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Zusammenfassung

Diese Dissertation befasst sich mit entropischen Ungleichungen für bosonische Kanäle in der
Quanteninformationstheorie. Derartige Ungleichungen finden Anwendung in grundlegenden
Fragen der Quantenkommunikation und der Konvergenz von quantendynamischen Semigrup-
pen. Wir beweisen unter anderem eine Ungleichung für die Ausgangsentropie eines Quan-
tenkanals, der klassisches Rauschen modelliert, und verwenden diese Ungleichung, um Schranken
an die klassische Kapazität einer allgemeinen Familie von nichtgaußschen Quantenkanälen zu
finden.

Abstract

This dissertation deals with entropic inequalities for bosonic channels in quantum information
theory. Such inequalities have applications in foundational questions of quantum communi-
cation and can be used to make statements about the convergence of quantum dynamical
semigroups. We prove, among other results, an inequality for the output entropy of a quantum
channel which models additive classical noise and apply this inequality to derive bounds on the
classical capacity of a general family of non-Gaussian quantum channels.
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Mathematics is an art of human understanding.

– William Thurston
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1 Introduction

Quantum information theory has been a very active field of research in the past decades. At
its core lies the question how information theory (i.e., the study of information-processing
tasks and their limitations) changes when we assume that quantum mechanics, as opposed
to classical mechanics, governs the information carriers. There are multiple approaches as to
which information carriers shall be used for quantum computing. One popular approach is the
use of qubits, i.e., two-level systems. Another one, and the main focus of this thesis, is the
deployment of continuous-variable carriers, which live in an infinite-dimensional Hilbert space,
such as the Hilbert space for a fixed number of quantum harmonic oscillators. The primary
concern of this thesis is bosonic quantum systems and noise acting on them: We are concerned
with output entropies of noisy quantum channels and the information-carrying capacities of
these channels. An understanding of noise and how to deal with it is essential on the way to a
large-scale quantum computer, and this work develops tools in this direction.

This thesis deals with multiple approaches to continuous-variable information theory: One
major part of the work presented here is an effort to investigate well-established information-
theoretic inequalities from classical information theory and translate them to the quantum
setting. The main mathematical tools we use for this are from functional analysis. This
provides tools for a variety of tasks, such as bounding the classical capacity of quantum channels
or bounding the convergence rate of certain semigroups. In this way, this thesis is concerned
with both the development of new tools for quantum information theory and the application
of these tools.

We start with a short presentation of the contributed articles and their scope. This is fol-
lowed by an introduction of some basic notions which are ubiquitous in quantum mechanics
and quantum information in Chapter 2. Chapter 3 then introduces the task of communicat-
ing classical information via quantum channels. We derive the classical capacity of quantum
channels, one of the key quantities in quantum information theory. An introduction to the
main concepts of continuous-variable quantum information, which is our main concern, is then
given in Chapter 4. After this, we give a more detailed account of the state of the art of one
specific topic in continuous-variable quantum information: entropic inequalities for bosonic
channels, presented in Chapter 5. This topic is of central importance to the work presented
in the contributed articles. We then change the topic to some applications of the presented
functional inequalities. In this last part of our review of the current state of the art, we discuss
the application of entropic inequalities to capacities of bosonic channels.

After this overview, we briefly present the contributed articles. Every embedded article in
the Appendix is preceded by a more detailed and more technical summary of the main results
and a description of the individual contribution of the author of this thesis. In cases where the
article has already been published elsewhere, we include the permission to use it in this thesis.

1.1 Summary and Discussion of Results

The contributed articles take different approaches to the field of continuous-variable quantum
information: First, articles I and III develop functional inequalities for bosonic channels which
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generalize a variety of established results from classical information theory to the quantum
case. These inequalities are interesting from a purely mathematical point of view, and are not
necessarily motivated by a concrete physical problem yet. Article II then applies these entropic
inequalities to obtain bounds on the information-carrying capacity of a range of noisy bosonic
channels. Lastly, articles IV and V do not focus directly on bosonic channels, but nonetheless
cover continuous variables (Article IV) and concepts from information theory which we gen-
eralize to the quantum case, and which are intimately connected to the general information-
theoretic questions we are interested in in this thesis (Article V). These two articles are not
the primary contribution to this thesis, but are included for completeness. We note that the
author of this thesis does not claim to be the principal author of these two articles.

Core articles as principal author

• Article I [1]: Geometric inequalities from phase space translations
In classical information theory, there are important inequalities which can be viewed as
analogs of inequalities from geometric analysis. One example of this connection is that
the entropy power inequality is formally equivalent to the Brunn-Minkowski inequality
when the entropy power plays the role of volume and the sum of random variables, which
is defined in terms of the convolution of their respective probability densities, plays the
role of the Minkowski sum. There is a wide range of information-theoretic inequalities
which make statements about entropic quantities involving sums of random variables. In
addition to the entropy power inequality, notable examples are the Fisher information
inequality, the isoperimetric inequality for entropies, the Fisher information isoperimetric
inequality, and the concavity of the entropy power under action of the heat diffusion
semigroup.

In Article I we study a convolution operation between a probability density function on
phase space and a quantum state which was originally introduced by Werner [6], and
connect it to a quantum diffusion semigroup which plays a role which is analogous to the
heat semigroup. We prove a number of new inequalities involving quantum entropy and
quantum Fisher information. These are quantum analogs of the information-theoretic
inequalities mentioned above. As a main result, we prove a new entropy power inequality
for classical noise channels. As an application, we derive a Log-Sobolev inequality for the
quantum Ornstein-Uhlenbeck semigroup and apply it to obtain bounds on the entropy
production rate of this semigroup. As an interesting side result, we show that Gaussian
thermal states minimize the entropy production rate for the one-mode attenuator semi-
group among all states with bounded mean photon number. The mathematical tools used
in proving our results include the establishment and application of a data processing in-
equality for the convolution between a probability density function and a quantum state,
as well as bounds on the entropy production rate of semigroups. For the latter, we employ
recent majorization-type results for bosonic quantum channels. The connection between
the quantum diffusion semigroup and the geometric inequalities relies on the fact that
the Fisher information is equal to the entropy production rate under the diffusion, a fact
referred to as the de Bruijn identity. In both the quantum and classical settings, the de
Bruijn identity plays an important role in the proof of information-theoretic inequalities.

In this article, we also conjectured that the quantum Ornstein-Uhlenbeck semigroup con-
verges in relative entropy to its fixed point at a certain exponential rate. This conjecture
has subsequently been proven by Carlen and Maas [7] using methods of gradient flow.
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More recently we have provided a proof in Article III using the entropy power inequality
directly.

This work inspired follow-up work in two different directions: Application to capacities
(Article II) and generalizations of these inequalities to a setting with side information
(Article III).

I was significantly involved in finding the ideas and carrying out the work of all parts of
this article, and I was in charge of writing the article, with the exception of Section V A
and Lemma 8.

• Article II [2]: Coherent state coding approaches the capacity of non-Gaussian bosonic
channels
A central question in quantum communication is whether entangled quantum states can
be used to provide an advantage over classically correlated quantum states for commu-
nication of classical information over a given quantum channel. The maximal achievable
communication rate using unentangled or entangled states is called the one-shot classical
capacity and the full classical capacity, respectively. The question whether these two ca-
pacities are equal is commonly referred to as the addivity problem – if the answer to the
above question is no, then the full classical capacity is said to be additive. In the setting
of bosonic channels, it has been shown that entanglement does not provide an advantage
for communication over a certain class of Gaussian channels [8]. Despite this landmark
achievement, only little is known about non-Gaussian channels. The general additivity
question for bosonic channels remains open.

Article II investigates the consequences of recently proven entropy power inequalities and
conjectured Entropy Photon-Number Inequalities on the classical capacity of a general
class of bosonic channels, which includes non-Gaussian channels. These channels are
beamsplitters with a generic, potentially non-Gaussian environment state, and classical
noise channels with probabilistic noise that need not be Gaussian. We prove upper and
lower bounds on the classical capacity of these channels. These are the first available
bounds on the classical capacity of non-Gaussian bosonic channels. We show that for these
channels, additivity violations for the classical capacity, if at all existent, are rather minor.
In fact, we upper bound the maximal additivity violation by a constant independent of
the input energy. This requires giving upper bounds on the full capacity and lower bounds
on the one-shot capacity. The lower bounds are achievable by using classical modulation
of coherent states for the encoding. Furthermore, we show similar results assuming the
validity of the conjectured Entropy Photon-Number Inequality. In the case of classical
noise channels, we conjecture a new Entropy Photon-Number-type Inequality for this
purpose. Our results show that the Entropy Photon-Number Inequality only provides a
small improvement on the upper bound on the full classical capacity for these channels.
In addition to various forms of entropy power inequalities / Entropy Photon-Number
Inequalities, the main tool used in the proofs is the fact that Gaussian states maximize
the quantum entropy for a given energy. Furthermore, we can make use of recent results on
the output entropy of one-mode phase-covariant Gaussian channels. For some particular
cases, these are slightly better than those derived from the entropy power inequality.

In spirit, this work translates results on classical additive noise channels which were
originally obtained by Shannon [9, 10] to the setting of non-Gaussian bosonic quantum
channels. It is inspired by earlier work by König and Smith [11] which proved upper

3



bounds on the classical capacity of thermal noise channels, but additionally gives lower
bounds.

This work was motivated by discussions with Robert König on possible applications of
our previously published article [1]. I proved all the results of the paper, and I wrote all
sections with the exception of the Introduction and the first half of Section 2.

• Article III [3]: The conditional entropy power inequality for quantum additive noise chan-
nels
In classical information theory, many applications of the entropy power inequality use a
formulation of the inequality which makes a statement about conditional entropies. This
conditional entropy power inequality is a simple corollary to the entropy power inequal-
ity. This is due to the fact that the conditional entropy is simply an expectation value
of entropy of conditional distributions, where the expectation is taken over the random
variable we condition on. For quantum entropy, this is no longer the case if the system
on which we condition is not classical. Therefore, a conditional entropy power inequality
does not follow immediately from the entropy power inequality.

For the beamsplitter, a conditional entropy power inequality was first formulated and
proven for Gaussian states in [12]. A full proof for general states was given in [13].
Therefore it is natural to ask whether a conditional version of the entropy power inequality
for classical noise channels from Article I holds. In Article III we generalize the quantum
entropy power inequality for classical noise channels (one of the central results of Article I)
to the setting with side information: We consider a bipartite quantum system one part of
which is affected by noise. The proof of this inequality makes use of an integral form of the
Fisher information. As a consequence, it does not exhibit certain regularity issues present
in previous proofs of the quantum entropy power inequality without side information. As
such, it can be seen as a generalization of Article I to the conditional setting, which also
implies the main results of Article I without regularity issues. We show the remarkable
fact that the conditional version of the quantum entropy power inequality is optimal in
the following sense: For every fixed pair of values of the conditional entropies at the input,
there exists a sequence of Gaussian input states such that the conditional entropy power
inequality is saturated in the limit. In contrast to this, the version of the entropy power
inequality for classical noise channels without side information is not tight. Furthermore,
we prove a variety of information-theoretic inequalities, the classical analogs of which
were established a long time ago. This includes the conditional Stam inequality, the
conditional Fisher information inequality, and the isoperimetric inequality for conditional
quantum entropies. As an application, we prove an upper bound on the entanglement-
assisted classical capacity of a non-Gaussian bosonic channel, namely a classical noise
channel where the probability density function of the noise is not Gaussian. We also
show how the quantum entropy power inequality implies fast convergence of the quantum
Ornstein-Uhlenbeck semigroup in relative entropy, a conjecture first stated in Article I and
proven by different methods in [7]. In fact, we prove a more general statement regarding
the convergence in relative entropy of a bipartite system one part of which undergoes a
quantum Ornstein-Uhlenbeck evolution.

This work was motivated by discussions with Giacomo De Palma during a visit he made to
Munich. A sketch of the proof of the main result was worked out during discussions, after
which I completed all the proofs and wrote the article, with the exception of Lemma 3 and
Theorem 9, the proofs of which came from Giacomo De Palma. I was significantly involved
in the scientific work of all parts of the article, with the aforementioned exceptions.
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Further articles

• Article IV [4]: Uncertainty relations: An operational approach to the error-disturbance
tradeoff
The Heisenberg uncertainty relation is perhaps one of the most famous aspects of quantum
mechanics. The original formulation by Heisenberg in 1927 was somewhat vague, and only
much later there have been proofs of formal statements. In recent years, an active field
of research has opened up discussing uncertainty relations in different settings.

In Article IV we focus on two aspects of uncertainty. In spirit, these already appear in
Heisenberg’s article: Joint measurability and the error-disturbance tradeoff. The former
deals with the question to which precision two observables can be simultaneously mea-
sured, and the latter states that the more precise a measurement of one observable is,
the larger is the disturbance to another non-commuting observable. In this context, it is
not clear how the notions of “error” and “disturbance” are to be defined. There are a
number of different approaches.

In this article we take an operational approach: we seek uncertainty relations which make
statements about measurement devices, and not about the physical quantities themselves:
We define error and disturbance in terms of the distinguishing probability, i.e., the proba-
bility that the actual behavior of a measurement apparatus can be distinguished from the
ideal behavior in any single experiment. This approach has the benefit that the notion
of distinguishability does not depend on concepts of quantum mechanics. It therefore
avoids some conceptual difficulties. Our notions of error and disturbance are related to
the completely bounded norm, which is a well-known norm in operator theory. We use
this approach to derive Heisenberg-type uncertainty relations for both joint measurability
and error-disturbance tradeoff for arbitrary finite-dimensional observables, as well as for
position and momentum. A key tool in our proofs is the continuity of the Stinespring dila-
tion, a remarkable mathematical result by Kretschmann, Schlingemann, and Werner [14].
The latter relates the distance between quantum channels with respect to the completely
bounded norm to the distance of their respective Stinespring dilations with respect to
the operator norm. We apply our error-disturbance relation to an information process-
ing setting: We prove that quantum channels which can faithfully transmit information
regarding one observable do not leak any information about conjugate observables to
the environment. Moreover, we discuss a connection to wave-particle duality relations.
These quantify a tradeoff between the observation of interference patterns and the gain
of information about the path of the particle in a Mach-Zehnder interferometer.

This project started while I was working on my Master’s thesis project at ETH Zurich
together with Joseph Renes and Volkher Scholz. This was a project about uncertainty
relations in the same setting as the one discussed in this article. After my graduation,
we continued to work on this topic, proving stronger statements about the position-
momentum uncertainty relations, extending the results, and significantly changing the
proof method employed. These extended results were then combined with earlier re-
sults found by Joseph Renes and Volkher Scholz [15] in the finite-dimensional case and
published together in this article.

• Article V [5]: Jointly constrained semidefinite bilinear programming with an application
to Dobrushin curves
We consider a problem we call jointly constrained semidefinite bilinear programming. This
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asks to minimize a bilinear function over a set of self-adjoint operators specified by joint
semidefinite programming (SDP) constraints. It is given by

min
(X,Y )∈S

tr ((X ⊗ Y )Q) + tr (AX) + tr (BY ) , (1.1)

where S is a set of pairs of self-adjoint operators (X,Y ) defined by a family of SDP
constraints and Q,A,B are given self-adjoint operators. Such programs appear in a
number of contexts in quantum information theory: As an example, the entanglement
fidelity can be cast as such a program. The latter plays an important role in quantum
communication and in entanglement distribution. The jointly constrained semidefinite
bilinear program also appears in the context of quantum games and Bell inequalities.
In addition, we show that the computation of Dobrushin curves, which give bounds on
classical coding with energy constraints, can also be cast as a program of this form. In the
quantum information theory literature, the so-called seesaw algorithm has been applied
in various contexts. It tackles the jointly constrained semidefinite bilinear program by
alternately fixing a value of X and Y and solving the resulting affine-linear problem for
the other variable, has been applied in various contexts. The downside of the seesaw
algorithm is that it is heuristic – in general, it will not produce an optimum of the
problem.

The goal of our work is to give a new algorithm for jointly constrained semidefinite bilinear
programming from the quantum information point of view. In this article, we give a
branch-and-bound algorithm for the jointly constrained semidefinite bilinear program,
which produces a sequence of feasible points which converge to the global optimum. The
algorithm is a generalization of the branch-and-bound algorithm given by Al-Khayyal
and Falk [16] for a jointly constrained bilinear program. Moreover, the algorithm gives
upper and lower bounds on the value of the program at each step as well as values of
X and Y at which the upper bound on the value (1.1) is attained. As an application,
we use our algorithm to numerically compute Dobrushin curves for quantum channels.
As mentioned, these give upper bounds on optimal codes for classical information in a
scenario where the noise acts repeatedly.

It should be noted that this project works in an exclusively finite-dimensional setting.
However, the concept of Dobrushin curves is intimately related to the type of quantum
communication questions we are interested in in this thesis. The concept of Dobrushin
curves has not been studied for bosonic channels yet. The main idea and a sketch of the
algorithm was worked out by Robert König and Marco Tomamichel. I was responsible
for the applications and for writing the article and the documentation of the code, with
the exception of the Introduction and Section 4.4.2. The code itself was written by Marco
Tomamichel and Robert König.
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2 Basic structure of Quantum Mechanics

We give a short introduction to the basic mathematical concepts and the formalism underlying
quantum mechanics and quantum information theory. All the results presented in this chapter
are covered in several fairly standard textbooks about quantum mechanics and quantum in-
formation theory, such as [17–20]. The approach presented here generally follows the excellent
books by Holevo [18,19], though the presentation of quantum states and the way we map them
to density operators is inspired by [21] and [17].

Let us first fix some notation. In the following, H will always denote a separable Hilbert
space with scalar product 〈·, ·〉 which is antilinear in the first argument and linear in the second
argument, and norm ‖ ·‖ induced by this scalar product. We are going to make extensive use of
the bra-ket notation, which denotes vectors φ ∈ H via a ket1 |φ〉, and their corresponding dual
vectors via the bra 〈φ| ∈ H∗. The latter stands for the continuous linear form 〈φ| : H → C,
ψ 7→ 〈φ|ψ〉 := 〈φ, ψ〉. For ψ, φ ∈ H we use the notation |ψ〉〈φ| for the operator H → H which
maps χ 7→ |ψ〉 〈φ|χ〉 = 〈φ, χ〉ψ.

We will denote by B(H) the set of bounded linear operators H → H, and by B1(H) the set
of trace-class operators

B1(H) := {A ∈ B(H)
∣∣ ‖A‖1 := tr |A| :=

∞∑

k=1

〈
√
A†Aek, ek〉 <∞} ,

where {ek}k∈N is any countable orthonormal basis of H and A† ∈ B(H) is the adjoint of A,
defined by

〈φ,Aψ〉 = 〈A†φ, ψ〉 for all φ, ψ ∈ H .

The set of self-adjoint bounded operators is denoted by Bsa(H) := {A ∈ B(H)
∣∣ A† = A}.

For an operator A12 ∈ B1(H1 ⊗ H2), we denote its partial trace over the first system as
tr1(A12) ∈ B1(H2), which is the unique operator B ∈ B1(H2) such that

tr (A12(1⊗ Y )) = tr(BY ) for all Y ∈ B(H2) .

Given a linear map T : B(H)→ B(H) and n ∈ N, we define the map T ⊗n : B(H⊗n)→ B(H⊗n)
via

T ⊗n(A1 ⊗ · · · ⊗An) = T (A1)⊗ · · · ⊗ T (An) for Ak ∈ B(H), 1 ≤ k ≤ n ,
and linearly extended.

2.1 Quantum states and measurements

Quantum mechanics, like any physical theory, aims to predict the outcomes of statistical ex-
periments. A statistical experiment is divided into two parts, preparation and measurement.
On the one hand, if we specify the preparation of a quantum system (which we will later call

1It can be useful to view a ket |φ〉 as a linear map C→ H, α 7→ αφ. We will not distinguish between the two
notions.
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its state), we fix the outcome probabilities of all possible measurements. On the other hand,
specifying a measurement fixes the outcome distribution of the statistical experiment for all
states. Our basic assumptions on the structure of a statistical theory are the following [19]:

(i) Let there be given a set S, whose elements are called states, and a set M, whose ele-
ments are called observables. For arbitrary S ∈ S and X ∈ M there is a probability
distribution µXS on the σ-algebra B(O) of Borel subsets of a set of outcomes O, called the
probability distribution of the observable X in the state S.

(ii) For arbitrary S1, S2 ∈ S, and an arbitrary number p with 0 < p < 1, there exists S ∈ S
such that µXS = pµXS1

+ (1− p)µXS2
for all X ∈ M. The state S is said to be a mixture of

the states S1 and S2 in the proportion p : (1− p).

(iii) For arbitrary X1 ∈ M and an arbitrary Borel function f : O → O there exists X2 ∈ M
such that X2 = f ◦X1, i.e., µX2

S (B) = µX1
S (f−1(B)) for all Borel sets B ∈ B(O). We say

that the observable X2 is functionally subordinate to the observable X1.

A pair of non-empty sets {S,M} which satisfies assumptions (i)-(iii) is called a statistical model.
If, in addition, we have that

µMS1
= µMS2

for all M ∈M ,

implies that S1 = S2, and

µM1
S = µM2

S for all S ∈ S ,

implies that M1 = M2, we call the statistical model separable. Separable models have the
property that the mixture of states from assumption (ii) and the functional subordination of
assumption (iii) are uniquely defined. This means that for separable models, the state set S
has a convex structure, and the set of observables M has a partial order.

The function µMS predicts the measurement statistics of a statistical experiment, i.e., µMS (B)
gives the probability that the measurement outcome of an experiment which measures the
observable M in the state S lies in B. We note that the set of outcomes might be finite,
countable, or even uncountably infinite. We will always assume (O,B(O)) to be a standard
Borel space, i.e., O is a complete separable metric space and B(O) is its Borel σ-algebra. Since
standard Borel spaces of the same cardinality are isomorphic, B(O) will always be equivalent
to either a finite set, N, or the Borel subsets of the real line, B(R).

We now specify some more assumptions for the framework in which we want to formulate
quantum theory [21].

(i) Observables are elements of a C∗-algebra.

(ii) The potential measurement outcomes lie in the spectrum of the elements of the C∗-
algebra.

(iii) States are positive linear functionals which are normalized to 1.

These assumptions are sufficient to give a fairly concrete visualization of the structure. The
Gelfand-Naimark theorem [21, 22] guarantees that we can always work with bounded linear
operators on a Hilbert space.

Theorem 2.1.1 (Gelfand-Naimark). For every C∗-algebra A there exists a Hilbert space H
and an isometric ∗−homomorphism Ξ : A → B(H). If A is separable, then so is H.
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The Gelfand-Naimark theorem allows us to consider a suitable Hilbert space H instead of an
abstract C∗-algebra to realize the algebra of observables. Then the C∗-algebra of observables
is identified with B(H), and observables are Hermitian elements in B(H).

Before we give the definition of a quantum state, let us define some notation. Let {Ak}k∈N
be a family of norm-bounded increasing operators with smallest upper bound A ∈ B(H) in the
sense that A ≥ Ak for all k and if B ≥ Ak for all k then B ≥ A. The relation A ≥ B for
self-adjoint operators here means that A − B is a positive operator. Then we write Ak ↑ A.
This notation comes from the fact that if Ak ↑ A, then Ak converges to A weakly, ultraweakly,
and strongly [17, Chapter 1.6].

Definition 2.1.2 (Quantum state). A quantum state is a linear functional ω : B(H) → C
which is positive, normalized, and normal:

(i) (positivity) ω(A) ≥ 0 if A is a positive operator.

(ii) (normalization) ω(1H) = 1.

(iii) (normality) If Ak ↑ A, then limk→∞ ω(Ak) = ω(A).

Here 1H is the identity map on H.

The normality assumption is not always used in literature. However, it leads to a useful
description of quantum states in terms of so-called density operators:

Lemma 2.1.3 (States and density operators [17, Lemma 6.1]). A positive linear functional
ω : Bsa(H)→ R is normal if and only if there exists a positive ρ ∈ B1(H) ∩ Bsa(H) such that

ω(A) = tr(Aρ) for all A ∈ Bsa(H) .

If ω is normalized, then tr(ρ) = 1.

Positive operators of trace one are called density operators. Applying Lemma 2.1.3 to the
restriction ω

∣∣
Bsa(H)

of a quantum state ω to the set of self-adjoint operators gives us a den-

sity operator ρ which describes the quantum state ω. The functional tr(·ρ) can easily be
extended back to B(H) by linearity. The duality between states and density operators given by
Lemma 2.1.3 is central to quantum mechanics. The definition of states given in Definition 2.1.2
describes states in the so-called Heisenberg picture. The description in terms of density opera-
tors is referred to as the Schrödinger picture. If we had dropped the assumption of normality,
there would exist states in the Heisenberg picture which do not correspond to density operators
in the case of an infinite-dimensional Hilbert space H [17, Lemma 6.1]. In the following, we
will use the terms quantum state and density operator interchangeably, and we will denote the
set of density operators on H by S(H).

A special set of states are the so-called pure states. These correspond to vectors in H up to
a phase. For any ψ ∈ H with ‖ψ‖ = 1, the projection |ψ〉〈ψ| onto Cψ is a density operator
describing a quantum state ωψ via

ωψ(A) = tr(|ψ〉〈ψ|A) = 〈ψ,Aψ〉 . (2.1)

States which can be written in the form (2.1) for ψ ∈ H are called pure. Note that all elements
of the so-called unit ray

[ψ] := {eiαψ
∣∣ α ∈ [0, 2π]}

define the same quantum state.
Every quantum state can be written as a convex combination of pure states. This can easily

be seen by considering the spectral decomposition of a general density operator:
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Theorem 2.1.4 (Convex combination of projections [21]). Every state ω can be written as
a convex linear combination of pure states, i.e., there exists a complete orthonormal system
{ψj}∞j=1 ⊂ H and nonnegative numbers p1 ≥ p2 ≥ . . . such that

∑∞
j=1 pj = 1 and such that

ω =
∞∑

j=1

pj ω[ψj ] .

Conversely, every convex linear combination of pure states ω[φj ], {φj}j∈N ⊂ H, defines a quan-
tum state.

Let us next define the mathematical objects which we will refer to as quantum-mechanical
measurements.

Definition 2.1.5 (Measurement). A measurement is a positive operator-valued measure (POVM)
M : B(O)→ B(H), i.e., a function B(O)→ B(H) with the following properties:

1. M(B) is a positive operator in H for any B ∈ B(O).

2. If {Bj}j is a finite or countable partition of O into pairwise disjoint measurable sets, then

∑

j

M(Bj) = 1H ,

where the series converges strongly.

If M(B)2 = M(B) for all B ∈ B(O), then M is a projective measurement, also called a
projection-valued measure (PVM).

In the case of finitely many outcomes O = {1, . . . , n}, POVMs have a simpler description:
They are simply collections of positive operators {Mj}nj=1 ⊂ B(H) such that

n∑

j=1

Mj = 1.

Furthermore, it is easy to see that every self-adjoint observable induces a projective measure-
ment via the spectral theorem. The latter assigns to every self-adjoint operator X its spectral
measure EX : B(R)→ B(H) such that

X =

∫

R
xEX(dx) .

The spectral measure EX is then a PVM. The probability distribution µXρ : B(R)→ R associ-
ated with the outcome statistics of an observable X in a state ρ is then given by

µXρ (B) = tr(ρEX(B)) for all B ∈ B(R) .

Not every general POVM corresponds to a self-adjoint element of B(H). However, the two
concepts are very closely related, because any POVM can be seen as a projective measurement
on a possibly larger Hilbert space. Physically, this makes sense because the laboratory might
only have access to a subsystem of a larger quantum system. This is, in essence, the content
of Naimark’s dilation theorem.
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Theorem 2.1.6 (Naimark dilation [19]). Every POVM M : B(O)→ B(H) can be extended to
a projection-valued measure, i.e., there exists a Hilbert space H′ containing H and a projection-
valued measure E on H′, E : B(O)→ B(H′) such that

M(B) = PHE(B)
∣∣
H for all B ∈ B(O) ,

where PH is the projection from H′ onto H.

From Naimark’s theorem, it follows that for an arbitrary POVM M in H, there exists a
Hilbert space H0, a density operator ρ0 in S(H0) and a projector-valued measure E in H⊗H0

such that

µMρ (B) = tr ((ρ⊗ ρ0)E(B)) , for all B ∈ B(O), ρ ∈ S(H) .

In this sense, using POVMs, which are more general than projective measurements, is a sensible
way of mapping the physical concept of measurements to mathematical objects.

2.2 Quantum operations

We have introduced mathematical objects which correspond to states and measurements. As a
next step, we seek a mathematical description of allowed quantum operations. Since quantum
operations should map quantum systems to quantum systems, we want a quantum operation
from a quantum system A to a quantum system B to map states onHA (i.e., elements of S(HA))
to states on HB. Since quantum mechanics is linear, the operation itself should also preserve
this structure and be linear. It is easy to see that in order to map states to states, a linear
map E : B1(HA) → B1(HB) necessarily needs to be positive (i.e., E(ρ) ≥ 0 whenever ρ ≥ 0)
and trace-preserving (i.e., tr (E(ρ)) = tr(ρ) for all ρ ∈ B1(HA)). However, since it is possible
that the system we consider is a subsystem of a larger system, a stronger notion than the
preservation of positivity is necessary for a map to be a quantum operation. This notion is
that of complete positivity.

Definition 2.2.1 (Complete positivity). A linear map E : B1(HA) → B1(HB) is called com-
pletely positive if the map

E ⊗ 1B(Cd) : B1(HA)⊗ B(Cd)→ B1(HB)⊗ B(Cd)

is positive for all d ∈ N.

The notion of complete positivity is different from the notion of positivity: For example, the
transposition map Θ : B(Cd)→ B(Cd), Θ(X) := XT , where we identify Cd×d with B(Cd), is a
linear map which is positive but not completely positive.

We call linear maps with the property that they map quantum states to quantum states
quantum channels.

Definition 2.2.2 (Quantum channel). A linear map E : B1(HA)→ B1(HB) is called a quantum
channel if it is completely positive and trace-preserving (CPTP).

This notion is in the Schrödinger picture, where quantum channels act on states. One can
also define quantum channels in the Heisenberg picture, in which they act on observables.
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Note that in general, the dual space of the trace-class operators B1(H) on a Hilbert space H
is isomorphic to the bounded linear operators2 B(H), with the duality given by

〈T,A〉 = trTA for T ∈ B1(H), A ∈ B(H) .

Then the translation to the Heisenberg picture works simply by introducing the dual map to
a Schrödinger-picture quantum channel, E∗ : B(HB)→ B(HA):

tr (ρE∗(A)) = tr (E(ρ)A) for all ρ ∈ B1(H), A ∈ B(H) ,

which makes sure that expectation values are left unchanged. In this formulation, quantum
channels E∗ are then not CPTP, but completely positive and unital (CPU), where unital-
ity means that E∗(1HB ) = 1HA . Dual maps of CPTP maps are also normal, which means
that E∗(Ak) ↑ E∗(A) if Ak ↑ A. For infinite-dimensional Hilbert spaces, a general CPU
map B(HB)→ B(HA) does not have a dual CPTP map unless it is normal.

Completely positive maps have some very useful properties. A powerful description of com-
pletely positive maps is given by the Stinespring dilation.

Theorem 2.2.3 (Stinespring dilation [17, Chapter 9]). A linear map E : B1(HA) → B1(HB)
is completely positive if and only if there exists a Hilbert space HE and a bounded linear oper-
ator V : HA → HB ⊗HE such that

E(ρ) = trE(V ρV †) for all ρ ∈ B1(HA) .

Furthermore, E is trace-preserving if and only if V †V = 1.

Physically, the Stinespring dilation theorem tells us that any quantum channel can be re-
alized as an isometry on a larger system. The Hilbert space HE is therefore often called
the environment system. If we interchange the role of the system A and the environment E
in the Stinespring dilation, we obtain the so-called complementary channel of E , which we
call E# : B1(HA)→ B1(HE):

E#(ρ) := trA

(
V ρV †

)
for ρ ∈ B1(HA) .

Another equivalent way to describe completely positive maps is by their so-called Kraus
representation, which we formulate in the Heisenberg picture.

Theorem 2.2.4 (Kraus representation [17, Chapter 9]). A normal positive linear map E :
B(H)→ B(H) (where H is separable) is completely positive if and only if there exists a countable
family of bounded operators {Mk}∞k=1 on H such that

E(X) =
∞∑

k=1

M †kXMk for all X ∈ B(H) .

If E is unital, then
∑∞

k=1M
†
kMk = 1.

We have discussed the most basic concepts of quantum mechanics from the viewpoint of
quantum information theory. We continue by asking a more information-theoretic, but funda-
mental question: Given a quantum channel E , what is the maximal amount of information we
can transmit via such a channel? In the next chapter, we present some tools which enable us
to deal with this fundamental question and also define what we mean by the term “amount of
information”.

2Note that in the case of an infinite-dimensional Hilbert space, the converse is not true: trace-class operators
are the dual of compact operators, not the full set of bounded linear operators. This gives rise to a number
of subtleties which we are able to ignore here because we have assumed that quantum states are normal.

12



3 Classical communication over quantum
channels

On a fundamental level, information is encoded in a physical system. Since quantum mechanics
is the description of the physical world on this fundamental level, one can ask what limits
quantum mechanics imposes on communication. This question lies at the heart of the field of
quantum communication. We will implicitly assume some concepts from classical information
theory, a detailed exposition of which can be found in [23]. We focus on the problem of
communicating classical information via quantum systems here. First, let us briefly present the
communication problem from classical information theory. Throughout this chapter, when we
write log we mean the logarithm to base 2, as this makes some operational motivations clearer.
In subsequent chapters, we are going to use the natural logarithm purely for convenience.

3.1 Communication via classical channels

The presentation of this section largely follows [24, Chapter 7.2]. Consider two parties which we
call Alice and Bob. Alice has a set of messages {1, . . . , 2M}, M ∈ N, and wants to communicate
one of them to Bob via a classical channel T with input alphabet A and output alphabet B.
The sets A and B are for now assumed to be finite and called the input alphabet and the output
alphabet. Such a channel T is given by a conditional probability T (b|a) of obtaining the output
symbol b if the input symbol was a, for each a ∈ A and b ∈ B.

As M might be very large, we want to allow Alice to use the channel L ∈ N times. The L-
times use of the channel T then induces a channel T (L) with input alphabet AL and output
alphabet BL, given by

T (L) ((b1, . . . , bL)|(a1, . . . , aL)) = T (b1|a1) · · ·T (bL|aL) .

This channel is referred to as the discrete memoryless channel without feedback, i.e., the different
uses of T act independently on their respective inputs, and the different inputs do not depend
on the outputs.

A (2M , L) code consists of an encoding function encL : {1, . . . , 2M} → AL and a decoding
function decL : BL → {1, 2, . . . , 2M}. The encoding associates a codeword to a message, and
the decoding maps every channel output to a message. Write

λm =
∑

(b1,...bL)/∈dec−1
L ({m})

T (L) ((b1, . . . , bL)|encL(m))

for the probability that 1 ≤ m ≤ 2M was sent over the channel but m was not received. Then

the average probability of error P
(L)
e of the code is given by

P (L)
e :=

1

2M

2M∑

m=1

λm .
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The rate of a (2M , L) code is defined as R = M/L. Given a channel T , a given rate R is
achievable if there exists a sequence of (d2LRe, L) codes such that the average probability of
error tends to 0 as L→∞. The capacity of the channel is the supremum of all achievable rates.

Let us define an information-theoretic quantity which seems, at first glance, unrelated to this
problem, and link it to the capacity. Given two random variables A and B which take values
in A and B, respectively, we define the mutual information between A and B as

I(A : B) = H(A) +H(B)−H(AB) , (3.1)

where H(A) = −∑a∈A pa log pa is the Shannon entropy of the random variable A and {pa}a∈A
is the probability distribution of A, pa = Pr(A = a). The quantities H(B) and H(AB)
are defined analogously, using the probability distributions {pb}b∈B of B and the joint distri-
bution {pab = Pr(A = a and B = b)}a∈A,b∈B. Given a channel T , we define the Shannon
capacity C of the channel as the supremum of all mutual informations I(A : B) between the
input A and the output B of the channel, over all probability distributions {pa}a∈A on the
input alphabet A:

C = sup
{pa}a∈A

I(A : B) . (3.2)

A central result of classical information theory is Shannon’s noisy channel coding theorem [9],
which states that the Shannon capacity of a channel is equal to its capacity.

Theorem 3.1.1 (Channel coding theorem [24, Theorem 7.2]). If R < C then there exists

a sequence of (d2LRe, L) codes such that the average probability of error P
(L)
e tends to 0 for

L→∞. Conversely, if a sequence of (d2LRe, L) codes has average probability of error tending
to 0, then R ≤ C.

The channel coding theorem underlines that the mutual information I(A : B) is a good
measure for the amount of information transmitted over a channel. The proof proceeds by
averaging the error probability over random codes, and arguing that if an average random
code has small error probability, then there exists one particular code which has small error
probability. This random coding argument is a powerful one which is encountered often in
information theory.

3.1.1 The channel coding theorem for continuous alphabets

The channel coding theorem 3.1.1 remains valid for a channel T in the case of continuous
alphabets A and B, with some modifications. Such a continuous-variable channel transforms
probability densities on A to probability densities on B. Assume that A ⊂ Rn. The differential
entropy [9,10] of an A-valued random variable X with probability density function fX : Rn → R
is defined as

H(X) = −
∫

A
fX(x) log fX(x)dnx ,

where we have used the convention that1 0 log 0 = 0. The differential entropy depends only
on the probability density of the random variable X, and hence we will often write H(fX)
instead of H(X). The mutual information I(A : B) is defined analogously to Eq. (3.1), by
replacing the Shannon entropy by the differential entropy. The Shannon capacity C defined
in the same way as in Eq. (3.2) of a classical channel T is not finite in general. In order to

1As an alternative to this convention, we could have defined the entropy by integrating only over the support
of X.
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make a meaningful statement about the capacity of a continuous-variable channel, a constraint
needs to be introduced on the input. The most common such constraint is a power constraint,
which demands that any codeword (x1, . . . , xL) ∈ fL

(
{1, . . . 2M}

)
in the image of the encoding

function of a code satisfies

1

L

L∑

k=1

x2
k ≤ P , (3.3)

for some P > 0. The (Shannon) power-constrained capacity of a continuous-variable chan-
nel is defined by taking the supremum of the mutual information over all input probability
densities fA : A → R satisfying E[A2] ≤ P ,

CP = sup
fA:A→R
E[A2]≤P

I(A : B) .

An analog of the channel coding theorem 3.1.1 holds when replacing the capacity C with the
power-constrained capacity CP . That is, the maximal achievable rate with codes satisfying the
power constraint (3.3) for P > 0 is equal to CP . In the next section, we move from classical
information theory to quantum information theory and start with the problem of transmitting
classical information via the preparation and measurement of quantum states.

3.2 A communication problem in quantum mechanics

We formulate a general communication problem in the quantum setting. Alice wants to send
classical information to Bob using a quantum system Q (described by a Hilbert space H). As-
sume that Alice picks a finite alphabet A and chooses corresponding quantum states {ρa}a∈A ⊂
S(H). The map

A → S(H) ,

a 7→ ρa

is called a classical-quantum (cq) channel.

Suppose Alice prepares ρa according to the outcome of some A-valued random variable A
with probability distribution {pa}a∈A. Bob then wants to find the value of A by performing a
measurement (which is described by a POVM {Eb}b∈B) on the states ρa, obtaining a classical
output random variable B. The probability of obtaining the output b if the input was a is
equal to T (b|a) = tr(ρaEb), corresponding to a classical channel T with input alphabet A and
output alphabet B. If Alice chooses mutually orthogonal states, then Bob can distinguish them
perfectly, by choosing B = A and Ea to be the projection onto the support of ρa.

But since quantum states are in general non-orthogonal, Bob will in general not be able to
distinguish perfectly between them. This setting is depicted in Fig. 3.1a. We can ask how
much information he can obtain about the random variable A. One measure of information
is the so-called accessible information. This is the maximum value of the classical mutual
information (3.1) between the two random variables A and B over all possible measurements
which Bob can perform:

Iacc({pa, ρa}a∈A) = sup
{Eb}b∈B

I(A : B) = sup
{Eb}b∈B

∑

a∈A

∑

b∈B
paT (b|a) log

(
T (b|a)∑

k∈A paT (b|a)

)
.

15



a ρa

{Eb}b∈B

b

(a) Single use of a cq channel: Alice pre-
pares a state ρa according to the out-
come a of a random variable A, and
Bob measures the state, obtaining the
outcome of a random variable b.

a1 ρa1

{Eb}b∈B
ba2 ρa2

an ρan

(b) Multiple uses of a cq channel: Alice
prepares a state ρa1 ⊗ · · · ⊗ ρan ac-
cording to the outcomes of multiple
iid drawings of the random variable
A, and Bob collectively measures the
state, obtaining the outcome of a ran-
dom variable B.

Figure 3.1: The definition of our first communication problem in quantum mechanics for one-time use
and multiple uses of the cq channel.

The motivation of using the accessible information as our measure of information is that for
every choice of states {ρa}a∈A and Bob’s POVM, our setting is described by the classical
channel T introduced above. By the channel coding theorem, the capacity of each of these
channels is given by the supremum of the mutual information I(A : B) over all choices of
probability distributions pa. Therefore, if we maximize the accessible information with respect
to all choices of ensembles {pa, ρa}a∈A, we expect to obtain a meaningful quantity in the
context of communication of classical information via quantum systems, accounting for Alice’s
and Bob’s freedom in choosing the cq channel and POVM. In what sense this is the case is the
content of the next sections.

3.2.1 The Holevo bound

The calculation of the accessible information involves a maximization over all possible POVMs
and is generally a nontrivial optimization problem. However, a theorem by Holevo gives a
useful upper bound on this quantity.

Theorem 3.2.1 (Holevo [25–27]). Let {pa, ρa}a∈A be a finite ensemble of states ρa with prob-
ability distribution pa. Then the accessible information is bounded by

Iacc({pa, ρa}a∈A) ≤ χ({pa, ρa}a∈A) := S(ρ)−
∑

a∈A
paS(ρa) ,

where S(ρ) = − tr(ρ log ρ) is the von Neumann entropy of the state ρ and ρ =
∑

a∈A paρa
is the average signal state. The quantity χ({pa, ρa}a∈A) is called the Holevo quantity of the
ensemble {pa, ρa}a∈A.
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Proof (following [28]). Suppose Alice records her state in a classical register A (which we repre-
sent by a Hilbert space C|A| with orthonormal basis vectors {|a〉}a∈A). Then the joint classical-
quantum state on Alice’s classical register and the quantum system Q is given by

ρAQ =
∑

a∈A
pa |a〉〈a| ⊗ ρa .

Bob’s measurement, described by the POVM {Eb}b∈B, can be described by a quantum channel
which maps Q to QB (where B is Bob’s classical register with basis vectors {|b〉}b∈B) as

ρa 7→
∑

b∈B
MbρaM

†
b ⊗ |b〉〈b| ,

where M †bMb = Eb. The full state on AQB after Bob’s measurement is then

ρ′AQB =
∑

a∈A,b∈B
pa |a〉〈a| ⊗MbρaM

†
b ⊗ |b〉〈b| .

We introduce the quantum mutual information I(X : Y )ρXY = S(ρX)−S(ρXY )+S(ρY ), which
is a quantity analogous to the classical mutual information, but replaces the entropy of random
variables with the von Neumann entropy of quantum states. We then have

I(A : B)ρ′ ≤ I(A : QB)ρ′ ≤ I(A : Q)ρ , (3.4)

where we have used strong subadditivity (i.e., I(A : B) ≤ I(A : BC) for A,B,C classi-
cal registers or quantum systems [29, Chapter 11.4]) and monotonicity under CPTP maps
(i.e., I(A : B)E(ρ) ≤ I(A : B)ρ for a CPTP map E [29, Theorem 11.15]), in this case applied
for E being the channel describing Bob’s measurement. Since the left-hand side of Eq. (3.4) is
equal to the classical mutual information (3.1), it remains to show that we have

I(A : Q)ρ = χ({pa, ρa}a∈A) .

We calculate

S(AQ) = − tr

((∑

a∈A
pa |a〉〈a| ⊗ ρa

)
log

(∑

a′∈A

∣∣a′〉〈a′
∣∣⊗ ρa′

))

= −
∑

a∈A
tr (paρa (log pa + log ρa))

= −
∑

a∈A
pa log pa tr ρa −

∑

a∈A
pa tr (ρa log ρa)

= H(A) +
∑

a∈A
paS(ρa) ,

giving S(Q|A) = H(AQ) − H(A) =
∑

a∈A paS(ρa). By definition of the quantum mutual
information,

I(A : Q)ρ = S(ρQ)− S(ρQA) + S(ρA)

= S(ρQ)−H(A)−
∑

a∈A
paS(ρa) +H(A)

= S

(∑

a∈A
paρa

)
−
∑

a∈A
paS(ρa) .

The claim now follows with Eq. (3.4).
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The von Neumann entropy S(ρ) in this theorem is a central quantity of interest in quantum
information theory. It corresponds to the well-established Shannon entropy from classical
information theory. It plays a central role throughout this thesis.

Theorem 3.2.1 has a striking consequence, namely that the maximal amount of information
which can be retrieved from n qubits (where the Hilbert space is given by H =

(
C2
)⊗n

,
and S(ρ) ≤ log(2n) = n for any ρ ∈ S(H)) is merely n classical bits. In this sense, qubits
cannot store more information than classical bits can.

3.2.2 The converse to the Holevo bound

It is natural to ask whether the bound given by the Holevo quantity on the accessible infor-
mation can be achieved by a suitable choice of Bob’s measurement. Before we address this
question, let us introduce some terminology. Fix an ensemble {pa, ρa}a∈A. For L ∈ N, we

define the ensemble {P (L)
a , ρ

(L)
a }a∈AL according to

Pa = pa1 · · · paL and ρa = ρa1 ⊗ · · · ⊗ ρaL ∈ S(H⊗L)

for all a = (a1, . . . aL) ∈ AL. Suppose Alice prepares the state ρa with probability Pa and
Bob performs a measurement described by a POVM {Eb}b∈B ⊂ B(H⊗L). This protocol can
be described by a classical channel T (L) with input alphabet AL, output alphabet B, and

conditional probabilities T (L)(b|a) = tr
(
ρ

(L)
a Eb

)
. The mutual information between Alice’s

input and Bob’s output is given by

I(L)(A : B) =
∑

b∈B

∑

a∈AL
PaT

(L)(b|a) log


 T

(L)
b|a

∑
k∈AL PaT

(L)
b|k


 . (3.5)

This setting is depicted in Fig. 3.1b. By allowing Alice to use such “extended” ensembles
for arbitrarily large L and Bob to collectively measure the output, the upper bound from
Theorem 3.2.1 is in fact asymptotically achievable: By picking a sufficiently large L and choos-
ing a suitable measurement POVM, we can come close to the Holevo bound for the ensem-
ble {pa, ρa}a∈A. This is the content of the Holevo-Schumacher-Westmoreland (HSW) theorem.

Theorem 3.2.2 (Holevo, Schumacher, Westmoreland [30,31]; [24, Theorem 7.8]). Suppose we
have an ensemble {pa, ρa}a∈A of states ρa ∈ S(H) with a priori probabilities pa, and fix δ > 0.
Then, there is L ∈ N and a POVM {Eb}b∈B ⊂ B(H⊗L) for some finite alphabet B such that the
mutual information from Eq. (3.5) satisfies

I(L)(A : B)

L
≥ χ ({pa, ρa}a∈A)− δ .

3.3 The classical capacity of noisy quantum channels

So far we have assumed that there is no noise affecting the system which Alice and Bob use for
communication. Let us generalize our setup to the setting where Alice and Bob want to use a
memoryless quantum channel for communication.

Alice wants to send classical information to Bob. As before, she has a set of messages
{1, . . . , 2M}, M ∈ N, and wants to communicate one of them to Bob, this time via n uses
of a quantum channel E : S(HA) → S(HB) which maps Alice’s quantum system A to Bob’s
quantum system B. Multiple uses of the quantum channel E are modeled by the quantum
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channel E⊗n : S(H⊗nA ) → S(H⊗nB ). This quantum channel models the n-times use of the
channel E in a memoryless way.

A (2M , n) quantum code consists of an encoding and a decoding. An encoding is a col-

lection of codeword states {ρm}2Mm=1 ⊂ S
(
H⊗nA

)
. A decoding is a set of positive decoding

operators {Eb}2
M

b=1 ⊂ B(H⊗n) which satisfy
∑2M

b=1Eb ≤ 1H⊗n . The interpretation of this
quantum code is that Alice can prepare her system (described by a Hilbert space HA) in a

codeword state ρm ∈ S
(
H⊗MA

)
which depends on her choice of message m ∈ {1, . . . , 2M}.

Bob receives the output E⊗n(ρm) and can perform a decoding measurement to decide which
message was sent to him. The measurement which Bob performs on his system is described

by the POVM {Eb}2
M

b=0 ⊂ B(H⊗nB ), with E0 = 1 −∑2M

b=1Eb. If Bob obtains the output m
for 1 ≤ m ≤ 2M , he decides that the message m was transmitted, whereas in the case of the
output 0, the decoding fails. The average error probability of this code is given by

P (n)
e =

1

2M

2M∑

m=1

(
1− tr(E⊗n(ρm)Em)

)
,

and the rate of this code is R = M
n . As before, a rate R is achievable if there exists a sequence

of (d2nRe, n) quantum codes such that the average probability of error P
(n)
e tends to 0 as n→∞.

The classical capacity of the quantum channel E is then defined as the maximal achievable rate.

Definition 3.3.1 (Classical capacity of a quantum channel). The (full) classical capacity C(E)
of the quantum channel E : S(HA)→ S(HB) is the supremum of all achievable rates.

In comparison with the previous section, Alice’s task here becomes finding input states ρa
such that Bob can still reliably distinguish the output states E(ρa). We allow Alice to choose
her input states in order to maximize the information which Bob can receive on the other end of
the channel. Suppose Alice only uses product states as inputs, i.e., ρm = ρa1(m) ⊗ · · · ⊗ ρan(m),

with ρak(m) ∈ S(HA) for 1 ≤ k ≤ n for all 1 ≤ m ≤ 2M . In this case, Bob will also receive
product states, since memoryless channels have the property that they map product states to
product states. This motivates the definition of the so-called product state capacity, the setting
of which is depicted in Fig. 3.2a.

Definition 3.3.2 (Product state capacity). The product state capacity C1(E) of a quantum
channel E : S(HA)→ S(HB) is the maximal achievable rate if we only consider quantum codes
whose codeword states are product states.

With a slight modification of the proof of Theorem 3.2.2, it can be shown that the Holevo
quantity of the ensemble {pa, E(ρa)}a∈A can be achieved in rate by a suitable decoding scheme
for sufficiently large codeword lengths, providing us with a formula for the product-state ca-
pacity.

Lemma 3.3.3 (Product state capacity [31]). The product state capacity of a quantum chan-
nel E : S(HA)→ S(HB) is given by

C1(E) = χ(E) = sup
{pa,ρa}a∈A

χ({pa, E(ρa)}) = sup
{pa,ρa}a∈A

S(E(ρ))−
∑

a∈A
paS(E(ρa)) .

The product state capacity is sometimes also called one-shot capacity of the channel. It
can be shown that the product state capacity is also equal to the maximal achievable rate
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(a) The product-state capacity: Alice is only allowed
to use product states as codeword states, and
Bob collectively measures the output of the chan-
nel E⊗n.
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0E⊗n (ρm)
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(b) The full classical capacity: Alice can use generic
codeword states ρm ∈ S(H⊗nA ), and Bob collec-
tively measures the output of the channel E⊗n.

Figure 3.2: The operational settings of the capacities C1(E) and C(E).

using separable codeword states, i.e., convex combinations of product states [2,31]. However, a
general state in S(H⊗nA ) is not separable, but entangled2. Hence if we want to find the ultimate
limit on the transmission of information, we need to allow Alice to use general codeword states,
as we did in Definition 3.3.1. This setting is depicted in Fig. 3.2b.

We can find a formula for the full capacity by considering the product state capacity of the
channel T = E⊗n : S(H⊗nA ) → S(H⊗nB ) for some n ∈ N. As mentioned before, this channel
models n parallel uses of the channel E (in a memoryless way). In this setting, Alice can prepare
any input states in S(H⊗nA ) for the channel T . The maximal achievable rate for this channel
according to the HSW theorem is given by χ(T ), and the maximal achievable rate per use of
the channel E is given by χ(T )/n. This is the capacity of the channel E if Alice is allowed to
use the channel in entangled blocks of length n. Since product states are a special case of this,
it is clear that

1

n
χ(E⊗n) ≥ χ(E) for any L ∈ N . (3.6)

The full classical capacity of the channel E , in which quantum codes without restrictions on
the codeword states or on n are considered, is then obtained by taking the limit n→∞. This
is the ultimate limit on the transmission of classical information via the quantum channel E .

Corollary 3.3.4 (Classical capacity [31]). The full classical capacity C(E) of a quantum chan-
nel E : S(HA) → S(HB) is given by the limit

C(E) = lim
n→∞

1

n
C1(E⊗n) .

In literature, sometimes Lemma 3.3.3 and Corollary 3.3.4 are referred to as the HSW theorem,
since they were conclusions originally stated in the same article as Theorem 3.2.2.

There are other capacities one can associate with a quantum channel. One of them is the
entanglement-assisted classical capacity [32–34], in which Alice and Bob are allowed to share
unlimited amounts of prior entanglement. Another important capacity is the quantum capac-
ity [35,36], which measures the amount of quantum information which can be transmitted over

2A state is called entangled if it is not separable.

20



a quantum channel. While some of the results presented in this thesis have applications to the
entanglement-assisted classical capacity, the classical capacity plays a central role in this thesis.
Therefore we do not present details about other capacities here.

3.4 The additivity problem

The question whether the inequality in (3.6) is strict is referred to as the additivity problem. It
comes from the terminology that if we have

χ(E⊗n) = nχ(E) for all n ∈ N ,

then the quantity χ is said to be additive and we immediately obtain equality in (3.6). In this
case, the use of entangled signal states gives no operational advantage over using only product
states in the code. In a landmark result [37], Hastings proved that the Holevo quantity for
finite-dimensional channels is in general non-additive, i.e., for sufficiently large d there exists a
channel T : B(Cd)→ B(Cd) for which

χ(T ⊗2) > 2χ(T ) .

This leaves room for the classical capacity to be non-additive for some channels in the sense
that

C(E) > C1(E) .

Understanding for which channels the capacity may or may not be additive is a central problem
in quantum information theory.

The discussion so far has been a fairly general treatment of the classical capacity of quan-
tum channels. We want to focus on one particular model of quantum communication, which
uses bosonic quantum systems. Bosonic quantum systems are a model for continuous-variable
quantum systems, such as the quantum harmonic oscillator, the degrees of freedom of the
electromagnetic field, and more. In the next chapter, we introduce the formalism of bosonic
quantum information.
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4 Bosonic quantum systems

In this chapter, we review the main concepts and the formalism of continuous-variable quantum
information theory. For a more detailed exposition we refer to some of the many review papers
on this topic [38–40]. A ubiquitous model for continuous-variable quantum systems is given by
the bosonic harmonic oscillator of n modes, for n ∈ N. We start by presenting the case for one
mode, n = 1, which is instructive for the multimode case. For a one-mode bosonic system, we
have two quadrature operators, referred to as the “position” and “momentum” operators (Q,P ),
which satisfy the canonical commutation relations

[Q,P ] = i1 . (4.1)

Equivalently, we can describe the system in terms of the ladder operators, which are a pair of
bosonic field operators a, a† which satisfy the bosonic commutation relations

[a, a†] = 1 . (4.2)

The Hilbert space of a one-mode bosonic system Hosc is the separable Hilbert space spanned
by an orthonormal system {|j〉}j∈N0 . The ladder operators act on the basis vectors in the
following way:

a |0〉 = 0 ,

a |j〉 =
√
j |j − 1〉 for j ≥ 1 ,

a† |j〉 =
√
j + 1 |j + 1〉 for j ∈ N0 .

This clarifies the origin of the terminology ladder operators. The connection between the
quadrature operators and the ladder operators is given by

a =
1√
2

(Q+ iP ) , a† =
1√
2

(Q− iP ) , (4.3)

and it can easily be checked that this relation is consistent with the commutation relations (4.1)
and (4.2).

We are ready to treat the case of n modes, for n ∈ N. Corresponding to each mode
k ∈ {1, . . . , n}, there is a set of quadrature operators (Qk, Pk) which satisfy the canonical
commutation relations:

[Qj , Pk] = iδj,k1 for j, k = 1, . . . , n .

It is common to define a vector of quadrature operators R = (Q1, P1, · · · , Qn, Pn) and write
the canonical commutation relations in the following form:

[Rj , Rk] = i∆j,k1 for j, k = 1, . . . , 2n , (4.4)

where ∆ =

(
0 1
−1 0

)⊕n
is the matrix of a symplectic form on R2n.
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Equivalently, associated to each mode k ∈ {1, . . . , n}, there is a pair of bosonic ladder

operators ak, a
†
k, and these operators satisfy the bosonic commutation relations

[aj , a
†
k] = δj,k1 for j, k = 1, . . . , n .

The Hilbert space H⊗n = H⊗nosc is the n-fold tensor power of the Hilbert space of a quantum
harmonic oscillator of one mode. We obtain a basis of H from the one-mode basis vectors
as {|j1, . . . , jn〉 = |j1〉 ⊗ |j2〉 ⊗ · · · ⊗ |jn〉}(j1,...,jn)∈Nn0 . The action of the ladder operators is then
simply given by the action of the one-mode ladder operators after writing

ak = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−1 times

⊗ a⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−k times

.

The connection between the quadrature operators and the ladder operators of each mode is
given by Eq. (4.3).

4.1 Phase space description

The canonical commutation relations (4.4) imply that the mode operators Rk need to be un-
bounded. A common realization of operators satisfying these commutation relations is the
Schrödinger representation, where the Hilbert space of one mode is given by the square-
integrable functions on the real line, L2(R, dx), and the quadrature operators act as

(Qψ)(x) = xψ(x) ,

(Pψ)(x) = −i d

dx
ψ(x) for all x ∈ R .

These are defined on a dense subset of L2(R,dx).

The vacuum state |0〉 then corresponds to the wavefunction ψ0(x) := π−
1
4 e−

x2

2 , and the other
basis vectors can be obtained by applying the ladder operators using Eq. (4.3). Unfortunately,
the Schrödinger representation allows for subtle ambiguities regarding the domains of the in-
volved operators, a phenomenon which is illustrated by a counterexample from [41]. By moving
to a description in terms of certain exponentials of the field operators, which are bounded, this
problem can be overcome.

We introduce the so-called phase space, which is the vector space of R2n equipped with the
symplectic form (x, y) 7→ xT∆−1y. The Weyl displacement operators are defined by

D(ξ) := exp
(
iξT (∆−1R)

)
for ξ ∈ R2n .

They satisfy commutation relations on their own, namely

D(ξ)D(η) = exp

(
− i

2
ξT (∆−1η)

)
D(ξ + η) ,

D(ξ)D(η) = exp
(
−iξT (∆−1η)

)
D(η)D(ξ) for ξ, η ∈ R2n . (4.5)

These commutation relations are called the Weyl relations. The reason why the Weyl operators
are called “displacements” becomes apparent when investigating their action on the quadrature
operators, which is

D(ξ)†RjD(ξ) = Rj + ξj1 for all ξ ∈ R2n , j = 1, . . . , 2n .
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It is possible to regard the Weyl relations (as opposed to the canonical commutation relations)
as a starting point. The generators Rk of a family of unitary operators which satisfy the Weyl
relations themselves satisfy the canonical commutation relations1 [41]. For this description, we
introduce some terminology. A map D : R2n → B(H) which satisfies the Weyl relations (4.5)
and for which D(ξ) are unitary for all ξ ∈ R2n we call a Weyl system. A Weyl system is called
strongly continuous if for all ψ ∈ H, we have limξ→0 ‖ψ −D(ξ)ψ‖ = 0. It is called irreducible
if the only subspaces of H which are invariant under all D(ξ) are {0} and H.

There is an advantage in using the Weyl description: For a finite-dimensional phase space,
any two strongly continuous irreducible Weyl systems are unitarily equivalent. This is the
content of the Stone-von Neumann theorem.

Theorem 4.1.1 (Stone-von Neumann [20, 41, 42]). Let D(1) : R2n → B(H) and D(2) : R2n →
B(H) be two strongly continuous irreducible Weyl systems over a finite-dimensional phase space.
Then there exists a unitary operator U such that D(1)(ξ) = U †D(2)(ξ)U for all ξ ∈ R2n.

Hence if we only consider strongly continuous and irreducible Weyl systems, all these systems
are equivalent to the Schrödinger representation and there is no ambiguity left. From here on,
we write D for any strongly continuous and irreducible Weyl system and Rk for the associated
generators.

4.1.1 The characteristic function and the Wigner function

The Weyl operators implement a form of a non-commutative Fourier transform, which gives
us a duality between operators and complex functions on phase space. An n-mode quantum
state ρ can be represented by its characteristic function χρ ∈ L2(R2n, d2nξ), defined by

χρ(ξ) = tr(D(ξ)ρ) for ξ ∈ R2n .

The characteristic function is well-defined for trace-class operators ρ. However, the map ρ 7→ χρ
can be extended to the Hilbert-Schmidt class by continuity. Extended this way, it becomes an
isometry between the Hilbert-Schmidt class and L2(R2n,d2nξ), due to the Parseval relation [43]

tr(ρ†σ) = (2π)−n
∫

R2n

χρ(ξ)χσ(ξ) d2nξ .

Given a characteristic function, the state can be reconstructed by taking the so-called Weyl
transform of the characteristic function χρ,

ρ =
1

(2π)n

∫

R2n

χρ(ξ)D(ξ)† d2nξ .

The characteristic function, being a function in L2(R2n, d2nξ), can of course itself be viewed as
the classical Fourier transform of a function instead of a non-commutative Fourier transform.
This gives rise to the Wigner function: The characteristic function χρ is the Fourier transform
of the Wigner function Wρ,

Wρ(ξ) =
1

(2π)2n

∫

R2n

eiξ
T (∆−1η)χρ(η) d2nη for all ξ ∈ R2n .

1The converse is not true: there exist operators Rk which satisfy the canonical commutation relations, but
whose exponentials do not satisfy the Weyl relations [20, Example 14.5].
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The Wigner function of a state is normalized, but not positive in general, hence it is a quasiprob-
ability distribution.

Important quantities which give information about the characteristic function of a quantum
state are its first and second moments. The vector of first moments of the quantum state ρ is
called the displacement vector, which we denote by d(ρ). Its entries are given by

dk(ρ) := tr[Rkρ] for k = 1, . . . , 2n .

The second moments make up the entries of the so-called covariance matrix Γ(ρ),

Γkl(ρ) := tr[{Rk − dk(ρ)1, Rl − dl(ρ)1}ρ] k, l = 1, . . . , 2n ,

where {X,Y } := XY + Y X is the anticommutator. The covariance matrix is a 2n × 2n real
symmetric matrix which satisfies the uncertainty principle [44]

Γ(ρ) + i∆ ≥ 0 .

It turns out there is a particular class of quantum states for which the first and second
moments capture all information about the state. These states are the so-called Gaussian
states.

4.2 Gaussian states

Gaussian states are n-mode quantum states which have the property that their characteristic
function is Gaussian. Since the first and second moments capture all information about these
states, we will write ρG(d,Γ) for the Gaussian state with displacement vector d ∈ R2n and
covariance matrix Γ ∈ R2n×2n. This state has the characteristic function

χρG(d,Γ)
(ξ) = exp

[
−1

4
(∆−1ξ)TΓ(∆−1ξ) + iξ(∆−1d)

]
for all ξ ∈ R2n .

A prime example of Gaussian states are the so-called thermal states whose covariance matrix
is proportional to the identity. In the one-mode case, a thermal state is characterized by its
average number of photons N = tr(a†aρ) (also called the average energy or the mean photon
number) and has the form

ρth,N =
1

N + 1

∞∑

k=0

(
N

N + 1

)k
|k〉〈k| .

It has displacement vector d = 0 and covariance matrix Γ = (2N + 1)12. The von Neumann
entropy of a one-mode thermal state is given by

S(ρth,N ) = g(N) := (N + 1) log(N + 1)−N logN . (4.6)

Another example of one-mode Gaussian states is given by the so-called coherent states ρG(ξ,12)
for ξ ∈ R2n: These states are pure and can be written as |ξ〉〈ξ|, with

|ξ〉 := D(ξ) |0〉 .

It is easy to see that these states satisfy

a |ξ〉 =
ξ1 + iξ2√

2
|ξ〉 ,

26



hence the coherent states are eigenstates of the annihilation operator a. Coherent states form
a so-called overcomplete basis, and it is sometimes useful to describe states in terms of their
coherent state expansion. For instance, the thermal state ρth,N can be written as

ρth,N =
1

2πN

∫

R2

e−
|ξ|2
2N |ξ〉〈ξ| d2ξ .

The following theorem is useful in the analysis of Gaussian states.

Theorem 4.2.1 (Williamson [45]). Let A be a symmetric and positive 2n×2n matrix. Then A
can be diagonalized by a symplectic transformation S (i.e., a 2n × 2n matrix satisfying the
equation ST ∆ S = ∆) such that

SAST =

n⊕

j=1

νj12 ,

where νj ≥ 0. The values νj are called the symplectic eigenvalues of A and are equal to the
absolute values of the eigenvalues of i∆−1A.

Applying Williamson’s theorem to an arbitrary covariance matrix Γ ∈ R2n, we see that there
exists a symplectic matrix S such that

STΓS =

n⊕

k=1

νk12 ,

with νk ≥ 0 for k = 1, . . . n (in fact, due to the uncertainty relation, we have νk ≥ 1). The
symplectic transformation S induces a unitary US which realizes the action of S via conjugation:

U †SRkUS =
2n∑

j=1

SkjRj . (4.7)

We call such transformations US Gaussian unitaries (see Section 4.3). The unitary US trans-
forms a state ρG(0,Γ) with zero displacement vector into a product of one-mode thermal states:

USρG(0,Γ)U †S =

n⊗

k=1

ρ
th,

νk−1

2

.

A general Gaussian state ρG(d,Γ) with nonzero displacement vector then has the decomposition

ρG(d,Γ) = D(d)U †S

(
n⊗

k=1

ρ
th,

νk−1

2

)
USD(d)† .

This is called the thermal decomposition of the Gaussian state ρG(d,Γ). Since the von Neumann
entropy is invariant under conjugation with unitaries, the entropy of a Gaussian state ρG(d,Γ)
is given by

S(ρG(d,Γ)) =

n∑

k=1

g

(
νk − 1

2

)
.

The numbers νk−1
2 are sometimes also referred to as the numbers of thermal photons, since

they are equal to the mean photon numbers of the thermal states in the thermal decomposition
of ρG(d,Γ).
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4.2.1 Maximum entropy principle

Among all quantum states with given fixed covariance matrix and displacement vector, the
Gaussian state maximizes the entropy [18, 46]. This is a useful fact in the context of bosonic
information theory, and can be seen from the following Lemma.

Lemma 4.2.2 (Maximum entropy principle [18, Lemma 12.25]). The Gaussian state ρG(d,Γ)
has the largest entropy among all states with given first moments d ∈ R2n and covariance matrix
Γ ∈ R2n×2n. That is, for any n-mode quantum state ρ on a bosonic system with first and second
moments given by d and Γ, we have

S(ρ) ≤ S(ρG(d,Γ)) .

The proof proceeds by showing that for any n-mode quantum state ρ whose first and second
moments are given by d and Γ, we have

S(ρG(d,Γ)) = S(ρ) +D(ρ||ρG(d,Γ)) , (4.8)

where D(ρ||σ) = tr (ρ(log ρ− log σ)) is the relative entropy between the two states ρ and σ.
Because the relative entropy is nonnegative [18, Proposition 7.3], D(ρ||σ) ≥ 0 for all states ρ, σ,
it follows immediately from Eq. (4.8) that the Gaussian state maximizes the entropy among all
states with given first and second moments.

4.3 Gaussian channels

Gaussian channels are quantum channels which map Gaussian states to Gaussian states, that
is, a channel E : S(H⊗n) → S(H⊗m) is called Gaussian if E(ρ) is Gaussian whenever ρ is.
The action of a Gaussian channel can be described by a triple (X,Y, η), where η ∈ R2m is
an arbitrary vector, and X ∈ R2n×2m, Y ∈ R2m×2m are real matrices which satisfy Y T = Y
and Y + i(∆2m − XT∆2nX) ≥ 0. Here, the index in ∆2m is used to indicate the size of the
matrix ∆, which we will suppress from here on. On a Gaussian state ρG(d,Γ), the Gaussian
channel then acts as

E(ρG(d,Γ)) = ρG(Xd+ η,XTΓX + Y ) .

On a general state ρ, the action of E can be described on the level of characteristic functions:

χE(ρ)(ξ) = χρ(Xξ)e
− 1

4
(∆−1ξ)TY (∆−1ξ)+iξ∆−1η for all ξ ∈ R2n .

A first example for a Gaussian channel for n > m is the partial trace over the last n −m
modes, for which Y = 0, η = 0, and

X =

(
12m

0(2n−2m)×2m

)
.

On the level of characteristic functions, this amounts to evaluating the characteristic function
while setting the phase space coordinates of the last n−m modes to zero.

In the case where n = m, Y = 0, and X = S is symplectic, in light of Eq. (4.7) we

have E(ρ) = USρU
†
S and the channel is described by a Gaussian unitary US .
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4.3.1 The beamsplitter and squeezing

Let us consider a system of 2n modes, which we want to consider as the composition of two n-
mode systems A and B. The quadratures are labelled by

R = (RA, RB) = (Q1,A, P1,A, . . . , Qn,A, Pn,A, Q1,B, P1,B, . . . , Qn,B, Pn,B) .

We define a Gaussian unitary Uλ = USλ via a symplectic transformation Sλ, for λ ≥ 0, given
by

Sλ =





( √
λ12n

√
1− λ12n

−
√

1− λ12n

√
λ12n

)
for 0 ≤ λ ≤ 1 ,

( √
λ12n

√
λ− 1Z2n√

λ− 1Z2n

√
λ12n

)
for λ > 1 ,

(4.9)

where Z2n =

(
1 0
0 −1

)⊕n
. The unitary Uλ implements the beamsplitter of transmissivity λ

for 0 ≤ λ ≤ 1 and the (two-mode) squeezing for λ > 1. The quantum channel ρ 7→ UλρU
†
λ

implements a Gaussian channel acting on a 2n-mode system, with X = Sλ, Y = 0, η = 0.

For a quantum state σ ∈ S(HB) (the environment state) and λ ≥ 0, we define the quantum
channel

Eλ,σ(ρ) = trB

[
Uλ(ρ⊗ σ)U †λ

]
for all ρ ∈ S(HA) . (4.10)

The channel Eλ,σ is a Gaussian channel if the environment σ is a Gaussian state. This follows

immediately from the fact that the channels given by ρ 7→ UλρU
†
λ and the partial trace are

Gaussian. As an example, if n = 1, 0 ≤ λ ≤ 1, and σ = ρth,N is a thermal state with mean
photon number N , then Eλ,ρth,N

is a Gaussian channel with X =
√
λ12, Y = (1−λ)(2N +1)12,

and η = 0. This channel is commonly referred to as the thermal noise channel. For N = 0
this channel is often called the attenuation channel. As another example, if n = 1, λ > 1,
and σ = |0〉〈0| is the vacuum state, then Eλ,|0〉〈0| implements a Gaussian channel with X =

√
λ12,

Y = (λ− 1)12, and η = 0. This channel is also called the amplification channel.

4.3.2 The classical noise channel

The examples of channels we have seen so far coupled the system to an environment which was
described by a quantum state. We can also consider noise which has a classical description
acting on the system. For a probability density function f : R2n → R on phase space and t > 0,
we define

Ft,f (ρ) :=

∫

R2n

f(ξ)D(
√

2πtξ)ρD(
√

2πtξ)† d2nξ for all ρ ∈ S(H⊗n) . (4.11)

This channel is called the classical noise channel because it can be understood to add classical
noise to the system: The quantum state is displaced across phase space according to a clas-
sical probability distribution f (the parameter t is introduced purely for convenience). If f is
Gaussian, then the channel Ft,f is a Gaussian channel.

If the classical “noise function” f is Gaussian, then the corresponding classical noise function
is Gaussian. In the case when f(ξ) = fZ(ξ) = (2πσ2)−ne−‖ξ‖

2
2/(2σ

2) is equal to a centered
Gaussian whose covariance matrix is proportional to the identity, Ft,f implements a Gaussian
channel with X = 12n, Y = 4πtσ2

12n, η = 0.
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The channels defined by the beamsplitter and squeezing unitaries as well as the classical noise
channel are general models for bosonic quantum channels which cover many applications. In
fact, in the one-mode case, they are among the main building blocks for any Gaussian quantum
channel [47].

4.3.3 Non-Gaussian bosonic channels

It is easy to see that if the environment state σ of the channel Eλ,σ is not Gaussian, then
the channel is not a Gaussian channel. Similarly, if the function f is not Gaussian, then the
channel Ft,f is not a Gaussian channel. However, these channels still have more structure
than a generic channel: Their Stinespring dilations (see Theorem 2.2.3) are given by Gaussian
unitaries. Such channels are called Gaussian-dilatable [48]. Using this fact makes it possible to
understand some of their properties and to use techniques from Gaussian information theory to
prove statemens about these non-Gaussian channels. On the other hand, the study of generic
bosonic channels, which do not have a Gaussian dilation, is out of the scope of this work.

We have introduced some basic concepts of continuous quantum information theory and
quantum communication, and we can start with a discussion of particular topics which are
central to the work presented in this thesis.
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5 Entropic inequalities for bosonic quantum
systems

Entropy is a key quantity of interest in all of information theory. Hence it is a central task of
information theory to understand how entropy behaves when the system is subjected to noise.
Entropic inequalities give bounds on the entropy production of channels and therefore make up
important tools in the understanding of noise. In this chapter we give an overview of entropic
inequalities for bosonic quantum systems. We start with one of the most fundamental exam-
ples of entropic inequalities, namely the data processing inequalities of classical and quantum
information theory. Next we give a short introduction to additional entropic inequalities in
classical information theory, which have inspired similar inequalities in the quantum setting.
We then give an overview of a number of key results regarding entropic inequalities for bosonic
systems, and show where the work of the present thesis fits in.

5.1 Data processing

Let us recall the definitions of the Shannon entropy and the corresponding mutual information
from Eq. (3.1). A fundamental inequality governing these quantities is the data processing
inequality, which deals with the behavior of information under certain operations.

Theorem 5.1.1 (Data processing inequality [23, Theorem 2.8.1 and Corollary]). Let X,Y, Z
be A-valued random variables for a finite alphabet A which form a Markov chain, that is X →
Y → Z. Then,

I(X : Y ) ≥ I(X : Z) .

In particular, if f : A → A and Z = f(Y ) is a function of Y , we have

I(X : Y ) ≥ I(X : f(Y )) .

A common interpretation of the data processing inequality is that no manipulation of data
whatsoever can improve the inferences which can be made from the data [23].

Similarly, the quantum data processing inequality states that the application of CPTP maps
to each part of a bipartite quantum system cannot increase the mutual information between
the two parts of the system.

Theorem 5.1.2 (Quantum data processing inequality [49, Theorem 11.9.4]). Suppose that
ρAB ∈ S(HA ⊗HB) is a quantum state, where dim(HA), dim(HB) < ∞. Then, for all CPTP
maps N : B1(HA)→ B1(HA′) and M : B1(HB)→ B1(HB′), we have

I(A : B)ρAB ≥ I(A′ : B′)ρ′
A′B′

,

where ρ′A′B′ = (N ⊗M) (ρAB).
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There are many different formulations of data processing inequalities in a number of different
settings, the common theme being that some measure of information cannot be increased by
the processing of information. Such inequalities are among the most fundamental entropic
inequalities in information theory. Let us now focus on the particular entropic inequalities
which are important for the work presented in this thesis.

5.2 Entropic inequalities in classical information theory

For two Rn-valued random variables X and Y , the sum X+Y is defined as the random variable
with probability density given by the convolution of the probability densities of X and Y , i.e.,

fX+Y (z) :=

∫

Rn
fX(x)fY (z − x)dnx for z ∈ Rn .

For t > 0, the rescaled random variable
√
tX is defined as the random variable with probability

density given by f√tX(x) = t−
n
2 fX

(
x√
t

)
for x ∈ Rn.

In his seminal 1948 paper [9,10], Shannon identified a central entropic inequality which gives
a lower bound on the entropy of the sum of two random variables in terms of the individual
entropies of the two random variables. It is the entropy power inequality (EPI).

Theorem 5.2.1 (Entropy power inequality [10,50–52]). Let X and Y be two independent Rn-
valued random variables with finite second moments. Then we have

e2H(X+Y )/n ≥ e2H(X)/n + e2H(Y )/n , (5.1)

with equality if and only if X and Y are Gaussian random variables with proportional covariance
matrices, that is, E[(X − E[X])(X − E[X])T ] ∝ E[(Y − E[Y ])(Y − E[Y ])T ].

Remark 5.2.2. Sometimes the entropy power inequality is stated in the form

e2H(
√
λX+

√
1−λY )/n ≥ λe2H(X)/n + (1− λ)e2H(Y )/n ,

for λ ∈ (0, 1), where the random variable
√
λX +

√
1− λY has probability density

f√λX+
√

1−λY (z) =
1

λ
n
2 (1− λ)

n
2

∫

Rn
fX

(
x√
λ

)
fY

(
z − x√
1− λ

)
dnx for z ∈ Rn .

The quantity e2H(X)/n as a function of the random variable X is called the entropy power
of X. The choice of name can be explained by noticing that a probability density func-
tion fZ : Rn → R, fZ(z) = 1

(2πσ2)n/2
e−‖z‖

2
2/(2σ

2) which is the product distribution of n i.i.d.

Gaussians with variance σ2, has entropy H(Z) = n
2 log 2πeσ2. The entropy power of Z is then

(up to a prefactor) given by the variance σ2, which is also referred to as the average energy or
power of Z. The entropy power of a generic random variable X is thus equal to the power of the
Gaussian random variable which has the same entropy as X. It is remarkable that the entropy
power inequality (5.1) holds for all random variables which satisfy certain regularity assump-
tions (specifically, it is enough to assume that the random variables have finite variance [52]),
but are otherwise arbitrary. It is a very powerful inequality in classical information theory:
Shannon [10] has used it to calculate the capacity of the additive Gaussian noise channel and
to bound the capacity of an arbitrary additive noise channel. Later works have applied it in
a variety of different settings, for instance, in [52] the EPI was used to obtain bounds on the
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convergence rate in the central limit theorem, and applications to multi-terminal information
theory can be found in [53].

There is a wide array of important information-theoretic inequalities which concern entropic
quantities. We want to highlight a particular one and refer to [54] for an extensive review of
other information-theoretic inequalities. This is the isoperimetric inequality for entropies.

Theorem 5.2.3 (Isoperimetric inequality for entropies [54]). Let X be an Rn-valued random
variable with finite second moments and let

J(X) = J(fX) =

∫

Rn
∇fX(x)T∇fX(x)

dnx

fX(x)
(5.2)

be the Fisher information of X, where ∇f(x) =
(

∂
∂x1

f(x), . . . , ∂
∂xn

f(x)
)T

is the gradient of f .

Then we have
1

n
J(X)eH(X)/n ≥ 1 . (5.3)

The isoperimetric inequality for entropies is a direct consequence of the entropy power in-
equality via the de Bruijn identity [50,51], which is also a crucial ingredient in the proof of the
EPI:

Theorem 5.2.4 (De Bruijn’s identity [23,50,52]). Let X be an Rn-valued random variable with
finite second moments. Then we have, for any ε > 0

d

dε
H(X +

√
εZ) =

1

2
J(X +

√
εZ) ,

where Z has the probability density function fZ(z) = (2π)−n/2e−||z||
2
2/2. In particular, if the

limits limε′↓0
∣∣
ε=ε′

d
dεH(X +

√
εZ) and limε↓0 J(X +

√
εZ) exist, we have

d

dε

∣∣∣∣
ε=0

H(X +
√
εZ) =

1

2
J(X) . (5.4)

The isoperimetric inequality for entropies is closely related to Gross’s Log-Sobolev inequal-
ity [55], which has applications in quantum field theory.

There is a striking connection between the aforementioned entropic inequalities and geometric
analysis: The EPI and the related isoperimetric inequality are formally similar to the Brunn-
Minkowski inequality from geometric analysis [56]: For two compact subsets A,B ⊂ Rn, we
have

µ(A+B)1/n ≥ µ(A)1/n + µ(B)1/n ,

where µ is the Lebesgue volume and A+B is the Minkowski sum A+B := {a+b
∣∣ a ∈ A, b ∈ B}.

The Brunn-Minkowski inequality implies the isoperimetric inequality. The latter states that
for a subset A ⊂ Rn, we have

nω1/n
n µ(A)(n−1)/n ≤ area(A) ,

where area(A) = limε↓0
µ(A+Bε)−µ(A)

ε is the surface area of A if the limit exists [57–59], Bε is
an ε-ball in Rn, and ωn = µ(B1) is the volume of the unit ball B1 ⊂ Rn. Comparing with
Eq. (5.3), the entropy power plays the role of volume and the Fisher information plays the role
of inverse surface area. One can also view the isoperimetric inequality for entropies using this
connection: Gaussian states have the smallest entropy power for a fixed Fisher information. In
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this sense, Gaussian states play the role of balls, which have maximal volume for a fixed area
by the isoperimetric inequality. This connection between geometric analysis and information
theory has been shown to be very fruitful. In fact, there is a proof of the entropy power
inequality based on the Brunn-Minkowski inequality [60].

While Shannon did not provide a rigorous proof of the entropy power inequality (5.1), a series
of subsequent work has put the inequality on a rigorous foundation [50–52]. We give a sketch
of a proof of the classical entropy power inequality here because it is of central importance for
the quantum setting. The idea for this proof is due to Blachman and Stam [50,51] and makes
extensive use of the so-called heat semigroup. An alternative proof which is based on the sharp
Young inequality for convolutions and Rényi entropies has been given by Lieb in [61]. The
first proof can be translated to the quantum setting, which is why it is more important for our
discussion here.

Our proof sketch shows how to prove a linear version of the EPI, which reads

H(
√
λX +

√
1− λY ) ≥ λH(X) + (1− λ)H(Y ) , (5.5)

for any two independent Rn-valued random variables X,Y and 0 ≤ λ ≤ 1. The derivation of
the EPI is similar, but slightly more involved. However, this linear version can be shown to
imply the classical EPI, and vice versa [61,62]. The simplified version of this proof sketch was
presented in [63].

Proof sketch of Eq. (5.5). The first key ingredient in the proof is given by the Fisher informa-
tion inequality, which states that

λJ(X) + (1− λ)J(Y )− J
(√

λX +
√

1− λY
)
≥ 0 , (5.6)

for any two independent Rn-valued random variables X,Y and 0 ≤ λ ≤ 1. The second key
ingredient is the already stated De Bruijn identity (5.4). Now we consider the following map
on random variables, which we call the classical heat semigroup, for t ≥ 0:

Ncl(t)(X) := Xt := X +
√
tZ ,

where X +
√
tZ has the probability density function as in Theorem 5.2.4. This map acts

as a one-parameter semigroup on random variables, i.e., Ncl(t1 + t2) = Ncl(t1) ◦ Ncl(t2) for
all t1, t2 ≥ 0. For fX ∈ C2(Rn), the family of probability density functions ft = fNcl(t)(X)

satisfies the heat equation

∂

∂t
ft = ∆ft , ∆ =

n∑

j=1

∂2

∂x2
j

with initial condition f0(x) = fX(x) for all x ∈ Rn, that is, ft = et∆(f0). The probability
distribution functions ft have the explicit form

ft(x) =
1

(2πt)n/2

∫

Rn
e−‖y‖

2
2/(2t)f

(y)
0 (x) dny for x ∈ Rn .

For consistency with later notation, we have introduced the translation of a function, denoted
by f (y)(x) := f(x − y), for y ∈ Rn. It is a crucial fact that evolution under the heat semi-
group makes the function ft approach a Gaussian for t → ∞. Furthermore, the asymptotic
scaling of its entropy is a function of t only, independently of the initial distribution fX , i.e.,
limt→∞H(Xt)− g(t) = 0 for some function g which does not depend on fX .
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Moreover, the heat semigroup is compatible with convolution: We have, for any 0 ≤ λ ≤ 1
and any t ≥ 0,

(λXt + (1− λ)Yt) = (λX + (1− λ)Y )t .

As a last crucial ingredient, we note that translations of probability distribution functions are
also compatible with convolution: Denote by X(θ) the random variable which has probability

distribution function f
(θ)
X , for θ ∈ Rn. Then

(√
λX +

√
1− λY

)(θ)
=
√
λX(

√
λθ) +

√
1− λY (

√
1−λθ) .

This means that adding random variables and then translating them is the same as adding
appropriately translated versions of X and Y .

We can now move to the proof sketch of the EPI itself. Consider the given random variables X
and Y and apply the heat semigroup to them, obtaining random variables Xt and Yt. Define
the quantity

δ(t) := H(
√
λXt +

√
1− λYt)− λH(Xt)− (1− λ)H(Yt) .

If we can prove δ(0) ≥ 0, we have proven the linear entropy power inequality. In the limit t→∞,
we have

lim
t→∞

δ(t) = 0 , (5.7)

as the three entropy quantities have the same scaling as a function of t (and because of com-
patibility of convolution with the heat semigroup). By de Bruijn’s identity, we can calculate
the derivative of δ in terms of the Fisher information, and obtain

δ̇(0) =
1

2

(
J(
√
λX +

√
1− λY )− λJ(X)− (1− λ)J(Y )

)
≤ 0 ,

because of the Fisher information inequality (5.6). By the semigroup property of the heat
semigroup, this implies that

δ̇(t) ≤ 0 for all t ≥ 0 ,

hence the function δ is nonincreasing. Combining this with Eq. (5.7), we obtain δ(0) ≥ 0,
concluding the proof sketch.

An alternative proof of the entropy power inequality which also uses Fisher information but
does not involve the scaling of the entropy for t→∞ can be found in [54].

5.3 Quantum channels as convolutions

As we have seen, the sum of random variables is modeled by convolution of their probability
densities. One can ask if there is an analogous operation for quantum states, or for classical
noise acting on a quantum system. Considering the action of the channels from Sections 4.3.1
and 4.3.2 on the level of Wigner functions, the channels described by beamsplitter and squeezing
unitaries and the classical noise channel are convolutions. In particular, for 0 < λ < 1 and
t = 1

2π , we have for ξ ∈ R2n

WEλ,σ(ρ)(ξ) =
1

(2π)2n

∫

R2n

1

λn(1− λ)n
Wρ

(
η√
λ

)
Wσ

(
ξ − η√
1− λ

)
d2nη ,

and

WF 1
2π ,f

(ρ)(ξ) =
1

(2π)2n

∫

R2n

Wρ(η)f (ξ − η) d2nη , (5.8)
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for quantum states ρ, σ and a classical probability density f : R2n → R. Therefore the chan-
nels Eλ,σ and Ft,f are candidates for quantum analogs to the sum of random variables. The
next sections will deal with entropic inequalities for these “quantum-quantum” and “classical-
quantum” convolution operations.

5.4 The quantum entropy power inequality

The concepts of Section 5.2 can be translated to the quantum information setting. The role
of random variables is played by quantum states, the role of the differential entropy is played
by the von Neumann entropy, and the role of addition is played by the beamsplitter/squeezing
interaction Uλ which is defined in Eq. (4.9).

Theorem 5.4.1 (Quantum entropy power inequality [13, 63, 64]). Let ρX , ρY be two n-mode
bosonic states with finite second moments. Then we have

exp
S (Eλ,ρY (ρX))

n
≥ λ exp

S(ρX)

n
+ (1− λ) exp

S(ρY )

n
, (5.9)

for λ ∈ [0, 1] and the channel Eλ,ρY defined in Eq. (4.10).

The quantum entropy power inequality was first proven in the case λ = 1
2 by König and

Smith [63]. Subsequent work by De Palma et al. [64] lifted this restriction on λ, and the
sufficiency of finite second moments follows from the work carried out in [13].

The entropy power inequality stated above is not the only conceivable way to translate the
entropy power inequality to the quantum setting: Instead of taking the formal definition of
entropy power and replacing the differential entropy by the von Neumann entropy, there is
another way to generalize the notion of entropy power to the quantum setting. This is by
translating the notion that the entropy power of a random variable X is the power of the
Gaussian random variable Z which has the same entropy as X: For a generic n-mode state ρ,
one then considers the average energy per mode of a Gaussian thermal state which has the
same entropy as ρ [65]. This quantity is called the mean number of thermal photons of ρ and
is given by g−1(S(ρ)/n), where g is the function from Eq (4.6). This leads to the so-called
Entropy Photon-Number Inequality (EPNI) [65,66].

Conjecture 5.4.2 (Entropy Photon Number Inequality [65,66]). Let ρX , ρY be n-mode bosonic
states with finite second moments. Then we have

g−1

(
S(Eλ,ρY (ρX))

n

)
≥ λg−1

(
S(ρX)

n

)
+ (1− λ)g−1

(
S(ρY )

n

)
,

for λ ∈ [0, 1].

The EPNI is an arguably more natural way to translate the entropy power inequality to the
quantum setting than Eq. (5.9). For instance, if the EPNI holds true, it is saturated by thermal
states, while the quantum EPI is not saturated by Gaussian states with proportional covariance
matrices unless they have the same entropy [66]. However, despite considerable research efforts,
the EPNI remains an unproven conjecture. The EPNI has only been shown to hold true in very
few special cases: It is known to be true in the one-mode case when one of the input states is
thermal [67,68] and when the two inputs are Gaussian states [69].
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5.5 The entropy power inequality for classical noise channels

Motivated by the study of the EPI in the classical and quantum setting, one can wonder whether
there are more ways to formulate an entropy power inequality. In light of Eq. (5.8), we define
a convolution operation between a classical probability density function f : R2n → R and an
n-mode quantum state ρ as in Eq. (4.11) via

(f, ρ) 7→ f ?t ρ := Ff,t(ρ) =

∫

R2n

f(ξ)D(
√

2πtξ)ρD†(
√

2πtξ) d2nξ . (5.10)

The parameter t ≥ 0 is introduced as a “tuning parameter” purely for convenience. Sometimes
we will omit it and simply write f ? ρ in the case t = 1. The factor of

√
2π in the argument

of the Weyl displacement operators is also chosen purely for convenience1. This convolution
operation (for t = 1) was introduced by Werner in his seminal paper on quantum harmonic
analysis on phase space [6], which established a form of Young’s inequality for this convolution.
The EPI for this convolution operation reads

Theorem 5.5.1 (Quantum entropy power inequality for classical noise channels [1, 3]). Let ρ
be an n-mode bosonic state and f : R2n → R a probability density function, each with finite
second moments. Then we have, for any t ≥ 0,

exp
S(f ?t ρ)

n
≥ exp

S(ρ)

n
+ t exp

H(f)

n
. (5.11)

A proof outline of this inequality is one of the main contributions of Core Article I [1]. The
assumptions on ρ and f used here were proven sufficient in Core Article III [3]. It enables us
to study the output entropy of classical noise channels, which add classical noise to a quantum
system, in the case of general, possibly non-Gaussian, noise. This was a key step to establish
the capacity bounds on additive classical noise channels which are presented in Chapter 6.

Similarly to the classical EPI, the study of the inequality (5.10) has produced numerous
other interesting information-theoretic inequalities. One notable example is the isoperimetric
inequality for quantum entropies, which was derived in Core Article I [1] and which can be
stated as

1

2n
J(ρ)eS(ρ)/n ≥ 2πe . (5.12)

where J(ρ) is the quantum Fisher information defined as the trace of the Fisher information
matrix (

∂2

∂θj∂θk

∣∣∣∣
θ=0

D
(
ρ
∥∥ρ(θ)

))2n

j,k=1

, (5.13)

where D(·||·) is the relative entropy defined in Lemma 4.2.2 and we denote the translation of
an n-mode state ρ by a parameter θ ∈ R2n by ρ(θ) = D(θ)ρD(θ)†. The quantum Fisher infor-
mation is connected to the entropy production under a quantum version of the heat semigroup
in a way closely resembling the classical de Bruijn identity. This gives additional motivation for
the study of the convolution operation (5.10): While an isoperimetric inequality for quantum
entropies can easily be stated, it is not implied by the quantum entropy power inequality (5.9)
in the way the classical isoperimetric inequality is implied by the classical EPI. This is because
the covariance matrices of quantum states have to satisfy the Heisenberg uncertainty relation
and there is no meaningful analog of taking the limit of vanishing variance. However, the

1We note that in Article III, we have omitted this factor of
√

2π in the Weyl displacement operators and have
rescaled the classical differential entropy instead.
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inequality (5.11) can be applied to Gaussian distributions fZ , and then we can take the limit
of vanishing variance to obtain Eq. (5.12). For more information-theoretic inequalities in this
spirit, we refer to Core Article I [1].

5.6 Conditional information-theoretic inequalities

Many applications of the classical EPI consider a setting with side information and use a
different version of the inequality, which involves the conditional entropy. Let X, Y be Rn-
valued random variables. The joint probability density fXY : Rn × Rn → R of X and Y is
defined via

Pr(X ∈ A, Y ∈ B) =

∫

A

∫

B
fXY (x, y)dnydnx ,

for measurable A,B ⊂ Rn. The conditional probability density of X conditioned on Y taking
the value y ∈ Rn is defined when fY (y) 6= 0 as

fX|Y (x|y) =
fXY (x, y)

fY (y)
for x ∈ Rn .

The conditional entropy of X given Y is then defined as the expectation value over Y of the
entropy of X given the value of Y ,

H(X|Y ) =

∫

Rn
H(X|Y = y)fY (y)dny , (5.14)

where H(X|Y = y) is the entropy of the conditional probability density fX|Y (·|y) for fixed
y ∈ Rn.

Given three Rn-valued random variables X,Y, and M , we say that X and Y are conditionally
independent given M if the joint probability density is of the form

fXYM (x, y,m) = fM (m)fX|M (x|m)fY |M (y|m) , (5.15)

for all x, y,m ∈ Rn. This condition is equivalent to the condition that the conditional mutual
information of X and Y given M vanishes [70], which is

I(X : Y |M) := H(X|M) +H(Y |M)−H(XY |M) = 0 . (5.16)

Given a joint probability density fXYM such that X and Y are conditionally independent
given M , we can define the notion of the sum Z = X + Y via

fZ|M=m(z) =

∫

Rn
fXY |M=m(x, z − x)dnx, for all z ∈ Rn .

The conditional entropy power inequality is then an immediate consequence of the EPI (5.1).

Corollary 5.6.1 (Conditional entropy power inequality). Let X,Y,M be Rn-valued random
variables with finite second moments such that X and Y are conditionally independent given M .
We then have

e2H(Z|M)/n ≥ e2H(X|M)/n + e2H(Y |M)/n .
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Proof (following [13, Appendix A]). From the classical entropy power inequality (5.1), we have
for any fixed m ∈ Rn that

H(Z|M = m) ≥ n

2
log

(
exp

2H(A|M = m)

n
+ exp

2H(B|M = m)

n

)
. (5.17)

Note that the function q : R× R→ R, defined by

(a, b) 7→ n

2
log

(
exp

2a

n
+ exp

2b

n

)

is convex. Hence we have from the definition of the conditional entropy and Eq. (5.17)

H(Z|M) ≥
∫

Rn

n

2
log

(
exp

2H(A|M = m)

n
+ exp

2H(B|M = m)

n

)
fM (m)dnm

≥ n

2
log

(
exp

2

n

∫

Rn
H(A|M = m)fM (m)dnm+ exp

2

n

∫

Rn
H(B|M = m)fM (m)dnm

)

=
n

2
log

(
exp

2H(A|M)

n
+ exp

2H(B|M)

n

)
,

where we have used Jensen’s inequality [71,72] in the second step.

In light of the conditional EPI following immediately from the EPI, it is natural to ask
whether a conditional version of the quantum EPI (5.9) also holds. The quantum conditional
entropy of a quantum system A given a quantum system M is defined as

S(A|M) := S(ρAM )− S(ρM ) .

The quantum conditional mutual information is defined accordingly, by replacing the classical
conditional entropy with the quantum conditional entropy I(A : B|M) in Eq. (5.16). If the n-
mode bosonic systems A,B, and M are in a state ρABM , we say that A and B are conditionally
independent given M if the quantum conditional mutual information I(A : B|M) vanishes.
Regarding Eq. (5.15), we may ask how such states look like. Indeed, if HA,HB,HM are finite-
dimensional, if we decompose HM into a direct sum of tensor products of the form

HM =
⊕

j

HmLj ⊗HmRj , (5.18)

then states of the form

ρABM =
⊕

j

qjρAmLj
⊗ ρBmRj

with states ρAmLj
on HA ⊗ HmLj and ρBmRj

on HB ⊗ HmRj for a probability distribution {qj}
are such that A and B are conditionally independent given M . In fact, any conditionally
independent state is of this form for some decomposition (5.18) [70]. However, in the infinite-
dimensional case, this condition is sufficient, but it is not known whether it is necessary for
conditional independence.

The quantum conditional entropy power inequality can be proven for states ρABM for which
the n-mode bosonic systems A and B are conditionally independent given the quantum sys-
tem M .
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Theorem 5.6.2 (Conditional quantum entropy power inequality [13]). Let A,B be n-mode
bosonic systems and let M be a quantum system. Let ρABM ∈ S(HA⊗HB ⊗HM ) be such that

trAB

[(
n∑

k=1

a†k,Aak,A + a†k,Bak,B

)
ρAB

]
<∞, S(ρM ) <∞ ,

and let I(A : B|M)ρABM = 0. Then we have for any λ ≥ 0

exp
S(C|M)ρCM

n
≥ λ exp

S(A|M)ρAM
n

+ (1− λ) exp
S(B|M)ρBM

n
.

The state ρCM is obtained from ρABM by

ρCM = (Eλ ⊗ 1M )(ρABM ) ,

where Eλ is defined as
Eλ(ρA ⊗ ρB) := Eλ,ρB (ρA) ,

and linearly extended.

Unlike in the classical setting, the quantum conditional EPI is not an immediate consequence
of the quantum EPI because the quantum conditional entropy cannot be written as an expecta-
tion value in the spirit of Eq. (5.14). A linear version of the quantum conditional EPI was first
proven for Gaussian states in [12], and the full inequality was proven in [13]. The conditional
EPI has implications on the entanglement-assisted classical capacity of bosonic channels, as
was first discussed in [12].

One can also formulate a conditional version of the EPI for classical noise channels (5.11).
The proof of this inequality was the main contribution of Core Article III [3]. For details, we
refer to the presentation of the results from that article. We have given an overview of entropic
inequalities for bosonic systems and the state of research in this field, with focus on entropy
power inequalities. We are going to discuss applications of these entropic inequalities in the
next chapter.
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6 The classical capacity of bosonic quantum
channels

We have introduced the classical capacity of quantum channels in a general setting in Chap-
ter 3. When treating continuous-variable systems, some subtleties arise. We want to consider
one-mode bosonic channels and use a continuous alphabet A = R2, which leads to ensem-
bles {p(ξ)d2ξ, ρξ}ξ∈R2 , where d2ξ is the Lebesgue measure on R2 and p : R2 → R is a prob-
ability density function. The classical capacity from Corollary 3.3.4 is not well-defined for a
bosonic channel. To obtain a meaningful quantity, we need to introduce a constraint on the
signal states {ρξ}ξ∈R2 and their distribution p, which is similar to the power constraint (3.3)
commonly used in classical information theory. Such a constraint typically reads

tr
(
a†aρ

)
≤ N ,

and physically means that Alice can, on average, only use a finite amount of energy N . Here
the average signal state is given by

ρ =

∫

R2

p(ξ)ρξ d2ξ .

Theorem 6.0.1 (Energy-constrained classical capacity). The energy-constrained classical ca-
pacity of a bosonic quantum channel E : B(H)→ B(H) is given by

CN (E) = lim
n→∞

1

n
χnN

(
E⊗n

)
,

where χnN (E⊗n) is the Holevo quantity with average energy constraint N > 0 per mode of the
channel E⊗n : B (H⊗n)→ B (H⊗n). This Holevo quantity is defined as

χnN
(
E⊗n

)
= sup
{p(ξ)d2nξ,ρξ}ξ∈R2n

S
(
E⊗n(ρ)

)
−
∫

R2n

p(ξ)S
(
E⊗n(ρξ)

)
d2nξ , (6.1)

where the optimization is to be carried out over all ensembles {p(ξ)d2nξ, ρξ}ξ∈R2n of states
on H⊗n with average signal state ρ =

∫
R2n p(ξ)ρξ d2nξ which satisfy the average energy con-

straint tr
(∑n

j=1 a
†
jajρ

)
≤ nN .

As in the discussion in Chapter 3, a trivial lower bound1 on the classical capacity of a
quantum channel can be found by restricting to unentangled signal states, giving the so-called
one-shot capacity or product state capacity. This capacity is equal to the Holevo quantity and
we have

CN (E) ≥ χN (E) .

1We note that it is not at all trivial to calculate χN (E) for a given channel E , it is merely trivial to see that the
quantity is a lower bound on the full capacity CN (E).
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Naturally, the question whether the Holevo quantity is additive, i.e. whether χnN (E⊗n) =
nχN (E) for all n ∈ N, is a central question of quantum information processing. We have
discussed that the Holevo quantity is in general not additive for finite-dimensional systems,
but there is no counterexample for its additivity known in the bosonic setting.

The classical capacity of a special subclass of bosonic quantum channels, the so called single-
mode phase-insensitive Gaussian channels, has been found by Giovannetti et al. in [8, 73] -
in these cases, the classical capacity is additive, i.e. CnN (E⊗n) = nCN (E) for all n ∈ N. In
this chapter, we give an overview of this remarkable result and how entropic inequalities in the
spirit of the ones presented in Chapter 5 are related to capacity questions.

6.1 The classical capacity of one-mode phase-insensitive Gaussian
channels

A phase-insensitive one-mode bosonic channel is a quantum channel Φ : S(Hosc) → S(Hosc)

which is either phase-covariant or phase-contravariant under phase shift operations eiϕa
†a, that

is, for all ρ ∈ S(Hosc) and any ϕ ∈ R, we have

Φ
(
eiϕa

†aρe−iϕa
†a
)

=

{
eiϕa

†aΦ(ρ)e−iϕa
†a (phase− covariance)

e−iϕa
†aΦ(ρ)eiϕa

†a (phase− contravariance) .

Many channels of practical importance are phase-insensitive. For instance, the beamsplitter
channel Eλ,σ defined in Eq. (4.10) for Gaussian environment state σ is a phase-insensitive
Gaussian channel. The classical noise channel Ft,f from Eq. (4.11) is also a phase-insensitive
Gaussian channel if the probability density function f is Gaussian. Phase-insensitive Gaussian
channels have been the subject of extensive research for decades [11, 38, 65, 67, 68, 74–87], and
one of the landmark results in this context is the proof of additivity of the classical capacity for
one-mode phase-insensitive bosonic Gaussian channels [8]. For the most important particular
cases, this result is stated in the following theorem.

Theorem 6.1.1 (Classical capacity of fundamental phase-insensitive Gaussian channels [8]).
The classical capacity of the one-mode beamsplitter channel Eλ,σ with an environment state σ
equal to a thermal state ρth,NE

is given by

CN (Eλ,ρth,NE
) = g (λN + (1− λ)NE)− g ((1− λ)NE) .

The classical capacity of the one-mode classical noise channel Ft,f with noise probability

density f equal to a unit-variance centered Gaussian fZ(ξ) = (2π)−1e−‖ξ‖
2/2 is given by

CN (Ft,fZ ) = g (N + 2πt)− g(2πt) .

These capacities are achieved with Gaussian encodings, in this case via the ensemble

{p(ξ)d2ξ, ρξ}ξ∈R2 = {(2πN)−1e−‖ξ‖
2/(2N)d2ξ, |ξ〉〈ξ|}ξ∈R2

of coherent states with Gaussian probability density. The average signal state of such an
ensemble is the thermal state ρth,N . This corresponds to codewords which are tensor products
of coherent states.

The proof of Theorem 6.1.1 works by proving the so-called minimum output entropy conjec-
ture for these channels.
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Theorem 6.1.2 (Minimum output entropy of fundamental phase-insensitive Gaussian chan-
nels [84, 88]). For any n ∈ N, the vacuum state |0〉⊗n ∈ H⊗nosc minimizes the output entropy for
the n-mode channels E⊗nλ,ρth,NE

and F⊗nt,fZ , i.e., for any n-mode quantum state ρ, NE ≥ 0, t ≥ 0,

and 0 ≤ λ ≤ 1, we have

S
(
E⊗nλ,ρth,NE

(ρ)
)
≥ S

(
E⊗nλ,ρth,NE

(|0〉〈0|⊗n)
)

= nS
(
Eλ,ρth,NE

(|0〉〈0|)
)
,

S
(
F⊗nt,fZ

)
≥ S

(
F⊗nt,fZ (|0〉〈0|⊗n)(ρ)

)
= nS (Ft,fZ (|0〉〈0|)) .

In general, lower bounds on the output entropy of quantum channels can be used to estimate
the second term appearing in the definition of the Holevo quantity (6.1). This is commonly used
to establish upper bounds on the classical capacity. The upper bounds on the capacity obtained
from Theorem 6.1.2 in the case of the channels Eλ,ρth,NE

and Ft,fZ are, in turn, achievable by
the aforementioned Gaussian modulation of coherent states. For these channels, we then have a
lower and an upper bound on the capacity which coincide, which settles the question of classical
capacity.

This general procedure of obtaining lower bounds on the output entropy to establish upper
bounds on the capacity had already been used before Theorem 6.1.2 was proven. If the minimum
output entropy result is unavailable, one can use an Entropy Power Inequality to find lower
bounds on the output entropy. This strategy has been applied to the channel Eλ,ρth,NE

in [11,79],
and led to the best upper bounds known on the capacity of these channels before the landmark
result from [8]. In these cases, due to the fact that quantum EPIs are typically not tight, there
is still a gap between the lower bound on the capacity achievable by Gaussian modulation
of coherent states and the upper bound. In the case of the channel Eλ,ρth,NE

, this gap is
independent of the input energy and hence EPIs can be used to establish an absolute bound
on the additivity violation of the capacity of this channel. This means that if an additivity
violation exists at all, it is small, and Gaussian modulation of coherent states is a practically
useful encoding strategy. Ultimately, Theorem 6.1.1 rules out an additivity violation for the
channels considered in [11,79] and supersedes the results therein.

6.2 Consequences of the EPI & EPNI on the classical capacity of
non-Gaussian channels

When it comes to non-Gaussian channels, little is known about their classical capacity. Sup-
pose Φ : S(Hosc) → S(Hosc) is a general one-mode bosonic channel, which is not necessarily
Gaussian. Lower bounds can be obtained by employing a Gaussian encoding like in the pre-
vious section, while for upper bounds we need to upper bound the Holevo quantity of the
n-mode channels Φ⊗n, for any n ∈ N. Such bounds can be established if we have both upper
and lower bounds on the output entropy of the channels Φ⊗n. This is a very difficult problem
in general, but in the case of the non-Gaussian channels introduced in Section 4.3.3, which
are Gaussian-dilatable, Entropy Power Inequalities come to the rescue. The work from Core
Article II [2] employs the Entropy Power Inequalities from Core Article I [1] and [63], together
with the maximum entropy principle 4.2.2 to establish upper and lower bounds on the classical
capacity of the channels Eλ,σ and Ft,f for general, non-Gaussian σ and f . The gap between
the upper and lower bound is bounded by a constant independent of the input energy. Hence,
for these non-Gaussian channels, we have established a bound on the magnitude of additivity
violations, if such additivity violations exist.

43



Theorem 6.2.1 (Capacity bounds for non-Gaussian channels [2, Lemmas 1A and 1B]). The
classical capacity of the single-mode beamsplitter channel Eλ,σE for a general environment
state σE ∈ S(Hosc) with finite first and second moments satisfies

g
(
λN + (1− λ)N ep

E

)
≤ CN (Eλ,σE ) ≤ g (λN + (1− λ)NE)− log

(
λ+ (1− λ)eS(σE)

)
,

where NE = tr(a†aσE) is the average energy of the environment state, and N ep
E = g−1 (S(σE))

is the average number of thermal photons in the environment. The lower bound is achievable
with a coherent state ensemble. The difference between the upper and lower bound is bounded
by 2g ((1− λ)NE)− g

(
(1− λ)N ep

E

)
− log

(
λ+ (1− λ)eS(σE)

)
, independently of the input energy

constraint N . For the classical capacity of the single-mode classical noise channel Ft,f for a
general probability density function f : R2 → R with finite first and second moments satisfies

log
(
eg(N) + teH(f)

)
− g (πtE(f)) ≤ CN (Ft,f ) ≤ g (N + πtE(f))− log

(
1 + teH(f)

)
,

where E(f) =
∑2

i=1

∫
R2 ξ

2
i f(ξ)d2ξ is the energy of f . The lower bound is achievable with a

coherent state ensemble, and the difference between this upper and lower bound is bounded
by 2g (πtE(f))− log

(
1 + teH(f)

)
, independently of the input energy constraint N .

To our knowledge, this is the first result on the capacity of non-Gaussian bosonic channels.
We have given an overview of crucial results in the fields of entropic inequalities for bosonic
channels and classical capacities of bosonic channels, and how some of the results from the Core
Articles presented in this thesis contribute to the literature in these fields. Many questions
remain, such as the question of validity of the Entropy Photon-Number Inequality [65] or
the question of validity of the constrained minimum output entropy conjecture for multiple
modes [69], both of which are intimately related to Entropy Power Inequalities. We conclude
with the presentation of the contributed articles of this thesis.
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Geometric inequalities from phase space translations

Stefan Huber, Robert König, and Anna Vershynina

We establish a quantum version of the classical isoperimetric inequality relating the Fisher
information and the entropy power of a quantum state. The key tool is a Fisher information
inequality for a state which results from a certain convolution operation: the latter maps a
classical probability distribution on phase space and a quantum state to a quantum state. We
show that this inequality also gives rise to several related inequalities whose counterparts are
well-known in the classical setting: in particular, it implies an entropy power inequality for
the mentioned convolution operation as well as the isoperimetric inequality, and establishes
concavity of the entropy power along trajectories of the quantum heat diffusion semigroup.
As an application, we derive a Log-Sobolev inequality for the quantum Ornstein-Uhlenbeck
semigroup, and argue that it implies fast convergence towards the fixed point for a large class
of initial states.

A.1.1 Main Results

In the following, denote by f, g : R2n → R probability density functions with finite sec-
ond moments and by ρ, σ quantum states of an n-mode bosonic system with finite ener-

gies tr
(∑n

k=1 a
†
kakρ

)
, tr
(∑n

k=1 a
†
kakσ

)
<∞.

Lemma A.1.1 (Data processing inequality for convolution). Let f, g : R2n → R be probability
density functions with full support. Then

D(f ?t ρ‖g ?t σ) ≤ D(f‖g) +D(ρ‖σ) .

Theorem A.1.2 (Quantum Stam inequality). Let ωq, ωc ∈ R, and t ≥ 0. Then the Fisher
information from Eqs. (5.13) and (5.2) satisfies

ω2J(f ?t ρ) ≤ ω2
qJ(ρ) + ω2

cJ(f) ,

where ω = ωq +
√
tωc. In particular,

J(f ?t ρ)−1 − J(ρ)−1 − tJ(f)−1 ≥ 0 .

Let fZ : R2n → R be the probability density of a centered Gaussian with variance 1,
i.e., fZ(ξ) = (2π)−ne−‖ξ‖

2/2.

Lemma A.1.3 (Quantum Fisher information isoperimetric inequality). The following inequal-
ity holds, where t ≥ 0:

d

dt

∣∣∣∣
t=0

[
1

2n
J(fZ ?t ρ)

]−1

≥ 1 .

Let N(ρ) := eS(ρ)/n be the entropy power of an n-mode state ρ and let Ncl(f) := eH(f)/n be
the entropy power of a probability density function f : R2n → R. A trajectory of the diffusion
semigroup is given by the map t 7→ fZ ?t ρ for a fixed initial state ρ.
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Theorem A.1.4 (Concavity of the quantum entropy power). The entropy power along trajec-
tories of the diffusion semigroup t 7→ fZ ?t ρ is concave, i.e.,

d2

dt2

∣∣∣∣
t=0

N (fZ ?t ρ) ≤ 0 .

Theorem A.1.5 (Entropy Power Inequality). For t ≥ 0, the following inequality holds:

N(f ?t ρ) ≥ N(ρ) + tNcl(f) .

In particular, choosing f = fZ as the distribution of a unit-variance centered Gaussian, we
have

N (fZ ?t ρ) ≥ N(ρ) + t2πe .

Theorem A.1.6 (Isoperimetric inequality for entropies). We have

1

n
J(ρ)N(ρ) ≥ 4πe .

A.1.2 Application: The quantum Ornstein-Uhlenbeck semigroup

Consider a one-mode bosonic quantum system A and the quantum Ornstein-Uhlenbeck semi-
group {P(µ,λ)(t) = etLµ,λ}t≥0 defined by the Liouvillian generator.

Lµ,λ = µ2L− + λ2L+ for µ > λ > 0 , (A.1)

where

L+(ρ) = a†ρa− 1

2
{aa†, ρ} and L−(ρ) = aρa† − 1

2
{a†a, ρ} .

This semigroup has the thermal state σµ,λ = ρ
th, λ2

µ2−λ2
with mean photon number λ2

µ2−λ2 as fixed

point. We conjecture that in relative entropy, the quantum Ornstein-Uhlenbeck semigroup
converges exponentially fast to its fixed point, for any input state.

Conjecture A.1.7 (Fast convergence of the quantum Ornstein-Uhlenbeck semigroup in rela-
tive entropy). We have for any one-mode quantum state ρ and for all t ≥ 0

D
(
P(µ,λ)(t)(ρ)

∥∥σµ,λ
)
≤ e−(µ2−λ2)tD

(
ρ
∥∥σµ,λ

)
.

Using the isoperimetric inequality for quantum entropies, we give evidence for this conjecture
by establishing a bound on the entropy production rate of the quantum Ornstein-Uhlenbeck
semigroup for states with entropy larger than a certain threshold value, and for states with
mean photon number smaller than a certain threshold value. Furthermore, we show that the
statement holds for Gaussian states and that the exponent µ2 − λ2 is optimal for Gaussian
states. This conjecture has been subsequently proven in [7] using gradient flow methods, and
in Core Article III using the entropy power inequality.

A.1.3 Individual Contribution

I was significantly involved in finding the ideas and carrying out the scientific work of all parts
of this article, and I was in charge of writing the article, with the exception of Section V A and
Lemma 8.

55



Permission to include:

Stefan Huber, Robert König, and Anna Vershynina
Geometric inequalities from phase space translations.
J. Math. Phys. 58, 012206 (2017).

56



57










































































































































































































































































































