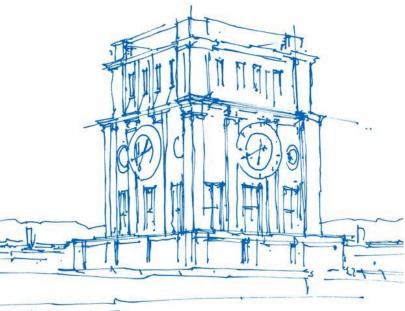
Optimizing the Transport of Junior Soccer Players to Training Centers


Christian Jost¹, Alexander Döge², Sebastian Schiffels¹, Rainer Kolisch¹

¹Technical University of Munich TUM School of Management Chair of Operations Management

²BASF SE CoE Excellence & Innovations Advanced Analytics in Procurement

OR 2018, Brussels

September 14, 2018

Uliventure des TVM

Single Day vs. Consistent Planning

a) Single Day Training Transfer Problem

Which player should be picked up on a training day?

What are the corresponding routes?

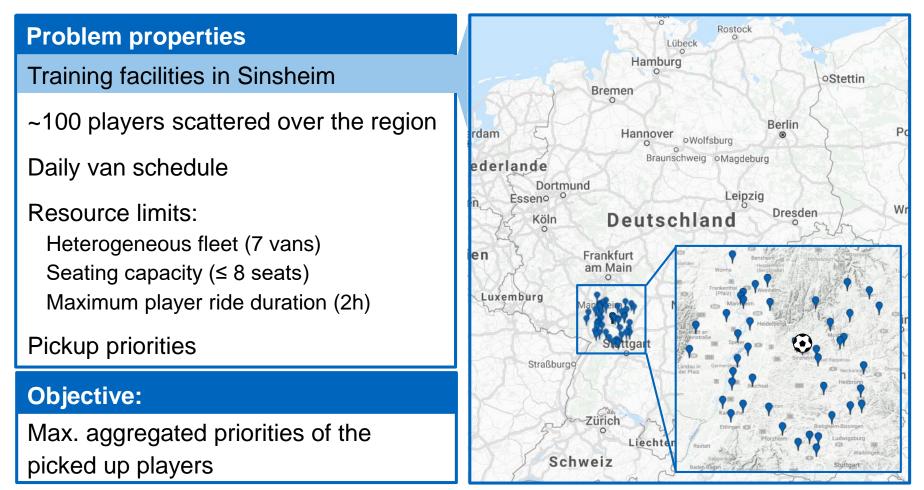
b) Consistent Training Transfer Problem (multi period)

Multi period training transfer problem

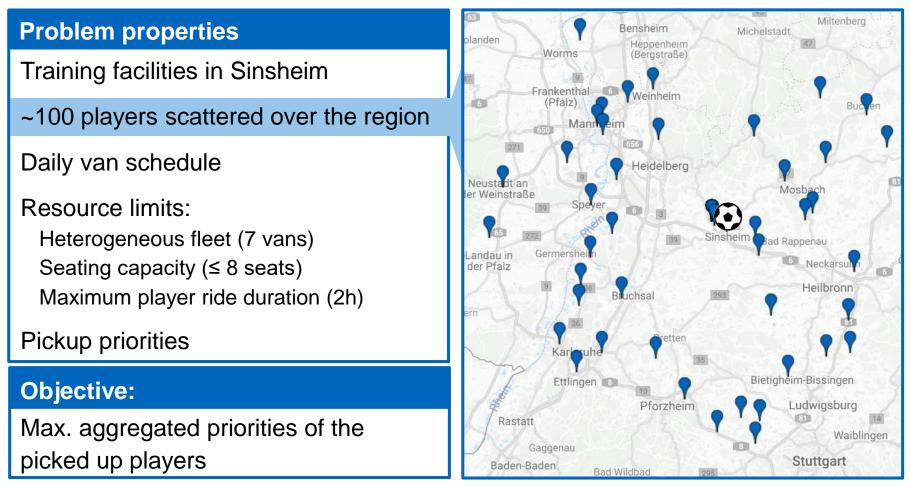
Tour consistency over the periods

Single Day vs. Consistent Planning

a) Single Day Training Transfer Problem


Which player should be picked up on a training day?

What are the corresponding tours?


b) Consistent Training Transfer Problem (multi period)

Multi period training transfer problem

Training facilities in Sinsheim

~100 players scattered over the region

Problem properties Miltenbera Bensheim Michelstadt landen Heppenheim Worms O(Bergstraße) Training facilities in Sinsheim Frankentha hheim Pfalz) ~100 players scattered over the region Man Daily van schedule Heidelberg Neustalt an ler Weinstraße **Resource limits:** Heterogeneous fleet (7 vans) Germershe Landau in Seating capacity (≤ 8 seats) der Pfalz Heilbron Maximum player ride duration (2h) ichsal Pickup priorities Bietigheim-Bissingen **Objective:** Ettlingen Pforzhe Ludwigsburg Max. aggregated priorities of the Rastatt Waiblingen Gaggenau picked up players Stuttgart Baden-Baden

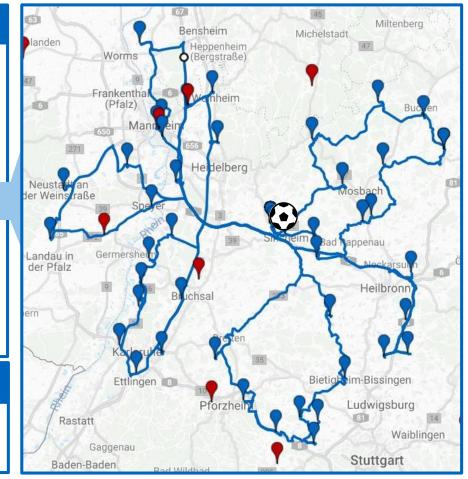
Solution to the single day transport problem

Problem properties

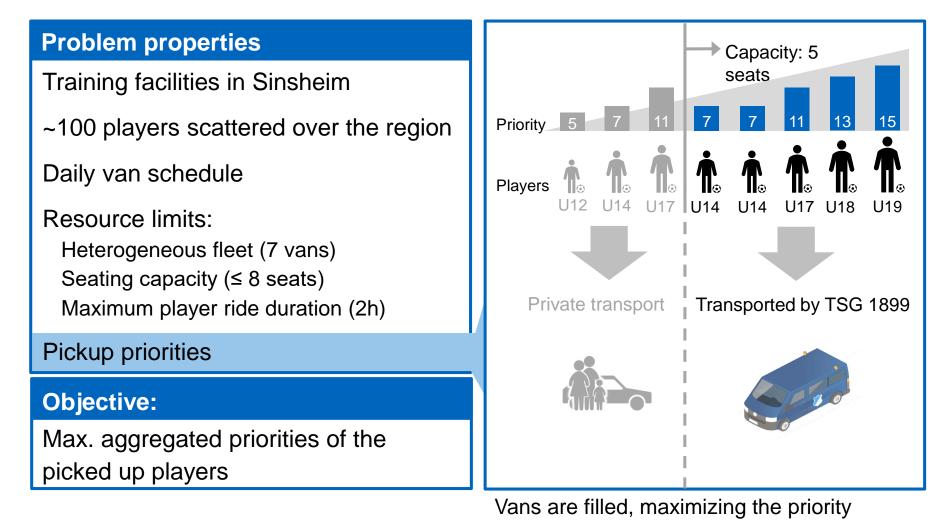
Training facilities in Sinsheim

~100 players scattered over the region

Daily van schedule


Resource limits:

Heterogeneous fleet (7 vans) Seating capacity (≤ 8 seats) Maximum player ride duration (2h)


Pickup priorities

Objective:

Max. aggregated priorities of the picked up players

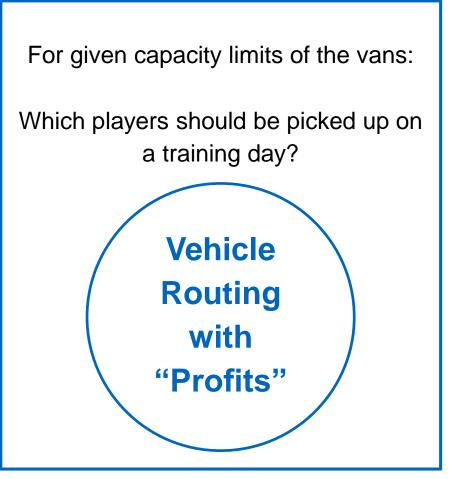
Unsatisfied requests due to resource limits

Problem properties

Training facilities in Sinsheim

~100 players scattered over the region

Daily van schedule


Resource limits:

Heterogeneous fleet (7 vans) Seating capacity (≤ 8 seats) Maximum player ride duration (2h)

Pickup priorities

Objective:

Max. aggregated priorities of the picked up players

Single Day Training Transfer Model (1/4)

Decision Variables

Each player corresponds to a node i in the directed graph G.


- $x_{i,j,k}$ binary variable equal to 1 if arc $(i,j) \in A$ is traversed by vehicle route $k \in K$, and 0 otherwise
- $y_{i,k}$ binary variable equal to 1 if vertex $i \in V$ is visited by vehicle route $k \in K$, and 0 otherwise

Parameters

- c_i priority of vertex i
- B_k seating capacity of vehicle k
- $t_{i,j}$ travel time between vertex *i* and *j*
- $T_{\rm max}$ maximum ride duration of a player
- α travel time weight

Single Day Training Transfer Model (2/4)

Objective:

Single Day Training Transfer Model (3/4)

Subject to:

$$\sum_{j\in\mathcal{V}} x_{i,j,k} = y_{i,k} \quad \forall i\in\mathcal{V}, k\in\mathcal{K},$$

$$\sum_{j\in\mathcal{V}} x_{j,i,k} = y_{i,k} \quad \forall i\in\mathcal{V}, k\in\mathcal{K},$$

$$\sum_{i\in\mathcal{V}\setminus\{0\}}y_{i,k}\leq B_k\quad\forall\,k\in\mathcal{K},$$

$$\sum_{k \in \mathcal{K}} y_{0,k} \le |K|,$$

Based on Toth & Vigo (2014)

- (2) Flow conservation (outgoing)
- (3) Flow conservation (incoming)
- (4) Vehicle seating capacity
- (5) Routes leaving the depot

Single Day Training Transfer Model (4/4)

$$\sum_{k \in \mathcal{K}} y_{i,k} \le 1 \quad \forall i \in \mathcal{V} \setminus \{0\},$$

$$\sum_{(i,j)\in\delta^+(\mathcal{S})} x_{i,j,k} \ge y_{h,k} \quad \forall \mathcal{S} \subseteq \mathcal{V} \setminus \{0\}, \\ h \in \mathcal{S}, k \in \mathcal{K},$$

 $\sum_{(i,j)\in\mathcal{A}:i\neq 0} t_{i,j} \cdot x_{i,j,k} \leq T_{\max} \quad \forall k \in \mathcal{K},$

 $x_{i,j,k} \in \{0,1\} \quad \forall (i,j) \in \mathcal{A}, k \in \mathcal{K},$

 $y_{i,k} \in \{0,1\} \quad \forall i \in \mathcal{V}, k \in \mathcal{K}.$

- (6) Pickup assignment
- (7) Subtour elimination
- (8) Maximum player travel time
- (9) Domain of x
- (10) Domain of y

Based on Toth & Vigo (2014)

Single Day vs. Consistent Planning

a) Single Day Training Transfer Problem

Which player should be picked up on a training day?

What are the corresponding routes?

b) Consistent Training Transfer Problem (multi period)

Multi period training transfer problem

Tour consistency over periods

Keeping tours consistent across periods

Necessity of consistency

Driver has learning effects

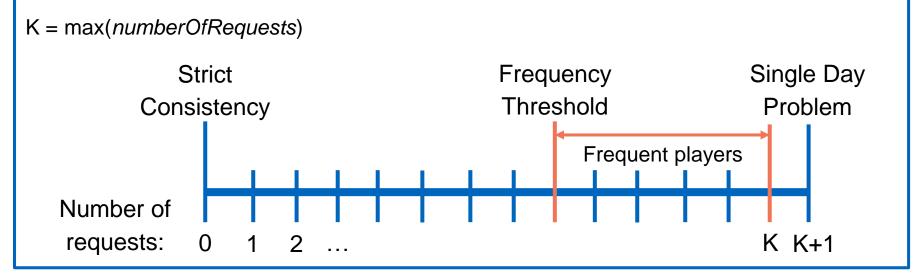
Driver satisfaction

Driver / player relationship

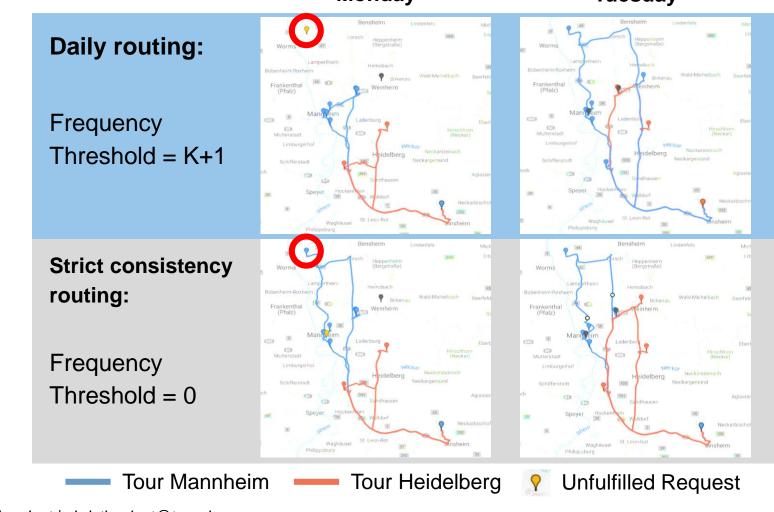
Definition of consistency

Consistency: <u>Frequent</u> players once included into a tour have to be included into the same tour on each day of the season on which they request a transfer.

Note: This is only one of many possible definitions!


Choosing the right level of consistency

The frequency threshold


Frequency: The number of pickup requests during the season

The more players are considered "frequent", the higher the tour similarity across training days.

Levels of consistency

Influence of Strict Consistency on the Pickup Decision Monday — Tuesday

Solving the Consistent Training Transfer Problem using a Master Template

Algorithm A: Greedy insertion to build the master template

- Generate a list of frequent players with: *numberOfRequests > frequencyThreshold*
- 1) Use greedy insertion to assign the frequent players to the master template routes based on minimum travel time increase.
- 2) Stop once all frequent players have been assigned to a route

Algorithm B: ALNS to solve the <u>daily</u> training transfer problem

- 1) Remove excess players from the template
- 2) Fix the pickup decision for the remaining frequent players
- 3) Add non-frequent players to the template using greedy insertion
- 4) Use the daily template as initial solution for the ALNS
- 5) Use the ALNS to solve the daily training transfer problem

Ongoing Research

Research questions

The current approach uses frequency as a proxy for consistency

How can we incorporate the pickup location as a proxy for consistency?

How well do these consistencies perform with respect to the pickup objective?