[

FAKULTAT FUR INFORMATIK

DER TECHNISCHEN UNIVERSITAT MUNCHEN

Master’s Thesis in Informatik

Validating the Decoding and the Translation
into Value Semantics of X86 Machine Code

Julian Kranz

D

I

FAKULTAT FUR INFORMATIK

DER TECHNISCHEN UNIVERSITAT MUNCHEN

Master’s Thesis in Informatik

Validating the Decoding and the Translation into Value
Semantics of X86 Machine Code

Validierung der Dekodierung und der Ubersetzung in
eine Werte-Semantik von Intel x86 Maschinen Code

Author: Julian Kranz
Supervisor: Prof. Dr. Helmut Seidl
Advisor: Dr. Axel Simon

Date: July 18, 2013

I assure the single handed composition of this master’s thesis only supported by declared
resources.

Munich, the July 18, 2013 Julian Kranz

Abstract

The static analysis of binary code is an established approach for the discovery of pro-
gramming errors. The first step towards the analysis of a program is its decoding. To this
end, a decoder scans the binary code and outputs a structured representation of the in-
structions using data structures defined in a programming language. Afterwards, the de-
coded data is translated into a standardized intermediate representation (IR). This process
is referred to as the semantic translation since it expresses the semantics of the binary code
using the generic constructs from the IR. The domain specific language GDSL is used for
the Intel x86 decoder and semantic translator specifications that lay the foundations for
this work. The implementation of a decoder and semantic translator for a complex archi-
tecture like Intel x86 almost certainly leads to a multitude of programming errors. In order
to address this, the thesis presents an approach of autonomously validating the correct-
ness of the respective specifications for the Intel x86 architecture using automatic test case
generation.

vii

viii

Contents

Abstract vii
Outline of the Thesis xiii
I. Introduction 1
1. Introduction 3
II. GDSL 7
2. Overview 9

3. A Generic Decoder Specification Language for Interpreting Machine Language 11

3.1. General Language Overview 13
3.2. Decoding x86 Prefixes 17

4. Using GDSL for Giving Semantics to Machine Language 19
4.1. RReil Intermediate Representation 19
4.2. Writing Semanticsusing GDSL, 20
42.1. AnExample Intel Instruction 20

4.22. Generating RReil statements using GDSL monadic functions 21

423. TheTranslator 22

43. DevelopmentState 24
III. Validation 25
5. Introduction to Validation 27
51. Approach. e 27
52. Limitations 29
53. PartOverview e 29

6. Generating Intel Instructions 31
6.1. TheIntel InstructionFormat, 31
6.1.1. The Classic Instruction Format 31

6.1.2. The AVX Instruction Format 32

6.2. Output Correctness vs. Implementation Simplicity 33

ix

Contents

10.

11.

6.3. The Decision Tree of the Generator
6.3.1. The X86 Generator Tree o v i i v i i i it i
6.4. Invalid instructions e

The Tester Component

71. OperationModes
7.1.1. Choiceof Registers
712. Crashhandling

72. Results

Inspecting RReil Code

8.1. Determining Register Usage
8.1.1. Required Information about the Accessed Registers
8.1.2. Handling of Conditional Execution
8.1.3. Read Registers
8.14. WrittenRegisters 0L
8.1.5. Dereferenced Registers
81.6. Example e

The Execution Context

9.1. Representation of Registers
9.1.1. The DomainofaRegister

9.2. Representation of Accessed Memory

Generating the Testbed
10.1. Overviewo o e
10.2. Choice of Registers
10.3. Allocation of Registers
10.3.1. Allocation of Standard Registers
10.3.2. Allocating the Stack Pointer
10.3.3. Allocating the Flags Register
10.4. Initialization of Registers oo L
10.4.1. Initialization of Standard Registers and the Stack Pointer
10.4.2. Initialization of the Flags Register
10.4.3. Initialization of the Return Address Register
105.Jumps o
10.6. Memory Read and Write Accesses
10.7. Writing back of Register Contents
10.7.1. Writing back of Standard Registers and the Stack Pointer
10.7.2. Writing back of the Flags Register
10.8. Deallocation of Registers
10.9. AComplete Example L o oo

Preparation of the Execution Context
11.1. Initialization of General Purpose Registers
11.2. Initialization of the Flags Register

37
37
37
38
38

Contents

11.3. Initialization of the Program Counter 59
11.4. Biased Random Value Generation 59
11.5. Discussion o i e e e e e e e e e e 60
11.6. Examples 60
12. Simulation of the Execution of RReil Code 63
12.1. RReil Statements 63
12.1.1. The Assignment Statement 63
12.1.2. Load and Store Statements, 63
12.1.3. Control Flow Statements 64
12.1.4. Branching Statements 64

12.2. Domain Information e 64
12.3. RReil Operations 65
12.3.1. The Linear Operation 65
12.3.2. Addition and Subtraction 66
12.3.3. Multiplication, Divisionand Modulo 66
12.3.4. ShiftOperations.o .. 66
12.3.5. Bitwise Operations 67
12.3.6. Comparison Operations 67
12.3.7. Extension Operation 68

12.4. Memory ACCESSES v v i i 68
12.4.1. Read AccessSes o o v i i e e e e e 69
12.4.2. Write ACCESSES v i v i e e e e e e e e 69
124.3. Branching L 69

12.5. Simulation Errors 69
12.5.1. Unaligned Memory Access 70
12.5.2. Undefined Addresses 70
12.5.3. Undefined Data to be Stored to Memory 70
12.5.4. Undefined Conditions 71

13. Execution of the Instruction Under Test 73
13.1. Memory Mapping and Initialization 73
13.1.1. Initilization of Read Memory 74
13.1.2. Initilization of Written Memory 74
13.1.3. Initialization of Jumped at Memory 74

13.2. Execution of the Testbed Function and Cleanup 74
13.3. Handling of Signals 74
13.3.1. Segmentation Fault (SIGSEGV) 75
13.3.2. Illegal Instruction (SIGILL) v v v v v v i it it 75
13.3.3. Timer (SIGALRM) . . v v v v v v e e e e e e e e e e e e e e e e e 75

13.4. Intercepting Program Crashes 76
13.5. Execution Results e 76
14. Evaluation of the Test Results 77
14.1. Comparison of the Effects on Registers and Memory 77
141.1. Registers 77

xi

Contents

141.2. Memory e 78

142 ErrorTypes e 78
14.2.1. Decoding Errors 78

14.2.2. Translation Errors 78

14.2.3. Simulation Errors 79

14.2.4. Execution Errors 79

14.2.5. Comparison Errors oo o oo o 79

14.3. Statistical Analysis L o 79
14.3.1. Instruction Abstraction 79

14.3.2. Collected Data e 80

14.3.3. CPU Feature Dependence of Errors 80

15. Examples and Statistics 81
15.1. Example Test Case 81
15.2. Example Programming Error in the Translator 84
15.3. Statistical Data on the Current Specifications, 88
IV. Conclusion 91
16. Conclusion 93
Bibliography 95

xii

Contents

Outline of the Thesis

Part I: Introduction

CHAPTER 1: INTRODUCTION
This chapter presents an overview of the thesis and its purpose.

Part 1I: GDSL

CHAPTER 2: OVERVIEW

This chapter gives a summary of the design of the GDSL programming language and why
it is used for the decoder and the semantic translator.

CHAPTER 3: A GENERIC DECODER SPECIFICATION LANGUAGE FOR INTERPRETING MA-
CHINE LANGUAGE

This chapter describes the decoding of Intel instructions using a decoder written in GDSL.

CHAPTER 4: USING GDSL FOR GIVING SEMANTICS TO MACHINE LANGUAGE

This chapter describes the semantic translation of decoded Intel instructions using a trans-
lator written in GDSL.

Part II1: Validation

CHAPTER 5: INTRODUCTION TO VALIDATION

This chapter introduces the reader to the general approach used for the validation.

CHAPTER 6: GENERATING INTEL INSTRUCTIONS
This chapter details on the generation of Intel instructions used as test objects.

CHAPTER 7: THE TESTER COMPONENT

This chapter describes the main component of validation software which controls the test
process.

CHAPTER 8: INSPECTING RREIL CODE

This chapter details on the gathering of data required for the execution of instruction un-
der test from the translated semantics.

CHAPTER 9: THE EXECUTION CONTEXT

This chapter describes the data structure used to represent the system state of both the

X1ii

Contents

simulator and the actual processor.

CHAPTER 10: GENERATING THE TESTBED

This chapter presents the generation of the test environment the instruction under test is
embedded in for its execution.

CHAPTER 11: PREPARATION OF THE EXECUTION CONTEXT

This chapter details on the initialization of the virtual system state before the simulation
of semantics and the execution of the instruction under test.

CHAPTER 12: SIMULATION OF THE EXECUTION OF RREIL CODE

This chapter describes the simulation of the instruction semantics obtained from the GDSL
toolkit.

CHAPTER 13: EXECUTION OF THE INSTRUCTION UNDER TEST

This chapter details on the execution of the instruction under test embedded in the test
environment on the actual processor.

CHAPTER 14: EVALUATION OF THE TEST RESULTS

This chapter describes the evaluation of the test results. It also illustrates error conditions
that cause the test to fail.

CHAPTER 15: EXAMPLES AND STATISTICS

This chapter demonstrates how the validation software can be used to trace errors or ob-
tain statistical data using examples.

Part IV: Conclusion

CHAPTER 16: CONCLUSION
This chapter summarizes the findings of the thesis.

xiv

Part 1.

Introduction

1. Introduction

The static analysis of binary code is an established approach for the discovery of program-
ming errors. The first step towards the analysis of a program is its decoding. To this end, a
decoder scans the binary code and outputs a structured representation of the instructions
using data structures defined in a programming language. Afterwards, the decoded data
is translated into a standardized intermediate representation (IR). This process is referred
to as the semantic translation since it expresses the semantics of the binary code using the
generic constructs from the IR. Particularly, the implementation of the decoding of binary
code is cumbersome using general purpose programming languages. For this reason, the
domain specific language GDSL [10] specifically geared towards the implementation of
instruction decoders is used for the x86 decoder implementation that provides the basis
for this work. Since the GDSL language is a fully featured functional language which in-
corporates major features of Standard ML, it also qualifies for the implementation of the
corresponding semantic translator.

The GDSL toolkit contains a decoder specification as well as a semantic translator spec-
ification for the Intel x86 architecture. The architecture has got a long history of extensions
- by now, it incorporates a lot of different concepts that lead to a complex rule set for the
decoder. Examples for pitfalls include a growing number of prefixes and different default
values for instruction and address sizes depending on the execution mode of the proces-
sor. The Intel architecture is a CISC architecture; therefore, it consists of a large number of
instructions, some of which are powerful and complex. Since the intermediate represen-
tation which the semantic translation translates the decoded instructions into only offers
simple standard operations, the implementation of the semantic translator is considerable.
By now, the decoder is able to handle all of the almost 900 different instructions and the
semantic translator offers translations for at about half of them.

The implementation of the great number of routines needed to handle all these instruc-
tions almost certainly leads to a multitude of programming errors. An additional cause for
programming errors is the quality of the Intel manual itself which occasionally is vague.
The description of the instruction semantics uses an ad-hoc pseudo language that fol-
lows no precise syntax definition but instead uses different syntantic elements for logically
equivalent constructs. While it is very hard to prove a program to be correct, for all prati-
cal purposes testing its functionality using example inputs for which correct output values
(the reference values) are known has proven to be a valuable way to increase the code qual-
ity. For the instruction decoder and semantic translator, the test input data consist of a
binary instruction which is decoded and translated. This results in a semantic translation
expressed in the chosen intermediate representation. In order to evaluate the test result, it
is necessary to verify the correctness of the output of the translation.

In general, the test cases used need to feature a thorough coverage of the functionality of
the tested software program in order to allow for a reliable estimate of the code correctness
and the dependable detection of programming mistakes. Because of that, the test cases

1. Introduction

should be easily generable since a lot of them are needed: For the x86 specifications from
the GDSL toolkit, it is not only necessary to test the decoding and the semantic translation
of each instruction, but also include different operand combinations. A manual imple-
mentation of a vast amount of unit tests is very cumbersome. Besides that, the contruction
of reference values is also difficult when it comes to the semantic translator. Basically, a
manually created reference semantics would again rely on the instruction semantics given
by the Intel manual. Thus, errors made in the implementation of the semantic translator
would very probably be repeated during the test case construction.

In order to address the issues stated above, this work presents an approach of validating
the correctness of the specifications for the Intel x86 architecture written in GDSL using
automatic test case generation. The validation software utilizes the actual processor it is
running on for the contruction of reference values. This allows for a fast and autonomous
generation of numerous test cases. A single test case consist of the following main steps
performed in the order given:

* Instruction generation
In the beginning, a random Intel instruction is generated (which is called the in-
struction under test). This does not only include a random opcode, but also arbitrary
operand combinations and immediate values.

¢ Decoding and semantic translation
Next, the instruction under test is handed to the GDSL toolkit for its decoding and
semantic translation. This yields the semantics to be validated for correctness ex-
pressed in the intermediate represenation.

¢ Simulation of the semantics
The semantics itself is not compared to reference semantics since it is not possible to
obtain such reference semantics automatically. Instead, the effects of the execution of
instruction under test and simulation of the translated semantics on the system reg-
isters and memory are compared. For this, the execution of the semantics obtained
from the GDSL toolkit is simulated.

¢ Execution of the instruction under test
In order to obtain a reference value for the effects of the instruction under test on the
system registers and memory, the instruction is executed.

¢ Comparison of the system registers and memory
Finally, the changes on the system registers and memory induced by both the sim-
ulation of the semantics obtained from the GDSL toolkit and the execution of the
instruction under test on the actual processor are compared. If they match (and no
other errors occured so far), the test succeeds. Otherwise, the test fails. In that case,
a detailed description of the deviation of the two resulting states regarding registers
and memory is displayed.

Using the method presented above, errors in the specifications can be easily found by
repeatedly running test cases until the first error occurs. As stated above, the output of the
validation software includes data on the kind of error which helps to locate the problem
within one of the specifications. Furthermore, running a large number of test cases allows

for an analysis of the correctness of the current implementation by examing the output
data statistically.

The thesis is divided into four parts. After this introduction, the next part describes the
implementation of an instruction decoder and semantic translator specification using the
GDSL programming language. It is followed by Part III which is the main part of the the-
sis. This part details the validation of the decoder and semantic translator specifications.
Finally, Part IV summarizes the findings of the thesis.

1. Introduction

Part II.

Using GDSL for the Decoding and
Semantic Translation of Machine
Language

2. Overview

In order to perform static analysis of binary programs, machine code needs to be inter-
preted. The first step consist of the decoding of the application code. To this end, a decoder
transforms the byte sequences of the binary program into structured objects of a given
programming language. The decoder outputs an object for each instruction which allows
a programmer to easily access the different properties of the instruction, like, for example,
the type of operation and its operands. Even though these objects are a more generic repre-
sentation of the instructions than the binary code, they are still highly architecture depen-
dent. An analysis framework implemented using these objects would therefore be bound
to that architecture. The support of different architectures would require the framework
to be adapted to each of them which would result in a massive programming overhead
and also lead to code duplication. In order to address these problems, an additional level
of abstraction is introduced: The analysis is implemented using a small set of basic opera-
tions that forms an intermediate representation (IR). An example for such an intermediate
representation is the RReil language [11]. In order to allow an analysis framework to be
implemented architecture independent using RReil, the more complex and machine de-
pendent operations given by the a concrete processor architecture need to be transformed
into a program consisting of RReil statements. Since this models the semantics of the ma-
chine instructions, the process is referred to as semantic translation.

Implementing a decoder for binary code using common general purpose programming
languages is inconvenient and error prone. This is primarily caused by the fact that the
decoding involves a lot of bit operations used to to extract the different properties of an in-
struction from the byte stream. This led to the design of a domain specific language called
GDSL [10] which is particularly geared towards implementing instruction decoders. De-
coding an instruction involves numerous case distinctions; for example, the bit sequence
representing the opcode of an instruction needs to be mapped to the type of the instruc-
tion. Functional languages are in general best suited for pattern matching and, thus, for
case distinctions. Therefore, the GDSL language is designed to be a functional language.

As metioned above, the binary decoder outputs the decoded instructions in a repre-
sentation that is specific to the programming language used. Even though it is possible
to interface between different programming languages, this additional step requires pro-
gramming effort and implies a loss of type safety at the point of handover. Therefore, it is
preferable to implement the processing of the objects in the same language they were orig-
inally built in. For the matter in hand, this means to implement the semantic translation
using the GDSL language. Even though GDSL is designed to ease the implementation of
instruction decoders, it is a fully featured programming language which borrows major
concepts from Standard ML. For this reason, it also allows the specification of a semantic
translator.

The following chapters of this part describe the implementation of an instruction de-
coder and semantic translator for the Intel x86 architecture using the GDSL programming

2. Overview

language. They are derived from the two papers GDSL: A Generic Decoder Specification
Language for Interpreting Machine Language [10] and GDSL: A Universal Toolkit for Giving
Semantics to Machine Language [6].

10

—_

3. A Generic Decoder Specification Language
for Interpreting Machine Language

The reconstruction of assembler instructions from an input (byte) sequence that comprise
the program is the first step towards static program analysis. The second step is to map
each statement to a meaning which may be a value-, timing- or energy semantics, etc.,
depending on the goal of the analysis. Both aspects are commonly addressed by writing
an architecture-specific decoder and a translator to some internal representation expressed
in the implementation language of the analysis. The goal of this chapter is to build an
infrastructure to specify decoders and translations to semantics using a domain specific
language (DSL) that can be compiled into the programming language of existing analysis
tools. To this end, GDSL is presented and its design is motivated by the task of specifying
decoders for Intel x86 machine code.

The incentive for creating a DSL to specify decoder and semantics of assembler instruc-
tions was a discussion at a Dagstuhl seminar on the analysis of executable code. Here, it
was realized that many research groups implemented prototypes analyses using an archi-
tecture specific decoder and a hand-written semantic interpretation. Besides duplication of
work, these approaches are usually incomplete, are bound to one architecture and are hard
to maintain since their representation of instructions is geared towards a specific project.
In the presence of steadily increasing instruction sets and the need to adapt an analysis to
new targets such as virtual machines contained in malware, maintainability and simplicity
of decoder specifications is of increasing importance.

To this end, it is desirable to group instructions logically or, when converting a man-
ufacturer’s manual, in alphabetical order; this is introduced as mnemonic-centric specifi-
cation. For the sake of efficiency, however, a decoder must make a decision based on the
next value from the input sequence (opcode-centric dispatch) which precludes testing op-
code patterns one after the other. While a classic scanner generator like 1ex can convert
a mnemonic-centric specification to an opcode-centric decoder, it allows and encourages
overlapping patterns. Consider the following 1ex scanner specification:

while |do|switch |case { printf(”“keyword %s” ,yytext); }
[a—=zA—Z][a—2A-Z0—-9]x { printf(”ident. %s” ,yytext); }

Here the patterns for the keywords and the identifier are overlapping: the input while
matches both rules. In this case, 1ex uses the rule that appears first in the specification file.
Thus, a keyword is returned. Overlapping patterns are desirable in a scanner specification
since they improve readability and conciseness. In an instruction decoder, however, over-
lapping patterns are undesirable since the sequence in which the rules are written starts to
matter which, in turn, precludes a mnemonic-centric specification. Hence, a DSL for main-
tainable decoder specifications must provide a concise way of writing non-overlapping
patterns to exactly match an instruction.

11

3. A Generic Decoder Specification Language for Interpreting Machine Language

Opcode Instruction Description
00 /r ADD r/m8,rS8 Add r8 to r/ms8.
28 /r SUB r/m8, r8 Subtract r8 from r/m8.

Figure 3.1.: Two typical instructions in the Intel x86 manual.

Another challenge is the processing of non-constant bits of an instruction that are used to
specify parameters. Since parameter bits often follow re-occurring patterns, an abstraction
mechanism is required to keep the specification concise. For example, the ModR/M-byte
in Intel x86 instructions follows many opcodes and determines which register to use. Fig-
ure 3.1 shows an excerpt of the Intel manual where the first column shows the two bytes
that together form an instruction. The second byte /r is the ModR/M-byte that determines
which 8-bit registers r8 and which pointer r/m8 stand for. Within the decoder specifica-
tion language, the functions r/m8' and r8 are defined to generate the arguments of an
instruction. The content of the ModR/M-byte are read by a sub-decoder named /r that
stores the read byte in an internal decoder state. This sub-decoder can be re-used in the
decoder for add and sub:

val main [0x00 /r]
val main [0x28 /r]

binop ADD r/m8 r8
binop SUB r/m8 r8

Here, the decoder main is declared as reading 0x00 (resp. 0x28) from the input be-
fore running the sub-decoder /r. The binop function is a simple wrapper that executes
functions r/m8 and r8 (which access the values stored by /r) and applies the results to
the passed-in constructor (here ADD and SUB). By using sub-decoders such as /r that com-
municate via the internal state, the main decoder comes very close to the specification in
Fig. 3.1 of the Intel manual.

Since the DSL is an ML-like functional language, it is powerful enough to describe all
parts of a decoder, even r/m8 and r8 that are often hand-coded primitives in other de-
coder frameworks. This comprehensive approach enables users to add instructions that
have not been anticipated in the original design of /r. In summary, GDSL improves over
existing approaches as follows:

¢ Its abstraction mechanisms enable the definition of instruction decoders that are very
close to the syntax used in manufacturer’s manuals, thereby ensuring maintainabil-
ity even by the end users of the decoder framework.

* The specification is type checked during compilation and overlapping patterns are
detected. This ensures high reliability of the resulting decoder, especially in the pres-
ence of mistakes in the manuals of the manufacturer.

¢ The DSL is flexible enough to accommodate a variety of architectures. Due to its
general nature, it is possible to add translations from native instructions to some
abstract semantics which will enable binary analysis tools to analyse code for any
architecture that is described with the framework.

'The slash (/) is allowed as part of an identifier to accommodate the Intel nomenclature.

12

B W N =

3.1. General Language Overview

¢ We provide a prototype compiler that generates C code which is competitive with
other decoders. The specifications can be translated to other languages or used for
other purposes (e.g. test generation) by writing a new backend.

After the next section presents the design of GDSL, Sect. 3.2 illustrates its expressiveness
by detailing the decoding of Intel prefixes.

3.1. General Language Overview

This section discusses the design of GDSL by illustrating the use of the various syntactic
constructs. The general idea is that the decoder specification is an executable functional
program that consumes the input sequence and produces a heap containing the abstract
syntax tree (AST) that represents the recognized instruction. After the AST in the heap has
been processed, the heap can be reused for decoding the next instruction, thereby avoiding
the need for a garbage collector or for allocating memory with each instruction.

The grammar of GDSL is shown in Fig. 3.2. A file consists of a sequence of definitions
given by Decl. The granularity statement can be given once and defines the size of
the tokens that the decoder consumes. A token is measured in bits and is the smallest
granularity that a processor reads from memory. For Intel x86, the token size is 8 (and each
instruction can have between one and fifteen tokens). For standard ARM instructions,
the token size is 32 (and no instruction is longer than one token). Other processors are in
between these extremes, for instance, MicroChip’s PIC architecture has a token size of 14.
The optional 1sbfirst keyword states that bit sequences in decoders start with the least
significant bit, a notation used for e.g. PowerPC.

The export keyword states which of the decoders are publicly visible to the client code.
Line 3.3 shows the production for algebraic data types that introduce (or extend) the type
t-id with constructors con. As in ML, each constructor takes zero or one argument,
allowing the definition of enumerations such as the following:

type register = AX | BX | CX | DX

AST nodes such as shown below also are possible:

type op =

Reg of register
| Mem of {size : int, reg : op}
| Imm8 of [8]

Here, the argument to the Mem constructor is a record while Imm8 takes a bit vector of 8
bits, written [8]. Bit vectors and int are the only basic data types with singleton bit-
vectors acting as Booleans. Abbreviations for complex types can be introduced using the
syntactic construct in line 3.4.

Productions 3.5, 3.6, and 3.7 introduce functions, decoders and decoders with guards,
respectively. Functions and decoders differ in that functions take arguments and have ex-
actly one definition whereas decoders read from the implicit input stream and definitions
with the same name augment each other. Consider the decoder snipped in Fig. 3.3. Here,

13

3. A Generic Decoder Specification Language for Interpreting Machine Language

Decl := granularity = num [lsbfirst] (3.1)

| export id* (3.2)

| type id = con [of Type|] (| con [of Type])' (3.3)

| type id = Type (3:4)

| wal id id" = Epr (3.5)

| wal id [TokPat*] = FExpr (3.6)

| wval id [TokPat*] (| Ezpr = Expr)+ (3.7)

Type = int || num| | id (3:8)
| { field : Type(, field : Type)} (3.9)

TokPat := hex-num | id | ' BitPat* ' (3.10)
BitPat = BitStr (| BitStr) (3.11)
| id @ BitStr (| BitStr)" (3.12)

| id : num (3.13)

BitStr == (0 | 1| .) (3.14)
Expr := case Fxpr of Pat : Expr (I Pat = Expr)* (3.15)
| if FEapr then FEipr else E;pr (3.16)

| let (val id = Eupr)’ in Expr (3.17)

| Ezpr Expr | num | ” BitStr ' | id | con (3.18)

| { field = Eupr (, field = Empr) } (3.19)

| $field | @{ field = Eupr (, field = Empr) } (3.20)

| do (Bapr; | id <= Eupr;)* Eapr end (3.21)

| update Expr | query Ezpr | return FEzpr (3.22)

Figure 3.2.: Syntax of the GDSL language.

14

IO G WIN -

3.1. General Language Overview

granularity 8
export main

type instr = ADD of {opl:op, op2:op}

val binop cons giveOpl giveOp2 = do

operandl <— giveOpl;
operand2 <— giveOp2;

return (cons {opl=operandl, op2=operand2})

end

val /r ['mod:2_reg:3.rm:3"] =

update @{mod=mod, reg/opcode=reg, rm=rm}
val /0 ['mod:2.000.rm:3 '] =

update @{mod=mod, reg/opcode="000", rm=rm}
val r/m8 = do # similar for r8, r/ml6, rl6,

r <— query $rm;
return (case r of
end

val main [0x80 /0]
val main [0x00 /r] =
val main [0x01 /r] |
|
|

"000": Reg AL | ’001": Reg BL)

binop ADD r/m8 imm$8

binop ADD r/m8 18

opndsz? = binop ADD r/ml6 rl6
rexw? = binop ADD r/mé64 r64
otherwise = binop ADD r/m32 r32

Figure 3.3.: Specification for decoding the Intel add instruction.

15

3. A Generic Decoder Specification Language for Interpreting Machine Language

binop and r/m8 in lines 5 and 15 are functions taking three and no arguments, respec-
tively. In contrast, lines 11, 13 and 20 define decoders whose right-hand-side is evaluated
if the token sequence in the square brackets matches the current input. Tokens can be spec-
ified in three ways (Production 3.10): either as a hexadecimal number (c.f. the first token
of main), as a call to another decoder (c.f. the second token of main) or as a bit pattern (as
used in the /r and /0 decoders). Bit patterns, in turn, are enclosed in ticks and are given
by Productions 3.11, 3.12, and 3.13:

¢ strings of 0,1,. (c.f. 000 in /0); the dot acts as a wildcard; a set of bit strings can be
specified by separating them using a vertical bar, e.g. 0010110

* as above, with a leading variable separated by @; the variable is bound to the actual
bits in the input; for instance, /0 could have been written

—_

val /0 [’'mod:2 _reg@000.rm:3 "] =
2 update @{mod=mod, reg/opcode=reg, rm=rm}

* avariable with a width in bits; the notation v : 3 is syntactic sugar for v@. . .; exam-
ples are mod, reg and rm in the decoders /r and /0

The semantics of “calling” another decoder within a token sequence is that the pattern
of the called decoder is substituted where it appears and that its body is prepended to the
right-hand-side of the decoder. For instance, main [0x80 /0] is translated internally as
follows:

= W N =

val main [0x80 ‘mod:2.000.rm:3 '] = do
update @{mod=mod, reg/opcode="000", rm=rm};
binop ADD r/m8 imm§

end

After inlining sub-decoders, the patterns of all main rules are translated using a consume
primitive that reads one token from the input stream:

— OO0 00N U s WN -~

—_

val main = do
opcode <- consume
case opcode of
0x80 : do
\r <- consume
case (\r & 00111000 >> 3) of
000 : do
update @{mod=, reg/opcode=’000’, rm=rm};
binop ADD r/m8 imm8

0x00 :

During this translation overlapping patterns are detected. For token sizes larger than 8
bits, nested case-statements are generated.

The bodies of functions and decoders are given by the Expr production. Here, Pro-
ductions 3.15,...,3.18 give the standard constructs found in a functional language with
Ezpr Expr in line 3.18 denoting function application. The language allows the creation of

16

3.2. Decoding x86 Prefixes

compound values using records which are collections of field names bound to a value. Pro-
duction 3.19 allows the construction of new records (used in line 8 of Fig. 3.3). The value
of a field foo is extracted using $foo which itself is a function. Thus, $foo {foo=7}
evaluates to 7. Analogously, @{foo=x} is a function taking a record and setting the field
foo to x. For instance, @{bar="110"} {foo=7} evaluates to {bar="110", foo=7}.

In order to allow for an internal state, each decoder is a monad, a concept borrowed
from the pure functional language Haskell [8]. A monad is an abstract type containing a
function from an input state to an output state and a result. The motivation for monads
is to chain together computations that operate on a state without requiring side-effects in
the language. Production 3.21 details the do-statement which threads together monadic
actions whose result can be bound to an identifier. The result of the do-statement is that
of the last action. Production 3.22 presents the three monadic actions of the language:
update f applies f to the internal state (and is usually a record update); query f
returns the result of applying f to the internal state (and is usually a record field selector);
and return z that returns z as a result.

Besides query, the internal state can also be accessed using guards: the first guard
of opndsz?, rexw?, and otherwise in line 22 that evaluates to ’ 1’ determines which
right-hand-side is evaluated. Guards are functions taking the internal state as argument.
Thus, opndsz and rexw are record fields in the internal state and otherwise is a function
always returning " 1" .

3.2. Decoding x86 Prefixes

One challenge in decoding x86 instructions is the correct handling of prefixes: they ei-
ther serve to modify the following instruction or they are part of the following opcode
(a so-called mandatory prefix). In the latter case, other prefixes are allowed between the
mandatory prefix and the actual opcode. For example, both instruction sequences 67 £3 45
0f 7e dland £f367 45 0f 7e dl encode movg xmml0, xmm9 where 67 is an ADDRSZ
prefix and £3 is a REPNE prefix, but used here as mandatory prefix to the opcode 0f 7e.
Moreover, 45 is another “standard” REX prefix and d1 the ModR/M byte. Confusingly, the
REX prefix must immediately precede the opcode, otherwise it is ignored.

Certain instructions such as mulss, mulsd, and mulpd share the same opcode, here
0f 59, but have different mandatory prefixes, namely £2, £3, and 66, respectively. As a
consequence, the order in which prefixes occur becomes important. Moreover, while the
last occurrence of £2 and £3 determines the mandatory prefix, an occurrence of 66 is only
recognized as mandatory prefix if £2 and £3 cannot start an instruction. A correct decoder
recognizes:

66 £3 £2 0f 59 ff mulsd xmm7, xmm7 Mandatory prefix: 0xf2
66 f2 £3 0f 59 ff mulss xmm7, xmm7 Mandatory prefix: 0xf3
66 Of 59 ff mulpd xmm7, xmm7 Mandatory prefix: 0x66

£2 66 0f 59 ff mulsd xmm7, xmm7 Mandatory prefix: 0xf2

Mandatory prefixes can easily be handled in GDSL by using different decoders, depend-
ing on the last relevant prefix. Prefixes are decoded as follows:

1 ’val prefixes [0x66] = p/66

17

3. A Generic Decoder Specification Language for Interpreting Machine Language

val
val
val
val
val
val
val
val
val
val
val
val
val
val
val

val
val
val
val
val
val
val

prefixes [0xf2] = p/f2

prefixes [0xf3] = p/f3

prefixes [] = main

p/66 [0x66] = p/66

p/66 [0xf2] = p/66/£2

p/66 [0xf3] = p/66/£f3

p/66 [] = after /66 main

p/f3 [0x66] = p/66/f3 # f3 dominates 66
p/£3 [0xf2] = p/f3/£2

p/£f3 [0x£f3] = p/£3

p/f3 [] = after /f3 main

p/£3/£2 [0x66] = p/66/£3/f2 # f3/f2 dominates 66
p/£3/£f2 [0xf2] = p/f3/f2

p/£f3/f2 [0xf3] = p/f2/f3

p/£3/£f2 [] = after /f2 (after /£33 main)

analogous for p/f2, p/66/f2, p/66/f3, p/f2/f3,
p/66/f3/f2, p/66/f2/f3

/66 [] = continue

/f2 [] = continue

/f3 [] = continue

/66 [0x0f 0x59 /r] = binop MULPD xmm xmm/ml28
/f2 [0x0f 0x59 /r] = binop MULSD xmm xmm/m64
/f3 [0x0f 0x59 /r] = binop MULSS xmm xmm/m32
main [...] = ...

The entry point that is exported to the user is prefixes. When reading the sequence
£3 £2 0f 59 f£f, it dispatches to p/£3 which itself reads £2 and enters the p/£3/£2.
Since the next byte 0f has no match in p/£3/£2, the expression after /f2 (after
/£3 main) is executed. The after function calls the decoder /£2 and, if it fails, con-
tinues with (after /£3 main). The latter expression runs £3 and, if this decoder fails,
runs main. On the example byte sequence, the /£2 decoder succeeds in consuming the
remaining bytes 0f 59 ff and returns the mulsd instruction. By construction of the pre-
fix decoders, at most four lookups can lead to failure: one prefix decoder, /66, /£2, /£3.

Thus, at most one byte of the sequence is examined more than once.
Observe that after and cont inue can be defined directly within GDSL:

val after fst snd = do update @{cont=snd}; fst end
val continue = do decoder <— query $cont; decoder end

Here, after stores its argument snd in the decoder state and executes the decoder fst.
The continue function retrieves the stored decoder and dispatches to it. This completes

the design of the prefix decoders.

18

4. Using GDSL for Giving Semantics to
Machine Language

The basis for analyzing executables is the decoding of byte sequences into assembler in-
structions and giving a semantics to them. The challenge here is one of scalability: a single
line in a high-level language is translated into several assembler (or “native”) instructions.
Each native instruction, in turn, is translated into several semantic primitives. These se-
mantic primitives are usually given as an intermediate representation (IR) and are later evalu-
ated over an abstract domain [3] tracking intervals, value sets, taints, etc. In order to make
the evaluation of the semantic primitives more efficient, a transformer-specification language
(TSL) was recently proposed that compiles the specification of each native instruction di-
rectly into operations (transformers) over the abstract domain [7], thus skipping the gener-
ation of an IR. The approach presented follows the more traditional approach of generating
an IR that an analysis later interprets over the abstract domains. This allows to perform
optimizations on the IR program that represents a complete basic block rather than on a
single native instruction.

The next section shorty describes the intermediate language used. Thereafter, Sect. 4.2
illustrates how GDSL can be used to specify the semantics of instructions by discussing
the translator for an example Intel x86 instruction. Finally, Sect. 4.3 details on the current
development state of the GDSL toolkit.

4.1. RReil Intermediate Representation

Many intermediate representations for giving semantics to assembler instructions exist,
each having its own design goals such as minimality [1, 4], mechanical verifiability [5], re-
versibility [9], or expressivity [1, 11]. The RReil IR [11], presented in Fig. 4.1, was designed
to allow for a precise numeric interpretation. For instance, comparisons are implemented
with special tests rather than expressed at the level of bits which is common in other IRs
[4,5,7].

19

N

= LW N -

4. Using GDSL for Giving Semantics to Machine Language

stmts = stmt | stmt; stmts ngl T i—d ’l—dfﬂt

stmt = var=_:int expr addr == ’1nearf.ﬂt)
var = : int [addr] linear := int - var + linear
[addr]gfﬂ exfn* | ﬂt | var)
= = sexpr = linear | arbitrary

|
} if { } else { }

if (sexpr) { stmts } else { stmts) —
ol Csegr (st)| e emp e
| cbranch sexpr ? addr : addr | linear bin linear
| branch (jump | call | ret) addr | sign-extend linear : int
| (var:int)* =" id ”(linear : int)* | T
emp = S [S| sl <ul=[#

zero-extend linear : int
bin u= and | or | xor | shr|...

Figure 4.1.: The syntax of the RReil (Relational Reverse Engineering Language) IR. The
construct “: int” denotes the size in bits whereas “. int” in the var rule de-
notes a bit offset. The statements are: assignment, read from address, write
to address, conditional, loop (both only used to express the semantics within
a native instruction), conditional branch, unconditional branch with a hint of
where it originated, and a primitive “id”.

4.2. Writing Semantics using GDSL

As a purely functional language with algebraic data types and a state monad, GDSL lends
itself for writing translators in a concise way as illustrated next.

4.2.1. An Example Intel Instruction

The following GDSL example shows the translation of the Intel instruction cmov. The
instruction copies the contents of its source operand to its destination operand if a given
condition is met. The instruction contains a condition (which is part of the opcode) and
two operands, one of which can be a memory location. The translation of the instruction
instance cmovz ebx, eax (using the Intel x86 architecture with the 64 bit extension) into
RReil is shown in Fig. 4.2b). In order to illustrate the translation, the output of the GDSL
decoder is first detailed which is a value of the algebraic data type insn that is defined as
follows:

type insn = # an x86 instruction
CMOVZ of {opndl: opnd, opnd2: opnd}
| ... # other instruction definitions omitted

Thus, the CMOVZ constructor carries a record with two fields as payload. Both fields are of
type opnd which, for instance, carry a register or a memory location:

type opnd = # an x86 operand
REG of register

| MEM of memory

| ... # immediates , scaled operands

20

4.2. Writing Semantics using GDSL

and operands with offsets omitted

Note that all variants (here REG and MEM) implicitly contain information about the access
size. In the example above, the instruction cmovz ebx, eax is represented by CMOVZ
{opndl = REG EBX, opnd2 = REG EAX} where EAX is of size 32-bits. The following
section details helper functions that operate on opnd values.

4.2.2. Generating RReil statements using GDSL monadic functions

Each semantic translator generates a sequence of RReil statements. The sequence is stored
inside the state of a monad. Each RReil statement is represented by a respective GDSL
monadic function which builds the RReil statement from its arguments and appends it
to the current list of statements. The following RReil generator functions are used in the
example:

®* mov size destination source
The mov function generates the RReil mov statement that copies the source RReil
register to the destination RReil register.

e if condition _then statements
This function generates the RReil i f -then-else statement (with an empty else branch).
The special mix-fix notation _if ¢ _then e is a call to a mix-fix function whose
name is a sequence of identifiers that each commence with an underscore. For in-
stance, the _i f_then function above is defined as follows:

1 |val _if ¢ _then a = do
add if c then a else {} to statement list

N

3 |end

Furthermore, the following functions operate on x86 operands. In the context of the
generation of RReil code, this expression is a short form for the RReil register, memory
location, or immediate value associated with the x86 operand:

® sizeof x86-operand
Returns the size of an x86 operand in bits; here, sizeof (REG EBX) = 32.

® lval size x86-operand
The 1val function turns an x86 operand into an RReil left hand side expression, that
is, either var or [addr]. Here, 1val 32 (REG EBX) yields the RReil register B that
contains the 32 bits of the Intel EBX register.

® rval size x86-operand
The rval function turns an x86 operand into an RReil expr. In the example, rval
32 (REG EAX) yields the RReil register A.

® write size destination source
The write function emits all statements necessary to write to an x86 operand. The
operand is specified using the destination parameter; it is the return value of an asso-
ciated call to 1val. In Fig. 4.2b) lines 6 through 7 originate from the call to write.

21

4. Using GDSL for Giving Semantics to Machine Language

Finally, the mktemp function is used to allocate a temporary variable.

4.2.3. The Translator

The translation function for cmovz ebx, eax is shown in Fig. 4.2a). The do ... end
notation surrounding the function body is used to execute each of the enclosed monadic
functions in turn. The decoded Intel instruction is passed-in using the insn parameter; the
condition is determined by the caller depending on the actual mnemonic. The condition
is an one-bit RReil expression. In the cmovz ebx, eax example, it is FLAGS/6 which
corresponds to the zero-flag.

The translation itself starts with a code block that is very common in instruction seman-
tics: The operation’s size is determined by looking at the size of one operand (line 2) and
the respective operands are prepared for reading (using the rval monadic function) and
writing (using the 1val monadic function). Next, a new temporary RReil register is allo-
cated and initialized to the current value of the destination operand (lines 7 and 8). This
completes all preparations; the actual semantics of the instruction is implemented by the
code lines 10 through 11. The condition is tested and, if it evaluates to true, the source
operand is copied to the destination operand. It is important to note that the condition is
not evaluated at translation time, but at runtime by RReil. Finally, the (possibly) updated
value of the temporary RReil register is written to the corresponding Intel register by code
line 13.

One might think that the instruction pointlessly reads the source operand and writes the
destination operand in case the condition evaluates to false. It is, however, necessary since
the writeback can also cause further side effects that still need to occur, even if no data is
copied. This is visible in Fig. 4.2 (b). Since the instruction uses a 32 bit register in 64 bit
mode, the upper 32 bits of the register are zeroed even if the lower 32 bits are unchanged
(see line 7). This is done by the write function.

22

4.2. Writing Semantics using GDSL

IOl WIN -

g
= WO NN —, OO

val sem—cmovcec insn cond = do
size <— sizeof insn.opndl;
dst <— lval size insn.opndl;
dst—old <— rval size insn.opndl;
src <— rval size insn.opnd2;

temp <— mktemp;
mov size temp dst—old;

-if cond _then
mov size temp src;

write size dst (var temp)
end

b)

NG WODN -

t0 =:32 B

if (FLAGS.6) {
t0 =:32 A
else {

}
}
B :3
B.32

Figure 4.2.: The translator function a) and a translation result b)

23

4. Using GDSL for Giving Semantics to Machine Language

4.3. Development State

The GDSL toolkit contains a compiler for GDSL as well as decoders, semantic translations
and optimizations written in GDSL. The benefit of specifying optimizations in GDSL is that
they can be re-used for any input architecture since they operate only on RReil. Besides
a few instruction decoders for 8-bit processors, the toolkit provides an Intel x86 decoder
for 32- and 64-bit mode that handles all 897 Intel instructions. In terms of translations
into RReil, it provides semantics for 457 instructions. Of the 440 undefined instructions,
228 are floating point instructions that are not handled since floating point computations
currently are not included in the analysis performed on the resulting RReil code. Many
of the remaining undefined instructions would have to be treated as primitives as they
modify or query the internal CPU state or because they perform computations whose RReil
semantics is too cumbersome to be useful (e.g. encryption instructions).

24

Part I11.

Validation

25

5. Introduction to Validation

The Intel instruction set is large and complex. Furthermore, the Intel Software Developer’s
Manual [2] occasionally is vague. For this reason, programming errors are very likely to
be present within the decoder specification as well as within the semantic translation spec-
ification which is used to translate the decoded instructions into RReil. Handwritten unit
tests are cumbersome to implement because of the vast number of instructions and their
complexity. Moreover, they are error prone because they rely on the ability of the pro-
grammer to construct correct reference values for the translated semantics. In order to
address this problem, an approach is needed that allows to generate a large number of test
cases (i.e. Intel instructions including their parameters) and automatically obtain reference
values for the effects of the instructions. To this end, Intel instructions are generated and
executed on the actual system processor. Afterwards, the effects of the execution are ana-
lyzed and compared to the effects of the semantics obtained from the translator. That way,
the correctness of the decoder and the semantic translator can be tested autonomously.

The following section gives an overview of the approach used to create and validate a
test case. Section 5.2 explains limitations to the level of correctness that can be achieved us-
ing the presented validation strategy. Finally, Sect. 5.3 gives an overview of the subsequent
chapters.

5.1. Approach

Running a test case consists of the following steps which are performed in sequence:

1. Test case generation
As mentioned above, a test case starts with the generation of a byte sequence that
represents an Intel instruction, the instruction under test. The byte sequence is then
decoded and translated into RReil using the decoder and semantic translator speci-
fications from the GDSL toolkit.

2. Code inspection
Next, all accessed registers ! are gathered from the translated code. The information
is later used to reserve the required registers for execution of the instruction under
test and assign appropriate values to them. Thus, even though the correctness of this
translation is the primary test object, some basic assumptions about the correctness
of the RReil code are made. Essentially, it is important for the translated code to write
to the same registers and memory locations as the instruction under test during its
execution on the processor, because it is not possible to compare the values of every
register and every memory location before and after the execution of the instruction.

! Accessed memory locations are not yet considered because, in general, the memory addresses cannot be
directly extracted from the semantics.

27

5. Introduction to Validation

For the most coding errors, it is sufficient for the RReil code to modify an arbitrary
register or memory location for the tester to detect a wrong translation; the test will,
however, falsely succeed in case a subset of the written registers and memory loca-
tions, that are modified by the instruction under test, are modified by the RReil code
in a correct way.

. Testbed function generation

The set of registers obtained from the semantics is used to generate the so-called
testbed function. The testbed function prepares the execution of the instruction under
test by backing up all accessed registers on the stack and setting its input registers
to values copied from the so-called virtual registers located in memory. The virtual
registers are contained in a data structure referred to as the execution context. The
testbed function then executes the instruction under test. After the execution, all reg-
isters taking part in the instruction test are written back to their location in memory,
i.e. to the corresponding virtual register. Finally, all backed up registers are restored.

. Mapping of the testbed function

A mapping to an executable memory region is created in order to store the testbed
function. After its generation, the testbed function is written to that memory re-
gion, but not yet executed. While storing the function in memory, the address of
the instruction under test is determined; it can be used to calculate a correct value
for the program counter at the time of the execution of the instruction under test (as
described by Sect. 11.3).

. Initialization of virtual registers

The operations performed by the simulation of the RReil code and the execution of
the instruction under test on the machine both are performed using data from the vir-
tual registers. When it comes to the execution of the instruction under test, the values
of the virtual registers are copied to the system registers beforehand and written back
to the respective memory locations afterwards. Two independent instances of the ex-
ecution context data structure exist for both the simulator and the actual processor.
Before the simulation of the RReil code and the execution of the instruction under
test, the virtual registers are initialized. Initialization means copying previously gen-
erated random values to them. Accessed memory regions are not yet initialized; this
is done during the simulation of the RReil code.

. Simulation of the RReil code

Using the initialized virtual registers, it is now possible to simulate the RReil code.
During the simulation, all memory accesses are recorded. The data for read accesses
is again generated using a random number generator. Besides the virtual registers,
the execution context also stores accessed memory regions and their data. All register
operations are performed on the virtual registers.

. Execution of the testbed function

After determing the effects of the RReil code on the system registers and memory,
the effects of the execution of the instruction under test are obtained. In order to

28

5.2. Limitations

do that, mappings * for the accessed memory addresses are set up (as described
by Sect. 13.1) and the read memory is filled with the same data as used during the
simulation. Then, the testbed function is called. As described above, the testbed
function cares for the initialization and the write back of accessed system registers.
Most importantly, it also executes the instruction under test. Upon return of the
testbed function, all written memory is copied back to the execution context and the
mappings are removed.

8. Evaluation
During the simulation and the execution, both the processor and the RReil simulator
altered their system states, that is, (virtual) registers and memory. These modifications
were recorded and can now be compared. The test case succeeds if the changes match
and fails otherwise.

The presented strategy has some limitations as pointed out by the next section.

5.2. Limitations

The validation approach is not able to prove the total correctness of the decoder or the
translator. This is first of all caused by the amount of instruction and parameter combi-
nations possible - it is infeasible to systematically test all of them. Furthermore, the state
of the system cannot be examined completely. Instead, some assumptions about the cor-
rectness of the translation are made. For example, the addresses of modified memory cells
are found using the output of the translator rather than including the whole memory in
the test. There also are instructions that effect changes to processor internal registers that
cannot (or at least not easily) be accessed for comparison. Finally, since the instructions
are generated without paying attention to details of the Intel instruction format (this is
described by Sect. 6.2), decoding failures cannot be directly used to deduce programming
erros in the decoder. It is possible to validate the correct identification of invalid instruc-
tions by executing failed byte sequences on the processor. In case the byte sequence in
fact does not correspond to a valid instruction, an exeception is generated by the proces-
sor. However, this approach does not allow to reliably detect that a prefix of the byte
sequence in question corresponds to a valid Intel instruction. This is problematic since the
instruction generator appends additional bytes to the byte sequence that can be used as
immediates if needed. Therefore, decoding failures are currently not examined further.

5.3. Part Overview

After this introduction, the next chapter describes the generation of Intel instructions used
as test objects. Thereafter, Chap. 7 illustrates the main component of the validation soft-
ware which controls the different steps taken for an instruction test. Chapter 8 describes
the inspection of the semantics obtained from the GDSL toolkit. This results in sets of
accessed registers. The data structure used for storing the virtual registers and accessed

2A memory mapping maps the virtual address used by the application to some hardware address; the actual
hardware address used is unimportant here.

29

5. Introduction to Validation

memory locations, the execution context, is detailed by Chap. 9. Afterwards, Chap. 10
describes the generation of the testbed function. Before Chap. 12 details on the simula-
tion of the semantics and Chap. 13 illustrates the execution of the instruction under test,
Chap. 11 explains the steps that are necessary to take in order to prepare the execution con-
text. Chapter 14 describes the evaluation of the test result. Finally, examples and statistics
are presented by Chap. 15.

30

6. Generating Intel Instructions

In order to validate the correctness of the translation of machine code, appropriate instruc-
tions need to be obtained somehow. There are different approaches for that: One might
think of using the output of compilers, that is, taking the instructions from binaries. How-
ever, compilers are likely to use a limited set of instructions. Furthermore, the instruction
types and parameters depend on the program selected - a lot of instructions of the Intel
architecture have got a very special purpose and, for this reason, cannot be found in the
binaries of standard software. In order to address these problems, instructions are instead
generated randomly. This chapter describes the implementation of a simple generator that
outputs byte sequences that correspond to correct Intel instructions with a probability of
at about 50%.

The chapter starts with a brief overview of the Intel instruction format. Thereafter, the
structure of the generator is described in Sect. 6.3. Sections 6.2 and 6.4 address the level of
correctness (in terms of the fraction of valid Intel instructions) achieved by the generation.

6.1. The Intel Instruction Format

The description of the instruction generator uses a lot of terminology that is related to the
Intel instruction set. For a better understanding, the Intel instruction format is briefly ex-
plained in the following. The information is taken from the Intel Software Developer’s
Manual. Basically, there are two different instruction formats (other encodings are possi-
ble; special cases are not considered) as detailed in the next sections.

6.1.1. The Classic Instruction Format

A schema using the classic instruction format has got a structure as illustrated in the fol-
lowing. It consists of the elements shown in the order given:

] Legacy Prefix \ REX Prefix \ Opcode \ ModR/M \ SIB \ Displacement \ Immediate ‘

Every element is comprised of zero or more bytes. The purpose of each element is ex-
plained below.

1. Legacy prefixes
Legacy prefixes are used to configure an instruction. Each prefix consist of one byte.
Among others there are the operand size prefix, the address size prefix, the repeat prefix
and the repeat not zero prefix. The former two are used to set the size of the operands
and the length of addresses, the latter two allow an instruction to be repeated auto-
matically. Legacy prefixes are optional.

31

6. Generating Intel Instructions

2. The REX prefix
The REX prefix is used to access new features introduced with the 64 bit extension of
the instruction set architecture. Specifically, the REX prefix can be used to switch to
an operand size of 64 bits or to access additional registers (r8 - r15). The REX prefix
is optional.

3. The opcode
The opcode encodes which instruction is selected. It has got a size of one to three
bytes.

4. The ModR/M byte, the SIB byte, and displacement bytes
The operands of an instruction are encoded using the ModR /M, SIB, and displace-
ment bytes. These bytes encode whether to use registers or memory locations and
how addresses are calculated. The SIB and displacement bytes are optional and only
used for memory accesses. Certain bits of the ModR/M byte are used as an opcode
extension by some instructions. The ModR/M byte is mandatory for many instruc-
tions.

5. Immediates
Several instructions use immediate bytes. Immediates usually have got a size of one
to four bytes; in rare cases up to eight bytes are used. Whether immediate bytes are
used or not depends on the operation code.

6.1.2. The AVX Instruction Format

An instruction using the AVX instruction format uses the VEX prefix. Since the VEX prefix
contains other prefixes and parts of the opcode, AVX instructions are encoded slightly
differently:

’ Legacy Prefix ‘ VEX Prefix ‘ AVX Opcode ‘ ModR/M ‘ SIB ‘ Displacement ‘ Immediate ‘

Some elements at the beginning of an instruction changed in comparison to the classic
instruction format; the differences are explained below.

1. Legacy Prefixes
Legacy prefixes can be used in combination with AVX instructions. It is, however,
important to note that some legacy prefixes are part of the VEX prefix. These legacy
prefixes must not be used in combination with AVX instructions outside the VEX
prefix.

2. The VEX Prefix
The VEX prefix is the identifying characteristic of AVX instructions. It combines
certain legacy prefixes, the REX prefix, parts of the opcode and additional register
operands.

3. The AVX Opcode
The AVX opcode determines the tpye of the instruction to be used. Parts of the op-
code are, however, included in the VEX prefix. Thus, when it comes to AVX instruc-

32

6.2. Output Correctness vs. Implementation Simplicity

tions, opcode bits can be found in den VEX prefix, the opcode itself and the ModR/M
byte.

6.2. Output Correctness vs. Implementation Simplicity

The most straight forward way to generate instructions randomly is to simply use random
byte sequences. Unfortunately, this leads to lots of invalid instructions. The approach
is particularly ill-suited for the Intel instruction format: The Intel format makes use of
instruction prefix bytes that have a special function. These prefixes may be combined
to configure the properties of an instruction. It is, however, very unlikely to generate
a specific combination of prefix bytes randomly. For this reason, it is necessary for the
generator to output instructions with a certain structure. However, one would need to put
a lot of effort into the generator to make it produce valid instructions only. Therefore, a
compromise is made which leads to an acceptable portion of valid instructions that also
feature a certain diversity in respect to prefix combinations. This strategy is described in
the following.

6.3. The Decision Tree of the Generator

The generator uses a certain kind of decision tree in order to generate instructions that are
likely to be valid. While generating one instruction a path from the root of the tree to one
of its leaves is traversed. Each node of the tree either is a

¢ generator node or a

e branch node.

Whenever a generator node is found, its corresponding generator function is called. The
generator function then generates a specific byte sequence. For example, an arbitrary valid
prefix combination is generated. Every generator node has got at most one child node. In
case the child node exists, the traversal is continued at that child, otherwise the generator
terminates. Generator nodes are depicted as shown in Fig. 6.1. Branch nodes, in contrast,
do not generate any output. Instead, they represent a decision. For this reason, they may
be the parent of an arbitrary number of children. There is a weight value associated with
each child defining the likelihood for it to be selected as the next node on the path (see
Fig. 6.2). A higher weight value for a child results in a higher probability that this child is
selected for the continuation of the generation.

6.3.1. The X86 Generator Tree

The generator uses the tree shown in Fig. 6.3 in order to generate x86 instructions. It
corresponds to the basic structure of x86 machine code. The task of each node is described
in the following:

LI

Figure 6.1.: Generator node

33

6. Generating Intel Instructions

LI

Figure 6.2.: Branch node

LI

Figure 6.3.: X86 Generator Tree

vex?
The vex? branch decides whether an AVX instruction is generated. In that case no
legacy and no REX prefix is generated, but only a VEX prefix. Otherwise an arbitrary
number of legacy prefixes and up to one REX prefix is prepended in front of the
opcode.

legaxy prefixes
The legacy prefixes generator is used to generate legacy prefixes. Currently, only the
operand size prefix, the address size prefix, the repeat prefix, or the repeat not zero prefix
is generated. Prefixes can occur multiple times.

vex legacy prefixes
The vex legacy prefixes generator is used to generate legacy prefixes for AVX instruc-
tions. Currently, only the address size prefix is generated. Prefixes can occur multiple
times.

rex?
The rex? branch decides whether the instruction is an instruction that needs the rex
prefix or not.

rex
The rex generator generates a rex prefix. The rex prefix must be followed by the op-
code directly and, thus, its generation is seperated from the generation of the legacy
prefixes.

opcode
The opcode generator generates one opcode taken from an opcode table.

modrm

The modrm generator generates a valid ModR/M byte and (if needed) an additional
SIP byte and displacement bytes. The ModR/M and SIP byte are the primary way to
encode register and address operands for Intel x86 instructions. The generator also
adds immediate displacements if required by the generated ModR/M/SIB combina-
tion. Since displacements are used for address calculations it is important to consider
alignment (because a few instructions allow aligned accesses only). Because an in-
struction can read up to 16 bytes from memory at a time, the lower 4 bits of the
displacements are zeroed.

immediate?
The immediate? branch decides whether to generate an immediate or not.

immediate
The immediate generator generates an immediate of 8 bytes. Even though most in-
structions need 4 immediate bytes (or less) only, there also are instructions that use

34

6.4. Invalid instructions

up to 8 immediate bytes (like mov, for example). Unnecessary immmediate bytes do
not prevent the correct decoding of the instruction; they are ignored.

The choice of weights is not motivated by any particular strategy. The weights were cho-
sen in such a way that more generic instruction types are slightly preferred to special ones.
Since additional immediate bytes do not hinder the decoding, adding such an immediate
is reasonable and has thus got a high weight.

6.4. Invalid instructions

The above scheme does not completely prevent the generation of invalid instructions. That
is caused by the independence of the different generators: It is possible that a VEX prefix
is generated for an AVX instruction but later the opcode generator chooses an opcode that
does not belong to an AVX instruction. Further incompatibilities between certain prefixes
and opcodes could exist. In contrast, in the most cases the instruction bytes following
the opcode should be valid (since the generator only generates valid ModR/M/SIB byte
combinations and almost always adds immediate bytes). Altogether, this leads to a success
rate of at about 50%.

This concludes the generation of instructions to be used as test objects. After their gen-
eration, the instructions are handed to the tester component which is the main component
of the validation software. The next chapter describes the tester component.

35

6. Generating Intel Instructions

36

7. The Tester Component

The tester component is the main component of the validation infrastructure. It performs
all steps necessary to obtain a test result for a given byte sequence encoding an instruc-
tion. To this end, the instruction is first decoded and translated. Then, the RReil code
is inspected and, thereby, the register usage is determined. Using this information, the
testbed function is generated. The testbed function is responsible for the setup of the test
environment for the instruction under test. Next, the execution contexts of both the proces-
sor and the RReil simulator are initialized and the simulation of the instruction semantics
is run. After that, the testbed function is executed (which, in turn, executes the instruction
under test). Finally, the effects on the system registers and memory of the execution of the
instruction under test and the simulation of the semantics are compared.

The chapter begins with an illustration of the operation modes in the next section. After
that, Sect. 7.2 describes possible test results.

7.1. Operation Modes

The tester component allows the calling module to pass configuration parameters which
control the mode of operation. There are two important parameters concerning the choice
of registers included in the test and the way errors are handled. The following subsections
describe them.

7.1.1. Choice of Registers

Basically, there are two possible strategies to choose the registers to be included in the test.
On the one hand, registers can be chosen using the data gathered during the inspection
of the RReil code only. This is referred to as the minimalistic mode. The advantage of this
strategy is that it is fast and straight forward. There is, however, a disadvantage: The
approach relies heavily on certain assumptions about the correctness of the translation
- the test will only detect a wrongly translated instruction if the translated RReil code
modifies a register or memory cell which the instruction under test modifies differently
or not all. Thus, on the other hand, a more robust approach includes all registers '. This
mode is called the greedy mode. It is important to note that even if the tester component
treats all registers as if they were included in the test, some registers need to be excluded
from the test for pratical reasons. Section 10.2 describes this limitation regarding the choice
of registers in more detail. A configuration option allows the configuration of the strategy
to use.

Tt is not possible to include all memory cells.

37

7. The Tester Component

7.1.2. Crash handling

As already mentioned above, the validation relies on certain assumptions about the cor-
rectness of the semantic translation. If these assumptions are not met for an instruction
(for instance, if the instruction accesses additional registers or memory locations), the ef-
fects of its execution cannot be predicted. This may result in an exception generated by the
processor. Such exceptions are handled by the operating system only. In case the excep-
tion is caused by an application error, it is reported to the corresponding process using a
so-called signal. Depending on the kind of signal and the state of the process, the process is
either able to handle the error and continue its execution or not. In case the process cannot
recover from the error, it is terminated. Such an abnormal program termination results
in an inability to indicate the result of the test (i.e., the crash during the execution of the
instruction under test) to the user. Furthermore, in case the validation software collects the
results of a number of instruction tests, a crash results in an abort of the whole test suite.
In order to solve this problem, the tester component is able to execute the instruction to be
tested inside a child process. If the child process crashes, the tester is still able to continue
its work. In case this forking of child processes is enabled, the tester component has got an
additional result type which indicates a crash of the program during the execution. Since
forking child processes is costly in terms of processor time and also makes debugging more
complex, it can be disabled.

7.2. Results

The test of a random byte sequence can fail at many positions as it passes through the
different components of the validation software. The tester component reports whether an
error occured or not. If an error is reported, the failing component and its error code also
are part of the result value. The following errors can occur during the validation:

Decoding error This error type indicates that an error occured during the decoding of the
generated Intel instruction.

Translation error This error type indicates that an error occured during the translation of
the decoded instruction into RReil semantics.

Simulation error This error type indicates that an error occured during the simulation of
the semantics.

Execution error This error type indicates that an error occured during the execution of
the testbed function on the actual processor - such errors should only occur at the
time the instruction under test itself is executed.

Comparison error This error type indicates that the effects of the instruction under test
executed on the actual processor and the effects of the simulation of the translated
semantics do not match.

The above errors are detailed in Sect. 14.2. If none of them occurs, the success of the test is
reported to the user of the tester component.

This concludes the chapter about the main component of the validation software. The
next chapter details on the inspection of the translated RReil code.

38

8. Inspecting RReil Code

The inspection of the RReil code is an important step in order to gather required informa-
tion for the generation of the testbed for the instruction under test. The Intel x86 registers
which are used by the the RReil code need to be known. Furthermore, their kind of use,
that is, whether they are read, written, or used for address calculations, is relevant. This
chapter describes the process of extracting register usage data from the translated RReil
code.

8.1. Determining Register Usage

The x86 registers used are determined before the actual simulation. This is necessary to
build the testbed function prior to the simulation and, thereby, to allow the simulation to
use a correct value for the program counter. From this point on, two different kinds of
registers are intermingled in the text: RReil registers and x86 registers. It is important to
keep them apart - x86 registers are represented using RReil registers in the RReil code, but
there is an arbitrary number of additonal RReil registers.

8.1.1. Required Information about the Accessed Registers

RReil registers are memory areas of infinite size which can be accessed at any offset. The
number of bits accessed can be chosen freely. For this reason, it is important to not only
know the RReil registers used, but also the corresponding offsets and access sizes. The
design of RReil is helpful here: The language does not allow calculated register offsets or
access sizes, but expects these values to be a fixed part in every statement, embedded as
constant values. For this reason, it is in the most cases possible to exactly determine the
register usage by considering each operand of each statement. The only exceptions to this
are formed by the RReil conditional and loop statement - their handling is described in the
next section. From the set of all RReil registers, only those that represent x86 registers are
actually of interest at this point. Within one RReil register, only the part of the register that
lies within the bounds of the corresponding x86 register is considered. All other accesses
can be ignored since they are only needed for the internal state of the RReil simulator.

8.1.2. Handling of Conditional Execution

The conditional and the loop RReil statements both execute child statements depending
on the runtime values of registers. Therefore, the register accesses of all possible branches
need to be considered. This, of course, may lead to the recording of phantom accesses that
will not be performed during the execution of the instruction under test or the simulation
run, respectively. Since the number of system registers that take part in the test is limited,
this could theoretically lead to the omission of accessed registers during the preparation

39

N

8. Inspecting RReil Code

of the execution of the instruction under test. However, in practice only few and shallow
conditional RReil statements are used to choose between x86 registers. In fact, the usage
of conditional statements for the selection of the kind of register access can almost only
be found in the context of processor flags, but all flags are part of one single x86 register.
Furthermore, the maximum number of system registers that are able to take part in the
test is much greater than the number of registers used by regular instructions. It therefore
is reasonable to join the sets of all register accesses of all branches of conditional RReil
statements.

8.1.3. Read Registers

The first type of register access that is considered is the read access. Read registers need
to be known in order to assign initialization values to them. The assigned values are used
by both the RReil simulator during the simulation and the instruction under test during
its execution. Additional registers can be filled with initialization values and be included
in the test in order to increase the test reliability, but since it is not possible to reserve all
registers to be used by the instruction under test during its execution, it is necessary to
know the read registers in order to give them priority.

8.1.4. Written Registers

In addition to read accesses, registers can also be written. Written registers need to be con-
sidered when evaluating the test results. Differentiating between read and write accesses
is not essential; it allows, however, more specific outputs and thereby eases the debugging
in case an error occurs. If a register is both read and written, it is added to the read as well
as the write set.

8.1.5. Dereferenced Registers

The third and less obvious access type is the dereferencing access. This kind of access
occurs whenever a register is used in address calculations. Differentiating these accesses
from read and write accesses is important due to the fact that dereferenced registers should
not be initialized with the same random constants as other registers. Chapter 11 describes
the generation of random values for registers in more detail.

Unfortunately, it is not as easy to detect dereferencing accesses as to detect read or write
accesses. This is caused by the fact that the contents of an x86 register can be copied
to an internal RReil register and later be used for address calculations. In this case, the
dereferencing access would be classified as a read access. The following RReil example
demonstrates the problem; the syntax of RReil is explained in Sect. 4.1:

t0 =:64 rax

t1 =:64 [lxrdx + 2+t0 + 42]:64

While inspecting the RReil statement in line 1, it seems as if the register rax is read only.
In case t0 is not written before line 3, the value from rax is also used for the memory

40

B~ W N -

8.1. Determining Register Usage

t0 =:64 rax

t0 =:64 t0 + rcx

tl:64 = [1xrdx + 2xrbx + 42]:64
rax =:64 t0 — t1

Listing 8.1: RReil Example

dereference in that line. In order to be able to correctly deal with such situations, the val-
ues would need to be traced as they flow through the RReil program. Currently this is
not implemented; instead only registers directly involved in a memory access are added
to the set of dereferenced registers. The problem is addressed further during the initializa-
tion of the registers as described by Sect. 11.1. Dereferencing accesses have got a higher
priority, that is, a register is added to the dereferencing set only in case it derefereced and
additionally read or written.

8.1.6. Example

In order to achieve a better understanding, List. 8.1 contains a small example RReil pro-
gram. During the inspection, the following sets of registers ! are built:

1. Set of read registers
The set of read registers consist of rcx and rax. The register rax is read by the
statement in line 1 while the register rcx is read by the statement in line 2. Both
registers are not used for memory address calculations.

2. Set of written registers
The set of written registers consists of rax, since it is written in line 4 and derefer-
enced nowhere. No other registers are written.

3. Set of dereferenced registers
The set of dereferenced registers consists of rdx and rbx. This is because rdx and
rbx are used to calculate the memory address used by the load statement (the state-
ment in line 3).

This finishes the inspection of the translated RReil code. The preceding chapters already
mentioned the execution context. The following chapter describes the data structure in de-
tail.

Ttis important to keep in mind that only RReil registers representing x86 registers are considered.

41

8. Inspecting RReil Code

42

9. The Execution Context

The execution context is a data structure that contains all system state information, i.e. the
contents of registers and memory regions, relevant for an instruction test. Instances of the
data structure are used for both the RReil simulator and the actual system processor. The
simulator directly performs operations on its instance of that data structure. In contrast,
the CPU operates on its own registers and addresses the (virtual) system memory directly,
that is, it does not look an accessed memory address up in the execution context in order
to find the memory region associated with that address. The testbed function takes care of
copying in the virtual registers residing in the execution context to the processor registers
before the execution of the instruction under test. It also restores the system registers to the
virtual registers afterwards. Before the testbed function is called, the execution component
prepares the respective memory addresses for their access by the instruction under test
and, upon return of the testbed function, it copies the written memory regions back to
their representatives in the execution context.

The represenation of registers is explained in the following section. Thereafter, Sect. 9.2
details on the representation of memory accesses.

9.1. Representation of Registers

At a first glance, there are two main types of registers - x86 and RReil registers. Since RReil
registers are memory regions of infinite size while x86 registers have got a fixed size, RReil
registers implement the more generic concept. For this reason, as mentioned above, it is
possible to implement an x86 register as a part of an RReil register. Therefore, from now on
the generic term register can be applied to both an RReil register and an x86 register, since
both are represented the same way in memory. From an organisational point of view, the
execution context contains registers of the following types:

1. X86 registers
The set of x86 registers contains all registers introduced by the Intel x86 architecture
(using the 64 bit extension).

2. RReil virtual registers
RReil virtual registers are used as platform independent RReil status flags. They are
not relevant for this work.

3. RReil temporary registers
RReil temporary registers are registers used within RReil programs used to save in-
termediate results. They are only important for the simulation of the RReil program;
since the Intel processor does not know these registers, their values are not compared
during the test evaluation phase.

43

9. The Execution Context

A register primarily consists of two fields:

1.

The data of the register

The first field is a pointer to the data stored in the register. An RReil register has an
infinite length; it is, however, sufficient to store those parts of the register in memory
that have been written. Due to the way the registers are used (there are no big gaps
between used parts of the registers), it is reasonable to use a contiguous memory
region.

The domain of the register

Furthermore, it is important to store the domain of the register. The domain deter-
mines which parts of the register have got a defined value. Since the domain infor-
mation needs to be stored for every bit, the data structure of the register contains a
pointer to an additional memory region of the same size as the memory region used
for data of the register. Section 9.1.1 details on the domain of registers.

9.1.1. The Domain of a Register

The domain information needs to be stored for each of the bits of the register, because the
value of some of the bits can be undefined. This is caused by two circumstances:

1.

N

Reading of never written data
One way to induce undefined bits is to read data which has never been written. Let
us, for example, consider the following RReil program:

t0 =:16 rax
t0 .48 =:16 rbx.32
rcx =:64 to0

For the example, it can be assumed that all data bits contained in Intel registers !
are defined at the beginning of the RReil program. The RReil internal register t0,
however, has never been written and is, thus, initially undefined. The statements in
line 1 and 2 fill parts of that register with data from Intel registers. The bit range
from 16 to 47 is not written, though. Because of that, at the time the statement in
line 3 copies the first 64 bits of t0 to rcx, it undefines bits 16 through 47 of register
rcx.

. Explicitly undefining bits

Another way in order to undefine bits is to explicitly undefine parts of a register. This
is useful in case the manual of the processor itself specifies values to be undefined
under certain conditions. Some instructions of the Intel x86 architecture produce
undefined bits, primarily inside the flags register. RReil provides an expression
(arbitrary) usable to limit the domain of an RReil register:

rax.16 =:32 arbitrary

The given example undefines 32 bits of register rax beginning at offset 16.

!Intel register is used as a synonym for a part of an RReil register that corresponds to an Intel register.

44

9.2. Representation of Accessed Memory

9.2. Representation of Accessed Memory

In addition to the information about the registers, the execution context also needs to keep
track of all memory accesses. This is done using a list of accessed memory regions. Each
entry of the list is a data structure describing the memory access. The following fields are
contained in the data structure:

1. Access type
Each memory access has got an access type. In contrast to register accesses, read and
write accesses are not distinguished. Instead, threre are reqular accesses (that is, a
standard read or write access) and jump accesses. A jump access needs to be handled
specifically by the execution component before the instruction under test is executed
on the physical processor (further details can be found in Sect. 10.5 and 13.1).

2. The data
A regular memory access also contains a pointer to a memory region saving the data
either read from memory or written to memory. Jump accesses do not need the data
field since the memory at the jump target is neither read nor written by the branching
instruction.

3. The size of the data
Memory accesses can access any amount of memory. Some instructions of the Intel
x86 architecture contain instruction level iterations that process an arbitrary amount
of memory. Thus, the size of the memory region needs to additionally be kept. Mem-
ory can only be accessed bytewise. Jump accesses always have their size field set to
zero since they do not use the data field.

4. The accessed address
It is important to keep track of the memory address generated for the access. This
is because the processor will later use this address while executing the instruction
under test. Therefore, a memory mapping ? is created before the execution (this
process is explained by Sect. 13.1).

This concludes the description of the execution context. The next chapter illustrates the
generation of the testbed function which contains the instruction under test.

The creation of a memory mapping makes an address usable by the user application; it maps the virtual
memory address to a physical one used by the hardware.

45

9. The Execution Context

46

10. Generating the Testbed

In order to be able to verify the correctness of the simulation of the RReil code, the instruc-
tion under test is executed on the actual processor. It is, however, necessary to perform
some preparations before the execution since the registers of the processor and the mem-
ory of the system can be accessed by the instruction under test. To this end, the instruction
is enclosed inside a testbed function that performs necessary setup and cleanup operations.
The testbed function needs to make sure that accesses to registers due to the instruction
under test do not interfere with the execution of the test application. Accesses to the sys-
tem memory, in contrast, are taken care of by the execution component which will be de-
scribed in Sect. 13. Moreover, the testbed function must set up the input to the instruction
and record its output by copying the appropriate values from and to the execution context.

10.1. Overview

The testbed function is emitted as a byte sequence representing machine instructions. It
complies with the standard C calling convention and can thus be easily called from C code.
The function is structured into five logical sections. In the following, they are described in
the order of appearance:

1. Backup of registers
Like standard C functions, the testbed function begins by backing up certain registers
to the stack. This process of making the register available to be used by the testbed
function is referred to as allocating the register.

2. Initialization of registers
The instructions subsequently emitted copy the input values from the execution con-
text to the registers of the processor. This process is called the initialization of regis-
ters. Note that at the time the testbed function is called by the execution component,
all registers involved in the instruction test have already been set to the generated
values in the execution context of the processor.

3. Initialization of the return register
After the registers have been initialized, all preparations for executing the instruction
under test are finished. However, in case the instruction is a jump instruction, the
processor branches somewhere and needs a way to return to the testbed function
afterwards. For this reason, a dedicated return address register is used in which the
code address of the instruction following the instruction under test is stored. This
register is initialized directly before the execution of the instruction.

4. Execution of the instruction

47

10. Generating the Testbed

Finally, the instruction under test is executed. Therefore, all bytes previously con-
sumed by the instruction decoder are inserted into the testbed function.

5. Writeback of registers
In order to track the changes made by the instruction under test, the registers need
to be written back to the execution context which makes the changes visible to the
tester component.

6. Register deallocation
As a last step, the allocated registers are deallocated. This is done by restoring the
original value they have had before the call to the testbed function to them.

The remainder of the chapter is organized as follows. After discussing implementation
limits when using greedy mode, Sect. 10.3 describes the allocation of the different register
types. Section 10.4 describes how values are copied from the execution context into the
allocated registers before the instruction under test is executed. The special case of testing
jump instructions is detailed in Sect. 10.5. Section 10.7 illustrates how the results of running
the instruction under test are written back to the execution context. The chapter concludes
with a comprehensive example.

10.2. Choice of Registers

As described in Sect. 7.1.1, there are two participation strategies for registers - the mini-
malistic mode and the greedy mode. The testbed function generator accounts for that by also
offering these two strategies. The difference to the main component is, however, that the
testbed generator is unable to make all registers available for the tested instruction. This is
because some registers are used by the testbed function itself (like the return address regis-
ter) and are thus not available for the validation of the instruction. The information about
the actual choice of registers does not need to be propagated back to the tester component,
since all registers, which are not chosen for validation, are untouched in the execution
context of the processor and contain the same value as the corresponding registers in the
execution context of the simulator. That is because the registers of both contexts are ini-
tialized to the same values and the virtual registers of the simulator are not changed by
the simulation since they are not included in the write set of the RReil code. Naturally, all
known to be accessed registers (i.e. the ones that are accessed by the simulator) always
have got the highest priority - they need to take part in the test in any case.

10.3. Allocation of Registers

Making a register available to be used by the testbed function is referred to as allocating
the register. Two allocation strategies are distinguished. First, a register can be allocated
at the beginning of the testbed function; that allocation strategy is called static allocation.
If, in contrast, the register is allocated when needed at later positions, dynamic allocation
is used. Depending on the type of the register to be allocated, different steps need to be
performed for the allocation. The following subsections describe the steps necessary in
order to allocate a register.

48

N

10.3. Allocation of Registers

10.3.1. Allocation of Standard Registers

The allocation of standard registers is straight forward - they need to be pushed onto the
system stack. The following example allocates the register eax. It is assumed that the
stack pointer is not yet allocated, i.e. it points to the top of the stack owned by the current
thread:

push eax

10.3.2. Allocating the Stack Pointer

The stack pointer can be used (almost) the same way as other general purpose registers. It
is, for example, possible for the instruction under test to add a value to the stack pointer:

add rsp, 42

In case such an instruction is tested, the stack pointer needs to be allocated. For its alloca-
tion, it is not possible to simply save the old value of the stack pointer on the system stack,
because after overwriting the stack pointer, the system stack is not accessible any more.
Thus, an additional register is used - the stack pointer backup register. The value of the stack
pointer is backed up to it. For instance, if the register 8 is used as backup register, the
allocation of the stack pointer is implemented as follows:

mov 18, rsp

After the allocation of the stack pointer, further accesses to the system stack need to take
the allocation of the stack pointer into account. An allocated stack pointer does not contain
a pointer to the system stack. Instead, it contains its allocated value. Thus, before a push
instruction can be issued, the original stack pointer needs to be restored in order to be able
to access the system stack. After the push instruction, the new value of the stack pointer
needs to written to the stack pointer backup register and the allocated value of the stack
pointer register needs to be restored to it. Both is implemented using the xchg instruction
which exchanges the values of its operands. For the following example, it is again assumed
that the register r8 is used as stack pointer backup register and that the register eax needs
to be pushed to the system stack:

xchg r8, rsp
push eax
xchg r8, rsp

The first xchg instruction restores the pointer to the system stack and saves the allocated
value of the stack pointer to the stack pointer backup register. Then, the push instruc-
tion is issued. Finally, the new pointer to the system stack is written to the stack pointer
backup register and the allocated value is copied to the stack pointer using another xchg
instruction.

10.3.3. Allocating the Flags Register

Many instructions read or modify the f1ags register. The allocation of the f1ags register
is very easy, since Intel offers an instruction in order to push the contents of the flags

49

1
2
3

10. Generating the Testbed

register to the system stack: pushfqg. However, one needs to take care that many bits of
the register are either not used or not readable by a user process. These bits are masked
during the push operation, that is, their values are ignored.

10.4. Initialization of Registers

As already mentioned above, a choice of registers (depending on the mode of operation)
needs to be initialized before the execution of the instruction. Initializing a register means
copying a predefined value from the execution context to it. These values act as input
values to the instruction under test. At the time the testbed function is generated, the
initialization values do not need to exist yet. The testbed function generator only needs to
know the addresses of the memory cells that will contain the values for the registers when
the testbed function later is executed. To this end, the memory of the execution context is
allocated before the testbed function is generated and a reference to that memory region
is passed to the generator. The respective memory addresses are included in the testbed
function as immediate values. For this reason, the testbed function is specialized for a
particular execution context object.

10.4.1. Initialization of Standard Registers and the Stack Pointer

The initialization of standard registers requires two instructions. The same holds for the
stack pointer, since it can be used like general purpose registers with respect to the oper-
ations needed. The following example initializes the register rbx to a value found at the
address 0x63c700:

mov 19, 0x63c700
mov rbx, [r9]

Thus, the address is first loaded into the temporary register r9 (which needs to be allo-
cated). Then, the value at the address specified by register r9 is copied into the register
rbx. It might seem odd not to directly use the address as an immediate value in the mem-
ory dereference operation. The reason is that a memory address can only be specified
using a 32 bit immediate value. Since, however, the memory addresses are created ran-
domly using up to 46 bits, that size might not suffice. In order to keep the testbed function
generator simple, the approach introduced above is used for all cases.

10.4.2. Initialization of the Flags Register

Initializing the f1ags register is a bit more complex since no variant of the mov instruction
is able to directly copy a standard register or a memory location to the flags register.
There is, however, an instruction (popfq) that pops the top of the stack into the flags
register. In the following example, the initialization value is located at address 0x63c640
and r9 is used as a temporary register:

mov 19, 0x63c640
mov 19, [r9]
push r9

50

10.5. Jumps

4 ’popfq

—_

|

Apparently, the initialization value is first copied from memory to the temporary register
(r9). This is done the same way as already discussed above. The temporary register is then
pushed to the stack and, finally, the top of the stack is popped into the flags register.
It is important to keep in mind that not every bit of the flags register is actually used
by the Intel architecture and some of the bits in use cannot be written by a user process.
Furthermore, some of the bits have special functions, like, for instance, the Trap Flag (which
is used for instruction stepping). In order not to accidentally set them, the initialization
value of the f1ags register has to be chosen with caution, i.e. all special function bits need
to be zeroed in the initialization value. Section 11.2 describes the choice of an appropriate
value for the f1ags register in detail.

10.4.3. Initialization of the Return Address Register

The return address register is used to save the return address for jump instructions. Inde-
pendently of which instruction is executed, the processor needs to continue to execute the
testbed function after the execution of the instruction to be tested. Since the execution has
to continue directly after that instruction, the return address can be calculated by adding
the size of the instruction to its address. In the following example, the instruction to be
tested has got a size of 3 bytes and register r11 is used as return address register:

lea r11, [rip + 0x03]
// tested instruction

As indicated in the code, the instruction to be tested needs to immediately follow the ini-
tialization of the return address register. The rip register is the program counter and
always contains the address of the next instruction. Hence, it contains the address of the
instruction under test during the initialization of the return address register. By adding 3
bytes to the value of the rip register the address of the instruction following the instruc-
tion to be tested is determined. The 1ea instruction does not actually perform the memory
dereference, but instead saves the effective address of the source operand to its destination
operand, that is, to register r11. The return address register therefore is loaded with the
correct return address.

10.5. Jumps

Jump instructions change the value of the program counter and thereby make the program
continue at a different address. The code located at that address needs to confirm that the
proccessor actually jumped to the right location and then return to the testbed function.
The former is implemented by saving the current value of the program counter (which is
the rip register) to the virtual program counter located in the execution context. After
that, the return address register is used for the return. In the following example, the vir-
tual program counter (which is located inside the execution context) has got the address
0x639eb0. The registers r8 and r9 are temporary registers. Register r10 is the return
address register:

51

= W N =

10. Generating the Testbed

lea r8, [rip — 0x07]
mov 19, 0x639eb0
mov [r9], r8

jmp r10

The first step again uses the lea instruction in order to access the current value of the
program counter. Since the rip register points to the next instruction, the size of the
lea instruction needs to be subtracted from the value of the program counter in order
to calculate the address the processor jumped to (in the example, the 1ea instruction has
got a size of seven bytes). The calculated address is saved to the register r8. Next, register
r9 is loaded with the address of the virtual program counter and then used to save the
value held in register r8 to it. Finally, a jmp instruction uses the return address register
(r10) to return to the testbed function.

It is important to note that the code generated is position independent, since it uses
the program counter in order to determine its location at runtime. This is very useful,
because the actual memory address the code needs to be written to is not known at the time
the testbed function is generated. It is, just like all other memory addresses, determined
during the simulation of the RReil code.

10.6. Memory Read and Write Accesses

Memory accesses do not need to be considered during the generation of the testbed func-
tion. This is because the memory management for the instruction under test is imple-
mented by the execution component. This component prepares the memory before the
execution of the testbed function and handles possible changes to the memory afterwards.

10.7. Writing back of Register Contents

After the execution of the instruction to be tested, its effects on the system registers need to
be propagated back to the execution context. Again, depending on the mode of operation,
either all registers previously allocated to be used by the instruction under test (if operating
in the greedy mode) or only those which are part of the write set of the instruction (in case
the minimalistic mode is used) are written back. As in the case of the initialization, different
register types need to be handled differently. The approaches used are described in the
following sections.

10.7.1. Writing back of Standard Registers and the Stack Pointer

Similar to its initilization, the stack pointer can be handled the same way as general pur-
pose registers in the following. Writing back registers mirrors their initialization: Again,
the address of the virtual register located in the execution context is loaded into a tem-
porary register first. Using this address register, the contents of the register to be written
back are then copied to memory. In the following example, the contents of rbx are written
back. The address of the corresponding virtual register is 0x63c700 and r9 is used as
temporary register:

52

—_

B W N =

10.8. Deallocation of Registers

mov r9, 0x63c700
mov [r9], rbx

10.7.2. Writing back of the Flags Register

Writing back the flags register can also be done analogously to its initialization: An
instruction called pushfq is available allowing to push the contents of the register onto
the stack. In the following example, 0x63c640 is the address of the virtual f1ags register
inside the execution context. Moreover, r9 and r10 are used as temporary registers:

pushfq

pop r10

mov 19, 0x63c640
mov [r9], rl0

First, the flags register is pushed onto the stack. The value is then popped into the
temporary register r10. Next, the address of the virtual register is loaded into r9 and,
finally, this address register is used to write the contents of r10 to memory.

Again, unused or inaccessible bits of the f1ags register need to be considered. Their
values are either fixed or undefined. Thus, these bits cannot be included in the test. This
can easily be implemented by marking them as undefined in the execution context of the
simulator - all bits which are undefined in the execution context of the simulator are not
included in the comparison of the system states, i.e. the registers and memory. Section 11.2
describes the choice of an appropriate value for the domain of the flags register. The
testbed function does not need to address this issue further, but instead stores the value
read from the flags register as it is.

10.8. Deallocation of Registers

At the end of the testbed function all allocated registers need to be deallocated, i.e. their
original values need to be restored. The stack pointer is restored first, if it has been al-
located. For this, the value of the stack pointer backup register simply needs to be copied
to it. Afterwards, all other registers are restored. This is done using the pop instruction
(in order to restore standard registers) and the popfq instruction (in order to restore the
flags register).

10.9. A Complete Example

The above sections described the different steps taken during the generation of the testbed
function. In order to ease the understanding of how these parts work together, the fol-
lowing example shows the complete testbed function for the instruction add rbx, rax
(using the minimalistic mode for the choice of registers allocated to be used by the instruc-
tion under test):

53

10. Generating the Testbed

push rbx
push rax

IO Ul WIN =

pushfq
push r8
push r9

push r10

mov
mov
mov
mov
mov 18,
mov 18,
push r8
popfq
mov r8,
mov rbx,

r8,
rbx,
r8,
rax,

lea r10,

add rbx,
nop
nop
nop
nop

pushfq
pop 19
mov 18,
mov
mov
mov

r8,

pop r10
pop 19
pop 18
popfq
pop rax
pop rbx

retq

0x63c700

[r8]

0x63c6c¢0

[r8]

0x63c640

[r8]

0x63c700

[r8]
[rip + 0x03]

rax

0x63c640
[r8],
0x63c700
[r8], rbx

r9

The example can almost completely be understood using the explanations given in the
sections above. One detail, however, needs additional clarification: Follwoing the instruc-

54

10.9. A Complete Example

tion to be tested, a number of nop instructions is inserted (line 22ff). Their task is to improve
the handling of wrongly decoded instructions: In case the instruction to be tested is fol-
lowed by additional bytes, these bytes are interpreted by the processor as one or more ad-
ditional instructions. This only happens if the decoder is unable to decode the instruction
correctly, but does not recognize that. In case these additional instructions do not cause
an error (a signal, for instance), the nop instructions make sure that the rest of the testbed
function is executed. Otherwise, the bytes of one or more of the instructions belonging to
the testbed function following the instruction to be tested could end up as operands of the
unwanted additional instructions which lie in between. In that case the processor would
not interpret these bytes as instructions and, thus, the operations would not be executed.

This finishes the description of the generation of the testbed function. The next chapter
details on the initialization of the virtual registers in the execution contexts of both the
RReil simulator and the processor.

55

10. Generating the Testbed

56

11. Preparation of the Execution Context

The execution contexts of the processor and the simulator contain all information rele-
vant for the test regarding their system states - that is, the values of the registers and the
memory. The register contents need to be set before the simulation. In contrast, accessed
memory addresses are not yet known. Therefore, the corresponding memory regions are
instead set during the simulation using callback functions (Section 12.4 describes the sim-
ulation of memory accesses). This chapter details on the initialization of the virtual reg-
isters contained in the execution context using appropriately generated values. For the
remainder of the chapter, the supplementary keyword virtual often is omitted if the kind
of register is apparent from the context.

The chapter begins with an explanation of the initialization of general purpose registers
in the next section. Afterwards, Sect. 11.2 details on how the flags register is initialized
whereas Sect. 11.3 describes the initialization of the program counter. Section 11.4 illus-
trates the way random numbers are generated for the registers. The consequences of the
approach taken are discussed by Sect. 11.5. Finally, Sect. 11.6 presents an example.

11.1. Initialization of General Purpose Registers

The initilization of general purpose registers uses the information gathered during the
RReil code inspection. Three separate cases are differentiated if the test software is operat-
ing in the minimalistic mode:

1. Read registers
Registers which are read only can be initialized using random bytes. However, it is
possible for a value originating from a register contained in the set of read registers
to be used in memory address calculations. For this reason, in case there is at least
one memory dereference in the RReil code, all read accesses are treated like memory
dereference accesses. In this case, shorter and aligned I values are used.

2. Written registers
The values of written registers are not used; thus, they can be left uninitilized. In
order to ease the understanding of the output presented to the user, the current im-
plementation sets all registers that are contained in the write set only to zero.

3. Dereferenced registers
The values of dereferenced registers (that is, addresses) also are generated using ran-
dom values. There are some pitfalls, though; first of all, addresses must not use more
than 46 bits (the rest of the more significant bits need to be set to zero) and it might

1An aligned value has its four least significant bits set to zero.

57

11. Preparation of the Execution Context

be necessary for an address to be aligned to (at most) 16 byte boundaries 2. Since it
is not known whether a specific instruction requires alignment, all memory accesses
need to be aligned.

In addition to the minimalistic mode mode, the tester can also be configured to operate
in the greedy mode. In that case, all registers that are not dereferenced are added to the
read set. Therefore, written and not accessed registers are not distinguished from the read
registers any longer.

11.2. Initialization of the Flags Register

The flags register is used as status register in the Intel x86 architecture - therefore, each
bit of the register has got a dedicated purpose. Some of the bits are used to describe details
about an arithmetic operation - for example, the carry bit saves the carryover generated by
an addition at the most significant bit. These bits can be read and set by the user process
and need to be treated the same way as values contained in other registers. Other bits,
however, have got special purposes. Some of them are read-only or write-only - such
status bits can be used by the user process as a straight-forward way to read or write the
current processor configuration. Other bits are not accessible at all. Furthermore, there
are unused bits. All these kinds of status bits do not play well together with automatic
testing, since the validation software expects a randomly generated value assigned to a
bit of a register to stay unchanged if the semantics of the instruction does not change
the bit. Additionally, the setting of some bits of the status register might influence the
configuration of the processor in an unintended way - for example, the Trap Flag is used
by the debugger to make the processor stop after the execution of the next instruction. In
order to address these problems, the initialization of the flags register consists of two
additional steps:

1. Domain limitation

Usually, the domain of registers corresponding to Intel registers is set in such a way
that all bits of the register which correspond to a bit in the Intel register have got a
defined value. In contrast, the domain of the flags register is set so that only bits
which can be read and written safely by the user process (that is, only bits that do not
cause any unintended side effects) get a defined value. If the instruction semantics
only touches these bits %, the values of the undefined bits stay undefined during the
simulation. Therefore, all status bits set to an undefined value are excluded from the
value comparison at the end of the validation.

2. Value masking
Setting the domain of the register does not influence the testbed function. That is,
even though some bits of the register are undefined, the testbed function copies the
whole register to the actual Intel f1ags register (if the register is allocated for the
test) before the instruction to be tested is executed. The respective Intel instruction

2This applies if the current implementation of the Intel x86 instruction set architecture including the 64 bit
extension is used.
3This holds for every instruction the validation software is meant to handle.

58

11.3. Initialization of the Program Counter

takes care not to overwrite any read-only or system bits; naturally, this does not hold
for the special function bits which are writable by the user process, like, for instance,
the Trap Flag mentioned above. In order not to overwrite such a bit with a random
bit, all special function bits are set to zero in the generated random value before the
initialization of the virtual f1ags register using a bit mask.

11.3. Initialization of the Program Counter

The program counter is included in the comparison of the register state during the eval-
uation of the test result. This allows for an intuitive way of validating a correctly taken
jump: the RReil code implements the jump by loading the program counter with the jump
target. The testbed function also updates the virtual program counter associated with the
Intel rip register of the processor to the jump target in case of a successful jump (as de-
scribed in Chap. 10 and 13). Relative jumps are implemented by adding a value to the
program counter. In order to make the new values of the two program counters (the pro-
gram counter of the processor and the program counter of the RReil simulator) match in
that case, the program counter of the RReil simulator needs to be initialized to the value
the real program counter (the Intel rip register) will have during the execution of the in-
struction under test. As defined by the Intel manual, the value of the program counter
always equals the address of the instruction following the instruction currently in execu-
tion. Since the testbed function is already mapped to memory at the time the execution
contexts are initialized, the address of the instruction following the instruction under test
is known. It can therefore be used to set the virtual program counter to the correct value.

11.4. Biased Random Value Generation

Random values used for read registers should not be chosen completely arbitrarily. This is
because some instructions behave extraordinarily if certain bit sequence are present in their
operands. Important examples for such bit sequences with a special effect are the sequence
of zero bits and the sequence of one bits. The Intel instruction packusdw helps to develop
a better understanding of the problem. It is used to compress integer values - therefore,
it converts multiple (signed) doubleword (that is, 32 bit) integers to unsigned word (that
is, 16 bit) integers using saturation - thus, if the value of the doubleword integer does not
fit into the word integer, either the highest or lowest possible word value is chosen as the
resulting word integer. In order for a 32 bit signed value to fit into a 16 bit unsigned storage
location, the high 16 bits of the value need to be either all zero (in case of a positive number)
or 1 (in case of a negativ number). All other bit sequences lead to an overflow. However,
the chance of conincidentally generating a doubleword integer with a high word consisting
of zero or one bits only is just 2 : 216 =1 : 32768 - as a consequence, pratically every test
input leads to saturated results only. In order to counteract this effect and thereby achieve
a better test coverage, the generation of special bit sequences (like, for instance, the ones
mentioned above) is preferred.

59

11. Preparation of the Execution Context

11.5. Discussion

The initialization of the registers of the execution contexts is not purely random - first,
because of the way random values are generated and second because all registers are ini-
tialized using address-friendly values in case any memoy access occurs. As a consequence
of the complexity of the Intel architecture, a clear proof that these approaches do not lead
to a wrong picture of the correctness of the decoder or semantic translation is not sup-
plied. However, the following arguments indicate that the chosen approaches actually
make sense.

First, the manipulation of the generated random values is considered. Here, certain bit
sequences are used in preference. However, the chances of generating such a special bit
sequence are chosen to be small. Thus, the major part of the generated operands are filled
with arbitrary bit sequences. Therefore, the effects of uniformly distributed random values
are tested sufficiently.

The usage of address-friendly register contents for all register is, in contrast, more prob-
lematic. This is because addresses require a big portion of the register to only contain zero
bits; such operands lead to a changed behaviour of the instructions processing them. In
order to understand that, the add instruction which sums up its operands can be consid-
ered. The instruction sets the carry bit of the f1ags register in case a carryover occurs at
the most significant bit of the result. This never happens if the most significant bit of both
input operands is set to zero.

However, the way the Intel architecture is designed is helpful here. It is a CISC architec-
ture - because of that, most instructions are usable in combination with a lot of different
addressing modes and may also operate on operands of different sizes. As a result, even
though the correct setting of the carry flag of the add instruction is never tested for the
combination of 64 bit operands together with a memory reference, it is tested both without
a memory access as well as with a memory access and smaller (32 bit) operands. Because
of that, the test coverage is still adequate.

11.6. Examples

The following two examples illustrate the initialization approaches used. Both examples
assume the tester to operate in the minimalistic mode - thus, only those registers actually
used by the instruction given are considered. The first example shows a virtual register
initialization for the Intel instruction add rbx, rax which adds its two operands and
saves the result to the first operand:

Read registers:

Register B: ffffffffffffffff
Register A: ffffffffffffffff
Register FLAGS: 0000000000000884
Written registers:

Register FLAGS: 00000000000008d5
Register B: ffffffffffffffff
Dereferenced registers: none

60

11.6. Examples

Register IP: 00007f06c1e2105c [defined: ffffffffffffffff]
Register FLAGS: 0000000000040084 [defined:0000000000244cd5]
Register A: 4b5d000137b47f92 [defined: ffffffffffffffff]
Register B: ec936e00e0ff4d52 [defined: ffffffffffffffff]

The listing starts by recapitulating the results of the RReil code inspection. It yields a bit
mask (given as a hexadecimal number) for each register - a 1 at a position in the binary
representation of the mask indicates that the bit at the respective position in the register
is accessed, a 0 indicates it is not accessed. The output of registers without at least one
accessed bit is suppressed. Naturally, both input operands are read and the destination
operand (first operand) is also written. Furthermore, a few bits of the f1ags register are
read and written.

The second part of the listing shows the values generated for the registers and their
domain. The domain is again given as a bit mask. All accessed registers (except the f1ags
register) are fully defined in the bit range 0 through 63 (thus, the domain matches the size
of the register). The domain of the flags register is set according to the associated mask
used. Its value also is masked. Since the instruction does not access the memory, address-
friendly initialization values are not used. The ip register is set to the proper address of
the instruction following the instruction under test in the memory:.

The second example is similar to the first one, except that it uses a memory access; the
instruction add [rbx], raxislooked at:

Read registers:

Register A: ffffffffffffffff
Register FLAGS: 0000000000000884
Written registers:

Register FLAGS: 00000000000008d5
Dereferenced registers:

Register B: ffffffffffffffff

Register IP: 00007fb968c5c04f [defined: ffffffffffffffff]
Register FLAGS: 0000000000204890 [defined:0000000000244cd5]
Register A: 000000f002cOb1b0 [defined: ffffffffffffffff]
Register B: 000000c118dd3410 [defined: ffffffffffffffff]

The register B now is part of the set of dereferenced registers, it is no longer written. Since
the memory is accessed, memory-friendly values are used for the initialization: The lower
four and the higher 24 bits * of the registers A and B are set to zero. The memory address
used for the write access is not displayed since it is not yet known.

This finishes the preparation of the execution context. After the virtual registers have
been initialized, the simulation of the instruction under test can begin. The next chapter
describes the simulation in detail.

*This is because the value is zeroed bytewise; a more precise bit mask would allow the usage of a few more
bits.

61

11. Preparation of the Execution Context

62

12. Simulation of the Execution of RReil
Code

In order to compute the effects the translated RReil code carries out on the system registers
and memory, the RReil code is simulated. The code consists of a list of RReil statements.
The simulation processes one RReil statement of that list at a time. While simulating a stat-
ment, the execution context is directly read and modified. The right hand side of assign-
ment and store statements contains an RReil operation. Operations do not only calculate
new values, but also a domain for each value. Consequently, the RReil assignment state-
ment also updates the domain information of a register. RReil operations include, among
others, arithmentic, bitwise, and comparison operations. In the current implementation of
the simulator, some operations are limited in terms of the maximum operand size. RReil
also offers statements that enable memory accesses. Since the memory addresses are not
known in advance, read memory regions are uninitialized (that is, they do not contain a
value) at the time the simulation starts. Because of that, a callback function performs the
initialization of the memory and the memory access itself.

The chapter starts with a description of the simulation of the different RReil statements
in the next section. Thereafter, Sect. 12.2 details on how the domain information of registers
is handled. Section 12.3 describes the simulation of the each RReil operation. Memory
accesses are discussed in Sect. 12.4. Finally, not every sequence of RReil statements can be
simulated - for this reason, Sect. 12.5 explains error handling.

12.1. RReil Statements

An RReil program consists of a list of RReil statements. During the simulation, the state-
ments contained in the list are processed one at a time. The following subsections describe
the different statment types and how they are simulated.

12.1.1. The Assignment Statement

The assignment statement assigns the result of an RReil operation to a register. The simu-
lation therefore first simulates the operation and then copies its result to the register. It is
important to note that the result of an operation does not only contain the newly calculated
value, but also a domain.

12.1.2. Load and Store Statements

Load and store statements are used to access the memory. The load statement assigns
the value of a memory cell to a register. The store statement, in contrast, executes an
RReil operation yielding the value to be saved to memory. The addresses themselves are

63

12. Simulation of the Execution of RReil Code

given as linear expressions which need to be evaluated before the actual load or store can
be performed. The load and store operations themselves are performed by invoking a
callback function.

12.1.3. Control Flow Statements

RReil supports the conditional and repeated execution of RReil statements independent
of the underlying address space. To this end, these control flow changes within the RReil
program are not implemented using some kind of branch statement, but instead use dedi-
cated RReil statements. Two control flow statements are available - the i f - then - else (ite)
statement and the while statement. The former executes one of two branches depending
on a condition, the latter repeats the execution of its body as long as a condition holds.
The condition can either be a comparison operation or a linear expression of size one. The
different branches of the ite statement or the loop body, respectively, are given as a list of
child RReil statements. The simulation first evaluates the condition and then recursively
simulates the chosen child statement list if necessary.

12.1.4. Branching Statements

Branching instructions are used to change the control flow of the underlying machine pro-
gram. Therefore, they update the program counter register of the processor to contain
the address of the next machine instruction to be executed. In the simulator, a jump is
modelled as special type of memory access to the target memory address. RReil offers
two different branch statements - a conditional branch depending on a condition (which
can either be a comparison operation or a linear expression of size one) and an uncondi-
tional jump. The unconditional jump is used for standard unconditional jumps, calls to
subroutines and returns from subroutines.

12.2. Domain Information

All registers contained in the execution context do not only have got a value associated
with them, but also a domain. As described by Sect. 9.1.1, the domain data works on
the bit level, i.e. each individual bit can either have a defined or undefined value. RReil
operations do not only calculate a new value given one or two operands, but also a new
domain. The domain of the result can be larger or smaller than the domain of either of the
input operands. In order to understand that, both cases are demonstrated using examples.
The first example addresses the sh1 statement which shifts the value of a linear expression
to the left:

destination =:32 source shl 4

The statement given shifts the register source four times to the left and saves the result to
the register destination. During the shift, zero bits are inserted at the least significant
bit of the result. Due to that, the domain grows by at most four bits. This happens if
undefined bits are shifted out of the register. The shift does not affect any bits outside
its range of operation (bits 0 through 31 in the example) - thus, in case a defined bit is

64

12.3. RReil Operations

shifted out of the register, the domain does not grow. For instance, if the source register
is defined in the bit range 0 through 16, the register dest inat ion will be defined in the
bit range 0 through 20 after the operation. If, in contrast, the register source is defined
in the bit range 0 through 30 before the operation, the size of the domain increases by one
only.

The second example performs an addition of a register and an immediate value using
the add operation:

destination =:8 source + 255

For the example, it is assumed that the source register is defined in the bit range one
through seven and all these bits have got the value zero. All bits of the 8 bit result, however,
depend on the value of the first bit of the input register - a value of zero would result in
a sum of 255, while a value of one would produce an overflow and, thus, a sum of zero.
Therefore, since the first bit of the input register is undefined, all result bits are undefined
- the domain of the result is smaller than both the domain of the first and the second
operand. The implementations of some of the RReil operations in the simulator are not
exact in respect of the domain, that is, the domain of the result of the operation might be
smaller than necessary for some inputs.

The domain information cannot be propaged to memory in case of a store statement,
since memory cells do not have got a domain. That is because according to the Intel x86
architecture, the processor does not store undefined values. Therefore, the usage of an
undefined value for a memory cell indicates an error in the semantic translation.

12.3. RReil Operations

All operations supported by RReil need to be implemented in the simulator. They oper-
ate on linear expressions which are evaluated before the actual operation (the next section
regarding the linear operation provides more details about linear expressions). The evalu-
ation of these linear expressions yields data structures which contain pointers to the data
of the operands and their domain. These data structures serve as parameters to the actual
operation implementations. The return value of an operation is of the same type. The
following subsections describe the implementation of the different operations.

12.3.1. The Linear Operation

The linear operation primarily is used to allow for a single RReil register or immediate
value to appear as a right hand side expression in an assignment or store statement. It
therefore only has got a single linear expression associated with it. This expression is eval-
uated and the result is returned without modification. However, the linear expression can
also contain additions, subtractions, and scales (which is equivalent to a multiplication
with an immediate value). In case such a more complex operation inside the linear ex-
pression is applied, the respective implementation also used for the corresponding RReil
operation is utilized. These operations are described below.

65

12. Simulation of the Execution of RReil Code

12.3.2. Addition and Subtraction

The RReil add operation adds two operands. In the simulator, the addition is performed
bytewise. There is no limit to the size of the operands. The same applies to the subtraction
since it is implemented by first calculating the two’s complement of the second operand
and then again performing an addition. The domain of an addition or substraction is equal
to the continuous range of defined bits in both operands starting from the least significant
bit. In other words, the result of the addition is undefined from the first undefined bit in
either operand on. As an example, an addition is considered. The first operand has got a
domain of the bit range from zero to four, while the second operand only has got a domain
of bits zero and one. Thus, just the lower two bits of the result are defined.

12.3.3. Multiplication, Division and Modulo

The multiplication (mul), division (div for unsigned division and divs for signed di-
vision) and modulo (mod) operations are implemented using the respective operators as
offered by the C programming language. This allows for a simple implementation of these
rather complex operations. The approach has got a drawback: the maximum size sup-
ported is 128 bits. Currently, the semantic translation does not need to perform these
operations on operands bigger than that. The implementations of these operations also
use a simple model for the domain - if a least the value of one bit of the input operands is
not defined, all bits of the result are undefined; otherwise the domain of the result equals
the range of bits the operation is performed on.

12.3.4. Shift Operations

RReil supports the three well-known shift operations sh1l (shift left), shr (shift right) and
shrs (shift right signed). In their implementation, the shift amount is separated into an
inter byte fraction (the number of complete bytes to shift) and an inner byte fraction (the
rest of the shift amount, i.e. the shift amount modulo the size of a byte). The inter byte
fraction is used as an offset into either the result data (in case of a left shift) or the source
operand data (in case of a right shift). The result is initialized to -1 (in case of a shift right
signed operation with a negative shift operand) or 0 (in all other cases). Next, the source
operand data is copied into the result data (using the offset as described). Finally, the inner
byte fraction of the shift needs to be performed. For this, the result is iterated through
either starting at the least significant byte (in case of right shift) or the most significant
byte (in case of left shift). In all cases, the inner byte shift can be performed locally by
processing one byte after the other. However, the direct successor of a byte in the direction
of the iteration is looked upon in order to determine the bits being shifted in. In case of a
shift right signed operation, the sign only needs to be taken care of in the last step of the
iteration.

In order to help the development of an understanding of the steps performed, Fig. 12.1
demonstrates a shift left operation. The shift amount is 21 bits. For this reason, the inter
byte shift fraction is 2 byte and, thus, two zero bytes are appended, thereby chopping
off the two most significant bytes since the size of the data does not change (the bytes
are shifted out). After that, the individual bytes are moved 5 more bits as indicated in the

66

12.3. RReil Operations

byte -2 byte -1 byte 0 byte 1 byte 2

byte 0 byte (L
T | 1 |

Figure 12.1.: Shift Left Operation

second step. Again, all bits shifted out of the most significant byte are cut off.

For the calculation of the domain of the result of a shift operation two cases are distin-
guished: Either the shift amount is fully defined or not. If it is not, all bits of the result are
undefined. Otherwise, the domain of the source operand is first shifted (without taking
care of the sign) into the direction of the shift operation and using the same amount as
for the data. That way, the association between a bit of the source operand data and the
corresponding bit the source domain data is preserved. Thereafter, the domain of the bits
shifted in needs to be set. In case of an unsigned shift operation, all of them have got a
defined value (zero). Otherwise, the sign bit of the original value of the source operand
is considered. In case it is defined, all bits shifted in also are defined. Otherwise, they are
marked as undefined.

12.3.5. Bitwise Operations

Bitwise operations combine each bit of the input operands independently. For this reason,
their implementation is very straightforward: The input operands are divided into chunks
processable by the physical machine and each of these chunks is handled separately. RReil
offers the bitwise operations and (and), or (or), and xor (xor). These operations also are
avaiable in the C language and can thus be directly used for the resulting data chunks.

The domain of the result of a bitwise operation also is calculated bitwise: The value
of the ith bit of the result is defined iff the value of the ith bit of both input operands is
defined.

12.3.6. Comparison Operations

Comparison operations compare their operands arithmetically. RReil offers operations
for signed and unsigned comparisons. The following table lists all available comparison
operations, the corresponding mathematical expression, the signedness, a description, and
the formula used by the implementation of the simulator for their evaluation:

67

12. Simulation of the Execution of RReil Code

RReil Op. | Op. | Signedness | Description Formula

= a =" | Both Comp. for equality Nicpo..sp @ = bi

% a # b | Both Comp. for inequality /\iE[O..s[a; £ b;

<s a <b | Signed Comp. if less or equal | ((z|=y)&((z ® y)|~(y — z)))s—1
<u a <b | Unsigned | Comp. iflessorequal | ((—z|y)&((z @ y)|=(y — x)))s—1
<s a < b | Signed Comp. if less (x&—)|((z = y)&(x — y)))s—1
<u a <b | Unsigned | Comp. if less ((m2&y)|((z = y)&(x — y)))s-1

As shown in the table, all of these operations are implemented using bitwise operations.
While this is trivial when it comes to the comparisons for equality and inequality, the for-
mulas for the other operations are more complex - they originate from the book Hacker’s
Delight, Sect. 2.11 [12]. In the table, the notation z; is used to access the ith bit of x. The
variable s contains the size of the operands.

The domain of the result of comparison operations is calculated using the simple ap-
proach known from above: The one bit result value is defined if the values of both input
operands are fully defined, otherwise it is undefined.

12.3.7. Extension Operation

Finally, RReil offers two extension operations - the zero (zero-extend) and the sign
(sign-extend) extension. Extension operations prepend additional bits at the most sig-
nificant bit of their operand. The zero extension always uses zero bits; the sign extension,
in contrast, repeatedly duplicates the most significant bit of the operand, until the target
size is reached.

The domain of the extended result depends on the kind of the extension operation. In
case of a sign extension, the domain of the operand also is sign extended, i.e. if the value
of the most significant bit of the input operand is defined, the bits used for the extension
also have got a defined value, otherwise not. The domain of the result of a zero extension
is equivalent to the original domain extended to the target size using one bits, that is, all
bits prepended to the data always have got a defined value.

12.4. Memory Accesses

Memory accesses occur whenever the RReil program reads data from memory, writes data
to memory, or changes the control flow of the underlying machine program. Since memory
addresses and access sizes used by the RReil program are not known beforehand (some-
times this is not even possible: Both can depend on the RReil system state at the time of
the access), the execution context cannot be prepared for the memory accesses before the
simulation. For this reason, the actual memory access is outsourced to the calling compo-
nent using a callback function. The callback function reads from memory, writes to it, or
acknowledges a branch. The following subsections detail on how the accesses are handled
by the callback function.

68

12.5. Simulation Errors

12.4.1. Read Accesses

The handling of read accesses depends on whether it is the first access to the given memory
address or not. If the memory region has been accessed before, the memory read callback
needs to read the old value from the execution context and return it. In contrast, if the
current access is the first access to that address, new random data needs to be generated
and both be saved to the execution context and be returned to the calling simulator. It
is important to note that such newly generated data does not only need to be saved to
the execution context of the simulator, but also to the execution context of the processor.
That is because all data generated for reading needs to be preserved for the subsequent
execution of the instruction on the processor. Since the Intel architecture does not allow
memory indirect addressing !, the generated random data does not need to be address-
friendly (Section 11.1 details on address-friendly random values). However, it is important
to consider the preference of special bit sequences during the generation of random data
as described by Sect. 11.4.

12.4.2. Write Accesses

Write accesses are easier to handle than read accesses since they do not need to generate
any random data, but only check whether the given address has been accessed before. In
that case, the corresponding entry in the execution context of the simulator needs to be up-
dated to contain the newly written data. Otherwise, a new entry is inserted. Furthermore,
the accessed address and access size need to be preserved in the execution context of the
processor since this information is needed by the testbed function execution component
and during the test evaluation. The write callback is not expected to return any value to
the simulator.

12.4.3. Branching

A branch memory access is performed whenever the program counter register (associated
with the Intel rip register) is updated to a new value (it is important to note that a jump
to the current value of the program counter is ignored) using a branch or cbranch RReil
statement. In the current semantic translation, a branch statement is only used as the last
statement of the semantics of an instruction. The branch callback creates a new entry to be
inserted into the list of memory accesses of both the execution context of the simulator and
the processor. The branch entry does not contain any data, but only the address jumped to.
The entry later is handled specially by the testbed execution component; this is described
in Sect. 13.1.3.

12.5. Simulation Errors

Simulation errors are a sign of wrongly constructed semantics. They occur if the RReil
program contains a statement sequence which would result in an ambiguous system state
or which contains invalid statements. In most cases, it does not make sense to continue the

!That is, data read from memory never is used for an address calculation of another memory access within
the same instruction.

69

N

12. Simulation of the Execution of RReil Code

simulation in case of such an error; thus, the simulation is aborted and an error message
is returned to the caller, that is, the tester component. The following subsections describe
the different error types.

12.5.1. Unaligned Memory Access

An unaligned memory access error occurs if the number of bits to be read from memory
is not divisible by the size of a byte. Such an access is invalid because memory used in
today’s computers is unable to access single bits of memory cells, but instead addresses
bytes or larger data units. Therefore, no Intel instruction semantics accesses individual
bits inside a memory cell: If this is necessary, the whole byte (or more data) containing
the bits in question is loaded to a temporary register, modified, and written back. The
following example contains an RReil program trying to load 6 bits and thereby causing an
unaligned memory access error:

t1l =:6 [rax]:e64

12.5.2. Undefined Addresses

An undefined address error occurs if the address calculated for a memory access contains
undefined bits. Such an access would access an arbitrary memory cell; this not useful,
since the execution of the instruction under test on the actual processor most likely would
access a different memory location. Furthermore, the semantics found in the Intel manual
never uses undefined data for memory accesses. Thus, an undefined address indicates an
error in the semantic translation. The following example RReil program stores data to an
undefined memory location:

t0 =:32 arbitrary
[t0]:64 =:32 eax

The program first undefines 32 bits of t 0. The value of the register is then used as address
in the store statement. This generates an undefined address error.

12.5.3. Undefined Data to be Stored to Memory

An undefined store error occurs if the data to be stored to memory contains undefined
bits. During the memory access, this information would be lost. The memory does not
store the domain of its cells because the Intel manual does not store undefined data to the
memory in its instruction semantics. Thus, again, such an access can only occur if the RReil
program is a incorrect representation of the Intel semantics. The following example RReil
program tries to store undefined parts of a register to memory:

tl =:64 arbitrary
tl =:32 eax
[rbx]:64 =:64 t1

The program first undefines 64 bits of the register t 1. Then, it copies the value of eax to
its lower 32 bits. Finally, it tries to store 64 bits of t1. Since the bits 32 through 63 have

70

NOUT = WD -

12.5. Simulation Errors

not been written since they were undefined, the value to be stored to memory contains
undefined data and an error is generated by the simulator.

12.5.4. Undefined Conditions

An undefined condition error occurs if the condition of a conditional execution statement
(ite), an iteration (while) or a conditional branch statment (cbranch) has got an undefined
value. While such a situation could in theory be handled by tagging all written RReil
registers as undefined in all child statements of the conditional statement, it makes more
sense to forbid undefined conditions, since they are not needed by the semantic translation
and, thus, again indicate some kind of error in the semantic translation. The following
example RReil program uses an undefined condition in a conditional execution statement:

t0 =:1 arbitrary
if (t0) then {

} else {

}

This concludes the description of the RReil simulator. After the simulation of the RReil
code, the instruction under test is executed on the actual processor. The next chapter de-
scribes all steps necessary to do that.

71

12. Simulation of the Execution of RReil Code

72

13. Execution of the Instruction Under Test

In order to obtain a reference value ! for the effects of the semantics of the instruction to
be tested on the system registers and memory, the instruction is executed on the physical
processor. At that point in time, the execution context of the processor is already prepared,
i.e. the virtual registers and memory cells contain the values to be used in the test. The
testbed function is resident in memory and will take care of initializing the registers of
the processor with the values from the execution context directly before the execution of
the instruction under test. However, memory addresses accessed are only known since the
simulation of the RReil code. The execution component needs to create memory mappings
for the respective addresses and initialize the corresponding memory using the data from
the execution context. Finally, the execution component takes care of handling signals
received while executing the testbed function.

The chapter begins with an explanation of the memory mapping and initialization in the
next section. Section 13.2 describes the execution of the testbed function and the cleanup
of the memory mappings afterwards. The circumstances that lead to the triggering of
signals and the types of signals are presented in Sect. 13.3. Section 13.4 briefly reiterates
the handling of program crashes which is, strictly speaking, not a task of the execution
component. Finally, Sect. 13.5 describes possible result values of the execution.

13.1. Memory Mapping and Initialization

The memory addresses accessed by instruction under test are expected to be known from
the simulation of the RReil code. It is assumed that the Intel instruction to be tested will
not access any further memory addresses during its execution; otherwise, either a signal
is generated or the memory is corrupted in an unpredictable way 2. In order to allow the
instruction under test to access the memory using the given addresses, memory mappings
that make the respective virtual addresses available to the executing process need to be
created. The C function mmap () is able to map a number of memory pages for a specific
virtual address and size. Naturally, it might be the case that the given address already is
mapped; in that case the memory is in use and cannot be allocated for the test. There is
no way to recover from that situation, the test needs to be aborted. Otherwise the new
mapping is created. The following sections describe further steps needed to initialize the
memory depending on the access type.

! A reference value is the comparison value for the test which is supposed to be the correct test result.
2In order to deal with such severe error situations, the validation software can be configured to outsource
the execution of the instruction under test to a child process.

73

13. Execution of the Instruction Under Test

13.1.1. Initilization of Read Memory

Read memory regions need to be initialized with data read by the RReil program at the
time the access occured, i.e. during the simulation. The data is stored together with the
address inside the execution context of the processor. The data needs to be copied from
there to the target memory region.

13.1.2. Initilization of Written Memory

Written memory regions do not need to be initialized. Thus, at this point, they are simply
skipped.

13.1.3. Initialization of Jumped at Memory

Memory addresses branched at also need to be initialized. Their presence in the execution
context indicates the instruction under test to be a jump instruction. The processor might
continue its execution at such a branch target. For this reason, the corresponding memory
needs to be initialized using a program that makes the jump visible in the execution context
of the processor and then returns to the testbed function. During the generation of the
testbed function, the routine for jump targets has already been created and is now available
to the execution component (Section 10.5 describes the generation of it in detail). Since the
routine is position independent, the execution component simply copies the routine to the
memory which is the jump target.

13.2. Execution of the Testbed Function and Cleanup

After the initialization of the memory, the testbed function is called. It administers the
registers of the processor used for the test and executes the instruction to be tested. Upon
return of the testbed function, the virtual registers of the execution context of the processor
have already been updated with the changes induced by the instruction under test. The
memory accessed, however, still needs to be propagated back to the execution context.
This can be done by iterating over all memory accesses and copying the data at the respec-
tive addresses back to the memory image of the memory access data structure within the
execution context. Afterwards, the mappings are removed using the munmap () C func-
tion.

13.3. Handling of Signals

Signals are events generated by the operating system. A signal can be caused by an excep-
tion during the execution of a program. Such an exception is, for example, triggered if an
address is used which the processor does not know any mapping for. The processor reacts
to an exception by jumping to an exception handler routine. Such an exception handler
always is located inside the operation system kernel. In the example situation, the handler
tries to find a mapping in the mapping table of the operating system which contains all

74

13.3. Handling of Signals

mappings °. If a mapping is found, the memory access of the user application is finished
using that mapping - the user process does not notice that the exception was triggered in
the first place. Otherwise, however, a signal (SIGSEGV) is sent to the process indicating
the memory error. The user process is able to define handlers for signals. Such a handler
is then invoked once a signal is received.

The execution component installs a number of handlers in order to react to possible
errors during the execution of the instruction under test. The following sections describe
the most important ones.

13.3.1. Segmentation Fault (SIGSEGV)

As indicated in the example above, a Segmentation Fault (SIGSEGV) is triggered in case
of an invalid memory access. Such a memory error is very likely to happen if the RReil
program fails to correctly calculate memory addresses used. In that case no mapping is cre-
ated for the actual address accessed by the instruction under test and, thus, if the address
is not already used by the same process for other reasons, its usage results in a memory
error reported to the process by the SIGSEGV signal.

13.3.2. Illegal Instruction (SIGILL)

The Illegal Instruction signal (SIGILL) is triggered in case the user process tries to execute
an illegal instruction. This can happen if the decoder erroneously decodes an illegal in-
struction generated by the random instruction generator. It is expected that the decoder
reports an instruction to be invalid if the bytes handed to it do not represent an Intel in-
struction; in that case, the test byte sequence is ignored and another instruction is gener-
ated. In contrast, if the decoder fails to detect the invalid instruction, the decoding error
is only recognized while trying to execute the instruction by the reception of the SIGILL
signal. Another cause for the signal is the test of an instruction that is legal according
to the Intel architecture, but requires a CPU feature that is not present in the processor
configuration of the processor the validation software runs on.

13.3.3. Timer (SIGALRM)

The Timer signal (SIGALRM) is triggered in case of a timer expiration event. The timer is
set using the alarm () function. The timer is used to cope with infinite loops caused by
an invalid decoding or translation of an Intel instruction. As an example, the following
instruction is considered:

jmp —2

The instruction is assembled into the byte sequence Oxebfe. Itis a relative jump branch-
ing to an address calculated by adding the operand (—2) to the address of the instruction
following the jump instruction. Thus, since the instruction has got a size of two bytes, it
branches to itself. Because of that, the instruction repeats indefinitely. Of course, if the
memory mapping phase correctly identifies the jumped at address to be in use, the test is

3The processor itself only caches some mappings inside the so-called translation lookaside buffer (TLB).

75

13. Execution of the Instruction Under Test

aborted before the execution of the testbed function and, thus, before the execution of the
jump instruction. In case, however, this fails for some reason - for example, because of a
wrongly calculated target address -, the testbed function is executed and never returns. By
setting an alarm before the execution of the testbed function, a recovery from the error is
possible. It is assumed that whenever the execution of the testbed function takes longer
than one second, it is trapped in an infinite loop and needs to be aborted.

13.4. Intercepting Program Crashes

Even with signal handlers installed, it is possible that the execution of a test instruction
leads to an irrecoverable error. These rather rare cases cause program crashes. This prob-
lem is not addressed by the execution component, but by the tester component. Sec-
tion 7.1.2 describes the approach used in detail.

13.5. Execution Results

The execution component returns the result of the execution to the calling component.
The result reports problems during the execution. In the following, all possible return
values are listed and described briefly. An error during the execution leads to the failure
of the test. The general error handling of the validation software is described in detail by
Sect. 14.2.

Mapping error
As mentioned above, the mapping of addresses can fail. In that case, the test cannot
be performed; instead, the execution is aborted and a mapping error is returned to
the tester component.

Signal received
The reception of a signal during the execution of the testbed function indicates an
error. It is not possible to evaluate the test results in that case. For this reason, the
signal type is reported to the tester component.

Success
If none of the above errors occurs, the successful execution of the instruction under
test is reported to the tester component.

This finishes the description of the execution of the instruction under test. After a suc-
cessful execution of the instruction the two instances of the execution context data struc-
ture which belong to the simulation and the execution contain different values regarding
the virtual registers and the system memory. The next chapter describes how the execution
contexts are used to evaluate the test result.

76

14. Evaluation of the Test Results

After the completion of a test case the results need to be evaluated. A single test may ei-
ther succeed or fail. A failing test can either fail during the evaluation of the test results
(i.e., because of deviating register or memory contents in the two execution contexts) or
beforehand because of a decoding, translation, simulation, or execution error. The differ-
ent error types are mostly caused by programming errors in the decoder or the semantic
translation. There also are errors that do not indicate a programming error, but occur due
to unrelated underlying conditions. An example for such an error is the memory mapping
error that results from an already allocated memory address which cannot be used by the
instruction under test.

There are two possible operational scenarios for the tester. First, it can be used to find
errors in the decoder and translator specification. For this, the tester repeatedly generates
test cases until an error occurs. Second, the tester can be used to collect statistical data.
To this end, instruction tests can be run multiple times using different test byte sequences
in order to obtain data about the frequency of certain error types for different instruction
classes.

This chapter starts by describing the comparison of the effects of the simulation of the
translated semantics to the effects of the execution of the instruction under test in the next
section. After that, Sect. 14.2 details on possible reasons for a test to fail and also summa-
rizes the origins of the errors described. Finally, Sect. 14.3 describes the statistical analysis
of instruction tests.

14.1. Comparison of the Effects on Registers and Memory

The last step of an instruction test is the comparison of the effects on the system registers
and the memory produced by the simulation of the translated semantics and the execution
of the instruction under test. The effects are recorded in the respective execution contexts.
If their contents deviate, the test fails because the real semantics as observed on the proces-
sor behave differently from the semantics given by the translated RReil code. For the test
to succeed, both the accessed memory cells and all registers from the execution context of
the simulator need to match the respective memory cells and registers from the execution
context of the actual processor. The following two sections describe the approaches taken.

14.1.1. Registers

The conformance of the registers is checked by comparing all values from all registers of
the two execution contexts. It is not necessary to limit the check to the registers which
actually took part in the test. This is because both the execution context of the simulator
and the processor have been initialized to the same values. All registers which are changed

77

14. Evaluation of the Test Results

by the simulator also take part in the calculation of the reference value, i.e. their initial
value is saved to the respective physical register before the execution of the instruction
under test and written back to the execution context of the processor afterwards. Thus, all
registers not considered during the execution of the instruction on the physical machine
still contain their initialization value in both execution contexts.

During the comparison of the individual registers, it is important to pay attention to
their domain. The values of undefined bits are allowed to vary from test run to test run,
independent of whether they are generated by the real machine or by the simulator. Thus,
their value is not useful in any way and needs to be ignored. In practice, the domain found
in the execution context of the simulator ! is used as a bit mask for the two register values
to be compared.

14.1.2. Memory

The conformance of the memory accesses is confirmed by comparing all memory (write)
accesses from the two execution contexts. Naturally, this only makes sure that those mem-
ory cells modified by the simulation of the RReil code are compared. Further memory
cells which have been modified by the execution of the instruction under test on the pro-
cessor are overlooked. This necessarily results in a loss of test accuracy. As pointed out in
Sect. 5.2, the drawback is in the nature of the approach taken by the validation software.

14.2. Error Types

The validation of a byte sequence may fail for many reasons while the different steps of
the test are performed. It is very important to precisely report the error which led to the
abort of a test. Using that information, the respective specification (the decoder or the
semantic translator) can be debugged or statistical information about the correctness can
be collected. The following error types are distinguished; each error type has its individual
causes and origins.

14.2.1. Decoding Errors

A decoding error occurs if the given byte sequence cannot be decoded by the decoder.
Because of the way instructions are generated such decoding errors are likely to happen
and can in general be ignored, that is, by trying a new byte sequence.

14.2.2. Translation Errors

Translation errors occur if the semantic translation fails for a given instruction object. Since
the semantic translator also works for instructions whose semantic translation is not yet
implemented (the translator tries to guess the output operand of these instructions and
assign an undefined value to it), translation errors should not occur and indicate a pro-
gramming error in the semantic translation.

!The domain of the virtual registers contained in the execution context associated with the processor is not
set since the processor does not calculate the domain seperately while executing instructions.
21t is not made sure that each byte sequence generated actually corresponds to a valid Intel instruction.

78

—_

14.3. Statistical Analysis

14.2.3. Simulation Errors

Simulation errors occur if the simulation of the RReil code produced by the semantic trans-
lation fails. Simulation errors are caused by a faulty RReil program. Again, this is an
indication of a programming error in the translator specification. Section 12.5 discusses
simulation errors in detail.

14.2.4. Execution Errors

Execution errors occur if the execution of the instruction to be tested on the actual proces-
sor fails. This can be caused by a faulty decoding or semantic translation. However, it is
also possible that the execution fails for other, unrelated reasons. Chapter 13 describes the
execution of the instruction on the processor and also details on possible errors. Further-
more, in case forking is enabled (forking is described in Sect. 7.1.2), the instruction under
test is executed using a separate process and, as a consequence, its execution can also cause
a result value that signals a process crash.

14.2.5. Comparison Errors

A comparison error occurs if the final comparison of the effects on the system registers
and memory cells of the simulation of the translated RReil code and the execution of the
instruction under test unveils a mismatch regarding a memory cell or a register. Such a
comparison error indicates a programming error in the semantic translation.

14.3. Statistical Analysis

The validation software facilitates two usage scenarios for test data collected. As men-
tioned above, the first one is the assistance offered for debugging the x86 decoder and
semantic translator. However, besides that, it is also interesting to evaluate the depend-
ability of the current implementation. To this end, the statistical analysis software runs a
large number of test cases and outputs a summary of the data collected afterwards. The
following sections describe the collected data and its evaluation.

14.3.1. Instruction Abstraction

For the statistical analysis, data about the results of the test cases is stored in a dictionary.
The keys are derived from the test cases; a straight forward approach would use (a string
representation of) the instructions generated for testing as keys. It is, however, necessary
to abstract from the actual instructions. This is because it is neither efficient nor useful to
collect data for every operand combination possible. For example, the data collected from
the tests of the following two instructions can be merged:

add rbx, rax
add rex, rdx

The instructions both use register operands only. Therefore, the test results are stored
in memory using the more generic string add reg, reg as key. Memory references

79

14. Evaluation of the Test Results

also are generalized; however, different addressing types are still distinguished. Memory
operands are represented by the strings

* [reqg],
® [reg + scalexreqg],
® [reg + scalexreg + imm],or

e [imm].

14.3.2. Collected Data

For each abstract instruction, relevant data from the corresponding test cases is stored.
This data contains the number of errors and the types of the respective errors. In case the
tester component supplies additional information - the name of the signal which has been
received during the execution of the testbed function, for example - this data is also aggre-
gated. Finally, using a separate table, the number of failed instructions by CPU feature is
logged - see the next section for more details.

The number of test cases to run can be configured by the user. In order to be able to
continue testing after the occurrence of any kind of execution error and not loose statistical
data, tests generally execute the respective instructions under test in child processes. All
data collected is printed after the tests complete.

14.3.3. CPU Feature Dependence of Errors

As mentioned above, the number of failed test cases is additionally correlated to the CPU
features required by the respective instructions. This is useful for two reasons. First, some
CPU features are handled in a generic way by the decoder or the semantic translator - for
example, AVX instructions share the decoder for the VEX prefix. By looking at the mea-
surement data, programming errors in these shared components can be identified: In case
a shared component used by a specific CPU feature is implemented incorrectly, the error
rate presumably is significantly higher for instructions using that feature than in general.
Second, the processor the validation software is run on might not offer every possible CPU
feature. Because of that, some instructions might fail just because of an unmet feature re-
quirement. This can be identified by looking at the error rate of the different CPU features
- if all tests requiring a specific feature fail, the feature is probably not supported by the
machine the tests are run on.

This concludes the description of the evaluation of the test result. The last chapter of
this part presents a complete example and shows how the validation software can be used
to fix bugs by describing a programming error detectable using a test case. Additionally,
statistical data illustrating the current development state of the decoder and translator
specifications is shown and discussed.

80

Qi WO N -

IO G WIN -

15. Examples and Statistics

Example inputs and outputs for every component of the validation infrastructure illus-
trating the different steps a test case takes from its generation to a successful validation
are provided by the respective chapters. While this is useful to understand the compo-
nents individually, this chapter provides complete examples. Furthermore, statistical data
on the current development status of the decoder and semantic translator specification is
discussed.

This chapter begins with a complete example for a test byte sequence that helps to un-
derstand the software as a whole in the following section. Next, Sect. 15.2 describes an
error found in the translator specification using the validation software. Here, special em-
phasis is put on explaining how the output of the validation software helped to trace the
bug. Finally, Sect. 15.3 contains statistical data collected using the current decoder and
translator specification. The section also discusses the results with regard to the level of
reliability the current specifications offer.

15.1. Example Test Case

The following example test case validates the byte sequence 0x48 0x29 0Oxc3. The byte
sequence has been generated by the Intel instruction generator. The decoder is able to
decode the byte sequence; it outputs an instruction object which looks as follows (the il-
lustration is simplified):

SUB {
opndl = REG RBX,
opnd2 = REG RAX,
}

Thus, the instruction sub rbx, rax has been decoded. The instruction object is next
handed to the translator which outputs a list of RReil statements representing the instruc-
tion semantics. The following listing shows a print representation of the AST using the
RReil syntax.

t0 =:64 B — A

RREIL_ID_VIRTUAL_LTS =:1 B <5:64 A

FLAGS.7 =:1 t0 < :64 0

FLAGS .11 =:1 RREIL_ID_VIRTUAL_LTS xor:1 FLAGS.7
FLAGS .6 =:1 TO =:64 0

if (0) {

81

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

IO Ol WIN -

15. Examples and Statistics

FLAGS =:1 B <,:64 A
} else {

FLAGS =:1 B <,:64 A
¥

T4 =:8 TO

FLAGS.2 =:1 T4.7 =:1 T4 .6
FLAGS .2 =:1 FLAGS.2 =:1 T4 .5
FLAGS .2 =:1 FLAGS.2 =:1 T4 .4
FLAGS.2 =:1 FLAGS.2 =:1 T4.3
FLAGS .2 1 FLAGS.2 =:1 T4.2
FLAGS .2 =:1 FLAGS.2 =:1 T4.1
FLAGS.2 =:1 FLAGS.2 =:1 T4

T5 =:64 TO xor B
T5 =:64 T5 xor A
T5 =:64 T5 and 16
FLAGS .4 =:1 T5 =:64 0

B =:64 TO

It is important to note that the RReil code is not optimized in any way; this is noticeable
by looking at the conditional statement in line 8 - the condition is always false and, thus,
the conditional statement could be removed. The RReil code is quite extensive because of
the status flag calculations. The actual subtraction is implemented by lines 1 and 26. The
former subtracts the operands and saves the result in the temporary register t 0. The latter
writes the value of the temporary register to the destination operand. The detour using
a temporary register is taken in order to allow the flag calculation to access both source
operands and the result of the operation.

The translated semantics is next processed by the RReil inspection component. It identi-
fies all accessed registers. For the above semantics, the following information is gathered:

Read registers:

Register B: ffffffffffffffff
Register A: ffffffffffffffff
Register FLAGS: 0000000000000084
Written registers:

Register FLAGS: 00000000000008d5
Register B: ffffffffffffffff
Dereferenced registers: None

In the listing, all registers with a least one accessed bit are listed. Within a register, the
accessed bits are given as a bit mask. All 64 bits of both input operands are read; the
destination operand additionally is written. Furthermore, some bits of the f1ags register
are read and written. Since the instruction does not access the memory, no registers are
dereferenced, i.e. used for address calculations.

Using the information gathered by the inspection, the testbed function is generated.
For the example, the tester operates in the minimalistic mode of operation; thus, only the
registers accessed according to the RReil code inspection are reserved to be used by the

82

XUl WD

15.1. Example Test Case

instruction under test. The generation yields the following Intel assembly code:

push rbx
push rax
pushfq
push r8
push r9
push r10

mov r8, 0x63c3c0
mov rbx, [r8]
mov r8, 0x63c380
mov rax, [r8]
mov r8, 0x63c300
mov r8, [r8]
push r8

popfq

mov r8, 0x63c3c0
mov rbx, [r8]

lea r10, [rip + 0x03]

sub rbx, rax
nop
nop

nop

pushfq

pop 19

mov r8, 0x63c300
mov [r8], r9
mov r8, 0x63c3c0
mov [r8], rbx

pop r10
pop 19
pop 18
popfq
pop rax
pop rbx

retq

In the code, the different tasks of the testbed function can be identified. The function starts
by backing up the registers touched during its execution (lines 1 through 6). Next, the
registers accessed by the instruction under test are initialized (lines 8 through 17). Line 19

83

15. Examples and Statistics

initializes the return address register. The instruction under test itself is executed in line 21.
Afterwards, lines 27 through 32 write the modified registers back to the virtual registers
inside the execution context of the processor. Finally, all used machine registers are reset
to the value they have had before the call to the testbed function (lines 34 through 39) and
the execution returns to the caller (line 41).

Before the simulation of the RReil code, the execution contexts (of both the simulator
and the processor) need to be initialized. The instruction to be tested does not access the
memory. Therefore, the constants generated do not need to be address-friendly. A valid
initialization is shown in the following;:

= W N =

Register IP: 00007f14e590b05c [defined: ffffffffffffffff]
Register FLAGS: 0000000000000000 [defined:0000000000244cd5]
Register A: 00b4006ba4e41891 [defined: ffffffffffffffff]
Register B: c35dbf2c68ea0033 [defined: ffffffffffffffff]

In the listing, the domain is also given using a bit mask - both input registers are fully
defined; the flags register only has got a few defined bits. The value of the program
counter (the ip register) is not arbitrary; instead, it contains the address of the instruction
following the instruction under test inside the testbed function in memory (which is the
correct value of the ip during the execution of the instruction under test).

Next, the simulation is run and, afterwards, the testbed funtion is executed. This results
in new values for the different registers in both execution contexts:

_ O 0O O IOk WODN -

[EE Y

CPU:

Register IP: 00007f14e590b05c [defined: ffffffffffffffff]
Register FLAGS: 0000000000000080 [defined:0000000000244cd5]
Register A: 00b4006ba4e41891 [defined: ffffffffffffffff]
Register B: c2a9bec0c405e7a2 [defined: ffffffffffffffff]

RReil simulator:

Register IP: 00007f14e590b05c [defined: ffffffffffffffff]
Register FLAGS: 0000000000000080 [defined:0000000000244cd5]
Register A: 00b4006ba4e41891 [defined: ffffffffffffffff]
Register B: c2a9bec0c405e7a2 [defined: ffffffffffffffff]

Again, the domain is given as a bit mask. The destination operand (register b) now con-
tains the result of the subtraction; the source operand (register a) has not been changed.

As a final step, the results of the test are evaluated. For this, the two execution contexts
are compared. As shown in the listing, all values match. Thus, the test of the instruction is
successful.

15.2. Example Programming Error in the Translator

In the following, a programming error in the semantic translation of the Intel instruction
pblendvb (Variable Blend Packed Bytes) is discussed. The signature of the instruction
looks as follows:

84

OO Gk WDN -

15.2. Example Programming Error in the Translator

xmm0Q 00110011 | 11111111 | 10101010 | 00011111 | 10000000

I J
destination - - -

Figure 15.1.: [llustration of pblendvb

pblendvb xmml, xmm2/m128, <xmm0>

Thus, the instruction has got three arguments, all of which are of size 128 bits. It con-
ditionally copies bytes from its second operand to its frist operand. The conditions are
given by the third operand (which is fixed; it is always the register xmm0). For each byte
of the source operand, the most significant bit of the corresponding byte in xmm0 decides
whether it is copied or not. If the bit has got the value one, the byte is copied, otherwise the
byte in the destination operand is unchanged. An example execution of the instruction is
illustrated in Fig. 15.1.

In the initial specification of the semantic translation, the following (erroneous) GDSL
monadic function handles the instruction:

val sem—pblend bit—selector opndl opnd2 opnd3 = do
size <— sizeof opndl;
srcl <— rval size opndl;
src2 <— rval size opnd2;
dst <— lval size opndl;
mask <— rval size opnd3;

temp—srcl <— mktemp;
mov size temp-srcl srcl;
temp—src2 <— mktemp;
mov size temp—src2 src2;
temp—mask <— mktemp;
mov size temp-mask mask;

temp—dst <— mktemp;
mov size temp—dst (imm 0);

element—size <— return 8;

let

85

21
22
23
24
25
26
27
28
29
30
31
32
33
34

O O NI ONUl kWD =

U |
= W N = O

15. Examples and Statistics

val m i = do
offset <— return (element—size=xi);

test—bit <— bit—selector element—size i temp-mask;
_if (/d (var test—bit)) _then
mov element—size (at—offset temp—dst offset)
(var (at—offset temp—src2 offset))
end
in
vector—apply size element—size m
end;

write size dst (var temp—dst)
end

The translation function first prepares the operands of the instruction (lines 2 through 6) for
reading and writing. Next, lines 8 through 13 copy the two input operands into temporary
registers since only these can be accessed using offsets !. Line 15 allocates a temporary
register for the result, line 16 initializes the result to zero.

The main part of the semantics of the instruction can be found in lines 20 through 31.
There, the vector-apply function is used - it calls a given monadic function (m in this
case) for each element of a vector. Thus, m is called for each byte of the 16 byte operands.
The monadic function m implements the recurring semantics for a single vector element.
It reads the determining bit (line 24) and then copies one byte from the source register to
the result register if the bit is set to one (lines 25ff). Finally, line 33 writes the value of the
temporary result (vector) register to the destination operand.

Running the validation software for the instruction pblendvb xmm2, xmml (with the
implicit third operand xmm0) yields the following RReil code:

t0 =:128 xm2
t1 =:128 xmml
t2 =:128 xm0
t3 =:128 0

if(t2.7) {
t3 =:8 t1
} else {

}
if (t2.15) {

t3.8 =:8 t1.8
} else {

}

!That is because a generic operand does not need to be a register, it could instead be an immediate value or
a memory location; in the concrete example, the instruction considered allows the second operand to be a
memory location.

86

15
16

IO G WIN -

15.2. Example Programming Error in the Translator

xmm2 =:128 t3

In the code, lines 1 through 4 correspond to the initialization of the temporary registers,
lines 6 through 14 implement the conditional copying for each vector element (the code is
shortened, there actually is a conditional expression for each of the 16 bytes), and line 16
finally implements the write back.

The test of the instruction fails with the following output:

Read registers:

Register XMM2: ffffffffffffffffffffeeffefeeesessf
Register XMMIL: fffffffffttfftttteeeefeefefffffef
Register XMMO: ffffffffffffffffffffeeffefeefsessf
Written registers:

Register XMMR2: fffffffffeefeeeteeefeffffffffffef
Dereferenced registers: None

Register IP: 00007f2d4ed0e069 [defined: ffffffffffffffff]

Register XMMO: ac008cea00b42e8ce51b6c09e04ecf00 [defined: ffff ...]
Register XMMI1: 388900704ddd16412a0011c83f27e7af [defined: ffff ...]
Register XMM2: 29£72200a290cc5e188e0011480081d9 [defined: ffff ...]

CPU:

Register IP: 00007f2d4ed0e069 [defined: ffffffffffffffff]

Register XMMO: ac008cea00b42e8ce51b6c09e04ecf00 [defined: ffff ...]
Register XMMl1: 388900704ddd16412a0011c83f27e7af [defined: ffff ...]
Register XMM2: 38f70070a2ddcc412a8e00113f00e7d9 [defined: ffff ...]

RReil simulator:

Register IP: 00007f2d4ed0e069 [defined: ffffffffffffffff]

Register XMMO: ac008cea00b42e8ce51b6c09e04ecf00 [defined: ffff ...]
Register XMMI1: 388900704ddd16412a0011c83f27e7af [defined: ffff ...]
Register XMM2: 3800007000dd00412a0000003f00e700 [defined: ffff ...]

Failing Registers:

XMM2

Failing memory addresses:

None

Result: TESTER RESULT_.COMPARISON_ERROR

Obviously, the values of the register xmm2 differ (see lines 18 and 24). The comparison
of the original value of the register to the output values of both the processor and the
simulator gives insight into the problem: All vector elements not copied are zeroed in the
output operand by the simulator but stay unchanged in the register associated with the
processor. The reason can be found in the semantic translator function - line 16 of the
listing initializes the output register to zero and the conditional statement in the lines 25ff
fails to overwrite the result register with the respective bytes from the original value of the

87

—_

_ O 0O O NINUl ke WN =

15. Examples and Statistics

destination operand since it lacks an e1se branch. The bug can be fixed by initializing the
temporary result register to the value of the first operand (the destination operand) instead
of zero:

val sem—pblend bit—selector opndl opnd2 opnd3 = do

temp—dst <— mktemp;
#—mov—size—temp—dst—{imm—0)-

mov size temp—dst srcl;

element—size <— return 8§;

end

In the listing, line 6 now uses the value of src1 for the initialization of temp-dst instead
of the immediate value zero.

15.3. Statistical Data on the Current Specifications

The following statistics on the current specifications have been collected on an Intel Core i5
processor. In order to obtain a representative amount of data, the software generated one
million byte sequence for testing. As described by Sect. 14.3.1, the different instructions
are mapped to more generic instruction types. The output of the software starts with
information about each of the types that occured:

error type
type tot. | trans. sim. exec. comp. crash.
MOVAPD REG, [SCALE*REG+REG+IMM] 1 0 0 0 0 0
VUCOMISS REG, [SCALE*REG+REG+IMM] 1 0 0 1 0 0
PHADDSW REG, [SCALE*REG+REG+IMM] 7 0 0 3 0 0
VCMPSS REG, REG, [IMM], IMM 1 0 0 1 0 0
PREFETCHW [SCALE*REG+IMM] 2 0 2 0 0 0
VPSLLQ REG, REG, [REG+SCALE*REG] 1 0 0 1 0 0
MOVZX REG, [SCALE*REG+IMM] 3 0 0 1 0 0
MOVNTQ [SCALE*REG+IMM], REG 5 0 0 1 0 0

The table does not list decoding errors, since it is not possible to associate an instruction
type with a byte sequence if the byte sequence cannot be decoded. Crashes are listed
separately since, strictly speaking, they are noticed outside the execution component and
are therefore not counted as execution errors. Nevertheless, they only occur during the
execution of the instruction under test. In total, the decoder was able to decode 526.252
(52,6%) of the byte sequences. The instructions were broken down into 4635 different
instruction types.

88

15.3. Statistical Data on the Current Specifications

error type count relative inner distribution
none 306366 58,22%
translation 4133 0,79%

unaligned store 0,00%
undef. address 0,00%
undef. data (store) 99,96%
undef. branch 0,04%

mapping 6,88%

simulation 52356 9,95%

SIGILL 55,38%
SIGSEGV 39,37%
SIGBUS 4,26%
signal 93,12% SIGFPE 0,94%
SIGTRAP 0,05%
SIGALRM 0,00%
SIGSYS 0,00%

execution 132757 25,26%

comparison 20025 3,81%
crashes 10615 2,02%

Figure 15.2.: Test results

The tests resulted in the summary data shown in Fig. 15.2. The figure shows the different
error types and their frequency. Most importantly, almost 60% of the tests succeeded. Only
about 4% of the tests failed because of a deviation of the values of the registers or memory.
The most notable error is the execution error - it occured during more than 25% of the test
cases. Among the execution errors, the two signals SIGSEGV (invalid memory access) and
SIGILL (illegal instruction) are the most prominent causes. The former indicates an error
in the semantic translation since it is caused by the lack of knowledge of an access to a
memory address. The memory addresses are found during the simulation of the RReil
code and, thus, it is probable for the RReil code to be faulty. The latter, in contrast, points
to either an error in the decoder or the unavailability of an instruction. The decoder was
able to decode the byte sequence, but the processor was not. Therefore, the decoder either
accepts invalid instructions (which implies a programming error in the decoder) or the
processor does not accept a valid instruction; that can be, for instrance, due to a missing
CPU feature.

About 10% of the tests resulted in a simulation error. Almost every of these simulation
errors occured because of an attempt to store undefined data. It is, however, important to
note that the current translator handles unimplemented instructions by undefining their
destination (which is assumed to be the first operand) operand. Thus, if the first operand of
an unimplemented instruction is a memory operand, this results in such a simulation error.
Therefore, the simulation errors are primarily caused by unimplemented instructions. A
low number of test cases failed because of translation errors. Translation errors are caused
by unhandled operand combinations in the instruction semantics. Finally, a few of the test
cases caused the program to crash. Since the program crashed, it is hard to find out the
exact reason for the error. A crash can happen if a signal handler cannot be called for some
reason, for example due to a memory corruption or because the program did not register

89

15. Examples and Statistics

CPU feature number of tests success rate
NONE 242105 66.883%
AES 1069 8.793%
AVX 32529 0.000%
F16C 22 0.000%
INVPCID 67 0.000%
MMX 40032 67.613%
CLMUL 91 32.967%
RDRAND 31 0.000%
FSGSBASE 175 0.000%
SSE 39540 40.490%
SSE2 30020 39.616%
SSE3 2625 43.885%
SSE4_1 4431 32.701%
SSE4.2 455 21.978%
SSSE3 15126 60.934%
XSAVEOPT 672 0.000%
ILLEGAL_REP 91001 50.644%
ILLEGAL_REPNE 94556 51.436%
ILLEGAL_LOCK 745 8.590%
ILLEGAL_LOCK_REGISTER 25 0.000%

Figure 15.3.: Test results by CPU feature

a handler for that signal.

Figure 15.3 shows the number of tests and the success rate as a function of the CPU fea-
ture. The table shows that some CPU features cause all tests to fail; an important example
is the AVX feature. Since the processor does not support it, all AVX instructions fail. This
does not imply anything about the correctness of the decoding or of the semantic transla-
tion of AVX instructions. The same holds for other features that are not implemented by
the current processor. Finally, there are some features in the table whose name begins with
ILLEGAL. These features do not represent Intel CPU features, but instead indicate the abil-
ity for an instruction to accept a prefix which is not meant for it. For example, the ret (Re-
turn from Procedure) instruction allows to be used in combination with the repeat prefix,
even though this prefix does not make sense for the instruction; it is ignored. Whenever an
instruction is combined with such a needless prefix, it requires the respective pseudo CPU
feature. The ILLEGAL_LOCK_REGISTER feature is used for a lockable instruction that is
used in combination with the lock prefix and a register destination operand. The lock prefix
is pointless in combination with register destination operands.

90

Part IV.

Conclusion

91

16. Conclusion

The decoding and semantic translation of binary code is an important step towards the
static analysis of programs. This thesis presented the GDSL programming language that
is specifically geared towards the implementation of instruction decoders. During the last
two years, GDSL proved itself in the course of the implementation of an instruction de-
coder and semantic translator for the Intel x86 (including the 64 bit extension) architecture.
By now, the GDSL toolkit features a complete decoder implementation and semantic trans-
lations into the RReil intermediate representation for at about half of the Intel instruction
set. The remaining instructions are, for the most part, floating point instructions which are
currently not handled by the corresponding analysis software which is also developed at
our chair. Furthermore, some instructions perform highly complex operations or query the
internal state of the precessor; their translation needs to be implemented using primitives
in the future.

The Intel x86 decoder and semantic translator both have got a size of at about 6000 lines
of code. Writing such a great quantity of code inevitably leads to correctness issues. The
lack of a debugger and the early development state of the compiler for the GDSL program-
ming language made the problem worse. The thesis addressed this issue by presenting a
validation approach that is able to detect programming errors within the decoder spec-
ification as well as within the semantic translation specification. The main idea of the
test approach is to use the processor that runs the test suite itself to validate the correct
decoding and semantic translation. To this end, byte sequences are generated randomly
that are used as test cases. The generated byte sequences are later executed on the pro-
cessor. The validation software records the changes to the system registers and memory
that are caused by that execution and uses the data collected to confirm the correctness
of the decoding and the semantic translation obtained from the GDSL toolkit. By execut-
ing the byte sequences on the actual system processor, a reference value for their effects
is constructed which relies on an existing implementation of the underlying instruction
set architecture rather than on a description of the architecture which may again contain
errors and inaccuracies. Due to the automatic generation of test cases, the approach allows
to run a multitude of test cases in order to achieve a good test coverage. Furthermore, the
test approach allows for a detailed output in case of a test case failure which enables the
programmer to precisely trace errors.

Finally, the thesis also discussed statistical data on the present implementation of the
decoder and translator specifications. The data shows that currently at about half of the
generated test cases succeed. The automatic generation of such statistical data enables
the programmer to keep track of the development state and to confirm the reduction of
programming errors as the implementation progresses.

93

Bibliography

[1] S. Bardin, P. Herrmann, J. Leroux, O. Ly, R. Tabary, and A. Vincent. The BINCOA
Framework for Binary Code Analysis. In Computer Aided Verification, LNCS, pages
165-170. Springer, 2011.

[2] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual. Intel
Corporation, Santa Clara, CA, USA, December 2011.

[3] P. Cousot and R. Cousot. Static Determination of Dynamic Properties of Programs.
In B. Robinet, editor, International Symposium on Programming, pages 106-130, Paris,
France, April 1976.

[4] T. Dullien and S. Porst. REIL: A platform-independent intermediate representation of
disassembled code for static code analysis. CanSecWest, Canada, 2009.

[5] A. Fox and M. O. Myreen. A Trustworthy Monadic Formalization of the ARMv7
Instruction Set Architecture. In Interactive Theorem Proving, volume 6172 of LNCS,
pages 243-258, Edinburgh, UK, 2010. Springer.

[6] J. Kranz, A. Sepp, and A. Simon. GDSL: A Universal Toolkit for Giving Semantics to
Machine Language. 2013.

[7] J. Lim and T. Reps. A System for Generating Static Analyzers for Machine Instruc-
tions. In L. Hendren, editor, Compiler Construction, volume 4959 of LNCS, pages 36-52.
Springer, 2008.

[8] Simon Peyton Jones. Haskell 98 Language and Libraries: the Revised Report. Cambridge
University Press, 2003.

[9] N. Ramsey and M. F. Fernandez. Specifying Representations of Machine Instructions.
Trans. of Programming Languages and Systems, 19(3):492-524, May 1997.

[10] A. Sepp, J. Kranz, and A. Simon. GDSL: A Generic Decoder Specification Language
for Interpreting Machine Language. In Tools for Automatic Program Analysis, ENTCS,
Deauville, France, September 2012. Springer.

[11] A. Sepp, B. Mihaila, and A. Simon. Precise Static Analysis of Binaries by Extracting
Relational Information. In M.Pinzger and D. Poshyvanyk, editors, Working Conference
on Reverse Engineering, Limerick, Ireland, October 2011. IEEE Computer Society.

[12] Henry S. Jr. Warren. Hacker’s Delight. Addison-Wesley, Boston, Toronto, London, 2002.

95

	Abstract
	Outline of the Thesis
	Introduction
	Introduction

	GDSL
	Overview
	A Generic Decoder Specification Language for Interpreting Machine Language
	General Language Overview
	Decoding x86 Prefixes

	Using GDSL for Giving Semantics to Machine Language
	RReil Intermediate Representation
	Writing Semantics using GDSL
	An Example Intel Instruction
	Generating RReil statements using GDSL monadic functions
	The Translator

	Development State

	Validation
	Introduction to Validation
	Approach
	Limitations
	Part Overview

	Generating Intel Instructions
	The Intel Instruction Format
	The Classic Instruction Format
	The AVX Instruction Format

	Output Correctness vs. Implementation Simplicity
	The Decision Tree of the Generator
	The X86 Generator Tree

	Invalid instructions

	The Tester Component
	Operation Modes
	Choice of Registers
	Crash handling

	Results

	Inspecting RReil Code
	Determining Register Usage
	Required Information about the Accessed Registers
	Handling of Conditional Execution
	Read Registers
	Written Registers
	Dereferenced Registers
	Example

	The Execution Context
	Representation of Registers
	The Domain of a Register

	Representation of Accessed Memory

	Generating the Testbed
	Overview
	Choice of Registers
	Allocation of Registers
	Allocation of Standard Registers
	Allocating the Stack Pointer
	Allocating the Flags Register

	Initialization of Registers
	Initialization of Standard Registers and the Stack Pointer
	Initialization of the Flags Register
	Initialization of the Return Address Register

	Jumps
	Memory Read and Write Accesses
	Writing back of Register Contents
	Writing back of Standard Registers and the Stack Pointer
	Writing back of the Flags Register

	Deallocation of Registers
	A Complete Example

	Preparation of the Execution Context
	Initialization of General Purpose Registers
	Initialization of the Flags Register
	Initialization of the Program Counter
	Biased Random Value Generation
	Discussion
	Examples

	Simulation of the Execution of RReil Code
	RReil Statements
	The Assignment Statement
	Load and Store Statements
	Control Flow Statements
	Branching Statements

	Domain Information
	RReil Operations
	The Linear Operation
	Addition and Subtraction
	Multiplication, Division and Modulo
	Shift Operations
	Bitwise Operations
	Comparison Operations
	Extension Operation

	Memory Accesses
	Read Accesses
	Write Accesses
	Branching

	Simulation Errors
	Unaligned Memory Access
	Undefined Addresses
	Undefined Data to be Stored to Memory
	Undefined Conditions

	Execution of the Instruction Under Test
	Memory Mapping and Initialization
	Initilization of Read Memory
	Initilization of Written Memory
	Initialization of Jumped at Memory

	Execution of the Testbed Function and Cleanup
	Handling of Signals
	Segmentation Fault (SIGSEGV)
	Illegal Instruction (SIGILL)
	Timer (SIGALRM)

	Intercepting Program Crashes
	Execution Results

	Evaluation of the Test Results
	Comparison of the Effects on Registers and Memory
	Registers
	Memory

	Error Types
	Decoding Errors
	Translation Errors
	Simulation Errors
	Execution Errors
	Comparison Errors

	Statistical Analysis
	Instruction Abstraction
	Collected Data
	CPU Feature Dependence of Errors

	Examples and Statistics
	Example Test Case
	Example Programming Error in the Translator
	Statistical Data on the Current Specifications

	Conclusion
	Conclusion
	Bibliography

