
1

IR Preprocessing for Deep Binary Analysis
Julian Kranz, Bogdan Mihaila, Holger Siegel, and Axel Simon

Abstract—Verifying the absence of vulnerabilities in executable
programs (binaries) requires a precise static analysis that com-
bines several abstract domains to infer targets of indirect jumps,
bounds for array accesses, precise points-to information, etc. A
particular challenge for such a complex analysis is the size of
the input: Each source code line translates to several machine
instructions; the semantics of a machine instruction, in turn, is
expressed using several operations in an intermediate representa-
tion (IR), so that a code increase by a factor of 10 is not unusual.
We show that applying a few classic program optimizations to this
IR leads to a considerable size reduction and, thereby, to a faster
analysis. Moreover, fusing several IR instructions also recovers
some of the original high-level computation. As a consequence,
fewer domains need to be implemented in the static analyzer to
achieve the required level of precision. This work presents the
front-end that generates and optimizes the IR. Additionally, we
present a static analysis tool based on our IR that is used to
measure the size and precision improvements.

I. INTRODUCTION

The analysis of binary code is necessary if the source code
of programs or third-party libraries is not fully available or
if it contains inline assembler. Many applications of binary
analysis exist, including the understanding of malware [14],
[17], comparison of binaries in virus scanners [7], [18],
creation and understanding of exploits [2] and many more.
A prerequisite for many analyses is the reconstruction of the
control-flow graph (CFG) that, due to the use of computed
jumps and calls, requires a semantic analysis of the program [1].
The challenge here is one of scalability: on average, every
line of C code translates to two assembler instructions [10].
Moreover, every assembler instruction i ∈ I usually has several
effects that need to be considered in an analysis. For example,
subtracting two registers will also set several processor flags
that allow checking for overflow, carry, etc. These effects
are translated into a sequence p1 · . . . · pn ∈ P∗ of primitive
operations P. Let sem : I → P∗ implement this translation.
The benefit of translating the native processor instructions
into a small set of primitives is that a static analysis has
to model the semantics for only |P| primitives instead of |I|
instructions. In case we use the set of primitives of the RReil
language [8] for the representation of Intel x86 instructions,
this amounts to a reduction from |I| = 898 to |P| = 28.
Since a precise static analysis uses a product of several
abstract domains [4], say D1 × . . .×Dk (such as value-sets,
intervals, equalities [6], and congruences [5]), implementing
k|P| instead of k|I| semantic functions (transformers) is
highly desirable. We therefore implement the semantics as
trD : P → (D → D) that describes how the primitives
P affect the domain D. Define the lifting to a sequence of
primitives as trD(p1 · . . . ·pn) = trD(pn)◦ . . .◦ trD(p1) where
g ◦ f = λx . g(f(x)).

Consider the evaluation of a basic block consisting of the
instruction sequence ī = i1 · . . . · in ∈ I∗ on a domain D by
defining bblockD (̄i) : D → D as follows:

bblockD (̄i) = trD(sem(in)) ◦ . . . ◦ trD(sem(i1)) (1)
= trD(sem(i1) · . . . · sem(in))

In general, a native instruction i ∈ I translates to several
primitives sem(i). For instance, if we count each RReil
statement as a primitive, then |sem(i)| = 5.1 on average [8],
so that each C source code line turns to about 10 primitives.
Given this growth, it is natural to perform some optimizations.
A recent approach to defining efficient abstract transformers,
called TSL [9], is to generate an optimized domain transformer
for each native instruction up front. For this, instead of (1),
the developers of TSL evaluate a basic block as follows:

bblockTSL
D (̄i) = optD(trD(sem(in)))◦. . .◦optD(trD(sem(i1)))

The novelty behind TSL is to emit C++ code for each
trD(sem(i)) where i ∈ I so that optD→D is given by standard
compiler optimizations. Their intent is to perform this code
generation for each domain D in the analysis. In this work,
we propose to optimize a sequence of primitives. In particular,
we apply optP : P∗ → P∗ to basic blocks, so that our analysis
evaluates the following:

bblockIR
D (̄i) = trD(optP(sem(i1) · . . . · sem(in)))

In fact, our optP also incorporates information from successor
basic blocks (when known) in order to apply more aggressive
optimizations. We observe that these optimizations can remove
certain low-level artifacts that otherwise require the use of
specialized abstract domains. In particular, certain domains
D1...Di become expendable, in that bblockIR

D1×...×Di×...Dk

can be replaced by a more efficient analysis bblockIR
Di+1×...Dk

while yielding the same results for all practical purposes. Our
contribution can therefore be summarized as a win-win solution:
• Applying optP on a basic block nearly halves the number

of primitives per instruction from |sem(i)| ≈ 5.1 to ∼ 2.6.
We present the GDSL toolkit in which optP is implemented
once and applied to many architectures. The reduction
in input size leads to a significant speedup of our static
analyzer as shown by our measurements.

• We show how the optimized primitives provide a more
high-level view of the input program for which a cheaper
analysis with fewer domains suffices. We illustrate this by
measuring the precision of our analyzer with and without
certain IR optimizations.

The remainder of the paper is organized as follows. The next
section illustrates the effect of optP. Section III presents a binary
analyzer targeted at control flow graph reconstruction which
uses a stack of abstract domains. The performance comparison
is given in Sect. IV before Sect. VI concludes.

2

II. OPTIMIZING THE INTERMEDIATE REPRESENTATION

We illustrate the effect of our optimizations optP on the IR
generated for the following C code:

1 int a = ...; int b = ...;
2 if(a < b) return h(a); else return g(x);

Compiling the code in line 3 results in the x86-64 code
shown in the left listing below. The function calls in both
branches are tail calls and thus turned into jumps. On the right,
the non-optimized RReil code for the first two instructions is
given:

3 CMP EBP, EAX
4 JGE then
5 else:
6 MOV EDI, EBP
7 ADD RSP, 8
8 POP RBX
9 POP RBP

10 JMP g
11 then:
12 MOV EDI, EBX
13 ADD RSP, 8
14 POP RBX
15 POP RBP
16 JMP h

17 IP =:64 (IP + 2)
18 T0 =:32 (BP - A)
19 FLAGS.7 =:1 T0 <s:32 0
20 FLAGS.6 =:1 BP ==:32 A
21 FLAGS =:1 BP <u:32 A
22 LEU =:1 BP <=u:32 A
23 LTS =:1 BP <s:32 A
24 FLAGS.11 =:1
25 LTS ^ FLAGS.7
26 LES =:1 BP <=s:32 A
27 FLAGS.4 =:1 BP <u:4 A
28 ... 3 assignments
29 omitted ...
30 IP =:64 (IP + 2)
31 T5 =:1 LTS ^ 1
32 cbranch T5 then else

The RReil code consists mostly of assignments, where
lhs =:s rhs assigns and lhs <u:s rhs compares s bits
of rhs and lhs where <u is an unsigned comparison. The
statement cbranch c t e jumps to t if the one-bit expression
c is one and to e otherwise. In the IR code, all effects of the
comparison, especially those on the FLAGS register, are explicit.
Note that many results are never used since only LTS flows
into the cbranch statement and since the x86 ADD instructions
in lines 7 and 13 overwrite all bits of the FLAGS register. In a
first pass, we perform a liveness analysis and eliminate dead
assignments. This results in the following code:

33 IP =:64 (IP + 2)
34 LTS =:1 BP <s:32 A
35 IP =:64 (IP + 2)
36 T5 =:1 LTS ^ 1
37 cbranch T5 then else

In another pass, we delay and forward substitute simple
expressions [12, Chap. 1.15] where possible. This allows
us to combine the two assignments to the program counter.
Moreover, we apply simple reductions that, for instance, match
the negation in line 36 and that transform the comparison
in line 34 to A <=s:32 BP. Without this transformation, an
additional domain is required in the static analysis tool to
recover the relation between the flag T5 and the two registers
BP and A. The final RReil code is minimal for our example:

33 IP =:64 (IP + 4)
34 cbranch A <=s:32 BP then else

executable
program

decode x86

decode ARM

decode ...

RReil
optimiza-

tions

fixpoint
engine

state + cfg storage

query L(memory)

memory domain memory layout

• static regions

•

query L(numeric)

equality domain

• allows for linear offset

equality of variables•

query L(numeric)

alias domain

• null pointer for values

tracks pointer aliases•

query L(numeric)

value set domain

• used for pointer offsets

value sets for variables•

addr L(rreil)

Figure 1. Analyzer structure.

In summary, optP reduces the size of the RReil code consid-
erably and recovers high-level information of the computation
of branch conditions. This enhances the readability of the IR,
and, more importantly, increases the performance and precision
of analysis tools.

III. EXPERIMENT FIXTURE: A STATIC ANALYZER FOR CFG
RECONSTRUCTION

We give a brief overview of our analyzer for executables
in order to provide the background for understanding our
experimental data. Figure 1 presents the overall structure
of the analyzer. The decoding, translation into RReil, and
optimization shown above the dotted line is packaged into the
GDSL toolkit [8], [13], [16] and can be used independently
of any analysis. The part below the dotted line is an analysis
geared towards the recovery of indirect jumps and indirect
calls. Together, this information provides the intra- and inter-
procedural control-flow graph (CFG) of the program.

The analysis is interprocedural in that it computes summaries
for functions. A summary relates the input of a function
(i.e. the memory that is read) to its output (i.e. the memory
written). Our summaries can express linear relations between
the input and output and, thus, enable us to express the flow and
typical modifications of pointers. For each program variable
x, the abstract domain state Sf contains two so-called domain
variables xin, xout that express the input/output relation of x.
For instance, xout = xin + 1 states that the program variable
x has been incremented by one.

The analysis is bootstrapped by computing a summary Sf ∈
D for each trivially identified function f , e.g. those found in
direct calls or declared in the ELF header. Indirectly called
functions are only discovered during the analysis. Specifically,
when encountering an indirect call call x in a function f
and x is represented by xout = xin, the known callers of f are

3

B
0 63

O
0 63

Input:

...

...

Input aliases / offsets:

Output:

0 63

B
0 63

...

...

Output aliases / offsets:

Domain

=

=

O

=

=

=

=

=

=

Figure 2. Analysis state after object construction in line 38

used to find values for xin, and thus xout. The computation
of the summary Sf is continued using the function pointers in
xout provided by the callers. In particular, a summary may be
recomputed when the known callers change, namely, if the new
callers provide different input function pointer sets. Moreover,
callers are re-evaluated whenever the summary of the called
function changes. Note that this means that information is
propagated in two ways: the effect of the summary is applied
to the state at each call site while additional function pointers
in the caller state lead to a re-evaluation of the summary.

In order to obtain precise jump and call targets, the analyzer
state is composed of several domains (the memory, equality,
alias, and value set domain) that are organized in a hierarchy.
The remaining section gives an example of how the analyzer
uses these domains to resolve a branch.

Consider the following C++ program:
33 struct Base { virtual void f() = 0; };
34 struct Sub : public Base
35 { void f() { ... } };
36
37 int foo(Base *B) {
38 B = new Sub();
39 B->f();
40 return 0;
41 }

The program creates an object of class Sub in line 38 and
calls the virtual function f on this object in line 39. The call
to the constructor of Sub fills in the vtable pointer of the
newly created object. The relevant part of the domain state
after evaluating the RReil code of line 38 is shown in Fig. 2.

In the figure, the memory domain M tracks two regions
- one for the C++ variable1 B and one for the object O of
dynamic type Sub. The memory domain tracks a set of fields
analogous to the fields of a C struct. For instance, the field
bin represents bits 0 through 63 of the input of region B. Each
memory region has an input and an output variant. In the
example, their fields are named bin, bout and o0in, o0out.

The link between the pointer stored in bin/bout and the
pointed-to memory is managed by the domains below the
memory domain in Fig. 1. For simplicity, Fig. 2 only shows
the alias and value set domain states. The alias domain state

1On the binary level there are only registers and no C++ variables. For
simplicity, we assume to have a one-to-one mapping between C++ variables
and registers in the example.

RReil statements cond. inlined
no opt. all opt. red. by by fsubst.

echo 18k 8778 51% 97%
sleep 18k 9048 50% 95%
cat 39k 20k 49% 95%
gdsl-arm 445k 210k 53% 89%

Figure 3. RReil code size metrics

code coverage resolved branches
with without with without

fsubst. fsubst. fsubst. fsubst.
echo 63% 53% 2 (40%) 0 (0%)
sleep 67% 58% 2 (33%) 0 (0%)
cat 78% 74% 4 (50%) 1 (13%)
gdsl-arm 46% 33% 64 (41%) 5 (4%)

Figure 4. Analyzer precision

A ∈ A states that the C++ variable B is an alias of some
valid symbolic pointer &S1 or an invalid pointer bad at the
beginning of the function (as shown in the input alias set),
but has been set to alias &O by the call to the constructor
(as shown in the output alias set). The value set domain state
V ∈ V is responsible for storing the pointer offset.

When calling the virtual method f in line 39, o0out contains
the address of the vtable. The constructor has initialized
o0out with a constant 3197264 which our analysis represents as
an alias with null with an offset of 3197264. While loading
the address of f, this value is dereferenced. The analyzer treats
accesses to constant addresses by mapping them to constant
data sections of the ELF file and is thereby able to extract the
function pointer in the vtable of O.

The whole analysis is driven by a fixpoint engine that
translates the x86-64 code at a given address into optimized
RReil and computes the state at the next address. This concludes
the overview of our analyzer for executables which is open
source and available at https://versioncontrolseidl.in.tum.de/
backjmp/summy.

IV. EXPERIMENTAL WORK

We tested optimization optP on binaries that are common
to current Linux installations and also on the GDSL library
itself (the GDSL library makes extensive use of indirect jumps
through switch tables). Figure 3 contains statistics regarding
the translation to RReil and the impact of our optimizations.
The binaries are taken from an Ubuntu 16.04 installation. In
the table, the second column contains the amount of statements
generated for the binary with all optimizations turned off. As
columns three and four show, turning on optimizations results
in a code size reduction of up to 53% percent. As can be
seen in the last column of the table, we are able to forward
substitute almost every condition.

Turning optimizations on and off has an effect on the
performance and the precision of our analysis tool. Figure 4
shows how the analyzer precision is affected by the forward
expression substitution. Here, columns one and two contain
the fraction of the binary reached by the analyzer with and

https://versioncontrolseidl.in.tum.de/backjmp/summy
https://versioncontrolseidl.in.tum.de/backjmp/summy

4

all opt no liveness liveness
time time speedup

echo 76s 185s 2.4x
sleep 159s 347s 2.2x
cat 1441s 3212s 2.2x
gdsl-arm 512s 685s 1.3x

Figure 5. Analyzer performance and speedup

without the optimization, respectively. As the analyzer only
processes functions of the binary to which it has found a call,
the coverage depends on the amount of branch targets recovered
as shown in the branches columns. Here, we count all branches
resolved by the analyzer, i.e. the branches which are either
known to be unreachable or have at least one valid target inside
the .text section of the binary. Figure 5 demonstrates that
enabling optimizations not only increases the precision, but
also the speed of the analyzer. Here, we only consider turning
the liveness optimization on and off since this does not affect
the analysis result and, thus, allows for a comparison of the
running time. In the figure, the second and third column show
the time required with and without the liveness optimization,
respectively. The resulting speedup can be found in the last
column.

Figure 3 shows that around 96 to 100 percent of the branch
conditions can be forward substituted. An inspection of the
optimized RReil code revealed two typical cases where a
condition cannot be forward substituted into the cbranch
instruction. The first case occurs when it is assigned to a
flag that is used in a successor basic block. Since the next
basic block might have other incoming edges, we cannot safely
make assumptions about the content of flag variables in this
situation. The second case arises when registers mentioned in a
conditional are overwritten before the cbranch instruction. As
an example, consider the following RReil code that compares
two registers B and C, stores the outcome of the comparison in a
flag register F, and then updates register B before a conditional
jump is performed depending on the value of F:

F =:1 B <s:64 C; B =:64 (B - C);
cbranch F label_true label_false

Here, inlining the conditional expression B <s:64 C for F
is not possible, as the register B in the conditional expression
it refers to is overwritten before the conditional jump is
encountered. This situation can arise for compiled machine
code since program variables are mapped onto a limited number
of CPU registers. It is future work to find ways to alleviate this
situation. One way that seems promising to us is to introduce
different registers for different versions of register B, similar
to the calculation of the static single assignment form.

In summary, due to the IR optimizations we are able to
take branch conditions into account during our analysis, thus
allowing us to achieve high precision without the need for an
extra domain. Moreover, the analysis is faster when enabling
optimizations due to the reduced code size.

V. RELATED WORK

The approach of translating machine code into some kind
of intermediate representation before running binary analysis
is pervasive in the field of binary analysis. In contrast to other
implementations, however, GDSL puts special emphasis on a
clear separation of a translation and an optimization phase that
processes the IR before passing it to an analysis.

A well-known intermediate representation is the VEX IR
that is developed by the Valgrind project [11]. One notable
difference between VEX and RReil is that VEX delays flag
computations to where flags are actually needed. For example,
an x86 ADD instruction sets an IR-specific variable expressing
that the last operation was an addition. Additionally, special
variables are used to track the values of the operands. If later
a flag is read by a conditional branch, it is explicitly computed
from this meta data. The VEX IR is used as intermediate
representation by the Angr [15] binary analysis framework.
Angr also applies optimizations like a liveness analysis to its
IR during lifting. However there are no options to directly
control the extend of the optimization. Tests show that the IR
generated by GDSL has around 30% less statements and is,
thus, more compact.

The BAP framework [3] uses its own IR called BIR, much
like the GDSL toolkit. The bap tool does not apply a liveness
optimization to the IR. However, since the IR is able to express
more complex expressions it uses fewer instructions than RReil.
In particular, BIR allows a right hand side expression to contain
multiple shift operators, bitwise operations, and let bindings.
This is not the case for RReil since its primary design goal
was to keep the analysis transformers as simple as possible.
As an example, consider the computation of the parity flag in
BIR:

000000aa: PF := ~(low:1[let v202 =
(RBX >> 0x4:64) ^ RBX in let v202 =

(v202 >> 0x2:64) ^ v202 in
(v202 >> 0x1:64) ^ v202])

The BIR IR only needs a single instruction here. RReil, on
the other hand, uses three distinct assignment statements:

T9 =:4 T5 ^ T5.4
T9 =:2 T9 ^ T9.2
FLAGS.2 =:1 T9 ^ T9.1

In summary, a comparison between RReil and BIR cannot
rely on the number of statements alone. Instead, we compared
the amount of more complex operations in BIR to the RReil
statement count. It turned out that the optimized RReil code
is up to 2 times smaller according to this metric.

VI. CONCLUSION

We presented two tools: a front-end to decode, translate and
optimize basic blocks in executables and a static analyzer that
performs a fixpoint computation using a set of domains. We
have argued that optimizations at the intermediate representa-
tion can lead to a drastic reduction in analysis times and allow
to simplify the static analyzer. After applying the presented
optimizations, our intermediate representation RReil is more
compact than the IRs of other well-known analysis tools.

5

REFERENCES

[1] G. Balakrishnan, G. Grurian, T. Reps, and T. Teitelbaum. CodeSurfer/x86
– A Platform for Analyzing x86 Executables. In Compiler Construction,
volume 3443 of LNCS, pages 250–254, Edinburgh, Scotland, April 2005.
Springer. Tool-Demonstration Paper.

[2] D. Brumley, P. Poosankam, D. Song, and J. Zheng. Automatic patch-
based exploit generation is possible: Techniques and implications. In 2008
IEEE Symposium on Security and Privacy (sp 2008), pages 143–157,
May 2008.

[3] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz.
BAP: A Binary Analysis Platform, pages 463–469. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011.

[4] Patrick Cousot, Radhia Cousot, Jerôme Feret, Laurent Mauborgne,
Antoine Miné, David Monniaux, and Xavier Rival. The ASTREÉ
Analyzer, pages 21–30. Springer Berlin Heidelberg, Berlin, Heidelberg,
2005.

[5] P. Granger. Static Analyses of Congruence Properties on Rational
Numbers (Extended Abstract). In P. Van Hentenryck, editor, Static
Analysis Symposium, pages 278–292, Paris, France, September 1997.
Springer.

[6] M. Karr. On affine relationships among variables of a program. Acta
Informatica, 6(2):133–151, 1976.

[7] Joris Kinable and Orestis Kostakis. Malware classification based on call
graph clustering. Journal in Computer Virology, 7(4):233–245, 2011.

[8] J. Kranz, A. Sepp, and A. Simon. GDSL: A Universal Toolkit for Giving
Semantics to Machine Language. In C. Shan, editor, Asian Symposium on
Programming Languages and Systems, Melbourne, Australia, December
2013. Springer.

[9] J. Lim and T. Reps. A System for Generating Static Analyzers for
Machine Instructions. In L. Hendren, editor, Compiler Construction,
volume 4959 of LNCS, pages 36–52. Springer, 2008.

[10] Henrik Paul on StackOverflow. How Many ASM-Instructions per C-
Instruction? http://stackoverflow.com/questions/331427, 2009.

[11] Valgrind Project. Valgrind - A GPL’d System for Debugging and Profiling
Linux Programs. http://www.valgrind.org/, 2016.

[12] Helmut Seidl, Reinhard Wilhelm, and Sebastian Hack. Compiler Design
- Analysis and Transformation. Springer, 2012.

[13] A. Sepp, J. Kranz, and A. Simon. GDSL: A Generic Decoder
Specification Language for Interpreting Machine Language. In Tools
for Automatic Program Analysis, ENTCS, Deauville, France, September
2012. Springer.

[14] Monirul Sharif, Vinod Yegneswaran, Hassen Saidi, Phillip Porras, and
Wenke Lee. Eureka: A Framework for Enabling Static Malware Analysis,
pages 481–500. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[15] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, and Giovanni Vigna. SoK: (State of)
The Art of War: Offensive Techniques in Binary Analysis. In IEEE
Symposium on Security and Privacy, 2016.

[16] A. Simon and J. Kranz. The GDSL toolkit: Generating Frontends for
the Analysis of Machine Code. In Program Protection and Reverse
Engineering Workshop, San Diego, California, USA, January 2014.
ACM.

[17] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager,
Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam,
and Prateek Saxena. BitBlaze: A New Approach to Computer Security
via Binary Analysis, pages 1–25. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008.

[18] Q. Zhang and D. S. Reeves. Metaaware: Identifying metamorphic
malware. In Computer Security Applications Conference, 2007. ACSAC
2007. Twenty-Third Annual, pages 411–420, Dec 2007.

http://stackoverflow.com/questions/331427
http://www.valgrind.org/

	I Introduction
	II Optimizing the Intermediate Representation
	III Experiment Fixture: A Static Analyzer for CFG Reconstruction
	IV Experimental Work
	V Related Work
	VI Conclusion
	References

