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ABSTRACT

Microfluidic large-scale integration (mLSI) is a promising
platform for high-throughput biological applications. De-
sign automation for mLSI has made much progress in recent
years. Columba and its succeeding work Columba 2.0 pro-
posed a mathematical modeling method that enables auto-
matic design of manufacturing-ready chips within minutes.
However, current approaches suffer from a huge computation
load when the designs become larger. Thus, in this work, we
propose Columba S with a focus on scalability. Columba S
applies a new architectural framework and a straight channel
routing discipline, and synthesizes multiplexers for efficient
and reconfigurable valve control. Experiments show that
Columba S is able to generate mLSI designs with more than
200 functional units within three minutes, which enables the
design of a platform for large and complex applications.

1 Introduction

Microfluidic large-scale integration (mLSI) is an emerging
platform for biochemical applications. Compared with other
lab-on-a-chip technologies, mLSI shows advantages in per-
forming precise control for complex fluid manipulations [1],
and is widely used in advanced biological applications such
as single cell capturing [2] and protein analysis [3].
An mLSI chip usually consists of a flow layer for fluid

transportation and a control layer for pressure transporta-
tion. The precise on-chip control of mLSI is supported by
micro-valves, which are constructed with channel segments
from both layers. When pressure is transported to the con-
trol segment of a valve, it will lead to a shape change of the
membrane between the two layers, and thus block the cor-
responding flow segment. In this manner, by implementing
valves at target channels that require fluid control, complex
functional units can be formed for various operations such as
mixing [3], washing [4], and heating [5]. With the develop-
ment of mLSI manufacturing technology, valve density can
currently achieve 1 million valves per cm2 [6], which makes
large-scale parallel applications possible.
Currently, most mLSI chips are designed manually. How-
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ever, as the application complexity increases, design com-
plexity increasingly challenges human capabilities. Despite
the advanced manufacturing technology, most manual mLSI
designs only consist of tens of functional units or fewer [3]
[7] [8], and large manual mLSI designs are usually fit into
homogenous matrix-like structures that only support simple
application protocols [9] [10].

The mLSI design problem can be modeled as two inter-
acting single-layered place-and-route problems [11] [12]. The
flow layer design requires arranging the functional units in a
compact manner while ensuring the channel connection be-
tween certain functional units and fluid inlets. For complex
designs, flow channel crossings are sometimes inevitable. In
this case, designers also need to minimize the number of
channel crossings and implement extra switches for fluid
guidance. The placement of functional units and switches
will decide the location of valves, which leads to interac-
tions with the control layer design. Since control channels
are strictly prohibited from overlapping, the routability of
the control layer is highly dependent on the flow layer, which
means that the two single-layered problems cannot be solved
separately. Besides the basic design rules, mLSI design must
also take the usage of pressure inlets into consideration, the
number of which is limited due to their large area consump-
tion and reliability concerns [13].

Design automation approaches have been proposed in re-
cent years to aid [14] [15] or replace [16] manual design.
Columba [11] and its succeeding work Columba 2.0 [12] pro-
posed the first design automation tool that can synthesize
manufacturing-ready mLSI designs without human interven-
tion. The Columba works applied a mathematical modeling
method that described the place-and-route problems and
the valve control behaviors comprehensively, which ensured
their output design to meet all design rules even for deli-
cate applications. However, their capability is limited by
the computing power when dealing with heterogeneous de-
signs with hundreds of functional units. Thus, the demand
for a design automation tool that matches the mature mLSI
manufacturing technology is still pressing.

In this work, we propose Columba S (”S” stands for ”scal-
able”), which drastically speeds up the automated design
process, and is especially suitable for very large-scale de-
signs.

Figure 1 provides an intuitive comparison between Columba
(2.0) and Columba S. Figure 1(a) shows a chip fabricated
from a kinase activity [17] design generated by Columba
2.0 [12], where flow channels are filled with red dye and con-
trol channels are filled with green dye. Figure 1(b) shows
the design generated by Columba S for the same applica-
tion, where flow channels are in blue and control channels
are in green. Compared to Columba 2.0, Columba S shows
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Figure 1: Designs generated by (a) Columba 2.0 (b)
Columba S. Program run time (seconds): (a) 56 (b) 0.9.
Number of inlets: (a) 22 (b) 18. Flow channel length (mm)
(a) 58.9 (b) 39.85 (in the functional region).

advantages in the following aspects:

• Run time reduction. Columba S supports a new
architectural framework and a straight channel rout-
ing discipline, which significantly reduces the problem
space and thus alleviates the computation load. Ex-
periments show that Columba S speeds up the design
process by tens to thousands of times, and is capa-
ble of generating designs that contain more than 200
functional units within three minutes.

• Inlets reduction and reconfigurability. Columba
S applies multiplexers for valve control. Each multi-
plexer guarantees the control of n independent valves
with 2⌈log

2
(n)⌉+1 inlets [9]. The efficient inlets us-

age allows Columba S to support individual control
of independent valves regardless of their working peri-
ods. Thus, the same design is adaptable for different
scheduling protocols. Columba 2.0 applies a pressure
sharing technology to reduce the inlet usage, the per-
formance of which is less significant and the design
does not adapt to changes of the application schedul-
ing protocols.

• Flow channel length reduction. Columba S cen-
tralizes the functional units and routes the fluid trans-
portation paths without detour, which benefits both
the application execution time [18] and the chip re-
liability [19]. The new layout also allows a better
overview of the application execution and brings con-
venience to microscope observation.

2 Architectural Framework & Channel Rout-

ing Discipline
Columba S distinguishes itself from the previous Columba
works with its ultrahigh efficiency, which provides the foun-
dation for automated large-scale designs. This efficiency is
contributed by its new architectural framework and channel
routing discipline.
Figure 2(a) illustrates the Columba S architectural frame-

work, which consists of a functional region surrounded by
two opposite flow boundaries and (at most) two opposite
multiplexers (MUXs). The functional region is the core of
the design that is responsible for all fluid transportation and
manipulations, while the flow boundaries and the multiplex-
ers can be regarded as abstract chip boundaries that support
flexible locations of fluid and pressure inlets, respectively.
Under this framework, Columba S focuses on the func-

tional region design. The functional region is constructed
with modules and channels. A ”module” is a rectangular box
that defines the physical layout inside and around a func-
tional unit or a switch. Modules are connected to each other
and to chip boundaries via channels. Columba S applies a
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Figure 2: (a) Our architectural framework. (b) An initial
design fit to our framework.

straight channel routing discipline where all control chan-
nels are routed vertically and all flow channels are routed
horizontally. Figure 2(b) shows an initial design fit to this
framework, where f1, f2 and f3 represent the modules of
three functional units and s1 represents the module of a
switch. With the proposed routing discipline, all control
channels are parallel to one another and directly extend to
chip boundaries, while all flow channels are either in paral-
lel or extend in the same direction. Thus, the computation
effort for arranging channel detour and preventing channel
crossing can be saved.

The implementation of our architectural framework and
channel routing discipline is based on two prerequisites:

1. A module model library that supports horizontal flow
channel access and vertical control channel access to
all modules;

2. A multiplexing technology to pressurize/depressurize
every control channel individually with a small number
of inlets.

2.1 Columba S Module Model Library

The module concept is first proposed in [11] to synchronize
the interaction between the control and the flow layers. As
mentioned in Section 1, since the control and the flow lay-
ers interact with each other through valves, the two single-
layered design problems cannot be solved separately. Thus,
for important microfluidic components that contain valves,
[11] modeled them as rectangular boxes (modules) that can
be accessed via pins at their boundaries, and thereby trans-
formed the layer interaction problem into a pin selection
problem with less design difficulty. A module defines the
inner-structure as well as the corresponding channel routing
patterns of a microfluidic component. [11] proposed a mod-
ule model library that provided several options for module
modification and rotation. This library was then extended
in [12] to include more options for channel routing, which
allowed control channels to pass through modules to reduce
the routing detour. Based on [12], we propose a modified
module model library for Columba S to support its new ar-
chitectural framework and channel routing discipline.

The Columba S module model library contains three types
of modules: mixers, reaction chambers, and switches. Com-
pared to [12], we remove the inlet modules from the Columba
S library, since the new architectural framework excludes
the inlets from its functional region. Some channel routing
options that were provided by Columba 2.0 but had been
rarely chosen in the automated design process are also re-
moved to save the computational effort. The support of
sieve valves and celltraps is added to the module model of
mixers to support advanced operations. And we enlarge the
spacing of pumping valves to resolve the manufacturing con-
cern. To guarantee the new channel routing discipline, we
prohibit the rotation of the modules in the new library, and
re-design the module model for switches.

Figure 3(a) shows the modified module model for mixers,
where control and flow channels are indicated by green and
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Figure 3: (a) The module model for rotary mixers. d rep-
resents the minimum channel spacing distance (100µm).
(b)(c)(d) Different mixer configurations. (e) The module
model for switches providing valve access from the bottom.
d′ is set to 750µm to prevent the overlapping of fluid inlets
in the flow boundaries. (f) An exemplary design.

blue lines, respectively, and the orange/purple/dark green
rectangles above control channels indicate different kinds of
valves. As shown in the figure, flow channels inside a mixer
can be accessed from the horizontal directions via pins on
the left and the right module boundaries, and valves inside
a mixer can be accessed via control channels from the top,
from the bottom, or from the both vertical directions, as
shown in Figure 3(b), (c) and (d), respectively. Additionally,
the mixer in (c) contains four sieve valves to support washing
operations [20], and the mixer in (d) contains four separation
valves to support cell-capturing operations [18].
Figure 3(e) shows the new module model for switches.

Switches are managed flow channel crossings consisting of
one flow channel spine and several flow channel junctions,
where fluids can be guided to their expected directions by
valves. The switch model proposed in [12] had a fixed inner-
structure, where the distance between two adjacent flow
channel junctions was set to a constant value. We abandon
this setting in Columba S and allow the flow channel spine
to extend in the vertical direction (indicated by the dash
lines in Figure 3(e)) to adapt the flow channel access from
different locations. To support the vertical control chan-
nel routing discipline, we move the pins for valve access to
the top and the bottom module boundaries and route the
control channels accordingly. Figure 3(e) and (f) show the
cases that the valves are accessed from the bottom and from
the top, respectively. Figure 3(f) also illustrates an exem-
plary design containing five modules that require pairwise
flow channel connection, which is arranged by a switch. As
shown in the figure, all flow channels directly extend from
the module in the horizontal direction to the switch, thereby
forming the required channel junctions without detour.

2.2 Multiplexer Design
Under the Columba S architectural framework, all indepen-
dent valves have direct access to chip boundaries, from where
they can be individually pressurized/depressurized with mul-
tiplexers. Columba S applies the multiplexing technology
proposed in [9] and [21], and the multiplexer design follows
the physical synthesis results of the functional region.
We illustrate our multiplexing approach in Figure 4, where

15 control channels (indicated by green lines) are extended
straightforwardly from the functional region to the multi-
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Figure 4: Multiplexer design and multiplexing function.

plexer. Our multiplexer uses pressurized flow channels (in-
dicated by blue lines) to carry out the multiplexing process.
To distinguish the flow channels in the multiplexers from the
flow channels in the functional region, we refer to them as
MUX-flow channels in the rest of this section. As shown in
Figure 4, the MUX-flow channels overlap with the control
channels and form valves (indicated by green rectangles) at
some of the overlapping area. By pressurizing the MUX-flow
channels to a certain pressure level, valves along the pressur-
ized MUX-flow channels will be inflated (indicated by black
slashes) and thus block the pressure transportation in the
corresponding control channels. The explicit multiplexing
strategy is described as follows:

1. Each control channel is indexed with a ⌈log
2
(n)⌉-bit

binary number, where n represents the total number of con-
trol channels. In particular, each of the 15 control channels
in Figure 4(a) is indexed with a 4-bit binary number, and
the 9th control channel is indexed with 1001.

2. The pressure level of the valves along each MUX-flow
channel is denoted with a character, where O represents that
the valves along the channel are not inflated, and X repre-
sents that the valves along the channel are inflated.

3. Each control-channel bit is assigned by a pair of MUX-
flow channels: a MUX-flow channel pair configured to OX
sets the corresponding bit to 0, and a MUX-flow channel
pair configured to XO sets the corresponding bit to 1. In
particular, the 4-bit index in Figure 4 is set by 4 MUX-flow
channel pairs, which are configured to XO, OX, OX and
XO, respectively, and thus forming a 4-bit binary number
1001. Under this configuration, all control channels other
than the channel indexed as 1001 are blocked by inflated
valves, ensuring the 9th control channel to be the only pres-
sure transportation path.

In this manner, our multiplexer guarantees the control of
n independent valves with 2⌈log

2
(n)⌉+1 inlets. Compared

with the pressure sharing techniques proposed in [12], the in-
lets usage of Columba S is more predictable and does not rely
on the application scheduling protocols. A sacrifice made by
Columba S to achieve the very efficient inlets usage is that
it only supports simultaneous control of at most two inde-
pendent valves, while Columba 2.0 supports simultaneous
control of all independent valves. Since current technology
supports rapid valve actuation (10ms for each valve [22]),
and the pressure level of a valve can be sustained for over 10
minutes [1] despite the gas-permeable [23] nature of PDMS,
this sacrifice is acceptable for application execution.

3 The Columba S Design Flow

Columba S takes a plain-text netlist as its input, and outputs
a manufacturing-ready design. Figure 5 shows the overall
flow of mLSI production supported by Columba S.

3.1 Preparation: Netlist Planarization

The input of Columba S is a plain-text file specifying the
number, type, and logic connection of the required func-
tional units, which we call a netlist description. To imple-
ment the required logic connection without introducing chan-
nel conflicts, the primitive netlist needs to be planarized [11]
[12]. Columba S applies the netlist planarization approach
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Figure 5: The overall flow of Columba S.

proposed in [12], i.e. adding switches to the netlist and refin-
ing the logic connection accordingly. Details of this approach
can be found in [12] and are thus omitted in this paper.

3.2 Physical Synthesis
With the planarized netlist, Columba S constructs integer-
linear-programming models to carry out the physical syn-
thesis. The mLSI chip structure is modeled as points and
lines in a 2D coordinate plane, and the design constraints
are modeled as linear formulas. The synthesis process con-
sists of two phases: the layout generation phase focuses on
the design of the functional region, which roughly decides
the location of all modules and channels; and the layout
validation phase completes the design with explicit module
placement, channel routing, and chip boundary restoration,
which includes mostly engineering efforts.
In the following, we introduce some expressions and con-

straints applied in both phases:

Module, Channel and Chip Area The fundamental build-
ing blocks in our models are modules and channels, the lo-
cations of which are both modeled as rectangular boxes. If
we denote the set of all modules and channels as R, then
for each ri∈N∈R, we introduce four non-negative continu-
ous variables vri,xl

, vri,xr , vri,yt , and vri,yb to represent the
x-coordinates of the left and right module boundaries, and
the y-coordinates of the top and bottom module boundaries,
respectively. If we denote the width and length of ri as wri

and lri , the boundaries can be constrained as:

vri,xr =vri,xl
+wri ∧ vri,yt =vri,yb+lri . (1)

If ri is a mixer or a reaction chamber, wri and lri will be
specified as a constant defined in the netlist description.
If ri is a switch, wri can be calculated as:

wri =4d+cri ·2d,

where d represents the minimum spacing distance between
channels, and cri represents the number of flow channel junc-
tions that ri contains, which is specified in the planarized
netlist. Since a switch is allowed to extend in the y-direction,
as mentioned in Section 2.1, lri will remain undefined and
thus vri,yt and vri,yb will not be constrained initially.
If ri is a control channel, wri will be specified as 2d, and

lri will remain undefined since control channels extend in
the y-direction. On contrast, if ri is a flow channel, lri will
be specified as 2d, and wri will remain undefined since flow
channels extend in the x-direction.
We then denote the x- and y-dimension of a chip as con-

tinuous variables vxmax and vymax , and confine all ri∈R to
the chip by introducing the following constraints:

0≤vri,xl
∧ vri,xr ≤vxmax ∧ 0≤vri,yb ∧ vri,yt ≤vymax (2)

Non-Overlapping Constraints Since our rectangles take
the minimum spacing distance d between channels into ac-
count, we allow two ri,rj ∈R to be placed next to each other
as long as their inner areas do not overlap (except for flow
and control channels, which are allowed to overlap since they
belong to different layers). Thus, we have four options for
the relative location of ri with respect to rj : left, right, bot-
tom, and top. The following constraints are proposed to

(a) (b)

Figure 6: (a) A rectangle consisting of parallel sequential
modules. (b) Synthesis results of the layout generation
model for the design shown in Figure 1(b).

describe these options:

vri,xr ≤vrj ,xl
+q1M ∧ vrj ,xr ≤vri,xl

+q2M, (3)

vri,yt ≤vrj ,yb+q3M ∧ vrj ,yt ≤vri,yb+q4M, (4)

where q1,q2,q3 and q4 are auxiliary binary variables and M
is a very large constant. If an auxiliary variable is set to
1, the corresponding inequation will become a tautology,
but if an auxiliary variable is set to 0, the corresponding
inequation will decide the relative location of ri and rj . We
then introduce the following constraint to choose exactly one
of these options:

q1+q2+q3+q4=3, (5)

3.2.1 Layout Generation

This phase of the flow focuses on the functional region.

Parallel Functional Units Parallelization is an important
feature in mLSI design [1]. By connecting multiple func-
tional units with common control channels, identical valve
actuation sequences can be processed in these units in par-
allel, which lays a foundation for high-throughput applica-
tions. In our layout generation model, we merge the rectan-
gles of parallel functional units into a single large rectangle
to omit their inter-connection and thus save the computa-
tional effort. Figure 6(a) shows a rectangle in which two
pairs of sequentially connected mixers and reaction cham-
bers share their control channels to work in parallel. The
size of the new rectangle is set to the minimum size that can
accommodate the original rectangles of the parallel units.

Channel Merge For model reduction, we merge channels
into a single rectangle under one of the following conditions:

1. Suppose rm is a rectangle that contains valves (i.e. that
is not a channel), we merge all control channels connected
to rm as a new rectangle rc, and set wrc =wrm ;

2. Suppose rm′ is a rectangle that contains more than
one functional unit, we merge all flow channels connected
to the same boundary of rm′ as a new rectangle rf , and set
lrf = lrm′ ;

3. Suppose rs is a rectangle that contains a switch and
requires access to fluid inlets, we merge all flow channels
that connect rs to a flow boundary into a new rectangle rfs ,
and set lfs =n·d′, where n is the number of flow channels,
and d′ is a constant that prevents potential overlapping of
fluid inlets in the flow boundary.

Figure 6(b) shows the synthesis results of the layout gen-
eration model for the design shown in Figure 1(b): blue rect-
angles are merged from flow channels and green rectangles
are merged from control channels.

Channel to Chip Boundaries We introduce the following
constraints to connect all rectangles ri/rj that require access
to fluid/pressure inlets to flow/MUX boundaries:

vri,xl
≤0+q5M ∧ vri,xr ≤vxmax+q6M, (6)

vri,xl
≥0−q5M ∧ vri,xr ≥vxmax−q6M, (7)

q5+q6=1, (8)



Table 1: Design features comparison between Columba 2.0 and Columba S.

App. Dimension: vxmax ∗vymax (mm2) Lf (mm) # cin Run time(sec)

Columba Columba S Col. Columba S Col. Columba S Col. Columba S

ref #u 2.0 1-MUX 2-MUX 2.0 1-MUX 2-MUX 2.0 1-MUX 2-MUX 2.0 1-MUX 2-MUX

[8] 6 19.40*23.15 19.80*27.45 19.80*34.20 135.1 77.05 (-43%) 78.45 (-42%) 17 13 (-24%) 20 (+18%) 309.1 0.8 0.6

[3] 9 14.20*41.50 28.00*30.75 28.00*39.00 152.2 114.2 (-25%) 113.1 (-26%) 26 13 (-50%) 22 (-15%) 299.2 0.7 0.9

[7] 8 28.55*23.95 22.20*29.65 22.20*37.90 219.5 146.85 (-33%) 147.25 (-33%) 23 13 (-43%) 22 (-4%) 705.1 0.7 0.9

[12] 21 27.10*57.70 29.60*57.25 29.60*64.00 315.1 172.25 (-45%) 172.25 (-45%) 31 13 (-58%) 20 (-35%) 749.8 1.5 1.5

\ 129 \ 132.60*174.95 79.80*184.70 \ 3916.6 2096 \ 17 28 \ 71.9 72.7

\ 257 \ 145.40*322.15 92.60*333.40 \ 8338.65 4827.4 \ 17 30 \ 156.2 157.7

Lf : length of flow channels. #cin: number of control inlets. #u: number of functional units.

vrj ,yb ≤0+q7M ∧ vrj ,yt ≤vymax+q8M, (9)

vrj ,yb ≥0−q7M ∧ vrj ,yt ≥vymax−q8M, (10)

q7+q8=1, (11)

where q5,q6,q7 and q8 are auxiliary binary variables and M
is a very large constant. If an auxiliary variable is set to
1, the corresponding two inequations will become tautology,
but if an auxiliary variable is set to 0, the corresponding
inequations will decide the boundary that the rectangle is
connected to. Note that if the number of multiplexers is
specified as 1 in the netlist, we will set q7≡0 and q8≡1 and
thus rj must be connected to the bottom MUX boundary.

Channel to Modules For flow/control channels connected
to modules, we introduce similar constraints as (6)–(11) to
ensure that the rectangles of the corresponding channels and
modules share one of their boundaries in the y/x direction.

Switch Boundaries As mentioned in Section 2.1, the flow
channel spine of our switch module can extend in the vertical
direction. We set the y-coordinates of the top and bottom
boundaries of a switch rectangle rs to be dependent on the
channel rectangles rc1 ,··· ,rcn connected to this switch:

∀1≤ i≤n, vrs,t≥vrci ,t ∧ vrs,b≤vrci ,b. (12)

Minimization Objective The optimization objective of the
layout generation model is to minimize the dimension and
the total channel length of the functional region. The di-
mension can be denoted by vxmax and vymax as introduced
earlier, and the channel length can be calculated as

ltotal=
∑

nrf (vrf ,xr−vrf ,xl
)+

∑
nrc(vrc,yt−vrc,yb), (13)

where rf and rc represent the rectangles for flow and control
channels, and nrf and nrc are constants denoting the num-
ber of channels contained in the corresponding rectangles.
Thus, the minimization objective can be set as:

αvxmax+βvymax+γvxymax+κltotal,

where α, β, γ, and κ are adjustable weight coefficients, and
vxymax is a continuous variable set as max{vxmax ,vymax} to
balance the x-y dimension.

3.2.2 Layout Validation

This phase of the flow takes the synthesis results of the lay-
out generation model as its inputs.
In this phase, we restore the original models for modules

and channels, and synthesize the physical layout of the flow
boundaries as well as the multiplexers. Fluid inlets are syn-
thesized along the flow boundaries that have channel access,
and multiplexers are synthesized along the MUX boundaries
in the manner introduced in Section 2.2.
During the restoration, the location of most modules and

channels can be directly calculated from the location of the
rectangles specified by the earlier optimization phase. A
similar restoration approach has been proposed in [12] and
is thus omitted here. One exception is that we allow flow
channel junctions of a switch to choose their location along

the flow channel spine despite the boundaries of the original
rectangle reserved for them, since with the explicit channel
routing information, the optimal location of these channel
junctions may change.

3.3 Result Interpretation

Columba S outputs the physical synthesis results as an Au-
toCAD script file, which can be directly exported for mask
fabrication.

4 Experimental Results

We implement the physical synthesis models in C++, and
solve them using Gurobi [24], a mixed integer linear pro-
gramming (MILP) solver. The program runs on a computer
with 2.40GHz CPU. We fabricate 2 ColumbaS-synthesized
designs to demonstrate their feasibility.

Table 1 shows the feature values of the designs output
by Columba 2.0 and Columba S (in the following we call
them 2.0-designs and S-designs for short). The first 4 test
cases have been reported in [12], and we add 2 large test
cases (ChIP64 and ChIP128, both are synthetic applications
based on [3]) to demonstrate the scalability of Columba S.
For each test case, Columba S generates two designs: one
contains a single multiplexer, and the other contains two
multiplexers. The following trends can be derived from the
comparison:

1. The program run time of Columba S is significantly re-
duced by tens to thousands of times. Columba 2.0 can-
not solve the last two test cases within reasonable run
time. But with the same computing power, Columba
S synthesizes each design within few minutes.

2. The number of control inlets of S-designs is in general
smaller than the 2.0-designs. In particular, 1-MUX
designs use fewer control inlets than 2-MUX designs,
since each multiplexer controls n channels with 1+
⌈log

2
(n)⌉ control inlets. The logarithmic growth of

inlets usage is essential for large-scale designs.

3. The flow channel lengths of S-designs are shorter than
the 2.0-designs, since Columba S gathers all fluid ma-
nipulations in the functional region, and routes flow
channels without detour. Note that the flow chan-
nels in the multiplexers in S-designs are not counted.
Though these channels are fabricated in the flow layer,
they are responsible for pressure transportation but
not for fluid manipulation.

4. The area consumption of the S-designs is in general
larger than the 2.0-designs. In particular, 2-MUX de-
signs are larger than 1-MUX designs. Note that the ex-
tra area consumption results from the multiplexers but
not from the functional region, and thus will not have
a negative impact on application execution and micro-
scope observation. As the scale (#u) of the designs in-
creases, the area consumption of the functional region
increases faster than the multiplexers, and thus the
differences between the area consumption of S-designs
and 2.0-designs become smaller.
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Figure 7: (a) Plain-text netlist description for a ChIP 4-IP application [3]. (b) The design synthesized from (a) by Columba
S. (c) The chip fabricated from (b). (d) The Columba S 2-MUX design for a ChIP 64-IP application (partitioned into 8
parallel-execution groups).
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Figure 8: Multiplexing function on the fabricated design of
an mRNA isolation application [7].

As a conclusion, Columba S keeps good performance as
the design scales up. Compared with 1-MUX designs, 2-
MUX designs provide simultaneous control of two valves but
have to trade off with chip resources.

Figures 7(a)-(c) show the complete mLSI production flow
supported by Columba S for the second test case [3], and
Figure 7(d) shows the 2-MUX version Columba S design of
the fifth test case. Figure 8 shows the fabricated design of
the third test case. Figure 8(a) shows an overview of the
design. Figure 8(b) shows the bit configuration to select
the channel denoted by the arrow so that the corresponding
valve shown in Figure 8(c) and (d) can be pressurized to
block the fluid flow.

5 Conclusion

In this work we propose Columba S, an mLSI design automa-
tion tool focusing on scalability. We propose an architec-
tural framework co-designed with module models and multi-
plexers. Under the new framework, we route all control
channels in the vertical direction and all flow channels in
the horizontal direction, which lays a foundation for effi-
cient physical synthesis. We demonstrate the efficiency of
Columba S with experiments, and we demonstrate the fea-
sibility of Columba S designs with fabricated chips.
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