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Abstract:
Safety and efficiency are two defining factors for autonomous vehicles. While there is already
extensive literature on how to safely cope with highway situations, approaches for higher
efficiency are usually designed on an individual basis and are often accompanied by an increased
risk of collision. Here, in addition to focusing on the individual behavior of the autonomous
ego vehicle, we also consider how to support other traffic participants in correctly inferring the
ego vehicle’s future maneuvers, thus, enabling secure and efficient traffic flow. We propose a
legible model predictive control method that provides a framework to improve the readability of
the ego vehicle’s planned maneuvers, while simultaneously optimizing factors such as comfort
and energy efficiency. A simulation of a highway scenario is presented to demonstrate the
effectiveness of our proposed method.
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Autonomous driving has gained increasing interest in both
research and industry over the past decade. In the future,
autonomous vehicles will offer, among many benefits, in-
creased safety and personal independence, particularly by
supporting humans on long distance drives. Advances in
sensor and computing technology, cognition, and control
have all paved the way for highly advanced driver assis-
tance systems as well as fully autonomous prototypes.
One of the key requirements for such autonomous vehicles
is ensuring safe driving behavior. However, these require-
ments can lead to a tradeoff between safety and efficiency.
As autonomous vehicles must first and foremost be safe,
the resulting maneuvers and trajectories are often chosen
conservatively. Consider a highway scenario with two au-
tonomous vehicles intending to overtake a leading vehicle.
If both vehicles pursue a safe course, this can lead to a sit-
uation where both cars hesitate; each vehicle inhibits the
other from overtaking due to safety constraints, resulting
in an unresolved standoff, as algorithms of autonomous
vehicles are typically conservative. As turn signals are,
if at all, often only used when the lane change actually
occurs, they are not sufficient for reasonable predictions.
This raises the question of how to improve efficiency in
such scenarios, while keeping risk at a similar level. It is
assumed that vehicle-to-vehicle (V2V) communication is
not a dependable solution in the near future as this would
require a substantial number of vehicles communicating
with each other to be effective. Furthermore, in other
scenarios aiming at increasing legibility for pedestrians or
bicycles, V2V communication is not applicable.
One of the approaches to reduce conservativeness of high-
way maneuvers was suggested by Schildbach and Borrelli

(2015) and Carvalho et al. (2014) using stochastic Model
Predictive Control (MPC). In these works, chance con-
straints are used to loosen hard constraints and allow for
a non-zero collision probability within a defined confidence
level. However, safety is decreased in order to obtain a less
conservative trajectory. Among other works, Gray et al.
(2013) assume stochastic driver models and subsequently
use these models to then plan trajectories. Sadigh et al.
(2016a) suggest forcing other traffic participants to react
to an unexpected ego vehicle (EV) maneuver, cutting
into the lane of another car, for example, in order to
gather information about the human’s internal state, e.g.
his awareness. However, this could be interpreted as a
potential hazard by other drivers and possibly cause acci-
dents. Sadigh et al. (2016b) apply Inverse Reinforcement
Learning to acquire the human driver’s reward function,
which is then incorporated into a controller, planning to
interfere with the human driver in a manner that bene-
fits the autonomous EV. However, if the human driver’s
controls vary from the learned model due to overfitting,
the EV’s elevated aggressiveness can potentially result
in collisions. The summarized prior works all focus on
improving the ego vehicle performance, either by allowing
riskier maneuvers or by gathering more information on
other drivers.
In contrast, we suggest cooperatively including other ve-
hicles in the EV’s trajectory planning process, eventually
resulting in benefits for all vehicles involved. Other traffic
participants can plan their trajectories more efficiently if
they can correctly assess the EV’s intention. We therefore
propose a novel legibility MPC method that increases the
readability of the EV’s future maneuvers, while optimizing
other factors such as energy efficiency and comfort at the



same time. Inferring the EV’s planned maneuver then
enables other, either human driven or autonomous vehicles
to plan trajectories efficiently and resolve situations where
multiple vehicles block one another due to competing
intentions. Thus, conservativeness can be reduced, while
preserving safety constraints.
Due to its ability to handle constraints and nonlinear
systems on a finite horizon, MPC has proved effective for
trajectory planning in autonomous driving as stated by
Katrakazas et al. (2015) or Levinson et al. (2011). Alami
et al. (2006) and Kruse et al. (2012), among others, state
that legibility results from predictability; however, we use
a definition of legibility in human-robot interaction pro-
vided by Dragan and Srinivasa (2013). They declare that
a motion is legible if it allows the spectator to confidently
derive the robot’s correct goal given an initial trajectory.
Predictable motion is defined as the trajectory an observer
would expect if he knew the robot’s goal prior to the
execution. To illustrate this, they give an example of a
robot reaching out to grasp the right one of two bottles
that are located next to each other. Knowing which bottle
the goal is, the observer would predict the robot to follow a
straight path to the bottle. However, the beginning of this
trajectory would make it difficult for another spectator,
who does not have knowledge of the goal, to infer which
bottle the robot is aiming to grasp. Therefore, the robot
should start a motion that exaggerates its movement to
the right to emphasize its goal, the right bottle, which
is then considered a legible motion. Dragan et al. (2013)
state that the legibility of a motion depends on the re-
quired time until an observer derives the robot’s actual
goal. To reduce the necessary time, the goal inference
probability of a spectator is modeled. The robot then uses
this inference model to generate legible motion.

In summary, the contribution of this work is to develop
a legible model predictive control method for an au-
tonomous vehicle. In our case, the framework is used to
increase the probability that other traffic participants will
correctly infer the EV’s planned maneuvers without loos-
ening safety constraints. This is done while simultaneously
optimizing for other objectives such as energy consump-
tion and comfort. The presented method is evaluated in
a highway scenario simulation exhibiting the effectiveness
of the method.
The remainder of this paper is structured as follows.
Section 2 presents an introductory example. The legible
model predictive controller is derived in Sec. 3, whereas
Sec. 4 introduces the vehicle models. The implementation
and simulation setup as well as the results are shown in
Sec. 5. This is followed by concluding remarks and an
outlook in Sec. 6.

2. INTRODUCTORY EXAMPLE: TWO-LANE
HIGHWAY OVERTAKING SCENARIO

Consider a highway scenario consisting of three vehicles
on two lanes illustrated in Fig. 1. Initial velocities of the
three vehicles are assumed to fulfill

vOV
0 > vEV

0 > vLV
0 , (1)

where vEV, vOV, and vLV are the velocities of the ego
vehicle (EV) and the two target vehicles, i.e., the observing

observing vehicle
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Fig. 1. Qualitative illustration of a two-lane highway
scenario: the two target vehicles, LV and OV, are
depicted by blue boxes, the EV is the red box. The
EV is planning a legible maneuver to safely and
efficiently overtake the LV, while considering the OV’s
presumed goal to overtake as well.

vehicle (OV) and lead vehicle (LV), respectively.
We introduce the longitudinal distances between the LV

and the EV ∆xLV,EV
k = ||xLV

k − xEV
k || and between the

EV and the OV ∆xEV,OV
k = ||xEV

k − xOV
k || with the

longitudinal positions xOV
k , xEV

k , xLV
k at time step k ∈ N0.

The LV maintains a constant speed and keeps its position
in the right lane throughout the scenario. As the OV’s
velocity is larger than the velocities of the LV and EV,
it aims to overtake both vehicles. The OV can therefore
adapt its velocity but stays in its left lane. The EV’s
target is to overtake the LV. If we assume the OV is
autonomous, it will only overtake if a safe maneuver
is possible, as algorithms for autonomous vehicles are
generally conservative. This results in two possible EV
maneuvers M = {M lk,Mot}: a lane keeping maneuver
M lk, where the EV keeps its lane until the OV has passed,
and an overtaking maneuver Mot, where the EV overtakes
the LV before the OV passes.

3. LEGIBLE MODEL PREDICTIVE CONTROL

3.1 Problem Statement

We assume an EV maneuver was selected, and our aim is
to now generate an EV trajectory that is readable for other
traffic participants, i.e., the OV, so that traffic efficiency
is improved. For trajectory generation we design a legible
model predictive controller with the cost function

J = Jgen + wlegJ
M
leg, (2)

consisting of two cost function terms. The first term Jgen

focuses on non-legibility related factors such as energy
efficiency or comfort. The second term JMleg addresses
the legibility of the EV’s planned maneuver M , with
weight wleg. The objective therefore is to design the
legibility cost function term JMleg such that the EV input

U = (uk,uk+1, . . . ,uk+N−1)> optimizes the legibility of
the maneuver, i.e., the probability that the OV correctly
infers the EV maneuver. This results in the MPC problem
structure



U∗ = arg min
U

Jgen + wlegJ
M
leg (3a)

s. t. ξk+1 = f(ξk,uk), k ∈ N0 (3b)

ξk+j ∈ Ξ, j = 0, . . . , N − 1 (3c)

ξk+N ∈ Ξf (3d)

uk+j ∈ U , (3e)

with the EV input U and EV state ξ, time step k,
prediction horizon N , and the sets of admissible states,
terminal states, and inputs Ξ, Ξf, and U , respectively. The
function f(ξk,uk) represents the vehicle model introduced
in Sec. 4.

3.2 Legibility Background

The legibility cost function in (2) is designed using the
legibility definition of Dragan et al. (2013). They define
legible motion using an inference function

IL : Z → G. (4)

This function infers a goal G ∈ G from the goal set G
based on an initial part of a trajectory ζ ∈ Z. A motion is
considered legible if the observer can conclude the correct
goal

IL(ζS→Q) = G (5)

based on an incomplete initial trajectory ζS→Q, which
starts at ζ(t0) and is evaluated at ζ(tQ). Given the initial
trajectory ζS→Q, there are multiple possible goals with
individual probabilities. The observer’s inferred goal is
modeled to be the most likely goal, which is determined
by

IL(ζS→Q) = arg max
G∈G

P (G | ζS→Q). (6)

In other words, observing the initial path ζS→Q, the
spectator would then assume that the planned goal at the
end of the completed trajectory is G. This inference model
can subsequently be used to plan legible motion.

3.3 Design of Legibility Cost Function

In order to generate legible maneuvers, the OV’s infer-
ence function must first be chosen. Using the probability
P (M | ξk) that the EV will perform maneuver M ∈ M
given the current vehicle state ξk at time step k, we can
formulate the EV’s assumption of the OV inference model

IOV
L (ξk) = arg max

M∈M
P (M | ξk) . (7)

It is then the EV’s aim to maximize P
(
Mplan | ξk

)
,

i.e., increasing the OV’s probability of correctly inferring
the EV’s planned maneuver Mplan. This results in the
requirements that JMleg is minimal for P

(
Mplan | ξk

)
= 1

and maximal for P
(
Mplan | ξk

)
= 0. Thus, multiple

cost function designs to generate legible trajectories are
possible. We propose the legibility cost function term

JMleg =

N∑
j=0

1

c+ P
(
M | ξk+j

) , (8)

where c > 0 is a parameter and the prediction horizon
is N . The constant c is necessary to guarantee a non-
zero denominator. However, the choice of c affects the
weight wleg associated with the cost function term JMleg,
especially if the planned maneuver is not perceptible, i.e.,
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Fig. 2. Qualitative illustration of the dynamic bicycle
model: the vehicle velocity, body slip angle, and steer-
ing angle are represented by v, α, and δf, respectively.
The center of mass is denoted by CoM and the dis-
tance of the front and rear axles to the CoM is given
by lf and lr, respectively.

P (M | ξk)→ 0.
The general cost function term Jgen has the form

Jgen = Jgen,f(ξk+N ) +

N−1∑
j=0

l(ξk+j ,uk+j), (9)

where the function l(ξk+j ,uk+j) is the stage cost and the
terminal cost is Jgen,f(ξk+N ) with the final state ξk+N .

4. VEHICLE MODELING

4.1 Ego Vehicle Dynamics

The EV is represented by a nonlinear dynamic bicycle
model based on the approach of Rajamani (2005), as seen
in Fig. 2. Kong et al. (2015) show that this model is more
appropriate for high velocities than the kinematic bicycle
model. The vehicle motion is described by the differential
equations

ẍ = ax, (10a)

ÿ = −ẋψ̇ +
2

m
(Fcf cos δf + Fcr), (10b)

ψ̈ =
2

Iz
(lfFcf cos δf − lrFcr), (10c)

where x and y represent the vehicle longitudinal and
lateral position in the vehicle frame, respectively, and
ψ is the vehicle orientation. The EV state vector is
ξEV = [x, ẋ, y, ẏ, ψ, ψ̇]>. The input vector uEV =
[ax, δf]

> consists of the longitudinal acceleration αx and
the steering angle δf. In the following we omit the index
EV, as only the EV state and input are considered. The
vehicle mass is given by m, while Iz denotes the yaw
inertia. The lateral forces on the front and rear tires are
given by Fcf and Fcr , respectively. We use a linear tire
model according to Rajamani (2005) resulting in

Fci = −Cαi
αi, i ∈ {f, r}, (11a)

αi = arctan
vci

vli

. (11b)

The tire slip angle is denoted by αi, the tire cornering
stiffness by Cαi , and



vci = vyi cos δi − vxi sin δi, i ∈ {f, r}, (12a)

vli = vyi sin δi + vxi
cos δi, (12b)

vyf = ẏ + lfψ̇, (12c)

vyr = ẏ − lrψ̇, (12d)

vxi
= ẋ− lw

2
ψ̇, (12e)

where the rear tire angle is δr = 0 and the lateral and
longitudinal tire velocities are vc and vl, respectively. The
longitudinal distance of the tires to the vehicle center of
mass (CoM) is denoted by lf and lr. The vehicle’s track
width is lw.
The vehicle dynamics in the inertial frame is given by

Ẋ = ẋ cosψ − ẏ sinψ, (13a)

Ẏ = ẋ sinψ + ẏ cosψ, (13b)

with the position vector [X,Y ]>. The vehicle model is
discretized using the Runge-Kutta-Fehlberg method.

4.2 Target Vehicles

The OV and LV are represented by a double integrator
model, similar to (10a), as only longitudinal accelera-
tion is considered. The LV’s velocity remains constant
throughout the scenario, whereas the OV’s velocity de-
pends on which EV maneuver it expects. Based on the
EV’s observed current state ξk and the possible maneuvers
M = {Mot,M lk} the OV determines the probabilities

P (M | ξk) , M ∈M, (14)

of the EV either performing a future overtaking maneu-
ver or keeping its lane until the OV passes. Figure 3
exemplifies that once the EV moves towards the right
side of its lane, the OV expects an increased probability
P
(
M lk | ξk

)
of the EV staying in its lane. In contrast, if

the EV approaches the left lane, the OV assesses it more
likely that the EV will perform a future lane changing ma-
neuver. We design a simple routine for the OV depending
on the inferred probabilities. If the belief P

(
M lk | ξk

)
exceeds the threshold P lk, the OV expects the EV to
keep its lane. Thus, the OV accelerates until it reaches its
maximal allowed velocity and overtakes both other vehi-
cles. If both probabilities, P

(
M lk | ξk

)
and P (Mot | ξk),

lie underneath their respective thresholds P lk and P ot,
the OV is unable to infer the EV’s intent with certainty.

Thus, the OV decelerates until ∆xEV,OV
k > xsafe to keep

a safe distance xsafe to the EV and oscillates about this
safety distance until it is able to reliably infer the EV’s
maneuver. If P (Mot | ξk) > P ot, the OV expects the
EV to overtake the LV without waiting for the OV to pass.

The OV decelerates until ∆xEV,OV
k > ∆xlarge to provide

the EV with increased space to change lanes.

5. EXEMPLARY SIMULATION STUDY

5.1 Implementation and Simulation Setup

A simulation was carried out in MATLAB R© as a proof
of concept to validate the legible model predictive con-
troller of (3). We used the MPC routine utilizing fmincon
developed by Grüne and Pannek (2017) as the base for
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Fig. 3. Qualitative development of the probability for two
maneuvers given three steps; Left side: EV lane keep-
ing maneuver; Right side: EV overtaking maneuver;
The OV’s belief P (M | ξk) of an EV maneuver (lane
keeping or overtaking) given the steps k ∈ {1, 2, 3} is
displayed in the bottom graphs.

implementing our method. It is to note, however, that the
implementation is not yet optimized for online trajectory
planning. All quantities in this section are given in SI units
unless stated otherwise.
For the implementation a probability function P (M | ξk)
needs to be chosen with 0 ≤ P (M | ξk) ≤ 1. This function
represents the OV’s estimated probabilities for the two
possible EV maneuvers, overtaking Mot and lane keeping
M lk, and is then used in the legibility cost function term in
(8). In this work, the probability function of an expected
overtaking maneuver is chosen to be

P
(
Mot | ξk

)
= q1 exp

(
yEV
k −

(
∆ylane −

wEV

2

))
+ q2 exp

(
q3

(
∆xEV,LV

safe −∆xEV,LV
k

))
,

(15)
with time step k and weights q1 = 0.2, q2 = 0.8, and
q3 = 0.2. The EV’s lateral position is denoted by yEV

k ,
the lane width by ∆ylane, and the vehicle width by wEV.
The right boundary of the right lane is set to y = 0.
The first term of (15) is maximal if the EV is on the
left boundary of its lane and decreases exponentially the
further it moves to the right side, whereas the second
term analyzes the EV’s longitudinal distance to the LV.
We assume that the EV always keeps at least a minimal

distance to the LV, i.e., ∆xLV,EV
k ≥ ∆xsafe, as part of (3c),

which therefore results in a maximal value for the second
term. The further the EV then falls back, the smaller
the second term gets, decreasing the expected probability
of an EV overtaking maneuver. While it is possible to
increase the longitudinal distance indefinitely to lower the
second term of (15) to zero, this is not possible for the
first term, as the lane boundary limits the lateral motion
to the right. It is necessary that q1 + q2 = 1, so that the
probability is bounded to P (Mot | ξk) ≤ 1. Analogously,
the probability of a lane keeping maneuver is defined by
P
(
M lk | ξk

)
= 1 − P (Mot | ξk). It is to note that the



(a) Vehicles after 4.0s at time step k = 20 for EV lane keeping maneuver for wleg = 0.

(b) Vehicles after 4.0s at time step k = 20 for EV lane keeping maneuver for wleg = 100.
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(c) Probability of EV lane keeping maneuver as assessed by OV.
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(d) Velocities of EV (red) and OV (blue) for EV lane keeping with
wleg = 0 and wleg = 100.

Fig. 4. (a): The highway scenario without a legibility cost function term after four seconds is illustrated. The red box
represents the EV, the blue boxes display the target vehicles. Fading boxes show past states. Past states of the LV
are omitted since its velocity remains constant. Increasing space between past boxes represents acceleration. The
OV is unable to identify the EV’s planned lane keeping maneuver and stays behind. (b): It is shown that the EV
supports the OV in inferring the EV’s correct maneuver, which leads to the OV overtaking. (c): The OV’s expected
probability of an EV lane keeping maneuver increases. (d): The EV decelerates greater than in the non-legible
case. The OV needs to decelerate if it cannot infer the EV maneuver but accelerates and overtakes if the OV’s
motion is legible.

probability function of (15) is a design choice and can be
adapted depending on the scenario and the respective OV
inference model.
The general cost function Jgen in (9) is designed according
to suggested costs in Althoff et al. (2017), which yields the
stage and terminal cost

lgen = qa (ax,k+j)
2

+ q∆δ (∆δf,k+j)
2

+ q∆x

(
∆xLV,EV

k+j −∆xref

)2

+ qψ (ψk+j)
2
, (16a)

Jf,gen = q∆x

(
∆xLV,EV

k+N −∆xref

)2

+ qψ (ψk+N )
2
, (16b)

where ∆δf,k = δf,k − δf,k−1 represents the steering rate
of the EV at time step k. This cost function minimizes
acceleration and steering changes for comfort, tracks the
reference distance to the LV ∆xref = 45, and aims to
align the EV with the road. The weights are set to
[qa, q∆δ, q∆x, qψ] = [1, 100, 0.1, 50], whereas the weight
used for (3a) is wleg = 100 and the constant of the legibil-
ity cost function term in (8) is c = 0.001. The probability
thresholds are set to P lk = P ot = 0.85. The lane width is
∆ylane = 5.25 and for the EV we assume [lEV

f , lEV
r , lEV

w ] =

[2.25, 2.25, 1.5] and [wEV, mEV, IEV
z , lEV

f,r , C
EV
αf,r

] =

[1.83, 2000, 3344, 2.25, 34377]. The state and input
constraints according to Ξ, Ξf, and U in (3) are

∆xLV,EV
k ≥ ∆xsafe, (17a)

Y EV
k ∈

[
wEV

2
, ∆ylane −

wEV

2

]
, (17b)

ax,k ∈ [−9, 6], (17c)

δf,k ∈ [−0.245, 0.245], (17d)

δf,k − δf,k−1 = ∆δf,k ∈ [−0.5, 0.5]. (17e)

We also choose ∆xsafe = 40 and ∆xlarge = 50. At the ini-
tial time, all three vehicles are centered in their respective
lanes and heading straight with starting positions and ve-
locities

[
xOV

0 , vOV
0

]
= [31, 30.6],

[
xEV

0 , vEV
0

]
= [78, 29.2],

and
[
xLV

0 , vLV
0

]
= [125, 27.8]. The time step is ∆t = 0.2

with the horizon length N = 20.

5.2 Results

It is first assumed that the EV plans to let the OV pass,
and then the EV will change lanes and overtake the LV.



(a) Vehicles after 4.8s at time step k = 24 for EV overtaking maneuver for wleg = 100.
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(b) Probability of EV overtaking maneuver as assessed by OV.
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(c) Distances between EV and OV for EV overtaking with wleg = 0
and wleg = 100.

Fig. 5. (a): The EV helps the OV in correctly inferring the EV’s planned overtaking maneuver. (b): The probability
of a future EV overtaking maneuver as estimated by the OV increases. (c): If an EV overtaking maneuver can be
inferred, the OV extends its distance to the EV to enable an EV overtaking maneuver. In the case wleg = 0 the
OV also starts increasing its distance at 4.6s but only to regain the safety distance ∆xsafe.

Figure 4(a) shows the scenario after time t = 4.0s if
no legibility term is included in the EV’s cost function,
i.e., wleg = 0, and it keeps following the LV regularly.
Despite aiming at overtaking both other vehicles, the
OV decides to decelerate in order to satisfy the safety
requirements. The situation remains unsolved until the
OV infers the EV’s maneuver with enough certainty and
can react accordingly. Adding the legibility cost function
term, i.e., wleg = 100, the EV is increasing its distance to
the LV as well as moving to the right side of its current
lane, as depicted in Fig 4(b). The OV then infers that the
probability that the EV will keep its lane has increased,
as shown in Fig. 4(c). Once the threshold is reached, i.e.,
the OV is confident enough that the EV will keep its
lane, the OV accelerates, depicted in 4(d), and securely
overtakes both vehicles. This now provides the EV with
the possibility of safely changing its lane to overtake the
LV as well.
Figure 5(a) displays the case of the EV planning to over-
take prior to the OV. Planning an overtaking maneuver
including a legibility cost function term, i.e., wleg = 100,
the EV will move towards the left side of its lane, clearly
signaling to the OV that it plans to overtake. This time
the probability, assessed by the OV, of an expected EV
overtaking maneuver increases, as seen in Fig. 5(b). This
causes the OV to increase its distance to the EV, shown
in Fig. 5(c), and gives the EV the opportunity to safely
change lanes and perform its overtaking maneuver prior
to the OV.

5.3 Discussion

As previously mentioned, safety is not affected by consid-
ering legibility in the optimization problem as the same
safety constraints hold as before. Even if an EV trajectory
intended to increase legibility of a planned EV overtaking

maneuver causes a human driver to act more aggressively,
i.e., aiming to pass first, the EV simply aborts its intended
maneuver. Thus, efficiency is positively influenced without
increasing the risk of collision.
The advantage of adding legibility to the cost function,
instead of expressing it as a constraint, is that legibility
can be neglected if the focus is directed more to optimizing
other objectives or if constraints need to be met, safety
requirements, for example. Legibility is only optimized
to an extent that still allows the vehicle to reasonably
consider other superior objectives.
The actual OV inference model described in Sec. 4.2 uses
thresholds. If the probabilities for overtaking and lane
keeping both remain below their respective thresholds,
no maneuver is inferred. This varies from the assumed
OV inference model in (7) used in the EV algorithm,
which always selects the most probable maneuver as the
inferred maneuver. Thus, the inference model maximized
by the legibility cost function term in (8) is not required
to perfectly match the OV’s actual inference model but
still is effective.
To obtain an EV motion similar to the simulation, a simple
implementation would be to directly move the OV left,
right, or adapt its distance to the LV depending on the
planned maneuver, e.g. move right and decelerate for lane
keeping. However, this would require new tuning and eval-
uation if the scenario or the OV inference model change.
Using the proposed legibility cost function term allows for
the easy adaptation for altered OV inference models or
different maneuvers and scenarios. While two maneuvers,
overtaking and lane keeping, are considered here, the pre-
sented method can be applied to other traffic maneuvers
and scenarios by utilizing the suggested legibility cost
function term and solely including the adapted inference
model chosen for the new scenario. It is not necessary



to include all maneuvers that could possibly occur while
driving, as legibility is not required for safety purposes
here. Each additional maneuver considered simply has a
positive effect on traffic flow if the autonomous vehicle
finds itself in one of the modeled scenarios. A different sce-
nario worth considering is that of an urban environment:
the EV plans to turn right, but there are two possible
streets to turn into which are close to one another. It is
therefore difficult for traffic participants to predict into
which of the two streets the EV plans to turn. By altering
the trajectory in a legible way, the EV’s intention would
be clarified.
For completeness, an algorithm would be necessary that
applies the legibility cost function term only if useful in a
specific situation, as there will be scenarios when legible
behavior is not necessary, for example an empty highway.
Furthermore, the current method only accounts for one
OV. In dense traffic or on roads with more than two lanes,
it will nevertheless be necessary to consider multiple OVs.
A subsequent aim is therefore to extend the presented
method to interact legibly with multiple OVs.

6. CONCLUSION

In this paper we presented a legible model predictive
control method and showed its effectiveness in a simu-
lation of a highway overtaking scenario. Based on a traffic
participant inference model, estimating the probability of
a future ego vehicle maneuver, a cost function term was
designed to enhance the ability of other traffic participants
to correctly and confidently infer the planned ego vehicle
maneuver. This approach improves both safety and per-
formance as maneuver perception is increased.
The presented legible MPC method can serve as a frame-
work to generally improve legibility in autonomous driving
if applied to a wider range of scenarios, such as urban driv-
ing, for example. However, generating legible motion is not
only an important step towards improving autonomous
vehicles, but the legible MPC structure can be applied in
other fields as well.
Future research will focus on applying the presented ap-
proach to online trajectory planning and on an increased
number of maneuvers and scenarios. User studies that
could improve the inference model and evaluate the exact
influence of our method based on the perception of real
humans are also of interest.
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