

Solving the Partitioned Heat Equation Using FEniCS and preCICE

Benjamin Rüth¹, Peter Meisrimel², Philipp Birken², Benjamin Uekermann¹

¹Technical University of Munich Department of Informatics Chair of Scientific Computing

²Lund University Mathematics (Faculty of Sciences) Numerical Analysis

Siegen, Germany November 29, 2018

Agenda

Partitioned Approach

Heat Equation with FEniCS

Coupling with preCICE

Results

Agenda

Partitioned Approach

Heat Equation with FEniCS

Coupling with preCICE

Results

A few Disclaimers:

This talk is **not**

- a talk about FEM
- a talk about coupling algorithms
- a talk with proper mathematical notation

Agenda

Partitioned Approach

Heat Equation with FEniCS

Coupling with preCICE

Results

A few Disclaimers:

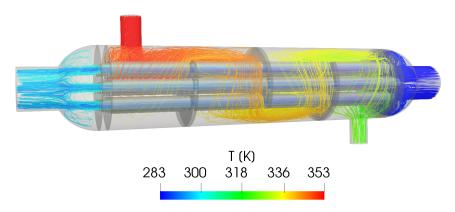
This talk is **not**

- a talk about FEM
- a talk about coupling algorithms
- a talk with proper mathematical notation

I will talk about

- software
- the partitioned approach
- where you can find my code
- how you can use my code

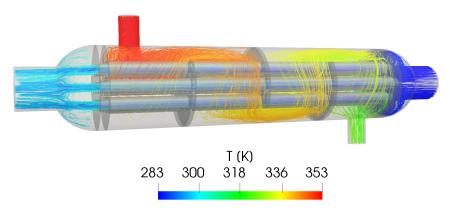
Coupled problems



shell and tube heat exchanger using OpenFOAM and CalculiX1

¹Figure from Rusch, A., Uekermann, B. Comparing OpenFOAM's Intrinsic Conjugate Heat Transfer Solver with preCICE-Coupled Simulations. Technical Report, 2018.

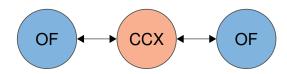
Coupled problems



shell and tube heat exchanger using OpenFOAM and CalculiX¹

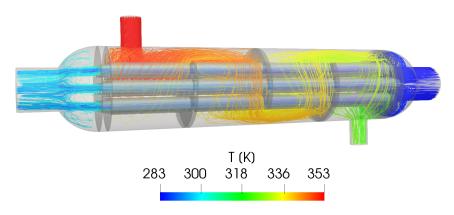
Basic idea:

- reuse existing solvers
- combine single-physics to solve multi-physics
- only exchange "black-box" information



¹Figure from Rusch, A., Uekermann, B. Comparing OpenFOAM's Intrinsic Conjugate Heat Transfer Solver with preCICE-Coupled Simulations. Technical Report, 2018.

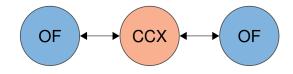
Coupled problems



shell and tube heat exchanger using OpenFOAM and CalculiX¹

Basic idea:

- reuse existing solvers
- combine single-physics to solve multi-physics
- only exchange "black-box" information



What we do today:

- couple with preCICE library
- use FEniCS as a solver for toy problem

¹Figure from Rusch, A., Uekermann, B. Comparing OpenFOAM's Intrinsic Conjugate Heat Transfer Solver with preCICE-Coupled Simulations. Technical Report, 2018.

preCICE1

Features

- communication
- coupling schemes
- mapping
- time interpolation
- official adapters for OpenFOAM, SU2,...

github.com/precice

¹Bungartz, H.-J., et al. (2016). preCICE – A fully parallel library for multi-physics surface coupling.

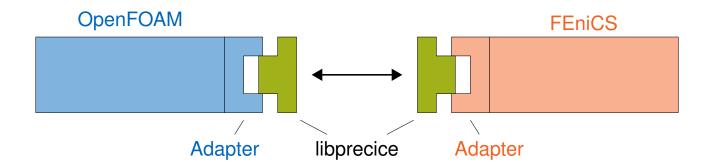
²Uekermann, B., et al. (2017). Official preCICE Adapters for Standard Open-Source Solvers.

preCICE¹

Adapter²

- access preCICE API
- isolated layer between solver and preCICE
- support component exchangeability
- don't change existing (reliable, well-tested) code

github.com/precice



¹Bungartz, H.-J., et al. (2016). preCICE – A fully parallel library for multi-physics surface coupling.

² Uekermann, B., et al. (2017). Official preCICE Adapters for Standard Open-Source Solvers.

FEniCS¹

Software

- open-source (LGPLv3)
- extensive documentation
- Python and C++ API
- can be used for HPC
- www.fenicsproject.org

Computing platform for solving PDEs

- Definition of weak forms
- Finite Element basis functions
- Meshing
- Solving
- ..



FEniCS book²

¹ Alnaes, M. S., et al. (2015). The FEniCS Project Version 1.5.

²Logg, A., Mardal, K. A., & Wells, G. N. (2012). Automated solution of differential equations by the finite element method.

FEniCS¹

Software

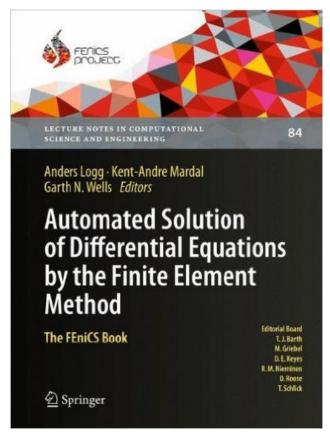
- open-source (LGPLv3)
- extensive documentation
- Python and C++ API
- can be used for HPC
- www.fenicsproject.org

Computing platform for solving PDEs

- Definition of weak forms
- Finite Element basis functions
- Meshing
- Solving
- ...
- → You can do a lot of things with FEniCS!

My goal:

Develop an official preCICE adapter for FEniCS.



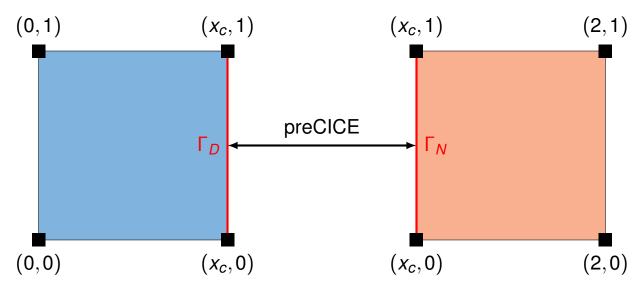
FEniCS book²

¹ Alnaes, M. S., et al. (2015). The FEniCS Project Version 1.5.

²Logg, A., Mardal, K. A., & Wells, G. N. (2012). Automated solution of differential equations by the finite element method.

LUND UNIVERSITY

Toy problem: Partitioned Heat Equation

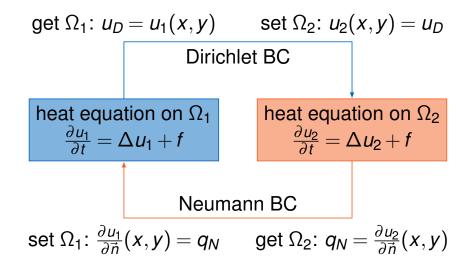


Partitioned heat equation / transmission problem already discussed in literature (e.g. 1 or 2).

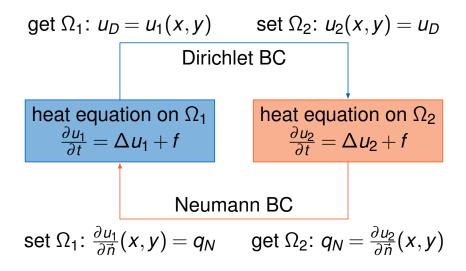
¹Monge, A. (2018). Partitioned methods for time-dependent thermal fluid-structure interaction. Lund University.

²Toselli, A., & Widlund, O. (2005). Domain Decomposition Methods - Algorithms and Theory (1st ed.).

Partitioned Heat Equation



Partitioned Heat Equation



FEniCS Ingredients

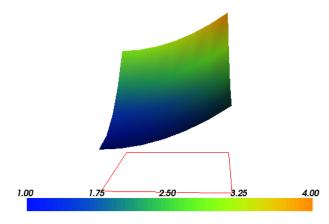
- 1. Solve Dirichlet Problem $\mathcal{D}(u_D)$
- 2. Compute heat flux $\mathcal{D}(u_D) = q_N$
- 3. Solve Neumann Problem $\mathcal{N}(q_N) = u_D$

1. Solve Dirichlet Problem $\mathcal{D}(u_D)$

Heat Equation

$$\frac{\partial u}{\partial t} = \Delta u + f \text{ in } \Omega$$

$$u = u_0(t) \text{ on } \partial \Omega$$



Solution of Poisson equation. Figure from ¹.

¹Logg, A., Mardal, K. A., & Wells, G. N. (2012). Automated solution of differential equations by the finite element method.

1. Solve Dirichlet Problem $\mathcal{D}(u_D)$

Discretization

• implicit Euler:

$$\frac{u^k - u^{k-1}}{dt} = \Delta u^k + f^k$$

• trial space:

$$u \in V_h \subset V = \{v \in H^1(\Omega) : v = u_0 \text{ on } \partial\Omega\}$$

test space:

$$v \in \hat{V}_h \subset V = \{v \in H^1(\Omega) : v = 0 \text{ on } \partial\Omega\}$$

weak form:

$$\int_{\Omega} (u^k v + dt \nabla u^k \cdot \nabla v) dx = \int_{\Omega} (u^{k-1} + dt f^k) v dx$$

¹Langtangen, H. P., & Logg, A. (2016). Solving PDEs in Python - The FEniCS Tutorial I (1st ed.).

1. Solve Dirichlet Problem $\mathcal{D}(u_D)$

Discretization

• implicit Euler:

$$\frac{u^k - u^{k-1}}{dt} = \Delta u^k + f^k$$

• trial space:

$$u \in V_h \subset V = \{v \in H^1(\Omega) : v = u_0 \text{ on } \partial\Omega\}$$

test space:

$$v \in \hat{V}_h \subset V = \left\{ v \in H^1(\Omega) : v = 0 \text{ on } \partial\Omega \right\}$$

weak form:

$$\int_{\Omega} (u^k v + dt \nabla u^k \cdot \nabla v) dx = \int_{\Omega} (u^{k-1} + dt f^k) v dx$$

Analytical Solution

If right-hand-side $f = \beta - 2 - 2\alpha$ we get $u = 1 + x^2 + \alpha y^2 + \beta t$.

¹Langtangen, H. P., & Logg, A. (2016). Solving PDEs in Python - The FEniCS Tutorial I (1st ed.).

1. Solve Dirichlet Problem $\mathcal{D}(u_D)$

Discretization

• implicit Euler:

$$\frac{u^k - u^{k-1}}{dt} = \Delta u^k + f^k$$

• trial space:

$$u \in V_h \subset V = \{v \in H^1(\Omega) : v = u_0 \text{ on } \partial\Omega\}$$

test space:

$$v \in \hat{V}_h \subset V = \left\{ v \in H^1(\Omega) : v = 0 \text{ on } \partial\Omega \right\}$$

weak form:

$$\int_{\Omega} (u^k v + dt \nabla u^k \cdot \nabla v) dx = \int_{\Omega} (u^{k-1} + dt f^k) v dx$$

Analytical Solution

If right-hand-side $f = \beta - 2 - 2\alpha$ we get $u = 1 + x^2 + \alpha y^2 + \beta t$.

weak form in FEniCS

 $F = u*v*dx + dt*dot(grad(u),grad(v))*dx - (u_n+dt*f)*v*dx$

Remark: Tutorial from the FEniCS tutorial book¹

¹Langtangen, H. P., & Logg, A. (2016). Solving PDEs in Python - The FEniCS Tutorial I (1st ed.).

2. Compute heat flux $\mathcal{D}(u_D) = q_N$

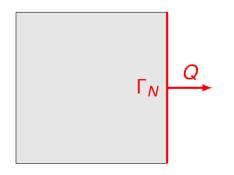
Overall Heat Flux

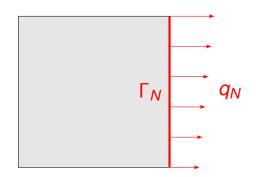
$$Q = -K \int_{\Gamma_N} \frac{\partial u}{\partial \vec{n}} ds \quad (K : \text{Thermal Conductivity})$$

Elementwise Heat Flux¹

$$\mu_i^k = \int_{\Gamma_N} \frac{\partial u^k}{\partial \vec{n}} v_i ds = \int_{\Omega} u^k v_i - u^{k-1} v_i + dt \nabla u^k \cdot \nabla v_i - dt f^k v_i dx$$

$$q_N = -K \sum_i v_i \mu_i^k$$





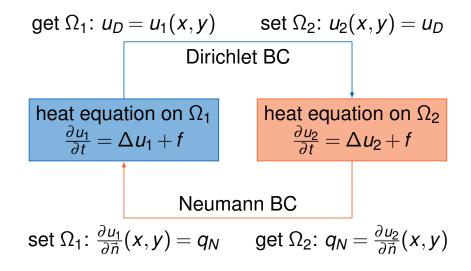
¹Toselli, A., & Widlund, O. (2005). Domain Decomposition Methods - Algorithms and Theory (1st ed.). p.3 f.

3. Solve Neumann Problem $\mathcal{N}(q_N) = u_D$

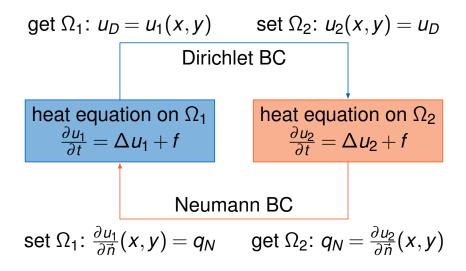
Neumann BC: Modified weak form

$$\int_{\Omega} (u^k v + dt \nabla u^k \cdot \nabla v) dx = \int_{\Omega} (u^{k-1} + dt f^k) v dx + \int_{\Gamma_N} q_N v ds$$

Partitioned Heat Equation



Partitioned Heat Equation



preCICE Ingredients

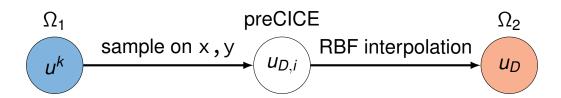
- 1. Read coupling data u_D, q_N to nodal data $u_{D,i}, q_{N,i}$
- 2. Apply coupling boundary conditions u_D, q_N
- 3. preCICE-FEniCS Adapter

LUND UNIVERSITY

1. Read Coupling Data

- Read Temperature u_D: u_np1(x, y)
- Read Flux q_N : fluxes(x, y)
- preCICE only accepts nodal data on the coupling mesh

2. Apply Coupling Boundary Conditions



- preCICE only returns nodal data on the coupling mesh
- use RBF interpolation to create a CustomExpression(UserExpression)
- Write Flux q_N as Neumann BC
- Write Temperature *u_D* as Dirichlet BC

3. preCICE-FEniCS Adapter

```
from fenics import *
from fenicsadapter import Adapter
...
adapter = Adapter()
```


3. preCICE-FEniCS Adapter

3. preCICE-FEniCS Adapter

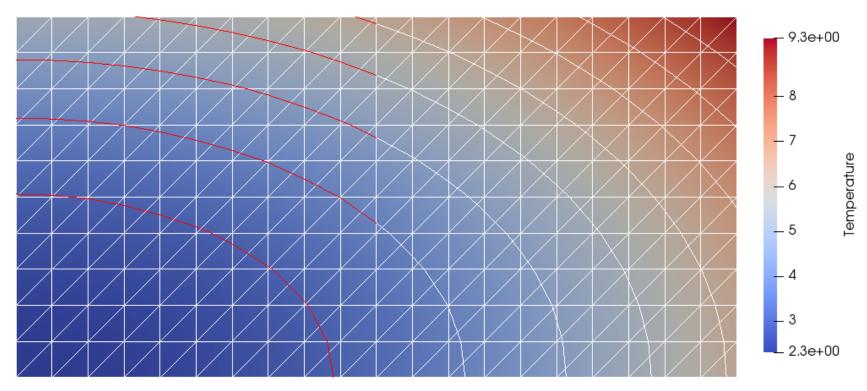
3. preCICE-FEniCS Adapter

3. preCICE-FEniCS Adapter

```
from fenics import *
from fenicsadapter import Adapter
adapter = Adapter()
adapter.configure("HeatDirichlet", "precice_config.xml",
                  "DirichletNodes", "Flux", "Temperature")
adapter.initialize(coupling_boundary, mesh, f_N_function, u_D_function)
bcs = [DirichletBC(V, u_D, remaining_boundary)]
bcs.append(adapter.create_coupling_dirichlet_boundary_condition(V))
while adapter.is_coupling_ongoing():
    solve(a == L, u_np1, bcs)
    fluxes = fluxes_from_temperature(F, V)
    is_converged = adapter.advance(fluxes, dt)
    if is_converged:
```

Results

Matching meshes

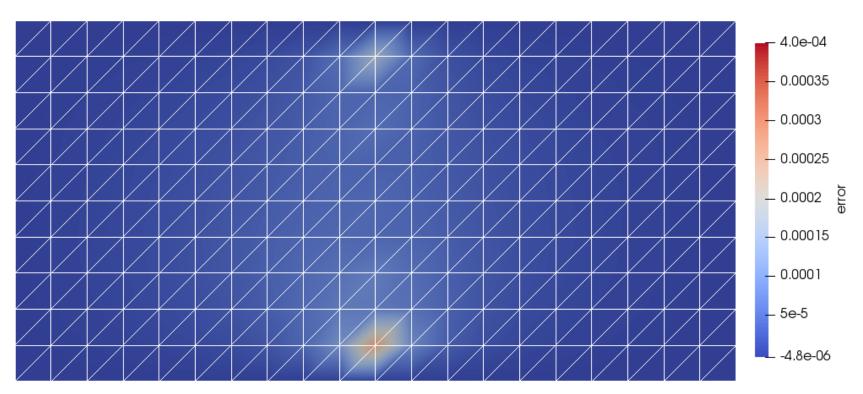


Comments

- simple heat equation from above
- "eyeball norm:" agreement with monolithic and analytical solution $u=1+x^2+\alpha y^2+\beta t$

Results

Matching meshes

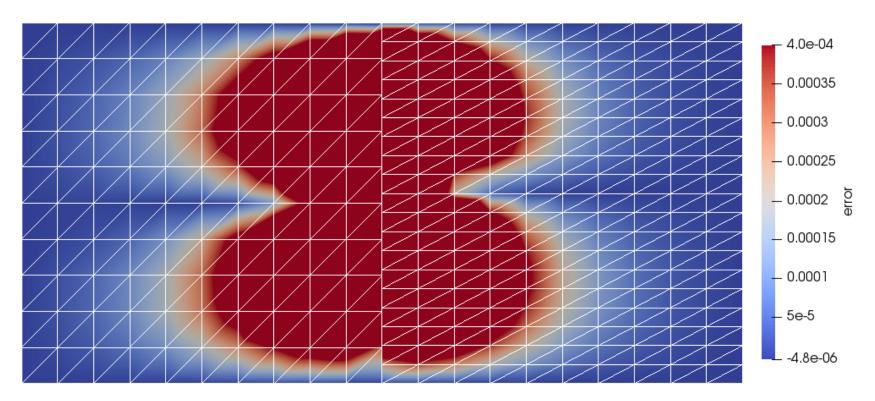


Comments

- simple heat equation from above
- "eyeball norm:" agreement with monolithic and analytical solution $u = 1 + x^2 + \alpha y^2 + \beta t$
- L^2 -error on domain $< 10^{-4}$

Results

Non-matching meshes



Comments

- simple heat equation from above
- finer mesh on right domain, but larger error
- possible explanation: first order mapping destroys second order accuracy of space discretization

Partitioned heat equation

- FEniCS is used for solving the Dirichlet and Neumann problem.
- preCICE couples two FEniCS instances to solve the coupled problem.

¹Langtangen, H. P., & Logg, A. (2016). Solving PDEs in Python - The FEniCS Tutorial I (1st ed.). Sec. 3.1 Benjamin Rüth (TUM) | Solving the Partitioned Heat Equation Using FEniCS and preCICE

Partitioned heat equation

- FEniCS is used for solving the Dirichlet and Neumann problem.
- preCICE couples two FEniCS instances to solve the coupled problem.

FEniCS adapter

- only minimal changes in the official FEniCS tutorial for the heat equation¹.
- FEniCS adapter for heat transport
- github.com/precice/fenics-adapter
- github.com/precice/tutorials

¹Langtangen, H. P., & Logg, A. (2016). Solving PDEs in Python - The FEniCS Tutorial I (1st ed.). Sec. 3.1 Benjamin Rüth (TUM) | Solving the Partitioned Heat Equation Using FEniCS and preCICE

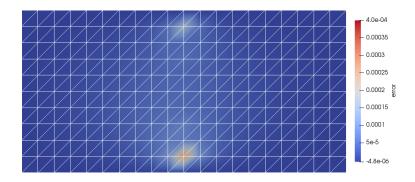
Partitioned heat equation

- FEniCS is used for solving the Dirichlet and Neumann problem.
- preCICE couples two FEniCS instances to solve the coupled problem.

FEniCS adapter

- only minimal changes in the official FEniCS tutorial for the heat equation¹.
- FEniCS adapter for heat transport
- github.com/precice/fenics-adapter
- github.com/precice/tutorials

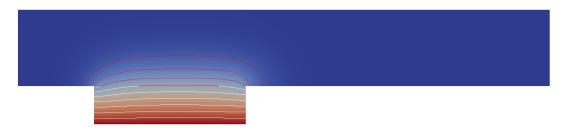
Can we live with the error close to the boundary?



¹Langtangen, H. P., & Logg, A. (2016). Solving PDEs in Python - The FEniCS Tutorial I (1st ed.). Sec. 3.1 Benjamin Rüth (TUM) | Solving the Partitioned Heat Equation Using FEniCS and preCICE

Outlook: FEniCS + X

- first experiments with FEniCS + OpenFOAM
- more FEniCS tutorials
- FEniCS based solvers as CBC.Block, CBC.RANS and CBC.Solve¹

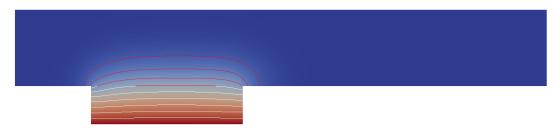


Flow over heated plate. FEniCS used for solving the heat equation inside the hot plate at the bottom and OpenFOAM used for simulation of the channel flow.

¹Logg, A., Mardal, K. A., & Wells, G. N. (2012). Automated solution of differential equations by the finite element method. Lecture Notes in Computational Science and Engineering.

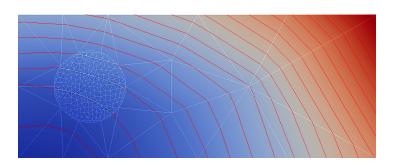
Outlook: FEniCS + X

- first experiments with FEniCS + OpenFOAM
- more FEniCS tutorials
- FEniCS based solvers as CBC.Block, CBC.RANS and CBC.Solve¹



Flow over heated plate. FEniCS used for solving the heat equation inside the hot plate at the bottom and OpenFOAM used for simulation of the channel flow.

Non-matching Meshes



¹Logg, A., Mardal, K. A., & Wells, G. N. (2012). Automated solution of differential equations by the finite element method. Lecture Notes in Computational Science and Engineering.

Thank You!

Website: precice.org

Source/Wiki: github.com/precice

Mailing list: precice.org/resources

My e-mail: rueth@in.tum.de

Homework:

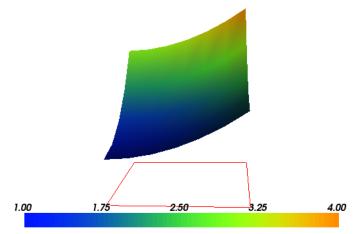
- Follow a tutorial
- Join our mailing list
- Star on GitHub
- Send us feedback
- Ask me for stickers

Heat Equation

$$\frac{\partial u}{\partial t} = \Delta u + f \text{ in } \Omega$$

$$u = u_0(t) \text{ on } \partial \Omega$$

Analytical Solution, if $f = \beta - 2 - 2\alpha$ we get $u = 1 + x^2 + \alpha y^2 + \beta t$.



Solution of Poisson equation. Figure from ¹.

Discretization

• implicit Euler:

$$\frac{u^k - u^{k-1}}{dt} = \Delta u^k + f^k$$

trial space:

$$u \in V_h \subset V = \{v \in H^1(\Omega) : v = u_0 \text{ on } \partial\Omega\}$$

test space:

$$v \in \hat{V}_h \subset V = \{v \in H^1(\Omega) : v = 0 \text{ on } \partial\Omega\}$$

weak form:

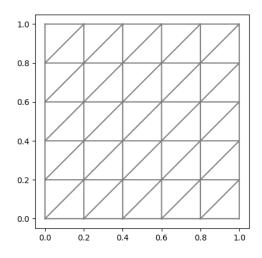
$$\int_{\Omega} (u^k v + dt \nabla u^k \cdot \nabla v) dx = \int_{\Omega} (u^{k-1} + dt f^k) v dx$$

Remark: Tutorial from the FEniCS book¹

¹Langtangen, H. P., & Logg, A. (2016). Solving PDEs in Python - The FEniCS Tutorial I (1st ed.).


```
Geometry: \Omega, \partial \Omega, \Gamma_D, \Gamma_N
class RightBoundary(SubDomain):
    def inside(self, x, on_boundary):
         tol = 1E-14
         if on_boundary
            and near(x[0], x_r, tol):
              return True
         else:
              return False
class Boundary(SubDomain):
    def inside(self, x, on_boundary):
         if on_boundary:
              return True
         else:
              return False
p0 = Point(0, 0)
p1 = Point(1, 1)
```

Mesh: Ω_h



Mesh created with FEniCS


```
Function Space: V_h \subset V = \{v \in H^1(\Omega)\}
V = FunctionSpace(mesh, 'P', 1)
Expressions: u = 1 + x^2 + \alpha y^2 + \beta t and f = \beta - 2 - 2\alpha
u_D = Expression('1 + x[0]*x[0] + alpha*x[1]*x[1] + beta*t', ..., t=0)
f = Constant(beta - 2 - 2 * alpha)
Boundary Conditions: u \in V_h \subset V = \{v \in H^1(\Omega) : v = u_D \text{ on } \partial\Omega\} and v \in \hat{V}_h \subset V = \{v \in H^1(\Omega) : v = 0 \text{ on } \partial\Omega\}
bc = DirichletBC(V, u D, Boundary)
u = TrialFunction(V)
v = TestFunction(V)
Initial Condition: u^0 = u(t = 0)
u_n = interpolate(u_D, V)
```



```
Variational Problem: \int_{\Omega} (u^k v + dt \nabla u^k \cdot \nabla v) dx = \int_{\Omega} (u^{k-1} + dt f^k) v dx
F = u * v * dx + dt * dot(grad(u), grad(v)) * dx - (u_n + dt * f) * v *
    dx
a, L = lhs(F), rhs(F)
Time-stepping and simulation loop: \frac{u^k - u^{k-1}}{dt} = \Delta u^k + f^k
u_np1 = Function(V)
t = 0
T = 1
dt = .1
u D.t = t + dt
while t < T:
     solve(a == L, u_np1, bc)
     t += dt
     u D.t = t + dt
     u_n.assign(u_np1)
```