
Hardware-accelerated Data Acquisition and Authentication for
High-speed Video Streams on Future Heterogeneous

Automotive Processing Platforms
(Invited Paper)

Martin Geier
Chair of Real-Time Computer Systems

Technical University of Munich

geier@rcs.ei.tum.de

Fabian Franzen
Chair of IT Security

Technical University of Munich

franzen@sec.in.tum.de

Samarjit Chakraborty
Chair of Real-Time Computer Systems

Technical University of Munich

samarjit@tum.de

ABSTRACT
With the increasing use of Ethernet-based communication
backbones in safety-critical real-time domains, both efficient
and predictable interfacing and cryptographically secure au-
thentication of high-speed data streams are becoming very
important. Although the increasing data rates of in-vehicle
networks allow the integration of more demanding (e.g.,
camera-based) applications, processing speeds and, in partic-
ular, memory bandwidths are no longer scaling accordingly.
The need for authentication, on the other hand, stems from
the ongoing convergence of traditionally separated functional
domains and the extended connectivity both in- (e.g., smart-
phones) and outside (e.g., telemetry, cloud-based services and
vehicle-to-X technologies) current vehicles. The inclusion of
cryptographic measures thus requires careful interface design
to meet throughput, latency, safety, security and power con-
straints given by the particular application domain. Over the
last decades, this has forced system designers to not only opti-
mize their software stacks accordingly, but also incrementally
move interface functionalities from software to hardware.
This paper discusses existing and emerging methods for deal-
ing with high-speed data streams ranging from software-only
via mixed-hardware/software approaches to fully hardware-
based solutions. In particular, we introduce two approaches to
acquire and authenticate GigE Vision Video Streams at full
line rate of Gigabit Ethernet on Programmable SoCs suitable
for future heterogeneous automotive processing platforms.

1 INTRODUCTION & RELATED WORK

Even though neither Ethernet- nor, more generally, IP-based
communication networks were originally intended for safety-
critical real-time applications, their flexibility, low component
cost and general pervasiveness in information technology have
led to widespread use in the industrial automation, avionics
and, more recently, automotive domains. Traditionally home
to specialized electronic control units (ECUs), the automotive

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
ICCAD ’18, November 5–8, 2018, San Diego, CA, USA
➞ 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5950-4/18/11. . . ✩15.00
https://doi.org/10.1145/3240765.3243478

industry has mostly relied on proprietary, relatively low-speed
bus systems carrying various higher-level protocols to inter-
connect the up to 70 ECUs in current vehicles [10]. Maximum
bit rates range from 20 kbit/s for LIN (used for non-critical
low-cost components) to 500 kbit/s for CAN (safety-critical
subsystems such as powertrain, anti-lock brakes and driver
assistance) up to 10Mbit/s with FlexRay (handling, e.g.,
dynamics/stability-related traffic in high-end models) [23].

Although the accumulated data rates of traditional vehi-
cle functions are continuously rising (e.g., from around one
hundred kbit/s over two decades ago to several Mbit/s for
powertrain and chassis [14, 16]), they are easily surpassed by
the throughput requirements of even a single video stream.
In the infotainment domain, this motivated the development
and integration of MOST, which is capable of handling data
rates of 25/50/150 Mbit/s (depending on version and com-
munication medium) and can be used to stream (compressed)
movies stored on the head unit to the rear seats or to carry
a live feed from a rear-view camera [2, 11]. Advanced Driver-
Assistance Systems (ADAS), however, still rely on dedicated
point-to-point links based on LVDS (Low-Voltage Differential
Signaling) between cameras and corresponding ECUs [11, 12].

The increasing number of bus systems and ECUs facilitat-
ing the integration of more advanced features poses various
challenges both due to their cost and during development and
integration. This, in particular, holds true for the amount
of wiring reported to exceed three miles [21], which is be-
coming prohibitive due to packaging and weight restrictions.
For the same reasons, new functionalities may no longer be
added following the one-ECU-per-function paradigm and thus
might imply careful mapping onto existing architectures. As
a result, vendors and academia are moving away from such
federated towards integrated architectures [11, 15] commonly
relying on centralized ECUs for computation and Ethernet
as communication backbone. Although traditional Ethernet
based on two twisted pairs of wiring (100BASE-TX) had
already been used for diagnostics and updates [8, 12] over
the OBD-II (On-Board Diagnostics) port, the introduction of
Automotive Ethernet over Unshielded Twisted Single Pair via
BroadR-Reach/100BASE-T1 and 1000BASE-T1 now enables
the widespread deployment within vehicle backbones [13].

Although specialized Ethernet standards might provide
sufficient throughput for future electrical and electronic (E/E)
architectures, they – like nearly all traditional automotive bus
systems introduced earlier – lack integrated support for secu-
rity measures such as authentication or encryption. Combined
with no, relatively weak or only incompletely implemented



ICCAD ’18, November 5–8, 2018, San Diego, CA, USA M. Geier, F. Franzen and S. Chakraborty

protection features on the individual ECUs, this has led to
various attacks on automotive E/E architectures from both
within [10] and the outside [3, 21, 22] of the particular vehi-
cles. With such current attacks – capable of triggering false
sensor readings, unlocking doors, monitoring of position and
cabin up to interfering with engine and brakes – already span-
ning across previously separated functional domains (such
as powertrain, chassis and multimedia with its wireless inter-
faces), the introduction of vehicle-to-X technologies will most
likely expand the attack surface far beyond a single vehicle.

This combination of rising data rates, envisaged ECU cen-
tralization and undeniable need for authentication results
in a significantly increased demand for processing power on
ECUs, which previously have been reported of being unable
to handle merely Gigabit Ethernet alone [11, 12]. With simi-
lar challenges also present in other embedded system domains,
however, selected methodologies might be applicable to cur-
rent CPU-driven and, in particular, future heterogeneous
automotive processing platforms, too. In addition to graphics
processing units (GPUs) already used in human machine
interfaces [6] and occupancy grid generation [1], the latter
are expected to soon integrate hardware-programmable Field
Programmable Gate Array (FPGA) structures for, e.g., future
situation-adaptive ADAS [4]. This aligns with the general
trend in embedded systems to extend a traditional fixed-
function System-on-Chip (SoC) with configurable FPGA fab-
ric as the resulting Programmable SoC (pSoC) combines the
high efficiency of current SoCs (in terms of high throughput
and low power consumption) with the flexibility of FPGAs
than can (fully or partially) be reconfigured within seconds.

In this paper, we thus both discuss existing methods for
acquiring and authenticating high-speed data streams on tra-
ditional SoCs and introduce two hardware-based solutions for
current pSoCs. Starting with methods used in most of today’s
embedded systems and general-purpose computing platforms
(such as PCs and smartphones), we investigate how the im-
pact of heavy I/O interface load on the system CPU(s) is
mitigated. After a short digression on non-standard image ac-
quisition solutions found in the industrial automation domain,
we continue with cryptographic acceleration functionalities
available in common CPU cores. In contrast to these tradi-
tional methods, we first present a hardware-based solution for
high-speed image acquisition from a Gigabit Ethernet (GigE)
Vision camera on current heterogeneous processing platforms
with configurable FPGA fabric. As demonstrated on a Xilinx
Zynq pSoC combining a fixed-function SoC-like Processing
System (PS) with FPGA-based Programmable Logic (PL),
our solution is capable of handling full GigE line rate with-
out CPU intervention by feeding the extracted video stream
to the PL for subsequent authentication, image processing
and/or frame-buffering. In addition, we propose a novel I/O
architecture for Linux-based GigE Vision gateways aimed at
secured redundant networks transporting video streams from
several cameras. To this end, we introduce a hybrid star/line
network topology and a mixed-hardware/software gateway
that generates both authentication and parity data, which
are sent to the receiving node over a shared redundancy link.

The rest of this paper is organized as follows. Sec. 2 briefly
introduces automotive E/E architectures to summarize chal-
lenges and trends on both architectural and node level. We

Figure 1: Typical federated E/E architecture [17–19]

then focus on interface and cryptographic features of CPU-
driven nodes (Sec. 3) and on the architecture of heterogeneous
processing platforms (Sec. 4.1). The remainder of Sec. 4 then
introduces our proposed hardware architectures for acquisi-
tion (Sec. 4.2) and authentication (Sec. 4.3) including selected
implementation results. Sec. 5 finally concludes our work.

2 AUTOMOTIVE E/E ARCHITECTURES

Historically, automotive E/E architectures have been driven
by a number of factors aside from security (in terms of both
authenticity and confidentiality) [3]. Replacing purely me-
chanical subsystems with electromechanical solutions not only
increased overall efficiency (in terms of reducing both fuel
consumption and emissions), but also enabled the integration
of various comfort (e.g., central locking and infotainment)
and, more importantly, safety features (ranging from anti-lock
brakes to complex ADAS) [10, 18]. The industry’s distributed
development model with Tier 1 suppliers contributing entire
functionalities for integration by the vehicle’s OEM (Original
Equipment Manufacturer) has led to a large number of ECUs
and a similarly increasing amount of wiring - both becoming
prohibitive due to cost, packaging and weight reasons [15].
Although the proposed centralized implementations might
remedy these effects, the resulting tight integration of commu-
nication and computation (on fewer bus systems and ECUs,
respectively) leads to even higher throughput requirements
in contrast to the traditional federated architectures.

2.1 Communication: In-Vehicle Networks
Even far before the genesis of integrated computation archi-
tectures, automotive systems relied on shared communication
busses to carry signals of more than one function or, later,
functional domain. Superseding the dedicated point-to-point
wires previously added to replace complex and costly mechan-
ical linkages, shared bus systems soon became a bottleneck
in terms of both development complexity (i.e., ensuring an
adequately consistent time and data model across all ECUs)
and available data rate. Often driven by integration and band-
width concerns, independent bus systems were initially used
to connect the ECUs of one particular function domain [3].
With the advent of more extensive safety and comfort fea-
tures, those bus systems had to be bridged to facilitate data
transfer across domain boundaries. Fig. 1 shows such an archi-
tecture with a dedicated gateway between two CAN busses.
Even before the introduction of remote telemetry interfaces,
additional cross-domain connections were created by ECUs
controlling, e.g., multimedia and infotainment functions (such
as adaptive volume control or in-tunnel navigation relying on
speed and distance measurements from the chassis domain).



Data Acquisition and Authentication on Heterogeneous Platforms ICCAD ’18, November 5–8, 2018, San Diego, CA, USA

(a) Domain-oriented [8, 17] (b) Chassis-oriented [11, 12]

Figure 2: Prospective Ethernet-based architectures
with proposed redundancy link (dashed red) in Fig. 2b

Ethernet-based in-vehicle networks, on the other hand, gen-
erally have been proposed with homogeneous, fully-switched
topologies as reproduced in Fig. 2. Whilst the more traditional
domain-oriented topologies recreate the known hierarchical
structure (Fig. 2a) with some (sub-)domains potentially still
relying on other bus systems, others aim at fully integrated
double-star backbones (Fig. 2b) resembling the physical lay-
out of nodes (ECUs, sensors and actuators) within a vehicle.

The increasing number of camera streams fed to both the
driver’s information screens (e.g., for surround view) and the
ECU(s) implementing ADAS functions (e.g., lane departure
warning) requires in-vehicle networks to carry dozens (in case
of compressed video [12]) up to many hundreds of Mbit/s of
video data. Although systems initially relied on uncompressed
streams [8], upcoming automotive SoCs for the ADAS domain
now include low-latency H.264 codecs to enable transmission
of multiple HD streams over a single Ethernet link [20].

2.2 Computation & I/O Interfaces: ECUs
Although ECU architectures not only are inherently propri-
etary (and thus barely publicly documented), but also heavily
depend on the particular functional domain, the underlying
microcontrollers or SoCs nonetheless share many similarities
with non-automotive embedded systems (Fig. 3). Processor-
wise, current architectures range from low-speed single-core
CPUs (for, e.g., body applications) via dual-cores with lock-
step operation (chassis, powertrain and safety domains) up to
asymmetric dual quad-cores with additional lockstep CPUs
and video coprocessors for ADAS applications. Non-persistent
storage is generally provided by on-chip SRAM (with ECC
if required) on both per-core (L1 caches, scratchpad) and
shared levels. In addition, some high-end processors not only
rely on (less deterministic, but on average faster) multi-level
cache hierarchies, but also integrate external interfaces or
entire controllers for off-chip storage (such as flash or DDR).

CPUs with their caches, memories and peripherals are
then linked by (commonly multiple) on-chip interconnects for
data transfers whilst interrupt request (IRQ) lines between
peripherals and CPUs enable a timely reaction to various
interrupt sources such as timers or I/O peripherals. Direct
memory access (DMA) controllers on system and peripheral
level enable CPU-independent data transfers to/from mem-
ory and are commonly used for (potentially unsynchronized)
high-rate streams that otherwise would require immediate
and extensive attention of the CPU. Both techniques are
widely applied for in-vehicle network interfaces and some I/O
peripherals acquiring/generating complex high-rate signals.
One particular source of interrupts are the various I/O signals

Figure 3: Electronic Control Unit (exemplary)

required for engine control applications relying on precise de-
lays and crankshaft angle measurements to optimally trigger
fuel injection and ignition. Until recently, such functionalities
were implemented using interrupt service routines (activated
by the variable-speed crankshaft), timers and PWM modules
and required careful design due to the extremely high inter-
rupt rates (of above 10 kHz). Although multi-core ECUs have
been reported to alleviate this situation, many controllers
targeting the powertrain domain now include specialized hard-
ware accelerators in the shape of a Generic Timer Module
offloading time-critical processing steps from the CPU [7].

2.3 I/O Interfacing: Challenges & Trends
Driven by the fast-paced integration of new and increas-
ingly demanding applications, automotive E/E architectures
face significant challenges on both computation and commu-
nication levels. On the individual ECUs, processing is no
longer handled by (an increasing number of) CPUs alone as
several types of hardware accelerators ranging from software-
controllable DSPs and GPUs to hardware-programmable
FPGA structures and fixed-function offload units (e.g., GTM)
are becoming part of current automotive SoCs. In combina-
tion with the large external memories supported by certain
architectures, they enable complex ADAS applications that
perform complex processing steps (such as stereo vision) on
multiple video streams. The increasing data rates on incoming
interfaces and internal interconnects, however, require careful
design to avoid bottlenecks within the device – particularly
with regard to the proposed integrated E/E architectures.
In addition, both addition of new functionalities and adaption
to changing operation and communication environments de-
pend on safe and secure over-the-air updates of ECU firmware
and, potentially, reconfiguration of programmable hardware.

Although Ethernet already has been introduced for diag-
nostics, software updates and, later, video transmission in the
infotainment and ADAS domains, an entirely Ethernet-based
in-vehicle network will combine various data streams with
mixed criticalities onto a single communication medium. On
network-level, this requires reliable transmission of critical
(e.g., control) messages with guaranteed data rates and lim-
ited latencies. In contrast to several proprietary real-time
Ethernet variants, the relatively new AVB/TSN (Audio Video
Bridging resp. Time-Sensitive Networking) standards extend
Ethernet (switches) with time synchronization, stream reser-
vation and enhanced forwarding/queueing capabilities [9].
Many complex Ethernet controllers found on node-level thus
support multiple receive and transmit queues to separate



ICCAD ’18, November 5–8, 2018, San Diego, CA, USA M. Geier, F. Franzen and S. Chakraborty

incoming and outgoing data streams according to critical-
ity in terms of latency, throughput and integrity to ensure
functional safety. Security features such as authentication at
full line rate, however, are not yet commonly implemented.
Although several standardized security extensions (such as
TLS, IPsec and MACsec) exist for particular layers of the
OSI model, it is currently unclear which – if any – solution
is suitable for high-speed in-vehicle networks. In addition,
the convergence of external (WiFi, vehicle-to-X and cloud)
and in-vehicle network towards the Internet Protocol (IP) in-
creases both local and remote attack surfaces and might even
necessitate the integration of firewalls or intrusion detection
systems known from general-purpose information technology.

3 I/O ON CPU-DRIVEN PLATFORMS

On the majority of today’s traditional, CPU-driven processing
platforms, both I/O peripherals and hardware accelerators are
controlled via (CPU) instructions for regular memory accesses
(memory-mapped I/O). Combined with unified address space,
this enables CPUs, DMA controllers and other bus masters to
transparently transfer both configuration and payload data
between system components. The exact mode of operation for
data acquisition and authentication then depends on both the
particular peripheral and the chosen software environment.

3.1 Hardware/Software Interaction
Data transfers related to I/O peripherals can be driven by ei-
ther the CPU(s) or a system/peripheral-level DMA controller.
Whilst the former results in less complex and more predictable
implementations, it also decreases available CPU performance
due to time-consuming load/store operations. This holds true
for both polled (where the CPU continuously queries the de-
vice status) and interrupt-based I/O (where the peripheral ac-
tively triggers the CPU for shortest-possible response times).
DMA-based data transfers, on the other hand, execute with-
out CPU intervention but require careful synchronization to
avoid race conditions. Many network interfaces thus rely on a
hybrid approach that dynamically migrates between polling
and interrupt-based operation depending on the current CPU
load. Network stacks commonly use such Interrupt Modera-
tion in their control path to detect incoming packets, which
(if desired) seamlessly integrates with DMA-based data paths.

In case of the NAPI subsystem of the Linux kernel, for
instance, the first packet (within a certain period) is received
using interrupts. Afterwards, the kernel disables the receive in-
terrupt of the particular network interface and schedules a ker-
nel thread with high priority. As soon as the latter is executed,
the interface’s receive ring is polled until all packets are pro-
cessed and the kernel eventually returns to IRQ-based opera-
tion. Hardware support for interrupt coalescing can be used
in addition, but is not necessary for this approach to work.
This mechanism is in stark contrast to the engine control
application in Sec. 2.2 where every single interrupt is required.

In addition to those generic acquisition methods, many I/O
peripherals contain additional hardware to offload interface-
or protocol-specific operations from the CPU(s). In case of
Ethernet controllers, for instance, this holds true for the cal-
culation of checksums on multiple layers of the IP protocol for
in- and egressing packets (IP/TCP/UDP checksum offload).

Authentication and other cryptographic operations, on the
other hand, are available via specialized instruction set exten-
sions of recent CPUs. ARMv8 accelerates not only encryption
and decryption in the shape of single AES rounds, but also
hashing using SHA1 and SHA256. Recent x86-based CPUs
provide equivalent support through AES-NI and SHA-NI.
Whilst AES is primarily used for secure message encryption,
it can also serve as a primitive for strong cryptographic hash
functions. On ARMv8 and x86, those dedicated CPU instruc-
tions not only result in almost no runtime overhead, but also
are unprivileged and thus directly usable from userspace.

In contrast to extended instruction sets, some platforms
(e.g., Marvell ARMADA) feature a dedicated hardware crypto
accelerator module accessed using memory mapped I/O.

3.2 Device Drivers & Operating System
Once the hardware has finished data acquisition, control is
handed over to the CPU(s) for subsequent application pro-
cessing – generally supported by either a bare metal runtime
environment (RTE) or a fully-fledged Operating System (OS).
Whilst both commonly are composed of several layers to han-
dle system complexity (abstraction), only the latter provide
both managed access to shared hardware or software services
(multiplexing) and strict resource separation for applications.

Though network-level offloading mechanisms such as check-
sum calculation are mostly transparent and only require dri-
ver modifications (for initial configuration), image acquisition
and processing pipelines usually span multiple software layers.
Once received by the device driver, incoming image data are
processed by the network stack and passed to userspace (via,
e.g., a socket interface), where they are further parsed by an
image acquisition (e.g., GigE Vision) library and forwarded
to the actual application, which itself might integrate addi-
tional libraries for image processing. As this layering results
in significant overhead during acquisition, camera and library
vendors commonly include proprietary filter drivers that hook
between device driver and network stack to intercept high-
rate video data for direct forwarding to the application.

On Linux with locally connected USB cameras, however,
both library-based acquisition (via libusb) and a kernel-based
alternative are available. In the latter case, image acquisition
is fully handled by the kernel’s Video4Linux subsystem, which
eventually passes entire images to userspace. Although an
analogous implementation is conceivable for GigE Vision,
commercial Linux acquisition libraries rely on filter drivers.

In case of data authentication, similar implementation op-
tions are available that range from userspace-only (e.g., TLS
using OpenSSL) via mixed (e.g., OpenVPN using tun/tap
devices) to entirely kernel-based data paths in case of IPsec.

4 PROPOSED I/O ARCHITECTURES FOR
HETEROGENEOUS FPGA PLATFORMS

With current ECUs already relying on heterogeneous process-
ing for certain tasks, those implementing complex video-based
ADAS functions are expected to soon integrate programmable
FPGA fabric. We thus use Xilinx’ Zynq pSoC as a reference
platform for such future programmable nodes (Sec. 4.1) and
present I/O architectures for both acquisition (Sec. 4.2) and
secured redundant transmission (Sec. 4.3) of video streams.



Data Acquisition and Authentication on Heterogeneous Platforms ICCAD ’18, November 5–8, 2018, San Diego, CA, USA

Figure 4: Zynq pSoC with PS (left) and our proposed
PL Subsystem for authenticated & redundant Video

4.1 Reference Platform: Zynq pSoC
Current heterogeneous FPGA platforms such as Altera’s SoC
FPGAs and Xilinx’ Zynq pSoCs combine a fixed-function (i.e.,
hardcore) CPU-driven SoC with configurable FPGA fabric.
Whilst the former provides power-efficient software execution,
I/O interfacing and accesses to large external memories, the
latter enables the system designer to integrate custom softcore
blocks to the FPGA fabric. The Xilinx Zynq 7Z020 used for
our evaluations features a dual-core Processing System (PS)
and an Artix-based Programmable Logic (PL). As shown in
Fig. 4, the PS not only contains two ARM Cortex-A9 cores,
interconnects and On-Chip Memory (OCM), but also various
peripherals for both I/O (e.g., GigE) and storage (e.g., DDR).

Data transfers between PS and PL are enabled by multiple
general purpose (GP) and specialized interfaces. Whilst two
GP slave (S-GP) ports, four high-performance (HP) and an
Accelerator Coherency Port (ACP) are used to access most
PS resources from the PL, only the two GP master (M-GP)
ports are capable of initiating transactions from PS to PL.

In addition to those already available within the PS, DMA
controllers can be instantiated as softcores in the PL. Whilst
traditional DMA operation requires persistent (CPU-driven)
configuration to handle non-continuous memory buffers, con-
trollers with scatter-gather (SG) capability utilize linear CPU-
provisioned buffer descriptor structures to determine required
source or destination addresses without CPU intervention.

4.2 Hardware-based Data Acquisition
Although traditional CPU-based processing systems (used,
e.g., in industrial automation) are capable of purely software-
based image acquisition due to their high-end CPUs, smaller
and less power-hungry devices struggle to deal with increasing
aggregated data rates of current video streams, which now ex-
ceed several Gbit/s. Heterogeneous (hardware-programmable)
processing platforms, however, enable novel I/O architectures
that handle the acquisition entirely in hardware. The net-
work subsystems of current pSoCs, for instance, can easily
be extended and accelerated using SG/DMA Proxying [5],
which seamlessly interfaces to the receive data path between
integrated standard GigE controllers and system CPU(s).

The proposed approach exploits the SG capabilities of stan-
dard GigE controllers to redirect incoming Ethernet frames
to a custom core that performs hardware-based separation
of video-related and remaining traffic. Whilst the former can
either be processed in hardware (e.g., by a subsequent image
processing pipeline) or stored in a frame-buffer, the latter is
transparently forwarded to the IP stack as if directly received.

To this end, our softcore GigE Vision core replicates a
small subset of the (CPU-provisioned) buffer descriptors in
the PL, which enables efficient frame filtering for standard
GigE controllers without any CPU intervention by directing
the controller’s receive buffer queue pointer towards our core.
Our hardware-based solution results in sub-microsecond ac-
quisition latencies, which are two orders of magnitude shorter
than software alternatives on significantly faster platforms.

Further architectural details and comprehensive resource,
throughput and latency evaluations can be found in [5].

4.3 Hardware-accelerated Authentication
Just as data acquisition, authentication can also be signif-
icantly accelerated by moving selected cryptographic oper-
ations to hardware. In contrast to the approaches shown
in Sec. 3, our proposed I/O architecture maps the crypto-
graphic operations to neither CPU(s) nor a dedicated HW
module under CPU control (which fires an interrupt after
processing). Instead, a soft-core subsystem is added to the
traditional datapath for network I/O. For the transmit data-
path, it generates a Message Authentication Code (MAC) for
addition to the video stream. In case of a receive datapath,
the subsystem verifies the MAC so that tampered packets
can be discarded. The mechanism is comparable to checksum
offloading supported by most standard Ethernet controllers.

In addition to authenticating video streams, we propose a
shared parity link to increase system availability. As shown
in Fig. 2b, we combine star and line topologies such that all
cameras are connected to the ADAS ECU (star) and each
camera is connected to its respective neighbor. In this setup,
the shared parity stream is incrementally created camera-to-
camera and eventually reaches the ECU at the end of the line
topology (dashed red line in Fig. 2b). This RAID5-like mode
of operation allows reconstruction of all video data in case
of a single link failure without recovery time. As the video
streams are spread over spatially distributed links, this setup
is resilient against faults impacting a small area. It should be
noted that this setup does not protect against camera faults.

Combining the proposed I/O and network architectures not
only extends standard GigE Vision setups with authenticated
and redundant transmission, but also exhibits adequately low
and predictable latencies for hard real-time operation.

To demonstrate the concept, we developed a gateway node
relying on our proposed I/O architecture that interfaces our
proposed network topology. It bases on the Xilinx Zynq plat-
form, as presented in Sec. 4.1, equipped with three Ethernet
interfaces and running Linux 4.9 as OS with a Linux kernel
module providing support for our PL design. Initially, all
incoming network traffic is processed normally by the OS and
copied over to the system DRAM. Using an existing kernel
hook, our module then identifies all packets containing video
or parity data and notifies our two DMA cores in the PL
about the memory locations of the packets by writing to the
Descriptor Queue units (DQ, see Fig. 4). Remaining payload
and management traffic is processed by the OS as usual.

If at least one parity packet and one video packet are
available, both are simultaneously transferred to the PL. Each
DMA core thus directly accesses the DRAM via an S-GP
port without any further CPU intervention. In parallel to the



ICCAD ’18, November 5–8, 2018, San Diego, CA, USA M. Geier, F. Franzen and S. Chakraborty

� ��� ��� ��� ��� ����

�������������������

��������������

���������������

���������������

�����������������

�������
������������

Figure 5: Performance of Authentication Solutions

DMA transfers, the parity and video data streams are XOR-
ed together for redundancy. Furthermore, a MAC of the video
data is computed and cached until the end of the packet. The
Header and Trailer cores embed the updated parity stream in
a valid Ethernet frame and append the cached MAC to the
existing ones in the packet. As all computations are performed
in-stream, the transmission of the new parity packet starts as
soon as the updated parity stream is available. The internals
of the resulting parity frame are also shown in Fig. 4.

We employ Keccak, the winner of the SHA3 competition,
as cryptographic primitive for our MAC. In contrast to the
SHA1 and SHA2 families, Keccak’s internal design is more
suitable for efficient and thus faster hardware implementation.

Our demonstrator is able to process camera data at full
line rate of Gigabit Ethernet. Compared to the IPSec tunnel
implementation of the Linux kernel, our prototype can handle
about ten times more video data as the software-based system
with SHA256 MACs (on identical hardware) and, in addition,
provides redundancy support. Our solution introduces only
150 us of latency compared to around 250-300 us in case of an
IPSec tunnel. Our latency and throughput measurements can
be found in Fig. 5. Besides different IPSec MAC algorithms,
we also evaluated a simple forward routing scenario that does
not modify or authenticate incoming packets and can be used
as estimated upper bound of purely software-based solutions.

While our demonstrator implements only the gateway to-
wards the hybrid network topology, our proposed architecture
is also suitable for the receiving node where it enables highly
efficient processing due to minimized I/O-related interrupts.

5 CONCLUSION

In this paper, we both discussed existing and emerging CPU-
driven solutions for acquisition and authentication of high-
speed video streams and introduced two highly efficient I/O
architectures for current heterogeneous processing platforms.
Whilst our hardware-based acquisition solution enables less
power-hungry pSoCs to process incoming video streams with-
out any CPU intervention, our authentication gateway adds
authentication and redundancy to standard GigE Vision se-
tups via a hybrid star/line network topology. Both approaches
not only are capable of full line-rate of Gigabit Ethernet, but
also can be combined to increase system resilience against at-
tacks (denial-of-service and spoofing) and single link failures.

REFERENCES
[1] Michael Aeberhard, Sebastian Rauch, Mohammad Bahram, Georg

Tanzmeister, Julian Thomas, Yves Pilat, Florian Homm, Werner
Huber, and Nico Kaempchen. 2015. Experience, Results and
Lessons Learned from Automated Driving on Germany’s Highways.
IEEE Intelligent Transportation Systems Magazine 7, 1 (Spring
2015), 42–57.

[2] Alexander Camek, Christian Buckl, Pedro Sebastiao Correia, and
Alois Knoll. 2012. An Automotive Side-View System Based on

Ethernet and IP. In 26th International Conference on Advanced
Information Networking and Applications Workshops.

[3] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Ander-
son, Hovav Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis,
Franziska Roesner, and Tadayoshi Kohno. 2011. Comprehensive
Experimental Analyses of Automotive Attack Surfaces. In 20th
USENIX Conference on Security.

[4] Christopher Claus, Rehan Ahmed, Florian Altenried, and Walter
Stechele. 2010. Towards Rapid Dynamic Partial Reconfiguration
in Video-based Driver Assistance Systems. In 6th International
Conference on Reconfigurable Computing: Architectures, Tools
and Applications.

[5] Martin Geier, Florian Pitzl, and Samarjit Chakraborty. 2016.
GigE Vision Data Acquisition for Visual Servoing Using SG/DMA
Proxying. In 14th ACM/IEEE Symposium on Embedded Systems
for Real-Time Multimedia.

[6] Antje Gieraths, Christoph Müller-Albrecht, and Sean Brown. 2015.
Umsetzung der Anforderungen aus der ISO 26262 bei der Entwick-
lung eines Steuergeräts aus dem Fahrerinformationsbereich. In
Automotive - Safety & Security 2014. 69–77.

[7] Mukunda Byre Gowda, Carsten Deringer, and Karthikeyan Ra-
machandran. 2017. Exploring the potential of a multi channel
sequencer (MCS) in a next generation GTM-IP using virtual
prototypes. In 2nd IEEE International Conference on Recent
Trends in Electronics, Information Communication Technology.

[8] Peter Hank, Steffen Müller, Ovidiu Vermesan, and Jeroen Van
Den Keybus. 2013. Automotive Ethernet: In-vehicle Networking
and Smart Mobility. In Conference on Design, Automation and
Test in Europe.

[9] IEEE, Inc. 2010/2011. IEEE 802.1 Time-Sensitive Networking
Task Group. http://www.ieee802.org/1/pages/tsn.html.

[10] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel,
Tadayoshi Kohno, Stephen Checkoway, Damon McCoy, Brian
Kantor, Danny Anderson, Hovav Shacham, and Stefan Savage.
2010. Experimental Security Analysis of a Modern Automobile.
In IEEE Symposium on Security and Privacy.

[11] Hyung-Taek Lim, Lars Völker, and Daniel Herrscher. 2011. Chal-
lenges in a Future IP/Ethernet-based In-car Network for Real-time
Applications. In 48th Design Automation Conference.

[12] Hyung-Taek Lim, Kay Weckemann, and Daniel Herrscher. 2011.
Performance Study of an In-Car Switched Ethernet Network with-
out Prioritization. In Communication Technologies for Vehicles.

[13] Kirsten Matheus and Thomas Königseder. 2017. Automotive
Ethernet (2nd ed.). Cambridge University Press.

[14] Bernd Muller-Rathgeber, Michael Eichhorn, and Hans-Ulrich
Michel. 2008. A unified Car-IT Communication-Architecture:
Design guidelines and prototypical implementation. In IEEE In-
telligent Vehicles Symposium.

[15] Marco Di Natale and Alberto Luigi Sangiovanni-Vincentelli. 2010.
Moving From Federated to Integrated Architectures in Automo-
tive: The Role of Standards, Methods and Tools. Proc. IEEE 98,
4 (April 2010), 603–620.

[16] Nicolas Navet, YeQiong Song, Françoise Simonot-Lion, and Cédric
Wilwert. 2005. Trends in Automotive Communication Systems.
Proc. IEEE 93, 6 (June 2005), 1204–1223.

[17] Arne Neumann, Martin Jan Mytych, Derk Wesemann, Lukasz
Wisniewski, and Jürgen Jasperneite. 2017. Approaches for In-
vehicle Communication – An Analysis and Outlook. In Computer
Networks. 395–411.

[18] Thomas Nolte, Hans Hansson, and Lucia Lo Bello. 2005. Au-
tomotive communications – past, current and future. In IEEE
Conference on Emerging Technologies and Factory Automation.

[19] Roman Obermaisser, Christian El Salloum, Bernhard Huber, and
Hermann Kopetz. 2009. From a Federated to an Integrated Au-
tomotive Architecture. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 28, 7 (July 2009),
956–965.

[20] Renesas Electronics Corporation. 2015. Product Specifications
of the R-Car T2. https://www.renesas.com/eu/en/solutions/
automotive/soc/r-car-t2.html#specification. [Rev. 09.09.2015].

[21] Ishtiaq Rouf, Rob Miller, Hossen Mustafa, Travis Taylor, Sangho
Oh, Wenyuan Xu, Marco Gruteser, Wade Trappe, and Ivan Seskar.
2010. Security and Privacy Vulnerabilities of In-car Wireless
Networks: A Tire Pressure Monitoring System Case Study. In
19th USENIX Conference on Security.

[22] Dieter Spaar. 2015. Beemer, Open Thyself! – Security vulnerabili-
ties in BMW’s ConnectedDrive. c’t Magazin für Computertechnik
05 (2015). https://heise.de/-2540957 pp. 86–89, [English version].

[23] Helge Zinner, Josef Noebauer, Thomas Gallner, Jochen Seitz, and
Thomas Waas. 2011. Application and Realization of Gateways Be-
tween Conventional Automotive and IP/Ethernet-based Networks.
In 48th Design Automation Conference.


