. The benefit of high resolution is that it can
reserve as much information as possible. Each of the B-scan
images can potentially contain a needle segment. The needle
bevel part cross-section is a spot of pixels while the needle
body part cross-section is a half ellipse. When the needle
is placed above the retina, the needle segment is isolated
from the tissue and most of the time it creates a shadow on
the retina. When the needle is inserted into the retina, some
of the needle segments are under the surface layer reducing
the clarity of the needle shape and making its position hard
to be distinguished in B-scan image, especially with the
presence of reflection and noise. Fig. 4 shows some examples
of B-scan image with needle or without needle segment. The
following points are taken into considerations in the ROI crop
algorithm design: (1) the needle is a continuous object in the
OCT volumetric image. (2) the very thin needle could be bent
during the injection. (3) the needle tip is the most important
segment to be localized. (4) most of the needle segments in
OCT B-scans are above the retina since the injection depth is
relatively shallow (less than 250 µm) compared to the OCT
imaging range in depth. Based on point (4) we can apply
the needle and retinal surface detection algorithms based on
ellipse detection algorithms described in [17], the points in
each B-scan that are used to fit the ellipse can be covered
with a bounding box Bi. Moreover, we use the middle point
on the upper bottom edge Mi = (Mxi,Myi,Mzi) to fit the
space polynomial curve which predicts the needle segment
location instead of using the ellipse center because the center
of the fitted ellipse will not be accurate. A second order
polynomial is chosen because higher orders result in rippling

(a) (b) (c)

(d) (e) (f)
Fig. 4. (a), (b), (c), (d), (e) are examples with needle segment above and
under retina (yellow arrow is used to localize the needle segment position).
(f) is the one of confusion examples without needle but noise or reflection.

which effects uncharacteristic of the actual needle deflection.
The needle model N(x, y, z) is shown as,

N(x, y, z)

{
x(z) = a2z

2 + a1z + a0
y(z) = b2z

2 + b1z + b0
(1)

where a2, a1, a0 and b2, b1, b0 represent the parameters to
be identified for the N(x, y, z). The inlier dataset can be
defined as,

inliers = {ei < ε} (2)

where ε is the threshold for inlier tolerance, ei is the distance
between point Mi and point N in Euclidean space which can
be calculated as,

ei =
√

(Mxi − x(Mzi))2 + (Myi − x(Myi))2 (3)

The point in Mi will be categorized as outliers if ei is larger
than ε. The rest points are treated as consensus set and a
cost function C will be calculated for all of these points in
Mi shown as follows,

C =

K∑
i=1

f(ei) (4)
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where f(ei) equals ei when ei < ε, otherwise equals
ε. The M-Estimator Sample Consensus (MSAC) technique
developed by Torr et al. [18] is used to obtain the optimal
consensus set with minimization of the cost function. With
the output of the parameters for needle model N , the needle
location in all B-scan images can be predicted as shown in
Fig. 5. Thus, the ROI bounding box Li = [Lxi, Lyi, w, h]
(Lxi and Lyi are coordinated for the top left corner of the
bounding box, w and h are the width and height of the
bounding box) in i-th B-scan image is represented as,

Li =


NaN, if y(Mzi) <

h
2 .

[x(Mzi)− w
2 , ymax − h,w, ymax],

if y(Mzi) > ymax − h
2 .

[x(Mzi)− w
2 , y(Mzi)− h

2 , w, h],

if h
2 < y(Mzi) < ymax − h

2 .

(5)

where NaN means the bounding box does not exist, ymax
is maximum imaging depth. In this way, we could crop
bounding box with lots of candidates where the needle may
appear under retina. The needle reaching out of image will
be ignored since needle segment in these candidates are
always too far away above the retina which are not important
information. w and h are decided by the needle diameter
which ensures the needle to be covered by the cropped
bounding box. Here with the needle of 40 gauge (Ø=0.16
mm), we set w = 120 and h = 240 where the larger h can
help to include the shadow information.

1

2

(a) (b)

1

2

(c) (d)
Fig. 5. (a) The microscope image with needle inserted inside retina. (b)
The rendered OCT volume in oblique view. 1© represents needle and 2©
represents retina. (c) Mi points in OCT volume. The blue point are inliers
and green points are outliers. (d) Needle model N(x, y, z) in OCT volume.
The red line is the RANSAC fitted needle model. The image crop operation
are carried out based on N(x, y, z) and Eqn. 5.

B. Automatic Needle Localization Under Retina

For needle point classification and detection, Reti-
naNet [16] model is used. This network is a single unified
network composed of backbone network and task specific
subnetwork as shown in Fig. 3. Considering that we feed
the image with the cropped size, the backbone network used
here is Resnet18 for providing convolutional feature map
and subnetwork perform the classification and bounding box
regression task. The RetinaNet is one detector which can
achieve comparable accuracy as two-stage detector while

have the real time processing speed. The detectors nor-
mally have the problem of class imbalance which is even
more serious in our needle detection scenario. Based on
the subretinal injection tests on the ex-vivo pig eyes, the
bounding box area of the needle segment is ranging from
352 to 1131 pixels which is a small region compared to the
cropped image with 28,800 pixels and the original image
with 524,288 pixels. This means that even though we have
already cropped the image into a significantly smaller size
compared to original image, the imbalance of the foreground
and background problem still exits. Thus the focal loss con-
cept is introduced to evaluate the unbalance of the foreground
and background [16] as follows:

FL(pt) = −α(1− pt)γ log(pt) (6)

where p is the model’s estimated probability for the specified
class; α ∈ [0, 1] is the weighting factor for the specified class;
and γ ∈ [0,+∞] is the tuneable focusing parameter. As
previously introduced, the needle above the retinal surface
can be detected and automatic annotated with the ellipse
fitting algorithm. Therefore, the main difficulty comes when
the needle detection under the surface. Thus we firstly
manually annotate the needle which has the interaction
with the retina (adhered to the retinal surface or under
retinal surface), and then train the RetinaNet model with the
annotated images. Moreover, we evaluate the trained model
to localize the needle segment with our test dataset. The
evaluation performance of the network will be introduced in
the next section.

IV. EXPERIMENTS AND RESULTS

In this section, we present dataset preparation with our
robot-assisted subretinal injection setup as well as the results
related to the network performance with different parameters.

A. Dataset Preparation
The dataset is collected on the robot-assisted subretinal

injection platform with ex-vivo fresh pig eyes as shown in
Fig. 6. The fresh ex-vivo pig eye (prepared for experiments
within 2 hours after removal) has very similar structure with
the human eye. The iRAM!S robot is mounted on an ad-
justment bracket. The OPMI LUMERA 700 with integrated
RESCAN 700 intraoperative OCT engine is fixed on the op-
tical table to reduce the influence of ambient vibration. OCT
scan area can be easily relocated by the control panel. The
iRAM!S eye surgical robot with 5DoF, with Pirezo motor
technology, is utilized to perform the injection experiments.
Piezo motor (SmarACT GmbH) provides 1 µm accuracy
by using PID controller with integrated incremental optical
encoder. The robot is adjusted manually by the adjustment
bracket to make the needle tip approach to the retina. During
the injection, only the motor that is holding the syringe is
enabled to control the needle position. Thereafter, the motor
is controlled to advance an exact 20 µm for each step and
the OCT volume is captured after each movement. We stop
the movement with enough insertion depth and the same
procedure is repeated on the several ex-vivo pig eyes. Finally,
we get 150 cubes with 19,200 images.

All images are processed by the ROI crop method and are
divided into three categories, no needle (NN), needle above
retina (NAR) which means needle has no interaction with
retinal tissue, needle under retina (NUR) which means needle
has interaction with retinal tissue. Since most of the images

8730

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:40:23 UTC from IEEE Xplore.  Restrictions apply. 



present the needle above the retina, we randomly select 1000
images NN, 1000 images NAR, and 1000 images NUR from
140 cubes to balance the different categories. The rest 10
cubes with 811 images (287 images NN, 440 images NAR,
and 84 images NUR) are selected as test dataset. All the
selected and processed images are put into two datasets, one
is original image dataset where the image size is 512×1024
and the other one is the cropped image dataset where the
image size is 120×240.

OCT EngineSwitcherCALLISTO 
eye assistance

PC Robot 
controller

Simulation 
environment

iRAM!S

Joystick

Fig. 6. The robot-assisted subretinal injection setup.

B. Training and Evaluation
1) Metrics: Since the needle position is critical to be

known in the future application, for example, detecting the
needle insertion depth, intersection over union (IoU) for
detected bounding box which represents the accuracy of
needle position is used. The IoU is calculated as,

IoU = Ao/Au (7)

where Ao is the area of the overlap for the detected bounding
box and ground truth bounding box, Au is the area of
the union for the detected bounding box and ground truth
bounding box. To determine the performance of the needle
with respect to the overall performance, we use the mean
average precision (MAP) to calculate the mean value of
average precision (AP) for each individual query Qi. MAP
can be calculated as,

MAP =
1

|Q|

|Q|∑
i=1

AP(Qi) (8)

where |Q| denotes the number of the categories. By intro-
ducing both metrics, we could analyze the performance of
category accuracy and also the needle localization precision.

2) Training: Both datasets are trained with the same
RetinaNet network for 100 epochs from scratch with around
5 hours in NVidia Titan-X GPU with i7-7700K CPU and
16 GB RAM. In order to determine the optimized γ and
α, different combinations of γ and α are tested and tuned
with the objective function of AP and MAP. The output
of the network contains many bounding boxes with the
probability of which category it is. We only output the one
with the maximum probability. For tuning the parameters,
the IoU threshold is set to 0.5 which is considered as a good
location predictor for filtering out the inaccurate predicted
needle position. The trained model evaluation results are
listed in Table I and Table II for the original dataset and
cropped dataset, respectively. From these results, we can
find that the cropped dataset trained model is significantly
better than the original dataset trained model overall with

the best-tuned result mAP of 0.97 and 0.81, respectively.
Moreover, the interface time of cropped dataset trained model
is furthermore reduced by 37% compared to the original
dataset trained model. From these results, it can be seen that
γ and α have the ability to tune the performance to a certain
degree. However, the original data trained model introduces
not only larger foreground-background unbalance, but also
more noise and reflection reducing the information entropy.

TABLE I
THE ORIGINAL DATASET TRAINED MODEL.

γ α AP NN AP NAR AP NUR MAP time(ms)

1.0 0.25 0.3539 0.0 0.0 0.1769 50.6
1.5 0.25 0.9663 0.8490 0.2639 0.7614 54.7
2.5 0.25 0.9503 0.8823 0.4367 0.8049 52.3
5.0 0.25 0.8750 0.8272 0.2560 0.6959 54.8
1.0 0.5 0.3539 0.8945 0.2938 0.4740 54.6
1.5 0.5 0.9535 0.8579 0.2595 0.7561 54.5
2.5 0.5 0.9696 0.8544 0.4194 0.8033 53.4
5.0 0.5 0.9025 0.8715 0.2671 0.7359 54.0
1.0 0.75 0.9631 0.8821 0.3148 0.7808 53.3
1.5 0.75 0.9795 0.8890 0.2828 0.7827 52.6
2.5 0.75 0.9729 0.8602 0.4552 0.8153 53.7
5.0 0.75 0.9535 0.8706 0.3184 0.7740 128.4

TABLE II
THE CROPPED DATASET TRAINED MODEL.

γ α AP NN AP NAR AP NUR MAP time(ms)

1.0 0.25 0.9897 0.9702 0.9011 0.9627 33.6
1.5 0.25 0.9931 0.9701 0.9180 0.9686 33.5
2.5 0.25 0.9863 0.9701 0.8991 0.9604 33.6
5.0 0.25 0.9729 0.9680 0.8470 0.9402 36.5
1.0 0.5 0.9897 0.9740 0.9057 0.9648 33.3
1.5 0.5 0.9897 0.9655 0.9221 0.9667 35.9
2.5 0.5 0.9931 0.9725 0.9125 0.9678 34.4
5.0 0.5 0.9897 0.9680 0.8732 0.9551 33.5
1.0 0.75 0.9931 0.9772 0.9080 0.9678 36.1
1.5 0.75 0.9931 0.9698 0.9006 0.9641 36.1
2.5 0.75 0.9931 0.9770 0.9201 0.9708 33.8
5.0 0.75 0.9897 0.9627 0.9043 0.9616 36.1

3) Evaluation: In order to give the sensitivity analysis
of the IoU threshold value, we evaluate the AP and recall
performance with different IoU threshold on the cropped
dataset trained model(γ=2.5, α=0.75) shown in Fig. 7. The
AP and recall value show steady until IoU threshold is more
than 0.55 and then the AP and recall for needle detection
(NAR and NUR) decrease to 0 when the IoU threshold
is more than 0.9. Table III shows the evaluation result of
annotation and detection with the IoU threshold of 0.55 in the
best model. By integrating NAR and NUR into one category,
meaning that the needle existing in the image regardless
of the interaction situation of needle and retina, only 5
images are misclassified to NN. This indication shows that
the method has the ability to localize the needle with the
accuracy of 0.55 (IoU value) in the confidence of 99.2%.
Fig. 8 shows some of the detected examples providing the
method is working properly in most of the cases. It only
fails to detect when needle tip is very small (usually the first
needle tip in the B-scan). This will not reduce the operational
quality since missing one B-scan needle tip detection will
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TABLE III
THE EVALUATION OF THE THREE CATEGORIES.

NN NAR NUR Detection

NN 287 2 3 292
NAR 0 427 2 429
NUR 0 11 79 90

Annotation 287 440 84

only cause 23 µm (the scan resolution in Z direction) at
most for needle localization error in one direction. This error
is within the tolerance of needle localization requirement in
subretinal injection which is 25 µm.
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Fig. 7. (a) The function of IoU threshold with AP in three categories
(AP NN, AP NAR, and AP NUR). (b) The function of IoU threshold with
AP in three categories (Recall NN, Recall NAR, and Recall NUR), where
mRecall denotes the mean recall value of three category.

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 8. (a), (b), (c), (d), (e) and (f) are examples with correct detection. (g)
and (f) are examples of incorrect detection when needle tip is very small.
The yellow bounding box is the annotation-category (A-NAR, A-NUR, and
A-NN) and blue bounding box is the detection-category (D-NAR, D-NUR,
and D-NN). The number following is the IoU value.

V. CONCLUSION

In this paper, we presented a flexible and robust framework
for needle detection and localization in subretinal injection
using MI-OCT images based on deep learning. Different
from feeding data directly into the network, we take ad-
vantage of the needle geometrical features in volumetric
OCT images to design a robust ROI crop method, thus the
image size is significantly reduced. Afterward, the state of art
one-stage detector named RetinaNet is applied to train the
cropped images for the needle detection and localization.
The evaluation results on ex-vivo pig eyes show that the
performance of cropped image trained model is significant
better than the original image trained model. The cropped
image trained model can localize the needle accurately with

a confidence of 99.2%. The future work will focus on
integrating the proposed method with the intraocular path
planning for vessel avoidance under the retina and safety
assessment for the OCT servoing injection.
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