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Figure 1: (a) A mesh with spherical vertex stars, computed from an unduloid surface. All vertex spheres are of the same radius.
(b) The associated support structure consisting of developable strips with circular unrolling. (c) Deformed mesh, preserving
sphere radii and edge lengths. (d) Associated support structure. Unrolled strips are identical to those shown in (b).

ABSTRACT
The computation and construction of curved beams along
freeform skins pose many challenges. Controlling the curva-
ture of design surfaces and beam networks, and using the
elastic behavior of material to shape these grids, opens up
new strategies for fabrication-aware design. We show how to
use surfaces of constant mean curvature (CMC) to compute
beam networks with beneficial properties, both aesthetically
and from a fabrication perspective. To explore variations of
such networks we introduce a new discretization of CMC sur-
faces as quadrilateral meshes with spherical vertex stars. The
computed variations can be seen as a path in design space –
exploring possible solutions in a neighborhood, or represent
an actual erection sequence by elastic transformation.
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Figure 2: Elastic deformation of a grid into a beam network
following asymptotic directions on a minimal surface.
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1 INTRODUCTION
Gridshells are highly efficient structures, because they carry
loads through their curved shape with very little material.
The main motivation for this work is research conducted
at the Technical University of Munich, Fig. 2. A pavilion,
realized as a gridshell, was built from steel lamella with
straight unrolling. The initially planar lamella grillage can
be deformed elastically, allowing an erection process without
scaffolding. Geometrically, this is a family of grids with planar
vertex stars. We generalize this idea to quadrilateral meshes
with spherical vertex stars, allowing circular unrollings of
strips.
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2 APPROACH
We model curved support structures as networks of devel-
opable strips attached orthogonally to a design surface. Such
a network is an idealized representation of the center planes
of beams. To cover a design surface with beams of straight or
circular unrolling, individual curves of the network need to
follow curves of constant normal curvature. In addition to this
geometric property one typically also has to satisfy aesthetic
requirements related to the layout of curves like close to 90
degree intersection angles or as-square-as-possible faces of
the network. On a generic design surface a network satisfying
all those properties is hard to compute and may not even
exist. Hence we propose a method that restricts the designer
to a subset of the space of admissible shapes. Constant-mean-
curvature surfaces serve as the starting shapes of our method
as they can be covered by a network of curves with constant
normal curvature, featuring close to right angle intersections
and almost square faces. Such networks are close to meshes
with spherical vertex stars and generalize the notion of meshes
with planar vertex stars appearing in the study of asymp-
totic nets [1]. More precisely we discretize CMC surfaces as
quad meshes such that: (i) a vertex and its four neighbors
lie on a common sphere, (ii) all such sphere radii are equal
and (iii) edge polylines intersect at right angles. Preserving
the spherical vertex star property and the constant radius
during deformation allows us to explore the shape of nearby
support structures (which no longer represent CMC surfaces):

∙ Starting from a CMC surface, we compute an isothermic
mesh 𝑀 on top of it. For CMC surfaces such a mesh 𝑀
always exists and is defined as a principal mesh with as-
square-as-possible faces. This yields a highly aesthetic cell
layout, plus, by following the diagonals of 𝑀 , we can extract
a support structure 𝑆 along curves of constant normal curva-
ture, allowing for beams with straight or circular unrolling.

∙ By construction, the quad-dominant mesh 𝑆 is close to a
mesh with spherical vertex stars. Mathematically, the sphere
we are talking about is the so called Meusnier sphere. We
optimize 𝑆 to satisfy the spherical vertex star condition in
the least squares sense. This optimization will also ensure
that all vertex spheres have the same radius. The value of
this radius approximates 1/𝐻, with 𝐻 equal to the mean
curvature of the design surface.

∙ In order to study elastic shape variations of 𝑆 we preserve
(i) the spherical vertex star condition, (ii) the radii of spheres
and (iii) edge lengths of 𝑆 during handle based shape editing.
All optimization is done using the method presented in [2].

3 RESULTS
We used an unduloid surface to initialize the network shown
in Fig. 1(a). The deformation was achieved by moving a ring
of vertices at approximately half the height of the structure
slowly inwards.

Our method can also be used to identify an elastic erection
sequence similar to the process illustrated in Fig. 2. An
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Figure 3: (a) Mesh with spherical vertex stars and associ-
ated support structure. (b) Global ‘unrolling’ onto a common
sphere. (c) Lower left part of the structure and (c) its ‘un-
rolling’. The common sphere can be thought of as scaffolding
during construction on which the beams are assembled before
the elastic erection process starts.

example is shown in Fig. 3. Note that even for a globally
‘unrollable’ structure it may be beneficial to consider smaller
parts for several reason: the global structure may pass through
singular states which are not physically viable; smaller sub-
structures allow for easy assembly.
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