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Abstract. Doubly-curved grid structures pose great challenges in respect to
planning and construction. Their realization often requires the fabrication of
many unique and geometrically-complex building parts. One strategy to sim-
plify the fabrication process is the elastic deformation of components to con-
struct curved structures from straight elements. In this paper, we present a
method to design doubly-curved grid structures with exclusively orthogonal
joints from flat and straight strips of timber or steel. The strips are oriented
upright on the underlying surface, hence normal loads can be transferred via
bending around their strong axis. This is made possible by using asymptotic
curve networks on minimal surfaces. We present the geometric and structural
fundamentals and describe the digital design method including specific chal-
lenges of network and strip geometry. We illustrate possible design imple-
mentations and present a case study using a periodic minimal surface.
Subsequently, we construct two prototypes: one timber and one in steel, doc-
umenting bespoke solutions for fabrication, detailing and assembly. This
includes an elastic erection process, by which a flat grid is transformed into the
spatial geometry. We conclude by discussing potential and challenges of this
methods, as well as highlighting ongoing research in fagade development and
structural simulation.

Keywords: Asymptotic curves + Minimal surfaces - Elastic deformation -
Gridshells

Introduction

There have been a number of publications and design strategies aiming to simplify the
fabrication and construction process of doubly-curved grid structures. Therein, we can
distinguish between discrete and smooth segmentations (Pottmann et al. 2015). One
strategy to achieve affordable smoothly curved structures relies on the elastic defor-
mation of its building components in order to achieve a desired curvilinear geometry
from straight or flat elements (Lienhard 2014). Consequently, there is a strong interest
in the modelling and segmentation of components that can be unrolled into a flat state,
such as developable surfaces (Tang et al. 2016a). Recent publications have given a
valuable overview on three specific curve types—geodesic curves, principal curvature
lines, and asymptotic curves (Fig. 3)—that show great potential to be modelled as
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Fig. 1. Grid structure based on asymptotic curves: The model is built from straight strips of
beech veneer. All joints are orthogonal. Image Denis Hitrec

developable strips (Tang et al. 2016a). Both geodesic curves and principle curvature
lines have been successfully used for this purpose in architectural projects (Schiftner
et al. 2012). However, there have been no applications of asymptotic curves for
load-bearing structures. This is astounding, as asymptotic curves are the only type
which are able to combine the benefits of straight unrolling and orthogonal nodes
(Fig. 1).

In this paper we present a method to design strained grid structures along
asymptotic curves to benefit from a high degree of simplification in fabrication and
construction. They can be constructed from straight strips orientated normal to the
underlying surface. This allows for an elastic assembly via their weak axis, and a local
transfer of normal loads via their strong axis. Furthermore, the strips form a
doubly-curved network, enabling a global load transfer as a shell structure (Schling and
Barthel 2017).

In Section “Fundamentals”, we describe the geometric theory of curvature and
related curve networks, and present the strained gridshells of Frei Otto, as our primary
reference for construction. In Section “Design Method” we introduce our computa-
tional design method of modelling minimal surfaces, asymptotic curves and networks,
and the related strip-geometry. In Section “Design Implementation”, we illustrate our
method in a typological overview of shapes and implement it in a design study of a
pavilion. In Section “Construction”, we discuss the fabrication, construction details and
assembly by means of two prototypes, in timber and steel, and give insights into the
load-bearing behavior. The results are summarized in Section “Results”. We conclude
in Section “Conclusion”, by highlighting challenges of this method, and suggesting
future investigations on structural simulation and prototype development.
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Fundamentals

Geometry

Curvature. The curvature of a curve is the inverse of the curvature radius. It is
measured at the osculating circle of any point along the curve (Fig. 2 left).

To determine the curvature of a surface, we intersect it with orthogonal planes
through the normal vector. The two section-curves with the highest and lowest cur-
vature are perpendicular to each other and indicate the principle curvature directions
(Fig. 2 middle). The two principle curvatures k; and k, are used to calculate the
Gaussian curvature (G = k; X k) and mean curvature (H = (k; + k»)/2). If k; and k,
have opposite orientations, i.e. their osculating circles lie on opposite sides of the
surface, then the Gaussian curvature has a negative value. This surface-region is called
anticlastic or hyperbolic. If k; and k, have opposite orientations and the same absolute
value, then the mean curvature is zero. Surfaces with a constant zero mean curvature
are called minimal surfaces. They are a special type of anticlastic surfaces that can be
found in nature in the shape of soap films.

To measure the curvature of a curve on a surface, we can combine the information
of direction (native to the curve) and orientation (native to the surface) to generate a
coordinate system called the Darboux frame (Fig. 2 right). This frame consists of the
normal vector z, the tangent vector x and their cross-product, the tangent-normal vector
y. When moving the Darboux frame along the surface-curve, the velocity of rotation
around all three axes can be measured. These three curvature types are called the
geodesic curvature k, (around z), the geodesic torsion #, (around x), and the normal
curvature k, (around y) (Tang et al. 2016b).

Curve networks. Certain paths on a surface may avoid one of these three curva-
tures (Fig. 3). These specific curves hold great potential to simplify the fabrication and
construction of curved grid structures (Schling and Barthel 2017). Geodesic curves
have a vanishing geodesic curvature. They can be constructed from straight, planar
strips tangential to the surface. Principle curvature lines have a vanishing geodesic
torsion—there is no twisting of the respective structural element. They can be
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Fig. 2. Definitions of curvature. Left Curvature of a curve is measured through the osculating
circle. Middle The curvature of a surface is calculated through the two principle curvatures k; and
k, as Gaussian or mean curvature. Right There are three curvatures of a curve on a surface.
Geodesic curvature k,, geodesic torsion f, and normal curvature k,
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Fig. 3. Surface-curves have three curvatures: geodesic curvature (z), geodesic torsion (x), and
normal curvature (y). For each of them, if avoided, a related curve type exists: geodesic curves,
principle curvature lines and asymptotic curves

fabricated from curved, planar strips, and bent only around their weak axis. Their two
families intersect at 90°. Asymptotic curves have a vanishing normal curvature, and
thus only exist on anticlastic surface-regions. Asymptotic curves combine both geo-
metric benefits: They can be formed from straight, planar strips perpendicular to the
surface. On minimal surfaces, their two families intersect at 90° and bisect principle
curvature lines.

The design of related curve-networks is not trivial. Geodesic curve networks tend to
vary in density and intersection angles. The designer may choose their start and end
point but not their path. Both principle curvature networks and asymptotic curve
networks consist of two families of curves that follow a direction field. The designer
can only pick a starting point, but cannot alter their path. If the surface is locally planar
(or spherical), the quadrilateral network forms a singularity with higher or lower
valence.

Construction

Our construction method (Section “Construction”) is based on the strained timber
gridshells of Frei Otto (Fig. 4). This paradigm utilizes elastic deformation to create a
doubly-curved lattice structure from straight wooden laths.

Otto’s curve network is subject to all three types of curvature (as described in
Section “Geometry”). Thus, the laths need to be bent and twisted in all directions. The

Fig. 4. Multihalle Mannheim by Frei Otto, 1975. This strained timber gridshell is formed from
elastically-bent timber laths. /mage Rainer Barthel
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doubly-symmetrical profiles must be appropriately flexible in bending and torsion
(Schling and Barthel 2017). Otto’s lattice grid is assembled flat and subsequently
erected into a doubly-curved inverted funicular shape. Once the final geometry is
reached, the quadrilateral network is fixed along the edges and braced with diagonal
cables (Adriaenssens and Glisic 2013).

Design Method

Minimal surface. A minimal surface is the surface of minimal area between any given
boundaries. In nature such shapes result from an equilibrium of homogeneous tension,
e.g. in a soap film. The accurate form is found digitally in an iterative process by either
minimizing the area of a mesh, or finding the shape of equilibrium for an isotropic
pre-stress field.

Various tools are capable of performing such optimization on meshes, with varying
degrees of precision and speed (Surface Evolver, Kangaroo-SoapFilm, Millipede, etc.).
They are commonly based on a method by Pinkall and Polthier (2013).

The Rhino-plugin TeDa (Chair of Structural Analysis, TUM) provides a tool to
model minimal surfaces as NURBS, based on isotropic pre-stress fields (Philipp et al.
2016).

Certain minimal surfaces can be modelled via their mathematical definition. This is
especially helpful as a reference when testing the accuracy of other tools.

Asymptotic curves. Geometrically, the local direction of an asymptotic curve can
be found by intersecting the surface with its own tangent plane.

We developed a custom VBScript for Grasshopper/Rhino to trace asymptotic
curves on NURBS-surface using differential geometry. For this, the values and
directions of the principal curvature (k;, k,) are retrieved at any point on the surface.
With this information, we can calculate the normal curvature k,, for any other direction
with deviation-angle o (Fig. 6 left) (Pottmann et al. 2007, p. 490).

k(o) = ky(cos o) + ko (sin o). (1)

To find the asymptotic directions, the normal curvature must be zero, k,(o) = 0.
Solving for o results in:

o =21 —2tan~

1\/2\/k2(k2—k1)+k1—2k2 (2)
ky '

By iteratively walking along this asymptotic direction and calculating a new « at
every step, we can draw an asymptotic curve on any anticlastic surface. Our algorithm
uses the Runge—Kutta method to average out inaccuracies due to step size. On minimal
surfaces, the deviation angle o is always 45° (due to the bisecting property of
asymptotic curves and principle curvature lines).

In the case of meshes, we use EvoluteTools to find the asymptotic curves. Both
EvoluteTools and our VBScript were checked for accuracy by comparing their results
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with a parametrically defined asymptotic network on an Enneper minimal surface.
Depending on the quality of the mesh or NURBS surface and the step size, a sufficient
accuracy for design and planning can be achieved.

Network design. When designing an asymptotic curve network, we take advantage
of the bisecting property between asymptotic curves and principle curvature lines
(Pottmann et al. 2007, p. 648). By alternately drawing each curve and using their
intersections as new starting point, we can create an “isothermal” web with nearly
quadratic cells (Fig. 5) (Sechelmann et al. 2012). Combining these two networks
allows us to benefit from both their geometric properties simultaneously for sub-
structure and fagade, allowing for cladding solutions with tangential developable strips
or planar quads (Pottmann et al. 2007, p. 680).

Strip geometry and fabrication. A developable, i.e., singly-curved, surface-strip
is defined by straight rulings. If this strip is orthogonal to the reference surface and
follows a given surface-curve, the rulings are enveloped by all planes that contain the
normal vector z and tangent vector x of the Darboux frame (Fig. 6 left). The vector of
these rulings r is calculated via the equation

I = k,Z+1,X, (3)

where k, is the geodesic curvature and ¢, is the geodesic torsion. For asymptotic curves,
kg is measured simply via its osculating circles. To calculate z, we use the two principle
curvatures (Tang et al. 2016b):

1
Iy = 3 (ky — ky) sin 20, 4)

where o is constant 45° on a minimal surface. The rulings of a developable strip along
asymptotic curves are not necessarily perpendicular to the surface. Thus two orthogonal
strips commonly have a curved intersection (Fig. 6 middle). In the worst case of a
vanishing geodesic curvature, the rulings are parallel to the tangent vector, which
makes modelling and construction of a developable surface-strip impossible.

In our method, the strip geometry is defined with the normal vectors z, which
allows for straight intersections and well-defined strip surfaces (Fig. 6 right). As a
consequence, some twisting of the structural strips needs to be considered. This
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Fig. 5. Enneper surface with a asymptotic curves b principle curvature lines ¢ web of both
networks d strip model of the asymptotic network
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Fig. 6. Left A developable strip along an asymptotic curve and orthogonal to the surface, is
define by rulings r, which are generally not parallel to the normal vector z. Middle This results in
curved intersections between the strips. Right In our method, the strips are defined by the normal
vectors z, to ensure straight intersections. Consequently, the strips are not truly developable, but
twisted

deviation from a truly developable strip is essential to realizing a simplified
construction.

The node to node distance, measured along the asymptotic curves, is the only
variable information needed to draw the flat and straight strips. They are cut flat and
then bent and twisted into an asymptotic support structure.

Design Implementation

Design strategies. Even though minimal surfaces can only be designed through their
boundaries, there is a wide range of possible shapes and applications. Examples shown
in Fig. 7 display how varying boundary conditions influence the surface and asymp-
totic network. Boundary-curves may consist of straight lines (a), planar curves (d), or
spatial curves (b). Straight or planar curves are likely to attract singularities (a, d).
A well-integrated edge can be achieved by modelling a larger surface and
“cookie-cutting” the desired boundary. A minimal surface can be defined by one (a, b),
two (c), or multiple (d) closed boundary-curves. Symmetry properties can be used to
create repetitive (c) and periodic (e) minimal surfaces. The Gaussian curvature of the
design surface directly influences the geodesic torsion of asymptotic curves, the density
of the network and the position of singularities. A well-balanced Gaussian curvature
will produce a more homogenous network.

Case study. We applied this method in a design studio, Experimental Structures, to
develop the concept for a research pavilion. The design shape is based on the periodic
minimal surface, Schwarz D, which can be described within a simple boundary along
six edges of a cube. This basic cell is repeatedly copied and rotated to form an infinitely
repetitive surface. Finally, this surface is clipped with an inclined block to cut out the
desired shape. The entire network is a repetition of the curve-segments within one-sixth
of the initial cubic cell (Fig. 8).

Despite the high level of repetition, the pavilion displays a complex and sculptural
shape. A model (2 x 2 x 1 m) was built from strips of beech veneer at a scale of 1:5
to verify the fabrication and assembly process (Fig. 9).
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Fig. 7. Overview of asymptotic strip networks on minimal surfaces. a One polygonal boundary,
creating a saddle shaped network with singularities appearing along the edges. b One spatially
curved boundary, creating a surface with three high and low points and a network with central
singularity. ¢ Two boundary curves creating a rotational repetitive network with regular
singularities. d Multiple boundaries creating a freely design minimal surface with four high
points. e Variation of a singly-periodic Sherk’s two minimal surface, with six interlinking
boundaries
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Fig. 8. Design implementation using a Schwarz D periodic minimal surface
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Fig. 9. Model of the design implementation. The structure is built from straight timber strips of
beech veneer with exclusively orthogonal nodes. Image and model Denis Hitrec

Construction

Curvature and bending. Our construction process follows the reference of Frei Otto’s
strained gridshells (see Section “Construction”). The strips are fabricated flat and
subsequently bent into their spatial geometry. As asymptotic curves admit no normal
curvature, no bending in the strong axis of the strips is necessary during assembly. Due
to the geodesic torsion, there is a certain amount of twisting of the lamellas. Addi-
tionally, the geodesic curvature results in bending around the z-axis.

When choosing the profiles, the section modulus and thickness need to be adjusted
to the maximum twist and minimal bending radii to keep deformation elastic. At the
same time, the profiles need to provide enough stiffness to resist buckling under
compression loads. These opposing factors can be solved by introducing a second
parallel layer of lamellas. Each layer is sufficiently slender to easily be bent and twisted
into its target geometry. Once the final geometry is fixed, the two layers are connected
with a shear block in regular intervals to increase the overall stiffness similar to a
Vierendeel truss.

This technique was applied in the construction of two prototypes, in timber and
steel, each with an approx. 4 x 4 m span (Figs. 10 and 11).

Timber prototype—spatial construction. For the timber prototype, the two
asymptotic directions were constructed on separate levels out of 4 mm thick poplar
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Fig. 10. Timber prototype. The lamellas are doubled and coupled to allow for low bending radii
and high stiffness. Image Eike Schling

Fig. 11. Steel prototype. The straight lamellas are doubled and coupled to allow for low bending
radii and high stiffness. Image Eike Schling
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plywood strips. This allowed for the use of continuous, uninterrupted profiles. The
upper and lower level were connected with a square stud, enforcing the orthogonal
intersection angle. This rigid connection could only be fitted if all elements were
curved in their final geometry. Consequently, this prototype had to be erected spatially
using framework and edge beams as temporary supports. The height of the edge
profiles was determined by their intersection angle with the lamellas, creating a
dominant arched frame.

Steel prototype—elastic erection. The steel prototype was built from straight,
1.5 mm steel strips. Both strip families interlock flush on one level. Therefore, the
lamellas have a double slot at every intersection (Fig. 11). Due to a slot tolerance, the
joints were able to rotate by up to 60°. This made it possible to assemble the grid flat on
a hexagonal scaffolding. The structure was then “eased down” and “pushed up”
simultaneously and thus transformed into its spatial geometry (Fig. 12) (Quinn and
Gengnagel 2014). During the deformation process, a pair of orthogonal, star-shaped
washers were tightened with a bolt at every node, enforcing the 90° intersection angle.

Fig. 12. Assembly process of the steel prototype, showing the elastic transformation from flat to
curved geometry. Image Denis Hitrec

Fig. 13. Silhouette of the strip model from beech veneer
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Once the final geometry was reached, the edges were fitted as tangential strips on top
and bottom. This edge locks the shape in its final geometry, generates stiffness and
provides attachments for the future diagonal bracing and fagade (Figs. 13, 14 and 15).

Structural behavior. The structural behavior of asymptotic grids is greatly
dependent on the overall shape and support of the structure. Our initial investigations
have observed a hybrid load-bearing behaviour of both a grillage and a gridshell
(Figs. 16 and 17).

The strip-profiles are orientated normal to the underlying surface, allowing for a
local transfer of normal loads through bending via their strong axis. This is especially
helpful to account for the local planarity of asymptotic networks (due to their vanishing
normal curvature) and to stabilize open edges.

On the other hand, the strips form a doubly-curved network, enabling a global load
transfer as a gridshell (Schling and Barthel 2017). For this, the quadrilateral grid needs
to be appropriately braced via diagonal cables. The edge configuration adds additional
stiffness by creating triangular meshes.

The elastic erection process, results in residual stresses inside the curved grid
elements. Additional compression forces, originating from a membrane load-bearing
behavior, increase the bending moment around the weak axis of these curved elements.
The strategy of doubling and coupling lamellas (see Section “Curvature and bending”)
is therefore essential to control local bucking.

Finally, it needs to be said, that the principle stress trajectories of a shell constitute
the optimal orientation for compression and tension elements in a respective grid
structure. In our method, however, we choose to follow a geometrically optimized
orientation along the asymptotic directions.

Fig. 14. Close-up of the strip model from beech veneer
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Fig. 15. Strip model of a geodesic curve network

Fig. 16. Strip model of a principle curvature line network
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Fig. 17. Strip model of an asymptotic curve network

Results

We compared the geometric properties of three specific curve networks: geodesic
curves, principle curvature lines and asymptotic curves.

We identified that only asymptotic curves are able to combine the benefits of
straight unrolling and orthogonal nodes. They can be formed from straight strips
perpendicular to the underlying anticlastic surface. This way, they resist loads normal
to the surface by bending in their strong axis. On minimal surfaces, asymptotic curves
intersect at 90°, which allows the use of identical nodes throughout the structure. The
bisecting property with principle curvature networks offers further geometric advan-
tages for the facade.

We developed a custom VBScript that can trace asymptotic curves on anticlastic
surfaces with sufficient accuracy for design and construction. A wide spectrum of
design solutions was visualized in a typological overview of strip networks and
implemented in a case study for a pavilion.

We model the strip-network along the normal vectors, to ensure a well-defined
geometry and simplified construction with identical and straight intersections, thus
deviating from a true developable geometry. This measure results in some twisting of
the profiles.

Both twisting (geodesic torsion) and bending (geodesic curvature) have to be
considered when choosing profiles for construction. We have presented a strategy of
doubling and coupling the bent structural elements to achieve sufficient stiffness of the
final grid. We demonstrated an elastic erection process enabling assembly in a flat state
and a subsequent transformation into a spatially-curved geometry. The findings were
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verified in the realization of two prototypes: One in timber and one in steel, each with a
span of 4 x 4 m. The structural behavior of asymptotic grids was discussed along the
basis of both a grillage and a gridshell.

Conclusion

An analytical approach to both geometry and material properties is required to achieve
a symbiosis of form, structure and fabrication. Even though the design freedom is
limited to the choice of boundary curves, there are a wide range of design solutions.
Additionally, asymptotic networks offer an individual aesthetic quality. Our design
method may be applied in all scales from furniture design to stadium roofs. Struc-
turally, asymptotic gridshells show great potential, as they combine the benefits of
upright sections with a doubly-curved grid. Hence, loads can be transferred locally via
bending, and globally as a shell structure.

We are continuing to investigate the structural behavior of asymptotic structures on
the basis of a grillage and a shell, comparing grid orientations, shapes and supports.
Simultaneously, we are developing a workflow to compute the residual stress of the
initial bending and torsion through the local geodesic curvature and geodesic torsion,
without simulating the construction process. Another ongoing development is the
implementation of constructive details: This includes cable bracing and facade systems
using planar quads, developable facade strips and membranes.
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