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Abstract—Objective: Modeling of human motor intention
plays an essential role in predictively controlling a robotic
system in human-robot interaction tasks. In most machine
learning techniques, human motor behavior is modeled as
a generic stochastic process. However, the integration of
a priori knowledge about underlying system structures can
provide insights on otherwise unobservable intrinsic states
that yield superior prediction performance and increased
generalization capabilities. Methods: We present a novel
method for modeling human motor behavior that explicitly
includes a neuroscientifically supported model of human
motor control, in which the dynamics of the human arm are
modeled by a mechanical impedance that tracks a latent
desired trajectory. We adopt a Bayesian setting by defining
Gaussian process (GP) priors for the impedance elements
and the latent desired trajectory. This enables exploitation
of a priori human arm impedance knowledge for regression
of interaction forces through inference of a latent desired
human trajectory. Results: The method is validated using
simulated data, with particular focus on effects of GP prior
parameterization and intention estimation capabilities.
Superior prediction performance is shown with respect to
a naive GP prior. An experiment with human participants
evaluates generalization capabilities and effects of training
data sparsity. Conclusion: We derive the correlations of
an impedance-based GP model of human motor behavior
that exploits a priori knowledge. Significance: The model
effectively predicts interaction forces by inferring a latent
desired human trajectory in previously observed as well as
unobserved regions of the input space.

Index Terms— Bayesian Modeling, Gaussian Processes,
Human Motor Control, Human Motor Intention, Human
Robot Interaction, Impedance, Kernel Structure

I. INTRODUCTION

C
URRENT trends in robotics research are enabling direct

robotic assistance through physical and non-physical

human-robot interaction (HRI) in medical, industrial, and

domestic domains. In HRI, knowledge of the human motor
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intention is key to guarantee safety and comfort of the human.

Moreover, it has significant impact on interaction performance.

In the medical domain, the efficiency of physical assistance

and rehabilitation greatly profits from a reliable prediction of

the human motor intention [1]. In active exoskeleton systems,

impedance controllers can exploit the additional information

to provide anticipatory control signals [2]. In general HRI,

imitation learning [3] and variable impedance control [4]

are possible applications. However, due to the complexity of

human motor behavior, i.a. caused by the redundancy of the

musculoskeletal system [5] and neural noise [6], the estimation

of human motor intention remains a significant challenge.

In human motor behavior modeling for HRI applications,

sensory-motor control is generally treated as a “black box”,

for which inputs (e.g., task-related parameters and human

body configurations) and outputs (e.g., interaction forces) are

deterministically or stochastically mapped onto a model with

no additional constraints (e.g., [7]). However, the integration

of a priori knowledge about underlying behavioral structures

can provide insights on otherwise unobservable intrinsic states,

such as a goal point or a desired arm trajectory. Moreover, it

can lead to superior prediction performance and generalization

capabilities, as it guarantees that all correlations are inherently

consistent with the structural constraints. Nonetheless, the

exploitation of a priori knowledge in human motor behavior

modeling remains an open issue with great potential.

In this article, we present a novel method for modeling

human motor behavior in physical and non-physical HRI that

explicitly incorporates a neuroscientifically supported model

of human motor control. Without loss of generality, particular

focus is placed on the derivation of a model for physical HRI,

as it represents the more challenging problem. Motivated by

relevance for envisaged applications in HRI, we consider a

human arm motion of a complex trajectory and approximate

the lower dimensional manifolds of human motor behavior

by an impedance control scheme that counteracts deviations

from a latent desired trajectory. We adopt a Bayesian setting

by assuming Gaussian process (GP) priors for the impedance

components and the latent desired trajectory. This enables the

exploitation of a priori human arm impedance knowledge for

the regression of human motor behavior. Moreover, it enables

the estimation of human motor intention in the form of a

desired trajectory with confidence levels. In order to facilitate
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proper parameterization of the GP priors, an overview of

estimated human arm impedance characteristics is presented.

The model is validated in simulation. The direct control over

simulated intrinsic states enables both validation of intention

estimation capabilities as well as assessment of influences of

GP prior parameterization. Superior prediction performance is

shown with respect to a naive GP prior. An experiment with

human participants is conducted to analyze effects of training

data sparsity and demonstrate generalization capabilities.

A. Related work

In current HRI research, human motor behavior is modeled

in different ways. The authors of [8] propose a method

for short-term motor behavior predictions based on observed

forces and respective derivatives. Others transfer the minimum

jerk principle [9] to HRI scenarios (e.g., [10] and [11]) for

both short- and long-term predictions, depending on the type

of the task. For tasks with increased complexity, the minimum

jerk method is outperformed by a combination of judiciously

defined polynomials that allow for more flexibility in the

approximation of the dynamics [12]. In contrast to dynamics

level methods, the programming by demonstration paradigm

is applied for the derivation of long-term motor behavior

predictions at task level. Demonstrations of task-specific HRI

behavior are acquired through direct physical interaction [7] or

teleoperation [13] and are encoded into a probabilistic model

that captures the joint statistics of the observed trajectories

and forces [14]. These models are naive in the sense that

they do not include any a priori knowledge on the system.

However, the inclusion of such knowledge can provide insights

on unobservable intrinsic states and lead to superior prediction

performance and generalization capabilities. GP-based models

represent a powerful, non-parametric approach that allows for

the integration of a priori knowledge and only requires the

definition of second-order statistics between function values to

efficiently approximate continuous functions from data [15].

They are well-suited for human motor behavior modeling, due

to their desirable smoothness properties and their ability to

model non-linear correlations. Thus, in this work, we include

a model of human motor control, motivated by its relevance

for envisaged applications in HRI, in a GP-based model.

The benefits of GPs for system identification are exploited

for example in [16]–[21]. In [17], a GP is used to approximate

a non-linear state vector field. In [18], an additional GP is used

to model the non-linear mapping from the observation space

to a latent state space. The resulting model is extended in [19],

where human motion is modeled by explicitly incorporating an

intention function into the latent state space transition function,

which is modeled by a set of GPs. Second order interaction

dynamics are explored in [20], where observed trajectories are

considered to be driven by latent forces. In [21], a dynamic

lower-dimensional representation of finger motion is obtained

by decomposing variations in reach-and-grasp motions and

modeling respective primitives with a multivariate GP model.

GPs define input space correlations and derive predictions

analytically by applying Bayes’ rule, which yields confidence

bounds of the results. These bounds are particularly interesting

for control design, as they enable control adaptation according

to the prediction confidence [22]. The performance of GPs

depends on an appropriate kernel structure. If the structure

of the correlation function is not defined in accordance with

the real function, the convergence rate of the former towards

the latter may increase exponentially. This leads to a decrease

of the generalization capabilities in previously unobserved

regions of the input space. The reliability and the validity

of the prediction covariance as an indicator of the reliability

decreases with increasing distance to the training data [23].

This dependency can be overcome by inclusion of a priori

knowledge in the definition of the GP prior structure.

Human motor behavior is controlled by the central nervous

system (CNS), which instantiates desired motor behavior

through neural signals that regulate muscle activations at the

limb joints. A theory of sensory-motor control proposes that

these motor commands are appropriately scaled by an internal

model [24], which is learned from experience and inverses the

interaction dynamics. However, this feedforward component

is subject to errors due to unexpected external forces [25],

incomplete or incorrect internal models [26], and inherent

neural noise [6]. A body of evidence suggests that, in order to

counteract the resulting deviations, a combination of peripheral

neuromuscular properties of the limb and motor commands

from the CNS generate a feedback component that is directed

towards the desired kinematic state and well-described by

a mechanical impedance [27]. It consists of the impedance

components inertia, damping, and stiffness and represents the

effects of co-contraction of antagonistic muscles, involuntary

reflexes, and intrinsic viscoelastic properties of the limb [28].

Thus, in this work, we assume GP priors for the impedance

components and the desired trajectory. A preliminary work has

been presented in [29]. In this article, we provide advanced

theory by generalization to non-physical HRI. We present an

overview of estimated human arm impedance characteristics

and discuss implications for the GP prior parameterization.

In order to consider the highly task-specific nature of human

motor behavior in realistic HRI, we complement a validation

of a time-dependent desired trajectory. An experiment with

human participants is performed to assess the performance

with real data. Additionally, the generalization capabilities of

the model and the effects of training data sparsity are analyzed.

The remainder of this article is structured as follows:

the considered problem of human motor behavior regression

via human motor intention inference is derived in Section II.

An introduction to GPs is presented in Section III and the

GP-based model is defined in Section IV. An overview of

estimated impedance characteristics and implications for GP

prior parameterization are presented in Section V. The model

is validated with simulated data in Section VI and evaluated

with experimental data in Section VII. Section VIII contains

discussions and conclusions are summarized in Section IX.

Notation: by convention, bold characters denote vectors and

capital letters are used for matrices. The expression N (x|µ,Σ)
describes a Gaussian random variable defined over x with

mean µ and covariance Σ. E
[

x
]

and Var
[

x
]

are expected

value and variance of x, respectively. The symbol N+ denotes

a natural positive integer.
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II. PROBLEM SETTING

In this section, we derive a human motor behavior model for

physical HRI. We assume the robot directly assists the human,

as he/she tightly grasps the robot end-effector and executes a

desired movement, e.g., for upper body rehabilitation [30].

In such a task, safe and efficient assistance requires reliable

estimates of interaction forces and desired movement. Thus,

we derive a model that provides these estimates, using only

robot end-effector force/torque and position measurements.

Additionally, we describe adjustments for non-physical HRI.

The rigid body dynamics of the human arm, when tightly

grasping the robot end-effector, is given by

τ hu + τ int = Mq(q)q̈ + C(q, q̇)q̇ + g(q) , (1)

where q ∈ R
7 is the 7 degree of freedom (DoF) configuration

of the arm in joint space, Mq(q) ∈ R
7×7 is the inertia matrix,

C(q, q̇)q̇ ∈ R
7 represents the Coriolis and centrifugal forces,

g(q) ∈ R
7 is the gravity vector, τ hu ∈ R

7 are the human

joint torques and τ int ∈ R
7 are the interaction torques [25].

The interaction torques τ int = −J(q)Tuint, where uint ∈ R
6

are the force/torque measurements and J(q) is the Jacobian.

The joint torques τhu consist of a feedforward term τFF,

a feedback term τFB, and a neural noise term εN,q , i.e.,

τ hu = τFF + τFB + εN,q , (2)

where εN,q represents the effects of joint torque noise, which

depends on the muscle activation level [6], [31]. According to

a theory of sensory-motor control, the feedforward term τFF

contains inversed interaction dynamics of the musculoskeletal

system, which are calculated with internal models previously

learned by the CNS [24]. It specifies the joint torques that are

necessary to attain the desired trajectory which we assume

is a twice differentiable (with respect to time), well-defined

function qd(θ) : R
n → R

7. As realistic human motor behavior

in HRI is highly task-specific, the parameters θ ∈ R
n are

given by suitable, task-specific input parameters such as the

arm configuration q, the angular velocities q̇, or the time t.
In order to provide a comprehensive formulation, the model

is first derived for a general desired trajectory qd(θ) and later

analyzed for different parameterizations:

τFF = M̂q(qd(θ))q̈d(θ) + Ĉ(qd(θ), q̇d(θ))q̇d(θ)

+ ĝ(qd(θ))− τ̂ int(qd(θ), q̇d(θ), q̈d(θ)) , (3)

where the variables τ̂ int(qd(θ), q̇d(θ), q̈d(θ)), M̂q(qd(θ)),
Ĉ(qd(θ), q̇d(θ)), and ĝ(qd(θ)) are the estimated counterparts

of the respective variables in (1) [32]. According to a large

body of evidence, the feedback term τFB consists of restoring

torques towards the desired trajectory qd(θ), which contain

the effects of the impedance components: joint damping and

joint stiffness. Although both components possess non-linear

characteristics [5], the resulting feedback behavior can be

described by a linear approximation [27]:

τFB = Dq(q, q̇, θ)ėq(θ) +Kq(q, q̇, θ)eq(θ) , (4)

where the joint error eq(θ) = qd(θ)− q and joint damping

Dq(q, q̇, θ) ∈ R
7×7 and joint stiffness Kq(q, q̇, θ) ∈ R

7×7

depend on the arm configuration q, the angular velocities q̇,

and the task-specific input parameters θ. The former two

dependencies are due to the length- and velocity-tension

relationships of muscle fibers [25] and the latter dependency

is a result of the influence of the muscle activation [32].

Substituting (2), (3), and (4) into (1) yields

−τ int = Mq(q)ëq(θ) + C(q, q̇)ėq(θ) + εdyn,q(q, q̇, q̈, θ)

− τ̂ int(qd(θ), q̇d(θ), q̈d(θ)) +Dq(q, q̇, θ)ėq(θ)

+Kq(q, q̇, θ)eq(θ) + εN,q , (5)

where εdyn,q(q, q̇, q̈, θ) are the discrepancies of the inertia,

Coriolis, centrifugal, and gravity terms between (1) and (3).

The elements of C(q, q̇)q̇ are O(q̇2). As its contributions are

small compared to those of the other terms, we include it in

εdyn,q(q, q̇, q̈, θ). Furthermore, in order to consider adaptation

of the estimated interaction torques τ̂ int(qd(θ), q̇d(θ), q̈d(θ))
in response to unpredictable environmental dynamics during

task execution, we replace the purely feedforward term in (5)

by τ̂ int(q, q̇, q̈, θ), which depends on the kinematics q, q̇, q̈
and the task-specific input parameters θ. This yields

−τ int = Mq(q)ëq(θ)− τ̂ int(q, q̇, q̈, θ) +Dq(q, q̇, θ)ėq(θ)

+Kq(q, q̇, θ)eq(θ) + εdyn,q(q, q̇, q̈, θ) + εN,q . (6)

Motivated by transferability to envisaged applications in HRI,

we express the dynamics of the hand in Cartesian space:

uint(ξ) = uimp(ξ) + ûint,ε(ξ) + εN , (7)

uimp(ξ) = M(x)ë(θ) +D(ξ)ė(θ) +K(ξ)e(θ) , (8)

where x ∈ R
6 is the hand configuration in Cartesian space,

defined by the forward kinematics mapping L(q) : R7 → R
6.

The error e(θ) = xd(θ)− x, in which xd(θ) is the desired

trajectory, and ûint,ε(ξ) = ûint(ξ) + εdyn(ξ). Additionally,

ξ = [xTẋTθT]T, ξ = [xTẋTẍTθT]T, εN = J(q)−TεN,q, and

M(x) = J(q)−TMq(q)J(q)
−1 ,

D(ξ) = J(q)−TDq(q, q̇, θ)J(q)
−1 ,

K(ξ) = J(q)−TKq(q, q̇, θ)J(q)
−1 ,

ûint(ξ) = −J(q)−T τ̂ int(q, q̇, q̈, θ) ,

εdyn(ξ) = J(q)−T εdyn,q(q, q̇, q̈, θ) ,

In non-physical HRI, there are no interaction torques τ int.

Thus, τ int = 0 in (1), τ̂ int(qd(θ), q̇d(θ), q̈d(θ)) = 0 in (3)

and (5), and τ̂ int(q, q̇, q̈, θ) = 0 in (6). In Cartesian space,

ûint(ξ) = uint(ξ) = 0. Inserting these two correlations in (7)

yields a variation of the model for non-physical HRI:

0 = uimp(ξ) + εdyn(ξ) + εN . (9)

As there are no interaction forces uint(ξ), this variation only

requires position measurements. In this work, without loss of

generality, particular focus is placed on the derivation of a

human motor behavior model for physical HRI. As (9) is a

simplification of (7), the model includes a simplified variation

that applies to non-physical HRI. The problem considered

in this work consists of the estimation of the interaction

forces uint(ξ), based on the interaction dynamics in (7) and

the inference of the human motor intention, represented by the

desired trajectory xd(θ). This is to be achieved by means of

regression analysis, given the input-output pairs {ξ,uint(ξ)}.
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III. GAUSSIAN PROCESS PRIORS

A GP f(z) : Rn → R at input points z ∈ R
n is a statistical

distribution over function values, wherein any finite collection

of samples {f(z1) · · · f(zh)} with number h ∈ N
+ forms

a multivariate Gaussian random variable. A GP is compactly

formulated as f(z) ∼ GP
(

m(z), k(z, z′)
)

and fully defined

by its mean m(z) = E
[

f(z)
]

and covariance function

k(z, z′) = Cov
[

∆f(z),∆f(z′)
]

= E
[

(f(z)−m(z))(f(z′)−m(z′))T)
]

,

which represents the correlation of two input points (z, z′).
GPs possess the desirable properties of multivariate normal

distributions, which enable the computation of conditional

distributions. The joint prior distribution P
(

y, y∗|Z, z∗

)

of a

given training set of noisy observations y = {yj}hj=1 at inputs

Z = {zj}
h
j=1 and predictive output y∗ at test input z∗ is

P
(

y, y∗|Z, z∗

)

=

N

([

y

y∗

] [

m(Z)
m(z∗)

]

,

[

K + σ2
nI k∗

kT

∗ k∗∗ + σ2
n

])

,

where K = k(Z,Z), k∗ = k(z∗, Z), and k∗∗ = k(z∗, z∗)
represent the covariances of the training inputs Z and the

test input z∗. The matrix I is the identity matrix and σ2
n

is the observation noise variance. By means of multivariate

Gaussian conditioning, i.e., application of Bayes’ rule, the

conditional (predictive) posterior P
(

y∗|y, Z, z∗

)

is

P
(

y∗|y, Z, z∗

)

= N (y∗|m(z∗) + k
T

∗K
−1
σn

(y −m(Z)),

k∗∗ + σ2
n − kT

∗K
−1
σn

k∗) ,

where Kσn
= K + σ2

nI . The computational load is governed

by matrix inversion (K + σ2
nI)

−1 with complexity O(h3).

IV. BAYESIAN IMPEDANCE MODEL

In this section, we derive a multi-layered Bayesian model,

which is presented schematically in Fig. 1. The lowest layer

contains the latent variables M(x), D(ξ), K(ξ), and xd(θ).
By assuming prior distributions on these latent variables, we

construct a compound kernel for the impedance force uimp(ξ).
It forms a part of the middle layer, which additionally contains

the neural noise variable εN and the latent variable ûint,ε(ξ).
By again assuming prior distributions, we combine all of the

middle layer components to construct a compound kernel for

the interaction force uint(ξ). It constitutes the top layer of our

model and contains components that account for predictable

(ûint,ε(ξ)) and unpredictable (uimp(ξ)) interaction dynamics.

Due to dependency on ξ, both components can be adapted

during task execution. Given a training set {uint,j(ξ), ξj}
h
j=1,

the model provides predictions uint(ξ∗) at test input ξ∗ and

infers the desired trajectory xd(θ∗). The incorporation of the

latter requires that the desired behavior can be described by

a twice differentiable, well-defined function qd(θ), which is

defined by suitable, task-specific input parameters θ.

In this work, we approximate the variables M(x), D(ξ),
and K(ξ) in (8) by diagonal matrices. Consequently,

uint,i(ξ) = uimp,i(ξ) + ûint,ε,i(ξ) + εN , (10)

uimp,i(ξ) = miëi(θ) + di(ξ)ėi(θ) + ki(ξ)ei(θ) , (11)

uint(ξ)

uimp(ξ) + ûint,ε(ξ) + εN

M(x)ë(θ) + D(ξ)ė(θ) + K(ξ)e(θ)

Test

input ξ
∗

(with θ∗)

Training set {uint,j(ξ), ξj}
h
j=1

uint(ξ∗)

Predictive

outputs

xd(θ∗)

(7)

(8)

Fig. 1. Schematic block diagram of the Bayesian model. The transitions
between the top, middle, and bottom layers correspond to (7) and (8).

where ei(θ) = xd,i(θ)− xi, uint,i(ξ), uimp,i(ξ), ûint,ε,i(ξ),
di(ξ), ki(ξ), xd,i(θ), and xi are one-dimensional functions,

mi is a one-dimensional variable, and εN ∼ N
(

εN 0, σ2
N

)

.

Veridical biomechanical modeling requires inclusion of the

non-diagonal elements of variables M(x), D(ξ), and K(ξ).
Although this is in principle possible in the context of the

Bayesian impedance model, we approximate these variables

by diagonal matrices. This approximation is motivated by

multiple reasons: 1) Of the few quantitative Cartesian space

results of human arm impedance estimation during movement,

most are one-dimensional [33], [34] or assume decoupled arm

dynamics [35]–[37]. 2) Non-diagonal elements would require

convolved multi-output GPs with output correlations, which

possess significantly higher computational complexity [38].

3) These output correlations would significantly decrease the

comprehensibility of the derivations and the analyses of effects

of GP prior parameterization. For completeness, we discuss

adjustments for multi-dimensional treatment in Section VIII.

A. Impedance model priors

For statistical analysis of (10), we assume that variable mi

and functionals di(ξ), ki(ξ), xd,i(θ), and ûint,ε,i(ξ) are all

statistically independent and possess prior distributions

mi ∼ N
(

mi µm,i, σ
2
m,i

)

,

di(ξ) ∼ GP
(

µd,i, kd(ξ, ξ
′)
)

,

ki(ξ) ∼ GP
(

µk,i, kk(ξ, ξ
′)
)

,

xd,i(θ) ∼ GP
(

µxd,i, kxd
(θ, θ′)

)

,

ûint,ε,i(ξ) ∼ GP
(

0, kînt(ξ, ξ
′
)
)

, (12)

where µm,i, µd,i, µk,i, and µxd,i are the respective expected

mean values (EMVs) and σ2
m,i is the inertia signal variance.

The priors are defined by the covariance functions kd(ξ, ξ
′),

kk(ξ, ξ
′), kxd

(θ, θ′), and kînt(ξ, ξ
′
), of which kxd

(θ, θ′) is

twice differentiable with respect to the task-specific input

parameters θ. Due to the statistical independence, positive

correlation of damping di(ξ) and stiffness ki(ξ) [32] is not

directly included in the priors. However, it can be partially

incorporated by suitable definition of the EMVs µd,i and µk,i.

Positivity of damping di(ξ) and stiffness ki(ξ) can be strictly

ensured by means of warped GP priors [39], in which the

priors are transformed to log(di(ξ)) ∼ GP(log µd,i, kd(ξ, ξ
′))

and log(ki(ξ)) ∼ GP(logµk,i, kk(ξ, ξ
′)). Application of these

warped GP priors would require all kernel derivations to

consider the log formulations and the respective derivatives.
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For better comprehensibility of the derivations, we instead

assume that the respective signal variances only assign high

probabilities to regions in the positive domain.

B. Impedance, PD, and interaction force kernels

Given (12), the terms di(ξ)ėi(θ) and ki(ξ)ei(θ) in (11) are

products of statistically independent Gaussian distributions.

Consequently, the impedance force uimp,i(ξ) is a combination

of both Gaussian and chi-squared distributions and possesses

non-central chi-squared terms. Nonetheless, the computation

of its expected value and covariance function enables its

approximation as a GP. The corresponding loss of accuracy

increases with the variances of the priors. Thus, by considering

low variances due to proper parameterization, we are able to

approximate the impedance force uimp,i(ξ) as a GP:

uimp,i(ξ) ∼ GP
(

E
[

uimp,i(ξ)
]

, kimp(ξ, ξ
′
)
)

. (13)

From (11) and (12), the expected value is

E
[

uimp,i(ξ)
]

= µm,i(µ̈xd,i − ẍi) + µd,i(µ̇xd,i − ẋi)

+ µk,i(µxd,i − xi) . (14)

The expression for the impedance kernel

kimp(ξ, ξ
′
) = Cov

[

miëi(θ) + di(ξ)ėi(θ) + ki(ξ)ei(θ),

miëi(θ
′) + di(ξ

′)ėi(θ
′) + ki(ξ

′)ei(θ
′)
]

(15)

is more involved due to the correlations with the desired

trajectory xd,i(θ). As differentiation is a linear operator, the

derivatives ẋd,i(θ) and ẍd,i(θ) are also GPs that possess time

derivative covariance functions [17]. Based on the covariances

of sums and products [40], the impedance kernel kimp(ξ, ξ
′
) is

the sum of the covariances of all product term combinations.

For simplicity, we first consider only the terms that include

damping di(ξ) and stiffness ki(ξ) in (18), which corresponds

to proportional-derivative (PD) control. The PD kernel

kPD(ξ, ξ
′) = Cov[ke,i(ξ), ke,i(ξ

′)] + Cov[ke,i(ξ), dė,i(ξ
′)]

+ Cov[dė,i(ξ), ke,i(ξ
′)] + Cov[dė,i(ξ), dė,i(ξ

′)] , (16)

wherein ke,i(ξ) = ki(ξ)ei(θ) and dė,i(ξ) = di(ξ)ėi(θ).
For brevity, notations kxd

(θ, θ′), kk(ξ, ξ
′), and kd(ξ, ξ

′) are

abbreviated by kxd
, kk, and kd in the remainder of the kernel

derivation process. Inclusion of priors (12) in (16) yields

kPD(ξ, ξ
′) = µk,iµd,i

(∂kxd

∂t′
+

∂kxd

∂t

)

+ (µ2
d,i + kd)

∂2kxd

∂t∂t′

+ (µ2
k,i + kk)kxd

+ (µ̇xd,i − ẋi)(µ̇xd,i − ẋ′
i)kd

+ (µxd,i − xi)(µxd,i − x′
i)kk , (17)

where t and t′ belong to observations θ and θ
′
, respectively.

Considering the inertia mi yields the impedance kernel

kimp(ξ, ξ
′
) = kPD(ξ, ξ

′) + (µ̈xd,i − ẍi)(µ̈xd,i − ẍ′
i)σ

2
m,i

+ (µ2
m,i + σ2

m,i)
∂4kxd

∂t2∂t′2
+ µd,iµm,i

( ∂3kxd

∂t′2∂t
+

∂3kxd

∂t2∂t′

)

+ µk,iµm,i

(∂2kxd

∂t′2
+

∂2kxd

∂t2

)

. (18)

If θ = t, calculation of the time derivatives is straightforward.

For alternative parameterizations, the time derivatives are

∂kxd

∂t′
=

(∂kxd

∂θ′

)T ∂θ′

∂t
,

∂2kxd

∂t′2
=

(∂θ′

∂t

)T ∂2kxd

∂θ′2

∂θ′

∂t
+
(∂kxd

∂θ′

)T ∂2θ′

∂t2
.

Proposition 1: Assume the kernels kd(ξ, ξ
′), kk(ξ, ξ

′), and

kxd
(θ, θ′) in (12) are symmetric and positive semi-definite and

the desired trajectory kernel kxd
(θ, θ′) is a twice differentiable

function (with respect to the task-specific input parameters θ).

Then, the PD kernel kPD(ξ, ξ
′) in (17) and the impedance

kernel kimp(ξ, ξ
′
) in (18) are valid kernels.

Proof: A symmetric, positive semi-definite function k(x, y)
is a valid kernel function [41]. Thus, given the assumptions in

the proposition, the kernels kd(ξ, ξ
′), kk(ξ, ξ

′), and kxd
(θ, θ′)

are valid kernels. Given the desired trajectory kernel kxd
(θ, θ′)

is a twice differentiable function, the PD kernel kPD(ξ, ξ
′) and

the impedance kernel kimp(ξ, ξ
′
) are defined by the covariance

functions (17) and (18), respectively. If a compound kernel is

defined by affine transformations of valid kernels, it is also a

valid kernel [42]. As the covariance functions (17) and (18) are

only defined by affine transformations of the kernels kd(ξ, ξ
′),

kk(ξ, ξ
′), and kxd

(θ, θ′), the PD kernel kPD(ξ, ξ
′) and the

impedance kernel kimp(ξ, ξ
′
) are valid kernels. �

With (10) and (12), the a priori statistical characterization

of the interaction force uint,i(ξ) is given by

uint,i(ξ) ∼ GP
(

E
[

uimp,i(ξ)
]

, kint(ξ, ξ
′
)
)

, (19)

where E[uint,i(ξ)] = E[uimp,i(ξ)], because the EMV of prior

ûint,ε,i(ξ) in (12) is zero, and the interaction force kernel

kint(ξ, ξ
′
) = kimp(ξ, ξ

′
) + kînt(ξ, ξ

′
) + σ2

N . (20)

Proper parameterization of prior xd,i(θ) is key, as it effects

all impedance terms. Given a priori task-specific information,

its EMV µxd,i may be defined as a function of time or other

task-specific input parameters. As deviations from the desired

trajectory xd,i(θ) are compensated through impedance control,

the overall mean of the current state xi approximates the

desired trajectory state xd,i(θ), i.e., the steady state, in which

the human is at “equilibrium”. In HRI scenarios, where a priori

task-specific information is not available, this relationship can

be incorporated by defining the desired trajectory EMV µxd,i

by the current state xi. With this definition, the prior

xd,i(θ) ∼ GP
(

xi, kxd
(θ, θ′)

)

. (21)

Inserting (21) in (14) results in E
[

uimp,i(ξ)
]

= 0, which,

when inserted in (19), results in E
[

uint,i(ξ)
]

= 0.

The derived model includes a non-physical HRI variation

that corresponds to (9). For this variation, the priors in (12) do

not include the estimated interaction force ûint,ε,i(ξ) and the

dynamic discrepancy εdyn ∼ N
(

εdyn 0, σ2
dyn

)

. Additionally,

the interaction force kernel kint(ξ, ξ
′
) in (19) is replaced by

kint(ξ, ξ
′
) = kimp(ξ, ξ

′
) + σ2

dyn + σ2
N . (22)

Apart from these differences, all derivations in this section,

including (17) and (18), are identical and equally valid.
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Fig. 2. Covariance functions with θ = t. (a) Impedance, PD, and
SE kernel with hyperparameters {0.1, (0.2)}xd

, {0.1, (0.1 0.1)}d,
{0.1, (0.1 0.1)}k, and σ2

m = 0.1. The EMVs are µm = 1 kg,
µd = 10 Ns/m, µk = 100 Nm, and µxd

= 0 m. (b) Impedance
kernel with identical parameters, apart from different EMVs µd and µk.

For illustrative purposes, from here on, let all kernels in (12)

be defined as Squared Exponential (SE) kernels

kSE(z, z
′) = σ2

f,i exp{−(z − z′)TΛi
−1(z − z′) } (23)

with hyperparameters {σ2
f,i,Λi}SE, where Λi contains the

length scales of the input dimensions l1,i · · · ln,i and σ2
f,i is

the signal variance. The SE kernel is the most common kernel

due to its desirable smoothness and convergence properties.

As it is both infinitely differentiable and a valid kernel [23],

it satisfies all of the prerequisites listed in Proposition 1.

In order to illustrate the effects of the terms comprising time

derivatives of the desired trajectory, Fig. 2 shows covariance

functions of a SE, a PD, and an impedance kernel for a

time-dependent desired trajectory, i.e., θ = t. The PD kernel

considers the derivative of the SE kernel as an additive term

that governs its profile. Similarly, the profile of the impedance

kernel is governed by the inertia term. The effects of the

stiffness, damping, and inertia terms on the profiles of the

respective kernels are significantly influenced by their EMVs.

This dependency is illustrated in Fig. 2b, which shows several

impedance covariance functions defined by different EMVs.

As the stiffness term is governed by a SE kernel, it solely adds

positive values with unnormalized Gaussian shape. Therefore,

the higher the stiffness EMV, the higher the overall correlation.

In contrast, increasing damping or inertia EMVs emphasizes

the profiles of the first or second derivative, respectively.

In order to illustrate these effects for a model with a desired

trajectory that is not defined by time, Fig. 3 shows covariance

functions of a PD kernel for a configuration-dependent desired

trajectory, i.e., θ = x. When the input point velocity is zero,

the damping term is nullified, as the derivative of the error

is also zero. Thus, the correlation is limited to the SE kernel

of the stiffness term, as illustrated in Fig. 3c. When the input

point velocity is not zero, damping term correlations arise.

Figs. 3a, 3b, and 3d, 3e show both negative and positive values

of ẋ, which determine the slope of the correlation around

x− x′ = 0, as the derivative of the error is proportional to ẋ.

C. Conditional distributions of latent functionals

Due to multivariate normality, the conditional distributions

are also Gaussian distributions and computed in closed form.

In this work and in HRI in general, the human motor intention,

i.e., the desired trajectory xd,i(θ) represents especially relevant

information. From (12) and (19), the a priori joint distribution

P
(

uint,i(Ξ), xd,i(θ∗)|Ξ, θ∗

)

of observations of the interaction

force uint,i(Ξ) = {uint,i,j(ξ)}hj=1 at inputs Ξ = {ξj}
h
j=1 and

the desired trajectory xd,i(θ∗) at test input θ∗ yields

P
(

uint,i(Ξ), xd,i(θ∗)|Ξ, θ∗

)

=

N

([

uint,i(Ξ)
xd,i(θ∗)

]∣

∣

∣

∣

[

E
[

uint,i(Ξ)
]

µxd,i

]

,

[

Kint Cint

CT

int k∗∗xd

])

, (24)

where Kint = kint(Ξ,Ξ
′
), Cint = Cov[uint,i(Ξ), xd,i(θ∗)],

and k∗∗xd
= kxd

(θ∗, θ∗). The covariance function is defined as

Cint = µm,i

∂2kxd
(Θ, θ∗)

∂t2
+ µd,i

∂kxd
(Θ, θ∗)

∂t
+ µk,ikxd

(Θ, θ∗) (25)

with the task-specific input parameter inputs Θ = {θj}
h
j=1.

Application of Bayes’ rule yields the conditional posterior

P
(

xd,i(θ∗)|uint,i(Ξ),Ξ, θ∗

)

=

N (xd,i(θ∗)|µxd,i + CT

intK
−1
int (uint,i(Ξ)− E

[

uint,i(Ξ)
]

),

k∗∗xd
− CT

intK
−1
intCint) . (26)

The computation of conditional posteriors of alternative latent

functionals is performed analogously. In the non-physical HRI

variation, E
[

uint,i(Ξ)
]

= uint,i(Ξ) = 0 and Kint is replaced

by Kint = kint(Ξ,Ξ
′
) with kernel kint(ξ, ξ

′
) of (22).

D. Pseudocode application instructions

The following pseudocode shows the general algorithm

structure of the impedance-based GP model for physical HRI.

Algorithm 1 Impedance-based GP model for physical HRI

Given: Suitable, task-specific input parameters θ

Inputs: Training set {uint,i,j(ξ), ξj}
h
j=1, test input ξ∗

Outputs: Predictive outputs uint,i(ξ∗), xd,i(θ∗)

1: Define naive GP prior uint,naive,i(ξ) ∼ GP(0, kSE(ξ, ξ
′
))

2: Train hyperparameters of naive GP prior uint,naive,i(ξ)
(by maximizing the log-likelihood function)

3: Copy trained hyperparameters to prior ûint,ε,i(ξ) in (12)

4: Define EMV µxd,i with a priori task-specific information

or alternatively use equilibrium definition (21)

5: Parameterize remaining priors in (12) based on empirically

determined values and implications in Section V

6: Infer desired trajectory xd,i(θ∗) with (26) and (20)

7: Predict interaction force uint,i(ξ∗) with (19) and (20)

In the non-physical HRI variation, the inputs consist of the

training set {0, ξj}
h
j=1 and the test input θ∗ and the outputs

consist of the predictive output xd,i(θ∗). Steps 1,2,3, and 7 are

omitted and in step 6, covariance function kint(ξ, ξ
′
) of (20)

is replaced by covariance function kint(ξ, ξ
′
) of (22).
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Fig. 3. Covariance functions of a PD kernel with θ = x. The hyperparameters are {1, (0.2)}xd
, {0.1, (0.1 0.1)}d, and {0.1, (0.1 0.1)}k.

The EMVs are µd = 1.5 Ns/m, µk = 1 Nm, and µxd
= 0 m.

V. PRIOR PARAMETERIZATION

The prior parameters of the priors in (12) are composed

of the EMVs µ∗,i and the hyperparameters of the SE kernels

in (23), i.e., the signal variances σ2
∗,i and the length scales Λ∗,i.

Only the variable mi poses an exception. Due to the lack of a

covariance function, it is defined only by the EMV µm,i and

the signal variance σ2
m,i. The parameters of prior ûint,ε,i(ξ)

do not require manual definition, as its EMV is zero and its

hyperparameters are trained by maximizing the log-likelihood

function of a naive GP prior. In order to facilitate proper

parameterization of the remaining priors in (12), an overview

of estimated human arm impedance characteristics is presented

and subsequently, resulting implications are discussed.

A. Human arm impedance characteristics

While there is a large body of work on estimation of human

arm impedance, the results are often presented qualitatively or

graphically using inertia, damping, and stiffness ellipses [9].

Of the few studies that present quantitative results, many

estimate in joint space to address joint-specific impedance

control by the CNS [28]. In this work, we instead focus on

the Cartesian space representation due to practical applications

in robotics [7], [8]. Table I shows an overview of estimated

impedance characteristics in postural and non-postural tasks.

In the former, a desired posture is maintained and in the latter,

a desired movement is performed. The stiffness values lie

in the approximate range of 10− 1000 N/m and are lower

during non-postural tasks. The damping and inertia values lie

in the approximate ranges of 5− 100 Ns/m and 0.05− 4 kg.

The estimation of damping is considered highly variable [48].

Some inertia values in Table I, which are much lower than the

arm mass of a typical adult (approximately 2 − 4 kg [49]),

suggest that inertia is particularly prone to estimation errors.

This is plausible, as arm acceleration is often subject to

high levels of noise. The positive correlation between joint

damping and joint stiffness is visible in the values in Table I,

which supports the statement that its effects can be partially

incorporated by suitable definition of the EMVs µd,i and µk,i.

Furthermore, the low SDs of non-postural values in Table I

(apart from the values of [35], which, due to the welding

accuracy requirements, is similar to a postural task) support the

consideration of low variances for the approximation in (13).

B. Implications for prior parameterization

The EMVs µm,i, µd,i, and µk,i should be defined based

on the values in Table I. While the inertia EMV µm,i only

depends on the limb kinematics, for the EMVs µm,i and µd,i,

the task description should be considered. Attention should be

paid to correct definition of the principal movement axis.

Due to the strong dependence on task type and dimensions,

only qualitative recommendations for the length scales Λ∗,i

and the signal variances σ2
∗,i are possible. In general, the larger

a length scale, the smaller the variation of the mean in the GP

posterior. The expectation of a certain degree of smoothness

of the desired trajectory xd,i(θ) implies comparatively large

length scales Λxd,i. As the feedback component defined by

damping di(ξ) and stiffness ki(ξ) generates restoring torques

TABLE I

ESTIMATED IMPEDANCE CHARACTERISTICS. POSTURAL: x1 , x2 , AND x3 ARE SAGITTAL, TRANSVERSAL, AND VERTICAL AXES, RESPECTIVELY.

NON-POSTURAL: x1 , x2 , AND x3 ARE PRINCIPAL MOVEMENT, LATERAL, AND VERTICAL AXES, RESPECTIVELY. PRESENTED IN MEAN (SD).

Inertia [kg] Damping [Ns/m] Stiffness [N/m]

Study description x1 x2 x3 x1 x2 x3 x1 x2 x3

[43] postural 1.54 (0.07) 1.00 (0.08) - - 10.7 (0.9) 13.3 (1.2) - - 117 (14) 236 (27) - -
[44] postural 0.28 (0.15) 0.39 (0.21) 0.25 (0.13) 35.3 (23.8) 84.1 (52.2) 40.1 (21.4) 337 (190) 748 (281) 303 (209)
[45] postural 0.99 (0.07) 1.42 (0.20) - - 6.8 (0.8) 14.3 (1.4) - - 27 (4) 91 (6) - -
[46] postural 2.02 (0.39) 1.60 (0.33) - - 6.6 (1.6) 25.3 (7.3) - - 89 (24) 264 (92) - -
[47] postural 0.75 (0.15) 0.40 (0.10) - - 9.9 (2.6) 53.5 (8.5) - - 40 (16) 346 (68) - -
[35] welding - novice 0.70 (0.30) 2.40 (0.60) 0.90 (0.40) 15.0 (8.0) 32.0 (13.0) 12.0 (8.0) 341 (67) 411 (188) 280 (108)
[35] welding - expert 0.60 (0.20) 2.80 (0.80) 0.70 (0.20) 19.0 (5.0) 44.0 (14.0) 17.0 (5.0) 423 (232) 539 (200) 315 (150)
[33] catching - static 1.36 (0.09) - - - - 20.6 (2.1) - - - - 67 (34) - - - -
[33] catching - ready 1.44 (0.18) - - - - 23.0 (2.9) - - - - 116 (60) - - - -
[36] teleoperation 0.85 - 4.03 - 0.68 - 12.9 - 9.2 - 17.6 - 122 - 108 - 81 -
[37] stylus grasping 0.32 (0.15) 0.48 (0.15) 0.24 (0.13) 5.9 (2.2) 5.9 (1.4) 20.1 (5.1) 105 (28) 133 (29) 366 (106)
[34] tennis - static 1.79 (0.10) - - - - 19.8 (1.7) - - - - 116 (44) - - - -
[34] tennis - ready 1.84 (0.11) - - - - 21.6 (2.1) - - - - 158 (49) - - - -
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that compensate deviations from the desired trajectory xd,i(θ),
the respective length scales Λd,i and Λk,i should be smaller

than Λxd,i. Otherwise, the model would misinterpret observed

deviations as part of the desired trajectory xd,i(θ). The trained

hyperparameters of prior ûint,ε,i(ξ), which are obtained by

maximizing the log-likelihood function of a naive GP prior,

can serve as reference points: length scales Λxd,i should be

larger and length scales Λd,i and Λk,i should be smaller.

For the definition of the signal variance σ2
xd,i

, it should

be considered that (18) does not only contain the desired

trajectory xd,i(θ), but also the corresponding time derivatives.

As the variance increases with differentiation, a large signal

variance σ2
xd,i

would result in considerable variance for the

overall model. Consequently, the impedance contributions

would “disappear” in the variance. In order to avoid this,

the signal variance σ2
xd,i

should be defined sufficiently small.

Due to similar reasons and the loss of accuracy caused by

the second-order statistical characterization in (13), the signal

variances σ2
d,i and σ2

k,i should also be sufficiently small.

Application of GP priors with SE covariance functions

allows for derivation of theory concerning upper bounds of

prediction errors. In [50], a probability bound for an upper

bound of the prediction error is derived using the reproducing

kernel Hilbert space norm. In [51], an upper bound for the

mean square prediction error of misspecified GP models is

derived by solving a pseudo-concave optimization problem.

As in depth discussion of such theories lies outside the scope

of this work, we instead provide quantitative examples for the

qualitative parameter recommendations. Their impact on the

results can be inferred from the validation with simulated data.

VI. SIMULATION

In this section, the model is validated using a simulated

model of the human arm. The simulated desired trajectory

enables validation of the intention estimation capabilities and

direct control over the simulated impedance characteristics

allows for assessment of the effects of prior parameterization.

In order to analyze how differences between the simulated

impedance characteristics and the prior parameters affect the

prediction performance, the damping and stiffness EMVs are

both varied within plausible intervals. In order to consider

the highly task-specific nature of human motor behavior in

realistic HRI and demonstrate the versatility and adaptability

of the model, it is validated both for a time-dependent (θ = t)
and a configuration-dependent (θ = x) desired trajectory.

All priors in (12) are defined by SE kernels. The prediction

performance is assessed with the standardized mean squared

error (SMSE) and the mean standardized log loss (MSLL).

In the SMSE, the squared residuals of predicted and observed

interaction forces u∗
int,i(ξ∗,j) and uint,i(ξ∗,j) are averaged

over the test inputs Ξ∗ = {ξ∗,j}
h
j=1 and normalized with the

variance of the respective test outputs uint,i(Ξ∗):

SMSE =
1

n

n
∑

i=1

[

1

h

h
∑

j=1

(u∗
int,i(ξ∗,j)− uint,i(ξ∗,j))

2

Var
[

uint,i(Ξ∗)
]

]

.

The MSLL is obtained from the negative log probability,

standardized by subtracting the log probability of a Gaussian

1

2

3

4

5

Fig. 4. Reference trajectory. Starting at the black dot, the arrows and
numbers indicate movement direction and execution order, respectively.

with mean and variance of the training data uint,i(Ξ):

MSLL =
1

n

n
∑

i=1

[

1

h

h
∑

j=1

[

− logP
(

u∗
int,i(ξ∗,j)|uint,i(Ξ)

)

− logN
(

u∗
int,i(ξ∗,j)|E

[

uint,i(Ξ)
]

,Var
[

uint,i(Ξ)
] )

]

]

Analogous to the calculation of the SMSE, the MSLL is also

determined by averaging over the test inputs Ξ∗ [15].

A. Human arm model & simulation design

A two-link rigid-body trajectory is simulated with the arm

model of [52] using Matlab (Mathworks Inc.). The model is

selected, because it is structurally more complex than our

GP-based model and derives a two-dimensional trajectory

from simulated muscle activities that provide physiologically

plausible impedance characteristics. The model simulates the

muscle tension mimp due to mechanical impedance as

mimp = Dλėλ +Kλeλ ,

Dλ =1/12 Kλ , Kλ = (1 + 0.035aCNS)K0 ,

where Dλ, Kλ, and eλ are damping, stiffness, and error

at muscular level, respectively, aCNS is the neural control

signal, and K0 is an intrinsic stiffness parameter. Two different

stiffness profiles with K0 = 3360 for low stiffness and

K0 = 16800 for high stiffness are each simulated at 500 Hz.

The simulated damping and stiffness are presented in Table II.

The reference trajectory is displayed in Fig. 4. It consists of

a circle with radius 0.04 m and four attached arcs that each

subtend 270 degrees. The same reference trajectory is repeated

three times without pause at a rate of 2.618 rad/s to form the

complete data set. As the reference trajectory in Fig. 4 does

not possess a distinct principal movement axis, the coordinates

x1 and x2 refer to the sagittal and coronal planes, respectively.

For the same reason, from this point on and without loss of

generality, the impedance matrices M(x), D(ξ), and K(ξ)
are defined to be isotropic. For clarity, the index i of priors

mi, di(ξ), and ki(ξ) in (12) and the associated EMVs µ∗,i,

length scales Λ∗,i, and signal variances σ2
∗,i is omitted.

TABLE II

SIMULATED DAMPING AND STIFFNESS. PRESENTED IN MEAN (SD).

Simulation
Damping [Ns/m] Stiffness [N/m]

x1 x2 x1 x2

Low stiffness 9.89 (1.47) 12.40 (0.73) 118.7 (17.6) 148.4 (20.7)
High stiffness 48.07 (6.20) 60.29 (7.55) 576.8 (74.4) 723.5 (90.6)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TBME.2018.2890710

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



MEDINA et al.: IMPEDANCE-BASED GAUSSIAN PROCESSES FOR MODELING HUMAN MOTOR BEHAVIOR 9

S
M

S
E

M
S

L
L

Low stiffness simulation High stiffness simulation

0.040.04

0.020.02

00
1000

10001000

1000
500

500500

500
0

00

0

00

0 0

2525

25 25

5050

50 50

µk [N/m]

µk [N/m]

µk [N/m]

µk [N/m]

µd [Ns/m]

µd [Ns/m]

µd [Ns/m]

µd [Ns/m]

−1−1

−1.5−1.5

−2−2

Fig. 5. Prediction performance with θ = x. The red lines indicate the
mean values of the simulated x1 impedance values and the grey grid
represents the performance of the naive GP prior.

B. Configuration-dependent desired trajectory

We consider (19) with a configuration-dependent desired

trajectory (θ = x) and a priori equilibrium definition (21).

For simplicity, priors m, d(ξ), and k(ξ) are defined constant

and deterministic, i.e., σ2
m = σ2

d = σ2
k = 0. The prediction

performance of the model is evaluated with respect to a naive

GP prior uint,i(ξ) ∼ GP(0, kSE(ξ, ξ
′
)). The training sets are

obtained by downsampling the simulated trajectories to 0.2 Hz

and the validation sets are obtained by downsampling the

same trajectories to 10 Hz. The hyperparameters of the naive

model are trained by maximizing the log-likelihood and the

resulting length scales and signal variances are also used to

parameterize prior ûint,ε,i(ξ). The inertia EMV µm = 3 kg
and the damping and stiffness EMVs µd ∈ [5, 50] Ns/m and

µk ∈ [100, 1000] N/m. The hyperparameters of the desired

trajectory are {10−6, (0.2 0.2)}xd
and σ2

N = 10−4. In the

second half of the analysis, the intention estimation capabilities

of the model are evaluated via the inferred desired trajectory.

The evaluation is conducted for the simulated trajectory of

the high stiffness simulation, downsampled to 25 Hz, and the

results are presented for two sets of low (µk = 100, µd = 5)

and high (µk = 800, µd = 40) stiffness and damping EMVs.

1) Behavior prediction performance: Fig. 5 presents the

prediction performance results with respect to the naive model

in terms of SMSE and MSLL. The SMSE for the low stiffness

simulation shows that the impedance model outperforms the

naive model over the low stiffness and low damping ranges,

where the EMVs are close to the simulated values in Table II.

The prediction performance is significantly decreased in the

high stiffness and high damping ranges. In terms of the MSLL,

the prediction performance increases throughout the whole

stiffness and damping ranges and it reaches its maximum in the

low stiffness and low damping ranges. The SMSE for the high

stiffness simulation displays overall improved performance,

especially for stiffness EMVs in the mid-range and a high

damping EMV that is close to the simulated values in Table II.

A similar dependency is found in the MSLL results. For low

stiffness values, the impedance model still outperforms the

naive model, but performance is reduced due to high variance,

which is considered in the calculation of the MSLL.

0.4

0.35

0.3

0.25

0.2

x
2

[m
]

x1 [m]

xd(x) − x with
µk = 800, µd = 40

xd(x) − x with
µk = 100, µd = 5

0.40.350.30.250.2

Fig. 6. Inference of the desired trajectory xd(x) with θ = x for the high
stiffness simulation. The results are presented in terms of xd(x) − x.

2) Intention estimation capabilities: Fig. 6 demonstrates the

inference of the latent desired trajectory, as defined in (26).

The arrows represent length and orientation of the differences

between the input states x and the inferred states of the desired

trajectory xd(x). The model with high EMVs expects lower

deviations due to higher tracking accuracy. Thus, the inferred

state is persistently located in the proximity of the associated

input state. In contrast, the model with low EMVs expects

higher deviations due to lower tracking accuracy.

C. Time-dependent desired trajectory

Here, we consider (19) with a time-dependent desired

trajectory (θ = t) and a priori equilibrium definition (21).

Parameterization and design are identical to Section VI-B,

apart from the following differences: the error terms ëi(t),
ėi(t), and ei(t) and the estimated interaction force ûint,ε,i(t)
are defined as functions of time, such that, according to (10),

the interaction force uint,i(t) ∼ GP
(

0, kint(t, t
′)
)

. Therefore,

the naive GP prior is defined as uint,i(t) ∼ GP
(

0, kSE(t, t
′)
)

.

The training sets are obtained by downsampling the simulated

trajectories to 3 Hz and the hyperparameters of the desired

trajectory are {10−6, (0.3)}xd
and σ2

N = 10−4.

1) Behavior prediction performance: Fig. 7 presents the

prediction performance results. The SMSE for the low stiffness

simulation shows that the impedance model outperforms the

naive model over the whole stiffness and damping ranges,

especially for low stiffness and damping EMVs, which are

close to the simulated values in Table II. In terms of the MSLL,

the prediction performance increases throughout the whole

stiffness and damping ranges and it reaches its maximum in the

mid-stiffness and low damping ranges. The SMSE for the high

stiffness simulation displays overall improved performance,

especially for the high damping and high stiffness ranges,

when the EMVs are close to the simulated values in Table II.

A similar dependency is found in the MSLL results.

2) Intention estimation capabilities: Fig. 8 illustrates the

inference of the latent desired trajectory, as defined in (26).

It contains the inferred desired trajectories, the corresponding

SDs, and the reference trajectory. The model with high EMVs

expects lower deviations due to higher tracking accuracy.

Consequently, the inferred desired trajectory possesses low

variance. As the EMVs are close to the simulated values

of the high stiffness simulation, the model represents the

simulated dynamics with high accuracy. The model with

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TBME.2018.2890710

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



10 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. XX, NO. XX, XXXX 20XX

S
M

S
E

M
S

L
L

Low stiffness simulation High stiffness simulation

0.20.2

0.10.1

00
1000

10001000

1000
500

500500

500
0

00

0

00

0 0

2525

25 25

5050

50 50

µk [N/m]

µk [N/m]

µk [N/m]

µk [N/m]

µd [Ns/m]

µd [Ns/m]

µd [Ns/m]

µd [Ns/m]

00

−1−1

−2−2

Fig. 7. Prediction performance with θ = t. The red lines indicate the
mean values of the simulated x1 impedance values and the grey grid
represents the performance of the naive GP prior. The naive GP prior
MSLL in the low stiffness simulation is 14.14 and thus omitted for clarity.
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Fig. 8. Inference of the desired trajectory xd(t) with θ = t for the
high stiffness simulation. The shaded areas are the SDs of the desired
trajectory xd(t) and are amplified for clarity (± 5 SD for the model with
low EMV values, ± 10 SD for the model with high EMV values).

low EMVs expects higher deviations due to lower tracking

accuracy. As the EMVs are not close to the simulated values,

the simulated dynamics are represented with less accuracy.

The inferred desired trajectory possesses higher variance and

deviates significantly more from the reference trajectory.

The configuration- and time-dependent analyses in this

section validate the intention estimation capabilities and the

superior prediction performance of the model. In addition to

being a positive result, the latter represents a secondary means

of validation for the inferred desired trajectories. Additionally,

the impact of proper prior parameterization is demonstrated.

VII. EXPERIMENT

In order to assess the prediction performance with real

data and envisage applications in HRI, an experiment with

human participants is performed. The experiment design is

based on the simulation design. However, the impedance priors

are not defined constant and deterministic and the EMVs are

not varied within plausible intervals. Instead, the number of

training points is decreased to determine the effects of training

data sparsity. In order to assess the generalization capabilities

of the model, two different scenarios are evaluated, in which

the training and validation sets are located in identical or

different regions of the workspace. In order to demonstrate

the versatility and adaptability of the model, it is evaluated

for a configuration- and velocity-dependent desired trajectory.

The prediction performance is quantified by the SMSE.

2-DoF workspace
(linear rail stages)

Vertical handle &
force-torque sensor

Visualization of
reference trajectory

Fig. 9. Participant interacting with the apparatus during the experiment.

A. Apparatus & data processing

The apparatus in Fig. 9 consists of two linear, orthogonally

aligned single rail stages (Copley Controls Thrusttube Module)

that span a 2-DoF workspace of ±0.15 m. Each module

provides position data with a precision of 1 µm. On top of

the upper module, a vertical handle with a 6-DoF force-torque

sensor (JR3-67M25) is mounted. Visual feedback is supplied

with the Psychophysics Toolbox [53] and shown on a computer

screen at participant eye level. Haptic interaction by means of

force input is enabled by an admittance control scheme

Maẍ+Daẋ = uint , (27)

where Ma = diag{5, 5} kg and Da = diag{15, 15}Ns/m are

the admittance inertia and damping. Precise position rendering

is provided by high gain PD control, which is implemented in

Matlab/Simulink and executed on a RT-preempt Linux system

with a real-time kernel. The sample rate is 4 kHz and the

Thrusttube Module inputs are downsampled to 2 kHz due to

hardware limitations. All signals are filtered using a 5-th order

Savitzky-Golay filter with a cut-off frequency of 20 Hz.

B. Participants & experiment design

A total of 20 participants (16 male, 4 female) volunteered

to take part in this experiment. All participants had normal or

corrected-to-normal vision and were right handed. The average

age was 26.95 (4.41) years. Informed written consent was

obtained from all participants before experiment participation.

The research ethics were obtained from the ethics committee

at the Technical University of Munich (project no. 205/14).

The participants were seated in front of the apparatus and

instructed to grasp the handle with their right hand. Their arm

was constrained to horizontal movements by a sling attached

to the ceiling. The reference trajectory and the current position

of the cart were visualized on the computer screen (Fig. 9).

The participants were instructed to first move to the starting

point and then follow the trajectory at their own pace (Fig. 4).

Each participant completed 15 repetitions without pause.

C. Parameterization

Here, we consider (19) with a configuration and velocity-

dependent desired trajectory (θ = [xT, ẋT]T) and a priori

equilibrium definition (21). For computational feasibility,

we set all jerk-related terms in (18) to zero. The training sets

are obtained from data of repetitions 6 − 10. It is assumed

that after five repetitions the participants have had enough

time to familiarize with the apparatus. The validation sets are
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Fig. 10. Participant data. (a) Identical regions with exemplary 30 point
training set. (b) Different regions with exemplary 30 point training and
validation sets (number of validation points reduced for clarity).

obtained from data of repetitions 11− 15. In order to ensure

comprehensive coverage of the workspace, each repetition is

validated separately. The number of training points is increased

from 2 to 50 and there are 200 validation points. Before the

evaluation, the training and validation points are uniformly

distributed among the sets. In each evaluation, a training point

is randomly selected and added to the existing training set.

The evaluations are repeated 100 times for each of the five

validation repetitions (11 − 15) and the results are averaged.

Figs. 10a and 10b show the identical and different workspace

regions scenarios, respectively. In the former, all sets contain

data from all workspace quadrants. In the latter, training

sets only contain data from Quadrant 2 and validation sets

only contain data from Quadrant 4. The hyperparameters

of prior ûint,ε,i(ξ) are defined by maximum log-likelihood

training of a naive GP prior. The EMVs are µm = 2 kg,

µd = 20 Ns/m, and µk = 100 N/m. They are defined based

on the principal movement axis values in Table I: µd is the

approximate mean of the damping values and µk is based on

the lower stiffness values, as they represent the most plausible

values for the observed dynamics. The hyperparameters are

{10−4, (0.4 0.4 0.2 0.2)}xd
, {52, (0.2 0.2 0.1 0.1)}d, and

{502, (0.2 0.2 0.1 0.1)}k, and σ2
N = 10−4.

D. Evaluation

Fig. 11 shows the averaged SMSE results over the number

of training points N . The mean SMSEs rapidly decrease with

an increase of N . Although the initial value for different

workspace regions is significantly increased, the values for

large N are almost identical. The mean SMSE converges

to zero for identical workspace regions and to a marginally

larger value for different workspace regions. This decrease in

prediction performance is plausible, as the validation points are

located in previously unobserved regions of the input space.

The results show that decreased prediction performance due

to training data sparsity only arises for very small numbers

of training points N . Although this decrease increases with

the distance between training and validation points, given a

reasonable number of training points, the model nonetheless

provides reliable predictions in previously unobserved regions

of the input space. This reliable prediction performance of

the model for real data also serves as an indirect means of

validation for its intention estimation capabilities.
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Identical workspace regions
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Fig. 11. Averaged SMSE results. The error bars each indicate ±5 SD.

VIII. DISCUSSION

In this work, we derive an impedance-based GP model.

The derivation of this Bayesian model only requires that the

desired behavior can be described by a twice differentiable,

well-defined function qd(θ). The parameters θ are defined by

task-specific input parameters such as θ = t for a transient

desired trajectory qd(t). We demonstrate desirable intention

estimation capabilities and superior prediction performance

for different parameterizations of the desired trajectory qd(θ).
In the experiment, θ = [xT, ẋT]T. We exclude repetitions 1−5
from the data, assuming that after five repetitions participants

have had enough time to familiarize with the apparatus and

possess a desired trajectory xd(x, ẋ). It should be noted that

this trajectory does not have to be and likely is not completely

identical to the visual reference trajectory. Nonetheless, our

assumption is supported by desirable prediction performance,

indicated by low averaged SMSE results, both for previously

observed and unobserved regions of the input space.

The results obtained with simulated and real physical HRI

data also support the general applicability of the approximation

of diagonality for impedance matrices M(x), D(ξ), and K(ξ).
Nonetheless, in future work, we aim to extend the method to

physiologically accurate multi-dimensional treatment of (8),

which would require definition of the non-diagonal elements

by additional GPs. Each of these GPs would require proper

prior parameterization, including the corresponding EMVs,

for which empirically determined data would first need to

be obtained. The additional product terms would need to be

incorporated in (14) and (15). More importantly, symmetry

properties of the matrices would require definition of an

additional covariance function that correlates the respective

GP with the interaction forces along the x- and y-axes.

Physiological plausibility of the model is also slightly reduced

by omitting the positive correlation of damping di(ξ) and

stiffness ki(ξ) in the prior definitions (12). It can however

be partially included in the model through suitable definition

of the EMVs µd,i and µk,i. In the experiment, we define

low values for µd,i and µk,i, compared to the significantly

higher values of postural tasks. If the observed behavior

is in the proximity of the expected behavior, correlational

characteristics of the conditional posteriors of di(ξ) and ki(ξ)
are to be expected. If the observed behavior deviates greatly

from the expected behavior, the conditional posteriors may

lose correlation, which may result in reduced accuracy of the

inferred desired trajectory xd(θ∗) and the predicted interaction

forces uint(ξ∗). Such behavioral and potentially correlational

deviations are indicated by decreased model confidence levels.
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IX. CONCLUSION

We present a novel method for modeling human motor

behavior in physical and non-physical HRI that considers

complex tasks with trajectory tracking requirements, in which

the human arm dynamics can be modeled by a mechanical

impedance that tracks a latent desired trajectory. The results

of simulated and real physical HRI data show strong support

of our method, demonstrating superior prediction performance

as well as desirable intention estimation and generalization

capabilities. In future work, we will explore online application

as well as combination with established impedance estimation

methods for continuous parameter adaptation.
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