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Abstract

We address the identifiablity and estimation of recursive max-linear structural equation mod-
els represented by an edge weighted directed acyclic graph (DAG). Such models are generally
unidentifiable and we identify the whole class of DAGs and edge weights corresponding to a
given observational distribution. For estimation, standard likelihood theory cannot be applied
because the corresponding families of distributions are not dominated. Given the underlying
DAG, we present an estimator for the class of edge weights and show that it can be considered
a generalized maximum likelihood estimator. In addition, we develop a simple method for iden-
tifying the structures of the DAGs. With probability tending to one at an exponential rate with
the number of observations, this method correctly identifies the class of DAGs and, similarly,
exactly identifies the possible edge weights.
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1 Introduction

Establishing and understanding cause-effect relations is an omnipresent desire in science and
daily life. It is especially important when dealing with extreme events, because they are mostly
dangerous and very costly; knowing and understanding the causes of such events and their causal
relations could help us to deal better with them. Examples include incidents at airplane landings
(Gissibl et al. [13]), flooding in river networks (Asadi et al. [1]), financial risk (Einmahl et al.
[8]), and chemical pollution of rivers (Hoef et al. [15]). Such applications, where extreme risks
may propagate through a network, have been the motivation behind the definition of recursive
max-linear (ML) models in Gissibl and Klüppelberg [12]. Recursive ML models are structural
equation models (SEMs) represented by a directed acyclic graph (DAG) and thereby obey the
basic Markov properties associated with directed graphical models (Lauritzen [21], Lauritzen
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et al. [22]). Both SEMs (see for example Bollen [3], Pearl [23]) and directed graphical models
(see for example Koller and Friedman [19], Lauritzen [20], Spirtes et al. [27]) are well-established
concepts for the understanding and quantification of causal inference from observational data.
We note that Hitz and Evans [14] and Engelke and Hitz [9] discuss graphical models for extremes
that are based un undirected graphs.

Recursive ML models are defined by a DAG, a collection of edge weights, and a vector of
independent innovations. Important research problems that are addressed for recursive SEMs
are the question of identifiability of the coefficients and the associated DAG from the obser-
vational distribution. Although the true DAG and edge weights for a recursive ML model are
not identifiable from the observational distribution, the so-called max-linear coefficient matrix
is identifiable and determines the possible class of DAGs and edge weights uniquely.

We shall show that estimation and structure learning of recursive ML models can be done in a
simple and efficient fashion by exploiting properties of the ratios between observable components
of the model. For a sufficiently large number of observations, these ratios identify the true ML
coefficient matrix with a probability that converges exponentially fast to 1. For the situation
where the DAG is known, we show that our estimator can be considered a maximum likelihood
estimator in an extended sense, originally introduced by Kiefer and Wolfowitz [18].

Our paper is organized as follows. In Section 2 we introduce the model class of recursive
ML models and the notation used throughout. In Section 3 we discuss the identifiability of a
recursive ML model from its observational distribution. Here we show distributional properties
of the ratio between two components. Based on these properties, we suggest an identification
method. Section 4 is then devoted to the estimation of recursive ML models where we assume the
DAG to be known. Among other outstanding properties, we show that the proposed estimates are
generalized maximum likelihood estimates (GMLEs) in the sense of Kiefer–Wolfowitz. The main
part is here the derivation of a specific Radon-Nikodym derivative. In Section 5 we complement
the theoretical findings on the identifiability of recursive ML models with an efficient procedure
to learn recursive ML models from observations only, even when the DAG itself is also unknown.
Section 6 concludes and suggests further directions of research.

2 Preliminaries — recursive max-linear models {ch4:s2}

In this section we introduce notation and summarize the most important properties of recursive
ML models needed. A recursive ML model for a random vector X “ pX1, . . . , Xdq is specified by
an underlying structure in terms of a DAG D with nodes V “ t1, . . . , du, positive edge weights
cki for i P V and k P papiq, and independent positive random variables Z1, . . . , Zd with support
R` :“ p0,8q and atom-free distributions:

Xi “
ł

kPpapiq
ckiXk _ Zi, i “ 1, . . . , d, (2.1) {ch4:ml-sem}

where papiq are the parents of node i in D. To highlight the DAG D, we say that X follows a
recursive ML model on D. Note that this is a slight variation of the original definition in [12].
We shall refer to Z “ pZ1, . . . , Zdq as the vector of innovations.

In the context of risk analysis, natural candidates for distributions of the innovations are
extreme value distributions or distributions in their domain of attraction, resulting in a corre-
sponding multivariate distribution (for details and background on multivariate extreme value
models, see for example Beirlant et al. [2], de Haan and Ferreira [7], Resnick [24, 25]).
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Throughout the paper we use the following notation. The sets anpiq, papiq, and depiq contain
the ancestors, parents, and descendants of node i in D. We set Anpiq “ anpiq Y tiu and Papiq “
papiqYtiu. For U Ĺ V we write XU “ pX`, ` P Uq and accordingly for x P Rd`, xU “ px`, ` P Uq.

Instead of k P papiq we also write k Ñ i. Assigning the weight djippq “
śn´1
ν“0 ckνkν`1 to every

path p “ rj “ k0 Ñ k1 Ñ ¨ ¨ ¨ Ñ kn “ is and denoting the set of all paths from j to i by Pji, the
non-negative matrix B “ pbijqdˆd with entries

bji “
ł

pPPji

djippq for j P anpiq, bii “ 1, and bji “ 0 for j P V zAnpiq, (2.2) {ch4:coeff}

is said to be the ML coefficient matrix of X. This means for distinct i, j P V , bji is positive if
and only if there is a path from j to i; in that case bji is the maximum weight of all paths from
j to i, where the weight of a path is the product of all edge weights cki along this path. We say
that a path from j to i whose weight equals bji is max-weighted.

The components of X can also be expressed as max-linear functions of their ancestral inno-
vations and an independent one; the corresponding ML coefficients are the entries of B:

Xi “

d
ł

j“1
bjiZj “

ł

jPAnpiq
bjiZj , i “ 1, . . . , d; (2.3) {ch4:ml-noise}

see Theorem 2.2 of [12].
For two non-negative matrices F and G, where the number of columns in F is equal to the

number of rows in G, we define the matrix product d : Rmˆn` ˆ Rnˆp` Ñ Rmˆp` by

pF “ pfijqmˆn, G “ pgijqnˆpq ÞÑ F dG :“
´

n
ł

k“1
fikgkj

¯

mˆp
, (2.4) {ch2:odot}

where R` “ r0,8q. The triple pR`,_, ¨q, is an idempotent semiring with 0 as 0-element and
1 as 1-element and the operation d is therefore a matrix product over this semiring; see for
example Butkovič [4]. Denoting by M all d ˆ d matrices with non-negative entries and by _
the componentwise maximum between two matrices, pM,_,dq is also a semiring with the null
matrix as 0-element and the dˆ d identity matrix Id as 1-element.

The matrix product d allows us to represent the ML coefficient matrix B of X in terms of
the weighted adjacency matrix pcij1papjqpiqqdˆd of D since (2.2) and (2.3) simply become

B “ pId _ Cq
dpd´1q “

d´1
ł

k“0
Cdk, X “ Z dB, (2.5) {eq:dotrepr}

where we have let Ad0 “ Id and Adk “ Adpk´1q d A for A P Rdˆd` and k P N; see Proposition
1.6.15 of Butkovič [4] as well as Theorem 2.4 and Corollary 2.5 of [12].

3 Identifiability of a recursive max-linear model {ch4:s4}

In this section we discuss the question of identifiability of the elements of a recursive ML model
from the distribution LpXq of X. We begin with an example.

Example 3.1. [The DAG and the edge weights are not necessarily identifiable] {ch4:exprob2}
Consider a recursive ML model on the DAG D depicted below with edge weights c12, c23, c13.
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1 2 3D

According to (2.1), the components of X have the following representations

X1 “ Z1, X2 “ c12X1 _ Z2, and X3 “ c13X1 _ c23X2 _ Z3.

but also representations in terms of the innovations using (2.3) as

X1 “ Z1, X2 “ c12Z1 _ Z2, and X3 “ pc12c23 _ c13qZ1 _ c23Z2 _ Z3,

If c13 ď c12c23 we have for any c˚13 P r0, c12c23s that b13 “ c12c23 _ c
˚
13 “ c12c23 _ c13 “ c12c23; so

we could also write

X3 “ c˚13X1 _ c23X2 _ Z3

without changing the distribution LpXq of X. This implies that if c13 ď c12c23, X follows a
recursive ML model on D with edge weights c12, c23, c

˚
13 but also on the DAG DB depicted below

with edge weights c12, c23. Consequently, we can neither identify D nor the value c13 from the
distribution LpXq of X. However, note that the ML coefficient b13 “ c12c23 _ c13 is uniquely
determined.

1 2 3DB

If we however assume that c13 ą c12c23, only D and the edge weights c12, c23, c13 represent X

in the sense of (2.1). Thus in this case the DAG and the edge weights are identifiable from the
distribution LpXq. l

As conclusion of Example 3.1, it is generally not possible to identify the true DAG D and the
edge weights cki underlying X in representation (2.1) from LpXq, since several DAGs and edge
weights may exist such that X has this representation. The smallest DAG of this kind is the
DAG that has an edge k Ñ i if and only if k Ñ i is the only max-weighted path from k to i. We
call this DAG DB the minimum ML DAG of X and note that this is uniquely determined from
the ML coefficient matrix B. All other DAGs representing X are those that include the edges
of DB and whose nodes have the same ancestors. The edge weights cki in the representation
(2.1) of X are only uniquely determined for edges contained in DB; namely, by bki; otherwise,
cki may be any number in p0, bkis. All this information can be found in Section 5 of [12] with its
main results in Theorems 5.3, 5.4.

Based on the above observations, we investigate the identifiability of the whole class of DAGs
and edge weights representing the max-linear structural equations (2.1) of X from LpXq. Since
this class can be recovered from B, it suffices to clarify whether B is identifiable from LpXq.
There are many ways to prove that this is indeed the case. The way we present in this section
suggests a simple procedure to estimate B from independent realizations of X (see Algorithm 5.1
below). An alternative way can be found in Appendix 4.A.1 of [11].

The ratios Y “ tYij “ Xj{Xi, i, j “ 1 . . . , du between all pairs of components of X are the
essential quantities used to identify B from LpXq. We first present distributional properties of
these ratios, where we let pΩ,F ,Pq denote the probability space of Z and, hence, of X. In what
follows, we use the standard convention and write events such as tω P Ω : Xipωq ă Xjpωqu as
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tXi ă Xju, etc. Unsurprisingly, because of the max-linear representation (2.3) of the components
of X, the ratios inherit their distributional properties from the innovations. It plays an important
role that

the event
 

Zi “ xZj
(

for distinct i, j P V and x P R` has probability zero, (3.1) {ch4:noiseNull}

which follows from the independence of the innovations and the fact that their distributions are
atom-free. {lem:XioverXj}
Lemma 3.2. Let i, j P V be distinct.

(a) The ratio Yji “ Xi{Xj has an atom in x P R` if and only if Anpiq X Anpjq ‰ H and
x “ b`i{b`j for some ` P Anpiq XAnpjq.

(b) We have

supppYjiq “

$

’

’

&

’

’

%

rbji,8q if j P anpiq
`

0, 1{bij
‰

if j P depiq
R` otherwise,

where supppYjiq denotes the support of Yji.

Proof. To establish (a) note that (2.3) and (3.1) imply that the sets tXi “ xXju “
 
Ž

`PAnpiq b`iZ` “
Ž

`PAnpjq xb`jZ`
(

and
!

ł

`PAnpiqXAnpjq:
b`i“b`jx

b`iZ` ą
ł

`PAnpiqXAnpjq:
b`i‰b`jx

pb`i _ xb`jqZ` _
ł

`PAnpiqzAnpjq
b`iZ` _

ł

`PAnpjqzAnpiq
xb`jZ`

)

differ only by a set of probability zero. Since the innovations are independent and have support
R` the conclusion follows.

To establish (b) note that the support R` of the innovations and the representation (2.3)
yield

supppYjiq “
#

Ž

`PAnpiq b`iz`
Ž

`PAnpjq b`jz`
: zAnpiqYAnpjq P R

|AnpiqYAnpjq|
`

+

.

The continuity of the function

R|AnpiqYAnpjq|
` Ñ R`, zAnpiqYAnpjq ÞÑ

Ž

`PAnpiq b`iz`
Ž

`PAnpjq b`jz`

implies that supppYjiq is an interval in R`. Since for j P anpiq by Corollary 3.13 of [12] bji ď Yji
and by (a) bji is an atom of Yji, it suffices to show that j P anpiq if supppYjiq has a positive
lower bound. For this assume that j R anpiq. Because of the positive lower bound of supppYjiq,
there exists some a P R` such that

ł

`PAnpiqXAnpjq
ab`jz` _

ł

`PAnpjqzAnpiq
ab`jz` ď

ł

`PAnpiq
b`iz` (3.2) {ch4:lowboundsupp}

for all zAnpiqYAnpjq P R|AnpiqYAnpjq|
` . As AnpjqzAnpiq ‰ H, for fixed zAnpiq P R|Anpiq|

` , we can
choose z` for some ` P AnpjqzAnpiq so large that ab`jz` is greater than the maximum on the
right-hand side of (3.2). This contradicts (3.2). Hence, j P anpiq.

5



Table 3.1: Distributional properties of Yji for distinct i, j P V .ch4:table:rel

Relationship between i and j supppYjiq Atoms
j P anpiq rbji,8q tb`i{b`j , ` P Anpjqu
i P anpjq p0, 1{bijs tb`i{b`j , ` P Anpiqu
otherwise:

if anpiq X anpjq ‰ H R` tb`i{b`j , ` P anpiq X anpjqu
if anpiq X anpjq “ H R` H

In Table 3.1 we summarize the results of Lemma 3.2: depending on the relationship between
i and j in D, the support and atoms of Yji are shown.

Table 3.1 and the fact that bji “ 0 for j R Anpiq (cf. (2.2)) suggest the following algorithm
to find B from LpXq since we can identify the support of Yji from LpXq. This proves the
identifiability of B from LpXq. In fact, it is sufficient to know supppYjiq for all i, j P V with
i ‰ j rather than the whole distribution LpXq.

Algorithm 3.3. [Find B from LpXq] {ch4:alg1}

1. For all i P V “ t1, . . . , du, set bii “ 1.

2. For all i, j P V with i ‰ j, find supppYjiq:

if supppYjiq “ ra,8q for some a P R`, then set bji “ a;

else, set bji “ 0.

So far we have shown that the ML coefficient matrix B of X can be obtained from LpXq.
Since all DAGs and edge weights that represent X in the sense of (2.1) can be determined from
B, the only quantities we do not know about yet but appear in the definition of X are the
innovations. In what follows we show that the distribution of the innovation vector Z is also
identifiable from LpXq. For this, due to the identifiability of B from LpXq and the independence
of the innovations, it suffices to provide an algorithm that determines the distributions of the
innovations from LpXq and B. Note that B also determines the ancestral relationships between
any pair of nodes in that j P Anpiq for any DAG representing X if and only if bji ą 0.

We denote by FZi the distribution function of the innovation Zi. Even with this algorithm,
we do not have to know the whole distribution LpXq; it is enough to know the ML coefficient
matrix B and the univariate marginal distribution functions of LpXq.

Algorithm 3.4. [Find FZ1pxq, . . . , FZdpxq for x P R` from B and LpXq] {ch4:alg3}
For ν “ 0, . . . , d´ 1,

for i P V such that |anpiq| “ |tj P V ztiu : bji ‰ 0u| “ ν, set

FZipxq “
PpXi ď xq

ś

jPanpiq FZj px{bjiq
.

Here we have used the convention that
ś

jPH aj “ 1. The correctness of Algorithm 3.4 follows
from the independence of the innovations and representation (2.3). Finally, we summarize the
main result of this section.
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{ch4:identify}
Theorem 3.5. Let LpXq be the distribution of X following a recursive ML model. Then its ML
coefficient matrix B and the distribution of its innovation vector Z are identifiable from LpXq.
Furthermore, the class of all DAGs and edge weights that could have generated X by (2.1) can
be obtained.

4 Estimation with known directed acyclic graph {ch4:s5}

In this section we consider independent realizations xptq “
`

x
ptq
1 , . . . , x

ptq
d

˘

, t “ 1, . . . , n, of a
random vector X “ pX1, . . . , Xdq following a recursive ML model with its DAG D given. Further,
we consider the distribution of the innovation vector to be fixed, but the only information
we eventually use is that it has independent, atom-free margins with support R`, hence our
estimation results also cover the situation where this distribution is unknown. Our aim is the
estimation of the edge weights cki and the ML coefficient matrix B. Since X may satisfy (2.1)
with respect to D for different systems of edge weights cki (see Example 3.1) and thus these
are generally not identifiable from LpXq, we usually have no chance to estimate the true edge
weights from xp1q, . . . ,xpnq consistently, but only the ML coefficient matrix B. Using the fact
that the class of possible edge weights can be determined from B, we obtain automatically an
estimate of this class; see Corollary 4.12 below.

The ML coefficient matrix B

In the following we let BpDq denote the class of possible ML coefficient matrices of all recursive
ML models on D. For B being a matrix with non-negative entries and diagonal elements bii “ 1
we define B0 :“ pbij1papjqpiqqdˆd. Then it holds that B P BpDq if and only if B satisfies the
following

rbji ą 0 ðñ j P Anpiqs and B “ Id _ pB dB0q; (4.1) {eq:fixpoint}

see Theorem 4.2 or Corollary 4.3(a) of [12].

A simple estimate of B {ch4:s52}

Next we discuss a sensible estimate of B. Table 3.1 shows that for j P anpiq the minimal value
that can be observed for the ratio Yji “ Xi{Xj is bji, which is an atom of Yji. This suggests the
following estimate B̆ of the ML coefficient matrix:

b̆ii “ 1, b̆ji “ 0 for j P V zAnpiq, and b̆ji “
n
ľ

t“1
y
ptq
ji “

n
ľ

t“1

x
ptq
i

x
ptq
j

for j P anpiq.

Davis and Resnick [6] suggested such minimal observed ratios as estimates for parameters in max-
ARMA processes. For n sufficiently large, we can expect to observe the atoms bji for j P anpiq
in the sample xp1q, . . . ,xpnq and, hence, to estimate the ML coefficients exactly. However, if n is
not large we may with positive probability have that B̆ is not an ML coefficient matrix of any
recursive ML model on D as the following simple example shows:

Example 4.1. [B̆ is not necessarily in BpDq]
Consider the DAG
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1 2 3D

and assume we observe b̆31 ą b̆32b̆21. Then the matrix B̆ fails to satisfy (4.1) and hence is not
an element of BpDq. l

However, if we only estimate the ML coefficients corresponding to edges in D and then
compute an estimate based on Lemma 4.2 below this phenomenon cannot occur.

{lem:solving}
Lemma 4.2. Let B0 P Rdˆd` be a matrix with bij ą 0 ðñ iÑ j. A matrix A P Rdˆd` satisfies

raji ą 0 ðñ j P Anpiqs and A “ Id _ pAdB0q;

if and only if A “ pId _B0q
dpd´1q.

Proof. We first show that A “ pId _B0q
dpd´1q is a solution. We have ([4], Proposition 1.6.10)

pId _B0q
dpd´1q “

d´1
ł

k“0
Bdk0 “

8
ł

k“0
Bdk0

and hence

Id _ pAdB0q “ Id _ tpId _B0q
dpd´1q dB0u “ Id _ t

8
ł

k“1
Bdk0 u “

8
ł

k“0
Bdk0 “ A.

It is easy to see directly that Bdk0 “ 0 for k ě d and hence if Ǎ is a solution to (4.1) we get by
iteration, using that pM _Nq dK “ pM dKq _ pN dKq,

Ǎ “ Id _ pǍdB0q

“ Id _ rtId _ pǍdB0qu dB0s

“ Id _B0 _ pǍdB
d2
0 q

“ ¨ ¨ ¨

“ pId _B0q
dpd´1q _ pǍdBdd0 q “ pId _B0q

dpd´1q “ A

and hence the solution to the equation is unique.

For a path p “ rj “ k0 Ñ k1 Ñ ¨ ¨ ¨ Ñ kn “ is and a realization xptq such that b̆jixptqj “ x
ptq
i

we have
´

n
ľ

s“1
y
psq
01

¯´
n
ľ

s“1
y
psq
12

¯

. . .
´

n
ľ

s“1
y
psq
n´1,n

¯

ď y
ptq
01 y

ptq
12 . . . y

ptq
n´1,n “ y

ptq
ji “ b̆ji “

n
ľ

s“1
y
psq
ji . (4.2) {ch4:eq:wtBwhB}

Thus we may define the estimate pB by first calculating the matrix B̆0 “ pb̆ij1papjqpiqqdˆd and
then iterating the d-matrix product as:

pB “ pId _ B̆0q
dpd´1q. (4.3) {ch4:eq:Bhat}

It then follows from (4.2) that pB0 “ B̆0 and from Lemma 4.2 that pB is the unique element of
BpDq with this property. By Lemma 3.2(b), we also have

bji ď pbji ď b̆ji for j P anpiq.
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Consequently, when using pB or B̆ as an estimate of B, we never underestimate a ML coefficient;
furthermore, the matrix pB always estimates B more precisely than B̆ and since we always have
pB P BpDq, pB seems to be clearly preferable as an estimate of B.

The following two examples show how effective the estimate pB can be; in particular, n does
not necessarily need to be large.

Example 4.3. [One observation may be enough to estimate B exactly] {ch4:examBhat}
Consider the DAG

1

2 3

4

D

and assume that the paths r1 Ñ 2 Ñ 4s and r1 Ñ 3 Ñ 4s are both max-weighted, which is
equivalent to b12b24 “ b13b34. If we observe the event

 

X2 “ b12X1
(

X
 

X3 “ b13X1
(

X
 

X4 “ b24X2
(

X
 

X4 “ b34X3
(

,

then pB “ B so we estimate all ML coefficients exactly. Note that this event has positive proba-
bility and occurs P-almost surely if and only if Z1 realizes all node variables; i.e., if X2 “ b12Z1,
X3 “ b13Z1, and X4 “ b14Z1. l

Example 4.4. Consider the DAG

1

3

2

D

We have four events that may occur, namely,

F1 “
 

X3 “ b13X1
(

X
 

X3 “ b23X2
(

, F2 “
 

X3 “ b13X1
(

X
 

X3 ą b23X2
(

,

F3 “
 

X3 ą b13X1
(

X
 

X3 “ b23X2
(

, F4 “
 

X3 ą b13X1
(

X
 

X3 ą b23X2
(

,

When excluding the null event F1, we estimate B by pB exactly if and only if the observations
xp1q, . . . ,xpnq include both of the events F2 and F3; so two observations may be enough to
estimate B exactly. l

Since by Table 3.1 PpXi “ bkiXkq ą 0 for k P papiq, it follows from the Borel-Cantelli lemma
that pbki P-almost surely equals the true value for n sufficiently large. Thus, if n is large, pB finds,
with probability 1, the true B. In [6] this is discussed for the time-series framework used there
and in Davis and McCormick [5] they show that under suitable assumptions, this estimator is
asymptotically Fréchet distributed . Assuming the probability of tXi “ bkiXku is known, we
show next how one has to choose n to observe this event with probability greater than 1 ´ p

for some p P p0, 1q. We also prove that the probability for estimating the true bki converges
exponentially fast to 1.
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{ch4:PropBhat}
Proposition 4.5. Let Xptq “

`

X
ptq
1 , . . . , X

ptq
n

˘

for t “ 1, . . . , n be a sample from a recursive ML
model on a DAG D with ML coefficient matrix B. Let i P V and k P papiq. It then holds that

P

˜

n
ľ

t“1
Y
ptq
ki “ bki

¸

ě 1´ p for some p P p0, 1q

if and only if

n ě
lnppq

lnpPpYki ą bkiqq
.

Furthermore, the convergence P
`
Źn
t“1 Y

ptq
ki “ bki

˘

Ñ 1 as nÑ8 is exponentially fast.

Proof. First note that the events tXi “ bkiXku and tXi ą bkiXku are complementary and both
have positive probability. Further, using that Xp1q, . . . ,Xpnq are independent and identically
distributed yields

P
´

n
ľ

t“1
Y
ptq
ki “ bki

¯

“ 1´ P
´

n
ľ

t“1
Y
ptq
ki ą bki

¯

“ 1´
n
ź

t“1
PpY ptqki ą bkiq “ 1´ PpYki ą bkiq

n.

Altogether, the statements follow.

In conclusion, pB has the nice property to be ’geometrically consistent’ in the sense that the
probability of t pB “ Bu converges exponentially fast to one.

The matrix pB is a generalized maximum likelihood estimate {ch4:s51}

For B P BpDq and a fixed distribution of the innovation vector we let PB denote the probability
measure induced by a recursive ML model on D with ML coefficient matrixB, i.e. the distribution
of X where X “ Z dB. We shall denote the family of these probability measures by PpDq.

We cannot use standard maximum likelihood methods to estimate B, since the family PpDq
is not dominated (cf. Example 4.4.1 of [11]) and hence the standard likelihood function is not
well defined. However, there exist generalizations of maximum likelihood estimation (GMLE)
that cover the undominated case as well; Kalbfleisch and Prentice [17], Kiefer and Wolfowitz [18],
and Scholz [26] suggested such extensions. We essentially follow the Kiefer–Wolfowitz definition
of a GMLE; as also done, for example, by Gill et al. [10] and Johansen [16] and in the following
we shall show that pB can be seen as a maximum likelihood estimate of B in the extended sense
introduced by Kiefer and Wolfowitz in [18].

Let P be a family of probability measures on pRd`,BpRd`qq where BpRd`q denotes the Borel
σ-algebra on Rd`, and xp1q, . . . ,xpnq a random sample from some P0 P P. For P,Q P P and
x P Rd` we define

ρpx, P,Qq :“ dP

dpP `Qq
pxq,

where dP {dpP `Qq denotes a density of P with respect to P `Q. Then we call pP a generalized
maximum likelihood estimate of P0 if

n
ź

t“1
ρpxptq, pP , pP q ‰ 0 and

n
ź

t“1
ρpxptq, Q, pP q ď

n
ź

t“1
ρpxptq, pP ,Qq for all Q P P. (4.4) {ch4:def:gmle}
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Since P is absolutely continuous with respect to P ` Q, the density dP {dpP `Qq always
exists according to the Radon-Nikodym theorem. This means that the GMLE is well-defined,
save for the usual ambiguity in the method of maximum likelihood that densities are only defined
up to null sets and therefore a specific choice of densities must be made. The Kiefer–Wolfowitz
definition extends the definition of a MLE in a very natural way as it simply says that pP is the
MLE in the smaller family tP̂, Qu for any Q P P. In [18] only the second condition in (4.4) is
required, but the first condition is implicit. The first step in verfying that pB is a GMLE of B is
to specify densities of PB with respect to PB `PB˚ for any two B,B˚ P BpDq. For this purpose
we determine a partition

 

A0pB,B
˚q, A1{2pB,B

˚q, A1pB,B
˚q
(

of Rd` that satisfies the following
three properties,

(A): PBpA0pB,B
˚qq “ 0,

(B): PBpAXA1{2pB,B
˚qq “ PB˚pAXA1{2pB,B

˚qq for every A P BpRd`q, (4.5) {eq:partition}

(C): PB˚pA1pB,B
˚qq “ 0.

Then we choose as density the measurable function from Rd` to t0, 1{2, 1u defined as

x ÞÑ ρpx, B,B˚q :“ 1
2 ¨ 1A1{2pB,B˚qpxq ` 1A1pB,B˚qpxq “

$

’

’

&

’

’

%

0, if x P A0pB,B
˚q,

1
2 , if x P A1{2pB,B

˚q,

1, if x P A1pB,B
˚q.

(4.6) {ch4:dens:gen}

This is a valid density because, using the properties (A), (B), (C), we obtain for every A P BpRd`q,
ż

A
ρpx, B,B˚qpPB ` PB˚qpdxq “ PBpAXA1{2pB,B

˚qq ` PBpAXA1pB,B
˚qq “ PBpAq.

We begin with an example that shall help to get an idea and provide insights into the concepts
and arguments we shall use in the general case. It is deliberately very detailed.

Example 4.6. [How to find a density and the associated GMLEs] {ch4:ex1}
For B,B˚ P BpDq where D “ pt1, 2u, 1 Ñ 2q, we show that the partition

!

A0pB,B
˚q :“

 

x P R2
` : x2 ă b12x1

(

Y
 

x P R2
` : x2 “ b˚12x1 ą b12x1

(

,

A1{2pB,B
˚q :“

 

x P R2
` : x2 “ b12x1 “ b˚12x1

(

Y
 

x P R2
` : x2 ą pb12 _ b

˚
12qx1

(

,

A1pB,B
˚q :“

 

x P R2
` : b˚12x1 ą x2 ě b12x1

(

Y
 

x P R2
` : x2 “ b12x1 ą b˚12x1

(

)

of R2
` satisfies properties (A), (B), (C) of (4.5). Figure 4.1 shows the corresponding density

ρp¨, B,B˚q from (4.6) for the three possible order relations between b12 and b˚12.
Since by Table 3.1, supppX2{X1q “ rb12,8q and b12 is the only atom of X2{X1, property (A)

is true. By reversing the roles of B and B˚, (C) follows from (A). The condition (B) is obvious
if b12 “ b˚12. Assume that b12 ‰ b˚12. We then have by definition of X that tX P A1{2pB,B

˚qu “

tX2 ą pb12 _ b
˚
12qX1u “ tZ2 ą pb12 _ b

˚
12qZ1u and X2 “ Z2 on tZ2 ą pb12 _ b

˚
12qZ1u. With this,

using that A1{2pB
˚, Bq “ A1{2pB,B

˚q. We finally obtain for A P BpR2
`q,

PBpAXA1{2pB,B
˚qq “ PptX P Au X tZ2 ą pb12 _ b

˚
12qZ1uq

“ PptpZ1, Z2q P Au X tZ2 ą pb12 _ b
˚
12qZ1uq

“ PB˚pAXA1{2pB
˚, Bqq “ PB˚pAXA1{2pB,B

˚qq.
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x2
“
b12x

1x 2
“
b
˚ 12
x 1

x2

x1

x2
x1

b˚12b12

x 2
“
b 1

2x
1
“
b
˚

12
x 1

x2

x1

x2
x1

b12 “ b˚12

x 2
“
b 1

2x
1

x2 “
b
˚
12
x1

x2

x1

x2
x1

b12b˚12

Figure 4.1: The density ρp¨, B,B˚q from Example 4.6 shown as a contour plot (top line) and as a function
of y12 “ x2{x1 (bottom line) for the three situations b12 ă b˚12 (left-hand side), b12 “ b˚12 (middle), and
b12 ą b˚12 (right-hand side). The area where it is 0{1

2{1 is coloured in red/blue/green.ch4:fig1:DAG12

We now use the density found to determine the GMLE of B. The only ML coefficient we
have to estimate is b12. As before we let pb12 “ b̆12 be the minimal observed ratio of X2{X1 and
let pB be the corresponding ML coefficient matrix from (4.3). Defining npB,B˚q “ |tt : xptq P

A1{2pB,B
˚qu| and using that npB,B˚q “ npB˚, Bq, we obtain

n
ź

t“1
ρpxptq, B,B˚q “ 2´npB,B˚q

n
ź

t“1
1Rd

`
zA0pB,B˚q

`

xptq
˘

,

n
ź

t“1
ρpxptq, B˚, Bq “ 2´npB,B˚q

n
ź

t“1
1Rd

`
zA0pB˚,Bq

`

xptq
˘

.

Let now rB be an arbitrary potential GMLE of B. Then P
rB
P PpDq satisfies the first condition

in (4.4) if and only if

rb12x
ptq
1 ď x

ptq
2 for all t, equivalently rb12 ď pb12 (4.7) {ch4:cond1:DAG12}

and the second if and only if

for all B P BpDq, if some xptq P A0p rB,Bq, then some xpsq P A0pB, rBq. (4.8) {ch4:cond2:DAG12}

In summary, some rB P BpDq is a GMLE of B if and only if (4.7) and (4.8) are satisfied. We
discuss the possible GMLEs of b12 in detail.

(a) rb12 ă pb12 is no GMLE:
Set b12 “ pb12, and let xptq be such that pb12x

ptq
1 “ x

ptq
2 . Then xptq P

 

x P R2
` : x2 “ b12x1 ą

rb12x2
(

Ď A0p rB,Bq but no xpsq P A0pB, rBq “
 

x P R2
` : x2 ă b12x1

(

. This contradicts
(4.8); consequently, rb12 cannot be a GMLE of b12. In Figure 4.2(a) we illustrate this
situation. On the left-hand side a contour plot of the density ρp¨, rB,Bq is shown, on the
right-hand side of ρp¨, B, rBq. The crosses represent the realizations xp1q, . . . ,xpnq. In the
left plot crosses are in the 0-area coloured in red, namely, those that realize pb12, but in the
right plot not. So rB cannot be a GMLE of B.

(b) rb12 ą pb12 is no GMLE:
This follows directly from (4.7). Figure 4.2(b) shows a situation that contradicts (4.8),
similarly to Figure 4.2(a) in (1).
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(a) rb12 ă pb12 is no GMLE.
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(b) rb12 ą pb12 is no GMLE.

ρp¨, pB,Bq:

x 2
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2
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x 2
“
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x 2
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pb 1
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x 2
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1
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x 1
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x1

x 2
“
pb 1

2x
1
“
b 1

2x
1

x2

x1

x 2
“
pb 1

2x
1

x2 “
b12x1
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(c) rb12 “ pb12 is a GMLE.

Figure 4.2: Discussion of the GMLEs of b12 with respect to the density from Figure 4.1.ch4:fig2:DAG12; see further
explanation in (a), (b), and (c) of Example 4.6.

(c) rb12 “ pb12 is a GMLE:
Condition (4.7) holds obviously. To prove (4.8), assume for some B P BpDq that some
xptq P A0p pB,Bq. By definition of A0p pB,Bq, xptq2 “ b12x

ptq
1 ą pb12x

ptq
1 , which implies that

b12 ą pb12. For xpsq such that pb12x
psq
1 “ x

psq
2 , we then find that xpsq2 ă b12x

psq
1 . Hence,

xpsq P A0pB, pBq, and pb12 is a GMLE of b12. We learn this informally from Figure 4.2(c).
The top line shows contour plots of ρp¨, pB,Bq for the three different orders between b12
and pb12, and the bottom line shows the corresponding contour plots of ρp¨, B, pBq. The two
plots on the left-hand side correspond to the situation from above: in the upper plot there
are realizations in the 0-area, namely those that are on the line

 

x P R2
` : x2 “ b12x1

(

,
but then there are also realizations in the 0-area of the lower plot (those that lie below
this line). Hence, (4.8) holds. Since there is no realization in the 0-area of the middle and
right plot in the top line, (4.8) is automatically satisfied if b12 ď pb12. l

In what follows we specify, for the general case, one density of PB with respect to PB `PB˚
that has a representation as in (4.6) and leads to pB as a GMLE of B.

Our partition
 

A0pB,B
˚q, A1{2pB,B

˚q, A1pB,B
˚q
(

of Rd` is based on the following repre-
sentation for the components of X:

Xi “
ł

kPpapiq
bkiXk _ Zi; in particular, Xi ě

ł

kPpapiq
bkiXk, i P V. (4.9) {ch4:proof:dens}
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We begin with the specification of A1{2pB,B
˚q and prove a property needed subsequently to

verify property (B). Have in mind that if bki ą b˚ki for all k P papiq or bki ă b˚ki for all k P papiq
then

 

x P Rd` : xi “
Ž

kPpapiq b
˚
kixk “

Ž

kPpapiq bkixk
(

“ H.

{ch4:lem}
Lemma 4.7. Let B,B˚ P BpDq and define

ΩpB,B˚q :“
d
č

i“1

 

ł

jPAnpiq:bji“b˚ji

bjiZj ą
ł

jPanpiq:bji‰b˚ji

pbji _ b
˚
jiqZj

(

,

A1{2pB,B
˚q :“

d
č

i“1

“ 

x P Rd` : xi “
ł

kPpapiq
bkixk “

ł

kPpapiq
b˚kixk

(

Y
 

x P Rd` : xi ą
ł

kPpapiq
pbki _ b

˚
kiqxk

(‰

.

Then for every F P F ,

PpF X tX P A1{2pB,B
˚quq “ PpF X ΩpB,B˚qq. (4.10) {ch4:lem:eq3}

Proof. First, define for i P V

Ω1,i
1{2 :“

 

Xi “
ł

kPpapiq
bkiXk “

ł

kPpapiq
b˚kiXk

(

, Ω2,i
1{2 :“

 

Xi ą
ł

kPpapiq
pbki _ b

˚
kiqXk

(

,

Ωi :“
 

ł

jPAnpiq:bji“b˚ji

bjiZj ą
ł

jPanpiq:bji‰b˚ji

pbji _ b
˚
jiqZj

(

.

The proof is by induction on the number of nodes of D. For d “ 1 the statement is clear.
Assume now that D “ pV,Eq has d ` 1 nodes and that the assertion holds with respect to
DAGs with at most d nodes. Furthermore, assume without loss of generality that d ` 1 is a
terminal node (i.e., depd ` 1q “ H). Since pX1, . . . , Xdq follows a recursive ML model on the
DAG pt1, . . . , du, E X pt1, . . . , du ˆ t1, . . . , duqq with ML coefficient matrix B “ pbijqdˆd and
B˚ “ pb˚ijqdˆd is the ML coefficient matrix of a recursive ML model on this DAG as well, the
induction hypothesis yields that

PpF X tX P A1{2pB,B
˚quq “ P

`

F X
d`1
č

i“1

`

Ω1,i
1{2 Y Ω2,i

1{2
˘˘

“ P
`

F X
d
č

i“1
Ωi X

`

Ω1,d`1
1{2 Y Ω2,d`1

1{2
˘˘

.

(4.11) {ch4:lem:eq2}

For every i P V we have by (2.3) on Ωi that

Xi “
ł

jPAnpiq
bjiZj “

ł

jPAnpiq
b˚jiZj . (4.12) {ch4:lem:eq1}

Noting from the proof of Theorem 4.2 of [12] that
ł

kPpapd`1q
bk,d`1Xk “

ł

kPpapd`1q
bk,d`1

ł

jPAnpkq
bjkZj “

ł

jPanpd`1q
bj,d`1Zj ,

we obtain from (4.12) on
Şd
i“1 Ωi,

ł

kPpapd`1q
b˚k,d`1Xk “

ł

kPpapd`1q
b˚k,d`1

ł

jPAnpkq
b˚jkZj “

ł

jPanpiq
b˚j,d`1Zj .
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Thus, again by (2.3),

d
č

i“1
Ωi X Ω1,d`1

1{2 “

d
č

i“1
Ωi X

 

ł

jPAnpd`1q
bj,d`1Zj “

ł

jPanpd`1q
bj,d`1Zj “

ł

jPanpd`1q
b˚j,d`1Zj

(

,

d
č

i“1
Ωi X Ω2,d`1

1{2 “

d
č

i“1
Ωi X

 

ł

jPAnpd`1q
bj,d`1Zj ą

ł

jPanpd`1q
pbj,d`1 _ b

˚
j,d`1qZj

(

“

d
č

i“1
Ωi X

 

bj,d`1Zj ą
ł

jPanpd`1q
pbj,d`1 _ b

˚
j,d`1qZj

(

.

From (3.1) we then finally observe that
Şd
i“1 Ωi X

`

Ω1,d`1
1{2 Y Ω2,d`1

1{2
˘

and
Şd
i“1 Ωi X Ωd`1 only

differ by a set of probability zero, and, hence, (4.10) follows from (4.11).

As partition
 

A0pB,B
˚q, A1{2pB,B

˚q, A1pB,B
˚q
(

of Rd` we suggest
!

A0pB,B
˚q “

ď

iPV

“ 

x P Rd` : xi ă
ł

kPpapiq
bkixk

(

Y
 

x P Rd` : xi “
ł

kPpapiq
b˚kixk ą

ł

kPpapiq
bkixk

(‰

,

A1{2pB,B
˚q “

č

iPV

“ 

x P Rd` : xi “
ł

kPpapiq
bkixk “

ł

kPpapiq
b˚kixk

(

Y
 

x P Rd` : xi ą
ł

kPpapiq
pbki _ b

˚
kiqxk

(‰

,

A1pB,B
˚q “ Rd`z

`

A0pB,B
˚q YA1{2pB,B

˚q
˘

)

.

With this partition we then have:
{ch4:dens:general1}

Theorem 4.8. Let B,B˚ P BpDq. Then the function ρ : Rd` Ñ t0, 1{2, 1u

x ÞÑ ρpx, B,B˚q “
1
2 ¨ 1A1{2pB,B˚qpxq ` 1A1pB,B˚qpxq “

$

’

’

&

’

’

%

0, if x P A0pB,B
˚q,

1
2 , if x P A1{2pB,B

˚q,

1, if x P A1pB,B
˚q,

(4.13) {ch4:dens:gen1}

is a density of PB with respect to PB ` PB˚.

Proof. We must verify properties (A)–(C) of (4.5).
(A) Since V is finite, it suffices to show for every i P V ,

PB
` 

x P Rd` : xi ă
ł

kPpapiq
bkixk

(˘

“ P
`

Xi ă
ł

kPpapiq
bkiXk

˘

“ 0, (4.14) {ch4:gmle:eq5}

PB
`

tx P Rd` : xi “
ł

kPpapiq
b˚kixk ą

ł

kPpapiq
bkixk

(˘

“ P
`

Xi “
ł

kPpapiq
b˚kiXk ą

ł

kPpapiq
bkiXk

˘

“ 0.

The former is immediate by (4.9). By the same argument we have for the latter,

0 ď P
`

ł

kPpapiq
bkiXk _ Zi “

ł

kPpapiq
b˚kiXk ą

ł

kPpapiq
bkiXk

˘

“ P
`

Zi “
ł

kPpapiq
b˚kiXk ą

ł

kPpapiq
bkiXk

˘

ď P
`

Zi “
ł

kPpapiq
b˚ki

ł

jPAnpkq
bjkZj

˘

“ 0,

where we have used (2.3) and (3.1) for the last inequality and equality, respectively. Thus we
have verified (A).
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(B) Recall that PB and PB˚ share the same innovation vector when represented by a recursive
ML model. Furthermore, note that the set ΩpB,B˚q from Lemma 4.7 is a subset of

Ş

iPV

 

Xi “
Ž

jPAnpiq:bji“b˚ji
bjiZj

(

. We have ΩpB,B˚q “ ΩpB˚, Bq and hence we obtain from (4.10) for
A P BpRd`q,

PBpAXA1{2pB,B
˚qq “ PptX P Au X ΩpB,B˚qq “ P

` `

ł

jPAnpiq:bji“b˚ji

bjiZj , i P V
˘

P A
(

X ΩpB,B˚q
˘

“ P
` `

ł

jPAnpiq:bji“b˚ji

b˚jiZj , i P V
˘

P A
(

X ΩpB˚, Bq
˘

“ PB˚pAXA1{2pB,B
˚qq.

(C) We observe from the definition of A0pB,B
˚q and A1{2pB,B

˚q that

A1pB,B
˚q “ Rd`z

`

A0pB,B
˚q YA1{2pB,B

˚q
˘

Ď
ď

iPV

“ 

x P Rd` :
ł

kPpapiq
b˚kixk ą xi ě

ł

kPpapiq
bkixk

(

Y
 

x P Rd` : xi “
ł

kPpapiq
bkixk ą

ł

kPpapiq
b˚kixk

(‰

Ď A0pB
˚, Bq.

Since A0pB
˚, Bq is a PB˚-null set by (A), this holds for the subset A1pB,B

˚q as well.

We observe an interesting relation between the density (4.13) for D and corresponding den-
sities for subgraphs of D.

Example 4.9. [Local densities ρi] {ch4:exam:margins}
Consider the DAGs

1 2 3D 1 2D2 2 3D3

Let ρ, ρ2, and ρ3 be the corresponding densities from (4.13). For the ML coefficient matrix B

of a recursive ML model on D, let B2 and B3 be the ML coefficient matrices of recursive ML
models on D2 and D3 with edge weight c12 “ b12 and c23 “ b23, and let starred quantities denote
the same for B˚. We then find for x “ px1, x2, x3q P R3

`,

ρpx, B,B˚q

“
`

ρ2pxPap2q, B2, B
˚
2 q _ ρ3pxPap3q, B3, B

˚
3 q
˘

1p0,8q
`

ρ2pxPap2q, B2, B
˚
2 q ^ ρ3pxPap3q, B3, B

˚
3 q
˘

.

This can be observed from Figure 4.3, where the densities are depicted as functions of x2{x1
and/or x3{x2 for all nine different orders between the ML coefficients in B and B˚.

Conversely, ρ2 and ρ3 can be derived from ρ as follows:

ρ2pxPap2q, B12, B
˚
12q “ min

tyPR`:ρppxPap2q,yq,B,B˚qą0u
ρppxPap2q, yq, B,B

˚q,

ρ3pxPap3q, B23, B
˚
23q “ min

tyPR`:ρppy,xPap3qq,B,B˚qą0u
ρppy,xPap3qq, B,B

˚q,

which we learn from Figure 4.3 again. l

We extend the findings from Example 4.9 to the general case. Furthermore, we show that
the densities ρi are densities of regular conditional distributions.
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Figure 4.3: The densities ρpx, B,B˚q, ρ2pxPap2q, B2, B
˚
2 q, ρ3pxPap3q, B3, B

˚
3 q from Example 4.9 as func-

tions of x2{x1 and/or x3{x2. The area where the density is 0{1
2{1 is coloured in red/blue/green. ch4:ex:fig:mar

{ch4:prop:rhoi}
Proposition 4.10. Let B,B˚ P BpDq and let X “ Z dB,X˚ “ Z dB˚ follow corresponding
recursive ML models on D. For i P V , let ρi be the density given in (4.13) with respect to the
DAG Di “ pPapiq, tpk, iq : k P papiquq as well as Bi and B˚i the ML coefficient matrices of
recursive ML models on Di with edge weights cki “ bki and c˚ki “ b˚ki, respectively.

(a) We have for ρpx, B,B˚q given in (4.13)

ρpx, B,B˚q “
`

ł

iPV

ρipxPapiq, Bi, B
˚
i q
˘

1p0,8q
`

ľ

iPV

ρipxPapiq, Bi, B
˚
i q
˘

. (4.15) {ch4:rhorhoi}

(b) The function ρi can be computed from ρ by

ρipxPapiq, Bi, B
˚
i q “ min

tyPRd
`

:yPapiq“xPapiq,ρpy,B,B˚qą0u
ρpy, B,B˚q,

where we set minyPH ρpy, B,B
˚q “ 0.

(c) The function ρi : Rd` Ñ t0, 1{2, 1u such that xPapiq ÞÑ ρipxPapiq, Bi, B
˚
i q is a density of

P
i|papiq
B with respect to P i|papiq

B `P
i|papiq
B˚ , where P i|papiq

B is a regular conditional distribution
of Xi given Xpapiq and P i|papiq

B˚ one of X˚i given X˚
papiq.
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Proof. Denoting by Ai0pBi, B˚i q, Ai1{2pBi, B
˚
i q, Ai1pBi, B˚i q the sets defining ρip¨, Bi, B˚i q, we have

for the corresponding sets of ρ,

A0pB,B
˚q “

ď

iPV

 

x P Rd` : xPapiq P A
i
0pBi, B

˚
i q
(

,

A1{2pB,B
˚q “

č

iPV

 

x P Rd` : xPapiq P A
i
1{2pBi, B

˚
i q
(

,

A1pB,B
˚q “

č

iPV

 

x P Rd` : xPapiq P A
i
1{2pBi, B

˚
i q YA

i
1pBi, B

˚
i q
(

X
“

Rd`zA1{2pBi, B
˚
i q
‰

.

From this we obtain (a) and (b). Now, to see (c) we reason as follows:

P
i|papiq
B

`

p0, xis | xpapiq
˘

“ FZipxiq1r
Ž

kPpapiq bkixk,8q
pxiq, xPapiq P R

|Papiq|
` ,

is a regular conditional distribution function of Xi given Xpapiq. To see this, use (4.9) and the
independence of the innovations to obtain

P
i|papiq
B

`

p0, xis | xpapiq
˘

“ PpXi ď xi | Xpapiq “ xpapiqq

“ P
`

ł

kPpapiq
bkiXk _ Zi ď xi | Xpapiq “ xpapiq

˘

“ FZipxiq1r
Ž

kPpapiq bkixk,8q
pxiq.

Since X and X˚ share the same innovation vector, we have

P
i|papiq
B˚

`

p0, xis | xpapiq
˘

“ FZipxiq1r
Ž

kPpapiq b
˚
ki
xk,8q

pxiq, xPapiq P R
|Papiq|
` ,

is a regular conditional distribution function of X˚i given X˚
papiq. Figure 4.4 depicts the two condi-

tional distribution functions for the three possible orders between
Ž

kPpapiq bkixk and
Ž

kPpapiq b
˚
kixk.

It then suffices to show for all xpapiq P R
|papiq|
` and y P R`,

P
i|papiq
B

`

p0, ys | xpapiq
˘

“

ż

p0,ys
ρipxPapiq, Bi, B

˚
i q
`

P
i|papiq
B ` P

i|papiq
B˚

˘

pdxi | xpapiqq,

and for this again by definition of ρi (cf. (4.6) and the related discussion) that

P
i|papiq
B

`

p0, ys X
`

0,
ł

kPpapiq
bkixk

˘

| xpapiq
˘

“ 0,

P
i|papiq
B

`

p0, ys X
 

ł

kPpapiq
b˚kixk

(

| xpapiq
˘

“ 0 if
ł

kPpapiq
b˚kixk ą

ł

kPpapiq
bkixk,

P
i|papiq
B

`

p0, ys X
 

ł

kPpapiq
bkixk

(

| xpapiq
˘

“ P
i|papiq
B˚

`

p0, ys X
 

ł

kPpapiq
bkixk

(

| xpapiq
˘

if
ł

kPpapiq
b˚kixk “

ł

kPpapiq
bkixk,

P
i|papiq
B

`

p0, ys X
`

ł

kPpapiq
pbki _ b

˚
kiqxk,8

˘

| xpapiq
˘

“ P
i|papiq
B˚

`

p0, ys X
`

ł

kPpapiq
pbki _ b

˚
kiqxk,8

˘

| xpapiq
˘

.

Since FZi is atom-free, this can be read directly from Figure 4.4.

We now show that pB is indeed a GMLE in the sense of [18]. Note also that the GMLE
is obtained by piecing together individual GMLEs corresponding to conditional distributions
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Figure 4.4: The conditional distribution functions from the proof of Proposition 4.10(c).ch4:fig:lemA4

of any variable given its parents. Thus this is similar to what is obtained in cases where the
distributions have densities with respect to a product measure, as the maximum of the likelihood
function is then obtained by maximizing each conditional likelihood function for the density of
a node given its parents.

{ch4:the:gmle}
Theorem 4.11. Let xptq “

`

x
ptq
1 , . . . , x

ptq
n

˘

for t “ 1, . . . , n be a sample from a recursive ML
model on a DAG D with ML coefficient matrix B P BpDq unknown.

(a) The matrix pB from (4.3) is a GMLE of B.

(b) For every i P V , ppbki, k P papiqq is a GMLE of the ML coefficients pbki, k P papiqq of a
random vector following a recursive ML model on Di “ pPapiq, tpk, iq : k P papiquq with
edge weights cki “ bki.

(c) For every i P V and k P papiq, pbki is the only GMLE of the ML coefficient bki of a random
vector following a recursive ML model on Dki “ ptk, iu, tpk, iquq with edge weight cki “ bki.

Proof. (a) First, recall that pB is indeed a ML coefficient matrix of a recursive ML model on
D. The first condition in the definition of a GMLE in (4.4) is satisfied due to the definition of
ρp¨, pB, pBq since A1{2p pB, pBq “ Rd`. Since the densities ρp¨, pB,Bq and ρp¨, B, pBq have the values 0, 1,
1{2, and A1{2p pB,Bq “ A1{2pB, pBq, to verify the second condition in (4.4), it suffices to show that
there is some realization xpt1q P A0pB, pBq whenever there is some realization xpt2q P A0p pB,Bq;
cf. Example 4.6, in particular (4.8). So let xpt2q P A0p pB,Bq for some t2 P t1, . . . , nu. We find, for
some i P V , from the definition of A0p pB,Bq and the fact that xptqi ě

Ž

kPpapiq
pbkix

ptq
k ,

xpt2q P
 

x P Rd` :
ł

kPpapiq

pbkixk ă xi “
ł

kPpapiq
bkixk

(

.

Hence, xpt2qi “ bkix
pt2q
k for some k P papiq with pbki ă bki. Let now t1 P t1, . . . , nu such that

Źn
s“1 y

psq
ki “ y

pt1q
ki . As pbki “

Źn
s“1 y

psq
ki , we have xpt1qi ă bkix

pt1q
k implying that xpt1q P A0pB, pBq.

The statement in (b) is a consequence of (a), and (c) has already been shown in Example 4.6.
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Figure 4.5 illustrates the DAGs Di in Theorem 4.11(b) or Proposition 4.10.

1 2

34D
b34

b24 b23b14

b12
1

D1

1 2

D2

b12
2

3D3

b23

1 2

34 D4

b14

b34

b24

Figure 4.5: The DAGs Di from Theorem 4.11(b) for a recursive ML model on the DAG D depicted
on the left-hand side with ML coefficient matrix B. The edges are marked with the corresponding ML
coefficients. Note that b12, b14, b34, b24 can be arbitary positive numbers but b24 ě b23b34.ch4:exam:Di

Edge weights cki

We have started with the estimation of B as it is not possible to recover the true edge weights
cki underlying representation (2.1) of X from xp1q, . . . ,xpnq, since different edge weights may
lead to B. But we know what edge weights that are and, obviously, the probability measure PB
induced by X is the same for different edge weights that all result in B. As a consequence, all
edge weights that lead, together with D, to the GMLE pB of B are GMLEs of the true edge
weights of X and its properties are inherited.

{ch4:co:edges}
Corollary 4.12. Let cki for i P V and k P papiq be the edge weights of representation (2.1) of
X and D pB the minimum ML DAG based on pB. We denote by pa pBpiq the parents of i in D pB.
Then every ppcki, i P V, k P papiqq such that

pcki “ pbki if k P pa pBpiq and pcki P p0,pbkis if k P papiqzpa pBpiq

is a GMLE of pcki, i P V, k P papiqq.

5 Learning the structure of a recursive max-linear model {ch4:s6}

In contrast to the assumptions in the previous section, we now assume independent realizations
xp1q, . . . ,xpnq of X following a recursive ML model but the underlying DAG D is unknown. We
know from previous discussions that it is not possible to recover D and the true edge weights
cki but, based on Corollary 4.12, it is possible to identify the ML coefficient matrix B and the
class of all DAGs and edge weights that could have generated X via (2.1). We therefore again
focus on the estimation of B.

Following Algorithm 3.3, it suffices for any pair of distinct i, j P V to decide whether
supppYjiq “ supppXj{Xiq has a positive lower bound, alternatively a finite upper bound, and
if so, to estimate the bound. Recall from Table 3.1 that, if there is such a bound, then it is an
atom of Yji. Since we can expect to observe atoms more than twice for n sufficiently large, we
propose the following estimation method.

Algorithm 5.1. [Find an estimate qB of B from xp1q, . . . ,xpnq] {ch4:alg4}

1. For all i P V “ t1, . . . , du, set qbii “ 1.

2. For all i, j P V with i ‰ j ,
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if #
!

t :
Źn
s“1 y

psq
ji “ y

ptq
ji

)

ě 2, then conclude j P anpiq, set qbji “
Źn
t“1 y

ptq
ji ;

else, set qbji “ 0.

In the second step rather two steps are summarized. The first step is concerned with esti-
mating the ancestors of the nodes, the second with estimating the ML coefficients.

Note that the estimate qB from Algorithm 5.1 is not necessarily a ML coefficient matrix of
a recursive ML model. For example, the property that bji ą 0 if bjkbki ą 0 (see, for example,
Corollary 3.12 of [12]) is not guaranteed. Many modifications of qB are possible, and here we
shall not discuss this in detail. Rather we notice that Algorithm 5.1 outputs, P-almost surely,
the true ML coefficient matrix B if n is sufficiently large. As in the case where the DAG is known
— see Proposition 4.5 — the probability that qbji is equal to the true value bji converges to one
at an exponential rate.

6 Conclusion and outlook {ch4:s7}

We studied the identifiability of the elements of a recursive ML model from the distribution
LpXq of X. The associated DAG and the edge weights are not identifiable, however, the ML
coefficient matrix B. In other words, we can identify representation (2.3) but not (2.1). The
class of all DAGs and edge weights that could have generated X via (2.1) and the distribution
of the innovation vector are identifiable from LpXq. As a consequence, we can recover B, the
class of the DAGs and edge weights, and the innovation distributions from realizations of X.

Parameter estimation and structure learning for recursive ML models seem to be challenging
tasks because assumptions usually made in standard methods are not met. However, in both
cases, B can be estimated by a simple procedure. The key idea of our approach is to consider
the observed ratios between any pair of components, i.e. to perform a transformation on the
realizations. The transformed realizations or rather the distributional properties of the corre-
sponding random variables make it possible to identify, with probability 1, the true B whenever
the number of observations n is sufficiently large. It would be interesting to investigate the re-
lationship between the performance of our procedures and the number n of observations. Here,
one possible question is how many observations are at least necessary to estimate B exactly;
see, Example 4.3. In addition it would be interesting to study estimation of the DAG structure
for moderate sample sizes, where exact estimation is not guaranteed.

We emphasize again that, although our estimates are derived under the assumption that
the distribution of the innovation vector Z is fixed, the estimates do not depend on what
this distribution is and would therefore also be valid in the situation where the innovations
are independent with unkown distributions that are atom-free and have support equal to R`.
Algorithm 3.4 provides a recursive procedure to obtain the distribution functions FZi from B

and the marginal distribution functions FXi of Xi. Estimating B by pB and the distributions
FXi , for example, by their empirical versions, we can apply this procedure to find estimators of
the distributions FZi although it will formally violate the assumption of atom-freeness and thus
it is both more efficient and formally correct to estimate these parametrically, or under suitable
monotonicity restrictions.

An important goal for future work is to apply the procedures to real-world data. However,
it is unreasonable to expect any non-simulated data to follow a recursive ML model exactly
and the model should then be modified by adding appropriate noise terms. In particular we
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should not expect that we observe a minimal observed ratio more than twice, as we exploit in
Algorithm 5.1. It seems to be more reasonable to expect values close to each other. We therefore
want to develop methods based on accumulation points.
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