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Abstract

A distinguishing characteristic of the flow around cars are large-scale coherent structures.
Understanding the interactions of structures in the flow promises a considerable potential
for aerodynamics optimizations. In this thesis, selected methods are assessed for their
capability to identify coherent structures in simulation data and to describe interactions
of structures. The methods are assessed theoretically and adapted for an application in car
aerodynamics where necessary. The most suitable methods are applied to four test cases
of different complexity and realism: The first test case is a cube mounted on the surface
of a channel. The second test case is composed of variants of the SAE body, a highly
simplified generic vehicle geometry. The third test case is the DrivAer body, a detailed
generic vehicle body. And the fourth case analyses a convertible type car geometry based
on a production car.

It was shown that none of the classical vortex detection methods under investigation – Q-
Criterion, ∆-Criterion, λ2-Criterion, λci-Criterion and Shear Maximizing Decomposition

(also called Triple Decomposition of Motion) – is well suited for the investigation of
unsteady car aerodynamics flow fields. The modal decompositions under investigation –
Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) –
are shown to be applicable in the investigation of unsteady car aerodynamics flow fields.
With the proposed pre and post-processing, the DMD was found to be best suited for
the investigation of unsteady coherent structures as well as for the investigation of their
interactions.
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1 Introduction

Substantial progress in the aerodynamic drag reduction of vehicles is becoming increas-
ingly difficult. The potential of the classical method of optimizing individual parts of the
vehicle like the optimization of the car underbody, the wheels, the side mirrors etc. is
largely exploited. While the focus of research in car aerodynamics has shifted in parts
to an optimization of the iterative development process to allow for a faster develop-
ment, one of the most important unsolved questions of car aerodynamics is the complex
aerodynamic interaction of local flow phenomena.

To investigate the local flow mechanisms and their interactions, selected methods are as-
sessed for their capability to detect coherent structures in simulation data and to charac-
terize their interactions. Proposed modifications and extensions to methods not currently
used in car aerodynamics allow for their application in the aerodynamics development
process.

1.1 Methodology

Due to limited computing resources and a lack of efficient unsteady simulation solutions
as well as a lack of efficient unsteady measurement technics, the car aerodynamics de-
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velopment of the past was concentrated on a rough optimization of the car shape and
a largely independent optimization of individual parts of the vehicle. As a consequence,
unsteady phenomena as well as the interactions of local flow phenomena were usually not
taken into account. With the need of a higher degree of aerodynamic optimization and
the availability of advanced unsteady simulation technics, unsteady simulations became a
standard method in the car development leading to a high accuracy of simulation results
and the possibility to investigate the unsteady flow.

Most of the methods to investigate structures in flow fields currently in use in car aero-
dynamics are not targeted to the investigation of complex unsteady flow phenomena and
interactions. In this thesis, the classical and most commonly used methods to identify
vortices in flow field data – Q-Criterion, ∆-Criterion, λ2-Criterion and λci-Criterion – are
reassessed. In addition, a less well known classical vortex detection method, the so called
Triple Decomposition of Motion is assessed. Applied as methods to identify and study
interactions of unsteady flow phenomena, the Proper Orthogonal Decomposition (POD)
and the Dynamic Mode Decomposition (DMD) are investigated in detail.

1.1.1 Challenges

The turbulent flow around a car shaped body is made up of distinguished features that
form connected regions, the so called coherent structures. The coherent structures in
the flow around a car are three dimensional, usually unsteady and exist in a wide range
of time and length scales. The structures interpenetrate and interact with each other.
While some large and time independent structures can be localized relatively easily and
are characteristic for the flow of a wide range of different car shapes, the vast majority of
structures are more difficult to identify and can change considerably with small changes
of the car geometry. Although these structures are usually smaller and lower in energy
than the dominant structures, they can have a strong influence on the overall flow by
interacting with the dominant structures. With a successively more detailed aerodynamic
optimization, the low energy structures and their interactions with the structures of high
energy are becoming increasingly more important. It is not uncommon that investigations
of isolated local flow phenomena lead to considerably different results when repeated
with slightly changed geometries or boundary conditions. An isolated optimization of
individual parts of the geometry does not converge towards the global optimum and the
optimization of the complete geometry leads to an exponentially increasing number of
geometry variants due to the aerodynamic interaction of the different parts. Selecting the
parameters for wind tunnel optimization based on the knowledge of interactions could
considerably reduce the number of geometry variants necessary and allow for a faster and
more detailed aerodynamic optimization.
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1.1.2 Approach

One of the most successful approaches in car aerodynamics research is the usage of sim-
plified, generic vehicle shapes. Highly simplified, generic vehicles like the Ahmed Body

(Ahmed et al. [1]) or the SAE Body (Cogotti [19]) have been used in the past to study
fundamental flow phenomena common to a certain class of car geometries. While these
geometries were useful in the investigation of fundamental flow phenomena, they cannot
be used in the investigation of the aerodynamic details of production cars. To overcome
this restriction another class of generic vehicle geometries has been employed the so called
realistic generic vehicles. A representative of this class of generic vehicles is the DrivAer

Body (Heft et al. [38], Mack et al. [68]). The DrivAer Body resembles a typical midsized
passenger car and is geometrically derived from two production vehicles – the Audi A4

(B8, since 2007) and the BMW 3 series (E90/91, since 2005) [39]. The realistic generic
vehicle models are especially suited for the investigation of aerodynamic interactions like
the interaction of the flow through the engine compartment and the flow in the wheel
houses. While the realistic generic geometries allow identifying the principles of the flow
on a detailed level, the validity of findings is often limited to small changes in the geom-
etry and therefore not generally transferable to production vehicles. As a consequence,
studies on variants of generic car geometries become less relevant for flow phenomena of
increasing complexity and nonlinearity.

An alternative to the identification of fundamental transferable flow phenomena in the
flow around generic car geometries is a method-based approach. Instead of parameter
studies with different simplified geometries, the topology of the flow around a single, fully
detailed geometry is investigated. While the objective of investigations on generic vehi-
cles is the identification of transferable mechanisms, the objective of the method-based
approach is to identify the important mechanisms in the flow around one geometry with-
out considering transferability to other geometries. The scientific progress is represented
here by the capabilities of the method rather than by a description of a transferable
phenomenon. This allows extending the subject of investigations to arbitrarily complex
geometries and arbitrarily complex flows. Examples of studies following a method-based
approach are the usage of adjoint methods for gradient-based optimization in car aerody-
namics by Othmer [81], the investigations of the unsteady A-pillar vortex system using
a Proper Orthogonal Decomposition (POD) of velocity and vorticity fields by Levy and
Brancher [64] or the decomposition of the wake flow of a detailed generic car geometry
with a Dynamic Mode Decomposition (DMD) by Peichl et al. [83]. While the adjoint
methods give a direct measure of the sensitivity to geometry modifications, the applica-
tion of reduced order models and decompositions, such as the POD or the DMD, allow
isolating individual flow processes and their associated coherent structures from the flow
field and providing information of relationships in the flow.
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1.1.3 Implementation

Following the described method-based approach, this thesis investigates and adapts the
capabilities of selected methods to be used in the car aerodynamics development process.
The application of the methods is shown in four test cases of different complexity.

Methods In chapter 2, the methods used in this thesis are introduced and described.
Alongside the numerical and experimental methods, the core methods for the identification
of coherent structures are discussed and evaluated in detail. Proposed modifications to
the methods are described and recommendations for their application are given.

Vortex Identification In chapter 2.4 of the thesis, requirements to vortex identifi-
cation methods applied to automotive aerodynamics flow fields are formulated. The
most popular vortex detection methods, Q-Criterion, ∆-Criterion, λ2-Criterion, λci-
Criterion, as well as a less well known vortex detection method, the Shear Maximiz-

ing Decomposition (also called Triple Decomposition of Motion) are introduced.

The methods are first theoretically evaluated based on simple canonical flow exam-
ples and then applied to the flow around a car and analyzed based on the three
tensors of the shear maximizing decomposition.

The methods can be shown to fail for some canonical flows or show false positives
for others. It is concluded, that none of the investigated methods can be used for
quantitative analyses of vortices in car aerodynamics.

Modal Decompositions In chapter 2.5 the Proper Orthogonal Decomposition
(POD) and the Dynamic Mode Decomposition (DMD) are described and evaluated
theoretically. The methods are implemented for fully distributed memory parallel
processing to allow for an application to the entire vehicle flow field. The POD
is introduced based on a Singular Value Decomposition. To account for ambigu-
ous results due to the sign indeterminacy of the POD, an algorithm to estimate a
physically meaningful sign is introduced.

The Dynamic Mode Decomposition according to Schmid [92] and Rowley et al. [89]
is introduced and described in detail. To allow for an application of the DMD to car
aerodynamics flow fields a pre-processing procedure is proposed. It is shown that
the DMD analysis would fail for most car aerodynamics investigations without the
proposed procedure.

A comparison of the Proper Orthogonal Decomposition with the Dynamic Mode
Decomposition shows a superiority of the DMD for most applications in car aero-
dynamics.
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Applications The methods introduced and assessed theoretically in chapter 2 are applied
to test cases of different geometry complexity in the chapter 3. For each test case, the time
averaged flow is investigated first. The dominant coherent structures of the time averaged
flow are described in detail as a basis for the unsteady investigation. Subsequently, a
detailed analysis of the unsteady flow is executed.

The applications are presented in the chapters 3.1 Surface Mounted Cube, 3.2 SAE Car

Model, 3.3 DrivAer Car Model and 3.4 Convertible Car Model :

Surface Mounted Cube As a simple example of a bluff body flow, the flow around
a cube mounted on the surface of a channel is analyzed. The results are compared
to results from literature.

SAE Car Model In this test case, the SAE car body is investigated in four different
configurations. Applying the DMD, an interaction of the wake flow with the struts
of the test model can be shown.

DrivAer Car Model As an example of a realistic generic vehicle, the flow around
the DrivAer body is studied. Here, a connection between the unsteady coherent
structures in the flow and unsteady force fluctuations acting on the model is estab-
lished by a DMD analysis of force and velocity fields.

Convertible Car Model The flow around an open roof convertible type car model
is analyzed as an example of a detailed vehicle geometry. A flow oscillation found
in previous wind tunnel tests could be isolated using the Dynamic Mode Decompo-
sition. The oscillation could be explained as an interaction of the wake flow with
the shear layer from the wind screen and the air in the passenger compartment.
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1.2 Coherent Structures

While structures and organized motions were long apparent in flowing fluids, the concept
of coherent structures as a scientific approach to explain the organized motion in a turbu-
lent fluid flow can be traced back to the 1950s with the description of hairpin vortices in
turbulent boundary layers by Theodorsen [104] (cited in, amongst others, Aubry et al. [4],
Zhou et al. [112] or Elavarasan and Meng [27]). In the following years, a large number
of mathematical methods and algorithms were proposed to describe coherent structures.
Although considerable progress was made in the identification and description of coher-
ent structures, a commonly accepted definition of coherent structures still does not exist.
Instead, the identification schemes are progressively tailored to specific questions whereby
the underlying mathematical model of the scheme serves as the definition of the coherent
structure.

The most widely used schemes are vortex identifications schemes with the most popu-
lar schemes being the Q-Criterion (Hunt et al. [42]) and the λ2-Criterion (Jeong and
Hussain [47]). The Proper Orthogonal Decomposition (POD) (Lumley [66], Sirovich [96])
can be found to be used mainly in research projects. In addition to these, a multitude
of specialized schemes and identification procedures can be found in the literature. An
overview of identification schemes is given by Haimes and Kenwright [36], Roth [88], Jiang
et al. [50], Pobitzer et al. [85], Kolář et al. [57], Haller [37] or Tu [106]. Comparisons of se-
lected identification schemes were published in Bonnet et al. [10], Chakraborty et al. [13],
Chen et al. [14] or Cucitore et al. [22]. In this thesis, identification schemes are inves-
tigated for their potential for car aerodynamics investigations. The Q-criterion(Hunt et
al. [42]), ∆-criterion (Chong et al. [18]), λ2-criterion (Jeong and Hussain [47]), λci-criterion
(Zhou et al. [112]) and a shear maximizing decomposition of the velocity gradient tensor
(Kolář [55]) are investigated for time averaged flows around cars. The Proper Orthogo-

nal Decomposition (POD) (Lumley [66], Sirovich [96]) and Dynamic Mode Decomposition

(DMD) (Schmid [92], Rowley et al. [89]) are used to investigate unsteady flow fields.

Frame Dependence of Coherent Structures

Coherent structures, as connected regions of organized motion in a fluid, are inherently
frame dependent. A coherent structure, characterized in one reference frame can be
different or totally absent in another frame of reference. This effect is shown in Fig. 1.1
on a time averaged, two dimensional flow over a backward facing step. The flow in Fig 1.1a
is shown in the frame of the geometry. The flow in Fig. 1.1b is shown in the frame of the
bulk velocity. Structures, clearly visible in the frame of the geometry cannot be seen in
the frame of bulk velocity due to the superposition of the flow field of the structure and
the translational velocity relative to the frame of reference.
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(a) Flow in the frame
of the geometry.

(b) Flow in the frame
of the bulk velocity.

(c) Orientation of
simple shear (Galilean
invariant).

Figure 1.1: Line Integral Convolution (LIC) of a time averaged, 2D flow over a backward
facing step. Flow from left to right.

Due to the problem of frame dependence, most methods to identify coherent structures
rely on Galilean invariant or frame-indifferent descriptions of the flow. In Fig. 1.1c the
flow is visualized based on the orientation of simple shear, computed from a shear max-
imizing decomposition of the velocity gradient tensor (see section 2.4.2 for details). The
orientation of simple shear is Galilean invariant and is able to show the vortices in the
wake of the step as well as the vortex on top of the step. In addition to these, it shows
a large vortex downstream the step that is not present in the above pictures. Although
not objective, the method is able to detect coherent structures with different frames of
reference.

Frame-indifference or objectivity in fluid mechanics is often discussed in the context of con-
stitutive functions and material properties. The principle of material frame-indifference

or principle of material objectivity was introduced by Truesdell and Noll in [105]. It was
later formulated by Noll as:

“The constitutive laws governing the internal interactions between the parts of

the system should not depend on whatever external frame of reference is used

to describe them.” [76].
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Noll distinguishes between internal and external frames and defines an internal frame as
a frame that can be constructed from the system itself. This formulation of objectivity
allows two approaches for a frame indifferent description of coherent structures. One is
a description of the structure in its own frame of reference, while another approach is a
description that produces the same result independent of the frame of reference and would
therefore produce the same result in the internal frame of the coherent structure.

A single, isolated coherent structure can be fully described by both approaches. But in
turbulent bluff body flows, as in car aerodynamics, coherent structures exist in cascades of
interpenetrating structures of different time and length scales. In the turbulent wake flow
of a bluff body, a multitude of coherent structures exist with different frames of reference
at one point in time and space. An objective detection scheme of the second type that
considers all coherent structures independent of coordinate system combines all structures
at one point in time and space to one single result and will not be able to distinguish
between the structures. Another conceptual problem of objective detection schemes of the
second type is the fact that they cannot distinguish between a rigid body rotation in the
flow field and a rotation of the reference frame. Objective detection schemes that consider
all coherent structures independent of coordinate system therefore lend themselves more
to the detection of the boundaries of coherent structures than to the description of the
structures themselves.

Apart from the discussion of the necessity and usefulness of objective detection schemes
for the detection of coherent structures, there is also an ongoing discussion about the
principle of frame-indifference itself. Two of the latest contributions to this discussion are
Frewer [29] and Liu and Sampaio [65]. Frewer gives a detailed historic review on the prin-
ciple of material frame-indifference with a discussion of the most influential contributions
and provides a framework for the mathematical formulation of material frame-indifference.
Liu and Sampaio comment on the different concepts of frame-indifference and material
frame-indifference.

Coherent structures in the flow around car geometries

Coherent structures in the flow around car geometries are, at least implicitly, subject
of a large number of research papers. To give an overview of documented structures in
the recent literature, papers are selected that focus more explicitly on the description of
coherent structures around cars.

Steady and time averaged coherent structures

Starting point for investigations on the topology of the time averaged flow around the so
called Ahmed body is the study of Ahmed et al. in [1]. Ahmed et al. experimentally
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investigate the flow topology with pressure and velocity measurements in the wake as
well as friction line visualizations using oil paint. Guilmineau [35] builds on this study
with investigations of different rear slant angles using friction lines, velocity profiles and
streamline visualizations of URANS simulations. Gilliéron et al. [33] investigate the for-
mation of C-pillar vortices on the Ahmed body by a variation of the slant angle using
static pressure tabs and friction line visualizations. Thacker et al. [103] investigate the
effect of flow separation at the rear slant of the Ahmed body on the recirculation zone and
the longitudinal C-pillar vortices employing PIV measurements in the wake of the geome-
try. Strachan et al. [102] study the influence of a moving ground on the vortical structures
in the wake of an Ahmed body mounted on a model support system using Laser Doppler
Anemometry (LDA). Krajnović [59] investigates the effect of vortex generators upstream
the rear slant on the structures in the wake of the Ahmed body using plots of velocity,
vorticity, Reynolds stresses, contours of the surface pressure coefficient and stream line
visualizations of LES simulations. Vortical structures around a generic wheel in a wheel-
house are investigated by Regert and Lajos [86] using RANS and URANS simulations.
The structures are visualized using a vortex skeleton method, isosurfaces of the second
invariant of the velocity gradient tensor and isosurfaces of total pressure. Flow structures
behind the front wheel arch and behind an antenna on the vehicle roof are studied by
Bonitz et al. [9] on a detailed notchback geometry with a focus on their influence on flow
separation using RANS simulations.

Unsteady coherent structures

Unsteady coherent structures around the Ahmed body are investigated by Vino et al. [107]
using smoke flow visualization, surface oil flow visualization, unsteady surface pressure
measurements and multi-hole, high frequency response pressure probe measurements.
Krajnović and Davidson [61, 62] investigate the unsteady flow around the Ahmed body
using LES simulations with special attention on the difference between the unsteady flow
and the resulting time averaged flow. Wang et al. [108] use Particle Image Velocimetry
(PIV) measurements to study the time averaged and unsteady flow in the near wake
of the Ahmed body at different rear slant angles. Kohri et al. [52] study the vortex
shedding at the rear of the Ahmed body at a critical rear slant angle of 30◦ using hot-wire
measurements and Particle Image Velocimetry (PIV) measurements.

Hoarau et al. [40] investigate the unsteady behavior of the A-pillar vortex at a 30◦ slanted
geometry using Laser Doppler Velocimetry (LDV) and surface pressure measurements.
Levy and Brancher [64] study the flow around a similar geometry using Particle Image
Velocimetry (PIV) measurements and Proper Orthogonal Decompositions (POD) to iso-
late the flow structures. Gilhome et al. [32] investigate a vortex shedding process from the
rear of a generic notchback geometry using surface pressure measurements, skin friction
visualization and smoke flow visualization. Peichl et al. [84] study the unsteady coherent
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structures in the wake of a detailed generic notchback geometry employing a Dynamic
Mode Decomposition (DMD) analysis on velocity fields of a Detached Eddy Simulation
(DES). Fuller and Passmore [30] study the influence of C-pillar geometry on the wake
topology of a simplified geometry of fastback type using surface pressure and Particle
Image Velocimetry (PIV) measurements. Coherent structures around a smooth, isolated
rotating wheel in contact with a moving ground are investigated by Croner et al. [21]
with Particle Image Velocimetry (PIV) and URANS simulations. Structures in the wake
of an external rear view mirror are investigated by Kim and Han [51] using hot-wire
measurements and Laser Doppler Velocimetry (LDV) measurements.

In a joint two-part investigation, Okada et al. [77] and Nakashima et al. [75] study the
influence of unsteady coherent structures on the straight-ahead driving stability of notch-
back type cars. Okada et al. conduct on-road and wind tunnel tests employing pressure
measurements, hot-wire and Particle Image Velocimetry (PIV) measurements as well as
force measurements and measurements of ride height changes. Nakashima et al. study the
underlying mechanisms on a simplified notchback geometry employing LES simulations
with different pitch angles and with a forced oscillating pitching motion. The effect of
unsteady coherent structures on driving stability were subsequently studied in detail in
a series of publications by Cheng et al. [15, 16, 17] on simplified and detailed notchback
geometries.
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2 Methods

The chapter on methods first introduces the definitions, basics and methodological ap-
proaches employed in the present work. It then discusses the core methods, evaluates their
theoretical potential for car aerodynamics investigations and gives recommendations for
their application in the car aerodynamics development process.

2.1 Definitions

Physical and mathematical quantities that are used throughout this work are briefly
introduced in this chapter. Deviations from the definitions, given here, are indicated in
the text.

The mathematical quantities – scalars, vectors and tensors – are indicated in the text as
follows:

Scalars: Non-bold letters or symbols.

Vectors: Bold lowercase letters or symbols.

Tensors: Bold uppercase letters or symbols.
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Car Coordinate System

The car coordinate system is a right handed Cartesian coordinate system with the positive
x direction in the direction of the main flow and the positive z direction pointing upwards.
The coordinate system is located, as shown in Fig. 2.1, with x = 0 symmetrically between
front and rear axle, y = 0 symmetrically between the wheels and z = 0 on the ground.

x 

z 

x 
y 

Figure 2.1: Position and orientation of the car coordinate system.

A positive drag force FD points in positive x, a positive lift force FL points in positive z

direction. The Moments are defined as roll moment Mx around the x axis, pitch moment
My around the y axis and yaw moment Mz around the z axis.

Dimensionless Numbers

Reynolds Number

The Reynolds number evaluates the ratio of inertial and viscous forces. With the charac-
teristic length scale L, the characteristic velocity U and the kinematic viscosity ν:

Re =
UL

ν
. (2.1)

If not indicated otherwise, the Reynolds number is formed with the length of the car and
the free stream velocity U∞.

Strouhal Number

The Strouhal number is a non-dimensional measure of the frequency. The frequency
f is non-dimensionalized with the characteristic length scale L and the characteristic
velocity U :

Sr = f
L

U
. (2.2)
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If not indicated otherwise, the Strouhal number is formed with the free stream veloc-
ity U∞.

Full Scale Frequency

The full scale frequency f ∗ resembles the frequencies as they would occur in a Reynolds
similar, full scale flow. The frequency f in the flow around a model geometry with the
scale factor φ is corrected according to the Strouhal similarity with the square of the scale
factor φ.

f ∗ = fφ2 (2.3)

Force coefficients

The force coefficients normalize the forces acting on the geometry. The forces are nor-
malized by the dynamic pressure ρ

2
U2
∞ and the frontal area Ax. The drag force coefficient

cD is computed with the drag force Fx, the side force coefficient cS with the side force Fy

and the lift force coefficient cL with the lift force Fz:

cF,x = cD =
Fx

ρ
2
U2
∞Ax

, cF,y = cS =
Fy

ρ
2
U2
∞Ax

, cF,z = cL =
Fz

ρ
2
U2
∞Ax

. (2.4)

Moment coefficients

The moment coefficients are the normalized moments acting on the geometry. The mo-
ments Mi are normalized by the dynamic pressure ρ

2
U2
∞, the frontal area Ax and the

wheelbase lwb of the vehicle.

cM,x =
Mx

ρ
2
U2
∞Axlwb

, cM,y =
My

ρ
2
U2
∞Axlwb

, cM,z =
Mz

ρ
2
U2
∞Axlwb

. (2.5)

Pressure coefficient

The pressure coefficient cp is the normalized difference between the local pressure p and
the ambient pressure p∞. The pressure difference is normalized by the free stream dynamic
pressure ρ

2
U2
∞:

cp =
p− p∞
ρ
2
U2
∞

. (2.6)
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Dimensionless Wall Distance

The dimensionless wall distance y+ is a measure of the distance to a wall in a boundary
layer. It is defined with the geometric distance to the wall yw, the friction velocity uτ ,
the kinematic viscosity ν, the wall shear stress τw and the density ρ as:

y+ =
ywuτ

ν
=

yw
ν

√
τw
ρ
. (2.7)

Courant-Friedrichs-Lewy Number

The Courant-Friedrichs-Lewy number (CFL) (Courant et al. [20]), also called Courant

number, evaluates the ratio of the convective transport in the flow per time step ∆t to
the cell length ∆x:

CFL = ∆t

n∑

i=1

uxi

∆xi

. (2.8)

Two different implementations of the CFL number are employed for the unstructured
grids in use. The cell-CFL number CFLc is computed for a cell with the normal vector
of a cell face sf , the velocity through the face uf and the cell volume Vc (see Fig. 2.2):

CFLc =
∆t

2

∑

f |sf · uf |

Vc

. (2.9)

The face-CFL number CFLf is evaluated for a face with the vector between the cell
centers of the adjacent cells d (see Fig. 2.2):

CFLf = ∆t
|sf · uf |

|sf | |d|
(2.10)

The face-CFL number is used for the CFL-based blending between discretization schemes.
If not indicated otherwise, the CFL number is computed according to Eq. 2.9.
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2.2 Numerical Methods

The numerical approach, followed in this thesis, is presented in this chapter. The de-
tails of the simulation setups of individual test cases are discussed in the respective
sections in chapter 3. If not indicated otherwise, simulations have been executed with
OpenFOAM R©Version 2.2, Weller et al. [110].

The solution algorithm used in the numerical computations is the so called PISO algo-
rithm (Pressure-Implicit with Splitting of Operators) of Issa [45]. The momentum equa-
tion is computed by a linear system solver with Gauß-Seidel smoothing. For the pressure
equation, either a Preconditioned Conjugate Gradient solver (PCG) with Diagonal-based

Incomplete Cholesky preconditioner (DIC) or a Generalized Geometric-Algebraic Multigrid

solver (GAMG) is used.

2.2.1 Discretization

Using the finite volume method, the governing equations are discretized to be solved on
unstructured grids. The discussion of the discretization approaches is based on Jasak [46],
Greenshields [79] and Gestrich [31].

N

SfP

f

d

Figure 2.2: Parameters in finite vol-
ume discretization (Greenshields [79]).

The nomenclature of the discretization parameters are shown in Fig. 2.2. The figure shows
a control volume with center point P and a neighboring control volume with center point
N . The vector between the center points is d. Indicated in gray, is the face f and its
corresponding normal vector sf .

The description of the discretization procedure is based on the generic conservation equa-
tion 2.11 with the scalar quantity Φ.

∂

∂t

∫

V

ΦdV

︸ ︷︷ ︸

temporal variation

+

∫

V

∂ujΦ

∂xj

dV

︸ ︷︷ ︸

convection

−

∫

V

∂

∂xj

(

Γ
∂Φ

∂xj

)

dV

︸ ︷︷ ︸

diffusion

=

∫

V

SΦdV

︸ ︷︷ ︸

source

(2.11)
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Temporal discretization

The discretization of the time derivative in equation 2.11 is carried out employing a second
order, implicit method (see, e.g. Ferziger and Peric [28]).

∂

∂t

∫

V

ΦdV =
3(ΦV )n − 4(ΦV )n−1 + (ΦV )n−2

2∆t
(2.12)

The method is sometimes referred to as Second Order Backward Euler (e.g. Menter [72]).

Convection term

The convection term in equation 2.11 is discretized with the sum of the volume flow rate
F through the faces of the control volume

∫

V

∂ujΦ

∂xj

dV =

∫

S

ds · (uΦ) =
∑

f

sf · ufΦf =
∑

f

FΦf . (2.13)

The quantity Φf at the face centers has to be interpolated from the cell centers. With
the linear interpolation

Φf = fxΦP + (1− fx)ΦN . (2.14)

Here, ΦP is the value of the quantity at the cell center of the owner cell of the face, ΦN is
the value at the cell center of the neighbor cell and fx = fN/PN is the weighting factor of
the interpolation. An alternative to the central interpolation is an upwind discretization
approach. For an upwind discretization, the flow through the faces Φf is replaced by the
value of the cell center upstream the face. With

Φf =

{

ΦP if F ≥ 0

ΦN if F < 0.
(2.15)

In car aerodynamics simulations, a purely central discretization of convection terms is
usually not possible or reasonable as the central discretization requires a considerably
high grid density to avoid numerical oscillations. A pure upwind discretization is also
not possible, as it introduces a high amount of numerical dissipation. The preferred
discretization schemes are therefore hybrid schemes with as little upwind contribution as
possible. The convection schemes used in the test cases are cited in the individual sections
of chapter 3.
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Diffusion term

The diffusion term of equation 2.11 in its discretized form with the diffusion coefficient
Γf on the cell face is

∫

V

∂

∂xj

(

Γ
∂Φ

∂xj

)

dV =

∫

S

ds ·

(

Γ
∂Φ

∂xj

)

=
∑

f

Γfsf ·

(
∂Φ

∂xj

)

f

. (2.16)

On orthogonal grids, the gradient in equation 2.16 can be computed by a linear interpo-
lation with the neighboring cells

sf ·

(
∂Φ

∂xj

)

f

= |sf |
ΦN − ΦP

|d|
. (2.17)

For non-orthogonal grids, were the vector d between the cell centers is not perpendicular
to the face between the cells, the interpolation has to be corrected.

sf ·

(
∂Φ

∂xj

)

f

= ∆ ·
ΦN − ΦP

|d|
+ k ·

(
∂Φ

∂xj

)

f

(2.18)

The first term on the right hand side of Eq. 2.18 is the orthogonal contribution. The
second term on the right hand side is the non-orthogonal correction. The vectors ∆ and
k have to fulfill the relation sf = ∆ + k and are computed by the over-relaxed approach

described in Jasak [46].

The gradient
(

∂Φ
∂xj

)

f
in the second term on the right hand side of Eq. 2.18 is computed

by a Gauss integration

∫

V

∂Φ

∂xi

dV =

∫

S

dsΦ =
∑

f

sfΦf . (2.19)

The values of the quantity Φf on the faces are computed by a second order linear inter-
polation.

Source term

To discretize nonlinear source terms, the source term SΦ(Φ) is linearized according to
Jasak [46]

SΦ(Φ) = Su+ SpΦ, (2.20)
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where Su and Sp can depend on Φ. The volume integral is computed by a product of the
cell volume and the value of the quantity at the cell center

∫

V

SΦ(Φ)dV = SuVP + SpVP ΦP . (2.21)

2.2.2 Turbulence Modeling

To model the unresolved turbulent fluctuations in the flow, a Detached-Eddy Simulation

approach (DES) is followed. The DES is a hybrid method of an Unsteady Reynolds-

Averaged-Navier-Stokes (URANS) and a Large Eddy Simulation method (LES). The DES
is based on one set of equations for the entire fluid domain. If the equations act as URANS
or LES simulation is controlled by the DES length scale:

LDES = min (LURANS, CDES∆) . (2.22)

The length scale is computed from the turbulent length scale of the URANS simulation
LURANS and the product of the cell size ∆ and a constant CDES. Close to a wall, the
URANS length scale LURANS is smaller than the product CDES∆ and the equations act as
a URANS simulation. At a distance to the wall, the URANS length scale LURANS becomes
larger and the model acts as a LES model reducing the turbulent viscosity and resolving
larger turbulence structures. The discussion of the turbulence modeling approach in this
chapter is based on Spalart and Allmaras [97], Spalart et al. [98, 100] and Gestrich [31].

Spalart-Allmaras Detached-Eddy Simulation Model

The Detached-Eddy simulation model used in this thesis is based on the Spalart-Allmaras

model of Spalart and Allmaras [97]. The one equation model computes the modified
viscosity ν̃ with the transport equation

∂ν̃

∂t
+

∂uj ν̃

∂xj

= Cb1S̃ν̃ +
1

Cσ

[

∂

∂xj

(

(ν + ν̃)
∂ν̃

∂xj

)

+ Cb2

(
∂ν̃

∂xj

)2
]

− Cw1fw

[
ν̃

d̃

]2

. (2.23)

The modified viscosity ν̃ is connected to the turbulence viscosity νt by the function fv1
with χ = ν̃/ν:

νt = ν̃fv1, fv1 =
χ3

χ3 + C3
v1

. (2.24)
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In the production term Cb1S̃ν̃ on the right hand side of Eq. 2.23, S̃ is:

S̃ = Ωfv3 +
ν̃

κ2d̃2
fv2, (2.25)

with the invariant of the rotation tensor Ω =
√

2ΩijΩij. In the implemented version of
the model, the functions fv2 and fv3 include modifications of Ashford [3] over the original
formulation of the model to avoid a negative production term and enhance the numerical
stability of the model:

fv2 =

(

1 +
χ

Cv2

)−3

, fv3 =
(1 + χfv1)(1− fv2)

χ
. (2.26)

The function fw in the destruction term Cw1fw

[
ν̃
d̃

]2

of Eq. 2.23 is:

fw = g

[
1 + C6

w3

g6 + C6
w3

]1/6

, g = r + Cw2(r
6 − r), r =

ν̃

S̃κ2d̃2
. (2.27)

The coefficients of the turbulence model, as used in the simulations, are listed in ta-
ble 2.1:

Table 2.1: Coefficients of the Spalart-Allmaras turbulence model

Cσ Cb1 Cb2 Cv1 Cv2 Cw1 Cw2 Cw3 κ
2/3 0.1355 0.622 7.1 5.0 3.239 0.3 2.0 0.41

In the original DES variant of Spalart et al. [98] the turbulence length scale d̃ was taken
as the minimum of the turbulent length scale of the URANS simulation dw which is equal
to the distance to the nearest wall, and the cell length ∆:

d̃ = min(dw, CDES∆). (2.28)

The constant CDES was calibrated by Shur et al. [95] to CDES = 0.65. The cell length is
the maximum length of the cell in the grid directions:

∆ = max(∆x,∆y,∆z). (2.29)

In this DES variant, the length scale d̃ is determined by the geometry and the grid only. A
problem of this approach is that the grid in the velocity boundary layer can be fine enough
to reduce the modeled turbulence viscosity considerably, but not fine enough to sufficiently
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resolve the coherent turbulence structures. This effect leads to an underestimated sum of
the modeled Reynolds stresses and the resolved stresses called Modelled-Stress Depletion

(MSD) (see e.g. Spalart et al. [100], Spalart [99] or Sagaut et al. [91]).

In a study of the flow around an Ahmed body, Menter and Kuntz [73] documented an
unphysical separation of the flow described as Grid-Induced Separation due to a high grid
resolution in the boundary layer and the resulting MSD effect. To avoid the separation,
Menter and Kuntz proposed to use a shielding function for the boundary layer region of
the flow. In [100], Spalart et al. proposed a shielding function for the Spalart-Allmaras

DES model. The computation of the turbulence length scale d̃ in the new DES variant
modifies to:

d̃ = dw − fd max(0, dw − CDES∆). (2.30)

The shielding function fd is computed according to Eq. 2.31 with a limit to rd of rd ≤ 10:

fd = 1− tanh([8rd]
3), rd =

νt + ν
√

∂ui

∂xj

∂ui

∂xj
κ2d2w

. (2.31)

The modified variant of the Spalart-Allmaras DES model (SA DES) is called the Spalart-

Allmaras Delayed-Detached-Eddy Simulation model (SA DDES). The so called trip-terms

included in the Spalart-Allmaras model described in Spalart and Allmaras [97] are not
implemented in solver used in the simulations. The trip-terms were intended for laminar-
turbulent transition flows and are not necessary for the flows under investigation.

Wall Function

To model the turbulent near wall flow, a continuous wall model for the viscous sublayer,
the buffer layer and the logarithmic part of the boundary layer is used. The velocity
profile is described by the wall model of Spalding [101]:

y+ = u+ +
1

E

[

eκu
+

− 1− κu+ −
1

2
(κu+)2 −

1

6
(κu+)3

]

. (2.32)

With the constants E = 9.8 and κ = 0.41 and the dimensionless wall distance y+ and the
dimensionless velocity u+:

y+ =
ywuτ

ν
, u+ =

u||

uτ

. (2.33)
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The wall normal distance of the first grid point yw and the relative velocity parallel to
the wall in the first grid point u|| are taken from the simulation. The friction velocity uτ

is computed iteratively by a Newton-Raphson method following the procedure

un
τ = un−1

τ −
f

f ′
, (2.34)

with the function f and its derivative f ′ according to de Villiers [25]:

f = u+ − y+ +
1

E

[

eκu
+

− 1− κu+ −
1

2
(κu+)2 −

1

6
(κu+)3

]

, (2.35)

f ′ =
∂f

∂uτ

= −
u+

uτ

−
y+

uτ

+
1

E

[

−
κu+

uτ

eκu
+

+
κu+

uτ

+
1

uτ

(κu+)2 +
1

2uτ

(κu+)3
]

. (2.36)

With the friction velocity uτ , the wall shear stress τw and the turbulence viscosity νt at
the wall can be computed:

uτ =

√
τw
ρ

=

√

(νt + ν)

∣
∣
∣
∣

∂ui

∂yw

∣
∣
∣
∣
. (2.37)

The wall model is applicable for grids with the first off-the-wall grid point in either the
viscous region, the buffer layer or the logarithmic layer. The model is strictly valid only
in equilibrium boundary layers with zero pressure gradient.

2.2.3 Modeling of Porosity

The loss of momentum of the flow, passing through a porosity, is modeled with the
Darcy-Forchheimer Equation. For a homogeneous porous media, the Darcy-Forchheimer
equation reads:

s

ρ
= −(ν d+

|u|

2
f)u. (2.38)

The equation accounts for the viscous losses and for inertial losses in the flow. The coef-
ficients d and f are usually determined experimentally by measurements of the pressure
drop in the porosity region. The model is treated as a source term in the Navier-Stokes
equations.
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2.3 Experimental Methods

To validate the numerical methods and simulation setups used in this thesis, wind tunnel
experiments have been conducted. In this chapter, the experimental setup including the
wind tunnels, the aerodynamic test model and the main elements of the instrumentation
are presented.

2.3.1 Wind tunnels

Flow measurements of the DrivAer body have been executed in two different wind tunnel
facilities (results see chapter 3.3). The experiments took place in wind tunnel A at the
Chair of Aerodynamics and Fluid mechanics at Technical University of Munich (TUM)
and in the aeroacoustics wind tunnel of AUDI AG.

Wind Tunnel at TUM

The wind tunnel A at the Chair of Aerodynamics and Fluid mechanics at Technical
University of Munich (TUM) is a low-speed, closed return model scale wind tunnel. It
can be configured with a closed or open test section and can be equipped with a stationary
floor or with a single belt rolling road system. For car aerodynamics investigations, the
tunnel is used with an open test section and with rolling road system.

The nozzle cross-section of the tunnel is 4.32m2, it is equipped with Seifert wings to
reduce the influence of shear layers. The length of the test section is 4.8m. The belt of
the rolling road system is 1.39 m wide. To remove the boundary layer from the nozzle
exit, the tunnel has an adjustable, passive boundary layer scoop system. The turbulence
intensity of the tunnel, given by Eq. 2.39, is Ix = Iy = Iz < 0.4%.

I =
1

U∞

·

√

1

3
·
(
u′2 + v′2 + w′2

)
(2.39)

With the free stream velocity U∞ and the root-mean-square of the turbulent velocity
fluctuations u′, v′ and w′.

The Model Support System (MSS) for car aerodynamics investigations consists of a top
sting that holds the car model from above and of four arms that hold the wheels on the
rolling road simulation belt. The top sting is mounted on a traversing system for all three
spatial axes. In addition to the automatic traversing along the axes, it is also possible
to adjust the pitch and yaw angle of the model by manually adjusting the top sting.
The four wheel arms reach from the sides into the air stream and are mounted on a rail
system. The wheel arms allow for a positioning in x and y direction. For an adjustment
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of the camber angle and the toe angle, the angles of the arms are adjustable. The contact
pressure of the wheels on the belt is also adjustable at the wheel arms. The blockage
ratio, according to Eq. 2.40, of the DrivAer model and the MSS in the wind tunnel is
approx. 12% (Mack et al. [67]).

BR =
Aref

Anozzle

(2.40)

With the frontal area of the model including the model support system Aref and the
exit area of the nozzle Anozzle. A detailed description of the wind tunnel as well as the
axial distribution of the static pressure coefficient along the center line of the test section
compared to different wind tunnels can be found in Mack et al. [67].

Wind tunnel at Audi

The aeroacoustics wind tunnel at Audi is a closed return full scale wind tunnel used
for aerodynamic as well as for aeroacoustic investigation and optimization of cars. It is
equipped with a five belt rolling road system. The nozzle cross-section of the tunnel is
11m2, the length of the test section is adjustable from 9m to 10m. For the experimental
investigations with the 40% DrivAer model, only the middle belt of the rolling road
system has been used. The middle belt is 1m wide and 5.5m long. The aeroacoustics
wind tunnel has a boundary layer suction system with multiple, separately adjustable
chambers to remove the boundary layer caused by the nozzle. The turbulence intensity
given by Eq. 2.39 is Ix = Iy = Iz < 0.3% (Wickern and Lindener [111]). For investigations
with the DrivAer model, the same model support system has been used as in wind tunnel
A at TUM. The blockage ratio, according to Eq. 2.40, of the DrivAer model and the
model support system in the wind tunnel is approx. 5%. A detailed description of the
aeroacoustics wind tunnel at Audi as well as the axial pressure distribution of the Audi
aeroacoustics wind tunnel compared with the pressure distributions in ten other European
wind tunnels can be found in Wickern and Lindener [111].

2.3.2 Aerodynamic Test Model

The aerodynamic test model is a 40% model of the DrivAer geometry (www.drivaer.com,
[38, 68]). The model is built with a carbon fiber outer shell and an aluminum frame.
The side mirrors are removable and the rear end shapes as well as underbody shapes
are changeable. The wheels are not physically connected to the car body and are held
by wheel arms as described above. The wheels are driven by the motion of the ground
simulation belt.
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Instrumentation

The main force balance is an internal, six-component force balance mounted inside the
vehicle. It connects the model to the top sting and measures lift and drag forces as well as
roll, yaw and pitch moments. Drag forces of the wheels are measured by separate balances
in the wheel arms. The rotational speed of the wheels is measured by an inductive sensor.
By measuring the speed of the wheels and the speed of the ground simulation belt, slip
between the wheels and the belt can be monitored and the contact pressure of the wheels
on the belt can be adjusted. The lift forces of the wheels are not measured.

The model can be equipped with up to 400 static pressure taps. The pressure taps have
a bore diameter of 0.3mm, connected by tubes to pressure scanners and a digital service
module. The signals from the sensors are transmitted to the data acquisition computers
in the control room of the wind tunnel by cables, routed through the top sting. The
processing of sensor data is done by in-house software written in the visual programming
language LabVIEWTM by National Instruments (Mack et al. [68]).
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2.4 Vortex Identification

Arguably, the most important class of coherent structures in car aerodynamics are vor-
tices. Largely stationary vortices like the A-pillar or C-pillar vortices or the recirculation
vortices in the near wake can redirect the main flow around a car and alter the pressure
distribution on the car surface. Unsteady vortices store and transport energy and dissi-
pate it in the wake flow, contributing to the drag of the vehicle. As the turbulent flow
around a car geometry is full of interpenetrating vortices, it can be challenging to isolate
individual vortices from the flow field. Besides the use of basic flow variables as velocity,
pressure or vorticity, more suitable vortex detection methods are in use.

2.4.1 Requirements for Automotive Aerodynamics Flow

Fields

Automotive aerodynamics flow fields typically consist of a large number of vortices with
a wide range of length and time scales. Due to the development of the boundary layers
and their separation as shear layers, the flow contains a high amount of shear. While the
flow is redirected around the car geometry, a high amount of elongational motion (irrota-
tional straining) is also present in the flow. These effects together with the demands of
the aerodynamics development process form the special requirements to vortex detection
methods for automotive aerodynamics. The requirements for vortex detection methods
for automotive aerodynamics flow fields are:

- The detection method should implement a clear and consistent physical concept of
a vortex.

- The method should be able to describe the geometry of vortices and identify vortex
core lines.

- It should be able to quantify the local intensity of the swirling motion in the vortices.

- The result of the detection method should provide the possibility to be used for
further computations.

- The method should be applicable to three dimensional flow fields.

- The method should be valid for compressible flows and flows with variable density.

- The result of the method should be independent of reference frame (objective).

Although there is no consensus about the definition of a vortex, it is obvious that a
detection method should have a clear physical meaning. For canonical flows, were there
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is a consensus whether they contain vortices, the method should neither fail to show
vortices nor show false positives. As the bluff body flow around a car contains cascades of
interpenetrating vortices, an important requirement for car aerodynamics flow fields is the
ability of the method to quantify the local intensity and orientation of the swirling motion
and, as a result, provide the ability to describe the geometries of the vortices. While the
majority of vortex detection methods has been developed to indicate the presence of
a vortex, the focus in car aerodynamics is more on the quantification of the effect of
vortices. Therefore, the result of the method should be a three dimensional field that can
be used for further computations of local or integrated properties of the vortices. As car
aerodynamics flow fields are usually incompressible, the applicability to compressible flows
is not always required. In the case of heat transfer problems, were buoyancy effects have to
be considered, the method has to be applicable for variable density and compressible flows.
For a method to be applicable in the whole aerodynamics development process, including
heat transfer problems, a method should be preferred that is valid for compressible flows
and flows of variable density. A general claim to vortex detection methods is frame
invariance (or objectivity). As most of the methods relying on the velocity gradient tensor
are Galilean invariant, an invariance to transformations in rotating coordinate systems is
usually harder to achieve. While frame invariance can be of importance in the simulation
of cornering motions, or in the rotating frame used to model wheel rotation, a Galilean
invariant method is acceptable for most problems found in car aerodynamics. From a
fundamental point of view, an unsteady vortex is a Lagrangian coherent structure and
should, therefore, be described by a Lagrangian description.

2.4.2 Vortex Detection Methods

The most common vortex detection methods, Q-criterion, ∆-criterion, λ2-criterion and
λci-criterion are presented in this section. In addition, a less well known decomposition
of the velocity gradient tensor is presented and discussed in more detail.

Q-Criterion

The Q-criterion (Hunt et al. [42]), also called the Okubo-Weiss-criterion as it was indepen-
dently developed by Okubo [78] and Weiss [109] for two dimensional flows, is the second
invariant of the velocity gradient tensor for incompressible flows. The second invariant of
the velocity gradient tensor

II∇u =
1

2

(
(tr(∇u))2 − tr((∇u)(∇u))

)
(2.41)

simplifies with the incompressibility requirement tr(∇u) = 0 to the Q-criterion

26



2.4 Vortex Identification

Q = II∇u =
1

2
(tr((∇u)(∇u))) . (2.42)

With the antisymmetric part of the velocity gradient tensor Ω = 1

2

(
∇u− (∇u)T

)
, the

symmetric part of the velocity gradient tensor S = 1

2

(
∇u+ (∇u)T

)
and the tensor norm

‖Ω‖ = (tr(ΩΩT ))
1

2 the Q-criterion can be written as

Q =
1

2
(‖Ω‖2 − ‖S‖2). (2.43)

In equation 2.43, the physical meaning of the Q-criterion becomes apparent. The criterion
evaluates the balance between the vorticity and the irrotational straining in the flow. The
vorticity is represented by the magnitude of the vorticity tensor ‖Ω‖, the irrotational
straining is represented by the magnitude of the strain tensor ‖S‖.

In [42], Hunt et al. define two criteria to be fulfilled in a vortex. The first criterion
demands the irrotational straining to be small compared to the vorticity and the second
criterion requires a pressure minimum. Typically, the second criterion is not considered
and a vortex is defined by the Q-criterion as a region were the value of Q is larger than
a positive threshold value QV .

Q > QV (2.44)

Due to the incompressibility requirement tr(∇u) = 0, the Q-criterion is not applicable to
compressible flows.

∆-Criterion

Chong et al. [18] define a vortex as a region in the flow, were the velocity gradient tensor
∇u has complex eigenvalues. Eigenvalues λi of the velocity gradient tensor are complex in
regions, were the discriminant D of the characteristic polynomial of the velocity gradient
tensor is negative. The characteristic polynomial of ∇u is

λ3 + Pλ2 +Qλ+R = 0. (2.45)

The discriminant D of the characteristic polynomial is

D = P 2Q2 − 4Q3 − 4P 3R− 27R2 + 18PQR (2.46)
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The coefficient P = −∇ · u is zero for incompressible flow. With P = 0, the discriminant
of the characteristic polynomial D simplifies to

D = −4Q3 − 27R2. (2.47)

Deviating from the mathematical definition of the discriminant of the characteristic poly-
nomial, the ∆-criterion is typically defined with Q according to equation 2.42 or 2.43 and
R = −Det(∇u) as

∆ = −
D

108
=

(
1

3
Q

)3

+

(
1

2
Det(∇u)

)2

. (2.48)

According to equation 2.48, a vortex is defined by the ∆-criterion as a region were the
value of ∆ is larger than zero.

∆ > 0 (2.49)

As the Q-criterion, the ∆-criterion is not applicable to compressible flows due to the
incompressibility requirement P = ∇ · u = 0 in equation 2.47.

λ2-Criterion

The λ2-Criterion (Jeong and Hussain [47]) is based on the assumption that a vortex core
coincides with a pressure minimum in the absence of irrotational straining and viscous
effects. By taking the gradient of the incompressible Navier–Stokes equation and discard-
ing the terms of irrotational straining, viscous effects and vorticity transport, the pressure
Hessian can be formulated as:

∇ (∇p) = −ρ(S2 + Ω2). (2.50)

A local minimum of the so modified pressure in a plane requires two negative eigenvalues of
the symmetric tensor S2+Ω2. Ordering the eigenvalues as λ1 ≥ λ2 ≥ λ3, this corresponds
to a negative second eigenvalue λ2:

λ2(S
2 + Ω2) < 0 (2.51)

The λ2-Criterion is derived for incompressible flows and is not applicable to compressible
flows.
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λci-Criterion

Zhou et al. [112] start from the vortex definition of Chong et al. [18] who define a vortex as
a region in the flow with complex eigenvalues of the velocity gradient tensor. Zhou et al.
show that the imaginary part of the complex conjugate pair of eigenvalues of the velocity
gradient tensor equates to the local swirling strength of the flow. The λci-criterion defines
a vortex as a region in the flow with non-zero imaginary part of the complex eigenvalue
pair of the velocity gradient tensor. Consistent with the definition of Zhou et al. [112] the
swirling strength is defined by the square of the imaginary part:

λ2
ci > 0 (2.52)

The λci-criterion is applicable to incompressible and compressible flows.

Shear Maximizing Decomposition of the velocity gradient tensor

The velocity gradient tensor ∇u can be decomposed into a shear rate tensor (∇u)SH , a
rate of elongation tensor (∇u)EL and a rate of rotation tensor (∇u)RR.

∇u = (∇u)SH + (∇u)EL + (∇u)RR (2.53)

The shear rate tensor (∇u)SH describes a simple shearing motion. The rate of elongation
tensor describes an irrotational straining motion and the rate of rotation tensor describes
the rotation of fluid particles around a common center in the form of a rigid body ro-

tation. The shear rate tensor (∇u)SH itself is a superposition of irrotational straining
SSH and the rotation of fluid particles around themselves ΩSH . With the Cauchy-Stokes
decomposition, the shear rate tensor can be decomposed as (∇u)SH = SSH +ΩSH .

For two dimensional relative motions near a point, the decomposition is straight forward
and described e.g. in the textbook of Batchelor [6] (Chapter 2.3: Analysis of the relative

motion near a point). For three dimensional relative motions, the decomposition is more
complex and an analytical solution is not yet available. This is due to the fact that the
relative orientation of elongation, shear and rotation is arbitrary in three dimensional
relative motions. In addition, there are three principal axes of elongation in three dimen-
sional flows compared to two in two dimensional flows. Three shear planes are possible
in three dimensions compared to one possible shear plane in two dimensions.

In [53], Kolář reintroduces the method as Triple Decomposition of Motion (TDM) for
vortex identification in two dimensional flows. He uses the magnitude of the rotation
tensor ||(∇u)RR|| as a vortex criterion which he calls the residual vorticity.
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In [54] and [55], Kolář introduces a procedure to compute the decomposition for three
dimensional flows numerically: When the shear planes of the (∇u)SH tensor are aligned
with the coordinate axes, the shear rate tensor can be computed by

(∇u)SH =






0 ∂u
∂y
− sign(∂u

∂y
)min(∂u

∂y
, ∂v
∂x
) •

∂v
∂x
− sign( ∂v

∂x
)min( ∂v

∂x
, ∂u
∂y
) 0 •

• • 0




 . (2.54)

Equation 2.54 stems from a geometrical interpretation of three dimensional shearing mo-
tions. The non-specified off-diagonal elements (dot symbols) are constructed strictly anal-
ogous to the specified elements. A residual tensor (∇u)RES is computed from the velocity
gradient tensor and the shear rate tensor.

(∇u)RES = ∇u− (∇u)SH

=
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 . (2.55)

The rate of elongation tensor (∇u)EL and the rigid body rotation tensor (∇u)RR are
computed by a Cauchy-Stokes decomposition of the residual tensor

(∇u)RES = (∇u)EL + (∇u)RR, (2.56)

with (∇u)EL being the symmetric and (∇u)RR being the antisymmetric part of the de-
composition.

The Equations 2.54 to 2.56 are only applicable in a reference frame, were the shear planes
of the shear rate tensor are aligned with the coordinate axes. Kolář calls this frame the
basic reference frame (BRF). To find this frame, an objective function f is defined
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f = f(α, β, γ)

= ||(∇u)||2 − ||(∇u)RES||
2

=
1

2

∣
∣
∣
∣
∣

(
∂u

∂y

)2

−

(
∂v

∂x

)2
∣
∣
∣
∣
∣
+

1

2

∣
∣
∣
∣
∣

(
∂v

∂z

)2

−

(
∂w

∂y

)2
∣
∣
∣
∣
∣
+

1

2

∣
∣
∣
∣
∣

(
∂w

∂x

)2

−

(
∂u

∂z

)2
∣
∣
∣
∣
∣

(2.57)

The objective function f(α, β, γ) has its maximum in the so called basic reference frame.
To maximize the objective function, each tensor in the tensor field is rotated individually
around its Euler angles α, β and γ. In this thesis, a simplex algorithm is used to solve the
optimization problem. For a flow field with 66 million cells and an abort criterion of the
optimization algorithm of α = β = γ = 0.001◦, the decomposition takes approximately
130 cpu h. As the optimization problem has to be solved individually for every tensor of
the tensor field, the method is well suited for parallel implementation. The code used in
this study is not optimized for runtime performance.

In the publications of Kolář, the decomposition is called the Triple Decomposition of Mo-

tion (TDM). This name is somewhat unspecific and is also used for other decompositions
of the velocity gradient tensor (e.g Chen et al. [14]). As the name has been in use before
the publications of Kolář, the method will be described as Shear Maximizing Decomposi-

tion (SMD) in this thesis. Using the magnitude of the tensor of rigid body rotation as a
vortex criterion, a vortex is defined by the SMD as

||(∇u)RR|| > 0. (2.58)

The SMD is applicable to incompressible and compressible flows. A comment on com-
pressibility effects and vortex identification can be found in Kolář [58]. The connection
between integral vortex strength and the Shear Maximizing Decomposition is discussed
in Kolář [56].

An additional advantage of the SMD is the possibility to use the tensors of the decompo-
sition for further computations. As an example, the dissipation of momentum from the
shear rate tensor (∇u)SH and from the rigid body rotation tensor (∇u)RR is shown in
Fig. 2.3. The dissipation from simple shear accounts for 91.7 % of the total dissipation
of momentum in the flow. The spacial change of rigid body rotation accounts for 8.3% of
the dissipation.
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(a) Dissipation of momentum from (∇u)SH

(b) Dissipation of momentum from (∇u)RR

Figure 2.3: Dissipation of momentum from the shear rate tensor (∇u)SH and the rate of
rigid body rotation tensor (∇u)RR normalized by density. The colors correspond to the
same range of values in both pictures. Blue: 0 m/s2, red: 50 m/s2.

2.4.3 Evaluation of Detection Methods

As already apparent from the mathematical definitions shown in chapter 2.4.2, vortices
are described differently by the individual vortex criteria. In this chapter, the criteria
are compared and evaluated for their applicability in car aerodynamics. Figure 2.4 shows
isosurfaces of the criteria for the time averaged flow around the DrivAer body. The
isovalues are chosen visually with respect to the size of the longitudinal vortices from the
side mirrors.

Compared to the Q-criterion, the vortices extracted by the ∆-criterion have larger diam-
eter in general. More vortices are visible on the trunk deck and in the near wake. The
vortices from the side mirrors are underpredicted by the ∆-criterion. As the isovalues are
chosen with respect to the size of the longitudinal vortices from the side mirrors, other
vortices are overemphasized when compared to the Q-criterion. The isosurface of the
λ2-criterion is similar to the isosurface of the Q-criterion. Differences are visible at the
rear edge of the trunk deck in the y = 0 plane of the model. The isosurface of the λci-
criterion is also similar compared to the Q-criterion. Only minor quantitative differences
are visible. The ||(∇U)RR||-criterion emphasizes the dominant vortices more clearly. As
the isovalue is chosen by the size of the a dominant vortex, less dominant vortices are
underpredicted. Due to the emphasis on strong vortices, the topology of the vortices is
more clearly resolved, as can be seen in the case of the vortex system at the bottom of the
windshield. Here, the ||(∇U)RR||-criterion shows a split of the vortex tube in two vortices.
The contribution of the near surface flow to the isosurfaces is due to the curvature of the
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2.4 Vortex Identification

(a) Q-Criterion: Q = 200s−2

(Qmin = −3.4 · 109s−2, Qmax = 5.1 · 108s−2)
(b) ∆-Criterion: ∆ = 7 · 105s−6

(∆min = −1.5 · 1027s−6, ∆max = 1.7 · 1026s−6)

(c) λ2-Criterion: λ2 = −200s
−2

(λ2,min = −9.0 · 108s−2, λ2,max = 1.0 · 109s−2)
(d) λci-Criterion: λci = 14s−1

(λci,min = 0s−1, λci,max = 1.3 · 104s−1)

(e) ||(∇U)RR||-Criterion: ||(∇U)RR||= 10s−1

(||(∇U)RR||min = 0s−1, ||(∇U)RR||max = 7.5 ·
103s−1)

Figure 2.4: Comparison of vortex criteria. Isovalues chosen visually with respect to the
size of the longitudinal vortices from the side mirrors.

geometry. In the case of the ||(∇U)RR||-criterion, this effect is also reduced due to the
emphasis of the criterion on more dominant vortices.

Canonical Flow Examples

For a better understanding of the behavior of the different vortex criteria, the criteria
are applied to simple canonical flow examples. In addition to the conceptual challenges
of vortex definition, sketched in the introduction (chapter 1.2), the individual vortex
detection methods can be shown to fail for some canonical flows or show false positives
for others.
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Simple Shear Flow

The general case of the simple shear flow in three dimensions is a flow with constant
variation of the velocity components along the coordinate axis in a Cartesian coordinate
system. With the constants Ci and Cii, the two possible flow fields for three shear planes
are:

u1(x, y, z) = {u(y), v(z), w(x)} = {y Cuy + Cu, z Cvz + Cv, x Cwx + Cw} (2.59)

and

u2(x, y, z) = {u(y), v(z), w(x)} = {z Cuz + Cu, x Cvx + Cv, y Cwy + Cw} (2.60)

The velocity gradient of this type of flow is constant and of the form:

∇u1(x, y, z) =
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and

∇u2 =






0 0 Cuz

Cvx 0 0

0 Cwy 0




 (2.62)

The flow field of the three dimensional simple shear flow according to equations 2.59
and 2.60 has parallel stream lines and therefore does not contain any vortices. Applying
the vortex criteria of chapter 2.4.2 to this flow with non-zero constants (Cii 6= 0) results
in:

Q = 0 (no vortex)

∆ > 0 (vortex)

λ2 < 0 (vortex)

λci > 0 (vortex)

||(∇U)RR|| = 0 (no vortex)

(2.63)

In a simple shear flow, the magnitudes of vorticity and irrotational straining are equal. As
the Q-criterion evaluates the balance of vorticity and irrotational straining, the Q-criterion
is always zero for the simple shear flow. For a vortex to be present, the Q-criterion requires
a value larger than a positive threshold value Qv. With a value of Q = 0 the Q-criterion
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2.4 Vortex Identification

correctly indicates the absence of vortices in the flow. The vortex criteria ∆, λ2 and λci

misinterpret the flow as a vortex. As the rotation in the simple shear flow is a rotation of
fluid particles around themselves, the rigid body rotation in the flow ||(∇U)RR|| is zero.
If ||(∇U)RR|| is used as a vortex criterion, it is correct in this case.

Potential Vortex

The flow field of a potential vortex in a cylindrical coordinate system with the tangential
velocity uθ, the radius r and a constant C is:

u(r) = {uθ(r), 0, 0} = {
C

r
, 0, 0} (2.64)

The gradient of the velocity field of the potential vortex is symmetric and of the form:

∇u(r, θ, z) =
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Applying the vortex criteria of chapter 2.4.2 to the flow field of the potential vortex for
r 6= 0 and C 6= 0 results in:

Q < 0 (no vortex)

∆ < 0 (no vortex)

λ2 > 0 (no vortex)

λci = 0 (no vortex)

||(∇U)RR|| = 0 (no vortex)

(2.66)

In the case of a purely elongational motion of the potential flow, all vortex criteria fail to
interpret the flow as a vortex.

Shear Vortex

The shear vortex is a vortex with a uniform velocity profile across the radius r and a
gradient consisting of simple shear only. The flow field of the shear vortex in a cylindrical
coordinate system with the tangential velocity uθ and a constant C is:

u(r) = {uθ(r), 0, 0} = {C, 0, 0} (2.67)

The gradient of the velocity field of the shear vortex is of the form:
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∇u(r, θ, z) =
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Applying the vortex criteria of chapter 2.4.2 to the flow field of the shear vortex for r 6= 0

and C 6= 0 results in:

Q = 0 (no vortex)

∆ = 0 (no vortex)

λ2 = 0 (no vortex)

λci = 0 (no vortex)

||(∇U)RR|| = 0 (no vortex)

(2.69)

As in the case of the potential vortex, all vortex criteria fail to interpret the flow field of
the shear vortex as a vortex.

Bias of vortex criteria

The above examples of canonical flows are unlikely to exist in a turbulent bluff body flow
in larger regions and for relevant time spans. Interpreting a relative motion, described
by the velocity gradient tensor, as a superposition of basic relative motions like the rate
of rotation, the shear rate or the rate of elongation, it becomes clearer how the vortex
criteria are biased by these basic relative motions. By taking the Lamb–Oseen vortex as
a model of a real vortex tube, the influence of the basic relative motions can be shown.
The flow field of the Lamb–Oseen vortex is:

u(r, t) = {uθ(r, t), 0, 0} =

{
Γ

2πr

(

1− exp

(

−
r2

r2c (t)

))

, 0, 0

}

. (2.70)

With the tangential velocity uθ, the radius r, the circulation Γ, the core radius of the
vortex rc and the time t. The radial velocity profile of the Lamb–Oseen vortex for one
point in time is shown in figures 2.5 and 2.6 (thick solid line). The radius of the maximum
value of the tangential velocity uθ is indicated by a vertical dashed line.

In Fig. 2.5, the magnitude of the tensor of rigid body rotation ||(∇U)RR|| (dashed line),
the magnitude of the shear rate tensor ||(∇U)SH || (dotted line) and the magnitude of the
rate of elongation tensor ||(∇U)EL|| (dash-dotted line) computed from the two dimensional
Shear Maximizing Decomposition are shown. The values are normalized by the maximum
of the magnitude of the rigid body rotation tensor. In the inner region of the vortex, the
rigid body rotation clearly dominates the other relative motions but rapidly falls to zero
at the maximum value of tangential velocity. Here, the shear has its maximum value, the
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Figure 2.5: Radial profile of the
Lamb–Oseen vortex. Tangential veloc-
ity uθ: thick solid line, ||(∇U)RR||: dashed
line, ||(∇U)SH ||: dotted line, ||(∇U)EL||:
dash-dotted line.
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Figure 2.6: Radial profile of the
Lamb–Oseen vortex. Tangential velocity
uθ: thick solid line, λci-criterion: thin solid
line, Q-criterion: dashed line, λ2-criterion:
dotted line, ∆-criterion: dash-dotted line.

elongational motion is zero. In the outer region of the vortex, no rigid body motion is
present. After an increase of elongational motion, the shearing and elongational motion
fall with increasing radius.

In Fig. 2.6, the normalized values of vortex criteria for the Lamb–Oseen vortex are shown.
All vortex criteria indicate a vortex in the inner region of the Lamb–Oseen vortex and fall
to zero at the maximum value of the tangential velocity. The ∆-criterion (dash-dotted
line) drops the fastest with increasing radius. Q-criterion (dashed line) and λci-criterion
(thin solid line) are identical in the inner region of the Lamb–Oseen vortex. The λ2-
criterion (dotted line) is identical to the Q-criterion with inverted sign.

While the two dimensional Lamb–Oseen vortex is still a relatively simple example, the
connection between the basic relative motions and the vortex criteria is more complex for
three dimensional flows. In the case of a general three dimensional relative motion near
a point, three individual shear planes are possible and the relative orientation between
rigid body rotation, shear rate and rate of elongation is arbitrary. In Fig. 2.7, isosurfaces
of magnitudes of the Shear Maximizing Decomposition tensors are shown. In all three
visualizations, vortical structures are visible. The core regions of vortex tubes are cap-
tured mainly by the rigid body rotation ||(∇U)RR|| (Fig. 2.7a). The rate of elongation
||(∇U)EL|| (Fig. 2.7b) is dominated by the inviscid deflection of the flow around the ge-
ometry. In the shear rate ||(∇U)SH || (Fig. 2.7c), large vortex tubes from the side mirrors
and the A-pillars can be seen. The vortices in the flow around the DrivAer body consist to
a varying degree of rigid body rotation, shearing and irrotational elongational motion.

To show how the vortex criteria depend on the basic relative motions of the Shear Maxi-
mizing Decomposition (SMD), the tensor fields of the SMD are computed and the vortex
criteria are applied to these tensor fields. As a reference, isosurfaces of the vortex criteria
applied to the full velocity gradient tensor are also shown. The Isovalues of the criteria
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(a) ||(∇U)RR||= 10s−1 (b) ||(∇U)EL||= 10s−1

(c) ||(∇U)SH ||= 10s−1

Figure 2.7: Shear Maximizing Decomposition (SMD) of the time averaged flow around
the DrivAer body.

applied to the rigid body rotation tensor (∇U)RR are chosen visually with respect to the
size of the longitudinal vortices from the side mirrors.

The Q-Criterion applied to the full velocity gradient tensor and to the tensors of the SMD
is shown in Fig. 2.8. As the magnitudes of the symmetric and skew-symmetric parts of
the shear tensor are equal, the Q-criterion applied to a shear tensor is always zero. The
vortices that are made up of shearing motion shown in Fig. 2.7c cannot be captured by
the Q-criterion. The Q-criterion applied to the tensor of rigid body rotation reproduces
the isosurfaces of ||(∇U)RR|| in Fig. 2.7a. Applied to the rate of elongation tensor, the
Q-criterion is always negative. The inviscid part of the vortices cannot be detected.
Nonetheless, the negative contribution of the elongational motion to the Q-criterion will
influence its results.

Figure 2.9 shows the ∆-criterion applied to the tensors of the SMD. The shearing motion
is found to have a strong contribution to the ∆-criterion. The structures in Fig.2.9b
appear to be not only vortical structures, but also shear layers. The structures from
the ∆-criterion applied to the rigid body rotation tensor are similar to the structures
found in the original ||(∇U)RR|| isosurface of Fig. 2.7a. The ∆-criterion applied to the
elongation tensor (Fig.2.9d) shows the inviscid deflection of the flow upstream the vehicle
and elongational motion near the surface of the model. Although it does not show distinct
coherent structures at the chosen isovalue, it also has an influence on the results of the
∆-criterion.
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2.4 Vortex Identification

(a) Q-Criterion on ∇U : Q = 200s−2

(Qmin = −3.4 · 109s−2, Qmax = 5.1 · 108s−2)

Q((∇U)SH) = 0

(b) Q-Criterion on (∇U)SH : Q = 0s−2

(Qmin = 0s−2, Qmax = 0s−2)

(c) Q-Criterion on (∇U)RR: Q = 50s−2

(Qmin = 0s−2, Qmax = 3.9 · 107s−2)
(d) Q-Criterion on (∇U)EL: Q = −50s−2

(Qmin = −6.7 · 107s−2, Qmax = 0s−2)

Figure 2.8: Q-Criterion on the tensors of the Shear Maximizing Decomposition

(a) ∆-Criterion on ∇U : ∆ = 7 · 105s−6

(∆min = −1.5 · 1027s−6, ∆max = 1.7 · 1026s−6)
(b) ∆-Criterion on (∇U)SH : ∆ = 7 · 103s−6

(∆min = 0s−6, ∆max = 1.4 · 1025s−6)

(c) ∆-Criterion on (∇U)RR: ∆ = 7 · 103s−6

(∆min = 0s−6, ∆max = 2.0 · 1022s−6)
(d) ∆-Criterion on (∇U)EL: ∆ = 7 · 103s−6

(∆min = −2.8 · 1023s−6, ∆max = 6.2 · 1023s−6)

Figure 2.9: ∆-Criterion on the tensors of the Shear Maximizing Decomposition
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(a) λ2-Criterion on ∇U : λ2 = −200s
−2

(λ2,min = −9.0 · 108s−2, λ2,max = 1.0 · 109s−2)
(b) λ2-Criterion on (∇U)SH : λ2 = −10s

−2

(λ2,min = −1.7 · 107s−2, λ2,max = 0s−2)

(c) λ2-Criterion on (∇U)RR: λ2 = −10s
−2

(λ2,min = −7.6 · 103s−2, λ2,max = 0s−2)
(d) λ2-Criterion on (∇U)EL: λ2 = 10s−2

(λ2,min = 0s−2, λ2,max = 6.0 · 107s−2)

Figure 2.10: λ2-Criterion on the tensors of the Shear Maximizing Decomposition

The contribution of shearing motion to the λ2-criterion in Fig. 2.10b is not as strong as
the contribution of shear to the ∆-criterion. Nonetheless, the structures at the C-pillars
of the model also appear to be shear layers rather than vortical structures. The structures
of the λ2-criterion applied to (∇U)RR are again very similar to structures of ||(∇U)RR||
in Fig. 2.7a. When applied to the elongation tensor, the λ2-criterion is always positive
and therefore not able to detect inviscid vortices. The isosurface of a positive threshold,
shown in Fig. 2.10d, shows a relatively strong influence of the elongational motion to the
λ2-criterion.

The isosurfaces of the λci-criterion applied to the tensors of the SMD are shown in
Fig. 2.11. The isosurface of the λci-criterion applied to the shear rate tensor (Fig. 2.11b) is
similar to the isosurface of the λ2-criterion (Fig. 2.10b). The isosurface of the λci-criterion
applied to the rigid body rotation tensor resembles the original ||(∇U)RR|| isosurface in
Fig. 2.7a. The λci-criterion is not able to detect elongational motions. It can therefore
not be biased by elongations but will also fail to detect the inviscid part of vortices.

Conclusion

All investigated vortex criteria have been found to be biased to some extend and are
not applicable outside the vortex core region. The Q-criterion fails to detect vortical
shearing motions but will not be influenced by shear layers. It is also not able to detect
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(a) λci-Criterion on ∇U : λci = 14s−1

(λci,min = 0s−1, λci,max = 1.3 · 104s−1)
(b) λci-Criterion on (∇U)SH : λci = 7s−1

(λci,min = 0s−1, λci,max = 5.3 · 103s−1)

(c) λci-Criterion on (∇U)RR: λci = 7s−1

(λci,min = 0s−1, λci,max = 5.4 · 103s−1)

λci((∇U)EL) = 0

(d) λci-Criterion on (∇U)EL: λci = 0s−1

(λci,min = 0s−1, λci,max = 0s−1)

Figure 2.11: λci-Criterion on the tensors of the Shear Maximizing Decomposition

inviscid vortices. Judging from Fig. 2.8d it is moderately influenced by elongational
motions. The ∆-criterion appears to be considerably influenced by shearing motions as
most of the structures found in Fig. 2.9d appear to be shear layers. The ∆-criterion is
non-zero, when applied to the rate of elongation tensor in the three dimensional case.
This means it could detect three dimensional inviscid vortices. As the ∆-criterion was
not able to detect the outer region of the Lamb–Oseen vortex, elongational motions in
car aerodynamics flow fields will probably have a predominantly biasing effect on the
results of the ∆-criterion. The λ2-criterion detects three dimensional shearing motions
and is therefore able to identify shear vortices. As the structures in Fig. 2.10b appear
to be at least partly shear layers, the λ2-criterion is also biased by shearing motions.
The λ2-criterion is not able to detect inviscid vortices, but is influenced by elongational
motions. The λci-criterion shows a similar behavior as the λ2-criterion when applied to
the shear rate tensor but it is not affected by elongational motions. The ||(∇U)RR||-
criterion, by design, fails to detect vortical shearing motions or inviscid vortices but its
results are not affected by shearing or elongational motions. It relies on the presence of
rigid body rotation and is therefore also only applicable in the core region of vortices. For
car aerodynamics flow fields, the ||(∇U)RR||-criterion emphasizes the rigid body rotation
in the vortex tubes over the curved redirection of the flow at curved surfaces (see Fig. 2.4)
and therefore produces a clear picture of the vortices.
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It has to be concluded that none of the investigated vortex criteria can be used for quanti-
tative investigations of vortices. It has been shown that all criteria can even fail completely
in some special cases. As relative motions near a point cannot be unambiguously linked
to vortical or non-vortical motions it is questionable if an unambiguous vortex criterion
based on the velocity gradient tensor is even possible. Nonetheless, it has to be noted that
vortex criteria are widely used in the fluid mechanics literature and are used with success
in the car aerodynamics development process. By reviewing the use of vortex criteria
in the recent literature, it becomes evident that in most cases the use of vortex criteria
is motivated by the goal to unveil the topological structure of the flow rather than by
extracting and quantifying individual vortices (see e.g. Gnanaskandan and Mahesh [34],
Jiang et al. [48] and [49] or Barnes et al. [5] as an exemplary selection). From this
point of view, the Shear Maximizing Decomposition appears to be the most useful tool as
it retains the complete information of the velocity gradient tensor and allows analyzing
the coherent structures formed by shearing motions, elongational motions and rigid body
rotations individually without being limited to the core region of vortices.
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2.5 Modal Decompositions

One of the challenges in the investigation of coherent structures in turbulent bluff body
flows is the presence of a large number of structures. Structures of different length and
time scale interpenetrate and form the complex unsteady flow field. To investigate the
causes and effects of individual flow processes, it is necessary to isolate the unsteady
coherent structures connected with the process. Modal decompositions are pattern or
structure recognition algorithms that decompose the flow into individual modes. The
modes contain a subset of the dynamics of the flow and can be used to reconstruct a re-
duced order representation of the original flow field. In this thesis, the Proper Orthogonal
Decomposition (POD) and the Dynamic Mode Decomposition (DMD) are used. The de-
composition process of the POD is based on the total variance in the flow thus separating
the modes of a velocity field by the hierarchy of the kinetic energy of its structures. The
DMD is based on the frequency of the fluctuations in the flow. DMD modes therefore
contain structures of common frequency.

The modal decompositions are implemented for fully distributed memory parallel pro-
cessing. The flow fields of a parallel CFD run are loaded in parallel. The linear algebra
computations are executed by the ScaLAPACK library for distributed memory parallel
linear algebra computation [8]. The result files are again written in parallel.

2.5.1 Proper Orthogonal Decomposition

The idea of the Proper Orthogonal Decomposition (POD) was published by Pearson [82]
at the beginning of the 20th century. The method has been independently reinvented
and used in different contexts of data analysis. Depending on the field of application,
it is described, amongst others, as Principal Component Analysis, Hotelling transform,
Karhunen–Loève decomposition or Singular Value Decomposition. The method was in-
troduced to fluid mechanics by Lumley [66] and Sirovich [96] and is a well established tool
for the investigation of coherent structures in turbulent flow fields.

For the investigation according to the method of snapshots by Sirovich [96], the flow fields
vi of the time steps {t1, t2, ..., tN} are arranged as the column vectors of the snapshot
matrix VN

1

VN
1 = {v1,v2,v3, ...,vN}. (2.71)

In this thesis, the POD is computed using a Singular Value Decomposition (SVD) of the
snapshot matrix.
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VN
1 = UΣWH . (2.72)

The columns of U are the left singular vectors, the columns of W are the right singular
vectors, Σ is a diagonal matrix with the singular values as the diagonal elements. To
compute the POD modes, the left singular vectors ui are weighted by their corresponding
singular value σi.

φ̂pod,i = uiσi (2.73)

The flow can be reconstructed by a multiplication of the matrix of POD modes Φpod and
the matrix of right singular vectors. A reduced order representation of the original flow
can be computed by using a subset of the POD modes and their corresponding right
singular vectors

Ṽ = ΦpodW. (2.74)

Sign Indeterminacy

A frequently overlooked property of the Proper Orthogonal Decomposition is the sign
indeterminacy of the POD modes. The scaling of the singular vectors of a singular value
decomposition, just as the scaling of eigen vectors of a spectral decomposition, is arbitrary.
Depending on the implementation of the SVD, the singular vectors are usually scaled to
a norm of one. By weighting the left singular vectors with their corresponding singular
value, a meaningful relative scaling of POD modes is established. Nonetheless, the sign of
the POD modes will still be arbitrary. It is not possible, in general, to compute a sign of
the singular vectors, as the SVD is only unique up to a reflection of the corresponding left
and right singular vectors. Based on the intuitive assumption that the singular vectors
should point into the direction of the majority of the vectors it represents, Bro et al. [11]
proposed an algorithm for the reconstruction of a meaningful sign of singular vectors:

Step 1: The inner product of the left singular vector ui and the data vectors v1 to vN is
computed and the signed square sum is taken.

for all ui do

s
left
i ←

∑N
j=1

sign(uT
i vj)(u

T
i vj)

2

end for
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Step 2: The inner product of the right singular vector wi and the data vectors v1 to vN

is computed and the signed square sum is taken.

for all ui do

s
right
i ←

∑N
j=1

sign(wT
i vj)(w

T
i vj)

2

end for

Step 3: If the singular vector and the data vectors point into the same direction
((slefti s

right
i ) ≥ 0) the sign is already correct. Else, the magnitudes of the previously

computed square sums are compared and the sign of the larger value is used to correct
the signs of the singular vectors.

for all slefti do

if (slefti s
right
i ) < 0 then

if |slefti | < |s
right
i | then

s
left
i ← −slefti

else

s
right
i ← −srighti

end if

end if

u∗
i ← sign(slefti )ui

w∗
i ← sign(srighti )wi

end for

The sign corrected POD modes are computed from the sign corrected left singular vec-
tors

φpod,i = u∗
iσi. (2.75)

For a reconstruction of the flow with the sign corrected POD modes, the matrix of sign
corrected right sigular vectors W∗ is employed

Ṽ = ΦpodW
∗. (2.76)
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The algorithm has been used in Peichl and Indinger [83] for the sign correction of POD
modes of car aerodynamics flow fields. It has been found that the algorithm is computa-
tionally expensive when compared to the computation of the singular value decomposition
as the algorithm includes a large number of dot products. Considering the computational
resources needed for the unsteady CFD simulations, the POD with sign correction is still
relatively cheap.

2.5.2 Dynamic Mode Decomposition

The Dynamic Mode Decomposition (DMD) has been originally proposed by Schmid
in [92]. It has rapidly established itself as a method for the investigation of coherent
structures in the fundamental research of fluid flows. The method has been used for a
modal analysis of a car aerodynamics flow field by Peichl et al. in [84]. The description
of the decomposition and reconstruction process of the DMD is based on the descriptions
in [84] with minor corrections in Eq. 2.90.

The description of the decomposition process of the Dynamic Mode Decomposition follows
the derivation of Schmid [92]. The description of the reconstruction follows Rowley et
al. [89].

Decomposition

The flow field sequence is represented as a matrix VN
1 with the flow fields vi as the column

vectors (Eq. 2.77). The sequence has to be ordered and the separation time between the
time steps ∆tDMD has to be constant.

VN
1 = {v1,v2,v3, ...,vN} (2.77)

With the assumption of a linear mapping A from one flow field to the next flow field
vi+1 = Avi, the matrix VN

1 can be constructed as a Krylov sequence,

VN
1 = {v1,Av1,A

2v1, ...,A
N−1v1}. (2.78)

For a quasi-steady flow with small perturbations, the dynamic characteristic described
by the Krylov sequence is equivalent to the dynamics described by the Matrix of flow
fields. For a nonlinear process, the Krylov sequence is a linear tangent approximation.
The Matrix A is the system matrix of the dynamic process. The aim of the DMD is to
extract the dynamics described by the matrix A.
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With a sufficient number of linear independent flow fields, the snapshot matrix VN
1 de-

scribes the dominant features of the flow. Additional flow fields can then be described by
a linear combination of the previous flow fields.

vN = a1v1 + a2v2 + ...+ aN−1vN−1 + r

= VN−1
1 a+ r (2.79)

with r as the residual vector. The matrix VN
2 with flow fields {v2,v3, ...,vN} can be

described as

VN
2 = AVN−1

1 = VN−1
1 S+ reT . (2.80)

The matrix S is a companion matrix

S =











0 a1
1 0 a2

. . . . . . ...
1 0 aN−2

1 aN−1











, (2.81)

it shifts the first N−2 columns of VN−1
1 , {v1,v2, ...,vN−2} forward in time to {v2,v3, ...,vN−1}.

The last column vector of VN
2 , vN stems from the linear mapping by the coefficients

a1, a2, ..., aN−1. These coefficients are the only unknowns in the matrix S. As the sys-
tem matrix A, the matrix S describes the dynamics of the flow. In the DMD according
to Schmid [92], the matrix S is not computed directly by a QR Decomposition of the
snapshot matrix VN−1

1 = QR and a = R−1QHvN . Instead, the snapshot matrix is
pre-processed by a singular value decomposition to avoid an ill-conditioned Algorithm,

VN−1
1 = UΣWH . (2.82)

Substitution of the singular value decomposition in Eq. 2.80 and rearranging leads to

UHAU = UHVN
2 WΣ−1 ≡ S̃. (2.83)

The singular value decomposition can also be used as a filter by restricting the projection
basis to singular values above a prescribed fraction of the total variance in the dataset.
The dynamic modes are computed by
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φ̂i = Uyi (2.84)

where yi are the eigenvectors of S̃ given by S̃yi = λiyi.

Reconstruction

The dynamic modes according to Schmid [92] are not scaled and have arbitrary sign.
Following Rowley et al. [89] the dynamic modes can be scaled such that

vi =
N∑

k=1

λi−1

k φk, i = 1, ..., N (2.85)

with the scaled modes φk. The first snapshot of the sequence is the sum of the modes

v1 =
N∑

k=1

φk. (2.86)

This leads to a system of linear equations with the matrix of unscaled modes Φ̂ and the
scaling vector d,

Φ̂d = v1. (2.87)

The scaled dynamic modes φi are then computed by

φi = φ̂idi. (2.88)

The snapshot sequence can be reconstructed according to Eq. 2.85 as

Ṽ = ΦT (2.89)

with the Vandermonde matrix T,

T =








1 λ1 λ2
1 . . . λN−2

1

1 λ2 λ2
2 . . . λN−2

2

...
...

... . . . ...
1 λN−1 λ2

N−1 . . . λN−2

N−1







. (2.90)
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Data Pre-Processing

It was found that the pre-processing of data has an important influence on the accuracy
of the Dynamic Mode Decomposition. Most important is a low pass filtering of the data.
While low frequency oscillations have no negative influence on the accuracy of the DMD
and fall into a non-oscillating mode if their frequency is too low to be resolved, high
frequency content that cannot be processed accurately by the method will contaminate
the analysis and lead to wrong results. The cut-off frequency of the filter fcut−off has to
be chosen such that only resolvable frequencies remain in the DMD analysis. The cut-off
frequency is chosen relative to the sampling frequency of the data. This approach guar-
anties the resolvability of all fluctuations in the data after the filtering without additional
user input.

For the DMD to produce satisfactory results, Schmid [92] found a sampling frequency of
six times the inherent frequency of the dynamic process to be sufficient in some cases.
An extensive study of Duke et al. [26] on synthetic waveforms recommends a sampling
frequency of ≥ 20 times the inherent frequency of the process for modes with zero growth
rate and ≥ 40 times the inherent frequency for modes with moderate growth rate. In this
study, it has been found that filtering the data with a cut-off frequency of 20 times the
sampling frequency of the data is sufficient for the predominantly undamped fluctuations
in the flow around a car.

The low pass filtering approach used to pre-process the data in this thesis is a forward-
backward filtering with a second order Butterworth low-pass filter which results in a
zero-phase filter of 4th order (Oppenheim et al. [80]). In addition to the low pass filtering
prior to the DMD analysis, the projection basis of the Singular Value Decomposition in
the DMD algorithm (Eq. 2.83) is restricted to modes with a relative contribution of more
than 1× 10−4 % to the total variance of the flow. This is necessary to account for a rank
deficient snapshot matrix. The chosen threshold of 1 × 10−4 % of the total variance in
the flow is relatively low, as the low pass filtering step prior to the DMD analysis already
removes most of the noise in the data.

Most DMD analyses found in the literature rely only on the filtering by a restriction of the
POD basis after the SVD step in the DMD algorithm without explicitly pre-processing
the data with a low pass filter. This approach is problematic, as it assumes that high
frequency fluctuations in the flow have low total variance (or energy content). By removing
singular vectors of low total variance it is assumed that no high frequency fluctuations
are retained in the flow. In addition, the threshold for the SVD filtering has to be found
iteratively as it depends on the physical phenomenon under investigation. In this thesis,
a combination of a low pass filter and a very moderate restriction of the POD basis after
the SVD step in the DMD algorithm was found to be the best procedure. The cut-off
frequency of the low pass filter can be directly determined by the sampling frequency of
the data and due to the low threshold of the SVD filtering the risk of biasing the data is
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reduced. No user-supplied parameter is necessary for the pre-processing and SVD filtering
in the DMD with this procedure. In the case of more than one field in one DMD analysis,
it can be necessary to scale the individual fields to unit variance prior to the analysis, as
the SVD filtering is based on the variance of the data. Especially in the case of fields
of different dimensions, scaling the fields to unit variance is recommended to ensure a
predictable behavior of the SVD filtering step.

Filtering the data in a forward-backward filtering approach with an IIR filter requires
the full time step sequence to be stored. By filtering the data prior to writing it onto a
storage medium, aliasing effects can be safely avoided. It should be possible to design a
zero-phase forward FIR filter that can be used to filter the data during the CFD run. As
an alternative, the phase response of an online IIR filter can be corrected after the DMD
computation on the eigenvalues of the matrix S̃ 1.

In the case of a spatially non-uniform data distribution (non-uniform grids), the data
points in the snapshot matrix have to be weighted spatially. In the case of volume fields,
the cell value is divided by the volume of the cell. In the case of surface fields, the value
is divided by the area of the surface cell. The DMD is executed with the weighted data.
The result fields of the DMD, the DMD modes or the reconstructed flow fields, then have
to be multiplied by the cell value or the surface cell area.

Post-Processing

The result of the DMD is a set of complex dynamic modes φi (Eq. 2.88) and a set of
corresponding complex eigenvalues of the matrix S̃, the so called Ritz values λi (Eq. 2.83).
A reconstruction of the flow with a subset of the modes is possible using Eq. 2.85 to 2.89.
The frequency of a mode can be computed from its complex eigenvalue λi

fi = Im

[
log λi

∆tDMD

]
1

2π
. (2.91)

An oscillating process with non-zero frequency is represented by the DMD with a complex
conjugate pair of modes. As the modes of a complex conjugate pair are identical except
for the sign of the imaginary part, one mode of the pair is sufficient to describe the process
and only modes with positive frequencies are considered in this thesis. By transforming
the complex eigenvalues into the complex stability plane, additional information about
the growth rate of the mode becomes available

ωi =
log λi

∆tDMD

. (2.92)

1Correcting the shortcomings of an online filter after the execution of the DMD was proposed by A.

Endres during his Master’s thesis at the Chair of Aerodynamics and Fluid Mechanics at TU Munich.
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The real part of ωi is the growth rate of the mode. The fluctuations of modes with positive
Re{ωi} intensify over time, while modes with negative real part describe a decaying
process. The imaginary part of ωi is the angular frequency of the mode with Im{ωi} = 0

for a non-oscillating process. Unphysically high damping rates (negative growth rates)
can be an indication for a low signal to noise ratio resulting in an inaccurate computation
of the DMD. In the case of car aerodynamics with largely undamped vortex shedding,
the growth rates should be close to zero. As the computation of the DMD is not totally
accurate it can be practical to artificially correct growth rates smaller than the error of the
analysis to zero prior to the reconstruction of the flow. The advantage of the correction is
that only one period of the fluctuation needs to be reconstructed for modes of zero growth
rate as the fluctuation is repeated unchanged every period.

An important characteristic of the modes are the modes amplitudes. Usually, the scaling
vector d computed in Eq 2.87 is used directly as amplitudes of modes. The scaling vector
d can also be computed as a post-processing step with the elements di in the vector being
the norm of the corresponding dynamic mode φi.

di =

√
√
√
√

M∑

k=1

φ2
k,i. (2.93)

In the case of non spatially weighted DMD modes, the weighting has to be considered in
computing the norm.

The amplitudes of the modes are the most important criterion for judging the importance
of a mode for the flow process under investigation. The usefulness of the DMD as a data
mining method is highly dependent on the criterion under which the modes are rated as
important for the investigated flow process. The current selection criterion is the (spatially
weighted) norm of the modes. Replacing this criterion with a more sophisticated heuristic
is a promising improvement to the data mining capability of the DMD.

51





3 Applications

The chapter on applications shows how the methods, introduced in chapter 2, are to
be applied in car aerodynamics. The applications are test cases with different degree of
complexity and realism. The first case, the surface mounted cube, is used to show how
the methods are applied to a well known bluff body flow around a simple geometry. It
establishes a connection to investigations already present in the literature. The second
test case, the case of the SAE car bodies, is an application of the methods to a highly
simplified generic car model. This case shows an application of the methods to different
variants of one geometry. In the third case, the DrivAer test case, the methods are
applied to a realistic generic vehicle. This test case shows how the methods can be
used to investigate the unsteady details of the flow around a car geometry similar to the
geometry of a production car. The fourth case, a convertible car model, is an application
of the methods to a geometry based on a real production car. This test case investigates
a fluctuation, observed in preceding wind tunnel tests.
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3.1 Surface Mounted Cube

The presented test case, a cube mounted on the surface of a channel, is used as a simple
example of a bluff body flow. This test case was extensively studied during the last
decades. Early experimental investigations are presented by Castro and Robins [12] with
a cube in different atmospheric boundary layers to investigate the effect of turbulence in
the oncoming flow or by Hunt et al. [41] who studied the flow topology using critical point
theory. Martinuzzi and Tropea [70] used a cube in a fully developed channel flow and
published detailed results for time averaged quantities. Other experimental contributions
are from Larousse et al. [63] or Hussein and Martinuzzi [43]. LES results of a cube in fully
developed channel flow are from Kishan and Ferziger [94], Rodi et al. [87] or Krajnović
and Davidson [60].

Modal investigations in subdomains around a surface mounted cube are published by
Manhart and Wengle [69] who executed a POD analysis in a subvolume on top of the
cube, Alfonsi et al. [2] published a POD analysis in two subvolumes in front and at one
side of the cube or by Muld et al. [74] who published POD and DMD analyses in a
subvolume containing the cube.

3.1.1 Setup

The computational domain is sketched in Fig: 3.1. A cubic, sharp edged, bluff body
is mounted on the wall of a channel. With the height of the cube H, the height of the
channel h = 2H the streamwise extend of the domain is 15H with x1 = 4.5 and x2 = 10.5,
the spanwise extend is 10H.

While most of the unsteady simulations of this test case found in literature use instan-
taneous results from channel simulations as incoming flow, the incoming flow here is the
time averaged velocity profile of the experiments, similar to the boundary conditions used
by Krajnović and Davidson [60].

The Reynolds number is Re = 1 · 105 based on the channel height.

Numerical Setup

A block structured grid with approx. 3.4 million cells is used in the presented test case.
The cell size in the vicinity of the cube is ∆x

H
< 4.4 · 10−2. Outside the prism layer, a cube

edge is resolved with 29 cell nodes. Prism layers are present at the cube, at the bottom
and at the top of the domain. The dimensionless wall distance y+ of the wall nearest cells
are below one in the whole domain. The wall normal size of the cells increase in the prism
layers with a factor of < 1.25 until a cubic cell shape is reached.
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Figure 3.1: Geometry of the surface
mounted cube: h

H
= 2, x1

H
= 4.5, x2

H
=

10.5, b
H

= 10.

The discretization scheme for convective terms is a second order central differencing
scheme with a small amount of upwind to reduce oscillations on coarser grids. The
gradients are computed using the Gauss theorem were the surface values are interpolated
with a second order linear interpolation. The diffusive terms are approximated using
a stabilized over relaxed approach to account for the non-orthogonality of the mesh in
regions where the mesh changes to an O-type grid. The scheme to discretize the time
derivatives is second order implicit. The time step is adjusted to result in a CFL number
smaller than 1.

The turbulence model used is the Spalart-Allmaras DDES model as described in sec-
tion 2.2.2. The wall normal eddy viscosity profiles have been checked against the velocity
profile of the boundary layers to ensure the proper functioning of the shielding function
of the turbulence model.

Boundary Conditions At the inlet boundary condition, the time averaged velocity
profile of an independent channel flow simulation is imposed. The velocity profile matches
the velocity profile of the experiments and provides the velocity data without the need for
interpolation. As inlet values of the modified eddy viscosity ν̃, the time averaged profile of
ν̃ of the channel simulation is used. It is known that a channel simulation with the DDES
turbulence model can produce artificially low turbulent viscosity as the instability in the
flow can be too low to maintain the fluctuations. Rumsey and Spalart [90] recommend
a free stream eddy viscosity ratio of ν̃∞

ν∞
= 3 as inlet boundary value for aerodynamics

simulations. The lowest eddy viscosity ratio of the inlet profile is 3 and falls to 2.5 directly
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in front of the cube. This is considered acceptable. The boundary condition of pressure
at the inlet is a zero gradient Neumann condition.

At the outlet of the computational domain, the velocity boundary condition is a zero
gradient Neumann boundary condition that is modified such that it avoids backflow into
the domain. In case of backflow, the velocity vector is set to zero. The boundary condition
of the modified eddy viscosity ν̃ is also a zero gradient Neumann boundary condition. The
pressure at the outlet is set to zero.

At the top wall, the bottom wall and the cube the boundary condition of velocity and
modified eddy viscosity is of Dirichlet type set to a value of zero. The boundary condition
of pressure is a zero gradient Neumann boundary condition.

The side walls are treated as slip walls. Here, the velocity components tangential to
the wall are handled with a zero gradient Neumann condition, while the normal velocity
components are set to zero. The modified eddy viscosity and pressure are handled with
zero gradient Neumann boundary conditions.

3.1.2 Results

Time averaged flow

Statistical quantities of the mean flow are computed to be compared to experimental
results published by Martinuzzi and Tropea [70] and numerical results by Krajnović and
Davidson [60]. Krajnović and Davidson executed LES simulations with similar boundary
conditions as in the present study with two different one-equation subgrid models on three
different grids. The results presented here are compared to the results of Krajnović and
Davidson with the Dynamic One Equation Model (OEM) [23] and the Localized Dynamic

ksgs-Equation Model (LDKM) [71] on the finest grid. The Fig. 3.2 shows the streamwise
velocity component <u>

U∞

, the upward velocity component <w>
U∞

and the turbulent stresses
<u′u′>
U2
∞

, <w′w′>
U2
∞

, <u′w′>
U2
∞

along the vertical axis z at four streamwise positions. With the
origin of the coordinate system in the middle of the cube on the ground, at x

H
= 0 in

center of the cube, x
H

= 0.5 at the trailing edge and at two positions behind the cube:
x
H

= 1.5 and x
H

= 3.5. The averaging time for the simulation results is 450 H
U∞

which
corresponds to 90 shedding cycles for a Strouhal number of 0.2.

The first row of Fig. 3.2 shows the streamwise velocity component <w>
U∞

. For the first three
positions, results of two different measurements of Martinuzzi and Tropea are available.
In the first picture ( x

H
= 0) the measurements differ close to the cube. The results of

Krajnović and Davidson follow the measurement indicated by crosses while the simulation
results of the presented investigation follow the measurement indicated by circles. This
is due to two vortices found in the present study that are not reported by Krajnović
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Figure 3.2: Comparison against experimental results (Martinuzzi and Tropea [70]) and
results from LES simulations with comparable boundary conditions (Krajnović and David-
son [60]). Solid lines: DDES simulation, symbols: Experimental results [70], dashed lines:
LDKM simulation [60], dotted lines: OEM simulation [60].
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and Davidson. The fact that two independent measurements with the same measurement
equipment and setup indicate different flow structures, show a strong dependency of the
test case on initial and boundary conditions. The streamwise velocity component is in
good agreement with the experimental results for the positions x

H
= 0, x

H
= 0.5 and

x
H

= 3.5. At position x
H

= 1.5 deviations can be seen between z
H

= 0.5 and z
H

= 1.5

while the results of Krajnović and Davidson differ below z
H

= 0.5 from the experimental
results.

The upward velocity component <w>
U∞

shown in the second row of Fig. 3.2 is in good
agreement at position x

H
= 0 and x

H
= 3.5 and shows deviations at positions x

H
= 0.5 and

x
H

= 1.5. The LES results show a larger deviation to the experiments at the first two
positions.

The turbulent stresses generally match the experimental results not as good as the veloc-
ities. A general observation is that the stresses are underpredicted at the first position,
reach a realistic magnitude directly behind the cube and are overpredicted downstream
the cube. The underestimation of turbulent stresses at the first position is caused by
the stationary inlet conditions without resolved fluctuations. The overestimation of the
stresses at the last down stream position can be caused by a low turbulent viscosity
at the inlet boundary condition and, subsequently, a too low damping of the resolved
fluctuations.

Comparing the statistical quantities of the DDES simulation presented here and especially
the velocity components with the results of the LES simulations, the DDES can be said
to produce competitive results for the presented test case.

Figure 3.3: Line Integral Convolution
(LIC) of the wall shear stress on the bot-
tom of the computational domain

Line Integral Convolution (LIC) pictures on the wall shear stress vector field are shown for
the bottom of the domain in Fig. 3.3 and for the surface of the cube in Fig 3.4. Important
flow features in the flow are the horseshoe vortices. On the bottom of the domain, four
lines are visible in front of the cube. The first line upstream is the primary detachment
line of the flow in front of the first horseshoe vortex. The second line, a reattachment
line, separates the first from the counter rotating second horseshoe vortex. The third line
is again a separation line, indicating the next vortex. The fourth line, directly in front of

58



3.1 Surface Mounted Cube

Figure 3.4: Line Integral Convolution
(LIC) of the wall shear stress on the cube
surface. Left: leading side, right: trail-
ing side, top: left side in the direction of
flow, bottom: right side in the direction
of flow, center: top of the cube.

the cube is blurred and not clearly visible. Considering the LIC pattern on the leading
face of the cube in Fig 3.4, this reattachment line has to be present in front of the cube.

In the wake of the cube, two lines are visible. The first line directly downstream is a
detachment line that separates the first vortex behind the cube from an arch shaped
recirculation vortex. The second line is the primary reattachment line of the main flow
behind the cube. Spiraling pattern on both sides of the near wake show the mark of the
“legs” of the arch shaped recirculation vortex on the wall shear stress on the ground. A
similar spiraling pattern is visible on the sides of the cube (top and bottom picture in
Fig. 3.4) here, recirculation vortices reach from the sides of the cube to the ground. The
correspondent spiraling pattern on the ground is not clearly visible but is assumed to exist
in the blurred regions directly beside the cube on the ground. Other features found in
the LIC pictures of Fig. 3.4 are the stagnation point in the upper middle and separation
lines at the edges of the leading face of the cube. The detachment and reattachment
lines of the vortices at the edges of the side faces and the top face. And the vertical
lines, leading to the recirculation zone at the bottom of the trailing face, indicating the
downwash in the near wake of the cube. The LIC pattern in the center of the top face
does not correspond to dominant structures of the flow. Here the time averaged wall shear
stress is near zero.

The pictures of Fig 3.5 are Line Integral Convolutions on slices of the time averaged
velocity field. The upper picture shows the y

H
= 0 plane in the center of the cube. The

lower picture shows the z
H

= 0.5 plane, half the cube height above the ground. The
pictures are colored by the normal component of rigid body rotation computed with the
Shear Maximizing Decomposition. The upper picture shows the four horseshoe vortices
in front of the cube. Here, the third vortex in the direction of the flow is clearly the
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Figure 3.5: Line Integral Convolution
(LIC) of the time averaged velocity col-
ored by normal component of rigid body
rotation from the Shear Maximizing De-
composition. Blue: negative rotation,
red: positive rotation. Color range from
blue −2s−1 to red 2s−1.

strongest vortex. The vortices at the edges of the cube are also found to be strong, while
the recirculation vortices are relatively weak. The rigid body rotation in the bended flow
above the edge vortices and recirculation vortices is found to be as strong as the vortices
itself. This is also true for the vortices shown in the lower picture.

(a) ||(∇U)RR||
H
U∞

= 0.6 (b) ||(∇U)SH ||
H
U∞

= 5

(c) ||(∇U)EL||
H
U∞

= 1.5

Figure 3.6: Isosurfaces of ||(∇U)RR||,
||(∇U)SH || and ||(∇U)EL|| of the time av-
eraged velocity field around the cube.
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To summarize the flow topology of the time averaged flow, isosurfaces of the magnitudes
of the SMD tensors are shown in Fig. 3.6. In Fig. 3.6a, the isosurface of the magnitude
of the tensor of rigid body rotation is shown. Clearly visible is the main horseshoe vortex
and the secondary horseshoe vortices in front of the cube. The cube itself is covered by
the isosurface of ||(∇U)RR|| in the bended flow around the cube. At the edges, the edge
vortices are noticeable. On top of the cube and the sides, recirculation vortices are present
as well as the arch shaped vortex in the wake of the cube.

The dominant structure in the visualization of the shear magnitude ||(∇U)SH || in Fig. 3.6b
is the main shear layer starting from the leading edges of the cube and following the flow
into the wake. The shearing motion in the horseshoe vortices as well as the shear between
the rotational motion of the horseshoe vortices and the surrounding flow are visible in
front of the cube. Also visible is the shear at the bottom of the domain, the shear at the
top wall has been clipped for better visibility.

The magnitude of elongation ||(∇U)EL|| is shown in Fig. 3.6c. The flow decelerates to the
stagnation point and is redirected over the leading edges and over the trailing edges of the
cube. The magnitude of elongation consists mainly of the inviscid part of the redirection
of flow. Due to the elongation around and in the vortices, the horseshoe vortices are also
visible in this picture.

All vortices described by Martinuzzi and Tropea [70] are present in the flow. While
Krajnović and Davidson [60] report only two vortices in front of the cube, four vortices
are found here. This difference is already explained by Martinuzzi and Tropea who found
that the flow alternates between two different states, one state with two horseshoe vortices
and one state with four horseshoe vortices in front of the cube.

Unsteady Flow

The structures in the unsteady flow around the cube are investigated with the Proper
Orthogonal Decomposition (POD) and the Dynamic Mode Decomposition (DMD). The
POD has been used by Manhart and Wengle [69], Alfonsi et al. [2] and Muld et al. [74] for
investigations of subvolumes around the cube. The DMD has been used in the analysis
of Muld et al. [74].

Proper Orthogonal Decomposition on the Velocity Vector Field The POD is
applied on the velocity vector field in the whole domain with NPOD = 800 time steps, a
time step length of ∆tPOD

U∞

H
= 0.1 and a total time span of TPOD

U∞

H
= 80. As the grid

used in the analysis has varying density, the velocity data has to be weighted spatially.
To allow for a comparison of the POD results with the results of the DMD, the time step
data is filtered with a 4th order low-pass filter with a ratio of cut-off frequency to Nyquist
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frequency of 0.1. A POD analysis without pre-filtering the data produced very similar
results for the first 10 Modes.

The relative distribution of total variance over the proper orthogonal modes is shown in
Fig. 3.7. The first mode of the decomposition, the mean flow, contains 99.6% of the total
variance in the dataset. The second mode contains 0.04%. It is a common observation for
POD that one flow phenomenon is represented by two or more modes. The fact that the
second and third mode have similar total variance, is an indication that they represent
a common flow phenomenon. Similar content of total variance can also be observed for
higher modes e.g. for modes 5 and 6 or modes 8 and 9.
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0.0004
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Figure 3.7: Relative variance of the Proper Orthogonal Modes. Variance of the modes
normalized by sum of variance over all modes.

An overview over the proper orthogonal modes 2 to 8 is given in Fig 3.8. The pictures
show isosurfaces of the velocity components u (streamwise), v (spanwise) and w (upward
direction). The modes are scaled such that the first mode matches the time averaged flow.
The signs of the modes are reconstructed according to the description in section 2.5.1,
sign correction is indicated in the left column of Fig. 3.8.

The modes 2 and 3 in Fig. 3.8 show a streamwise pattern of positive and negative isosur-
faces. The modes are similar; isosurfaces of mode 3 are shifted in the streamwise direction
when compared to mode 2. The flow phenomenon described by these modes is the dom-
inant vortex shedding in the flow. The flow pattern found in modes 2 and 3 were also
found by Manhart and Wengle in [69]. The isosurfaces of Mode 4 are connected, stream-
wise elongated regions indicating an oscillating process in the whole wake of the cube.
Modes 5 and 6, again, show a streamwise pattern of positive and negative isosurfaces.
Here, the vortex shedding process has a smaller length scale then found in modes 2 and 3.
Mode 7 has similarities to mode 4 with longitudinally oriented, connected regions. Mode
8 appears to be a vortex shedding process with even smaller length scale then found in
mode 5 and 6.

From Fig. 3.7 it can be seen that the total variance of the modes falls with increasing
mode number rapidly for the first 7 modes. While the first modes are directly induced
by the shape and length scale of the geometry, the higher modes appear to evolve from
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u v w

Mode 2
(Sign corrected)

Mode 3

Mode 4

Mode 5
(Sign corrected)

Mode 6
(Sign corrected)

Mode 7

Mode 8
(Sign corrected)

Figure 3.8: Isosurfaces of velocity components u, v and w of POD modes 2−8. Isovalues
normalized by bulk velocity U∞. Red: +0.04, blue: −0.04. Upper pictures in row: side
view, lower pictures in row: top view.
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the shear layers around the body. With increasing mode number, the length scale of the
structures decreases.

Applied to the flow around the surface mounted cube, the POD is able to extract the most
dominant flow structures and reproduces the unsteady “skeleton” of flow. The algorithm
of the POD based on the singular value decomposition is numerically stable and relatively
easy to apply. The POD decomposes the flow based on the orthogonality condition and
the hierarchy of total variance in the modes. For modes with a high contribution to the
total variance, this is sufficient to reveal their contribution to the dynamics of the flow
and allow connecting the mode to a distinct flow phenomenon like a vortex shedding
process. For modes with lower contribution to the total variance, the dynamic evolution
and contribution to the flow is usually not as clear. The modes have similar visual
appearance and similar total variance. For these modes, the POD lacks a criterion to
connect them to distinct flow phenomena and allow for a reconstruction of a selected part
of the dynamics of the flow.

Dynamic Mode Decomposition on the Velocity Vector Field For a direct com-
parison with the results of the POD, the DMD has been applied on the same set of time
steps of the velocity vector field in the whole domain with NDMD = 800 time steps, a
time step length of ∆tDMD

U∞

H
= 0.1 and a total time span of TDMD

U∞

H
= 80. As in the

POD analysis, the time step data is filtered with a 4th order low-pass filter with a ratio
of cut-off frequency to Nyquist frequency of 0.1. After the singular value decomposition
in the DMD algorithm, the projection basis is restricted to modes with a relative contri-
bution of more than 1 × 10−4 % to the total variance of the flow. This threshold is high
enough to safely account for a rank deficiency in the matrices but small enough to not
discard physically meaningful information.
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Figure 3.9: Relative amplitude over Strouhal number. Spatially weighted amplitudes
of the dynamic modes normalized by amplitude of the first mode. Mode numbers by
decreasing amplitude.

The relative amplitude of the dynamic modes and their corresponding Strouhal number
is shown in Fig. 3.9. The amplitudes are computed as the spatially weighted norm of the
mode. The modes are numbered by decreasing amplitude. Mode 1 is, again, the mean flow
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Figure 3.10: Eigenvalues of the Dynamic Modes transformed into the complex stability
plane. Size and darkness of the symbols indicate the amplitude of the mode.

with a Strouhal number of Sr = 0. The first oscillating mode is mode 2 with Strouhal
number of Sr = 0.119. Hussein and Martinuzzi [43] identified in their experiments a
dominant vortex shedding from the lateral walls of the cube with a Strouhal number of
Sr = 0.145. Krajnović and Davidson [60] report Strouhal numbers for the side force on
the cube for the aforementioned OEM and LDKM turbulence models on different grids
between Sr = 0.092 and Sr = 0.146. With Sr = 0.115 for the LDK model and Sr = 0.146

for the OE model on the finest grid.

The spectrum of eigenvalues transformed into the complex stability plane is shown in
Fig. 3.10. The imaginary part of ω is the angular frequency of the mode. The real part of
ω is the exponential growth rate. Positive values indicate growth, negative values indicate
decay of the structures found in the mode. The structures of aerodynamics flows around
bluff bodies are usually decaying or show growth rates near zero. Most relevant in car
aerodynamics are usually modes with near zero growth rate. These modes describe the
persistent fluctuating processes in the flow. Here, the growth rates of all modes in the
time window of the analysis are zero or near zero. The DMD is sensitive to signal to noise
ratio. A highly dampened spectrum can be an indication for a high noise level in the data
caused for example by a high noise level in the input data, rank deficient matrices or too
low a sampling rate for the highest fluctuations in the flow field sequence.

Isosurfaces of the velocity components u (streamwise), v (spanwise) and w (upward di-
rection) of the dynamic modes 2 to 8 are shown in Fig 3.11. Mode 2 is the dominant
fluctuation in the flow with a Strouhal number of Sr = 0.119. It describes a vortex
shedding process from the side walls of the cube and is similar in structure and length
scale to POD modes 2 and 3 in Fig. 3.8. Mode 3 is also a vortex shedding process from
the sidewalls but with higher Strouhal number and smaller length scale then mode 2. It
is similar to POD mode 5 and 6. Mode 4 is, with a Strouhal number of Sr = 0.035, a
low frequency oscillation. Its structures have similarities to POD mode 4 and POD mode
7. The flow phenomenon of Mode 5 cannot be clearly identified. The Strouhal number
and length scale of the structures point to a vortex shedding process while the lack of
symmetries and no clear positive-negative pattern could be explained by two interpene-
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u v w

Mode 2
Sr = 0.119

Mode 3
Sr = 0.156

Mode 4
Sr = 0.035

Mode 5
Sr = 0.146

Mode 6
Sr = 0.112

Mode 7
Sr = 0.026

Mode 8
Sr = 0.168

Figure 3.11: Isosurfaces of velocity components u, v and w of DMD modes 2−8. Isovalues
normalized by bulk velocity U∞. Red: +0.08, blue: −0.08. Upper pictures in row: side
view, lower pictures in row: top view.
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trating vortex shedding processes with the same frequency. Mode 6 can be interpreted as
a vortex shedding process mainly from the side walls. The Strouhal number of Sr = 0.112

is nearly the same as the Strouhal number of mode 2 with Sr = 0.119. Mode 7 is, as mode
4, a low frequency oscillation. It is similar to mode 4 and has similarities to POD mode
4 and POD mode 7. Mode 8 is a shedding process. The typical positive-negative pattern
is clearly visible in the v velocity component but not as pronounced in the other velocity
components. The shedding process appears to induce a spanwise oscillating behavior of
the wake.

Time u v w

t = 0

t = 1

4
τ+

t = 2

4
τ+

t = 3

4
τ+

Figure 3.12: Reconstruction of one period τ+ = Sr−1 = 8.40 of DMD mode 2. Isosur-
faces of velocity components u, v and w. Isovalues normalized by bulk velocity U∞. Red:
+0.08, blue: −0.08.

A lower dimensional representation of the flow has been reconstructed with one mode
for the first three oscillating modes 2 to 4. The reconstruction of mode 2 is shown in
Fig. 3.12 for one period of the oscillation. In the reconstruction, it can be seen, how the
fluctuations deform and how they are convected with the main flow. Concentrating on the
u velocity component, at t = 0 a positive (red) structure forms at one side of the cube and
is convected down stream at t = 1

4
τ+. After half a period at t = 1

2
τ+, a negative structure

(blue) forms at the same place. At the same time at t = 0, the positive structure in the
v component shows how the flow is deflected in the spanwise direction by the detaching
vortex. An interesting fact of this reconstruction is that the w velocity component is
negative for the shedding of one side of the cube and positive for the shedding from the
other side. This means that the axis of the vortices detaching from one side tilts inwards,
while the axis of the vortices from the other side tilts outwards while they are convected
down stream.
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Figure 3.13: Reconstruction of one period τ+ = Sr−1 = 6.41 of DMD mode 3. Isosur-
faces of velocity components u, v and w. Isovalues normalized by bulk velocity U∞. Red:
+0.08, blue: −0.08.
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Figure 3.14: Reconstruction of one period τ+ = Sr−1 = 28.57 of DMD mode 4. Isosur-
faces of velocity components u, v and w. Isovalues normalized by bulk velocity U∞. Red:
+0.08, blue: −0.08.
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The reconstruction of mode 3 shows that mode 2 and 3 are, except for the Strouhal
number and length scales, very similar. The upward and downward motion of mode 3 is
the same as of mode 2. With upward motion for vortices detaching from the y-positive
side and downward motion for vortices from the y-negative side of the cube.

In the reconstruction of mode 4, the oscillating motion of the longitudinal structures
directly behind the cube is quasi stationary. The structures change from positive to
negative motion without being convected with the main flow. The flow structures towards
the sides of the domain move with the main flow. These tube like structures describe the
motion of the unsteady vortices that form the “legs” of the horse shoe vortices of the time
averaged flow.

The Dynamic Mode Decomposition was able to separate the dominant dynamic processes
in the flow around the surface mounted cube. The additional information of growth rate
and frequency of the modes facilitate the interpretation of the underlying flow mechanism
and allow to link the modes to distinct flow phenomena. For the first DMD modes, strong
visual similarities to the POD modes could be identified. As the structures of one DMD
mode share a common frequency and describe a part of the dynamics of the flow, each
mode can be reconstructed and interpreted individually. This is an advantage over the
POD, were the modes describe a part of the variance of the flow rather than a part of the
dynamic behavior.

Dynamic Mode Decomposition on the Fields of the Tensor Magnitudes of

the Shear Maximizing Decomposition In addition to the approach of analyzing
the velocity vector field, derived quantities can also be analyzed with the DMD. While
a DMD analysis of the velocity vector field isolates the dominant fluctuations in the
flow, it cannot distinguish between different kinds of relative motion like rotational or
shearing motions. These relative motions are Galilean invariant and are therefore better
suited to the identification of coherent structures in the flow. The DMD is executed
on the scalar fields of the magnitudes of the Shear Maximizing Decomposition tensors
||(∇U)SH ||, ||(∇U)EL|| and ||(∇U)RR|| with NDMD = 800 time steps, a time step length
of ∆tDMD

U∞

H
= 0.1 and a total time span of TDMD

U∞

H
= 80. The time step data is filtered

with a 4th order low-pass filter with a ratio of cut-off frequency to Nyquist frequency of
0.1. After the singular value decomposition in the DMD algorithm, the projection basis
is restricted to modes with a relative contribution of more than 1 × 10−4 % to the total
variance of the flow.

The spatially weighted relative amplitudes of the fields are shown in Fig. 3.15 and 3.16.
The amplitudes in Fig. 3.15 are normalized by the amplitude of the first mode of ||(∇U)SH ||

while the amplitudes in Fig. 3.16 are normalized by the amplitude of the first mode of
the field itself. Shear is clearly the most intense relative motion in the flow while the am-
plitudes of rigid body rotation and elongation have the same magnitude. The hierarchy
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Figure 3.15: Relative amplitude over Strouhal number. Spatially weighted amplitudes
of the dynamic modes normalized by amplitude of the first mode of ||(∇U)SH ||. Triangles:
||(∇U)SH ||, squares: ||(∇U)EL||, circles: ||(∇U)RR||.
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Figure 3.16: Relative amplitude over Strouhal number. Spatially weighted amplitudes
of the dynamic modes normalized by amplitude of the first mode of the field. Triangles:
||(∇U)SH ||, squares: ||(∇U)EL||, circles: ||(∇U)RR||.

Im{ω
i
}

R
e

{ω
i}

0 1 2 3 4

-0.5

0

0.5

Figure 3.17: Eigenvalues of the Dynamic Modes transformed into the complex stability
plane. Size and darkness of the symbols indicate the amplitude of the modes of ||(∇U)SH ||.
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of modes is independent of the field, mode 2 of ||(∇U)SH || is also mode 2 of ||(∇U)EL||

or ||(∇U)RR||. While the amplitudes of the DMD modes of the velocity vector field in
the previous analysis decrease for modes with higher frequency, the amplitudes of the
DMD modes of the SMD tensor magnitudes are more independent of frequency and high
frequency modes with high amplitudes can be found. In the singular value decomposi-
tion step of the DMD algorithm, the information of high amplitude modes is distributed
over the lower POD modes of high variance. The conventional DMD algorithm, with
filtering the data by restricting the projection basis in the singular value decomposition
and thereby discarding fluctuations with frequencies that cannot be resolved, would not
work in this case. Here, the pre-processing with a low-pass filter is inevitable. The spec-
trum of Eigenvalues, shown in Fig. 3.17 is nearly undampened. Without pre-filtering the
data, the analysis would be contaminated by noise and the spectrum would be artificially
dampened.

Isosurfaces of the dynamic modes 2 to 8 are shown in Fig 3.18, isosurfaces of the dynamic
modes 9 to 15 are shown in Fig. 3.19. The positive and negative values of the isosurfaces
can be interpreted here as an oscillation around a mean value. In the field of rigid body
rotation of mode 2, the increasing and decreasing of the rotation in the horse shoe vortices
can be seen. The “legs” of two vortices rotate around each other while they bend around
the cube. The patterns in the wake flow of the cube indicate a vortex shedding. The
shedding starts before the trailing edges around the cube but not at the same time on all
sides. The horse shoe vortices and the shedding process can also be seen in the field of
elongation of mode 2. For the shear field, the values in the boundary layers at the bottom
and top wall of the domain have been clipped for better visibility. The vortex shedding is
also visible in the shear field of mode 2. Mode 3 shows the same low frequency oscillation,
previously found in mode 4 of the DMD analysis of the velocity field. The frequencies
are the same and the structures have the same longitudinal shape as the structures found
in mode 4 of the DMD analysis of the velocity field. Here, it can be seen that the low
frequency oscillation also affects the horse shoe vortices in front of the cube. Mode 4 has
relatively high Strouhal number and low length scale. The fluctuations start relatively
regular at the leading edge and are convected with the main flow. The same is true
for Mode 5 but with lower Strouhal number and larger length scales. Mode 6 is a low
frequency oscillation similar to mode 3 but with even lower Strouhal number. The modes
7 and 8 are, again, vortex shedding processes similar to the modes 4 and 5.

The dominant vortex shedding processes, found in the DMD on the velocity field, with
alternating shedding from the side walls of the cube and a Strouhal number of around
Sr = 0.12 could not be found in the first 8 modes of this analysis. This is due to different
meaning of the amplitude of the modes of a velocity field and the modes of a field of
relative velocity. In the DMD analysis of the magnitudes of the SMD tensors, the first
modes with alternating shedding from the side walls of the cube are mode 12 (Sr = 0.110)
and 13 (Sr = 0.122) (Fig. 3.19). For all modes investigated, the field of rigid body rotation
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Figure 3.18: Isosurfaces of magnitudes of the Shear Maximizing Decomposition tensor.
DMD modes 2− 8. Isovalues ||(∇U)RR||
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red: +0.25, blue: −0.25.

72



3.1 Surface Mounted Cube

||(∇U)RR|| ||(∇U)EL|| ||(∇U)SH ||

Mode 9
Sr = 0.377

Mode 10
Sr = 0.146

Mode 11
Sr = 0.170

Mode 12
Sr = 0.110

Mode 13
Sr = 0.122

Mode 14
Sr = 0.136

Mode 15
Sr = 0.219

Figure 3.19: Isosurfaces of magnitudes of the Shear Maximizing Decomposition tensors.
DMD modes 9 − 16. Isovalues ||(∇U)RR||
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shows a contribution of the horse shoe vortices to the oscillation in the mode. This is an
indication that there exists an upstream influence of the wake flow on the oscillation of
the horse shoe vortices.

Time ||(∇U)RR|| ||(∇U)EL|| ||(∇U)SH ||

t = 0

t = 1
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Figure 3.20: Reconstruction of one period τ+ = Sr−1 = 28.57 of DMD modes 1 and
3. Isosurfaces of the magnitudes of ||(∇U)RR||

H
U∞

= 0.6, ||(∇U)EL||
H
U∞

= 1.5 and
||(∇U)SH ||

H
U∞

= 5.0.

A reconstruction of the mean flow and one period of mode 3 is shown in Fig. 3.20. The
isovalues are the same as in Fig. 3.6. The shear field of the reconstruction shows a
streamwise oscillation of the main shear layer. The oscillation is present in the whole
shear layer but most pronounced at the y-positive side of the cube. The oscillation in the
field of elongation is restricted to the elongation at the trailing edges of the cube and to
the wake. The elongation at the leading edges does not oscillate. Fluctuations can be
found in most parts of the field of rigid body rotation but no clear motion of vortices can
be seen except for a slight change in the length of the horse shoe vortices. The lack of a
clear motion in the field of rigid body rotation is another indication that mode 3 is not
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connected to the motion of vortices but is a low frequency oscillation of the whole wake
of the flow.

3.1.3 Conclusion

The flow around a cube mounted in a channel was investigated in this test case. Statistical
quantities of the mean flow, as well as steady and unsteady flow structures were compared
to numerical and experimental investigations found in the literature. The DDES simu-
lation is in good agreement with published experimental data and is found to produce
competitive results when compared to published LES simulations. The time averaged
flow was studied by Line Integral Convolution (LIC) pictures of the wall shear stress and
the velocity vector field. The LIC pictures were found to be well suited to investigate the
flow structures relative to one reference frame. A Shear Maximizing Decomposition was
employed as a Galilean invariant method to investigate the flow structures and was found
to describe the dominant flow structures also described in the literature.

The unsteady flow around the cube was studied using a sign corrected Proper Orthogo-
nal Decomposition (POD) of the velocity vector field, a Dynamic Mode Decomposition
(DMD) of the velocity vector field and a Dynamic Mode Decomposition of the fields of the
tensor magnitudes of the Shear Maximizing Decomposition (SMD). The POD analysis of
the velocity field was found to be able to extract the most dominant flow structures in the
flow. The dominant structures were found to be in good agreement with published POD
investigations with the same geometry. For higher order modes, the relation of the POD
modes to distinct flow phenomena like vortex shedding processes could not be established.
As the POD typically reproduces one flow phenomena with more than one mode, a recon-
struction of distinct phenomena is usually not possible. The DMD of the velocity field was
able to extract the dominant flow processes. The most dominant dynamic modes were
found to show strong visual similarities to the most dominant proper orthogonal modes.
Individual dynamic modes were reconstructed and were found to contain distinct flow
phenomena like the dominant vortex shedding from the cube or an oscillation of the horse
shoe vortices. The amplitude spectra of the Dynamic Mode Decomposition of the SMD
tensor magnitudes are considerably different from the DMD of the velocity field. This is
explained by the fact that fluctuations of high kinetic energy, the dominant modes of the
DMD of the velocity field, do not necessarily imply strong relative motions. While the
high frequency modes of the velocity field have low energy content, this is not the case for
the relative motions. This is an important finding for the application of the method as the
singular value filter of the DMD assumes low total variance in high frequency modes. The
application of the DMD to the SMD tensor data wound not have been possible without
low-pass filtering the data prior to the DMD analysis.
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3.2 SAE Car Model

The SAE Car Model is a highly simplified, generic car model. It was used in the past
to investigate fundamental flow phenomena around car-like shaped bluff bodies. The car
body was proposed by Cogotti in [19] with different rear end shapes and was modified by
other authors for specific investigations. The model is used here to investigate the effect
of a change in geometry on the results of the Dynamic Mode Decomposition. The DMD
is applied to velocity vector fields and the scalar field of pressure in one analysis. This
approach allows for the investigation of the unsteady interdependencies of flow variables.

3.2.1 Setup

The SAE car model is investigated in four different configurations. Two closed config-
urations as proposed by Cogotti in [19] and two configurations with a generic engine
compartment as proposed by Bäder in [7].

(a) Notchback, open (b) Estate, open

(c) Notchback, closed (d) Estate, closed

Figure 3.21: Cross sections of the SAE-Body configurations

Cross sections of the configurations are shown in Fig. 3.21. The generic engine com-
partment contains a model radiator (gray box in the pictures) which was modeled with
flow straightener and screens in the experiments of Bäder and which is modeled with a
porosity region in the simulations. The dimensions of the model radiator for a full-scale
(1:1) model are ∆x = 360mm, ∆y = 800mm and ∆z = 500mm. The distance from
the foremost point of the model to the radiator is ∆x = 716mm, the distance from the
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under body to the radiator is ∆z = 120mm. The dimensions of the inlet openings are
∆y = 800mm and ∆z = 200mm, the dimensions of the outlet openings are ∆x = 200mm

and ∆y = 800mm. The slant angle between channel and radiator, upstream the radiator,
is 60◦. The slant angle between channel and radiator, downstream the radiator, is 45◦.

The positions of the legs are changed in the experiments of Bäder compared to the ge-
ometry description of Cogotti. In the simulations, the leg positions according to Bäder
are used. The distance from the foremost point of the geometry to the center of the
front legs is ∆x = 1520mm. The distance between the front and rear legs, as well as
between the left and right legs is ∆x = ∆y = 1260mm. In the experiments of Bäder, the
model is mounted on a Table. For a full scale model, the dimensions of the table would
be: ∆x = 10m and ∆y = 8m. The distance from the leading edge of the table to the
foremost point of the model would be: ∆x = 1.9m.

The Reynolds number, based on the length of the car model, is Re = 3.28 · 106.

Numerical Setup

The computational domain around the model vehicles is a rectangular box with the ap-
proximate dimensions of: ∆x = 18L, ∆y = 15L and ∆z = 10L. The domains consist of
hex-dominant grids with approx. 60 million cells. The cell size in the vicinity of the car
models and in the near wake is ∆x

L
= 1.9 · 10−3 (∆x = 8.0mm in full scale). Prism layers

are present at the model car geometries, the legs and the part of the ground that has
a zero velocity boundary condition. The average dimensionless wall distance is approx-
imately y+ ≈ 50, were the velocity boundary condition at the wall is zero. To account
for y+ values below the logarithmic part of the boundary layer, an adaptive wall model is
used. The grids of the different configurations are nearly identical, except for the changes
in the model car geometry.

For the discretization of convective terms, a blending approach between two schemes is
used. The fist scheme is a second order central differencing scheme with a small amount of
upwind. The second scheme is a first order upwind scheme. Depending on criteria for cell
size, cell quality and the CFL number, the scheme blends from the second order central
differencing scheme to the first order upwind scheme. This approach was used by Islam
et al. in [44]. It allows for the use of a second order central differencing scheme in most
of the computational domain, while it stabilizes the solution in a few low quality or small
cells with high CFL number or in the big cells at the inlet, outlet and far field boundaries
of the domain. As in the test case of the surface mounted cube (Section 3.1), the gradients
are computed using the Gauss theorem were the surface values are interpolated with a
second order linear interpolation. The diffusive terms are approximated using a stabilized
over relaxed approach to account for the non-orthogonality of the mesh. The scheme to
discretize the time derivatives is second order, implicit. The time step is adjusted to result
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in a CFL number smaller than 1 around the car model and in most of the domain, while
in a few cells the CFL number is allowed to reach a value not higher than 2.

The Spalart-Allmaras DDES turbulence model is used as described in section 2.2.2. To
ensure that the shielding function of the turbulence model worked correctly, the wall nor-
mal eddy viscosity profiles have been checked against the velocity profile of the boundary
layers.

The pressure loss of the model radiator is described by the Darcy-Forchheimer equation
(Section 2.2.3, Eq. 2.38) with the Coefficients: d = 5.0050e7m−2 and f = 1.2065e2m−1.

The Dynamic Mode Decomposition analysis is executed in a subvolume of the computa-
tional domain shown in Fig 3.22. The size of the subvolume is ∆x = 1.6L, ∆y = 0.55L

and ∆z = 0.45L with the length of the car L. The distance from the foremost point of
the car geometry to the foremost point of the subvolume is ∆x = 0.05L.

Figure 3.22: Subvolume of the DMD
computation. Size of the subvolume:
∆x = 1.6L, ∆y = 0.55L, ∆z = 0.45L.

Boundary Conditions The inlet to the domain is a stationary, Dirichlet type boundary
condition for the velocity vector and a zero gradient Neumann condition for the pressure.
The value for the modified eddy viscosity ν̃ at the inlet is chosen such that the free stream
eddy viscosity ratio ν̃∞

ν∞
has a value of 3 directly in front of the car model as recommended

by Rumsey and Spalart in [90]. The outflow boundary condition of velocity is a modified
zero gradient Neumann boundary condition that is modified to avoid backflow into the
domain. The outlet boundary condition for the pressure is a Dirichlet boundary condition
with a value of zero. The modified eddy viscosity ν̃ at the outlet is treated with a zero
gradient condition. The far field walls of the domain: the top wall, the floor – except for
the table part – and the side walls are slip walls. The velocity components tangential to
the walls are handled with a zero gradient Neumann condition, while the normal velocity
components are set to zero. The modified eddy viscosity and pressure are handled here
with zero gradient Neumann boundary conditions. The table is modeled in the simulations
as a part of the floor with no-slip condition. At the surface of the car models, the legs
and the table patch, the velocity vector and the modified eddy viscosity set to zero. The
pressure is treated with a zero gradient boundary condition.
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3.2.2 Results

Time averaged flow

The drag coefficients computed from the simulations and the drag coefficients published
in Bäder [7] are shown in Tab. 3.1. The drag coefficients are given for the car models,
including the legs.

Table 3.1: Drag coefficient cD of the simulations and of experiments from Bäder [7]

Notchback, Notchback, Estate, Estate,
closed open closed open

Simulations 0.205 0.228 0.269 0.295
Experiments [7] 0.196 0.240 0.256 0.285

For the closed notchback geometry, the drag coefficient of the simulation is 9 counts
(thousandths) higher than the experimental value. The drag coefficient of the simulation
of the open notchback is 12 counts lower. The drag coefficient of the simulation of the
closed estate geometry is 13 counts higher than the experimental value and the drag
coefficient of the simulation of the open estate geometry is 10 counts higher than the
experimental value.

The difference between the open and closed models – the cooling drag coefficients –
are in the experiments ∆cD,Notchback = 0.044 and ∆cD,Estate = 0.029. The cooling drag
coefficients of the simulations are ∆cD,Notchback = 0.023 and ∆cD,Estate = 0.026. While the
simulated drag coefficients of the closed notchback, as well as the open and closed estate
configurations are approx. 10 counts higher in the simulations, the drag coefficient of the
open notchback configuration is 12 counts lower. The cooling drag coefficient of the estate
configurations is matched with a difference of 3 counts, the cooling drag coefficient of the
notchback configurations differ by 21 counts.

As three of the four configurations show a nearly constant off-set to the measured values
and the simulation setup has been used unchanged for the four configurations, an incorrect
measurement of the drag coefficient of the open notchback configurations is assumed. This
assumption is supported by the fact that an independent series of measurements of the
same configurations with additional wheels, found in [7], does not show the large difference
between the cooling drag coefficients of notchback and estate configurations. The nearly
constant off-set of the other simulations is assumed to be due to wind tunnel effects that
are not included in the simulations.

Figure 3.23 shows Line Integral Convolution (LIC) pictures of wall shear stress for the
open SAE car body configurations with the notchback configuration in the left and the
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(a) Notchback, open (b) Estate, open

Figure 3.23: Line Integral Convolution (LIC) of the wall shear stress on the open SAE
car bodies. Left column: Notchback configuration. Right column: Estate configuration.

estate configuration in the right column. All pictures show a very similar LIC pattern in
the front part of the car body. In the top view of the notchback car body, the separation
and reattachment lines of the longitudinal C-pillar vortices are clearly visible. On the
rear slant, between the LIC pattern of the C-pillar vortices, the spiraling pattern of two
detaching vortices is present. These vortices rotate against the direction of the C-pillar
vortices. Between these vortices another pair of vortices is present which detaches at
the end of the rear slant and rotates in the direction of the C-pillar vortices. The LIC
pattern in the center line of the rear slant indicates a small recirculation zone between
the vortex systems. The LIC pattern of the top view of the estate configuration does not
show detachment lines. Here, the flow detaches at the sharp edge at the rear end of the
geometry.

In the side views of the model geometries, no detachment lines or reattachment lines are
visible as well. No distinct A-pillar vortices are induces by the SAE car body geometries
at the operating conditions of the test cases.

The bottom view of the models show the LIC patterns of the flow around the legs and the
detachment and reattachment of the flow leaving the generic engine compartment. Two
circular LIC patterns are visible at the outlet openings of the generic engine compartments,
indicating the detachment of two longitudinal vortices. The underbody flow of the two
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models is very similar. It can be noticed that the detached flow from the generic engine
compartment reattaches slightly earlier in the estate configuration.

(a) ||(∇U)RR|| = 80 s−1 (b) ||(∇U)RR|| = 80 s−1

(c) ||(∇U)EL|| = 100 s−1 (d) ||(∇U)EL|| = 100 s−1

(e) ||(∇U)SH || = 200 s−1 (f) ||(∇U)RR|| = 200 s−1

Figure 3.24: Isosurfaces of the magnitudes of the SMD tensors. Left column: Open
Notchback configuration. Right column: Open Estate configuration.

Magnitudes of the Shear Maximizing Decomposition (SMD) tensors for the two open
configurations are shown in Fig 3.24. The isosurface of rigid body rotation ||(∇U)RR||

of the open notchback configuration is shown in the first picture of the first column.
Visible is the bended flow around the curves of the geometry, the vortices from the legs,
the vortex system on the rear slant and the near wake vortices. The vortex system on
the rear slant consists, as already found from the LIC pattern, of the C-pillar vortices,
two counter rotating vortices, two co-rotating vortices and a recirculation zone. Here,
it can be seen that the first pair of counter rotating vortices split in two vortices after
detaching from the surface. Additional vortices can be found with their origin in the small
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recirculation area in the center line of the rear slant. In the near wake of the car body, two
recirculation zones are present. From the recirculation zones, two longitudinal vortices
are formed. While the isosurfaces describing the vortices from the rear slant are distinct
tubes, the isosurfaces in the wake show a large number of smaller vortices penetrating the
larger vortices. The superposition of these vortices results in the irregular appearance of
the isosurfaces in the wake. The isosurface of rigid body rotation ||(∇U)RR|| of the open
estate configuration is shown in the first picture of the right column. Here, the bended
flow around the curves of the geometry and the vortex systems from the legs of the model
are visible, similar to the notchback configuration. In the wake of the estate model, a
larger recirculation zone is present.

Isosurface of the magnitude of the elongation tensor ||(∇U)EL|| are shown in the second
row of Fig 3.24. Again, the front parts of the geometries produce similar isosurfaces.
The rear slant of the notchback geometry produces an additional contribution to the
irrotational, elongational part of the relative motion in the flow.

In the shear part of the relative motion ||(∇U)SH ||, the shear layer of the table is visible.
At the notchback geometry, the shear around the C-pillar vortices, around the two large
longitudinal vortices in the wake and around the small recirculation zone in the center
line of the rear slant can be seen. At the estate geometry, the main shear layer separates
at the rear edge and extends around the recirculation zone into the wake with only slight
contraction.

(a) Notchback, closed (b) Notchback, open (c) Estate, closed (d) Estate, open

Figure 3.25: Line Integral Convolution (LIC) of the wall shear stress on the open and
closed SAE car bodies. Back view.

The LIC pattern of the wall shear stress on the back side of the geometries for all four
configurations are shown in Fig 3.25. No big differences can be found between the open
and closed geometries. At the closed notchback configuration, the centers of the detaching
vortices are shifted towards the sides of the model when compared to the open configu-
ration. The recirculation zone in the wake of the closed estate configuration is slightly
smaller than the recirculation zone of the open estate configuration.
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Unsteady Flow

The unsteady flow around the four configurations of the SAE car model is investigated
with a Dynamic Mode Decomposition of the pressure and velocity field. A detailed ex-
amination is done for the dominant mode of the open notchback and open estate config-
urations.

Dynamic Mode Decomposition of Pressure and Velocity fields To find interde-
pendencies between the flow variables, the DMD can be executed with fields of different
physical quantities in one analysis. Here, the DMD is executed on the pressure scalar field
and on the velocity vector field. While some quantities have a natural relative scaling, like
the magnitudes of the SMD tensors in the previous test case on a surface mounted cube,
pressure and velocity fields have different dimension and therefore no natural relative
scaling. Here, the fields have to be scaled to unit variance prior to the analysis. Without
the relative scaling, the restriction of the POD basis in the DMD algorithm would discard
mainly fluctuations from the low variance field.

The DMD is executed in the same subvolume of the domain (Fig. 3.22) for all four
configurations. The spectrum of amplitudes are shown in Fig. 3.26. The amplitudes are
normalized by the amplitude of the mean mode. The order of the absolute values of the
amplitudes of the mean modes is:

d1,Notchback,closed < d1,Estate,closed < d1,Notchback,open < d1,Estate,open

The increase of the mean mode amplitude of the open configurations over the closed
configurations is explained by the increase of the total volume of the flow field in the
open configurations. The increase in the mean mode of the estate configurations over
the notchback configurations is due to a less uniform velocity distribution in the flow
around the estate configurations. This effect is stronger than the gain in flow volume of
the notchback configurations over the estate configurations. The relative amplitudes of
the second modes in Fig. 3.26 are higher for the estate configuration. The fluctuations
of mode 2 take a bigger volume due to the lack of downwash and the bigger size of the
geometries at the rear end of the estate configurations.

Despite the fact that the amplitudes of different configurations cannot be compared di-
rectly, a dominant mode of approx. f ∗ ≈ 2Hz can be found for all four configurations.
One period of this mode is reconstructed in Fig. 3.27, 3.28, 3.29 and 3.30 for the open
notchback configuration and in Fig. 3.31, 3.32, 3.33 and 3.34 for the open estate configu-
ration.

The reconstruction of one period of the pressure field of mode 2 of the open notchback
configuration is shown in Fig. 3.27. A clear vortex shedding process can be seen. The
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(a) Notchback, open
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(b) Estate, open

0 1 2 3 4 5 6 7

0

0.07

0.14

f
*
 [Hz]

d
i /

 d
1

2
3

4 56
78

9

10

(c) Notchback, closed
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(d) Estate, closed

Figure 3.26: Relative amplitude over full scale frequency. Spatially weighted amplitudes
of the dynamic modes normalized by amplitude of the first mode. Mode numbers by
decreasing amplitude. Triangles: pressure, squares: velocity.
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ring shape of the vortices is most clearly visible in the side view of the car geometry. The
vortices form in the near wake of the car, are convected downstream and dissipate in a
streamwise elongated motion. Despite the low frequency oscillation of approx. 2Hz, a
clear shedding process from the relatively thin legs of the model can be found. Other
contributions to the oscillations in the mode are from the center of the underbody, down-
stream the generic engine hood opening and on the trunk deck of the model geometry.

Time Top view Bottom view Side view

t = 0

t = 1

4
T ∗

t = 2

4
T ∗

t = 3

4
T ∗

Figure 3.27: Open Notchback configuration. Reconstruction of one period T ∗ = f ∗−1 =
0.44 s of DMD mode 2. Isosurfaces of pressure. Red: p = 5Pa, blue: w = −5Pa.

The reconstruction of the u, v and w components of the velocity vector field of mode 2

are shown in Fig. 3.28, 3.29 and 3.30 respectively. The vortex shedding process, visible in
the reconstruction of the pressure field in Fig. 3.27, can again be seen in the reconstruc-
tion of the velocity components. The ring shape of the vortices is most clearly visible in
the streamwise velocity component. The fluctuations from the legs of the model, from
the generic engine compartment opening and from the center line of the rear slant are
more pronounced in the reconstructions of the velocity components. In contrast to the
fluctuations found in the reconstruction of the pressure field, the fluctuations of the re-
constructed velocity components are convected with the main flow into the wake of the
model.

The reconstruction of one period of the pressure field of mode 2 of the open estate config-
uration is shown in Fig. 3.31. As in the flow around the notchback geometry, mode 2 of
the estate geometry is also dominated by a large scale vortex shedding process in the wake
of the model. While the vortices in the wake of the notchback geometry are convected
downstream without much change in size, the vortices found in the wake of the estate
geometry grow rapidly. In the top view and the bottom view of the reconstructions, the
vortices are found to describe a spiraling path. This is due to a circular motion of the
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Figure 3.28: Open Notchback configuration. Reconstruction of one period T ∗ = f ∗−1 =
0.44 s of DMD mode 2. Isosurfaces of streamwise velocity component. Red: u = 1.5m/s,
blue: u = −1.5m/s.
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Figure 3.29: Open notchback configuration. Reconstruction of one period T ∗ = f ∗−1 =
0.44 s of DMD mode 2. Isosurfaces of sideward velocity component. Red: v = 1.5m/s,
blue: v = −1.5m/s.
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Time Top view Bottom view Side view
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Figure 3.30: Open notchback configuration. Reconstruction of one period T ∗ = f ∗−1 =
0.44 s of DMD mode 2. Isosurfaces of upward velocity component. Red: w = 1.5m/s,
blue: w = −1.5m/s.
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Figure 3.31: Open estate configuration. Reconstruction of one period T ∗ = f ∗−1 = 0.48 s
of DMD mode 2. Isosurfaces of pressure. Red: p = 20Pa, blue: p = −20Pa.
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Figure 3.32: Open estate configuration. Reconstruction of one period T ∗ = f ∗−1 = 0.48 s
of DMD mode 2. Isosurfaces of streamwise velocity component. Red: u = 6m/s, blue:
u = −6m/s.
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Figure 3.33: Open estate configuration. Reconstruction of one period T ∗ = f ∗−1 = 0.48 s
of DMD mode 2. Isosurfaces of sideward velocity component. Red: v = 6m/s, blue:
v = −6m/s.
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Time Top view Bottom view Side view
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Figure 3.34: Open estate configuration. Reconstruction of one period T ∗ = f ∗−1 = 0.48 s
of DMD mode 2. Isosurfaces of upward velocity component. Red: w = 6m/s, blue:
w = −6m/s.

detachment point along the trailing edge of the geometry. As in the reconstruction of
the pressure field of the notchback geometry, fluctuations from the legs of the model and
from the center of the underbody downstream the opening of the engine compartment,
contribute to fluctuations in the mode despite their small length scale.

The reconstruction of the u, v and w components of the velocity vector field of mode 2

are shown in Fig. 3.32, 3.33 and 3.34 respectively. The vortex shedding process, found in
the pressure field of mode 2, is also visible in the reconstructions of the velocity compo-
nents. The fluctuations from the legs of the model and from the opening of the engine
compartment are again more dominant in the reconstructions of the velocity components
than in the reconstruction of the pressure field.

3.2.3 Conclusion

The flow around four different configurations of the SAE body was investigated in this
test case. The simulations were validated against published experimental data. In the
published experiments, a large difference between the cooling drag coefficient ∆cD =

cD,open− cD,closed of the notchback and the estate configurations was found. This large dif-
ference of cooling drag coefficients could not be reproduced in the simulations. Measuring
the difference between cooling drag coefficients is especially sensitive to measuring errors
as four configurations have to be measured independently for a ∆cD,Notchback −∆cD,Estate

value. As the measurements were not undertaken to specifically investigate the difference
of cooling drag coefficients, it is assumed that the large difference between the cooling
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drag coefficients in the experiments is due to a measurement error. For difference-of-

delta-type investigations, at least one repetition and reproduction of the measurements is
recommendable.

The time averaged flow of the simulations was investigated with Line Integral Convolution
(LIC) pictures of the wall shear stress on the car bodies. The LIC pictures of closed and
open configurations were found to be similar. The topology of the time averaged flow was
investigated and documented with isosurfaces of the magnitudes of the Shear Maximizing
Decomposition tensors.

The unsteady flow around the four configurations of the SAE car body was investigated
with Dynamic Mode Decompositions. The DMD analyses of the four configurations were
executed with the pressure and the velocity field in the DMD analyses. An important
finding of this test case is the relatively strong contribution of fluctuations from the
legs to the second mode. A dominant frequency of the notchback, as well as the estate
configuration is of approx. f ∗ ≈ 2.2Hz. As the configurations have considerably different
rear end height but identical width, the width of the model is assumed to be the relevant
length scale of this vortex shedding process. Building the Strouhal number with the
width of the model results in a Strouhal number of SrMode2 = 0.29 for the notchback
configuration and of SrMode2 = 0.27 for the estate configuration. Building the Strouhal
number of the vortex shedding from the legs of the model with the diameter of the legs
results in SrMode2 = 0.01. The Strouhal number of the dominant vortex shedding process
of a single circular cylinder at the same Reynolds number is approx. SrCylinder ≈ 0.2

which is 20 times higher than the Strouhal number of the vortex shedding from the legs
in mode 2. As a single, isolated circular cylinder would not produce a high amplitude
vortex shedding with a Strouhal number as low as Sr = 0.01, the fluctuations from the
legs in mode 2 must be induced by the strong vortex shedding process in the wake of
the car. The fluctuations from the legs are convected into the wake flow of the car and
establish a feedback loop.

A contribution to mode 2 can also be noticed from the rear slant of the notchback geometry
and the generic engine compartment opening of both open configurations. Together with
the wake flow, these are the unstable parts of the flow around the geometries. It appears
that strong fluctuations in the subsonic flow around a bluff body induce a global oscillation
in the flow and have a controlling effect on the shedding processes on other unstable parts
of the flow – independent of the length scale of the controlled parts of the flow. This
interaction of global modes with locally unstable parts of the flow provides an explanation
for observations in wind tunnel tests, where local changes in the shape of a car upstream
of the wake have different effects on notchback than on estate configurations.
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3.3 DrivAer Car Model

The DrivAer model (www.drivaer.com, [38, 68]) is a realistic generic car model. It includes
the main aerodynamic features of a mid-sized passenger car. The DrivAer model was
developed by the Institute of Aerodynamics and Fluid Mechanics at Technical University
of Munich in cooperation with AUDI AG and BMWAG. It is mainly derived from the
Audi A4 (B8, since 2007) and the BMW 3 series (E90/91, since 2005) [39]. The DrivAer
geometry is available with different rear end shapes, different underbody geometries and
different wheels. An extension with a generic engine hood is also available.

The DrivAer car model is used here to investigate the unsteady details of the flow around
a realistic car geometry. The DMD is executed on the velocity vector field and on the
field of force on the car body.

3.3.1 Setup

The investigated configuration of the DrivAer model is the notchback rear end with a
detailed underbody. It is equipped with side mirrors; the wheels have closed rims and
slick tires. No cooling airflow is considered. The Reynolds number, based on the length
of the car model, is Re = 5.2 · 106.

Numerical Setup

The computational domain of the simulation is a rectangular box with the approximate
dimensions of: ∆x = 16L, ∆y = 14L and ∆z = 8L. The grid has approx. 66 million
cells and is hex-dominant. The size of the cells in the vicinity of the car and in the
wake is ∆ = 8.2mm for a full scale model. Prism Layers are present at the car body
and the wheels. The average dimensionless wall distance at the surface of the model
is approximately y+ ≈ 50. To account for y+ values below the logarithmic part of the
boundary layer, an adaptive wall model is used.

The same discretization schemes, as in the test case of the SAE car bodies (Section 3.2),
are used here. The convective terms are discretized by a blending between a second or-
der central differencing scheme with a small amount of upwind and a first order upwind
scheme. The gradients are computed using the Gauss theorem were the surface values
are interpolated with a second order linear interpolation. The diffusive terms are approx-
imated using a stabilized over relaxed approach to account for the non-orthogonality of
the mesh. The scheme to discretize the time derivatives is second order, implicit.

The time step is adjusted to result in a CFL number smaller than 1 around the car model
and in most of the domain. Unlike the setup of the SAE car body simulations, the CFL
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number is allowed to reach a value up to 3 in some cells in the gap between the wheels
and the ground.

As in the SAE car body simulations, the Spalart-Allmaras DDES turbulence model is
used as described in section 2.2.2. To check for the correct operation of the shielding
function, the wall normal eddy viscosity profiles have been compared against the velocity
profile of the boundary layers.

The subvolume of the Dynamic Mode Decomposition is shown in Fig 3.35. The size of
the subvolume is ∆x = 1.45L, ∆y = 0.5L and ∆z = 0.35L with the length of the car L.
The distance between the foremost point of the car geometry and the foremost point of
the subvolume is ∆x = 0.05L.

Figure 3.35: Subvolume of the Dy-
namic Mode Decomposition. Size of the
subvolume: ∆x = 1.45L, ∆y = 0.5L,
∆z = 0.35L.

Boundary Conditions The types of boundary conditions for the inlet and outlet of
the domain are the same as for the SAE car body simulations (Section 3.2). The value for
the modified eddy viscosity ν̃ at the inlet is, again, chosen such that the free stream eddy
viscosity ratio ν̃∞

ν∞
has a value of 3 directly in front of the car model as recommended by

Rumsey and Spalart in [90]. The far field of the domain, the side walls and the top wall
are treated as the far field walls of the SAE car body simulations. In contrast to the SAE
car body simulations, the whole ground moves here with the speed of the flow velocity at
the inlet and the wheels rotate accordingly. The motion of the ground and the rotation
of the axially symmetric wheels are modeled with a Dirichlet boundary condition for the
velocity vector. At the surface of the car model, the velocity vector and the modified
eddy viscosity are set to zero. The pressure is treated with a zero gradient boundary
condition.

Experimental Setup

To validate the CFD simulations, experiments were conducted in two different wind tun-
nels employing a 40% scaled model of the DrivAer geometry. The tests were performed
in the model scale wind tunnel at Technical University of Munich (TUM) and in the
full-scale wind tunnel of AUDI AG. Both wind tunnels are equipped with a rolling road
system. The model is held by a Model Support System (MSS) consisting of a top-sting, a
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central strut that holds the car body from above and four wheel struts to hold the wheels
on the ground simulation belt. The Wheels are driven by the belt. Details of the wind
tunnels were presented in chapter 2.3.1, the aerodynamic test model has been described
in chapter 2.3.2. A comprehensive description of the experimental setup and a detailed
description of the wind tunnel at TUM can be found in Mack et al. [67]. Details of the
wind tunnel at Audi can be found in Wickern and Lindener [111].

3.3.2 Results

Time averaged flow

The pressure coefficient in the symmetry plane of the vehicle on the upper part of the
vehicle’s surface is shown in Fig. 3.36. Despite considerable different nozzle cross sections
of the two wind tunnels, the results of the experiments (symbols) are in good agreement.
The simulation data (line) matches the experimental results on the engine hood and the
windshield. On the roof of the car, the pressure coefficient of the simulation is lower than
in the experiments. This is explained by the top-sting (its position is indicated by the
dashed lines; see [67] for details). The top-sting, as well as the wheel struts, are used
in the experiments but are not present in the simulation. Towards the rear window, the
simulation and experimental results again agree well.
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Figure 3.36: Pressure coefficient in the y = 0 plane of the vehicle. Upper part. (Solid
line: Simulation, blue circles: TUM wind tunnel, red crosses: Audi wind tunnel)

Fig. 3.37 shows the pressure coefficient in in the symmetry plane at the underbody. Small
deviations between the experimental results from the different wind tunnels can be no-
ticed. These deviations may be related to the small momentum deficit of the ground
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Figure 3.37: Pressure coefficient in the y = 0 plane of the vehicle. Lower part. (Solid
line: Simulation, blue circles: TUM wind tunnel, red crosses: Audi wind tunnel)

boundary layer which is present in the TUM wind tunnel (see [67]). The agreement
between simulation and experimental results is still good.

Figure 3.38 shows the pressure coefficient in a ground parallel plane on the left side of the
car, indicated by the dashed line (z = 0.102L above the ground, y < 0). The simulation
results are, again, in good agreement with the experimental data.
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Figure 3.38: Pressure coefficient in the z = 0.102L plane of the vehicle. (Solid line:
Simulation, blue circles: TUM wind tunnel, red crosses: Audi wind tunnel)

The drag coefficients of the full vehicle, including wheels and lift coefficients of the vehicle
body, excluding wheels, are shown in Table 3.2. The uncorrected drag coefficient of the
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simulation is 15 counts (5.2 %) lower than the value measured in the Audi wind tunnel
and 5 counts (1.8 %) lower than the value measured in the TUM wind tunnel. The
lift coefficient of the simulation is 11 counts lower than the value measured in the Audi
wind tunnel and 30 counts higher than the value measured in the TUM wind tunnel. As
the simulation has been executed without the model support system (MSS) consisting
of the wheel-struts to hold the wheel on the ground simulation belt and the top-sting to
hold the model, the drag coefficient of the simulation is lower than the measured drag
coefficients. Heft found in a previous study [39] that the MSS increases the drag coefficient
for the DrivAer model in a notchback configuration by ∆cD = 0.006. Correcting the drag
coefficient of the simulation by ∆cD = 0.006, the drag coefficient of the simulation is
9 counts (3.1 %) lower than the value measured in the Audi wind tunnel and 1 count
(0.4 %) larger than the value measured in the TUM wind tunnel. The influence of the
model support system on the measured lift values is not yet clear. The reproducibility
of the experimental results in the same wind tunnel is estimated for the drag coefficient
to be approximately ∆cD ± 0.0015, for the lift coefficient to be approximately ∆cL ±

0.0045 and for the pressure coefficient, depending on the position on the geometry, up to
approximately ∆cp ± 0.01.

Table 3.2: Drag coefficient cD of the full vehicle including wheels and lift coefficient
cL,Body of the vehicle body excluding wheels. The simulations are executed without model
support system (MSS)

TUM Audi Simulation
wind tunnel wind tunnel (without MSS)

cD 0.279 0.289 0.274
cL,Body 0.032 0.073 0.062

A Line Integral Convolution on the time averaged wall shear stress field on the car body is
shown in Fig. 3.39. The downward oriented streaks at the A-pillar show the effect of the
A-pillar vortex on the wall shear stress. The A-pillar vortex follows the motion of the fluid
on the roof of the car geometry. In the side view of the geometry, an upward motion of
the flow is visible at the side windows. Circular pattern can be found at the front and rear
wheels and downstream the rear wheels, were vortices detach from the surface. Another
clear reattachment line is visible in the top view of the geometry on the windshield.
Here, a vortex tube rotates in the cavity between engine hood and the windshield. The
flow detaches at the trailing edge of the engine hood and reattaches on the windshield
downstream the vortex tube. The effect of the C-pillar vortex on the wall shear stress is
visible by the detachment lines on the C-pillars. The streamwise and outward oriented
patterns on the outer parts of the trunk are due to the outward motion of fluid in the
C-pillar vortices near the car surface. Between the C-pillar vortices, circular LIC pattern
indicate the detachment of four vortices. The two outer vortices rotate against the C-
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Figure 3.39: Line Integral Convolution (LIC) of the time averaged wall shear stress on
the DrivAer car body.

Figure 3.40: Line Integral Convolution (LIC) of the time averaged velocity in the flow
around the DrivAer car body. Top: y = 0 plane, bottom: z = const. plane at the height
of the stagnation point.

96



3.3 DrivAer Car Model

pillar vortices, while the two inner vortices rotate in the same direction as the C-pillar
vortices. The inner vortices are connected by another detachment line. This detachment
line indicates a recirculation zone between the vortices. The LIC pattern on the rear
window, the trunk and on the back of the car is not symmetric with respect to the y = 0

plane. This asymmetry is due to the asymmetric underbody.

The orientation of the time averaged velocity field in the coordinate system of the vehicle
geometry is shown in Fig. 3.40. The upper picture shows the y = 0 plane of the geometry.
Two distinct circulating patterns can be found in the near wake of the car body. The wake
flow forms two three dimensional recirculation vortices at the rear end of the car. As the
flow is asymmetric, the y = 0 plane cuts through one of the vortices. The lower picture
shows a LIC on the z = const. plane at the height of the stagnation point, below the
recirculation vortices in the wake. Here, the asymmetry of the flow from the underbody
is clearly visible.

Figure 3.41: Isosurface of the mag-
nitude of the rotation rate tensor
from the Shear Maximizing Decom-
position, ||(∇U)RR|| = 10 s−1.

The vortex core regions of the most dominant Vortices in the time averaged flow around
the geometry are shown by isosurfaces of the magnitude of the rate of rotation tensor
||(∇U)RR|| in Fig. 3.41. Vortex tubes form from the side mirrors, the A-pillars, the C-
pillars, the wheels and from the rear window. Two ring shaped vortices and another
streamwise oriented vortex can be seen in the near wake of the car. The isosurfaces of
these vortices are rough as they are interpenetrated by smaller vortices with high rotation
rate from the shear layers around the car.

Figure 3.42: Isosurface of the mag-
nitude of the shear rate tensor from
the Shear Maximizing Decomposi-
tion, ||(∇U)SH || = 10 s−1.

The shear layers around the car are shown in Fig. 3.42 by isosurfaces of the magnitude
of the rate of shear tensor ||(∇U)SH ||. Tube shaped shear layers detach from the front
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wheels, the side mirrors and from the A-pillar around the A-pillar vortices. The shear
layers extend into the wake of the car and combine to large tubular structures. Although
the ground is modeled to move with the oncoming flow, a shear layer develops on the
ground. The shear on the ground has been clipped for better visibility.

Figure 3.43: Isosurface of the mag-
nitude of the elongation rate tensor
from the Shear Maximizing Decom-
position, ||(∇U)EL|| = 10 s−1.

The irrotational part of the relative motions in the flow are visualized with isosurfaces of
the magnitude of the elongation rate tensor ||(∇U)EL|| in Fig. 3.43. The picture shows the
stretching and the irrotational deflection of flow around the car. The main contributions
to the elongation in the flow are were the oncoming flow is redirected at the front of the
geometry, around the edges of the windshield and around the edges of the rear window.
The elongated structures from the C-pillars are assumed to be mainly due to the inward
deflection of the flow.

Unsteady Flow

The unsteady flow is investigated here with focus on the unsteady forces acting on the car
body. The Dynamic Mode Decomposition is applied on the velocity field and on the field
of force per unit area on the car body. The two most dominant modes of the analysis are
selected for an exemplary investigation.

Dynamic Mode Decomposition The DMD is executed with NDMD = 800 time steps,
a time step length of ∆tDMD = 0.005 s and a total time span of TDMD = 4 s. As in
the previous test cases, the time step data is filtered with a 4th order low-pass filter
with a ratio of cut-off frequency to Nyquist frequency of 0.1. After the singular value
decomposition in the DMD algorithm, the projection basis is restricted to modes with a
relative contribution of more than 1 × 10−4 % to the total variance of the flow. Prior to
the analysis, the fields of forces and velocities are scaled independently to unit variance.

The normalized amplitudes and frequencies of the modes are shown in Fig. 3.44. The
amplitudes are computed separately for the velocities and for the forces. For the forces,
amplitudes are computed as norm of force data in the mode. For the velocities, amplitudes
are computed as the volume-weighted norm of the velocity data in the mode. Most of the
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energy of the flow falls into the mode that represents the mean flow. Sorting the modes
by their amplitudes, the relative force amplitude of the second mode is 23%; the relative
velocity amplitude of the second mode is 17%.
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Figure 3.44: Relative amplitude over full scale frequency. Amplitudes of the dynamic
modes normalized by amplitude of the first mode. Mode numbers by decreasing ampli-
tude. Triangles: force, squares: velocity.

Isosurfaces of the velocity components of the flow are shown in Fig. 3.45 for a reconstruc-
tion of mode 2 and in Fig. 3.46 for a reconstruction of mode 3. Mode 2 with a frequency
of f = 3.4Hz contains the fluctuations of highest energy in the flow. Mode 2 is not a
single oscillating process, but rather a collection of individual oscillations with common
frequency falling into the same mode. The oscillations in the velocity field combine and
result in the oscillations of the force on the surface of the car. The tubular structures
found in the isosurface pictures of the u component of mode 2 show that the mode is
mainly connected to motions of vortex tubes. The strongest contribution to this mode
comes from the wake of the car and from the underbody (not shown). Other contributions
originate from the wheels, the windshield apron, the side mirrors and the front apron.

The isosurface pictures of mode 3 (Fig. 3.46), with a frequency of f = 0.9Hz, show large
connected regions of oscillating fluid in the wake of the car. The locally unstable flow
around the side mirrors, at the bottom of the windshield or at the front apron also shows
vortex shedding in the low frequency of the large oscillating areas in the wake of the car.
Assuming that these local shedding processes with much smaller lengthscales than the
oscillations in the wake of the car would not produce high energy fluctuations with a time
scale of T = 1.1 s, the local vortex shedding must be triggered by the fluctuations of the
wake flow. This effect of global modes has also been found in the previous test case of the
SAE car body configurations.

The lift force per unit area normalized by the force per area at the stagnation point
(FZ/A)/(p∞ + ρ

2
U2
∞) is shown for mode 2 and 3 in figures 3.47 and 3.48 respectively. The

reconstruction of mode 2 shows a strong lift force oscillation between the rear wheels and
at the rear diffuser of the underbody. The same oscillation, but weaker, can be seen on
the lower edge of the rear window and on the top of the trunk. The oscillation of the
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Figure 3.45: Reconstruction of one period of the mode 2 (f = 3.4Hz). Positive (red)
and negative (blue) isosurfaces of the velocity components u = v = w = ±1m/s.
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Figure 3.46: Reconstruction of one period of the mode 3 (f = 0.9Hz). Positive (red)
and negative (blue) isosurfaces of the velocity components u = v = w = ±1m/s.
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lift force between the front wheels is phase shifted to the oscillation on the back of the
car. This induces an oscillating pitching moment on the car body. Other fluctuations can
be found at the front apron, behind the wheels, in the middle tunnel of the underbody,
behind the side mirrors and at the lower edge of the windshield. The normalized lift
force of a reconstruction of mode 3 is shown in Fig. 3.48. The lift force at the rear of
the car – at the underbody diffuser, between the rear wheels and on the top of the trunk
– is a counter oscillation between the right and left side of the vehicle. The oscillation
of the lift force between the front wheel and the middle part of the underbody is largely
symmetric in y-direction, but also counter oscillating. The lift forces acting on the rear of
the car induce a rolling moment, while the oscillations between the front wheels result in
a pitching moment on the car body. Other oscillations can be found at the front apron,
the lower part of the windshield and behind the mirrors.

The force coefficients computed from the surface integrated force components of mode 2
and 3 are shown in Fig. 3.49 for one period of the oscillation. The strongest components
of the oscillating force in mode 2 are the lift and drag components as expected from
the surface plots in Fig 3.47. The side force is comparatively weak. The lift and drag
oscillations are phase shifted by approx. half a period. The amplitude of the oscillating
force in mode 3 is lower than the amplitude of mode 2. The side and lift force components
oscillate nearly in phase, while the drag force oscillation is phase shifted by approx. half
a period to the other components.

The moment coefficients computed from the components of the surface integrated mo-
ments acting on the car geometry are shown in Fig. 3.50. The center of rotation is
located in the y = 0 plane symmetrically between the wheel axes on the ground. The
dominant oscillation of mode 2 is, as expected from the surface plots in Fig 3.47, the pitch-
ing moment. The yaw moment is in phase with the pitching moment, while the rolling
moment is phase shifted by half a period. The pitching moment is the weakest compo-
nent of the moment in mode 3. The yaw and rolling moment of mode 3 are stronger and
have comparable magnitude. The moments of mode 3 do not show a clear co or counter
oscillation.

The individual dynamic modes show a part of the dynamics of the flow. A reconstruc-
tion with all modes would reproduce the original flow up to the filtering with the low
pass filter and the projection step onto a reduced POD basis in the DMD algorithm. A
reconstruction with only a subset of modes can be seen as a superposition of individual
parts of the dynamic behavior of the flow. In Fig. 3.51, the surface integrated lift force
and yaw moment is shown for a reconstruction of modes 1 and 2 (dotted line), modes
1 to 3 (dash dotted line) and modes 1 to 15 (dashed line). The force and moment for
the reconstruction with the mean mode and the second mode is an oscillation around the
mean value. The other two reconstructions result in a more complex dynamic behavior.
While the DMD analysis has been executed, for the velocity vector field in a subvolume of
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Figure 3.47: Reconstruction of one period of the mode 2 (f = 3.4Hz). Normalized lift
force (FZ/A)/(p∞ + ρ

2
U2
∞) values ranging from −0.05 (blue) to +0.05 (red).
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Figure 3.48: Reconstruction of one period of the mode 3 (f = 0.9Hz). Normalized lift
force (FZ/A)/(p∞ + ρ

2
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∞) values ranging from −0.02 (blue) to +0.02 (red).
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Figure 3.49: Force coefficients computed from the components of the surface integrated
force of a reconstruction of mode 2 and a reconstruction of mode 3. Solid line: drag force
coefficient, dashed line: side force coefficient, dotted line: lift force coefficient.
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Figure 3.50: Moment coefficients computed from the components of the surface inte-
grated moment of a reconstruction of mode 2 and a reconstruction of mode 3. Solid line:
roll moment coefficient, dashed line: pitch moment coefficient, dotted line: yaw moment
coefficient.

the domain and the vector field of force per area on the surface of the car, the reconstruc-
tion here shows only a small part of the information processed in the DMD. Therefore a
reconstruction with an increasing number of modes will not necessarily converge mono-
tonically to the original force signal of the CFD simulation. To show this effect, the
normalized root-mean-square deviation for the deviation between the reconstruction and
the original force or moment signal is shown in table 3.3. The deviations are higher for
a reconstruction with the modes 1, 2 and 3 then for a reconstruction using only mode 1

and 2. For a reconstruction using the first 15 modes, the deviations are reduced. This
effect can be found for the reconstruction of the lift force and its coefficient cL as well as
for the reconstruction of the yaw moment and its coefficient cM,z.

The normalized root-mean-square deviation is computed with equation 3.1:

RMSN,D =
1

φmax − φmin

√∑n
t=1

(φref,t − φrecon,t)2

N
(3.1)
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Figure 3.51: Lift force coefficient and yaw moment coefficient of the original cfd simu-
lation (solid line), a reconstruction with modes {1, 2} (dotted line), modes {1, 2, 3} (dash
dotted line) and modes {1, ... , 15} (dashed line).

Table 3.3: Normalized root-mean-squares of the deviation between the result of the CFD
simulation and the reconstruction with different numbers of modes

Modes {1, 2} {1− 3} {1− 15}
RMSN,D of cL 0.213 0.215 0.200
RMSN,D of cM,z 0.239 0.243 0.219

were φref,t is the force or moment coefficient of the CFD simulation at time t, φrecon,t is
the force or moment coefficient of the reconstruction at time t, φmax,ref and φmin,ref are
the max and min values of the force or moment coefficients of the CFD simulation and
N is the number of values.

A Line Integral Convolution (LIC) of the force vector field for a reconstruction of the mean
mode 1 and the mode 2 is shown in Fig. 3.52. The image section shows the bottom of the
rear window and a part of the top of the trunk. In both pictures, the C-pillar vortices are
noticeable by streaks in the direction of the C-pillar and the side edges of the trunk. Vortex
cores are indicated by crosses and circles. In the upper picture, t = 0, the crosses and
the circles indicate the vortex cores of two longitudinal vortex tubes that are connected
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Figure 3.52: Line Integral Convo-
lution (LIC) of the force field on the
car surface. Reconstruction of mode
1 and mode 2 at t = 0 and after
half a period t = 1

2
T . Image section:

Bottom of the rear window and part
of the top of the trunk. Flow from
top to bottom.

by a recirculation vortex similar to the vortex system found by Gilhome et al. in [32]
(see [32] or [93] for a qualitative sketch of the vortex topology). The recirculation vortex
and the vortex tubes indicated by crosses rotate opposite to the direction of the C-pillar
vortices. The vortices of the circles have the same rotation as the C-pillar vortices. In the
lower picture, after half a period of the oscillation, t = 1

2
T , the vortex system indicated

by crosses is moved down onto the trunk deck where it detaches as a hairpin vortex.
The separation and reattachment lines on the trunk deck show the “legs” of the hairpin
vortex. Another vortex system with recirculation and longitudinal vortices establishes
immediately on the rear window. The vortex system of circles follows the motion of the
detaching vortices and oscillates down and up on the rear window. The periodic shedding
of hairpin vortices from a recirculation vortex in the near wake of a notchback vehicle was
also described by Guilhome et al. in [32]. While Guilhome et al. are describing a vortex
system with a stable recirculation vortex and a periodic shedding of hairpin vortices from
this recirculation zone, the reconstruction of mode 1 and 2, shown here, identifies an
oscillating vortex system on the rear window and a second vortex system that detaches
periodically from the trunk deck.
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Figure 3.53: Line Integral Convo-
lution (LIC) of the force field on the
car surface. Reconstruction of mode
1 and mode 2 at t = 1

4
T and after

half a period t = 3

4
T . Image section:

Lower part of the windshield. Flow
from bottom to top.

Another vortex shedding process can be found at the lower part of the windshield, shown in
Fig. 3.53. The pictures, again, show a Line Integral Convolution (LIC) of the force field on
the surface of the car for a reconstruction of mode 1 and 2. In both pictures, a stationary
recirculation zone at the bottom of the windshield can be identified by the streaks in the
direction of the engine hood. From this recirculation, longitudinal vortices form on the
windshield (solid lines indicate separation lines, dashed lines indicate reattachment lines).
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The longitudinal vortices form in the middle of the windshield move outward and are
convected over the A-pillar and the roof of the car.

3.3.3 Conclusion

In this test case, the CFD simulation was validated by experimental results measured in
two different wind tunnels. The pressure and force coefficients of the experiments were
found to be in good agreement with results from the Detached Eddy simulation. The time
averaged flow around the DrivAer car body was documented by Line Integral Convolution
pictures of the wall shear stress and the velocity vector field. A Shear Maximizing De-
composition of the time averaged flow field was used to give an overview of the topology
of the flow.

The Dynamic Mode Decomposition was applied to force and velocity vector fields. With
isosurface plots of reconstructed velocity components and surface plots of the recon-
structed lift force, a clear connection could be shown between flow structures and force
oscillations for mode 3. As mode 2 consists of a collection of shedding processes, the force
oscillation of mode 2 was found to be the result of many different processes that fall into
the same mode. With Line Integral Convolutions of the reconstructed force field, the
DMD was shown to be able to isolate individual dynamic processes like the shedding of
hairpin vortices from the near wake of the notchback geometry or the formation of longi-
tudinal vortices on the windshield. With evaluations of the force and moment coefficients
of modes 2 and 3, the main sources of flow induced car body oscillations could be shown.
The flow fields of the modes together with the force plots and the force and moment
coefficients allow connecting the resulting motion of a real car body to the topology of
the dominant oscillations in the flow field.

Again, like in the previous test case of the SAE car body, it was found that flow structures
with a relatively small length scale contribute to modes with relatively long time scales.
This supports the assumption in the previous test case that strong fluctuations control
other unstable parts of the flow.
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3.4 Convertible Car Model

The car model used in this test case is an aerodynamic test model of convertible type
based on the Audi A5 Cabriolet (since 2009). The model has an open roof and closed
side windows. Two anthropomorphic dummies are included to resemble the driver and
co-driver.

In this test case, the low energy flow fluctuations in the passenger compartment of the
convertible are described and linked to the fluctuations of flow induced forces on the an-
thropomorphic dummies. A low frequency fluctuation of aprrox. 1Hz has been observed
in preceding wind tunnel tests and is explained here.

3.4.1 Setup

The convertible car model is a left-hand drive vehicle. It is modeled without ground
motion and non-rotating wheels. No additional rear wind screen is considered. The free
stream velocity in the full scale is 140 km/h (87mph). The Reynolds number, based on
the length of the car model, is Re = 1.15 · 107.

Figure 3.54: Geometry of the convert-
ible car model. Side windows are in-
cluded in the simulations but not shown
here.

Numerical Setup

The grid of the numerical model has approx. 94 million cells and is hex-dominant. Prism
Layers are present at the car body, the wheels and the ground. The average dimensionless
wall distance at the surface of the model is approximately y+ ≈ 50. An adaptive wall
model is used. The computational domain of the simulation is a rectangular box with the
approximate dimensions of: ∆x = 16L, ∆y = 13L and ∆z = 8L. The numerical methods
are based on the simulation setup described in Islam et al. [44].

The subvolume of the Dynamic Mode Decomposition is shown in Fig 3.55. The size of
the subvolume is ∆x = 1.3L, ∆y = 0.5L and ∆z = 0.23L with the length of the car L.
The distance between the foremost point of the car geometry and the foremost point of
the subvolume is ∆x = 0.05L. The distance between the ground and the lowest point of
the subvolume is ∆z = 0.11L
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Figure 3.55: Subvolume of the Dynamic Mode Decomposition. Size of the subvolume:
∆x = 1.3L, ∆y = 0.5L, ∆z = 0.23L.

Boundary Conditions The inflow to the domain is a constant, uniform velocity dis-
tribution. The velocities at the ground and at the car model are set to zero. Pressure is
treated with a zero gradient Neumann condition at the inlet, the car model and the ground
and with a constant value Dirichlet boundary condition at the outlet of the domain.

3.4.2 Results

Time averaged flow

The orientation of wall shear stress on the convertible car model is shown by a Line
Integral Convolution of the time averaged wall shear stress in Fig. 3.56. On the upper
picture, the detachment and reattachment line of the A-pillar vortex is visible. Upward
oriented lines on the side windows indicate that the A-pillar vortex extends over the upper
edges of the side windows.

Figure 3.56: Line In-
tegral Convolution (LIC)
of the time averaged wall
shear stress on the convert-
ible car model.

In the lower picture in Fig. 3.56, the typical LIC pattern on the windshield, already
described in the DrivAer car body test case, can be found. The flow forms a recirculation
zone on the lower part of the windshield with a clear reattachment line. At the end of the
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3.4 Convertible Car Model

side windows, small circulating pattern can be found, indicating the presence of inward
rotating vortices at the rear edges of the side windows. Directly behind the rear passenger
compartment, the reattachment line of the main flow is visible.

Figure 3.57: Line Integral Convo-
lution (LIC) of the time averaged
wall shear stress on the anthropo-
morphic dummy of the driver side.
Left picture: inner side view, middle
picture: front view, right picture:
view from side window.

The wall shear stress on the anthropomorphic dummies is low. The Line Integral Convo-
lution pattern on both dummies show a stagnation point on the lower chest with upward
oriented lines. Attachment and separation lines on the arms and shoulders indicate the
presence of vertically oriented vortex tubes. The irregular LIC pattern on the inner sides
of the heads of the dummies is due to a wall shear stress near zero. On the outer sides of
the heads, another stagnation point can be seen. The LIC pattern on the two dummies
is very similar with a symmetry in the symmetry plane of the vehicle.

Figure 3.58: Line Integral Con-
volution (LIC) of the time aver-
aged wall shear stress on the anthro-
pomorphic dummy of the co-driver
side. Left picture: view from side
window, middle picture: front view,
right picture: inner side view.

A Line Integral Convolution of the time averaged velocity is shown in Fig. 3.59. The
upper picture shows a large clockwise rotating vortex in the passenger compartment. The
vortex is driven by the main shear layer starting from the windshield. Other vortices can
be found in the near wake of the car and at the underbody. A free stagnation point is
visible above the rear part of the vehicle geometry.

In the lower picture, two vortices can be found in front of the anthropomorphic dummies.
The vortex on the driver side rotates clockwise; the vortex on the passenger side rotates
counter clockwise. Another pair of vortices is present in the rear passenger compartment.
Here, the driver side vortex rotates counter clockwise while the passenger side vortex
rotates clockwise. Other vortices in the passenger compartment form along the side
windows and at the dashboard. Vortices in the flow around the vehicle body form at the
side mirrors and the rear of the side windows.
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Figure 3.59: Line Integral Convolution (LIC) of the time averaged velocity in the flow
around the convertible car model. Top: y = 0 plane, bottom: z = const. plane at the
height of the faces of the anthropomorphic dummies.

Isosurfaces of the magnitudes of the Shear Maximizing Decomposition tensors are shown
in Fig. 3.60, 3.61 and 3.62. The isosurface of ||(∇U)RR|| in Fig. 3.60 shows that the A-pillar
vortices split in two branches. One branch follows the top edge of the side windows while
the second branch is convected inwards. A pair of inward rotating vortices can be found at
the rear edges of the side windows. The pair of recirculation vortices in the rear passenger
compartment, already identified in the LIC pictures of the time averaged velocity, are also
clearly visible. From the rear of the passenger compartment, two longitudinal vortices
extend into the wake of the car model. No strong C-pillar vortices are present in the
flow.

In Fig. 3.61 the irrotational deflection of the flow is shown. A strong irrotational deflection
of the main flow around the geometry is shown at the front of the car, on the whole
windshield and the beginning of the main shear layer at the top edge of the windshield.
The two branches of the A-pillar vortices also show an irrotational vortical motion. A
contribution to the elongation is also found at the rear edges of the side windows. The
two longitudinal vortices, starting at the rear of the passenger compartment, contribute
in the vicinity of the geometry and in the space between the vortices only.
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3.4 Convertible Car Model

Figure 3.60: Isosurface of the mag-
nitude of the rotation rate tensor
from the Shear Maximizing Decom-
position, ||(∇U)RR|| = 20 s−1.

Figure 3.61: Isosurface of the mag-
nitude of the elongation rate tensor
from the Shear Maximizing Decom-
position, ||(∇U)EL|| = 30 s−1.

Figure 3.62: Isosurface of the mag-
nitude of the shear rate tensor from
the Shear Maximizing Decomposi-
tion, ||(∇U)SH || = 50 s−1.
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The shearing motion in the flow is shown by isosurfaces of the magnitude of the rate of
shear tensor ||(∇U)SH || in Fig. 3.62. Three large shear layers are visible, the shear layer
at the upper edge of the windshield and two tubular shear layers from the back of the car
geometry. The shear layer of the windshield rolls up at its edges to one tubular structure.
Below this shear layer, the shear layers of the car body form as two tubes, comparable to
the shear layer in the near wake of the DrivAer car body (Fig. 3.42). Compared with the
flow around the DrivAer car body, the downwash behind the car is considerably weaker,
here. Other, smaller shear layers develop at the front wheels and the side mirrors.

Unsteady Flow

The unsteady fluctuations of the flow in the passenger compartment of the convertible
car model are investigated and linked to force fluctuations on the surface of the anthropo-
morphic dummies. A weak, low frequency fluctuation of aprrox. 1Hz, found in preceding
wind tunnel tests, is investigated with the Dynamic Mode Decomposition of the velocity
vector field and the vector field of forces on the geometry.

Dynamic Mode Decomposition The DMD is executed with NDMD = 800 time steps,
a time step length of ∆tDMD = 0.01 s and a total time span of TDMD = 8 s. As in
the previous test cases, the time step data is filtered with a 4th order low-pass filter
with a ratio of cut-off frequency to Nyquist frequency of 0.1. After the singular value
decomposition in the DMD algorithm, the projection basis is restricted to modes with a
relative contribution of more than 1 × 10−4 % to the total variance of the flow. Prior to
the analysis, the fields of forces and velocities are scaled independently to unit variance.
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Figure 3.63: Relative amplitude over full scale frequency. Spatially weighted amplitudes
of the dynamic modes normalized by amplitude of the first mode of forces on the surface.
Squares: velocity, triangles: force.

The spectrum of the relative mode amplitudes for frequencies up to 5Hz is shown in
Fig. 3.63. The dominant oscillations are described by mode 2 with a frequency of 1.74Hz

and mode 3 with a frequency of 0.36Hz. Fluctuations around 1Hz are described by
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u v w

Mode 4
f ∗ = 0.97Hz

Mode 9
f ∗ = 1.26Hz

Mode 11
f ∗ = 0.73Hz

Figure 3.64: Individual DMD Modes 4, 9 and 11. Positive (red) and negative (blue)
isosurfaces of the velocity components u = v = w = ±1m/s.
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modes 4, 9, 11, 24 and 29. These five modes represent the fluctuations found in the
passenger compartment in preceding wind tunnel tests.

u v w

Mode 24
f ∗ = 0.85Hz

Mode 29
f ∗ = 1.10Hz

Figure 3.65: Individual DMD Modes 24 and 29. Positive (red) and negative (blue)
isosurfaces of the velocity components u = v = w = ±1m/s.

Isosurfaces of the velocity components of the individual modes are shown in Fig. 3.64 and
3.65. The upper picture in the rows is the side view of the geometry, the middle picture
the top view and the lower picture shows a top view of the isosurfaces were the shear
layer of the windshield is clipped to allow for a visualization of the flow in the passenger
compartment. The dominant mode of the chosen modes is mode 4 with a frequency of
0.97Hz. The side view of the model (top pictures in row) as well as the top view (middle
pictures in row) show small scale fluctuations in the shear layer of the windshield and
large scale fluctuations in the near wake of the model. In the top view with clipped shear
layer (bottom picture in row), the large scale fluctuations of the wake can be seen to reach
over the rear of the car into the passenger compartment. The same phenomenon can be
found in the isosurface pictures of modes 9 and 11. The contribution of modes 24 and 29

to the fluctuations in the passenger compartment are already very weak. The fluctuations
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3.4 Convertible Car Model

in these modes are mainly restricted to the shear layer of the windshield and the near
wake of the car geometry.

Fx Fy Fz

Mode 4
f ∗ = 0.97Hz

Mode 9
f ∗ = 1.26Hz

Mode 11
f ∗ = 0.73Hz

Mode 24
f ∗ = 0.85Hz

Mode 29
f ∗ = 1.10Hz

Figure 3.66: Individual DMD Modes 4, 9, 11, 24 and 29. Normalized force (Fi/A)/(p∞+
ρ
2
U2
∞) values ranging from −7 · 10−4 (blue) to +7 · 10−4 (red) for mode 4, −5 · 10−4 (blue)

to +5 · 10−4 (red) for modes 9 and 11 and −3 · 10−4 (blue) to +3 · 10−4 (red) for modes
24 and 29. Left: co-driver dummy, right: driver dummy.

The force components of the individual modes are shown in Fig. 3.66. In mode 4, the force
level is weaker on the driver side dummy (right picture). On the co-driver side dummy, the
force fluctuation is concentrated on the left side (window side) of the dummy geometry.
The force fluctuations of modes 9, 11 and 24 are similar on the driver and co-driver side
dummies respectively. The side force component Fy of modes 9 and 24 is negative on
both arms of the driver side dummy but positive on the window side arm of the co-driver
dummy. In mode 11, the side force is positive on both sides of the co-driver and negative
on the window side of the chest of the driver side dummy. The force fluctuations of mode
29 are comparatively weak.
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u v w

t = 0

t = 1

4
T ∗

t = 2

4
T ∗

t = 3

4
T ∗

Figure 3.67: Reconstruction of T ∗ = 1.03 s (one period of mode 4) with the modes 4, 9,
11, 24 and 29. Positive (red) and negative (blue) isosurfaces of the velocity components
u = v = w = ±1m/s.
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3.4 Convertible Car Model

The flow is reconstructed with the five selected modes. Isosurfaces of the velocity com-
ponents of a period of T ∗ = 1.03 s (one period of mode 4) are shown in Fig. 3.67. Here,
small scale structures can be found in the shear layers of the windshield and the side
mirrors for all three velocity components. The large scale structures of the near wake,
previously found in the individual modes, are most pronounced in the streamwise veloc-
ity component u. Two counter oscillating regions can be found at the center line of the
model. Most clearly visible in middle picture at t = 2

4
T ∗ with a positive motion (red) and

a negative motion (blue). These two structures reach far into the passenger compartment
and appear to induce a fluid motion in front of the anthropomorphic dummies. Other
longitudinal structures extend from the side mirrors into the wake of the car model. No
clear longitudinal structures can be found in the spanwise velocity component v. Here,
the small scale fluctuations dominate the flow. A larger coherent motion can be found
behind the car geometry, were the whole flow is in a spanwise oscillating motion. The
small scale fluctuations also dominate the upward velocity component w. The longitudi-
nal structures found here correspond to the structures found in the streamwise component
u and describe the upward oscillation of the larger structures.

Fx Fy Fz

t = 0

t = 1

4
T ∗

t = 2

4
T ∗

t = 3

4
T ∗

Figure 3.68: Reconstruction of T ∗ = 1.03 s (one period of mode 4) with the modes 4, 9,
11, 24 and 29. Normalized force (Fi/A)/(p∞+ ρ

2
U2
∞) values ranging from −10−3 (blue) to

+10−3 (red). Left: co-driver dummy, right: driver dummy.
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The force components on the anthropomorphic dummies are shown in Fig. 3.68. The
maximum amplitude of the streamwise force component Fx is weaker on the driver side
dummy. The highest force amplitudes on the driver side dummy can be found on the lower
chest. The highest amplitude on the co-driver side are on the window side of the chest,
the arm and in the face. Apart from different regions of maximum force, the pattern
of streamwise force is similar on the two dummies. The sideward force component Fy

oscillates with a phase shift of half a period on both sides of the dummies with lower
amplitudes on the driver side dummy geometry. The highest amplitudes of the upward
force component Fz can be found on the top of the heads and on the shoulders of the
dummy geometries. Again, the amplitudes on the driver side dummy are lower. A phase
shift of approx. a quarter period between the oscillation of Fz on the heads of the dummies
is present.

3.4.3 Conclusion

The time averaged and unsteady flow around a car geometry of convertible type was
investigated in this test case. The time averaged flow was analyzed with Line Integral
Convolutions of the time averaged wall shear stress and time averaged velocity fields. The
topology of the time averaged flow was documented with a Shear Maximizing Decompo-
sition of the velocity gradient tensor field.

The unsteady flow was investigated with a Dynamic Mode Decomposition of the velocity
field and the field of forces on the surface of the geometry for frequencies below 5Hz.
A force fluctuation on the anthropomorphic dummies of approx. 1Hz, previously found
in wind tunnel tests, could be retraced with the simulation and investigated in detail.
The fluctuations with frequency of approx. 1Hz were represented by the DMD with 5
different modes. The modes were investigated separately and reconstructed together for
the velocity and the force field. The velocity fields show strong vortex shedding at the
top of the windshield at the investigated frequencies around 1Hz. The lengthscale of
the vortex shedding indicates that the shedding is not induced by the local flow. It is
assumed that the shedding process is triggered by large scale fluctuations in the near wake
of the car with a much larger lengthscale. These larger structures were found to reach into
the passenger compartment and are responsible for the oscillating flow around, and the
force fluctuation on the anthropomorphic dummies. As high energy fluctuations of 1Hz

frequency from the top of the windshield will also have a driving effect on the fluctuations
in the passenger compartment, the entire process can be described as a feedback loop.
Large scale fluctuations are induced in the near wake, the oscillation triggers the shedding
process of high energy at the top of the windshield, the vortices are convected into the
wake and influence the large scale fluctuations. Both processes drive the fluctuations in
the passenger compartment.
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4 Conclusion

This thesis investigated the applicability of selected methods to the analysis of coherent
structures in unsteady car aerodynamics. The approach of the thesis was to rely on exten-
sive investigations of the unsteady flow to identify and isolate its underlying mechanisms.
In contrast to variation studies, where transferable mechanisms are searched for by reduc-
ing the complexity of the geometry, this approach allows for investigations of arbitrarily
complex geometries. A thorough theoretical assessment of selected vortex identification
schemes as well as an assessment of two modal decompositions was executed. The meth-
ods were applied to test cases with different degree of geometry complexity and were
analyzed for their applicability in the car aerodynamics development process.

Vortex identification schemes were assessed in chapter 2.4 for their applicability in car
aerodynamics. The most common vortex detection methods; Q-criterion, ∆-criterion, λ2-
criterion and λci-criterion as well as the less well known Shear Maximizing Decomposition
of the velocity gradient tensor (also called the Triple Decomposition of Motion) were
tested on simple, canonical flow examples. By applying the Q, ∆, λ2 and λci-criterion
onto the tensor fields of the Shear Maximizing Decomposition, the behavior of the vortex
detection methods applied to car aerodynamics flow fields was investigated.
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4 Conclusion

It was shown that none of the investigated vortex criteria can be used for quantitative
investigations of vortices and all criteria can even fail completely in some special cases.
The Q, ∆, λ2 and λci-criterion as well as the magnitude of the rate of rotation tensor
||(∇U)RR|| from the Shear Maximizing Decomposition only show the core region of Rank-
ine type vortices. The outer parts of vortices with an increasing amount of simple shear
rate and rate of irrotational straining are strongly underpredicted or not shown by the
criteria. Nonetheless, vortex criteria are used with success in a large number of fluid
mechanics and car aerodynamics projects. The reason for the success of vortex criteria,
despite their shortcomings, is their ability to visualize the topology of the flow rather than
extracting and quantifying individual vortices. With this in mind, the Shear Maximizing
Decomposition (SMD) appears to be the most useful of the investigated methods. The
SMD decomposes the flow and retains the full information of the velocity gradient tensor.
By using all three result tensors of the SMD, the topology of the flow can be analyzed
without the restriction to the inner core region of vortices. The SMD allows for a de-
scription of the flow topology based on relative motions in general rather than on vortical
motions only.

The Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD)
were discussed in chapter 2.5. It was pointed out that the proper orthogonal modes of the
POD are sign indeterminate. An algorithm for a reconstruction of the sign information
was found in literature and was briefly introduced. The reconstruction of the sign infor-
mation was found to be computationally expensive when compared to the computation of
the Singular Value Decomposition. Considering the computational resources needed for
the unsteady CFD simulations, the resource requirements of the POD with sign correction
is still acceptable.

For the Dynamic Mode Decomposition, pre and post-processing procedures were proposed.
It was found that the standard Dynamic Mode Decomposition with the filtering step based
on the Singular Value Decomposition as proposed in [92] is not applicable in most car
aerodynamics applications without a pre-filtering of the flow field data. The filtering based
on the Singular Value Decomposition in the standard DMD assumes a relation between
the total variance and the time scale of fluctuations. In the velocity field around simple
objects, high frequency oscillations generally have low total variance and can be filtered
out by the Singular Value Decomposition in the DMD algorithm. In the flow around
complex geometries as the geometries of car aerodynamics, high frequency oscillations
with high total variance can be present in the velocity field. An example for the production
of high energy and high frequency fluctuations would be the vortex shedding from the side
mirrors of a car. The fluctuations from the side mirrors have higher kinetic energy (and
therefore higher total variance) than other fluctuations around the car with considerably
lower frequency. In a standard DMD, the fluctuations of high total variance from the side
mirrors would have to be resolved with a sufficiently small time step length of the DMD, or
the fluctuations from the side mirrors as well as all fluctuations with lower kinetic energy
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would have to be filtered out by the Singular Value Decomposition. Due to memory
restrictions, resolving the high frequencies is usually not possible when investigating low
frequency oscillations. Filtering the high energy high frequency oscillations would discard
most of the information in the DMD. The same problem arises when processing fields with
no or weak relation between total variance and time scale as vorticity fields or force fields.
Here, the filtering based on the Singular Value Decomposition is also not able to remove
high frequency fluctuations from the flow field data. To avoid the described problems, the
flow field data is filtered with a low-pass filter prior to the DMD analysis. The low-pass
filter removes all fluctuations that cannot be resolved by the DMD independent of total
variance. It was found that a combination of a low-pass filtering prior to the DMD and
a very moderate filtering with the Singular Value Decomposition in the DMD produces
the best results. The SVD filter accounts for a rank deficiency in the snapshot matrix
and removes noise due to numerical errors. The threshold for the SVD filtering can be
universally set to a very low value and the cut-off frequency of the low-pass filter can be
determined by the time step length of the DMD. This allows for an execution of the DMD
without user specified parameters.

Comparing the Proper Orthogonal Decomposition with the Dynamic Mode Decomposi-
tion, the DMD was found to be superior for investigations of coherent structures in car
aerodynamics. In the DMD, an unsteady flow phenomenon like a vortex shedding process
is represented typically with one complex mode. In the POD, the same flow phenomenon
is typically represented by several modes. To reconstruct the flow phenomenon, the correct
modes have to be found and reconstructed together. As the Proper Orthogonal Modes
typically consist of more than one flow phenomenon, the reconstruction will still not be
as clear as the reconstruction of the DMD in most cases. Another disadvantage of the
POD is the sign indifference of the modes. Although an estimation of the sign is possi-
ble, computing the POD with sign estimation for a reasonable number of modes is more
expensive than the computation of the DMD. The DMD is especially advantageous for
investigations based on the frequency of a fluctuation. In this case, the related coherent
structures can usually easily be isolated.

The vortex detection methods and modal decompositions were applied to test cases with
different degree of geometry complexity and realism. To allow for a fast execution, all
methods were implemented for distributed memory parallel execution. As a basis for the
unsteady investigations, the time averaged flow of each test case was investigated and
the dominant coherent structures of the time averaged flows were described in detail.
Subsequently, the modal decompositions were applied to the unsteady flows.

To allow for a comparison of the results of the methods to results already present in
the literature, a cube mounted on the surface of a channel was investigated as a first
test case. The flow structures of the time averaged flow, described by Line Integral
Convolution pictures, matched the structures described in the literature. The results of the
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Shear Maximizing Decomposition also reproduced the published structures and provided
additional insight into the topology of the flow. The dominant Proper Orthogonal modes
were also found to match the modes from POD results in the literature. With the sign
estimation, additional information about the modes could be acquired. A comparison
of the modes from the POD with the modes of the DMD found strong similarities for
the dominant modes. The DMD was found to be able to extract distinct unsteady flow
processes like a vortex shedding or an oscillation of a horse shoe vortex. In addition to the
DMD on velocity vector fields, the DMD was applied to the fields of the magnitudes of the
SMD tensors. These investigations would not have been possible without the described
pre-filtering of the data.

As a second test case, the methods were applied to four configurations of the SAE body.
A closed notchback and a closed estate configuration as well as the notchback and estate
configurations with a highly simplified, generic engine compartment. Here, the field of
static pressure and the velocity vector field were processed in one DMD analysis to vi-
sualize the connections between the flow variables in the unsteady flow. In this analysis,
a strong vortex shedding in the frequency of the wake oscillation from the struts of the
model was found. As the struts were too thin to produce a low frequency, high energy
fluctuation solely by the instability of the local flow, the fluctuation was interpreted to
be induced by oscillations of the whole flow around the car caused by the strong wake
oscillation.

The flow around the DrivAer body, as an example of a realistic generic vehicle, was
investigated as a third test case. In this case, the DMD was applied to the velocity vector
field in the volume around the car and on the force vector field on the surface of the car
in one analysis. This approach allows establishing a connection between the unsteady
coherent structures in the flow and the unsteady forces acting on the car. By computing
the force and moment coefficients of the dominant dynamic modes, the main source of
flow induced car body oscillations could be identified. The flow fields of the respective
modes provide the connection of car body oscillations to the unsteady coherent structures
in the flow. In addition, the motion of a vortex system and the shedding of vortices from
the near wake of the car were described in detail and compared to a description of a vortex
shedding process from the near wake of a car of similar geometry in literature. Again,
it was found that structures with relatively small length scale contributed to modes with
relatively long time scale.

As an example of a detailed vehicle geometry, the flow around an open roof convertible
type car model based on a state of production vehicle was investigated. Two anthro-
pomorphic dummies were included in the car geometry to investigate the effect of flow
oscillations on ride comfort of the driver and co-driver. The unsteady flow in this test case
was, again, investigated with a DMD of the velocity vector field in the volume around the
car and the force vector field on the surface of the car in one analysis. A low frequency
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fluctuation of approx. 1Hz, previously found in wind tunnel experiments, could be repro-
duced and explained by the DMD results. The oscillating flow structure in the passenger
compartment, responsible for a force fluctuation on the anthropomorphic dummies, was
found to reach into the wake flow of the car. A strong contribution of the shear layer
oscillation from the top of the windshield to the mode of the oscillation in the passenger
compartment pointed to a driving effect of the shear layer oscillation to the fluctuation in
the passenger compartment. As the time scale of the fluctuation is larger than the typical
time scale of the fluctuations induced by the shear layer of the windshield, the oscillation
is interpreted to be induced by an oscillation in the wake of the car. The wake oscillation
provokes an oscillation of the whole flow around the car and causes the oscillation of the
windshield shear layer. As the flow from the windshield shear layer is convected into the
wake, a feedback loop is established. Based on this interpretation, a stabilization of the
flow in the passenger compartment would be possible with a geometry modification at
the top of the windshield, to influence the shear layer, with a wind screen to disconnect
the flow in the passenger compartment from the wake flow or with a measure to suppress
the fluctuation of the wake.

Future Work

The concept of coherent structures as a method to structure, characterize and interpret
the flow has a long history in bluff body and car aerodynamics. The concept is most useful
to develop an understanding of the topology of a complex flow and to make predictions
of how a change in the geometry could affect the flow and its forces on the geometry.
Nonetheless, there are drawbacks to this concept for unsteady aerodynamics. As the
coherent structures are part of the flow (rather than objects in the flow) and are defined
by their spacial and temporal velocity distribution, they are inherently dependent on a
reference system. Visualizing a coherent structure in a different reference system can
considerably change its interpretation. An objective and commonly accepted definition
of coherent structures is yet to be found.

The Dynamic Mode Decomposition with its ability to isolate unsteady coherent structures
was shown to be of great value in the investigation of the unsteady flow around complex
car geometries. However, there are some open questions: The parameters of the DMD
such as time step length, number of time steps in the analysis or the total time span of
the investigation have an influence on the accuracy of the decomposition. A thorough
investigation of the error in the analysis and its dependency on the parameters of the
DMD is not yet available for complex use cases. It has also been noted that the result of
the decomposition can be sensitive to small changes of the input data in some cases. A
small change of input data can cause flow processes to be represented by nearby modes.
This effect can considerably change the mode spectrum in its current form.
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4 Conclusion

While the DMD was shown to be of great value in the investigation of practical engineering
problems, it also has a large potential to be used in exploratory analysis of flow field data.
A challenge in the exploratory analysis of flow fields, using the DMD, is to choose the
important DMD modes. Here, a more sophisticated definition of the modes amplitudes
is necessary.

As the Dynamic Mode Decomposition has gained a considerable amount of attention
in the fluid dynamics research community, a number of variants to the original DMD
algorithm proposed by Schmid in [92] can be found in literature, addressing the resource
requirements of the original DMD algorithm. A recent overview of the most popular
variants is given in Dawson et al. [24].
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