
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Columba 2.0: A Co-Layout Synthesis Tool for
Continuous-Flow Microfluidic Biochips

Tsun-Ming Tseng, Member, IEEE, Mengchu Li, Student Member, IEEE, Daniel Nestor Freitas,
Travis McAuley, Bing Li, Tsung-Yi Ho, Senior Member, IEEE, Ismail Emre Araci, Member, IEEE,

and Ulf Schlichtmann, Member, IEEE

Abstract—Continuous-flow microfluidic large-scale integration
(mLSI) shows increasing importance in biological/chemical fields,
thanks to its advantages in miniaturization and high throughput.
Current mLSI is designed manually, which is time-consuming
and error-prone. In recent years, design automation research
for mLSI has evolved rapidly, aiming to replace manual labor
by computers. However, previous design automation approaches
used to design each microfluidic layer separately and over-
simplify the layer interactions to various degrees, which resulted
in a gap between realistic requirements and automatically-
generated designs. In this work, we propose a module model
library to accurately model microfluidic components involving
layer interactions; and we propose a co-layout synthesis tool,
Columba, which generates AutoCAD-compatible designs that
fulfill all designs rules and can be directly used for mask fab-
rication. Columba takes plain-text netlist descriptions as inputs,
and performs simultaneous placement and routing for multiple
layers while ensuring the planarity of each layer. We validate
Columba by fabricating two of its output designs. Columba is
the first design automation tool that can seamlessly synchronize
with the manufacturing flow.

Index Terms—continuous-flow, microfluidics, microfluidic
large-scale integration, mLSI, physical design, mixed integer
linear programming.

I. INTRODUCTION

Continuous-flow microfluidic large-scale integration (mLSI)
has been widely applied in the last decade. By performing
precise control of small reagent volume, mLSI shows ad-
vantages in efficiency and accuracy in high-throughput ap-
plications [1] [2] [3] [4]. The precise control is supported
by layer interactions between multiple microfluidic layers. On

The preliminary version of this paper was published in the Proceedings of
the 53rd Annual Design Automation Conference (DAC), 2016.

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. This includes three multi-
media GIF format movie clips, which demonstrate fluid routing and mixing
on Columba-generated microfluidic designs. This material is 8.3 MB in size.

Tsun-Ming Tseng, Mengchu Li, Bing Li, and Ulf Schlichtmann
are with the Chair of Electronic Design Automation, Technical Uni-
versity of Munich (TUM), Arcisstr. 21, Munich 80333, Germany (e-
mail: tsun-ming.tseng@tum.de; mengchu.li@campus.lmu.de; b.li@tum.de;
ulf.schlichtmann@tum.de).

Daniel Nestor Freitas, Travis McAuley, and Ismail Emre Araci are with
Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053 (e-mail:
dnfreitas@scu.edu; tmcauley@scu.edu; iaraci@scu.edu).

Tsung-Yi Ho is with National Tsing Hua University, No. 101, Section 2,
Kuang-Fu Road, Hsinchu 30013, Taiwan (e-mail: tyho@cs.nthu.edu.tw).

The work of Tsung-Yi Ho was supported in part by the Ministry of Science
and Technology of Taiwan, under Grant MOST 102-2221-E-007-149-MY3
and 104-2220-E-007-021 and in part by the Technical University of Munich—
Institute for Advanced Study, funded by the German Excellence Initiative and
the European Union Seventh Framework Programme under grant agreement
n◦ 291763.

(a)

(b)

Figure 1: The design of a nucleic acid processor [3] automati-
cally synthesized by the proposed tool Columba. (a) A switch.
(b) A rotary mixer.

mLSI, the mainstream structure consists of two layers: a flow
layer and a control layer. Reaction samples and reagents are
imported from external instruments along defined channels in
the flow layer, and activated by manipulating the pressure
in the control channels in the control layer. Figure 1 shows
an mLSI design where control channels are indicated with
green dye and flow channels are indicated with red dye. Layer
interactions happen at valves, which are specific crossings of
control and flow channels. As shown in Figure 1(a), valves
are formed at those intersections of a control channel with a
flow channel where the width of the control channel surpasses
a given threshold. The pressure in the wide control segment
of a valve results in a shape change of the membrane between
the control layer and the flow layer, and thus blocks the
fluid transportation in the corresponding flow channel segment.
With this mechanism, flexible flow paths can be formed, and
thus fluids are guided to their intended directions despite the
crossings of flow channels. Valves enable the construction of
complex microfluidic components such as rotary mixers as
shown in Figure 1(b), and enlarge the scope of microfluidic
applications significantly.

As the complexity of microfluidic applications increases,
more complicated layer interactions need to be treated in the
design process. Manual design of highly complex mLSI chips
is time-consuming and error-prone, and thus slows down the
optimization and implementation processes in microfluidic de-
vice development. In recent years, design automation research
for mLSI has evolved rapidly and now provides a promising

TCAD, DOI: 10.1109/TCAD.2017.2760628
http://ieeexplore.ieee.org/document/8060543/

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

solution to this problem.
The physical design for mLSI can be modeled as two in-

teracting single-layered problems. The single-layered problem
is a classic problem in the design automation field. It has a
relatively smaller problem space compared with multi-layered
problems, but needs to satisfy more design constraints such
as architecture planarity. Different from multi-layered designs,
where routing paths are usually allowed to overlap as long as
they can be assigned to different layers, in single-layered de-
signs, overlapping of on-chip components is either completely
prohibited or penalized with significant costs, which greatly
shrinks the solution space and raises the design difficulty. So
far, new algorithms are still constantly proposed to solve the
classic single-layered electronic circuit problems [5] [6].

As for mLSI, control layer design and flow layer design
can be treated as two single-layered problems, where the
control layer is prohibited from channel crossing, and the flow
layer allows channel crossings but penalizes them with extra
costs. However, existing solutions for single-layered electronic
circuits cannot solve the microfluidic design problem, since the
control and flow layers interact with each other through valves.
Valves are implemented to guide the fluid direction in the flow
layer, and are connected to pressure sources by the control
channels in the control layer, which means that the control
layer design depends on the placement of the corresponding
to-be-controlled flow channels. Therefore, independent design
for the flow layer is very likely to harm the routability of
control channels.

In addition, there are two design factors in continuous-flow
microfluidics that should be treated with caution: pressure
sharing and netlist planarization.

Pressure sharing arises from the concern that the number
of inlets/outlets on a chip is limited. Inlets/Outlets are punch
holes on continuous-flow microfluidics used for pressure or
fluid communication with external instruments. Compared
with microfluidic channels which have a standard width of
0.1mm, a standard inlet/outlet has a size of 1mm2 and thus
occupies much more chip area [7]. In particular, complex
applications require complicated valve actuation, which can
result in a large number of control inlets/outlets that is beyond
the manufacturing capability. A common approach to deal with
this problem is pressure sharing [8] [9], which finds groups of
valves that can share the same pressurizing sequence, without
affecting the original functionality. This approach enables
valves in the same group to share one single control inlet, but
requires extra routing efforts to support the interconnection.

A netlist describes the logical connections among microflu-
idic components. Mathematical research demonstrates that not
all logical connections can be transformed as physical connec-
tions in a 2D plane without introducing any crossing (i.e., can
be drawn as a planar graph) [10]. Therefore, we enable channel
crossings in the flow layer by introducing valves at cross points
to guide the flow direction. As introducing additional valves
results in additional routing burden on the control layer, it is
essential to synchronize the two layers whenever flow channels
cross.

Due to the above-mentioned design difficulties, exist-
ing design automation work only demonstrated partial so-

lutions, which either focused on singled-layered placement
or routing [8] [9], or simplified the problem by omit-
ting inlets/outlets [11] [12] and assuming a naturally planar
netlist [13]. An alternative is to apply homogeneous de-
signs [14] [15]. However, though the homogeneous structure
alleviates design difficulty, new challenges arise such as fluid
routing, contamination owing to resource reuse, and assay
scheduling prolongation. So far, no previous work was able
to generate complete designs for mLSI, and thus could not
synchronize with the manufacturing flow.

In this paper, we propose a module model library to
accurately model microfluidic components involving layer
interactions; and we propose a co-layout synthesis tool named
Columba, which generates AutoCAD-compatible designs that
fulfill all design rules and can be directly used for mask
fabrication. Columba takes plain-text netlist descriptions as
inputs, and performs simultaneous placement and routing for
multiple layers while ensuring the planarity of each layer. We
validate the ability of Columba by fabricating two of its output
designs. Columba is the first design automation tool that can
seamlessly synchronize with the manufacturing flow.

II. MODULE MODEL FOR MICROFLUIDICS

On mLSI, operations depend on valve actuation, which
brings layer interaction for fluid control. Therefore, we treat
valves as the constituent elements of compound functional
modules such as mixers, reaction chambers and switches, and
propose a library to accurately model the inner-structure as
well as inter-communication constraints of these modules.

We use the term module model to indicate an initial physical
architecture for a specific type of microfluidics. The explicit
design of each microfluidic component is refined from its
corresponding module model. Figure 2 shows our module
models proposed for mixers, switches, reaction chambers, and
inlets/outlets. In our library, each module model is drawn
as a bounding box with pins on its boundary for inter-
communication. We allow the rotation of the bounding boxes
to support more placement and routing solutions. Inside of
the bounding boxes, flow channels are drawn as blue lines,
control channels are drawn as green lines, and valves are
drawn as orange rectangles. Channels drawn by dashed lines
can be extended to satisfy different application requirements.
In practice, the width of normal control channels is smaller
than the width of valves, but we omit this difference in our
module models for the sake of design convenience.

Our module model library enables us to model the com-
plicated valve behavior as pin selection problems. Each valve
is connected to one or two control pins of its corresponding
modules. The selection of pins specifies the explicit inner-
structure of a module. If a valve or a channel segment is not
connected to any selected pin, it will be removed from the
eventual design. Details of the selection are discussed in the
following module descriptions.

Mixers are the common platforms for highly efficient
mixing operations. Figure 2(a) shows our module model for
mixers. The model consists of a ring-shaped flow channel
segment, six valves for fluid control, two groups of valves
forming peristaltic pumps, and several corresponding control

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

p0

p1

p2

p3

p4 p5

p6 p7
p′2

p′2

p′0

p′1

(d) (e)

(f) (g)

p′0

p′1

p0 p′0

p0

p1

p2

p3

p4 p5

p6 p7 p6 p6 p6 p6p7 p7 p7 p7

p4 p4 p4 p4p5 p5 p5 p5

(c-i) (c-ii) (c-iii) (c-iv) (c-v)

(c)

p0 p4
p5

p8
p9

p1
p6

p7
p10

p11

p12 p13

p14 p15

p16

p17
p20

p21 p2

p18
p19

p22
p23

p3
(a)

200µm

p′0 p′1

v0

v2

v3 v4

v1

v5

P

P

v0 v1

v2 v2 v2 v2 v2

v2 v3

v2 v3

v0 v1

p0 p4
p5

p8
p9

p1
p6

p7
p10

p11

p12 p13

p14 p15

p16

p17
p20

p21 p2

p18
p19

p22
p23

p3
(b)

p′0 p′1

v0

v2

v3 v4

v1

v5
P

Figure 2: Module models: (a) Mixer. (b) A possible configu-
ration for a mixer. (c) Provided options to connect the left-
down valve (v2) of the mixer module. (d) Switch. (e) Reaction
chamber. (f) Control inlet. (g) Flow inlet/outlet.

TABLE I: Pin binding options to actuate valves.

mixer

v0 {p0},{p1},{p0,p1}

v1 {p2},{p3},{p2,p3}

v2 {p4},{p6},{p4,p5},{p4,p6},{p6,p7}

v3 {p9},{p11},{p8,p9},{p9,p11},{p10,p11}

v4 {p16},{p18},{p16,p17},{p16,p18},{p18,p19}

v5 {p21},{p23},{p20,p21},{p21,p23},{p22,p23}

P {p12},{p13},{p12,p13},{p12,p14},{p13,p15}

P {p14},{p15},{p14,p15}

switch

v0 {p0},{p1},{p0,p1}

v1 {p2},{p3},{p2,p3}

v2 {p4},{p5},{p6},{p7},{p4,p5}, {p4,p7},{p5,p6},{p6,p7}

v2 {p4},{p5},{p6},{p7},{p4,p5}, {p4,p7},{p5,p6},{p6,p7}

... ... (analogous to v2 and v2)

reaction chamber

v0 {p0},{p1},{p0,p1}

v1 {p2},{p3},{p2,p3}

channels. The mixer module model is up-down asymmetric,
which means rotating the module can result in four different
orientations. The model shown in Figure 2(a) is horizontally
placed without rotation. Our module model provides two
options P and P̄ for the peristaltic pump, only one of which
needs to be applied to perform the peristaltic protocol, and the
other is removed from the eventual design. For each pump, we
support two different physical structures composed of either
three or four valves to enable flexible pin access. Our module
model also provides multiple binding options for each valve.
Figure 2(b) shows a possible configuration for a mixer, and
Figure 2(c) shows five binding options provided for valve v2.
If v2 is at the end of a pressure transportation path, it can be
accessed either from the bottom side through pin p4 or from
the upper side through pin p6. If v2 is a transfer station along a
pressure transportation path (i.e., v2 shares pressure with other
valves), it can be accessed either through pins on opposite
module boundaries ((p4,p6)), or through pins on the same
boundaries ((p4,p5), (p6,p7)). The detailed pin binding options
for each valve and pump are listed in Table I. As shown in the
table, our module model enables 32·54·(5+3)=45000 variants
of the mixer structure, and thus provides strong support for
flexible placement and routing strategies.

Switches are used to guide the fluid direction when flow
channels cross. Figure 2(d) shows our module model for
switches. The model consists of one main flow channel and
several flow channel junctions. The number of junctions in a
switch can be managed to support different communication
protocols. For each channel junction, one of the flow pins
on opposite module boundaries will be chosen to form the
expected transportation path. Channel segments connecting the
main channel with the unchosen pins will be removed from
the eventual design. Note that flow pin selection influences
the valve implementation since valves controlling the removed

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

Primitive netlist

Synthesized design

chip size improvement

Netlist Planarization

Global Layout Generation

overlap?
Yes

Pin Allocation

Inlet/Outlet Restoration

Yes
Refinement

Result Interpretation (Interface with AutoCAD)

Physical
Synthesis

No

overlap?
Yes

No

No

Mask Fabrication & Chip Manufacture

Microfluidic Biochip

Columba

< a given threshold?

Figure 3: Chip production process supported by Columba.

flow channels will also be removed. Our switch module model
also provides multiple binding options for each valve, the
details are shown in Table I.

Reaction chambers are general platforms for many differ-
ent operations [16] [17] [18]. A reaction chamber usually
consists of a flow channel segment with two valves at both
ends. Figure 2(e) shows our module model for reaction cham-
bers. The height and width of the chamber are adjustable to
support different application requirements. Detailed binding
options for the two valves are listed in Table I.

Inlets/Outlets are punch holes on continuous-flow mi-
crofluidics for pressure or fluid communication with external
instruments. Figure 2(f) and (g) show our module models for
control and flow inlets/outlets, respectively. The models are
designed according to the specifications in [7]. For the sake
of planarity, each inlet/outlet possesses only one pin, which
can be located anywhere on the module boundary.

III. OVARALL FLOW OF COLUMBA

Columba is the first design automation tool for continuous-
flow microfluidics that can synchronize with the manufacturing
flow. We depict the complete chip production process sup-
ported by Columba in Figure 3.

The input of the production process is a plain-text primitive
netlist of the required design, which specifies the number,
type, dimension, and logic connection of the required mixers,
reaction chambers, and flow inlets/outlets, as well as particular
execution constraints such as mixers or reaction chambers
executing in parallel. Columba starts its design process with
netlist planarization, which transforms the primitive netlist
into a planarity-guaranteed netlist by adding switch modules
to the netlist. The refined netlist is then taken as the input for
physical synthesis. Columba models the physical synthesis
problem as a linear optimization problem, and solves it pro-

gressively in four sequential phases: global layout generation
phase outputs a layout topology and specifies the pressure
sharing relation among valves; pin allocation phase then
details the design by performing explicit channel routing;
inlet/outlet restoration phase further complements the design
by adding inlets/outlets back to the design. After the first
three physical synthesis phases, a valid design that fulfills
all design-rules will be achieved. This design will be taken
by the iterative refinement phase to pursue chip area and
channel length reduction. When the improvement achieved
in the refinement phase is smaller than a given threshold,
the physical synthesis process terminates and the output will
be sent for result interpretation and transformed into an
AutoCAD [19] script. This script can be directly read by
AutoCAD and then exported for mask fabrication and chip
manufacture. We demonstrate two fabricated microfluidic
biochips in Section VII.

IV. NETLIST PLANARIZATION

The input of Columba is a primitive netlist in plain-text
format, which specifies the number, type, dimension and logic
connection of the required mixers, reaction chambers and
flow inlets/outlets. Switches and control inlets/outlets are not
required to be specified in this primitive netlist, since their
implementation highly depends on the chip physical structure,
and thus can hardly be predicted by biochip end-users.

As we have mentioned in Section I, not all logical con-
nections can be transformed as physical connections in a 2D
plane without introducing any crossing. For continuous-flow
microfluidic design, when transforming the logic connections
specified in the primitive netlist into physical connections, i.e.
placement and routing solutions, flow channel crossings can
be inevitable. In order to guarantee feasible fluid transportation
paths, switches need to be implemented at flow channel junc-
tions. So far, previous design automation work either neglects
this issue or introduces switches arbitrarily when performing
physical synthesis [11] [20] [21]. However, the implementation
of switches not only affects flow channels but also results in
extra routing efforts in the control layer for the actuation of
valves. Since previous approaches cannot foresee the existence
of switches and thus cannot reserve appropriate resources for
them, the feasibility of the designs cannot be guaranteed.

Columba embeds a netlist planarization approach before
physical synthesis to solve this problem. It adds switches
to the netlist and thus turns the primitive netlist into a
planarity-guaranteed netlist, where every logic connection can
be transformed into feasible flow channel connection without
introducing any channel crossing. The new netlist clearly spec-
ifies the number of switches, the number of channel junctions
in each switch, and logic connections among switches and
other modules, which enables our physical synthesis algorithm
to model the resource usage accurately.

Before introducing the proposed netlist planarization, we
first take a look at the formal definition of planarity. Planarity
is defined in Kuratowski’s theorem [10]: a graph is planar if
and only if the graph does not contain a subgraph that is a
subdivision of K5 or of K3,3. Based on this theorem, we give
the following lemma:

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

(a)

v0

v1

v1

v0

(b)

: Type-II (others): Type-I (switch)

Figure 4: (a) Subdivision examples of K5 and K3,3. (b)
An example of introducing and merging Type-I modules
(switches) to planarize the netlist.

Lemma. For a graph G= (V,E) that does not contain a
barycentric subdivision of K5 or K3,3, G is non-planar only
if there exist two adjacent vertices v0,v1∈V both with degrees
larger than or equal to 3.

To verify this lemma, we aim to show that a non-barycentric
subdivision of K5 or K3,3 contains two adjacent vertices
v0,v1 ∈ V both with degrees larger than or equal to 3. A
barycentric subdivision is a special subdivision that subdivides
each edge of the respective graph. As shown in Figure 4(a),
a non-barycentric subdivision of K5 contains at least two
adjacent vertices both with degree 4, and a non-barycentric
subdivision of K3,3 contains at least two adjacent vertices both
with degree 3.

Corollary. In the graph G= (V,E) representing the input
netlist, if G contains no barycentric subdivision of K5 or of
K3,3 as its subgraph, and for every vertex with a degree larger
than or equal to 3, each of its adjacent vertices has a degree
no more than 2, the graph is planar.

Based on the derived corollary, we classify our modules into
two types: Type-I includes switch modules with unconstrained
degree, and Type-II includes mixers, reaction chambers, and
inlet/outlet modules with a degree limited to no more than
2. As shown in Figure 4(b), white circles represent Type-
I modules and black circles represent Type-II modules. If a
Type-II module needs to receive inputs from or deliver outputs
to multiple other Type-II modules, instead of connecting these
modules directly with each other, we connect them with Type-
I modules as transfer stations to meet the degree limitation.
If two Type-I modules are connected directly with each other,
we will merge them together to form a new Type-I module.
Therefore, for every two adjacent modules, at least one of them
has the degree restricted to no more than 2, which means the
netlist graph must be planar.

When no new Type-I module is introduced and no more
modules are merged, a check for the existence of barycentric
subdivision will then be performed. If a barycentric subdivi-
sion of K5 or K3,3 is ascertained, we will arbitrarily pick 2
Type-I modules from this subdivision and merge them together
until no more barycentric subdivision exists, so that the netlist
planarity can be guaranteed.

V. CO-LAYOUT PHYSICAL SYNTHESIS

With the planarized netlist, Columba solves the physical
synthesis problem progressively in four sequential phases.
Each phase is modeled as a mathematical linear optimization
problem, sharing some general modeling characteristics.

ra rb rarb
ra

rb
ra,ri

rb,le
ra

rb

ra,lo
rb,up

ra,le
rb,ri

rb,lo
ra,up

(mj,x,mj,y)

mj,w

mj,h

(a) (c) (d) (e) (f)
bi,0

bi,1

bi,2
bi,n−2

segi,0

segi,1

(b)

ri1

segi,n−2

bi,n−1

mj,le mj,ri

mj,lo

mj,up

Figure 5: (a) Channel model. (b) Module model (dimension).
(c)(d)(e)(f) Non-overlapping rectangles ra and rb.

A. General Modeling Characteristics

We model the physical structure of continuous flow mi-
crofluidics as points and lines in a 2D coordinate plane and
describe the design constraints as linear formulas. In this
paragraph, we introduce the common constraints shared by
our four physical synthesis phases.

1) Module, Channel and Chip Area

The fundamental building blocks in our mathematical mod-
els are modules and channels, which are specified by charac-
teristic points.

For a module mj with index j∈N, we specify the coordi-
nates of its center point as (mj,x,mj,y), and we specify the
width and height of the module as mj,w and mj,h. Thus, we
can specify the module boundaries as mj,le,mj,ri,mj,up,mj,lo,
where mj,le=mj,x− 1

2mj,w, mj,ri=mj,x+ 1
2mj,w, mj,up=

mj,y+ 1
2mj,h, and mj,lo =mj,y− 1

2mj,h, as shown in Fig-
ure 5(a). We denote the set of all modules in a design as
M .

We model a channel as a polyline connected with two
modules. As shown in Figure 5(b), for a channel ci with
index i∈N, we denote its segments as segi,0,··· ,segi,n−2,n∈
N,n≥ 2; and its bending points as bi,0,··· ,bi,n−1, thereof
bi,k and bi,k+1 with 0≤k≤n−2, k∈N are called the ends
of the segment segi,k; and bi,0 and bi,n−1 are called the
ends of the channel ci. We model the length of segi,k as
the Manhattan distance between its segment ends, which is
denoted by a continuous variable li,k and confined by the
following constraints:

(bi,k,x−bi+1,k,x)+(bi,k,y−bi+1,k,y)≤ li,k, (1)
(bi,k,x−bi+1,k,x)+(bi+1,k,y−bi,k,y)≤ li,k, (2)
(bi+1,k,x−bi,k,x)+(bi,k,y−bi+1,k,y)≤ li,k, (3)
(bi+1,k,x−bi,k,x)+(bi+1,k,y−bi,k,y)≤ li,k. (4)

We denote the set of all channels in a design as C. For each
ci∈C, we denote the set of all segments in ci as Sci and the
set of all bending points in ci as Bci .

We introduce two continuous variables: xτ , yτ to represent
the x-dimension and the y-dimension of a chip, and we
denote max{xτ ,yτ} as a continuous variable dτ . The related
constraints are listed as follows:

xτ ≤dτ , yτ ≤dτ ; (5)

∀ci∈C, ∀(bi,k,x,bi,k,y)∈Bci ,

ρc≤bi,k,x≤xτ−ρc, (6)
ρc≤bi,k,y≤yτ−ρc; (7)

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

∀mj ∈M ,

ρm≤mj,le, (8)
mj,ri≤xτ−ρm, (9)
ρm≤mj,do, (10)

mj,up≤yτ−ρm; (11)

where ρc (resp. ρm) is a user-defined constant representing
the minimum spacing distance from a channel (resp. a module
boundary) to the chip boundary.

2) Prohibition on Overlapping Modules and Channels

Our planarity-guaranteed netlist ensures the feasibility for
Columba to generate a design without any overlapping mod-
ules and channels.

In order to model the area consumption of channels, we
consider each channel segment as the diagonal of a virtual
rectangle. An example is shown in Figure 5(b), where the gray
rectangle ri1 represents the area consumption of its diagonal
segi,1. For a channel segment segi,k, we denote the coor-
dinates of its two ends as (bi,k,x,bi,k,y), (bi,k+1,x,bi,k+1,y),
and specify the boundaries of its virtual rectangle rik by
rik,le,rik,ri,rik,up,rik,lo, where rik,le = min{bi,k,x,bi,k+1,x},
rik,ri = max{bi,k,x,bi,k+1,x}, ri,k,up = max{bi,k,y,bi,k+1,y},
and ri,k,lo=min{bi,k,y,bi,k+1,y}, linearized by the following
constraints:

ra,ri≥bi,k,x, ∧ ra,ri≥bi,k+1,x, (12)
ra,up≥bi,k,y, ∧ ra,up≥bi,k+1,y, (13)
ra,le≤bi,k,x, ∧ ra,le≤bi,k+1,x, (14)
ra,lo≤bi,k,y, ∧ ra,lo≤bi,k+1,y. (15)

For the convenience of description, in this paragraph, we
also use the notation rj to represent the area consumption of
a module mj , where rj,le=mj,le, rj,ri=mj,ri, rj,up=mj,up,
and rj,lo=mj,lo.

As shown in Figure 5(c)(d)(e)(f), there are four possible
relative locations for two nearby rectangles ra and rb without
area overlap. We model these relative locations as the follow-
ing constraints:

ra,ri≤rb,le−ρa,b+q1M, (16)
ra,up≤rb,lo−ρa,b+q2M, (17)
ra,le≥rb,ri+ρa,b−q3M, (18)
ra,lo≥rb,up+ρa,b−q4M, (19)

q1+q2+q3+q4 =3, (20)

where q1, q2, q3, and q4 are auxiliary binary variables, M
is an extremely large auxiliary constant, and ρa,b is the user-
defined minimum spacing distance between ra and rb. With
(20), exactly one of q1, q2, q3, and q4 must be 0, which means
the relative position of every two nearby rectangles must fulfill
one of the above mentioned four situations.

3) Objective

Our four physical synthesis phases share some general
optimization objectives, i.e. chip area reduction and channel
length reduction.

Chip area is an important metric to evaluate a continuous-
flow microfluidic design. Smaller chips require less manu-
facturing cost and provide convenience for microscope ob-
servation. Besides the x-dimension xτ and the y-dimension
yτ of the chip, we also include the continuous variable
dτ = max{xτ ,yτ} into the optimization objective to balance
the two dimensions.

Channel length is another metric to evaluate a continuous-
flow microfluidic design, since long channels raise reliability
and yield concerns [22]. For each channel ci∈C, we compute
its length as the total length of its segments

∑
segi,k∈Sci

li,k.

B. Global Layout Generation

The global layout generation phase aims to decide the layout
topology, setting the foundation for the posterior optimization
phases.

1) Model Reduction for Modules and Channels

In the global layout generation phase, we perform model
reduction for modules and channels to alleviate computing
effort.

Our module models for mixers, reaction chambers and
switches proposed in Section II are asymmetric, i.e. ro-
tating the modules can change the module orientation
and thus affect the physical synthesis solutions. Columba
omits the influence of module rotation in the global lay-
out generation phase, and models each module mj ∈M
as a simple square bounding box, the side length of
which is set as max{mj,h,mj,w}. With center point co-
ordinate (mj,x,mj,y), the module boundaries can be com-
puted by mj,le =mj,x− 1

2 max{mj,h,mj,w}, mj,ri =mj,x+
1
2 max{mj,h,mj,w}, mj,up =mj,y+ 1

2 max{mj,h,mj,w}, and
mj,lo =mj,y− 1

2 max{mj,h,mj,w}. Pins are omitted in this
phase, and channels are routed to center points of modules
instead.

In the global layout generation phase, a channel ci∈C is
modeled as a straight line instead of the proposed polyline.
The simplified channel model for ci only has one segment
si,0 and two bending points bi,0 and bi,1, where bi,0 and
bi,1 represent both the channels ends and the segment ends.
Regarding the relatively large number of control channels,
Columba collects control channels whose ends share the same
coordinates as control channel bundles, and performs routing
for control channel bundles instead of explicit control channel
routing. For example, if ma and mb are two modules with
center points (ma,x,ma,y) and (mb,x,mb,y), Ca,b are the set
of all control channels that connect ma with mb, i.e. ∀ck ∈
Ca,b, Bck ={(ma,x,ma,y),(mb,x,mb,y)}, then all channels in
Ca,b are collected to form a control channel bundle c̊a,b, which
is routed as a single control channel in the global layout
generation phase. We introduce an integer variable nc̊a,b

to
denote the number of control channels contained in c̊a,b, i.e.,
nc̊a,b

= |Ca,b|, for channel restoration in the posterior phase.
In addition, we do not consider the area consumption of

control and flow inlets/outlets, and omit all channels connected
to control and flow inlets/outlets in this phase.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

ninm1
=7

nc̊1,2 =2

Cvm2
=2

(a) (b)

Cvm3
=6

Cvm1
=7

nc̊1,3 =5

ninm3
=1

m2

m3

m1

Figure 6: (a) An example of pressure-sharing result. (b) A
possible layout based on (a) after splitting bundles, allocating
pins, and restoring control inlets.

2) Pressure Sharing

On mLSI, a valve has two states: open indicates that the
valve is not actuated; and closed indicates that the valve is
actuated and thus its underlying flow channel is blocked. If
several valves are sequentially connected to the same control
inlet, we can assume that these valves share the same status,
since pressure from the control inlet will be transported along
the entire control channel and actuates all the passing valves.
We call this feature pressure sharing. In this work, we consider
pressure sharing as a feature among modules. For arbitrary
two modules ma,mb∈M , if there exists a valve va in ma

and a valve vb in mb, where va and vb are connected to the
same control inlet, we say ma shares pressure with mb. The
valves that belong to the same module, e.g., peristaltic valves
sequentially connected in a mixer, will not be discussed as
pressure sharing objects.

Based on different triggering conditions, we classify pres-
suring sharing into two categories: passive pressure sharing
and active pressure sharing.

Passive pressuring sharing has been discussed in [8], re-
ferred as ”valve compatibility”. [8] introduces a new valve
status: X , which represents don’t care, indicating that the
module that the valve belongs to is idling, and thus the status
of the valve has no impact on the application. Therefore, if
two modules do not have any overlapping working period,
i.e., one of the two modules must idle when the other one
is working, all valves in the idling module are in status X
and can be arbitrarily actuated. Columba takes advantage of
this feature and allows modules without overlapping working
period to share pressure with each other. For two modules ma

and mb that are allowed to share pressure, Columba assigns
two control channel bundles c̊a,b ,̊cb,a to them, and introduces
the following constraints:

nc̊a,b
−q5M≤0, (21)

nc̊b,a−q6M≤0, (22)
q5+q6≤1, (23)

where q5 and q6 are auxiliary binary variables, and M is an
extremely large auxiliary constant. Above constraints make
sure that at least one of nc̊a,b

,nc̊b,a must be 0, i.e., c̊a,b ,̊cb,a
cannot both exist. According to the direction of pressure

m1 m2

Figure 7: Straight channel connection between parallel mod-
ules without causing overlapping of vitual rectangles.

transportation, we call c̊a,b an outgoing channel bundle of ma,
and an incoming channel bundle of mb. For each module mj ,
valves that belong to mj receive pressure either directly from
control inlets, or from other modules via incoming control
channel bundles of mj . We introduce an integer variable ninmj

to represent the number of control inlets that are connected to
mj , a set Cin,mj that contains all the incoming channel bundles
of mj , a set Cout,mj

that contains all the outgoing channel
bundles of mj , and a constant Cvmj

to represent the number
of valves that demand individual control in mj . For valves
that are sequentially connected in the same module, e.g., a
pump in a mixer, we consider that only one valve demands
individual control. The pressure sharing condition thus can be
modeled as the following constraints:

ninmj
+

∑
c̊k,j∈Cin,mj

nc̊k,j
=Cvmj

, (24)

∑
c̊j,k∈Cout,mj

nc̊j,k≤Cvmj
. (25)

Constraint (24) makes sure that every valve or pump must
be connected either directly to a control inlet, or to another
module via an incoming control channel bundle. Constraint
(25) makes sure that the total number of control channels
contained in the outgoing control channel bundles of mj

does not surpass the number of valves in mj that demands
individual control.

An example of the modeling results for passive pressure
sharing is shown in Figure 6(a). m1 is a mixer containing 7
valves that require individual control according to our module
model library. All these valves are directly connected to 7
control inlets. m1 shares pressure with a chamber m2 and a
switch m3, which contain 2 and 6 valves, respectively. All
valves in m2 are connected via c̊m1,2 to m1. One valve in m3

is connected to a control inlet, and all the rest are connected
via c̊1,3 to m1. Figure 6(b) shows a possible physical layout
of the chip that can be generated in later phases based on the
pressure sharing modeling results. Flow channels outside the
modules are omitted in Figure 6(b) since they are not related
to pressure sharing.

Active pressure sharing is required by some application
protocols to ensure synchronous pressure transportation. [23]
has discussed some common execution limitations in biolog-
ical applications, one of which is parallel execution. Large
biological applications are usually composed of replicate oper-
ations to improve throughput [3] [24] [25] [26]. These replicate
operations are executed in parallel and require synchronous
valve control to streamline the process. We call the modules
for executing the replicate operations parallel modules. Since
parallel modules share the same module model, their valves

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

at the same relative locations can be directly connected to
share pressure, as shown in Figure 7. For a group of n
parallel modules mp,··· ,mp+n−1, Columba applies constraints
(24) and (25) to them, builds up a group of channel bundles
c̊k,k+1, k∈N,p≤k<p+n−1, and introduces the following
constraints:

ninmp
=Cvmp

, (26)

noutmp+n−1
=0, (27)

nc̊k,k+1
=Cvmp

, (28)

making sure that the pressure shared by parallel modules are
transported sequentially from a group of control inlets to every
parallel module.

3) Opposite Neighbor Modules

As mentioned in Section II, a module model can be regarded
as a bounding box with pins on its boundary. Modules that
have a logic connection according to the input netlist need
to be physically connected by flow channels via flow pins,
and modules that share pressure with each other need to
be connected by control channels via control pins. In the
global layout generation phase, we propose a heuristic method
regarding the pin location of modules to provide convenience
for explicit channel routing in the posterior synthesis phases.

Our input netlist of the physical synthesis phase specifies the
flow layer logic connections among modules. Mixer modules
and reaction chamber modules that are logically connected in
the flow layer are defined as flow neighbors. Flow neighbors
must be connected via flow pins. In our proposed module
models for mixers and reaction chambers, each module has
two flow pins, which means that each module can have no
more than two flow neighbors. For a mixer or a reaction
chamber module mj , we denote its two flow neighbors as
mjn1

and mjn2
. As shown in our module model library in

Section II, the two flow pins of mj are located at the opposite
module boundaries. In order to prevent long detours of flow
channels, we introduce the following constraints to place mjn1

and mjn2
at the opposite sides of mj , and thus enable them

to be connected straightforward to the opposite flow pins of
mj :

mjn1
,ri≤mj,le−ρn+q7M, (29)

mj,ri≤mjn2 ,le
−ρn+q7M, (30)

mjn1
,le≥mj,ri+ρn−q8M, (31)

mj,le≥mjn2
,ri+ρn−q8M, (32)

mjn1 ,up
≤mj,lo−ρn+q9M, (33)

mj,up≤mjn2
,lo−ρn+q9M, (34)

mjn1 ,lo
≥mj,up+ρn−q10M, (35)

mj,lo≥mjn2
,up+ρn−q10M, (36)

q7+q8+q9+q10 =3, (37)

where ρn is a user-defined constant representing the spacing
distance between flow neighbors, q7, q8, q9, and q10 are auxil-
iary binary variables, one of which must be set to 0 according
to constraint (37), representing an alignment possibility. For
example, if q7 is set to 0, it means that mjn1

is located at

the left side of mj and mjn2
is located at the right side of

mj . Note that in the global layout generation phase, modules
are modeled as square bounding boxes without orientation.
Therefore, flow neighbors of mj can be placed either at the
horizontally opposite sides of mj or at the vertically opposite
sides of mj . The orientation of mj can be fixed according to
different modeling results of flow neighbor locations. If the
two flow neighbors of mj are placed horizontally opposite
of each other, mj will be placed horizontally as well, as
shown in Figure 2(a), so that its two flow neighbors can easily
access their corresponding flow pins. Analogously, if the flow
neighbors of mj are placed at the vertically opposite sides of
mj , mj will be placed vertically, too, so that its flow pins can
be accessed on the upper and lower module boundaries.

Mixer and reaction chamber modules that share pressure
need to be connected by control channels via control pins. For
a group of parallel modules that share pressure actively, each
module is connected with no more than two other modules in
the control layer. We call parallel modules that are directly
connected in the control layer control neighbors. In our
module models for mixers and reaction chambers, the module
boundaries that control pins belong to are perpendicular to the
module boundaries that flow pins belong to. For example, if a
mixer or a reaction chamber module mj is placed horizontally
with flow pins on its left and right module boundaries, the
control pins of mj must be on the upper and lower module
boundaries. Therefore, we introduce the following constraints
to each group of parallel modules mp,··· ,mp+n−1, to let the
control neighbors of each module in this group be placed at
the direction perpendicular to its flow neighbors.
∀p≤k<p+n−1, k∈N:

mk+1,x≤mk,x+q7M, (38)
mk,x≤mk+1,x+q7M, (39)
mk+1,x≤mk,x+q8M, (40)
mk,x≤mk+1,x+q8M, (41)
mk+1,y≤mk,y+q9M, (42)
mk,y≤mk+1,y+q9M, (43)
mk+1,y≤mk,y+q10M, (44)
mk,y≤mk+1,y+q10M. (45)

If a flow neighbor of mk is placed at the left or the right
side of mk, i.e., q7 or q8 is set to 0 according to constraints
(29)-(32), the x-coordinate of mk and mk+1 are forced to be
the same according to constraints (29)-(32). Analogously, if a
flow neighbor of mk is placed at the upper or the lower side of
mk, i.e., q9 or q10 is set to 0 according to constraints (33)-(36),
the y-coordinate of mk and mk+1 are forced to be the same
according to constraints (42)-(45). Note that we force parallel
modules to be placed in alignment. As shown in Figure 7,
our module models support straightforward control channel
connections between parallel modules that are in alignment,
and thus much routing effort can be saved.

4) Global Layout Generation Model

In the global layout generation phase, besides the gen-
eral optimization objectives as mentioned in Section V-A3,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

Columba also aims to minimize the number of control inlets
when determining the control layer layout. Thus, the global
layout generation model can be formulated as follows:

Minimize:

αdτ+α1xτ+α2yτ+β
∑
ci∈C

∑
segi,k∈Sci

li,k+γ
∑
mj∈M

ninmj

Subject to: (1)–(45)

where α, α1, α2, β, and γ are adjustable weight coefficients.

C. Pin Allocation

After the global layout generation phase, Columba obtains
a layout topology where channels are routed to module center
points instead of pins. The pin allocation phase restores the
original models for modules and channels, and routes channels
back to pins.

1) Model Restoration for Modules and Channels

In the global layout generation phase, modules are modeled
as square bounding boxes without pins. We restore the original
module models proposed in Section II in the pin allocation
phase. For a module mj , we denote the set of its control pins
as Pj,c and the set of its flow pins as Pj,f . We index all pins as
shown in Figure 2, and denote the k-th control (resp. flow) pin
of a module mj as pj,k (resp. p′j,k). The coordinates of pj,k
(resp. p′j,k) can be calculated as (mj,x+κj,k,x,mj,y+κj,k,y)
(resp. (mj,x+κ′j,k,x,mj,y+κ′j,k,y)), where κj,k,x (resp.κ′j,k,x)
and κj,k,y (resp.κ′j,k,y) are constants indicating the horizontal
and vertical offset distances from the center point of mj to
pj,k (resp. p′j,k).

In the global layout generation phase, control channels
between two modules ma and mb are collected as a control
bundle c̊a,b, specified with an integer nc̊a,b

indicating the
number of actual control channels contained in the channel
bundle. We split a channel bundle c̊a,b back to nc̊a,b

explicit
control channels in the pin allocation phase. We call the control
channels split from c̊a,b outgoing control channels of ma, and
incoming control channels of mb. For a module mj , we denote
the set of all its incoming (resp. outgoing) control channels
as Ccin,mj

(resp. Ccout,mj
). Analogously, we denote the set

of incoming (resp. outgoing) flow channels of mj as Cfin,mj

(resp. Cfout,mj).

2) Routing Channels to Pins

We introduce an auxiliary binary variable qci,pj,k (resp.
qci,p′j,k) to indicate whether a control (resp. flow) channel ci is
connected to a module mj via pin pj,k (resp. p′j,k). We apply
the following constraints to each module mi to make sure that
each pin of mi is accessed by no more than one channel:

∀pj,k∈Pj,c,
∑

ci∈Ccin,mj
∪Ccout,mj

qci,pj,k≤1, (46)

∀p′j,k∈Pj,f ,
∑

ci∈Cfin,mj
∪Cfout,mj

qci,p′j,k≤1. (47)

Then we introduce the following constraints to each channel
ci that is connected to mj to make sure that ci is connected

to exactly one pin of mj :

∀ci∈Ccin,mj∪Ccout,mj ,
∑

pj,k∈Pj,c

qci,pj,k =1, (48)

∀ci∈Cfin,mj∪Cfout,mj ,
∑

p′j,k∈Pj,f

qci,p′j,k =1. (49)

Thus, for each incoming control channel ci ∈Ccin,mj with
bending points b0,··· ,bn−1, we introduce the following con-
straints to model its pin connection:

bi,n−1,x=mj,x+
∑

pj,k∈Pj,c

qci,pj,kκj,k,x, (50)

bi,n−1,y=mj,y+
∑

pj,k∈Pj,c

qci,pj,kκj,k,y, (51)

making sure that if qci,pj,k is set to 1, the control channel end
bi,n−1 and the pin pj,k will have the same coordinate. Similar
constraints are also introduced to each outgoing control chan-
nel ci∈Ccout,mj

, only with different notation of the channel
end:

bi,0,x=mj,x+
∑

pj,k∈Pj,c

qci,pj,kκj,k,x, (52)

bi,0,y=mj,y+
∑

pj,k∈Pj,c

qci,pj,kκj,k,y. (53)

Analogous constraints are also introduced to flow channels
and flow pins, only with different pin notations. We omit the
detailed constraints in this work due to the similarity.

3) Pin Binding Options

In this paragraph, we call a valve or a pump that requires
individual control a controlled unit. Our module model pro-
vides multiple pin binding options for each controlled unit
as mentioned in Table I. These options are derived from the
following modeling features.

In our module models, each controlled unit can be ac-
cessed via several different pins. For example, as shown in
Figure 2(a), v0 can be accessed either via p0 or p1, and pump
P can be accessed via p12, p13, p14, or p15. The pin access
options of a controlled unit uh in a module mj depends on the
inner-structure of mj , which is specified in our module library.
We denote the set of all pin access options of uh in mj as
Pmj ,uh

and introduce the following constraints to make sure
that each controlled unit is connected to exactly one incoming
control channel. ∑

ci∈Ccin,mj

∑
pj,k∈Pmj,uh

qci,pj,k =1. (54)

In our model, a controlled unit is either the end of a pressure
transportation path, or a transfer station of a pressure trans-
portation path. Therefore, a controlled unit uh in a module mj

can be connected to no more than one outgoing control channel
of mj . We model this feature as the following constraint:∑

ci∈Ccout,mj

∑
pj,k∈Pmj,uh

qci,pj,k≤1. (55)

For a controlled unit uh in a mixer module mj , there may
exist pin access options pj,k1 ,pj,k2 ∈Pmj ,uh

that are very close

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

to each other. For example, as shown in Figure 2(a), v2 can be
accessed via both p4 and p5. Since p4 and p5 are close to each
other (the distance between p4 and p5 is 200µm), connecting
v2 to p4 or p5 will not make much difference in the routing
results. In this case, we introduce a priority between p4 and p5

to shrink the solution space and thus save computation effort.
For pj,k1 ,pj,k2 ∈Pmj ,uh

, if pj,k1 has a higher priority than
pj,k2 , we introduce the following constraint:∑

ci∈Ccin,mj
∪Ccout,mj

qj,k2≤
∑

ci∈Ccin,mj
∪Ccout,mj

qj,k1 , (56)

which means that a control channel connected to mj can only
access pin pj,k2 , if pj,k1 has already been accessed by other
channels.

In our mixer and switch modules, some pin binding options
serve similar functionality. For example, both {pj,12,pj,14} and
{pj,12,pj,15} support the functionality to access the pump in
mj via two pins on opposite module boundaries. To shrink
the solution space and thus save computation effort, we mark
one of the two binding options (in this case {pj,12,pj,15})
as insignificant, and remove it from the model. For the pin
binding options {pj,k1 ,pj,k2} that are marked as insignificant,
we introduce the following constraint:∑

ci∈Ccin,mj
∪Ccout,mj

qj,k1 +
∑

ci∈Ccin,mj
∪Ccout,mj

qj,k2≤1. (57)

In our switch modules, as mentioned in Section II, a flow
channel junction can be directly accessed by exactly one of
the flow pins on opposite module boundaries. We denote the
flow pin pairs connected to the same flow channel junction
of a switch mj as p′j,k and p′

j,k̄
and introduce the following

constraint: ∑
ci∈Cfin,mj

∪Cfout,mj

qj,k+
∑

ci∈Cfin,mj
∪Cfout,mj

qj,k̄=1. (58)

4) Lagrangian Relaxation

In the pin allocation phase, control channel bundles are split
into explicit control channels and thus require more chip area.
In order to negotiate the area consumption of modules and
channels, we allow the location of modules to be moved in
a limited range compared with the global layout generated in
the first phase. Moreover, we modify the constraint (20), which
prohibits overlapping among rectangles ra and rb representing
modules or channels, as follows:

q1+q2+q3+q4 =3+λa,b, (59)

thereof λa,b is the Lagrange multiplier, the minimization
of which is included in the optimization targets. If λa,b is
equal to 0, (59) is the same as (20), and one constraint among
(16)-(19) has to be non-trivial, indicating a non-overlapping
situation. If the overlapping is inevitable with the current
channel models and module locations, λa,b has to be set to 1.
In this case, the pin allocation phase will be re-run and new
bending points will be added to the channels with conflicts,
thus enabling a detour around the conflict area. As shown
in Figure 8(a), the initial states of channel c1 and c2 result
in an inevitable crossing, considering their limited floating

b2,k2

b1,k1

floating range of bending points

c1

c2

(a) (b)

Figure 8: (a) An example of channel crossing. (b) An example
of inserting new bending points.

ranges. Therefore, we insert new bending points b1,k1 to c1
and b2,k2 to c2, the coordinates of which are constrained by
the locations of all existing binding points along c1 and c2 as
shown in Figure 8(a). With the new bending points, now the
crossing can be avoided as shown in Figure 8(b).

5) Pin Allocation Model

We add the minimization of the Lagrange multiplier λa,b
into the optimization objective of the pin allocation model,
and formulate the model as the following:

Minimize:

αdτ+α1xτ+α2yτ+β
∑
ci∈C

∑
segi,k∈Sci

li,k+ξ
∑

(ra,rb)∈L

λa,b

Subject to: (1)–(19), (46)–(59)

where α, α1, α2, β, and ξ are adjustable weight coefficients,
and L represents the set of all nearby rectangles for modules
and channels. The pin allocation phase terminates when the
sum of Lagrange multipliers

∑
(ra,rb)∈Lλa,b is minimized to

0.

D. Inlet/Outlet Restoration

In the global layout generation phase and pin allocation
phase, Columba omits the area consumption for flow and
control inlets/outlets. Since inlets/outlets have a simple phys-
ical structure with only one pin and no valves, it is not
so complicated to restore them in the inlet/outlet restoration
phase.

In the inlet/outlet restoration phase, Columba restores the in-
lets/outlets by adding them to the non-overlapping constraints
(16)-(19) and (59). Each inlet/outlet is modeled as a rectangle
like other modules, and is prevented from overlapping with
other modules and channels. The optimization objective, re-
lated constraints, as well as the termination control are kept
the same as in the pin allocation phase.

E. Refinement

In previous phases, Columba focuses on finding a feasible
solution. The modeling result of the inlet/outlet restoration
phase is a valid design that fulfills all design rules, but can
be further improved in the refinement phase by adjusting
the weight coefficients of the optimization objetives. As in
previous phases, modules are allowed to be moved in a
limited range in this phase. The generated design will be
compared with the design generated in the last phase or in
the last iteration, and the refinement phase terminates when
the improvement is less than a given threshold.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

TABLE II: Generated design features.

application ver. D(mm2) L(mm) #(m,r,s,fin/out,cin) T

kinase Columba1.0 15.05 × 15.05 163.54 2, 2, 3, 7, 24 5m22s
act. [24] Columba2.0 17.20 × 15.00 174.65 2, 2, 3, 7, 15 1m14s

nucleic acid Columba1.0 18.35 × 18.15 252.83 3, 3, 3, 11, 40 9m5s
proc. [3] Columba2.0 16.30 × 24.55 257.50 3, 3, 3, 11, 17 5m20s

ChIP Columba1.0 27.95 × 26.65 298.25 5, 4, 2, 17, 44 9m56s
(4IP) [25] Columba2.0 14.20 × 43.50 261.55 5, 4, 2, 17, 26 4m25s

mRNA Columba1.0 22.77 × 24.30 564.01 4, 4, 3, 18, 54 34m42s
iso. [26] Columba2.0 29.10 × 21.25 388.55 4, 4, 3, 18, 23 23m49s

ChIP Columba1.0 38.15 × 38.11 556.42 11, 10, 2, 23, 100 46m10s
(10IP) Columba2.0 47.90 × 36.45 494.60 11, 10, 2, 23, 31 23m35s

cell-free Columba1.0 n/a n/a 8, 0, 2, 10, 75 > 10hr
bio. net. [29] Columba2.0 20.00 × 37.00 477.05 8, 0, 2, 10, 24 10m32s

D: chip dimension. L: total length of channels. #m, #r, #s, #fi/o, #ci: number
of mixers, reaction chambers, switches, flow inlets/outlets, and control inlets. T : program
runtime.

VI. RESULT INTERPRETION – AUTOCAD INTERFACE

After the physical synthesis, Columba interprets the model-
ing results and outputs a series of drawing commands into an
AutoCAD script file, which can be directly read by AutoCAD
and then exported for mask fabrication.

VII. EXPERIMENTAL RESULTS

Columba is implemented in C++, and applies the Mixed
Integer Linear Programming (MILP) solver Gurobi [27] to
solve its mathematical model. We run Columba on a computer
with 2.40 GHz CPU to perform automatic design for five
applications.

The design rules we adopted for the test cases are from the
Stanford Foundry [7]: the width of flow channels and valves is
100µm, the width of control channels is 30µm, the minimum
spacing distance between channels is 100µm, the size of a
flow/control inlet is 1mm×1mm, and the center-to-center
distance between inlets/outlets is 2mm.

Table II shows the feature values of the designs output by
Columba. The first five test cases are from the the previous
version of Columba [28] (Columba 1.0), and the last test case
is new [29]. The first four test cases are based on the manual
designs shown in [3], [24], [25], and [26], respectively, and
the fifth test case is a synthetic chromatin immunoprecipitation
(ChIP) application with 10 replicate immunoprecipitation (IP)
operations, based on [25]. We record the dimension D(mm2),
total channel length L(mm), and the number of different
modules #(m,r,s,fin/out,cin) of the designs generated by the
previous version of Columba [28] (Columba 1.0) and by
the current version of Columba (Columba 2.0). The program
runtime for generating these designs is denoted as T .

As shown in Table II, for each application, the designs
output by Columba 1.0 and 2.0 have similar dimensions. In
general, Columba 1.0 generates designs with more balanced
x-y-dimensions, because Columba 1.0 does not support active
pressure sharing among parallel modules. Parallel modules are
required to be placed in alignment in Columba 2.0, and thus
may require larger x- or y-dimension.

In most cases, Columba 2.0 achieves channel length re-
duction and significant control inlets reduction compared with
Columba 1.0, mainly owing to the improved module models.
Our new module models allow control channels to pass

(b)

(a)

Figure 9: Input and output of Columba 2.0 for kinase activity
application [24]. (a) Input primitive netlist. (b) Fabricated chip.

through modules via pins on opposite module boundaries, and
thus avoid long detour of control channels and enable more
pressure sharing options. Besides, active pressure sharing also
contributes to the control inlets reduction.

The program runtime of both Columba 1.0 and Columba 2.0
increases with the complexity of the input application. Com-
pared with Columba 1.0, Columba 2.0 achieves significant
runtime reduction, resulting mainly from three approaches:
1. The above-mentioned improvement of module models im-
proves the routability of the design and reduces the time
for finding feasible solutions. 2. In-alignment-placed parallel
modules shrink the solution space. 3. The reduced number
of control inlets alleviates the computational effort of the
inlet/outlet restoration phase.

Columba is the first design automation tool that can seam-
lessly synchronize with the manufacturing flow. We show four
synthesized designs, two of which have been fabricated, and
discuss their properties from different perspectives.

Figure 9 shows the input primitive netlist and the output
design for a kinase activity application [24]. The input primi-
tive netlist (Figure 9(a)) looks like a high-level programming
language consisting of three parts (columns): module declara-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

Figure 10: Demonstration of red and blue food dyes mixing
in two reaction chambers. (a) t=0s. (b) t=2s. (c) t=8s.

Figure 11: Demonstration of fluidic control using pneumatic
valves. (a)(b) Red and blue dyes are filled alternately in the
two reaction chambers.

tion, which specifies the type, name, and dimensions of each
module; netlist description, which specifies the communication
among modules; and special constraints/demands. With the
primitive netlist and the design rules, Columba synthesizes the
design completely automatically. Though this is the smallest
design in our test cases and only involves two mixers and two
chambers, it requires sophisticated valve control to support the
application execution, and thus results in a complex control
layer physical structure. Figure 9(b) shows a photo of the
fabricated chip, mirrored from the design output by Columba.
The flow layer of the chip is marked by red food dye, and the
control layer of the chip is marked by green food dye.

Figures 10–12 demonstrate two essential functions: mix-
ing and fluid routing, performed on our Columba-generated
designs. Figure 10 demonstrates the mixing of red and blue
food dyes in the reaction chambers on our microfluidic device.
At t= 0s (Figure 10(a)) red dye filled both chambers, and
the valves were closed. At t= 2s (Figure 10(b)) the right
valves were opened. Blue dye was allowed to fill half of each
chamber, and mixing occurred (Figure 10(c)). This function
can be employed for biologically relevant studies requiring
the reaction or incubation of two fluids. (See Supplementary
Video ”ChamberMixing.gif” [30])

Figure 11 demonstrates fluidic control using pneumatic
valves. Both red and blue dyes were made to alternate between
the top and bottom reaction chambers, showing the ability to
control fluidic movement on-chip as required for different ap-
plications. (See Supplementary Video ”FluidRouting.gif” [30])

Figure 12 demonstrates the function of our rotary mixer.
At first, half of the mixer is filled with red dye and the other
half is filled with blue dye (Figure 12(a)). Then the peristaltic
pump is actuated to move fluids circularly around the mixer
(Figure 12(b)). The mixing of two fluids is an integral step in
many biochemical, biophysical and biomedical studies. (See

Figure 12: Demonstration of mixing function in the rotary
mixer. (a) Before mixing. (b) During mixing.

(a)

(b) (c)

Figure 13: Design of a nucleic acid processor [3] synthesized
by Columba 2.0. (a) Flow layer layout (b) Control layer layout
(c) Fabricated chip.

Supplementary Video ”RotaryMixerMixing.gif” [30])
Figure 13 shows the design of a nucleic acid processor [3]

synthesized by Columba 2.0. The design contains three mixers
and three reaction chambers. Different from the rectangular
mixers applied in the kinase activity design, all mixer modules
specified for the nucleic acid processor have the same x- and y-
dimension. Columba provides a modification-friendly module
model library that allows its user to define the dimensions of
their required modules. Compared with the design synthesized
by Columba 1.0, more than half control inlets are saved in the
design synthesized by Columba 2.0.

We show the complete physical synthesis flow for our
largest application ChIP (10IP) in Figure 14. The application
requires one mixer for chromatin process (Ch) and ten parallel
mixers as well as 10 parallel chambers for ten replicate
immunoprecipitation processes (IP). Columba first determines
the basic layout topology for this design in its global layout
generation phase, as shown in Figure 14(a). In this phase,
modules are simplified as square bounding boxes; channels
are simplified as straight lines; control channels between the
same modules are collected as control channel bundles; and
inlets/outlets are omitted. The basic layout topology is then de-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 13

(a) (b) (c) (d)

Figure 14: Resultant graphs of the design for ChIP (10IP). (a) Phase 1. (b) Phase 2. (c) Phase 3. (d) Phase 4 (final).

tailed in the pin allocation phase, as shown in Figure 14(b). In
this phase, modules are restored as their original dimensions,
and channels are modeled as polylines connected to pins on
module boundaries. This design is further complemented in
the inlet/outlet restoration phase, as shown in Figure 14(c).
We can see from the figures that the chip area is gradually
reduced as the design is detailed phase by phase. Figure 14(d)
shows the final design after the refinement phase, which is
zoomed in for a clear vision.

As the complexity of the biological application increases,
the physical structure of the continuous-flow microfluidics
becomes more complex, which leads to huge difficulty in
manual design. Columba provides a design automation so-
lution to solve this problem, and will be a milestone to the
industrialization of continuous-flow microfluidics.

VIII. CONCLUSION AND FUTURE POSSIBILITIES

In this work, we proposed the co-layout synthesis tool
Columba that can synthesize manufacturing-ready designs for
continuous-flow microfluidic large-scale integration (mLSI)
from plain-text netlist descriptions. Columba enables easy
adaption to the continuous innovation of bioengineering by
applying an extendable module model library. New microflu-
idic components and variants of existing microfluidic com-
ponents can be easily modeled as modules with pin binding
options, and thus fit into our proposed optimization model.
In future work, we would synchronize Columba with front-
end research [31] to enlarge its application scope. We aim
to propose a complete design automation tool, to which the
user can send either high-level abstract application protocols
or low-level physical netlist descriptions as the inputs. We
would also further analyze the difference between the manual
designs and the computer-generated designs. We aim to run
real applications on the designs output by Columba.

REFERENCES

[1] R. A. W. III, P. C. Blainey, H. C. Fan, and S. R. Quake, “Digital
PCR provides sensitive and absolute calibration for high throughput
sequencing,” BMC Genomics, 2009.

[2] X. Jiang, N. Shao, W. Jing, S. Tao, S. Liu, and G. Sui, “Microfluidic
chip integrating high throughput continuous-flow PCR and DNA hy-
bridization for bacteria analysis,” Talanta, pp. 246–250, 2014.

[3] J. W. Hong, V. Studer, G. Hang, W. F. Anderson, and S. R. Quake, “A
nanoliter-scale nucleic acid processor with parallel architecture,” Nature
Biotechnology, vol. 22, no. 4, pp. 435–439, 2004.

[4] F. K. Balagadde, L. You, C. L. Hansen, F. H. Arnold, and S. R. Quake,
“Long-term monitoring of bacteria undergoing programmed population
control in a microchemostat,” Science, vol. 309, no. 5731, pp. 137–140,
2005.

[5] T.-M. Tseng, B. Li, T.-Y. Ho, and U. Schlichtmann, “ILP-based allevia-
tion of dense meander segments with prioritized shifting and progressive
fixing in PCB routing,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 34, no. 6, pp. 1000–1013, 2015.

[6] T.-M. Tseng, B. Li, C.-F. Yeh, H.-C. Jhan, Z.-M. Tsai, M. P.-H. Lin,
and U. Schlichtmann, “An efficient two-phase ILP-based algorithm for
precise CMOS RFIC layout generation,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., accepted.

[7] Stanford Foundry, Basic Design Rules.
http://web.stanford.edu/group/foundry.

[8] H. Yao, T.-Y. Ho, and Y. Cai, “Pacor: Practical control-layer routing flow
with length-matching constraint for flow-based microfluidic biochips,”
in Proc. Design Autom. Conf., 2015, pp. 142:1–142:6.

[9] K. Hu, T. A. Dinh, T.-Y. Ho, and K. Chakrabarty, “Control-layer routing
and control-pin minimization for flow-based microfluidic biochips,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 36, no. 1,
pp. 55–68, 2017.

[10] W. T. Tutte, “How to draw a graph,” Proceedings of the London
Mathematical Society, vol. Third Series, no. 13, pp. 743–767, 1963.

[11] H. Yao, Q. Wang, Y. Ru, T.-Y. Ho, and Y. Cai, “Integrated flow-control
co-design methodology for flow-based microfluidic biochips,” IEEE Des.
Test. Comput., vol. 32, no. 6, pp. 60–68, 2015.

[12] T.-M. Tseng, B. Li, U. Schlichtmann, and T.-Y. Ho, “Storage and
caching: Synthesis of flow-based microfluidic biochips,” IEEE Des. Test.
Comput., vol. 32, no. 6, pp. 69–75, 2015.

[13] J. McDaniel, B. Crites, P. Brisk, and W. H. Grover, “Flow-layer physical
design for microchips based on monolithic membrane valves,” IEEE
Des. Test. Comput., vol. 32, no. 6, pp. 51–59, 2015.

[14] T.-M. Tseng, B. Li, T.-Y. Ho, and U. Schlichtmann, “Reliability-
aware synthesis for flow-based microfluidic biochips by dynamic-device
mapping,” in Proc. Design Autom. Conf., 2015, pp. 141:1–141:6.

[15] T.-M. Tseng, B. Li, M. Li, T.-Y. Ho, and U. Schlichtmann, “Reliability-
aware synthesis with dynamic device mapping and fluid routing for flow-
based microfluidic biochips,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 35, no. 12, pp. 1981–1994, 2016.

[16] R. Gomez-Sjoeberg, A. A. Leyrat, D. M. Pirone, C. S. Chen, and S. R.
Quake, “Versatile, fully automated, microfluidic cell culture system,”
Anal. Chem, vol. 79, pp. 8557–8563, 2007.

[17] J. F. Zhong, Y. Chen, J. S. Marcus, A. Scherer, S. R. Quake, C. R.
Taylor, and L. P. Weiner, “A microfluidic processor for gene expression
profiling of single human embryonic stem cells,” Lab on a Chip, vol. 8,
no. 1, pp. 68–74, 2008.

[18] A. K. White, M. VanInsberghe, O. I. Petriv, M. Hamidi, D. Sikorski,
M. A. Marra, J. Piret, S. Aparicio, and C. L. Hansen, “High-throughput
microfluidic single-cell RT-qPCR,” Proc. Natl. Acad. Sci., vol. 108,
no. 34, pp. 13 999–14 004, 2011.

[19] AUTODESK, AutoCAD.
http://www.autodesk.com/products/autocad/overview.

[20] W. H. Minhass, P. Pop, J. Madsen, and F. S. Blaga, “Architectural
synthesis of flow-based microfluidic large-scale integration biochips,”
in Proc. Int. Conf. Compil., Arch. and Syn. Embed. Sys., 2012, pp. 181–
190.

[21] K.-H. Tseng, S.-C. You, J.-Y. Liou, and T.-Y. Ho, “A top-down synthesis
methodology for flow-based microfluidic biochips considering valve-
switching minimization,” in Proc. Int. Symp. Phy. Des., 2013, pp. 123–
129.

[22] C.-X. Lin, C.-H. Liu, I.-C. Chen, D. T. Lee, and T.-Y. Ho, “An efficient
bi-criteria flow channel routing algorithm for flow-based microfluidic
biochips,” in Proc. Design Autom. Conf., 2014, pp. 141:1–141:6.

[23] M. Li, T.-M. Tseng, B. Li, T.-Y. Ho, and U. Schlichtmann, “Sieve-valve-
aware synthesis of flow-based microfluidic biochips considering specific
biological execution limitations,” in Proc. Design, Automation, and Test
Europe Conf., 2016.

[24] C. Fang, Y. Wang, N. T. Vu, W.-Y. Lin, Y.-T. Hsieh, L. Rubbi, M. E.
Phelps, M. Mschen, Y.-M. Kim, A. F. Chatziioannou, H.-R. Tseng, and
T. G. Graeber, “Integrated microfluidic and imaging platform for a kinase
activity radioassay to analyze minute patient cancer samples,” Cancer
Res., vol. 70, no. 21, pp. 8299–8308, 2010.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 14

[25] A. R. Wu, J. B. Hiatt, R. Lu, J. L. Attema, N. A. Lobo, I. L. Weissman,
M. F. Clarke, and S. R. Quake, “Automated microfluidic chromatin
immunoprecipitation from 2,000 cells,” Lab on a Chip, vol. 9, pp. 1365–
1370, 2009.

[26] J. S. Marcus, W. F. Anderson, and S. R. Quake, “Microfluidic single-
cell mRNA isolation and analysis,” Anal. Chem., vol. 78, pp. 3084–3089,
2006.

[27] Gurobi Optimization, Inc., Gurobi Optimizer Reference Manual.
http://www.gurobi.com.

[28] T.-M. Tseng, M. Li, B. Li, T.-Y. Ho, and U. Schlichtmann, “Columba:
Co-layout synthesis for continuous-flow microfluidic biochips,” in Proc.
Design Autom. Conf., 2016, pp. 147:1–147:6.

[29] H. Niederholtmeyer, V. Stepanova, and S. J. Maerkl, “Implementation
of cell-free biological networks at steady state,” Proc. Natl. Acad. Sci.,
vol. 110, no. 40, pp. 15 985–15 990, 2013.

[30] IEEE Xplore, IEEE Xplore Digital Library. http://ieeexplore.ieee.org.
[31] M. Li, T.-M. Tseng, B. Li, T.-Y. Ho, and U. Schlichtmann, “Component-

oriented high-level synthesis for continuous-flow microfluidics consider-
ing hybrid-scheduling,” in Proc. Design Autom. Conf., 2017, pp. 51:1–
51:6.

Tsun-Ming Tseng (S’10–M’15) received the bach-
elor degree in electronics engineering from Na-
tional Chiao Tung University (NCTU), Hsinchu, Tai-
wan, in 2010, the master degree in communications
engineering from Technical University of Munich
(TUM), Munich, Germany, in 2013, and the Dr.-Ing.
degree from TUM, in 2017. He is currently a postdoc
fellow in the Chair of Electronic Design Automation,
TUM. His research interests focus on mathematical
modeling methods for computer-aided design for
emerging technologies, such as microfluidic biochips

and optical networks-on-chips.

Mengchu Li (S’16) received the bachelor degree in
Germanistik from Tongji University in China. She
then came to Germany and is currently pursuing
another Bachelor degree in Computer Science at
Ludwig-Maximilians-Universität München (LMU)
in Germany. She works as working student in the
Chair of Electronic Design Automation in Technical
University of Munich (TUM) in Germany. Her cur-
rent research interests focus on design automation
for continuous-flow microfluidics.

Daniel Nestor Freitas is currently pursuing his
M.S. in Electrical Engineering at Santa Clara Uni-
versity, where he has previously received his B.S.
in Bioengineering (2017). Daniel works under the
guidance of Dr. Emre Araci, designing, fabricating
and testing integrated microfluidic devices. Daniel
has been recognized as an associate member of the
Sigma Xi Research Society, has been supported by
funding from numerous successful grant applica-
tions as an undergraduate, and was selected as the
Santa Clara University School of Engineering 2017

recipient of the excellence in research award. Daniel’s research interests
include microfluidic large-scale integration (mLSI), and the development
of microfluidic technologies that solve common problems with traditional
laboratory techniques.

Travis McAuley received M.S.’17 and B.S’16 de-
grees from Santa Clara University in Bioengineer-
ing. He worked under the guidance of Dr. Emre
Araci, designing, fabricating and testing integrated
microfluidic devices. He is currently working for
Motive Power, Inc at Santa Clara, California.

Bing Li received the bachelor’s and master’s degrees
in communication and information engineering from
Beijing University of Posts and Telecommunica-
tions, Beijing, China, in 2000 and 2003, respectively,
and the Dr.-Ing. degree in electrical engineering from
Technical University of Munich (TUM), Germany, in
2010. He is currently a researcher with the Chair of
Electronic Design Automation, TUM. His research
interests include high-performance and lower-power
design of computing systems and emerging systems.

Tsung-Yi Ho (SM’12) received his Ph.D. in Elec-
trical Engineering from National Taiwan University
in 2005. He is a Professor with the Department of
Computer Science of National Tsing Hua Univer-
sity, Hsinchu, Taiwan. His research interests include
design automation and test for microfluidic biochips
and nanometer integrated circuits. He has presented
10 tutorials and contributed 11 special sessions in
ACM/IEEE conferences, all in design automation for
microfluidic biochips. He has been the recipient of
the Invitational Fellowship of the Japan Society for

the Promotion of Science (JSPS), the Humboldt Research Fellowship by the
Alexander von Humboldt Foundation, and the Hans Fischer Fellow by the
Institute of Advanced Study of the Technical University of Munich. He was
a recipient of the Best Paper Awards at the VLSI Test Symposium (VTS)
in 2013 and IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems in 2015. He served as a Distinguished Visitor of the
IEEE Computer Society for 2013-2015, the Chair of the IEEE Computer
Society Tainan Chapter for 2013-2015, and the Chair of the ACM SIGDA
Taiwan Chapter for 2014-2015. Currently he serves as an ACM Distinguished
Speaker, a Distinguished Lecturer of the IEEE Circuits and Systems Society,
and Associate Editor of the ACM JETC, ACM TODAES, ACM TECS, IEEE
TCAD, and IEEE TVLSI, Guest Editor of IEEE D&T, and the Technical
Program Committees of major conferences, including DAC, ICCAD, DATE,
ASP-DAC, etc.

Ismail Emre Araci (M’14) I. Emre Araci has
received his B.S. and M.S. degrees from Electri-
cal Engineering Department, Ege University, Izmir,
Turkey. He received his Ph.D. from College of
Optical Sciences, University of Arizona in 2010.
He then joined Prof. Stephen Quake’s group in the
Bioengineering Department at Stanford University
as a postdoctoral associate and as the director of the
Stanford Microfluidics Foundry (SMF). He has been
an Assistant Professor at the Bioengineering Depart-
ment, Santa Clara University, since 2015. He serves

on the advisory board of several start-up companies. His primary research
goals are directed toward the development and application of miniaturized
microfluidic and optofluidic technologies for biology and medicine.

Ulf Schlichtmann (S’88–M’90) received the
Dipl.Ing. and Dr.Ing. degrees in electrical engi-
neering and information technology from Technical
University of Munich (TUM), Munich, Germany, in
1990 and 1995, respectively. He was with Siemens
AG, Munich, and Infineon Technologies AG, Mu-
nich, from 1994 to 2003, where he held various
technical and management positions in design au-
tomation, design libraries, IP reuse, and product
development. He has been a Professor and the Head
of the Chair of Electronic Design Automation, TUM,

since 2003, where he also served as Dean of the Department of Electrical and
Computer Engineering, from 2008 to 2011, and as Associate Dean of Studies
of International Studies since 2013. Since 2016, he is an elected member of
TUM’s Academic Senate and Board of Trustees. He also serves on a number
of advisory boards. Ulf’s current research interests include computer-aided
design of electronic circuits and systems, with an emphasis on designing
reliable and robust systems. In recent years, he has increasingly worked on
emerging technologies, such as microfluidic biochips and optical interconnect.

