Fakultat fir Elektrotechnik und Informationstechnik
Technische Universitat Minchen

Memory Efficient Signature Matching in
Deep Packet Inspection Applications at Line Rates

Shiva Shankar Subramanian

Vollstéandiger Abdruck der von der Fakultét fiir Elektrotechnik und Informationstechnik
der Technischen Universitdt Miinchen zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr.-Ing. Georg Sigl

Priifende der Dissertation:
1. Prof. Dr. sc.techn. Andreas Herkersdorf
2. Prof. Dr.-Ing. Ulf Schlichtmann

Die Dissertation wurde am 19.12.2018 bei der Technischen Universitdt Miinchen
eingereicht und durch die Fakultat fiir Elektrotechnik und Informationstechnik am
19.08.2019 angenommen.

Abstract

Deep Packet Inspection (DPI) is the process of inspecting all the headers and the payload
in a network packet. Various content-aware networking applications such as intrusion
detection/prevention, load balancing, copyright enforcement and content aware Quality-
of-Service (QoS) drive the need for performing DPI in the next-generation networks.
Comparing the payload bytes against the signatures, which are defined through string
and regular expression patterns is the most time-critical function in DPI. So, it is essential
to accelerate the signature matching function to perform DPI at multi gigabit rates (~10
Gbps) in modern embedded network processors.

The signatures or patterns which are used for payload inspection are either represented
through the Non-Deterministic Finite Automaton (NFA) or the Deterministic Finite Au-
tomaton (DFA). The DFA is generally preferred to represent the signatures, especially
for high speed signature matching applications as it is highly processing efficient in com-
parison to the NFA. On the other hand, the DFA is highly storage inefficient due to the
presence of redundant state transitions and the exponential state blow-up corresponding
to certain signature sets. So, the DFA is generally compressed before being stored in the
memory, while the payload bytes are actually compared against the compressed DFA.

The transition compression algorithms play a significant role in defining the memory
footprint of the compressed DFA, as well as in mandating the rate at which the signa-
ture matching function can be performed. The state-of-the-art transition compression
algorithms either focus on effectively compressing the DFA [1, 2, 3] or focus on com-
pressing the DFA in such a way that the signature matching can be performed at multi
gigabit rates [4, 5], but not both. Addressing this shortcoming, two transition compres-
sion methods, the MSBT and the LSCT are proposed and evaluated in this dissertation
which can effectively compress the DFA as well as perform the signature matching func-
tion at about ~ 10 Gbps. The proposed methods efficiently compress the redundant
transitions through a combination of bitmaps and bitmasks. Additionally, the linearity
in the arrangement of state transitions in the DFA is further leveraged to compress the
redundant bitmasks in the compressed DFA. The MSBT and the LSCT are capable of
achieving transition compression rates of the order of over 98% primarily due to the
introduction of bitmasks, which is 4-5% higher than the state-of-the-art bitmap based
compression algorithms. The improvement in the transition compression rates and the
bitmask compression reduces the memory footprint of the compressed DFA by ~70% in
comparison to the state-of-the-art transition compression algorithms.

A bitmap based signature matching engine called BiSME is proposed and implemented
which performs the decompression corresponding to the MSBT. BiSME encompasses two
efficient storage architectures, the Packed Storage Methodology and the Shared Memory
Methodology to effectively store the compressed DFA in the on-chip memories in a con-

iii

Abstract

figurable manner without resulting in memory wastage. The Bitmask Optimized BiSME
(BOBIiSME) extends the BiSME architecture to support bitmask compression further
reducing the area requirements of BiSME. The BiSME and the BOBiSME were effec-
tively pipelined to perform the signature matching function at 9.3 Gbps and 10.6 Gbps,
respectively. The signature matching engines were designed and synthesized on the
TSMC 28nm technology node and are capable of storing a maximum of 1000 string sig-
natures. The BiSME and BoBiSME require 1.43 mm? and 1.2 mm? of silicon area and
only consume 155 mW and 170 mW of power, respectively making them area-efficient
and power-efficient hardware coprocessor architectures. The BiSME and the BOBiSME
architectures were prototyped on the cadence palladium platform and network traffic
traces of over 2 GBytes consisting of different traffic characteristics were injected to
validate the hardware implementation.

iv

Acknowledgments

This dissertation would not have been possible without the support and encouragement
from a number of people to whom I would like to express my gratitude from the bottom
of my heart.

First and foremost, I would like to thank Prof. Dr. sc. techn. Andreas Herkersdorf
for agreeing to be my doctoral advisor. The profound technical discussions which I had
with him greatly helped me to structurally formulate my research problems and propose
innovative solutions during my research work. His extensive experience in working with
industry based research programs enabled me to not only make quality contributions to
the academic community, but also to conceive effective solutions which could be easily
adopted by the industry. Additionally, I would like to thank him for accommodating me
as a visiting researcher in his institute, which also allowed me to experience the research
environment in TUM.

I would like to thank Dr. Pinxing Lin from Intel Technology Asia Pte. Ltd. for
accepting to be my industry supervisor for the research program. He has always been
the go-to person during all the challenging times and I would like to thank him for all
the great discussions which he has had with me over these times. His calm demeanor
always put me at ease and is a quality which I have always admired in him.

I would also like to thank Dr.-Ing. Thomas Wild for his technical insights during
various stages of my research work. I really enjoyed the discussions which I had with
him and I really appreciate his prompt and timely feedback over the course of the research
project.

I would like to express my gratitude to Mr. Mario Traeber for believing in me and
giving me an opportunity to be the first candidate for the pioneering Industry PhD
Program (IPP). I would like to thank Ms. Ko Kah Goh and Mario for the enormous
effort which they put in to define the organization of this program. I would also like to
thank Mr. Bing Tao Xu, for supporting my career aspirations and allowing me to proceed
with the IPP. My sincere thanks to Mr. Daniel Artusi for his continuous moral support
throughout the course of the IPP. Finally, I would like to thank Intel Technology Asia
Pte. Ltd., Singapore for funding this research program and providing me an opportunity
to work on such a great research topic.

I would like to acknowledge the technical contribution of certain members within Intel
without whose help this work would not have been possible. My thanks to Roshini
John who setup the software simulations on automata models which helped me to get a
deeper understanding on automata based signature matching. My thanks to Hariharan
for helping me to prepare the synthesis setup for the hardware implementation of the
signature matching engine which was developed in this research work. My thanks to
Anmol Prakash Surhonne, Nihar Sriram and Sagar Paramesh for their support in the

Acknowledgments

preparation of the evaluation setup to verify the hardware implementation. Additionally,
I would like to thank all my colleagues in Intel Technology Asia Pte. Ltd who have
helped me over the course of this program. My special thanks to Abishek Godaa for all
the thought provoking discussions which he has had with me. Many thanks to Jyothi,
Kavitha, Dharmesh, Seshagiri, Giridhar, Jincy, Rekha, Suresh Nagaraj, Suresh Kumar
for being great friends and colleagues at work. Many thanks to all my colleagues in
Institute for Integrated Systems in TUM who made my stay memorable in Munich.
Especially, my special thanks to Michael Vonbun for all his help during my stay in
Munich and during the course of the preparation of this dissertation. I would also like
to thank Mrs. Doris Zeller, Mrs. Draga Verena and Mrs. Gabriele Spohrle for all their
secretarial support during the course of the program.

Last but not least, I would like to thank my family for their unconditional love and
affection which gave me the strength to take up such a monumental journey. I would
also like to thank my wife Varsha Sharma for her love. Her support and encouragement
was in the end what made this dissertation possible. Knowing that these words are
wholly inadequate, I express my deepest thanks to them for bearing with me, for being
so constant and supportive, and for giving me their faith and trust. It is to them that I
dedicate this dissertation.

vi

Contents

Abstract

Acknowledgments

Contents

List of Figures

List of Tables

1

Introduction

1.1
1.2

1.3
1.4

State-of-the-Art

Motivation

Introduction to Deep Packet Inspection
1.2.1 Packet Inspection Methodologies - Overview . .
1.2.2 Steps in Deep Packet Inspection
1.2.3 Signature Matching - Requirements & Challenges

Thesis Contributions L oL o
Dissertation Organization

2.1 String Based Signature Matching Engines
2.2 Automata Based Approaches
2.2.1 Introduction to NFA & DFA
2.2.2 Automata Based Signature Matching - Complexity Analysis
DFA Compression oo
2.3.1 State Compression
2.3.1.1 State Explosion Problem
2.3.1.2 State Compression Solutions
2.3.2 Transition Compression
2.3.2.1 Software Oriented Algorithms
2.3.2.2 Hardware Oriented Algorithms
2.3.2.3 Alphabet Compression
2.3.3 Summary of DFA Compression
Line Rate Signature Matching Engine Implementations
2.4.1 FPGA - Logic Based Implementations
2.4.2 GPU Based Signature Matching Engines
2.4.3 Hardware Accelerators - ASIC
2.4.3.1 Automata Storage - TCAM

2.3

2.4

vii

xi

XV

13
13
15
15
18
18
19
19
21
23
23
26
32
34
34
35
36
36
37

vii

Contents

viii

2.4.3.2 Automata Storage- RAM 38
2.5 State-of-the-Art Summary 39

Bitmask: A Secondary Indexing Layer for Bitmap based Transition Com-

pression 43
3.1 Member State Bitmask Technique 44
3.1.1 MSBT - An Example, 44
3.1.2 Compressed DFA Organization 47
3.1.3 Decompression 48
3.1.3.1 Decompression - An Example, 49
3.1.3.2 Hardware Decompression Engine for MSBT - Logical

Block Level Description 50
314 Summary 51
3.2 Leader State Compression Technique 52
3.2.1 Leader Transition Bitmask 53
3.2.2 Compressed DFA Organization - LSCT 54
3.2.3 Decompression 54
3.2.3.1 Decompression - An Example 56

3.2.3.2 Hardware Decompression Engine for LSCT - Logical Block
Level Description, Y
3.2.4 Summary 58
3.3 Experimental Evaluation 58
3.3.1 Signature Sets 58
3.3.2 Transition Compression Rate (TCR) 59
3.3.3 Estimated Memory Usage 62
3.3.4 Functional Evaluation - Software Model 64
3.4 Conclusion L 65
Memory Footprint Optimizations - MSBT & LSCT 69
4.1 Motivation 69
4.2 Improved Transition Compression through State Grouping 70
421 Backgroundo Lo 70
4.2.2 Divide & Conquer State Grouping 72
4221 The Divide Step 73
4.2.2.2 State Reorganization, 74
4.2.2.3 The Conquer Step 75
4.2.2.4 Optimal Leader State Identification 78
4.2.3 Complexity Analysis Comparison 79
4.2.4 Experimental Evaluation 0., 80
4.2.4.1 State Grouping Results 80
4.2.4.2 Transition Compression Rate 81
4.2.4.3 Estimated Memory Usage 83
4.2.5 Discussion & Summary 84

Contents

4.3 Alphabet Compression
4.3.1 Combining Alphabet Compression with MSBT & LSCT
4.3.2 Experimental Evaluation

4.3.2.1 Transition Compression Rate
4.3.2.2 Estimated Memory Usage
4.3.3 Discussion & Summary

4.4 Bitmask Compression e
441 Background Lo Lo
4.4.2 Bitmask Optimized Member State Bitmask Technique

4.4.2.1 Bitmask Compression

4.4.2.2 Memory Organization

4.4.2.3 Transition Decompression

4.4.2.4 Hardware Engine for Decompression - Logical Block Level

Descriptiono oo

4.4.3 Experimental Evaluation
4.4.3.1 Estimated Memory Usage

4.4.3.2 Functional Evaluation - Software Model

4.4.4 Discussion & Summaryl

4.5 Conclusion

Hardware Coprocessors for Signature Matching
5.1 Overview Lo e
5.2 Bitmask Storage
5.2.1 Requirements Lo
5.2.2 Packed Storage Methodology
5.2.2.1 Split Memory Implementation
5.2.2.2 Bitmask Extraction 00000
5.2.3 Summary e e e e
5.3 Compressed Transition Storage
5.3.1 Requirements Lo
5.3.2 Shared Memory Methodology
5.3.2.1 Transition Memory Access,
5.3.3 Discussion & Summary oo
5.4 BIiSME - Internal Architecture
5.4.1 Memory Shell
5.4.2 Address Decoder & Memory Access Multiplexer
5.4.3 Decompression Engineo
5.4.4 BOBiSME - Modified BiSME to support Bitmask Compression .
5.4.5 Throughput
5.5 Deep Packet Inspection Accelerator
5.5.1 DPIA Interfaces
5.5.2 DPIA Internal Architecture
5.5.3 Network Data Management Engine
5.5.3.1 Configurable Stream Mapping

109
109
110
110
112
113
115
117
117
117
120
121
124
124
126
128
129

. 132

134
135
136
137
138
138

X

Contents

5.5.3.2 Postprocessing: Software-Hardware Interaction 139

5.5.4 Scalability 140

5.6 Experimental Evaluation & Discussion 141
5.6.1 Synthesis Results oo 141

5.6.2 Signature Capacity L o 144

5.6.2.1 BiSME 144

5.6.2.2 BOBIiSME 144

5.6.3 Hardware Implementation Validation 145

5.6.3.1 Traffic Generation 146

5.6.3.2 Internal Architecture of the Evaluation Setup 149

5.6.3.3 Results & Discussion 152

5.7 SUMMAryo e 159

6 Conclusion & QOutlook 161
Bibliography 165
A Trace Generation 175
B Accumulative Parallel Adder 177

List of Figures

1.1

1.2
1.3

2.1

2.2

2.3

2.4

2.5
2.6

2.7

2.8

2.9

A smart home which has many IoT devices connected to it. (Image down-
loaded from [6]).

An overview of various packet inspection methodologies
Overview of the various steps to be performed in deep packet inspection .

Classification of various signature matching engines proposed in the liter-
ature L e
A signature set with 2 signatures abc, def.*12 represented as (a) NFA
and (c) DFA. The states traversed during (b) NFA and (d) DFA based
signature matching.o
(a) state explosion scenario 1 (b) state explosion scenario 2 (c) state ex-
plosion scenario 3 L

(a) A DFA with state transitions for 5 states and 4 characters (b) The
compressed D?FA representation of the DFA (c) 6FA representation of
the DFA e

A signature a[b-d]ef represented as a DFA and through RCDFA
(a) A sequence of 8 Transitions within a state (b) The bitmap correspond-
ing to the state transitions to identify if a state transition is compressed
(c) Compressed state transition representation after bitmap based com-
pression stored in a unique transition list (d) Transition decompression -
Exampleo
Example to explain the FEACAN transition compression (a) An uncom-
pressed DFA with 8 states and state transitions for 8 characters for each
state (b) The compressed DFA after bitmap based intra-state transition
compression (¢) The DFA states grouped into subsets of states after intra-
state compression (d) The compressed DFA after inter-state transition
COMPTESSION . . v v v v vt e e e e e e e e e e e e e e
(a) An uncompressed DFA with 8 states and state transitions for 8 charac-
ters for each state (b) The compressed DFA after RCDFA (c) The bitmaps
across the vertical state axis (d) Unique bitmap after being combined

(a) Bitmaps corresponding to character ‘d’ and ‘f” combined (b) Addi-
tional transitions stored corresponding to the unique transition list for
character ‘£o

2.10 Transition Compression through Alphabet Compression in a DFA

30

xi

List of Figures

xii

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9
3.10

3.11

4.1

4.2

4.3

4.4
4.5
4.6

4.7

(a) Original DFA before compression (b) The DFA after bitmap based
intra-state transition compression (c¢) The DFA states grouped into sub-
set of states (d) Encoded state representation of the DFA states (e) The
DFA after inter-state transition compression (f) The MTB and the cu-
mulative sum of transitions after inter-state compression (g) Compressed
DFA generated after FEACAN 45
The compressed transitions stored in the Leader and Member Transitions
Tables while the control information is stored in Address Mapping Table

and Member Bitmask Table 48
Representation of the compressed DFA with respect to MSBT decompres-
slon system oL L 50
Functional description of the hardware based decompression architecture
for MSBT e 51
(a) Compressed DFA after the MSBT (b) Compressed DFA after LSCT
(c) The LTB & the MTB for each state 52
The compressed DFA organized into the AMT, BT and the TT after
LSCT transition compression 55
Representation of the compressed DFA with respect to the LSCT decom-
pression system Lo Lo 56
Logical block level description of the hardware based decompression en-
gine for the LSCT 57
Comparison of transition compression rate across various techniques . . . 60

Comparison of transition and control memory usage across various tech-
NIQUES . .« . e e e e 63
Overview of the software based simulation environment to verify the tran-
sition compression Lo oo e e e e 64

(a) An uncompressed DFA with 8 states and 8 charcaters (b) DFA af-
ter Intra-state transition compression step in MSBT (¢) The DFA split
into 3 groups after the state clustering step (d) DFA after Inter-state
transition compression step in MSBT (e) State 7 merged with G1 as it
shares the same bitmap defying the constraint with transition threshold
(f) More transitions compressed when Inter-state transition compression

is performed after merging Gland G2 71
Example of DFA states clustered into a set of 5 groups using the divide
SteD . . 74
Example of state reorganization step performed on the states after the
divide stepo 76
State 9 merged with G2 as part of conquer step 7

States 5 and 8 swapped in G3 as part of optimal leader state identification 79
Percentage reduction in the Leader and Member transitions between FEA-

CAN and DC grouping in MSBT, T=80%, B=256 82
Estimated on-chip SRAM memory usage to store the compressed DFA . . 84

4.8

4.9
4.10
4.11

4.12
4.13

4.14

4.15

4.16

4.17
4.18

4.19

5.1
5.2
5.3

5.4
5.5

5.6
5.7
5.8

5.9
5.10

5.11

5.12

5.13

List of Figures

(a-c) MSBT transition compression in a DFA without Alphabet Com-
pression (d-f) MSBT transition compression in a DFA after Alphabet
Compression e e e e e 87

Example showing the LSCT implemented after Alphabet Compression . . 87
Estimated on-chip SRAM memory usage to store the compressed DFA . . 91
Example of redundant bitmasks generated during MSBT transition com-

PIeSSIONo e e e e e 93
Compressing the MTBs to reduce the storage requirements of bitmasks . 95
Organization of the compressed DFA between the control and the data
MEMOTIES . . . o v v i e e e e e 97
Compressed Transition fetch from the MTT when the unique_bitmask bit
for the member stateis 1 oL 98
Compressed Transition fetch from the MTT when the unique_bitmask bit
for the member stateis 0 100
Functional Description of the Hardware Accelerator to perform the Tran-
sition Decompression 102

The total number of MTBs generated before and after Bitmask Compression103

Comparison of estimated on-chip SRAM memory usage to store the com-
pressed DFA before and after bitmask compression 103

Comparison of the control memory usage between MSBT and BOMSBT . 104

Overview of the Deep Packet Inspection Accelerator 109
MTB width variation across signature sets and within a signature set . . 111
Example of how the bitmasks are stored using the “Packed Storage Method-
0logy” . .. 113
Packed Storage Methodology - split memory storage implementation . . . 114
Packed Storage Methodology - split memory implementation data reor-
ganization L L Lo e e 115
Extracting the bitmask from the data fetched from the memory 116
Hardware logic used to extract the bitmask from the memory 118
Shared memory architecture with state transitions flexibly stored in the
LTT, the MTT and the shared memories. 120
Overview of memory block allocation during compile time 122
Overview of the transition memory access using the shared memory method-
0lOgY 123
(a) Internal Architecture of the Signature Matching Engine (b) SRAM
interface descriptiono Lo 125

(a) DFA state encoding (b) Organization of the compressed transitions in
the memory (c) Table to store the MTB and the cumulative sum of tran-
sitions (d) Table to store the base addresses and other control information 127

Details of the byte stream interface and signature match output interface 129

xiii

List of Figures

Xiv

5.14 (a) DFA state encoding (b) Organization of the compressed transitions
in the memory (¢) Member Bitmask Table to store the MTB and the
cumulative sum of transitions (d) Table to store the base addresses and
other control information o000

5.15 (a) ALS & LTBFS split into multiple pipeline stages in BiSME (b) ALS
and LTBFS split into multiple pipeline stages in BOBiSME (c) Pipelined
operation of BiSME with context based byte interleaving

5.16 Block level description of the Deep Packet Inspection Accelerator

5.17 Functional description of the programmable rule based stream to context
MAaPPING .« « v v v v e e e e e e e e e e e e

5.18 The accepting states used as the hash index to identify the postprocessing
function associated with a signature match

5.19 (a) DPIA with multiple instances of signature matching engine (b) Sig-
nature count scalability (c) Signature matching throughput scalability . .

5.20 A pictorial representation of the evaluation setup used to verify the SME
hardware e

5.21 Functional overview of Traffic generation

5.22 Detailed block level internal architecture of the evaluation setup

5.23 Extraction of the payload bytes and injection into the signature matching
ENGINe

5.24 Signature Matching results on the exact_match signature set in BiSME
for 10 passes

5.25 Signature matching results after 2.3 GB of controlled traffic inspection on
the exact_match signatureset

5.26 Signature matching results after 2.3 GB of controlled traffic inspection on
the bro217 signature set Lo oo

5.27 Signature matching results after 1 GB of random traffic inspection on the
bro217 signature set oL oL

5.28 Signature matching results after 2.3 GB of controlled traffic inspection on
the exact_match signatureset

5.29 Signature matching results after 2.3 GB of controlled traffic inspection on
the bro217 signature set Lo L oo

5.30 Signature matching results after 1 GB of random traffic inspection on the
bro217 signature set L L

A.1 Example DFA to explain the trace generation mechanism

B.1 Example of the Accumulative Parallel Adder circuitry to perform the
population count function L.

List of Tables

2.1 Processing and storage complexity associated with NFA & DFA
2.2 Comparison of various platforms with respect to signature matching en-
gine implementation

3.1 Signature sets used for evaluation00
3.2 Signature characteristics after bitmap compression and state grouping . .
3.3 Comparison of the average number of transitions in the member state
after compression L
3.4 Average number of transitions fetched before fetching the compressed
state transition Lo
3.5 Parameters used for memory usage estimation
3.6 Comparison of signature matching results across the compression methods
across different Py valueso L

4.1 Algorithmic complexity of various algorithms proposed in DC
4.2 Comparison of the Number of Groups and the Average Members per
Group between FEACAN & DC, B=256
4.3 Comparison of transition compression rate achieved in MSBT with FEA-
CAN and DC state grouping, B=256
4.4 Comparison of transition compression achieved in LSCT with FEACAN
and DC state grouping, B=256
4.5 Comparison of transition compression achieved in MSBT & LSCT when
the maximum number of states in the groups, T=80%
4.6 Summary of the Signature set before and after alphabet compression . . .
4.7 Compressed Transitions Before and After Alphabet Compression
4.8 Comparison of signature matching results across the compression methods
across different Pyy values Lo

5.1 MTB address calculation example,
5.2 Example values used for the parameters to explain the Shared Memory
Methodology
5.3 Shared memory architecture - memory addressing
5.4 Synthesis Area Results L L
5.5 Comparison of BiSME against other Hardware Engines
5.6 Signature sets compiled into BiISMEo
5.7 Signature sets compiled into BOBiSME
5.8 Evaluation BOBiSME string signature capacity
5.9 Source and Destination MAC address combinations to identify a context .

XV

List of Tables

A.1 Sequence of characters generated with Py;=0.35

XVi

1 Introduction

1.1 Motivation

The evolution of the Internet of Things (IoT) and the possibility to connect numerous
electronic devices through a multitude of communication technologies is revolutionizing
the way in which we interact with these devices. The ability to remotely monitor and
manage these devices enable systems to make data driven decisions; further saving time
for people and businesses to improve the quality of our lives. According to a report
from Accenture [7], the evolution of the IoT devices is still in its nascent stages and
the total number of connected devices is expected to hit about 40 billion by 2024. The
growth in the number of IoT devices is spread across a multitude of environments such
as industrial automation, wearables, transportation, infrastructure applications, home
automation etc.

A wide range of IoT devices and applications are emerging for use in home, which
include connected devices such as personal computers, mobile phones, tablets, smart
televisions, gaming consoles, smart camera and many other smart appliances as shown
in Figure 1.1. Though these devices bring additional convenience to our lives, the net-
working capability in these devices present cybercriminals an opportunity to exploit
them [8]. Issues such as competitive cost, technical constraints and the time to market
pressure challenge the manufacturers to adequately design effective security features into
these devices. Distributed Denial-of-Service (DDoS) attacks such as mirai botnet [9] is
an example of the devastation that could be caused by cybercriminals who capitalize on
the always on networking connectivity in these devices. Additionally, the sheer growth in
the number of IoT devices kindles their interest to target these devices. The connected
devices in the home network, not only allow the attackers to execute complex attacks
from the compromised devices, but also allow them to access precious user data within
the devices and the other devices which are connected to the home network. Various
studies by researchers have found that home appliances such as smart refrigerators or
smart televisions are susceptible to be compromised [10, 11], and the biggest worry is
that the end users are completely caught unaware of it. Cisco’s annual security report
states that the patching rate for these IoT devices is minimal and in most cases, the
vulnerabilities are not even patched [12]. So, securing the IoT devices in the home net-
work is a major issue which has to be addressed before converting our home, really into
a Smart Home.

The Residential Gateway Router (RGR) is a centralized networking hub in the con-
nected home. The RGR has also been the networking node which is used to manage the
network communication between the network service provider and the devices connected
to the network. However, due to the explosion in the number of connected devices in the

1 Introduction

SMART HOUSE

Figure 1.1: A smart home which has many IoT devices connected to it. (Image downloaded
from [6]).

home network, the RGR now has to take the additional responsibility of securing and
managing the devices connected to it. So, it is essential to implement Content-Aware
Networking (CAN) services such as intrusion detection/prevention, load balancing, con-
tent aware Quality-of-Service (QoS), copyright enforcement etc. in the RGR, in addition
to enabling connectivity with the network service provider. In this way, the RGR be-
comes the central networking device in the home network through which the various
connected devices can be effectively secured and managed.

A Network Processor (NP) is the heart of the RGR, which is responsible to analyze the
network packets which are generated by the devices connected to the home network. The
data which is communicated in a network packet is generally classified into the header
and the payload. The payload consists of the actual application data which is exchanged
by the network devices, while the header information in a packet helps to identify the
next-hop device to which the packet is sent to. In order to perform the packet for-
warding function (switching/routing), the NP in the RGR generally inspects the packet
header across various layers specified as part of the Open Systems Interconnection (OSI)
specification [13]. However, in order to perform the content aware networking functions,
it is essential to inspect the complete network packet including the headers at various

1.2 Introduction to Deep Packet Inspection

layers and the content of the payload in a packet. So, it is essential to perform Deep
Packet Inspection (DPI) in the NP, the technology which allows to completely inspect
a network packet to enable content-aware networking in the next generation RGR.

A typical network processor which is used in the RGR consists of multiple wireline!
and wireless network interfaces? through which it can enable communication between
multiple connected devices. The incredible development in the wireline (2.5/5 Gbps
Ethernet [17]) and the wireless (802.11ax [18]) communication technologies which are
used in the home networking ecosystem are allowing devices to communicate at multigi-
gabit rates, even within the home network. Moreover, the deployment of services such as
fiber-to-the-home (FTTH) [19, 20], mandates the network processors used in the RGR to
perform packet processing at multi-gigabit rates with the network service provider [21].
As more applications begin to leverage the available bandwidth in the home network, it
is crucial to perform DPI at multi-gigabit rates to process packets in a content aware
manner.

The next section provides a short introduction to various packet inspection method-
ologies and further describes the challenges associated in performing DPI.

1.2 Introduction to Deep Packet Inspection

1.2.1 Packet Inspection Methodologies - Overview

Figure 1.2 shows the various layers® which are inspected as part of network packet
processing. Based on the depth of the layers until which a packet is inspected, the
packet inspection methodology is classified into the Shallow Packet Inspection (SPI),
Medium depth Packet Inspection (MPI) and the Deep Packet Inspection (DPI) [22].
The SPI and the MPI methodologies primarily inspect the packet header alone. The
difference between the two methodologies arises depending on the specific header layers
which are inspected in a packet. The packet headers corresponding to layers 2, 3 and
4 alone are inspected as part of the SPI, while the header information across all the
header layers are inspected as part of the MPI. Various rules are defined to inspect
specific portions of the headers in a packet, while the rules also consist of actions which
have to be applied after a rule match. It should be noted that the location of the
header fields which are inspected in a packet are known a priori, as the headers adhere
to standard network protocols. So, the processing associated with respect to the SPI

'The current generation network processors in an RGR consists of 4 Ethernet ports each of which is
capable of communicating at 10/100/1000 Mbps [14, 15, 16].

2Next-generation network processor architectures used for the RGR are enabled with multiple (typically
4) WiFi baseband processors which provide a consolidated wireless throughput of more than multiple
gigabits (~6 Gbps) per second [14, 15, 16].

3 According to the OSI model, the information in a network packet is primarily split into 7 layers;
physical layer, data link layer, network layer, transport layer, session layer, presentation layer and
the application layer. The physical layer forms the lowest level of abstraction while the application
layer is highest. The physical layer represents the medium in which the data is communicated. So
the header information is generally added for the other 6 layers and the packet inspection is also
performed corresponding to these 6 layers.

1 Introduction

Network Packet Payload Network Packet Header
1 1
¢ Y&, Session)
6. Presgnte.ltion 4, Transport 3. Network 2. Data Link
7. Application
L7 L5-L7 L4 L3 L2
L4+
L2 Header
L7 Payload Inspection Header L3 + L4 Header Inspection .
. Inspection
Inspection
\ v
I
Shallow Packet Inspection
A S
T
Medium Depth Packet Inspection
. A

Deep Packet Inspection

Figure 1.2: An overview of various packet inspection methodologies

and the MPI primarily involve searching for specific fields in the header whose location
is known.

As shown in Figure 1.2, in the case of the DPI, the packet payload is also inspected
in addition to the packet headers across various layers. So, the rules which are used for
packet inspection in DPI consist of two parts. The first part consists of specific fields
which have to match in the packet header. After the required fields in the packet headers
match, a signature is searched in the payload portion of the packet. The signatures which
are used for payload inspection are either composed of strings or regular expressions.
Unlike the header inspection in which the location of the inspected portion in the header
is known, the location of the signature which is being searched in the payload is unknown.
Moreover, the signature can start at any byte location within the sequence of payload
bytes and can even be split across the payload portions of multiple packets. So, all the
payload bytes across multiple packets have to be sequentially inspected to check if the
signatures are found within the payload byte sequence. Thus, the payload inspection is
a computationally challenging task in DPI in comparison to header inspection.

1.2.2 Steps in Deep Packet Inspection

The various functions which are performed as part of DPI can be broadly classified into
packet normalization, packet reordering, packet prefiltering, signature matching and the
postprocessing [23]. Figure 1.3 shows a logical ordering of these functions and a short
description of these functions is outlined below.

1.2 Introduction to Deep Packet Inspection

Malformed Packet
1 ‘
NORMALIZATION u |

h 4

STREAM BASED PACKET [1]
REORDERING

w
]
]
B

¥

PACKET PRE-FILTERING | Appl.

¥

SIGNATURE MATCHING

Sig B

HiSmEIR

;

¥

POSTPROCESSING

Figure 1.3: Overview of the various steps to be performed in deep packet inspection

e Normalization: Normalization [24] is the first step in DPI, in which various
sanity checks are performed on a network packet before performing the payload
inspection. Various researchers [24, 25] have identified that the network and the
transport layer headers can be synthetically configured to evade the signature
matching function. So, the main aim of normalization is to eliminate those mal-
formed packets and to ensure that only those packets which comply to the network
protocols are inspected.

e Packet Reordering: The packets which are processed by a network processor are
generated by different network devices and have to be initially split into network
packet streams before performing the payload inspection. Furthermore, the packets
corresponding to a stream should also be reordered to make sure that they are
inspected in the right sequence [26]. The normalization and the packet reordering
functions have to be performed on each and every individual packet.

e Packet Prefiltering: Since the main aim of DPI is to enable content aware
networking, the signatures are generally associated with a certain higher layer ap-
plication protocol, e.g., HI'TP, F'TP etc. So, the signature database is also divided
into subsets of signatures, where each of the subsets identify the signatures associ-
ated with a specific application protocol. The application protocol information is
extracted after inspecting the header in the transport layer or the application layer
headers. The extracted information can be used to compare the packet payloads
against a signature subset, instead of comparing the payload bytes against all the

1 Introduction

signatures. The process of comparing the packet payload against a signature sub-
set after inspecting the packet headers is called packet pre-filtering and has been
used by various DPI implementations [27, 28, 29]. The packet pre-filtering is a
one time step which is generally performed during the packet classification stages
where a new stream is categorized into a specific higher layer protocol.

e Signature Matching: The signature matching is the most important step in
DPI in which the payload bytes are compared against the signatures. In this step,
each and every byte in the payload is compared against the database of signatures.
Since there can be multiple signatures in a signature subset, it is essential to match
the payload bytes against all the signatures at once to perform the function in a
computationally effective manner. Moreover, since the application data is split
into multiple packet payloads, there are chances that a signature is split across
multiple network packets. So, it is essential to match signatures across multiple
network packets. To summarize, the signature matching is the most computation-
ally challenging task in DPI and is also the apt function for hardware acceleration
to perform DPI at multi gigabit line rates [30]. So, considering the fact that the
network traffic at such high rates have to be inspected by the network processors
in the RGR, hardware acceleration of signature matching becomes quintessential
to perform line rate signature matching within the home network [31].

e Postprocessing: Once a signature is successfully matched, the action correspond-
ing to a signature is performed on the packet or the stream in this step. The action
associated with a signature is generally described as part of its definition, while
the criticality of the postprocessing function varies depending on the individual
signatures.

To summarize, the signature matching function is the most time critical function
which enables the network processors to perform line rate signature matching. The next
section discusses the computational and storage challenges associated with the signature
matching function.

1.2.3 Signature Matching - Requirements & Challenges

The signatures which are used for DPI are either represented through strings or regular
expressions. Since the signatures cannot be directly processed by modern processor ar-
chitectures, they are either converted into the Deterministic Finite Automaton (DFA) or
the Non-deterministic Finite Automaton (NFA). Both these are machine readable state
machine representations which are functionally equivalent to the signature set. Since the
processing complexity of comparing a payload byte against the DFA is constant (O(1)),
it is the preferred form to represent the signatures, especially for high speed signature
matching applications [32]. On the contrary, the DFA is highly storage ineffective due
to the presence of redundant state transitions in it. Moreover, when the signatures are
described through regular expressions, the total number of states generated in the DFA
explodes exponentially and this problem is referred to as the state explosion problem [33].

1.2 Introduction to Deep Packet Inspection

So, the standard approach proposed by the academia is to compress and store the DFA
in the memory and eventually perform the signature matching against the compressed
DFA [34]. The state explosion problem during the DFA generation is addressed by
performing state compression, while the redundant transitions are compressed through
the transition compression algorithms. Since both these approaches address orthogonal
problems, the transition and the state compression algorithms are orthogonal to each
other [35].

The transition compression algorithms play an important role in defining the memory
footprint of the compressed DFA [1]. Achieving high transition compression rates reduces
the memory footprint of the compressed DFA. However, it is also important to make sure
that the algorithmic approach towards transition compression enables the decompression
to be performed in a dedicated hardware accelerator. This would enable the signature
matching function to be performed at line rates which in turn allows to perform DPI at
line rates.

The transition compression algorithms proposed in the literature either focus on ef-
ficiently compressing the DFA or focus on performing the decompression at line rates,
but not both. The transition compression algorithms [1, 32, 36, 3] which belong to the
former category achieve high transition compression rates typically of the order of over
95%. However, in these techniques, the redundant transitions are compressed at the cost
of increased memory bandwidth which doesn’t allow the decompression to be performed
through dedicated hardware accelerators [4]. On the other hand, the transition compres-
sion algorithms which belong to the latter [4, 5] focus on compressing the DFA through
the bitmaps. Compressing the redundant state transitions through the bitmap maintains
the constant processing complexity as that of the DFA, which allows the decompression
to be performed through dedicated accelerators. However, these algorithms require the
bitmap to be stored together with the compressed DFA to identify the location of the
compressed transition. So, in order to reduce the number of bitmaps stored together with
the compressed DFA, the bitmap based compression solutions proposed in the literature
compromise on the transition compression rates and only achieve ~90-95%. Considering
the strategic importance of transition compression, there is a requirement for a class of
transition compression algorithms which can effectively compress the DFA as well as en-
able hardware acceleration of the decompression function to perform signature matching
at line rates.

The signature matching throughput achieved by a hardware accelerator engine in
the case of DPI applications completely depends on the organization of the compressed
state transitions in the memory. As in the case of any computing system, the data access
latency plays a big role in deciding the throughput that is achieved in the case of signature
matching applications. The signature matching throughput achieved is the highest when
the compressed DFA is completely stored in the on-chip memories as the data can be
accessed at low latencies. However, if the compressed DFA is stored in a combination of
on-chip and off-chip memories, the throughput of the hardware accelerator completely
depends on the latency to fetch the data from the off-chip memories [37]. There is a
possibility to reduce the access latencies through the introduction of cache memories
as in the case of [37]. However, loading the specific portions of the compressed DFA

1 Introduction

into the cache memories can become highly volatile, as this completely depends on the
characteristics of the payload bytes being inspected. Thus, a great amount of effort will
be required to effectively design a caching algorithm to load the data into the cache
memories. So, if the DFA is compressed efficiently in such a way that it is completely
stored in the on-chip memories, the hardware accelerator can be effectively used to
perform the signature matching function at line rates.

Considering that the hardware accelerator will be part of the network processor used in
the RGR, the following requirements should be satisfied so that the architecture becomes
reusable across multiple generation of systems.

e Scalability: The signature matching engine should be scalable to support increas-
ing network bandwidth requirements and increasing signature counts. While there
is no specific data that is currently available regarding the specific signature counts
required for the RGR, the significant growth in the new malware [38] will require
to support signature counts of the order of few thousands. The signature matching
throughput to be supported by the engine also depends on the network bandwidth
and the application scenarios. Considering that multiple network interfaces are
available in the RGR which can support network bandwidth at multiple gigabits
per second, the signature matching throughput to be supported will cross the 10
Gbps barrier in the future for the RGR.

e Flexbility & Programmability: When the compressed DFA is completely
stored in the on-chip memories, it is essential to make sure that the data is ef-
fectively stored in the physical memories. Effective storage architectures should be
proposed to store the compressed DFA in a flexible way so that the on-chip mem-
ory space is effectively utilized. Additionally, the access to the physical memory
and sharing of physical memory space should be made programmable to intro-
duce a certain level of flexibility with respect to compressed DFA storage. In this
way, when the accelerator is integrated with a network processor, the processor
can configure the functionality of the accelerator depending on specific application
requirements.

1.3 Thesis Contributions

Addressing the challenges mentioned above, two transition compression methods are
proposed in this dissertation which can efficiently compress the DFA and also enable
the decompression to be performed in dedicated hardware accelerators. Following up on
the compression algorithms, a flexible, scalable, programmable hardware accelerator is
proposed which enables to perform the signature matching functions at ~10 Gbps. The
following are the key contributions of this dissertation:

e Transition Compression Through Bitmaps & Bitmasks: Though the bitmap
based transition compression methods proposed in the literature perform the sig-
nature matching through dedicated hardware accelerators, they compromise on

1.3 Thesis Contributions

the transition compression rates to reduce the number of bitmaps stored together
with the compressed DFA. Addressing this drawback, two bitmap based transi-
tion compression methods called the Member State Bitmask Technique (MSBT)
and the Leader State Compression Technique (LSCT) are proposed in this dis-
sertation. These methods achieve transition compression rates of about 97-98%,
a 4-5% improvement over the state-of-the-art solutions [39, 40]. The redundant
state transitions in the DFA are compressed through a combination of bitmaps
and bitmasks, a secondary layer of indexing introduced in these methods. Though
the bitmasks have to be stored together with the compressed transitions, the im-
provement in the transition compression rates reduces the memory footprint of
the compressed DFA by 50% in comparison to the state-of-the-art bitmap based
solutions. The compressed DFA generated after bitmap based transition compres-
sion mainly consists of the compressed transitions and the control data (bitmaps,
bitmasks etc.), which enable to locate the compressed transitions. The main idea
behind the proposed solutions is to add more control data in the form of bitmasks
to effectively index the redundant state transitions. Thus, even a small improve-
ment in the transition compression rate considerably reduces the overall memory
footprint of the compressed DFA.

Optimizing the Memory Footprint of the Compressed DFA after the
MSBT & the LSCT: Since, the compressed DFA is intended to be completely
stored in the on-chip memories after the MSBT and the LSCT, it is paramount
to make sure that the memory footprint of the compressed DFA is well optimized.
The following three methods are proposed to further improve the memory footprint
of the compressed DFA.

1. Divide & Conquer State Grouping Method: The state grouping is
one of the integral steps in the proposed methods in which the states are
grouped into subsets after which the redundant transitions are compressed.
So, a compression-aware Divide and Conguer (DC) state grouping method
is proposed for this step, through which the transition compression rates are
improved by a variable factor of 0.5-2%, thus reaching overall compression
rates of about 98-99% [41].

2. Bitmask Compression: As part of the MSBT and the LSCT, the bitmask
is generated for all the states in the DFA which enables to effectively compress
the redundant state transitions after bitmap based compression. However, a
majority of the bitmasks which are generated in this process are redundant
and are compressed through the bitmask compression process. Experimental
evaluation of the bitmask compression shows that about ~60-70% of the bit-
masks are redundant which are efficiently compressed through the proposed
method.

3. Combining Alphabet Compression with Bitmap Compression: Al-
phabet compression is a well known method which is used to compress those
indistinguishable characters in an alphabet, i.e, the ASCII character set in the

1 Introduction

case of DPI applications. The alphabet compression is proposed to be com-
bined together with the MSBT and the LSCT, as the bitmap alone cannot
compress certain redundant state transitions in the DFA.

All of the methods proposed above are orthogonal to each other and can be imple-
mented together to optimize the memory footprint of the compressed DFA together
with the MSBT and the LSCT. When compared with the state-of-the-art solutions,
the overall memory footprint of the compressed DFA reduces by 70%, an additional
improvement of 20%, when combined together with the MSBT and the LSCT.

e Hardware Coprocessor for Signature Matching: Utilizing the proposed
methods to compress the DFA, a Bitmap based Signature Matching Engine called
BiSME is proposed to perform the signature matching function in a dedicated accel-
erator to achieve line rate DPI [42]. BiSME is a programmable, flexible and scalable
coprocessor which stores the compressed DFA in on-chip memories after perform-
ing the MSBT. The compressed DFA is flexibly stored in the on-chip SRAMs
through various efficient storage architectures. The Shared Memory Methodology
efficiently stores the dynamically varying compressed transitions, whose count is
signature dependent, in the predefined on-chip memory boundaries. The Packed
Storage Methodology enables to store the unstructured bitmasks flexibly, without
wasting precious on-chip memory resources. The BiSME is effectively pipelined to
achieve a signature matching throughput of 9.3 Gbps. Furthermore, an extension
to BiSME called BOBiSME is proposed which implements the bitmask decom-
pression in the hardware and is capable of performing signature matching at 10.6
Gbps. The proposed signature matching engines were synthesized on a commercial
28nm technology library operating at 0.81V. The BiSME consumes 1.43 mm? of
silicon area and consumes 0.155W power while the BOBiSME consumes 1.18 mm?
of silicon area and consumes 0.167W power. A compiler was designed to convert
the signature sets into BISME and BOBiSME memory formats. The functionality
of the hardware implementation was thoroughly verified in the Cadence Palladium
platform by injecting over 2 GB of identical traffic to BiSME, BOBiSME and a
DFA based signature matching engine. The identical signature matching results
verified the functional correctness of the hardware implementation.

1.4 Dissertation Organization

The dissertation is organized as follows. Chapter 2 first provides a detailed overview
of the state-of-the-art signature matching engines and summarizes the advantages and
disadvantages of the various methods proposed in the literature.

Chapter 3 proposes and evaluates the MSBT and the LSCT in which the bitmasks
are introduced to significantly improve the transition compression rates in comparison
to existing bitmap based solutions.

10

1.4 Dissertation Organization

Chapter 4 proposes and evaluates three different methods, i.e, the Divide and Conquer
state grouping method, the alphabet compression and the bitmask compression which
focus on further reducing the memory footprint of the compressed DFA.

Chapter 5 first discusses the two flexible storage architectures through which the
compressed DFA can be efficiently stored in the on-chip memories and then the result-
ing hardware engines through which the transition decompression is performed after
compressing the DFA through the Member State Bitmask Technique. Furthermore,
this chapter discusses the key results with respect to the achievable signature matching
throughput and the further the functional evaluation of the proposed hardware acceler-
ators.

Chapter 6 finally concludes the dissertation and discusses the directions for some of
the future work.

11

2 State-of-the-Art

String and regular expression based signature matching is a problem which has been well
addressed by the research community [34]. The signatures which have been used for DPI
have greatly evolved over time. Initially, the signatures were primarily composed using
simple string patterns. However, due to the high false positive rate observed during
string based signature matching, Sommer et al., [43] proposed the usage of regular ex-
pressions to describe the signatures. Since the regular expressions offer better flexibility
in comparison to strings, most of the applications prefer to use the regular expressions
to define the signatures [44].

The signature matching engines have correspondingly evolved in relation to the evo-
lution in the signature representations. Based on the type of signatures which are pro-
cessed, the signature matching engines can primarily be classified into string based and
automata based signature matching engines as shown in Figure 2.1 [34]. The string based
signature matching engines are capable of processing string signatures alone, while the
automata based signature matching engines are capable of processing both string and
regular expression signatures. Due to this advantage, a majority of the research work
has primarily focused on automata based signature matching engines [34].

Existing research work on automata based signature matching engines primarily fo-
cuses on two aspects, i.e, automata compression and line-rate signature matching imple-
mentations [34, 23]. This chapter provides an overview of solutions which focus on both
of these aspects.

This chapter is organized as follows. Section 2.1 provides an overview of the various
string based signature matching engines proposed in the literature. Section 2.2 provides
an introduction to the theory of automata and the basics of automata based signature
matching. Section 2.3 provides an overview of the various DFA compression approaches
while Section 2.4 provides an overview of the state-of-the-art solutions which target
the problem of line rate signature matching. Finally, Section 2.5 provides an overall
summary of the state-of-the-art approaches with respect to automata based signature
matching.

2.1 String Based Signature Matching Engines

The very first signature matching engines which were proposed in the literature were
targeted to process string based signatures and are classified under the string based sig-
nature matching engines [34]. Initially, various classical string matching algorithms such
as Knuth Morris Pratt (KMP) [45], Aho-Corasick (AC) [46], Boyer-Moore (BM) [47],
etc., were used to match the payload bytes against the string signatures. Dharmapurikar
et al., [48] identified that these algorithms are primarily tuned towards software based

13

2 State-of-the-Art

SIGNATURE MATCHING

ENGINES
p / \
CLASSIFICATION BASED
ONSIGNATURE - STRING BASED AUTOMATA BASED
COMPOSITION
\
CLASSIFICATION BASED (/ \
ON HOW THE
AUTOMATA IS . LOGIC BASED MEMORY BASED
REPRESENTED L / / \
[/
CPU (SINGLE /
FPGA GPU ASIC
CLASSIFICATION BASED MULTI-CORE)
ONTHE i
IMPLEMENTATION
PLATFORM
TCAM RAM

Figure 2.1: Classification of various signature matching engines proposed in the literature

signature matching implementations and are not useful for line rate signature match-
ing. So, they proposed to use the bloom filters [49] for string based line rate signature
matching implementations. The bloom filter is a time and space efficient probabilistic
data structure that stores a database of strings compactly in a memory vector. How-
ever, the result of the querying process using the bloom filter primarily indicates if an
element (signature) is likely to be present in the bloom filter or not present, i.e., false
positives are possible as part of the querying process but false negatives will never occur.
So, a secondary source is required to confirm if the signatures were identified after the
querying process.

The usage of bloom filters for signature matching involves a filter programming step,
in which £ different hash functions are used to set k different bits in an m-bit vector.
For each of the signatures in the signature set, the hash functions generate a set of
indices at which the bits in the vector are set to 1. As part of signature matching, the
payload bytes are passed to the k different hash functions to generate indices at which
the memory vector is queried. If all the indices in the memory vector are set, a signature
is set to be identified within the payload byte stream. Since a single m-bit vector is
used to store multiple signatures, the identified index could have possibly been set by a
different signature other than the one that matched. So, a secondary analyzer is used to
verify the signature matching results. However, the most important property of this data
structure is that the computation time involved in performing the query is independent
of the number of strings stored in the vector.

The very first bloom filter based signature matching methodology was proposed in [48],
where multiple bloom filters in parallel were used to accelerate the string matching func-
tion. A hash based secondary analyzer was used to distinguish between a false-positive
and a true positive. On the other hand, Nourani et al. [30] proposed a bloom filter

14

2.2 Automata Based Approaches

based prefilter, to enable a first level filtering and a hash based hardware engine to per-
form signature matching at multi-gigabit rates. There were various other enhancements
which were proposed using the bloom filter based architectures for signature matching
following [48] and [30]. However, due to the emergence of regular expressions as the pre-
ferred mode to describe the signatures, the research community has primarily focused
on automata based signature matching engines which are capable of processing both
string and regular expression signatures [44, 34, 23, 50, 33]. The next section provides
an introduction to the theory behind the automata and further describes the basics of
automata based signature matching approaches.

2.2 Automata Based Approaches
2.2.1 Introduction to NFA & DFA

An automaton or a Finite State Machine (FSM) is a state machine which can under-
stand the language expressed by a set of signatures comprising both string and regular
expression signatures. To simplify, an automaton is an equivalent description of a sig-
nature set in the machine readable format. A finite automaton [51] is represented as a
5-tuple(@, 3, 6, qp, F') as shown below:

e (), is a finite set of states,

Y. is a finite set of characters called alphabet,

§: Q xX — @7, is the state transition function,

go € @, is the initial state,

e ['C (@, is the set of accepting states.

An automaton primarily consists of a finite set of nodes called the states, Q and labeled
directed edges between the states which are called the state transitions. The labels in
the directed edges correspond to either one or multiple characters in the alphabet, 3.
An automaton consists of a single initial state called the root state, qg from which the
state machine starts the signature matching function. The state transition function, §
takes a state and a character? as an input and generates a single or multiple next states
as the output. In an automaton, F is the subset of all the states in Q, which identify a
signature match and is referred to as the set of accepting states.

As part of the signature matching, the root state is first assigned as the current state.
Subsequently, each and every payload byte is input to the state transition function
which computes the next state transition corresponding to a current state and payload
byte combination. The computed next state is assigned as the current state and the

'In the case of the Non-Deterministic Finite Automaton, the state transition function generates a set
of next states P(Q) corresponding to a state-character combination, i.e, §: @ XX — P(Q)

2 As part of the dissertation, the terms character and payload byte are used interchangeably to represent
an individual payload byte in the network packets.

15

2 State-of-the-Art

subsequent character is input to the machine to compute the next state transition. This
process continues until all the payload bytes have been compared against the automaton.
At any point of time in this process, if the computed next state belongs to the accepting
states, then a signature is set to be detected by the automaton.

Since the 8-bit extended American Standard Code for Information Interchange (ASCII)?
character set is used for the internet communication, the signatures for DPI applications
are constructed using the ASCII character set. A signature set can either be represented
through the the Non-deterministic Finite Automaton (NFA) or the Deterministic Finite
Automaton (DFA). The primary difference between the representations is the output
of the state transition function, which also affects the total number of states in the
4. In the case of the NFA, the number of next states generated by the state
transition function is non-deterministic, i.e, the state transition function can either gen-
erate a single next state, multiple next states or even no next state. On the other hand,
in the case of the DFA, the state transition function always generates a single next state
resulting in a deterministic output. It should be noted that both the machines (NFA &
DFA) are equivalent representations of the language represented by a signature set.

machine

A signature set which consists of two different signatures, abc and def. *12 is further
used to explain the concepts behind the NFA & DFA representations. The former is a
string signature and is only matched if there is a sequence of an ‘a’, followed by a ‘b’
and a ‘c’ in the payload. On the other hand, the latter is a regular expression which
is only matched if there is a sequence of a ‘def’, followed by a ‘12’ with zero or more
characters in between ‘def” and ‘12’. Figure 2.2(a) and (c), respectively show the NFA
and the DFA representations corresponding to the signature set. The initial state in
both the automaton representations have been shown using a green circle, while the red
circles represent the accepting states.

Figure 2.2(b) and (d), respectively show the sequence of states traversed in the NFA
and the DFA when the byte sequence to be inspected is composed of ‘defabcl2’. It can
be seen that the byte sequence being inspected consists of both the signatures which are
part of the signature definitions. In the case of the NFA, due to the non-determinism
associated with the state transitions, multiple states are active at the same time during
the signature matching as seen in Figure 2.2(b). The states which are active during the
signature matching operation are called the ‘active set’ of states. So, the state transition
function corresponding to a character has to be executed for all of the states in the active
set. On the other hand, it can be seen from Figure 2.2(d) that only a single state is active
during DFA based signature matching. Irrespective of the automaton representations,
it can be seen from Figure 2.2 that the signatures matched by the sequence of bytes is
identical in both the NFA and the DFA, which further prove their functional equivalence.

Converting the signatures into an automaton consists of various steps. A variety of
algorithms [52, 53, 54] have been proposed in the literature to convert a signature into

3With respect to DPI applications, the extended ASCII character set is generally referred to as the
ASCII character set. So as part of the dissertation, the usage of ASCII character set refers to the 8
bit extended ASCII character set.

“In the rest of the dissertation, the term state-character combination will be used to refer the inputs
to the state transition function.

16

2.2 Automata Based Approaches

(b)

1

Other transitions,
States (6-11)

Other
transitions,
States (0-5)

O—db4—eb5—fb6—ahfl—bb10—cbll—lb7—h8

2

(d)

Figure 2.2: A signature set with 2 signatures abc, def.*12 represented as (a) NFA and (c) DFA.
The states traversed during (b) NFA and (d) DFA based signature matching,.

the NFA, which is the first step in converting the signatures into an automaton. After
converting the signatures into the NFA, the subset construction algorithm [52] is used
to convert the NFA into the DFA. As part of the subset construction algorithm, all the
unique active set combinations seen in the NFA are converted to unique DFA states. In
theoretical worst-case scenarios, if there are ‘N’ states in the NFA, the equivalent DFA
could consist of a maximum of 2V states. However, this exponential state blow-up called
the state explosion, only results when the regular expressions in the signatures consist of
constrained and unconstrained repetitions of wildcards or large character ranges [33, 50,
44]. Once the DFA is generated from the signature set, the state minimization algorithm
[55] is used to generate the most compact DFA equivalent to the signature set.

17

2 State-of-the-Art

2.2.2 Automata Based Signature Matching - Complexity Analysis

Table 2.1 shows a comparison of the processing complexity and the storage cost incurred
to store the NFA and the DFA. Since, the state transition function in the DFA results
in a single next state, the processing complexity associated in comparing an individual
payload byte is always constant. On the other hand, since the state transition function
has to be executed across multiple states in the active set, the worst case processing
complexity in comparing a payload byte in the case of the NFA is exponentially related
to the number of states®. However, with respect to automata storage, in worst case
scenarios, the amount of memory required to store the DFA exponentially grows with
respect to the number of states while it is linear in the case of the NFA. To summarize,
the DFA is processing efficient and is storage inefficient while the NFA is processing
inefficient and is storage efficient.

Table 2.1: Processing and storage complexity associated with NFA & DFA

Processing complexity / payload byte | Storage cost
NFA O(N?) O(N)
DFA O(1) o(2N)

Due to the constant processing complexity associated to process a payload byte, the
DFA is generally preferred for high speed signature matching applications [32]. Though,
the constant processing complexity in the DFA enables to achieve signature matching
at high rates, the storage problem has to be addressed for efficient signature matching
implementations [1]. Addressing the storage problem in the DFA, the research commu-
nity has primarily focused on compressing the DFA before it is stored in the memory
[23, 34]. The next section provides a detailed overview of the various DFA compression
algorithms discussed in the literature.

2.3 DFA Compression

Since the DFA is a deterministic state machine representation, it stores a single state
transition for each of the characters in the alphabet, 3 for every state. Consequently,
the total number of state transitions which are stored in the DFA| linearly depends on
the total number of states generated as well as the total number of characters in the
alphabet. Assuming that the DFA consists of ‘S’ states®, the total number of state
transitions (DFA_Trans) that have to be stored in the memory is represented by (2.1).

DFA Trans =S x ¥ (2.1)

5The number of states here represents the total number of states generated in the NFA when a signature
set is converted into the automata.

5Tts a convention in the filed of automata theory to represent a DFA with ’S’ states corresponding to
an NFA with "N’ states.

18

2.3 DFA Compression

The DFA compression methods proposed in the literature can be broadly classified
into the state compression and the transition compression approaches [34]. The state
compression algorithms primarily focus on reducing the number of states in the DFA,
while the transition compression algorithms focus on compressing the redundant state
transitions in the DFA. A detailed description of both the approaches are described
below.

2.3.1 State Compression
2.3.1.1 State Explosion Problem

Under certain circumstances, the conversion of an NFA into the DFA can potentially
result in an exponential explosion in the number of states created in the DFA. This is
called the state explosion problem [50] and is typically addressed by the state compres-
sion algorithms. The exponential explosion of states primarily occurs when the regular
expressions consist of constrained or unconstrained repetitions either over the wildcard
character (.) or over character ranges. Various analyses [50, 33] have identified that the
state explosion problem can be narrowed down to the following 3 scenarios” as described
below:

e Scenario 1: Length Restriction on an Anchored Regular Expression
State explosion occurs when the signature contains the regular expression of the
following format: ~A+[A-Z]{k}B. This specific regular expression pattern can be
broken down into 3 parts. The first part is the prefix (A+), the middle part is the
portion with the length restriction on the character range or the wildcard ([A-Z]k)
and the final part is the suffix (B). The state explosion in this case occurs due to the
overlap in the character(s) seen in the prefix portion with the character range seen
in the middle portion. In this scenario, the generated DFA consists of states which
record all possible combinations in the overlap occurrence in order to maintain
functional correctness to the original signature representation. In addition to the
states generated as part of the prefix and the suffix, O(k?) states are further
generated to track the overlap occurrence. For example, Figure 2.3(a) shows this
scenario where the DFA corresponding to the signature "A +["\n]{3}B consists of
9 states (states 1-10) to keep track of all possible combinations which potentially
lead to a signature match. It should be noted that an anchored regular expression
(expressions which have " as the first symbol) is matched in the payload bytes, if
and only if the pattern exactly matches from the first byte within the payload byte
sequence.

e Scenario 2: Length Restriction on an Un-anchored Regular Expression
The second scenario is very similar to the first, but results in a case where the
regular expression does not have the anchor symbol, i.e., the regular expression is of
the format, .*A[A-Z]{k}B. In this scenario, the state explosion also occurs because
of the overlap between the characters in the prefix and the ones in the character

"The examples associated to the 3 scenarios have been used from [34]

19

2 State-of-the-Art

States created in the DFA
because of state explosion

Figure 2.3: (a) state explosion scenario 1 (b) state explosion scenario 2 (c) state explosion

20

scenario 3

class in the middle portion. Since, this is not an anchored regular expression, there
is no restriction with respect to the occurrence of the signature within the sequence
of payload bytes. For example, an ‘A’ seen anywhere in the sequence of bytes would
potentially lead the DFA to search for the signature, irrespective of whether the
previous few bytes resulted in a partial signature match. In this scenario, O(2¥)
additional states are required to keep track of all possible combinations leading
towards a potential signature match. Figure 2.3(b) shows an example of this
scenario, where a DFA is shown corresponding to the regular expression .*A.{2}B.

Scenario 3: Regular Expression Combinations Unlike the previous scenar-
ios where the state explosion resulted because of the specific characteristics of the
individual signature, this scenario occurs due to the interaction of multiple regu-
lar expressions with wildcard terms in it. Two regular expressions of the format
RE1=subl.*sub2 and RE2=sub3.*sub4 are used to show the state explosion in this
scenario, where each subi could refer to a sequence of characters. The states corre-
sponding to the sub-expressions are duplicated as shown in Figure 2.3(c) resulting
in state explosion. This scenario occurs as the unrestricted wildcard character in

2.3 DFA Compression

a signature could potentially match the sub expressions of other signatures. So,
the resulting DFA should be able to keep track of the following scenarios:

1. After matching a sub-expression within a regular expression (e.g. subl in RE1
/ sub3 in RE2), the second sub-expression should be tracked for a possible
signature match (e.g. sub2 in RE1/sub4 in RE2).

2. After matching the first sub-expression in a certain regular expression (e.g.
subl in RE1 / sub3 in RE2), the sub-expressions which lead to a different
signature should be tracked simultaneously (e.g. sub3 in RE2 / subl in RE1).

Thus when multiple regular expressions with unrestricted wildcard character repe-
titions are converted into a single DFA, the number of states in the resulting DFA
grows rapidly.

2.3.1.2 State Compression Solutions

Various solutions have been proposed in the literature targeting the state explosion prob-
lem. Based on the algorithmic approach used to solve the state explosion problem, the
solutions can be classified into rule grouping, semi-deterministic FAs and the decomposed
FAs [34]. A brief overview of each of the approaches is described below:

e Rule Grouping: Since the state explosion primarily happens when multiple sig-
natures are combined together to create a single DFA, one of the ways to avoid
this problem is to create multiple DFAs corresponding to a signature set. Solutions
such as [33, 56] have proposed rule grouping algorithms to split the signatures into
‘m’ subsets, so that a single DFA is created for each of the subsets. Since the pay-
load bytes corresponding to the network streams have to be compared against the
original signature set, they have to be matched against each of the ‘m’ individual
DFAs. So, the cost paid for the rule grouping is the increase in the processing com-
plexity, i.e., O(m), to process each of the individual payload bytes. For example,
the solution proposed in [56], which is the state-of-the-art rule grouping algorithm
generates 7 DFAs corresponding to a signature set consisting of only 107 regu-
lar expressions. When the signature set is directly converted into a single DFA,
it consists of more than a million states. After rule grouping, the 7 DFAs only
consist of a total of 15k states. However, with an increase in the number of sig-
natures to be supported, the total number of groups to which the signatures have
to be split also increases, which linearly reduces the achievable signature matching
throughput. One of the methods which has been discussed in the literature is the
usage of multicore processors to perform the signature matching function against
multiple DFAs in parallel to hide the linear reduction in the signature matching
throughput. However, the number of DFAs to which the signatures are split com-
pletely depends on the characteristics of the signature set. So, the scalability of
this approach to support increasing number of signatures is a major concern with
this approach [34].

21

2 State-of-the-Art

e Semi-deterministic FA: Solutions such as the Hybrid Finite Automata (HFA)

[50], the Tunable Finite Automata (TFA) [57], the DFA with extended character
set (DFA-eC) [58], etc., fall into this category and are semi-deterministic automata
representations. In the case of the HFA, a certain portion of the automaton is
deterministic while the signature structures which lead to state explosion are made
non-deterministic. So, the number of states in the active set during signature
matching varies depending on whether the deterministic or the non-deterministic
portion of the HFA is traversed. On the other hand, solutions such as [57, 58]
propose to have a fixed number states which are always active during signature
matching. In the case of the TFA, the number of states which are active is greater
than ‘1’ and is predefined to a fixed value which is configurable (i.e., 2/3/4), while
in the case of DFA-eC, it is always set to 2. With respect to state compression, more
than 90% of the states on average are compressed by all of these methods while
the individual number of states compressed vary depending on the characteristics
of the specific signature sets. Since there is no standard signature set which is
used for evaluation purposes, evaluating the state compression results across the
techniques discussed above is not straight foward. In general, the cost paid for the
state compression in these solutions is the increase in the memory bandwidth due to
the semi-deterministic nature of the generated automata. In the case of the HFA,
the memory bandwidth varies dynamically depending on the specific portion of the
automata that is being traversed. In worst case scenarios, the memory bandwidth
required in the case of the HFA is equivalent to that of the NFA. In the case of
the DFA-eC, the memory bandwidth doubles which also reflects through the 50%
reduction in signature matching performance in comparison to that of the DFA.

Decomposed FA: Decomposed FAs are a collection of solutions in which certain
additional control information is augmented to the state transitions to combat the
state explosion. Solutions such as the eXtended Finite Automata (XFA)[44], the
Jump Finite Automata (JFA)[35], etc., belong to this category. For example, if
the regular expression is of the format ab.*cd, a set bit is used to indicate that the
sub expression ab has been matched in the state transition. The state transition
leading to the state after matching ‘c’ is only transitioned to, after checking the
status of the set bit. In this way, the state explosion resulting from the combination
of regular expressions with unrestricted wildcard characters is easily combated.
The additional information which is augmented into the state transitions varies
depending on the characteristics of the signature set. On the other hand, Bechhi
et al. [59] proposed the usage of multiple counters to keep track of the characters
seen in the length restricted regular expressions®, to evade the state explosion in
the DFA. So, the decomposed FAs introduce additional control information along
with the state transitions, to solve the state explosion problem. Unlike the semi-
deterministic FAs, the memory bandwidth associated with the state transition
fetch in the case of the decomposed FAs is the same as that of the DFA. However,
the additional processing which is introduced as part of the execution of the state

8Explained as part of scenario 1 and scenario 2 in the previous section.

22

2.3 DFA Compression

transition function depends on the information augmented in the state transition
[34].

After performing the state compression, the total number of states in the DFA reduces
from S to S’ (S’ < S). However, each of the states in the state compressed DFA stores
the state transitions for all the characters in the alphabet 3. So, even after performing
the state compression, a major portion of the state transitions are redundant and have
to be compressed through the transition compression algorithms. So, performing the
transition compression is mandatory in the case of the DFA irrespective of whether the
state compression is performed or not.

2.3.2 Transition Compression

Though there are 256 state transitions for each of the states in the DFA, a majority of
these state transitions are redundant and leads the machine towards the root state or
one of states closer to the root state [1]. The process of compressing these redundant
state transitions in the DFA is called as transition compression. As discussed previously,
transition compression can either be performed on the DFA or a state compressed DFA.
Various transition compression algorithms have been proposed in the literature and they
can be broadly classified into the hardware oriented and software oriented algorithms [39].
This section also discusses the alphabet compression mechanism which compresses the
redundant transitions by compressing the indistinguishable characters in the alphabet.
A short overview of all these algorithms is described further.

2.3.2.1 Software Oriented Algorithms

The concept of transition equivalence between multiple states was first used by Kumar
et al. [1] to compress the redundant state transitions in the DFA. The compressed DFA
representation was called the Delayed-input DFA (D2FA). Figure 2.4(a) shows an un-
compressed DFA with 5 states and the state transitions corresponding to 4 characters
(X = {a,b,c,d}), while Figure 2.4(b) shows the compressed D?FA corresponding to the
DFA. As part of the transition compression, the state transitions between the states are
compared and compressed if they are identical. After compression, the compressed state
transitions in the states are classified into the default and the labeled state transitions.
For example, with respect to states 0 and 2 in Figure 2.4(a), the state transitions cor-
responding to characters a, b and d in state 2 are compressed as they are identical to
those in state 0. On the other hand, the state transition corresponding to character ‘c’ in
state 2 is not compressed, since it is different from the state transition corresponding to
character ‘c’ in state 0. So, the state transition corresponding to character ‘c’ in state 2
is added to the labeled transitions. Moreover, a new transition called a default transition
is introduced in state ‘2’ which is directed towards state ‘0’. This implies that the state
transitions corresponding to the characters whose transitions were compressed, i.e., the
characters a, b and d should be fetched from state 0. As part of signature matching, in
order to fetch a state transition corresponding to a state-character combination, the la-
beled transitions are searched first. If the state transition is not found among the labeled

23

2 State-of-the-Art

DFA D*FA SFA

alb|c|d default Labeled alb|c|d al|b c| d
0|1 2 0| 3 0 - 1 2 0|3 0 1 2 0 3 1 2 0|3
1 1 2 0|3 1 0 1 0 R
21112 (4]3 2 0 a4 2 a4 Local Transition

Set

3 1 2 0 3 3 0 3 0
4 1 2 0 3 4 0 4 0

(a) (b) (c)

Figure 2.4: (a) A DFA with state transitions for 5 states and 4 characters (b) The compressed
D2FA representation of the DFA (c) §FA representation of the DFA

transitions, the search is further directed to the state pointed by the default transition,
which introduces an additional table lookup. However, it should be noted that the
default transition doesn’t consume an additional character, but introduces additional
memory fetches as part of signature matching.

The D?FA employs the Kruskal’s algorithm [60] to identify the states which have
the maximum number of identical transitions between the states. Though the D?FA
representation can achieve transition compression rates of the order of 95%, the associ-
ated default transition paths can be long. In turn, the signature matching throughput
achieved through D?FA completely depends on the traffic characteristics which deter-
mines the number default and labeled transitions that are traversed.

Addressing the limitation associated with the default transition chains, Becchi et. al.
[32, 2] introduced an improved version of the D?FA in which the default transitions were
directed to states which were of lower depth in comparison to the state of interest. The
depth of the state was defined as the number of hops taken from the initial state to
the specific state of interest. The choice of assigning the default transition in this way,
arises from the observation that most of the state transitions in a state either lead to
the initial state (root state) or one of its neighboring states, which reduced the length of
the default transition paths. However, the reduction in the default path also resulted in
a reduced transition compression in certain cases. On average, transition compression
rate of about 90% was achieved by the improved D?FA proposal.

Ficara et al. proposed the dFA [3], which is also a compressed representation of the
DFA. In 6FA, if a state ‘s’ has a state transition directed towards another state ‘t’, then
‘s’ was defined as the parent state of ‘t’. In this way, the identical state transitions
between a state and its parent state were compressed. Additionally, a local transition
set is maintained in the cache memories from which the compressed state transitions
are fetched during signature matching to minimize the memory bandwidth. The local
transition set is first prefilled with the state transitions from the initial state. As the
payload bytes are inspected, the local transition set is periodically updated from the state
transitions in the 0FA representation, which is stored in the main memory. Figure 2.4(c)

24

2.3 DFA Compression

shows the 0FA corresponding to the DFA shown in Figure 2.4(a). The authors in [3]
argue that the memory bandwidth required to fetch the state transition is constant in
the case of the dFA, due to the usage of the local transition set. However, the additional
memory bandwidth which is required to periodically update the local transition set is
not considered by the authors which varies depending on the sequence of the payload
bytes being inspected. On average, the JFA method only achieves transition compression
rates of the order of 90%.

Finally, Antonello et al. proposed the Ranged Compressed DFA (RCDFA) [36] in
which the state transitions are represented corresponding to the character ranges. Fig-
ure 2.5(a) shows the DFA corresponding to the signature alb-d]ef, while Figure 2.5(b)
and (c), respectively show the state transition table and the RCDFA representation
corresponding to the DFA. The RCDFA leverages the fact that a majority of the state
transitions in a state are always directed to the same next state. This property is ex-
ploited to store the state transitions for a group of characters, instead of storing the state
transitions for individual characters as in the case of the DFA. In this way, a majority of
the state transitions are compressed. Experimental evaluation of the RCDFA resulted
in transition compression rates of the order of 97%. As in the case of other compression
algorithms [1, 32], the state transition corresponding to a state character combination
has to be sequentially searched in each of the states in the RCDFA. So, even in this
method, the memory bandwidth required to search the state transitions in a sequential
fashion is the cost paid for transition compression.

The signature matching throughput that is achieved by the methods described above
was compared by Antonello et al. in [36]. The signature matching engines were imple-
mented as software programs and the evaluation was performed on an Intel core i7-2600
[61] running at 3.4 GHz with 8GB of memory. The signature matching throughput
achieved when the payload is compared against the uncompressed DFA representation
is used as the benchmark for comparison purposes. The average signature matching
throughput achieved by the DFA (uncompressed) based signature matching engine was
~400 Mbps. On the other hand, the average signature matching throughput achieved
through the D?FA and the RCDFA implementations were of the order of 10 Mbps and

DFA RCDFA
\ alb|lc|d]|e f
e (14)3 o|l1|/o|ofo|o]o 0 |(a,1)]| (bf,0)
1|1]2]2|2]0]0 1 | (a1) | (bd,2) |(e,2)
2(1|lo0]ofo|3]o0 2 | (31) | (b-d,0) | (e,3) | (£,0)
3|/1|/o0|o|o|o]a 3 | (1) | (b-e0) | (£0)
a|/1|o|lo|ofofo 4 | (a1) | (b, 0)
(a) (b) (c)

Figure 2.5: A signature a[b-d]ef represented as a DFA and through RCDFA

25

2 State-of-the-Art

200 Mbps, respectively. It was pointed out in the evaluation that the reduction in the sig-
nature matching throughput is due to the fact that multiple additional state transitions
have to be sequentially fetched from the memory in order to identify the compressed
state transition corresponding to a state character combination. The 0FA based signa-
ture matching engine was not considered for the evaluation in [36], as a previous study
[62] had identified that the JFA based signature matching engine resulted in 100 times
lower throughput in comparison to the DFA.

To summarize, the various approaches [1, 32, 3, 36] described in this section are ca-
pable of achieving transition compression rates of the order of 90~95%. However, the
cost paid for the transition compression is the additional memory bandwidth to fetch the
compressed state transition from the memory. Moreover, a study in [4] identified that the
algorithms such as [1, 32] cannot be directly used in hardware implementations, since it
would require multiple Tbps of memory bandwidth to perform signature matching even
at 10 Gbps, when the transitions are compressed using the [1, 32]. They also mention
that it would not be feasible to design systems supporting such high memory band-
width. Alternately, the next section describes the bitmap based transition compression
algorithms which can be used for line rate signature matching implementations.

2.3.2.2 Hardware Oriented Algorithms

In comparison to the implementations discussed in the previous sections, the algorithms
discussed in this section primarily allow the signature matching to be performed in a
dedicated hardware accelerator. The algorithms which are discussed in this section use
the bitmap to compress the redundant state transitions in the DFA. A short introduction
to the bitmap is provided first, followed by a detailed description of the various bitmap
based transition compression algorithms.

A Bitmap is a simple, but an efficient method to compress the redundant state tran-
sitions in the DFA. The bitmap primarily compresses those identical state transitions
which are adjacent to each other within a state. If the state transition corresponding to
a character is compressed, a ‘0’ is stored corresponding to the character position in the
bitmap, while a ‘1’ is stored if not.

Figure 2.6 shows an example of the bitmap based transition compression. Figure 2.6(a)
shows a sequence of 8 transitions in a state corresponding to the alphabet, ¥=a, b, ¢, d,
e, f, g & h. When the bitmap is used to compress the transition sequence, the transitions
corresponding to the characters b, e, f and h (represented in purple blocks) are com-
pressed, while the others (represented in green blocks) are not compressed. Figure 2.6(b)
shows the bitmap corresponding to the transition sequence shown in Figure 2.6(a). The
bits corresponding to the character positions b, e, f and h in the bitmap are set to ‘0,
since they are compressed while the bits corresponding to other character positions are
set to ‘1’ in the bitmap. The compressed transitions are stored in the unique transition
list as shown in Figure 2.6(c), in which each of the indices is called the unique transi-
tion index. If there are ‘K’ characters in an alphabet, a K-bit bitmap is generated for
each state in the DFA, while the number of entries in the unique transition list varies
depending on the number of transitions compressed through the bitmap.

26

2.3 DFA Compression

As part of the decompression, the bitmap corresponding to a state is used to iden-
tify the compressed transition from the unique transition list. The example shown in
Figure 2.6(d) describes the compressed state transition fetch corresponding to character
‘d’ from the unique transition list. The unique transition index corresponding to the
character is calculated by performing the population count operation on the bitmap,
which identifies the total number of occurrences of ‘1’ in a bit vector. As shown in
Figure 2.6(d), the population count operation is only performed over a subset of bits in
the overall bitmap, i.e., from the first character (‘a’) until the character of interest (‘d’).
With respect to the example shown above, there are three 1’s in the bitmap which when
added results in the unique transition index of 3. The state transition which is fetched
from the index ‘3’ in the unique transition list is identical to that of the transition in the
uncompressed representation seen in Figure 2.6(a). The location of the state transition
in the compressed state table can be directly computed from the bitmap. So, the mem-
ory bandwidth that is required to fetch the state transition from the compressed state
table is always constant. Due to this advantage, the decompression can be performed
in a hardware accelerator to achieve line rate signature matching. However, the cost
paid for the compression is the additional memory that is required to store the control
information such as the bitmaps along with the compressed state transitions.

The usage of the bitmap to compress the redundant transitions in the DFA was first
proposed by Tuck et al. in [63]. In this proposal, the authors compress the redundant
state transitions within each of the states along the character axis using the bitmap.
So, a 256-bit? bitmap is required for each of the states to compress the redundant state
transitions. However, the downside of this approach is the linear increase in the memory

9There are a total of 256 state transitions in a state corresponding to the 256 ASCII characters in the
alphabet. So, a 256-bit bitmap is required to identify if each of the individual state transitions is
compressed or not.

Character Axis

Lg

a b cde f gh a bcde f g h
[a]a]s]o]o]o[1]1] la]a[s]o]o]of1]1]
(a)

N
abcdefgh Bits over the position
[1|0]1|1|0|0|1|OI |1|0|1|1WW of interest are

(b) \ ‘ masked in the bitmap

_’ Population Count Operation
to calculate the “Unique

Transition Index”
corresponding to the

Unique Transition Index

1234 123 4 charcater
[a]3]o]1] [a]s]o]1] Le0e1a1os
(© ())

Figure 2.6: (a) A sequence of 8 Transitions within a state (b) The bitmap corresponding to
the state transitions to identify if a state transition is compressed (c) Compressed
state transition representation after bitmap based compression stored in a unique
transition list (d) Transition decompression - Example

27

2 State-of-the-Art

requirement to store the bitmaps corresponding to each of the states in the compressed
DFA. Addressing this issue, Qi et al. [4] proposed a two-dimensional bitmap based
transition compression algorithm called FEACAN!. Since the authors in [4] observed
identical bitmaps in the DFA after bitmap based compression in [63], they proposed
to only store those unique bitmaps in the DFA in the algorithm which they proposed.
FEACAN employs a 3-step sequence to compress the redundant state transitions in
the DFA. The first is the intra-state transition compression, followed by the second
state grouping step and the last and final inter-state compression step. The intra-state
compression step focuses on compressing the redundant transitions within each state
using the bitmaps. The next is the state grouping step in which the states are grouped
into subsets of states, based on the following clustering constraints as described below:

e The bitmap of the states which are clustered into a subset should be identical.
This allowed to only store those non-distinguishable bitmaps in the compressed
DFA.

e The states which are clustered into a subset of states, should have a certain mini-
mum number of identical state transitions between them. The minimum number
of identical transitions is defined as the transition threshold ‘T’. This allowed to
group the states which share a certain number of identical transitions which were
compressed in the inter-state compression step.

After the state grouping step, one of the states in each group is assigned as the leader
state while the other states are called as the member states. Finally, as part of the inter-
state compression step, the state transitions corresponding to the member states at each
of the index are compressed, if and only if they are identical to the state transition in the
leader state at the same index. Even if one of the state transitions among the member
states is different from that of the leader state at the unique transition index, none of
the member state transitions corresponding to the index are compressed which results
in inefficient transition compression.

Figure 2.7 describes the FEACAN transition compression algorithm using an exam-
ple. Figure 2.7(a) shows a DFA with 8 states and state transitions corresponding to
the character set ¥=a,b,c,d,e,f,g,h. Figure 2.7(b) shows the DFA after the intra-state
compression step in FEACAN. As observed in Figure 2.7(b), the bitmap for each of the
state either belongs to BMP0O or BMP1, where BMP represents a unique bitmap pattern.
After the intra-state compression step, the states are clustered into two different groups
(GO & G1) as part of the state grouping step as shown in Figure 2.7(c). Figure 2.7(d)
shows the compressed transitions after the inter-state compression step. It can be seen
from Figure 2.7(d) that not all redundant transitions are efficiently compressed as part of
the inter-state compression step through FEACAN. The state transitions in the member
states in GO, corresponding to indices 1, 2, 4 and 6 are compressed as all the transitions
in the aforementioned indices are identical to the state transition in the leader state.

10A signature matching engine was proposed by Qi et. al., The system was called as the Front End
Acceleration for Content Aware Network processing (FEACAN), which resulted in the algorithm also
to be called as FEACAN.

28

2.3 DFA Compression

On the other hand, the state transitions in the member states corresponding to indices
0, 2 and 5 are not compressed at all, as some state transitions corresponding to the
member states are not identical to that of the leader state. In this way, although certain
state transitions are redundant, yet they are not compressed because of the inter-state
compression policy used in FEACAN which is a limitation of the compression algorithm.
On average, the transition compression rates achieved by FEACAN is of the order of
90%.

Unigue Transition Index

——Character Axis—» »
a b cde f gh 012 3 456 7
olof1]o|2|o[3]o]o olo|1|o|2][a]3]0
1|{of1]|o|2|o|3]o]se 1]of1]of2]|0[3]0]s]
v 2[s|1|ol2]o]3]o]o v 2(e6|1]of2]a]3]0
%3010?0300 %3010?030
r alof1fof2]0]2]0f0 r afof1fof2[0[2]0
o s|o|i1]o[3|o]|3|o]a o s|lof1|o]|3]o|3|o]a
6lof1]|o]alo|3]o]s e|lo|1|o|alo|3]o]s
7(3|1]o|2|o|3]o|o 7|3|1|o|2|a|3|0
a b cde f gh
B'rtmap-[11111110 BMPO
1]1]|2|1]1|1|{1]|2] BMP1
(a) (b)
Unigque Transition Index Unigue Transition Index
Leader
0123455‘/5tate 012 3456
| ofof1]olz]o[3]0 | ofof[1]olzl0[3]0
§25102030 BMPO 525 2 3
9 y
o 3flo|1|o|7|o|3]0 co ® 3|0 7 3
%’,40102020 ?40 2 2
$?3102030 Member $?3 2 3
States
012 34567 012 3 5 7
1]o]1]o]2]0]3]0o]e BMP1 1[{o[1]o]2]o[3]0]s
slof1]o]3]ol3]o]a G1 5 3 4
6lof|1]o]alo[3]o]s 6 4 5
(c) (d)

Figure 2.7: Example to explain the FEACAN transition compression (a) An uncompressed
DFA with 8 states and state transitions for 8 characters for each state (b) The
compressed DFA after bitmap based intra-state transition compression (c¢) The
DFA states grouped into subsets of states after intra-state compression (d) The
compressed DFA after inter-state transition compression

Reorganized and Compact DFA (RCDFA) [5] is another transition compression algo-
rithm which uses the bitmaps to compress the redundant transitions in the DFA. Unlike
FEACAN which performs bitmap based transition compression along the character axis,
the RCDFA performs transition compression along the state axis using the bitmaps. The
RCDFA primarily proposes a state grouping algorithm in which the DFA states are reor-

29

2 State-of-the-Art

ganized in such a way that the states with identical state transitions are organized next
to each other. In this way, the states are reorganized before the transition compression
is performed.

Figure 2.8 describes the transition compression using the RCDFA, with the same ex-
ample used to describe the FEACAN transition compression algorithm. Figure 2.8(b)
shows the bitmap’s along the state axis for the example used in Figure 2.8(a), while
Figure 2.8(c) shows the compressed transitions after the RCDFA based transition com-
pression. Since the RCDFA performs bitmap based compression along the state axis,
the number of states in the DFA defines the width of the bitmap for each of the char-
acters. To generalize, if there are ‘S’ states in the DFA, an S-bit bitmap is required
for each and every character. However, since the number of states in the DFA varies
depending on the characteristics of the signature set, it would be tricky to architect an
efficient storage architecture for the bitmaps generated from the RCDFA. On the other
hand, RCDFA also observed that the bitmaps corresponding to some of the characters
are identical and need not be stored multiple times in the memory. This is shown in
the Figure 2.8(d), where the bitmaps corresponding to characters b, ¢, e and g are com-
bined into a single bitmap entry. Each bitmap corresponding to the characters can be
identified uniquely by assigning a bitmap identification to each of the unique bitmaps.

|
2
z
}

——Character Axis—»

ab cde f gh a bcde f gh
olo|1|o|z2]o|3|o]0 |001|020300
1{o|1|o]|z2]o]3|o]6 v 1]6 7 2 3
v 2[e[1]o[2]0]3]0]0 2 2[o] 2] [3] [o]
%3010?0300 r 3[3] 3] 4]
r a4|of1fof2]o0][2]0]0 -l‘a 4] 5]
o s|ol1]o][3z]ol3|o]a 5 2 0
sloj1|ofa|o|30]s _ _
v 7[3[1]o]z2]o|3]0|0
(a) (c)
——Character Axis— ——Character Axis—
bfcf
abcdef gh a &g d f h
ofa|afaf2]a|afa]1 o|l1| 1 [1[1]1
1{o|o|ofo]o]ofo]1 1|0 o |olof1
v 2|1]|ofofofofofo]1 w 21| o [ofo]1
%310010000 %310100
r 4|ofofof1]o[1]o]0 r 40| o [1]1]0
" s5|ojojo|1|of1]|o|1 w 5|0] 0 [1]1]1
6{ojofof[1]o]ofo]1 6|lof o |[1]o]1
v 7|/1]o]of1]ofofof1 1?10101
(b) (d)

Figure 2.8: (a) An uncompressed DFA with 8 states and state transitions for 8 characters
for each state (b) The compressed DFA after RCDFA (c) The bitmaps across the
vertical state axis (d) Unique bitmap after being combined

30

2.3 DFA Compression

Based on the experimental evaluation, the authors claim that the RCDFA can achieve
transition compression rates of the order of 95%.

Unlike the proposal in [63], both FEACAN and RCDFA do not store all the bitmaps
together with the compressed DFA. Especially in the case of the RCDFA, in worst case
scenarios, the memory required to store the bitmaps can increase exponentially since
the bitmap is created along the state axis. So, in order to reduce the storage require-
ments associated with the bitmap, both FEACAN and RCDFA propose a mechanism to
combine the bitmaps. Two bitmaps are combined into a single bitmap by performing a
logical ‘OR’ operation on the concerned bitmaps. After combining multiple bitmaps, it
is enough if the combined bitmap alone is stored in the memory. However, the bitmap
combination comes at the cost of more redundant transitions stored in the unique transi-
tion list corresponding to the combined bitmaps. An example of the bitmap combination
in the case of the RCDFA is shown in Figure 2.9. The bitmaps corresponding to char-
acters ‘d” and ‘f” are combined into a single bitmap which results in an additional three
redundant transitions added to the unique transition list corresponding to character ‘f’.
The state transitions which are additionally stored due to the bitmap combination are
marked in red in Figure 2.9(b).

All the algorithms which were discussed in this section [63, 4, 5] propose a hardware
accelerator to perform the signature matching at line rates. The compressed DFA is typ-
ically stored in the on-chip memories, so that the hardware accelerator can fetch them at
low latencies to perform the signature matching function. Unlike the software oriented
algorithms, the bitmap based algorithms maintain the constant memory bandwidth as-
sociated with a compressed transition fetch corresponding to a payload byte, even after
the transition compression. This property allows the decompression to be performed
in a dedicated hardware accelerator. On the contrary, the cost paid by the bitmap
based transition compression techniques is the additional memory required to store the
bitmaps along with the compressed state transitions. The various methods discussed

———Character Axis—# ———Character Axis—»
b,
fcf d/f
a efg h a b cde f gh
0j1| 1 1 |1 | o|lo|1|o|2|o|3|0]|0
1/o| 0 0 |1 w 16 7 3 3
w o 21| 0 ! 5 20 2 2 0
— m _—— — — —
% 31| o 1 |0 r 3|3 3 3 4
4]) L — — -
r 4|0] 0 1 |0 o4 4 3 5
w 50| o0 1 |1 ¢ 5 2 3 0
6/o| 0 1|1
7|1 0 1|1
(a) (b)

Figure 2.9: (a) Bitmaps corresponding to character ‘d’ and ‘f” combined (b) Additional transi-
tions stored corresponding to the unique transition list for character ‘f’

31

2 State-of-the-Art

in this section address the storage problem associated with the bitmaps by combining
the bitmaps, which comes at the cost of reduced transition compression rates. This in
turn results in inefficient transition compression results and inefficient on-chip memory
usage as part of the compressed DFA storage. This is the major drawback of the bitmap
based transition compression methods and is a major problem which is addressed in this
dissertation.

2.3.2.3 Alphabet Compression

Alphabet Compression is the process of combining multiple indistinguishable characters
in the character set 3 to generate an encoded character set. Through alphabet compres-
sion, the redundant state transitions corresponding to the indistinguishable characters
are also compressed without compromising on the structural equivalence to the original
signature set. The motivation for alphabet compression is further described through the
scenarios as discussed below.

Scenario 1: Though there are 256 unique characters in the ASCII character set, not
all the characters are always used to construct the signatures for DPI applications. The
choice of characters generally vary depending on the individual signature sets. The state
transitions corresponding to the characters which do not occur in the signature set typi-
cally lead to the same next state in the DFA making these characters indistinguishable.

Scenario 2: The expressiveness offered by regular expressions is one of the primary
reasons to use them to define signatures for DPI applications. One of the features in
regular expressions is the possibility to use character classes to define the signatures.
For example, the signature abc/d-h] matches a sequence of characters a, b and ¢ followed
by any character between the characters d to h. In such a case, from a signature
matching point of view, the characters from d until h are generally indistinguishable,
unless and until there is some other signature within the signature set which uses a
character between d and h''. Due to the common usage of character classes in real
life signatures, there is a high chance that the state transitions associated with these
characters are redundant as well [32].

The common occurrence of indistinguishable characters in the signature sets makes
alphabet compression an essential part of transition compression. A character set with
8 characters, i.e., ¥={a, b, ¢, d, e, f, g, h} is further used to explain the concept of
alphabet compression. Figure 2.10(a) shows a signature set, ‘abc’ and ‘egh’ and the DFA
corresponding to the signature set. The resulting DFA corresponding to the signature
set consists of 7 states in total, with state ‘0’ being its root state, while states ‘3’ and
‘6’ are the accepting states corresponding to the signatures ‘abc’ and ‘efg’, respectively.
Figure 2.10(b) shows the state table representation of the DFA shown in Figure 2.10(a).

As seen in Figure 2.10(b), the state transitions corresponding to the characters, ‘d’
and ‘I’ are identical across all the states in the DFA. Since the characters ‘d’ and ‘f’
are not part of the signatures, the state transitions corresponding to these 2 characters

111 this scenario, one of the states in the DFA will have a forward state transition corresponding to the
character between the character class, which will be different from the state transition in the other
states which are identical.

32

2.3 DFA Compression

Signature Set
abc

egh

(a)

Alphabet

. Modified Translation
Character Axis—» CharacterAxis_. Table
ab cdef gh a b cd e g h a a
o(1|0(0|0O|4|0O|0O|0O o|1|oj0|O(4a|0O]|0O b b
i(1|2|(0|0|4|0|0O|0O i|1|2|o0|0(4|0]|0 c c
5 2(1|0(3|0|4|0O|0O)|0O 5 2|1|0|3|0(4a|0]|0O d d
® F|(1|0|0|0O)4(0|0|0 v 3|1|o|j0(0|4|0|0 e e
E 4|11|0|0|0|4|0|5]|0 ? 4|1|0|0|0|4|5]|0 f d’
1 s[1|o|ololalolols T s[1lolo|olalole el g
l G(1|0(0|0O|4|0O|0O|0O i G|1|0|0|O(4|0O]|0O h h

E
Z

(d)

Figure 2.10: Transition Compression through Alphabet Compression in a DFA

across all the states in the DFA lead to the root state. So, with respect to the DFA,
the characters, ‘d’ and ‘f” are completely indistinguishable. As part of the alphabet
compression, the characters ‘d’ and ‘f” are combined to create d’, which is an encoded
representation of both these characters. This modifies the original character set 3 to
¥'={a, b, ¢, d, e, g and h} which consists of 7 characters in comparison to 8 characters
in the original character set. Figure 2.10(c) represents the DFA after implementing the
alphabet compression. It can be seen from the figure that the alphabet compression
mechanism not only compresses the character set, but also the state transitions associ-
ated with the characters that are compressed. For example, the DFA corresponding to
the original character set consists of 7x8=56 transitions, while the DFA corresponding
to the encoded character set only consists of 7x7=49 transitions which is a direct result
of the reduction in the character set. To formalize, two characters a, b C ¥ are com-
pressed through alphabet compression, if §(s,a) is identical to d(s,b) across all the states
S in the DFA. Assuming that the character set X is reduced to a character set with ‘k’
characters after alphabet compression, the resulting DFA consists of Sx k transitions.
The cost paid for the alphabet compression is the need to maintain an Alphabet Trans-
lation Table (ATT) as shown in Figure 2.10(d). As part of the signature matching, the

33

2 State-of-the-Art

encoded representation of the incoming character is first looked up from the ATT, before
further proceeding with the transition lookup in the alphabet compressed DFA.

Various methods have been proposed in the literature which use alphabet compres-
sion to remove the transition redundancy. The method proposed by Brodie et al. [64]
introduced the idea of alphabet compression, but only verified the idea on a small set
of signatures. Becchi et al. [32] proposed the idea of combining alphabet compression
with the improved D?FA, which showed the possibility of combining alphabet compres-
sion with transition compression. Finally, Kong et al. [65] proposed the idea of using
multiple alphabet translation tables to compress the redundant transitions in the DFA,
wherein alphabet compression alone was used to compress the redundant state transi-
tions in the DFA. However, the transition compression rates achieved by Kong et al.
is only of the order of 75%, which is a little low in comparison to the other transition
compression mechanisms proposed in the literature.

To summarize, the alphabet compression mechanisms leverage the idea of compress-
ing the indistinguishable characters in a signature set to compress the redundant state
transitions in the DFA. The biggest advantage of alphabet compression is the possibility
to combine the procedure with other transition compression mechanisms to improve the
overall transition compression rate in the resultant compressed DFA.

2.3.3 Summary of DFA Compression

The biggest advantage of using the DFA to represent the signatures is the ability to
perform the signature matching function at predictable rates, since the processing com-
plexity associated with the payload byte is always constant. Though the DFA is pro-
cessing efficient, it is highly storage inefficient. The storage inefficiency associated with
the DFA is primarily addressed through the state compression and the transition com-
pression algorithms. The solutions proposed as part of the state compression algorithms
primarily focus on compressing the number of states generated in the DFA, while the
transition compression algorithms focus on compressing the redundant state transitions.
The major focus of the existing research in automata based signature matching has been
on efficient representation of the DFA through various compression algorithms. So, the
associated signature matching engines are evaluated on the general purpose processor
platforms, which results in flexible and scalable implementations with respect to storage;
but do not necessarily perform the signature matching function at line rates [66]. The
next section discusses the various signature matching engines which have been proposed
in the literature primarily targeting line rate signature matching engine implementations.

2.4 Line Rate Signature Matching Engine Implementations

Various signature matching engines have been proposed in the literature to perform
signature matching function at line rates. The solutions which have been proposed in
the literature are generally targeted across a multitude of platforms such as FPGA, ASIC
and GPU. Smith et al. [66] classified these platforms with respect to their capabilities as
shown in Table 2.2. The yardsticks which are used for comparison are power efficiency,

34

2.4 Line Rate Signature Matching Engine Implementations

area efficiency, scalability, flexibility, performance and the cost of implementing the
signature matching engine in a specific platform. The various signature matching engines
which belong to each of the target platforms have been compared based on the yardsticks
mentioned above in this section. The suitability of each of the specific platforms for
signature matching in the RGR is also discussed in this section.

Table 2.2: Comparison of various platforms with respect to signature matching engine imple-
mentation

Yardstick CPU FPGA GPU ASIC
Power Efficiency || Lowest | Medium High Highest
Area Efficiency Low Worst High Highest

Scalability High Low Medium | High
Flexibility Best | Medium | Medium | Worst
Performance Lowest | Medium | Medium | Highest

Cost Lowest | Medium | Medium | Highest

2.4.1 FPGA - Logic Based Implementations

FPGASs have been one of the target platforms which has been used by line rate signature
matching implementations, mostly to perform logic based signature matching. The
solutions which have been proposed in this category primarily use the NFA to represent
the signatures and perform NFA based signature matching [67, 68, 69] in the FPGA.
These solutions typically use the inherent parallelism available in the FPGA to configure
the NFA state transitions as logic circuits. The hardware parallelism available in the
FPGA is primarily used to paralellize the computations associated with multiple active
states in the NFA. Consequently, the logic based implementations primarily focus on
effectively encoding the NFA state transitions into logic circuits [34].

Despite the high-parallelism which is on offer in the FPGASs, there are few challenges in
using the FPGAs for multigigabit line rate signature matching applications [34]. Firstly,
since the state transitions are directly configured into logic circuits, the maximum num-
ber of signatures which can be configured in the FPGA is restricted by the logic resources
available in the specific FPGA device. Secondly, the signature definitions with respect to
various DPI applications are frequently updated by various sources. Whenever there is
an update in the signature database, the corresponding logic representation of the signa-
ture sets have to be regenerated for the FPGA, which is quite a time consuming process.
Moreover, the clock frequency achieved after mapping the NFA into the FPGA logic
elements depends on the characteristics of the signature set. Lastly, the network traffic
which is inspected by DPI applications primarily constitutes of a multitude of network
streams. However, a single signature set compiled into the FPGA as a logic represen-
tation, can only be used to compare a single stream at a time. So, if multiple streams
have to be inspected in parallel, multiple copies of the hardware circuits are required to
represent the signatures which results in inefficient usage of the FPGA resources affect-

35

2 State-of-the-Art

ing the scalability of the signature matching engine. Thus, as shown in Table 2.2, the
resulting FPGA implementation is not an area-efficient and a power-efficient solution.
On the other hand, the parallalism available through the logic elements in the FPGAs
can be used to perform signature matching at gigabit rates.

To summarize, as seen in Table 2.2, though the inherent parallelism in the FPGA
allows the signature matching to be perform at line rates, the primary challenges associ-
ated with the FPGA based signature matching engines is the scalability. Moreover, for
the logic based FPGA implementation approaches to be used in the network processors
for the RGR, the logic based elements have to be prefabricated together with the network
processor used in the RGR which is also an architectural challenge to be considered.

2.4.2 GPU Based Signature Matching Engines

The GPU primarily consists of multitude of processing cores with abundant memory
bandwidth to access the internal and external memories. The parallelism offered by
the processing cores and the availability of huge memory bandwidth, which are criti-
cal requirements for automata based signature matching, have kindled interest in the
research community to use the GPU as a possible platform to perform line rate signa-
ture matching. The very first signature matching engine using the GPU was proposed
in [70] and only implemented a string based signature matching engine. Various other
solutions proposed in the literature have either been NFA based [71, 72] or DFA based
implementations [73, 74, 66].

After comparing the various GPU based signature matching engines, Xu et al. [34]
concluded that the current GPU based solutions are capable of performing signature
matching at gigabit rates only for a small number of signatures. Moreover, Yu et al. [73]
pointed out that the GPUs cannot be used for signature matching against complex regu-
lar expression patterns where the memory availability in the GPU becomes a bottleneck.
Though the GPU provides a possibility to implement a fairly scalable implementation
in comparison with the FPGAs, the restriction with respect to automata storage is still
a concern to use the GPUs for line rate signature matching solutions. Moreover, not all
the current network processor architectures consist of a GPU integrated into the system
which is also a challenge to use the GPUs to accelerate the signature matching function
in RGR.

2.4.3 Hardware Accelerators - ASIC

There are various advantages when the signature matching function is performed through
a dedicated hardware accelerator implemented in an ASIC. Since the signature matching
function is performed in a dedicated hardware accelerator, it is possible to perform the
signature matching function at line rates. Multiple instances of the accelerator can be
used to support increasing throughput as well as increasing signature counts making
the implementation scale efficiently. Moreover, the resulting signature matching engine
can be optimized to support the stringent area and power requirements associated with
the implementation. On the downside, there is a huge cost involved in designing and

36

2.4 Line Rate Signature Matching Engine Implementations

implementing the accelerator. Furthermore, the signature matching engine implemented
as a hardware accelerator is not always flexible, as any changes required in the imple-
mentation has to go through a redesign and the fabrication process. Nevertheless, the
advantages with respect to high performance, area efficiency, power efficiency, scalability
outweigh the disadvantages. Since the network processors designed for the residential
gateway routers is a highly cost sensitive market, the advantages associated with an
ASIC implementation make it the natural choice for accelerating the signature matching
function in these devices.

Various signature matching engines have been proposed in the literature in which the
signature matching function is performed in a dedicated hardware accelerator. When
the signature matching is performed in a dedicated hardware accelerator, the automata
is typically stored in the TCAM or the RAM. Since the processing associated with
the signature matching function is accelerated, the latency associated in fetching the
automata from the memory makes a huge difference in the throughput achieved by
these systems [4, 34]. A short overview of the various implementations are discussed
further.

2.4.3.1 Automata Storage - TCAM

The TCAM has been widely used in various network processors for high speed applica-
tions such as network packet classification and routing. Since the data which is stored in
the TCAM is content addressable, the data from the TCAM can be fetched in a single
clock cycle. This feature is especially beneficial for signature matching applications, since
the signatures can be stored in the TCAM and fetched in high speeds to perform line
rate signature matching. Various solutions have been proposed in the literature which
propose the usage of TCAMs to store the automata and the major research focus has
been on encoding and storing the state transitions in the content addressable memories.
Furthermore, the associated accelerators primarily focus on fetching the state transitions
from the TCAMSs and checking for the signature match in the sequence of payload bytes.

Initial TCAM based signature matching hardware accelerators [75, 76, 77] were pri-
marily used for string based signature matching solutions, where the signatures were
stored using the Aho-Corasick automaton [46]. Later, various DFA based solutions
[78, 79, 80] were proposed to also include the regular expressions. The DFA based
solutions primarily focused on storing the DFA in its uncompressed form, while the
compressed DFA representations such as D?FA, 6FA cannot be stored in the TCAM
making them memory inefficient solutions [34].

The biggest problem with respect to the usage of TCAMs for signature matching is
the issues associated with scalability, power and cost. The TCAMs which are generally
available for integration are constrained with a certain fixed size. So multiple TCAMs
have to be used to store the signatures to support increasing signature sets which makes
the proposal expensive to implement. Moreover, the TCAMs consume 150 times more
power per bit than the Static RAM and costs about 30 times more money per bit than
the DDR [34]. So, the majority of the TCAM based solutions have only been research

37

2 State-of-the-Art

proposals while the challenges associated with cost and power make them an impractical
solution for commercial implementation.

2.4.3.2 Automata Storage - RAM

Various hardware accelerators [37, 81, 82, 4, 5] have been proposed in the literature
which primarily store the automata in the RAM. These accelerators either store the
automata in the on-chip memories alone [82, 4, 5] or in a combination of the on-chip and
off-chip memories [37, 81]. Similar to the accelerators described previously, the hardware
accelerator is primarily responsible for fetching the state transitions corresponding to the
state character combination and to check for signature matches in the stream of bytes.

The RegX engine [37] was the very first complete hardware acceleration system which
was proposed to perform line rate signature matching and was part of the IBM Pow-
erEN processor. The RegX accelerator leveraged the BESM [83], a programmable state
machine architecture to represent the signatures. The BFSM architecture represents the
state transitions as rules, where the rules provide the next state information correspond-
ing to either individual characters or a set of characters. As part of RegX based signature
matching, multiple rules corresponding to the payload bytes are searched, from which
the specific rule corresponding to the state-character combination is identified. The
RegX hardware engine consists of four physical lanes of signature matching engines with
each lane consisting of four BFSM engines. Each BFSM engine is equipped with 16KB
of on-chip cache memory to store the rules corresponding to the signature sets. If the
rules corresponding to the signatures cannot be completely stored in the on-chip SRAM,
they are stored in a combination of on-chip SRAM and the off-chip DRAM. Each of the
physical lane is optimized to perform signature matching at a peak rate of 18.4 Gbps.
Though, this represents the theoretical maximum throughput which the accelerator can
achieve, the actual signature matching throughput achieved by each of the physical lanes
completely depends on the characteristics of the payload byte sequence inspected by the
system and the number of signatures stored in the system. The throughput achieved
by the RegX depends on whether the rules are fetched from the on-chip or the off-chip
memories. In worst-case scenarios, the hardware accelerator only achieves signature
matching throughput of about ~2 Gbps due to the high latency associated with the
off-chip memory access [37].

Fang et al., proposed the Unified Automata Processor (UAP) [81] which is also a
hardware accelerator that is capable of processing different automata representations
such as the NFA, the DFA, the A-DFA[2], the JFA[35], etc. The UAP’s architecture is
also similar to that of the [37], where multiple individual accelerators are proposed with
16KB of dedicated on-chip memory to store the compressed state transitions. Though,
the authors do not specifically discuss about how the automata is stored when the size
of the signature sets exceed beyond the on-chip memory boundaries, the UAP will also
suffer from throughput limitations similar to that of [37].

On the other hand, FEACAN [4] and RCDFA [5], the bitmap based transition com-
pression algorithms discussed in Section 2.3 also propose a dedicated hardware accel-
erator to perform signature matching. Unlike the hardware accelerators proposed in

38

2.5 State-of-the-Art Summary

[37, 81], the hardware accelerators proposed in [4, 5] store the complete compressed DFA
in the on-chip SRAM alone. In these proposals, since the compressed DFA is completely
stored in the on-chip memories, they can be fetched and processed in low latencies. So,
the signature matching throughput achieved by these systems is identical to the peak
throughput for which they were designed for. On the downside, since these methods
compromise the transition compression rates in order to keep the storage requirements
associated with the bitmaps to a bare minimal, the hardware implementations typically
leads to inefficient on-chip memory usage.

HAWK [82] is a hardware accelerator which also performs signature matching at multi-
gigabit rates. Unlike all the accelerators described above which either use the NFA or
the DFA to represent the signatures, HAWK uses the bit-split automata representation
[84]. In the case of the bit-split automata representation, a single automaton correspond-
ing to the signature set is split and represented as a combination of 8 different bit-split
automata. So, each state in the original automata corresponds to a vector of states in
the bit-split automata. Each of the bits in the payload byte!? is compared against the
corresponding bit-split automaton representation. A signature match is identified, if and
only if an accepted state is triggered by all the states in the bit-split automata. Unlike
the other hardware accelerators [37, 81, 4, 5] which consume a single payload byte every
clock cycle, HAWK consumes multiple payload bytes every clock cycle. However, the size
of the automata explodes exponentially corresponding to the number of payload bytes
consumed every clock cycle, which makes HAWK quite a difficult approach to scale.
Moreover, in comparison to the normal compressed DFA representation, the bit-split
automata representation proposed in HAWK is highly area and power inefficient. Based
on the studies reported by the authors in [82], a HAWK engine which is implemented
to consume 32 characters in a single clock cycle consumes about 90 mm? area when
synthesized on a commercial 45nm CMOS technology node. On the other hand, the
HAWK engine completely stores the bit-split automata in the on-chip memories and the
hardware accelerator is pipelined to run at 1GHz which enables to achieve a signature
matching throughput of 8Gbps if 1 byte is consumed every clock cycle. If the HAWK
accelerator is architected to consume 32 characters in a single clock cycle, it will be
capable of achieving a signature matching throughput of 32Gbps.

2.5 State-of-the-Art Summary

Of the various steps to be performed in DPI, the signature matching is the most time
critical step which defines the rate at which DPI can be performed by modern network
processors. Since the signature representations are primarily a combination of stings
and regular expressions, the automaton has become the preferred choice to represent the
signatures. Majority of the solutions proposed in the literature use the DFA to represent
the signatures, as the worst case complexity associated in processing a payload byte is
always constant. Due to this property, the DFA has been the preferred choice to represent

12Gince the extended ASCII is used to represent the payload, a single automaton corresponding to the
signature set is split into 8 bit split automata.

39

2 State-of-the-Art

the signatures, especially for high speed signature matching. However, the DFA is highly
storage inefficient due to the state explosion problem associated with complex signature
patterns and the transition redundancy. So, a majority of the solutions proposed in the
literature focus on reducing the number of generated states during the NFA to DFA
conversion process and to compress the redundant transitions in the DFA. Though the
automaton compression has been the primary focus of the research community, various
solutions have been proposed to target the problem of line rate signature matching.
The solutions which have been proposed can be classified into GPU-based, FPGA-based
and ASIC based signature matching engines, primarily based on the target platform of
implementation on which the signature matching function is accelerated.

Due to the early adoption of the GPU by the research community, various proposals
have suggested the usage of the GPU as a potential platform to accelerate automata
based signature matching. Though the GPU consists of a large number of processing
cores and high internal memory bandwidth, the memory availability in the GPU becomes
a bottleneck in processing complex regular expression patterns. On the other hand,
though the inherent hardware parallelism in the FPGA can be utilized to accelerate
the signature matching function, the signature matching engines implemented as logic
circuits in an FPGA are not easily scalable. Moreover, it is quite a time consuming
process to map the signatures into hardware circuits in the FPGA. Furthermore, the
graphics processors and the programmable logic have to be prefabricated inside the
network processors for them to be used as a platform to accelerate the signature matching
function.

Hardware accelerators targeting ASIC implementations have been one of the platforms
which is targeted for line rate signature matching engine implementations. Of the various
solutions proposed in this category, generally the automata have been stored in the
RAM or the TCAM with a hardware accelerator performing the signature matching
function. Though the TCAMs have been used for various other networking applications,
the high power consumption and high cost makes them unsuitable for signature matching
applications. Alternately, in some of the hardware accelerators, the compressed DFA
is either completely stored in the on-chip SRAMs or in a combination of the on-chip
SRAMSs and the off-chip DRAMs. When the compressed DFA is stored in a combination
of on-chip and off-chip memories, the signature matching throughput achieved by the
accelerator is variable and depends on how quickly the data can be fetched from the
off-chip memories.

On the other hand, when the compressed DFA is completely stored in the on-chip
memories as in the case of bitmap based accelerators, the hardware can access the data
in low latencies to efficiently perform the signature matching function at guaranteed
multi-gigabit line rates. However, the memory inefficiency in the bitmap based accel-
erators is a downside of using these accelerators for signature matching and is a topic
which has to be addressed to complement the line rate signature matching ability of
the bitmap based accelerators. The primary problem associated with the bitmap based
compression algorithms is the necessity to store the bitmaps along with the DFA. So, the
bitmap based compression algorithms proposed in the literature reduce the number of
bitmaps by storing additional redundant transitions in memory which heavily increases

40

2.5 State-of-the-Art Summary

the memory footprint of the compressed DFA. However, this problem can be addressed
in a different way by using a secondary layer of indexing in addition to bitmap based
compression. The secondary layer of indexing can greatly reduce the number of redun-
dant transitions stored in the memory, thereby greatly reducing the memory footprint
of the compressed DFA. Based on this approach, two different transition compression
algorithms are proposed in Chapter 3. The subsequent chapters further propose addi-
tional optimization schemes for the proposed bitmap based algorithms before defining a
bitmap based hardware accelerator to perform signature matching multigigabit rates.

41

3 Bitmask: A Secondary Indexing Layer for
Bitmap based Transition Compression

As seen in Chapter 2, the bitmaps possess attractive properties which make them a good
choice to compress the redundant state transitions in the DFA. In comparison to the
software oriented transition compression methods such as [1, 32, 3, 36], the approach
towards transition compression in the bitmap based methods [4, 5] allow the signature
matching function to be performed in a dedicated hardware accelerator. This in turn
enables to perform deep packet inspection at multi gigabit line rates.

After bitmap based transition compression, the content of the generated compressed
DFA can be classified into the transition and the control data. The transition data
primarily refers to the compressed state transitions, while the control data refers to
information such as bitmaps which help to locate the compressed state transition cor-
responding to a state-character combination. As part of the compressed DFA storage,
both the transition and the control data is stored in the on-chip memories. The existing
bitmap based transition compression algorithms primarily focus on reducing the num-
ber of unique bitmaps which are stored together with the compressed state transitions.
However, in this process, a heavy compromise is made on the transition compression
rates which results in excessive redundant transitions stored as part of the transition
data. So, the biggest challenge associated with the bitmap based compression methods
is the need to balance the storage of the transition and the control data.

Addressing this problem, this chapter introduces the idea of using bitmasks to com-
press the redundant state transitions in the DFA after performing bitmap based transi-
tion compression. A bitmask is a secondary layer of indexing which effectively identifies
the redundant state transitions in the DFA after performing bitmap based transition
compression. Though the usage of bitmasks increases the overall control data in the
compressed DFA, the redundant transitions are effectively indexed and compressed re-
sulting in high transition compression rates. Consequently, the reduction in the transi-
tion data resulting from the efficient compression of the DFA will result in a memory
efficient representation of the overall compressed DFA.

In this chapter, two different transition compression methods are first introduced which
use the combination of the bitmap and the bitmask to efficiently compress the DFA.
After introducing the two methods, this chapter further evaluates the effectiveness of
the proposed methods against the state-of-the-art bitmap based transition compression
algorithms. The first method is called the Member State Bitmask Technique (MSBT)
while the second approach is called the Leader State Compression Technique (LSCT).
The MSBT and the LSCT are further explained in detail in the following sections.

43

3 Bitmask: A Secondary Indexing Layer for Bitmap based Transition Compression

3.1 Member State Bitmask Technique

The MSBT is a three step compression mechanism which eliminates the intra-state and
inter-state transition redundancy in the DFA. The three steps which are part of the
MSBT are described briefly below:

e Intra-State Transition Compression: The first step in the MSBT uses the
bitmap to compress the redundant state transitions along the character axis. In
this step, the bitmap compresses the identical state transitions which are adjacent
to each other in each of the states in the DFA, thus effectively eliminating the
intra-state transition redundancy.

e State Grouping: In the second step, the states are grouped into subsets of states
in order to prepare the DFA for the third inter-state compression step. The state
grouping algorithm proposed in FEACAN [4] is used to group the states in this
step. As described in the previous chapter, the state grouping algorithm groups
those states which have identical bitmaps and a certain minimum number identical
state transitions defined by the transition threshold, ‘I’. In this step, one of the
states in the group is defined as the leader state, while the rest of the states are
called the member states.

e Inter-State Transition Compression: As part of the inter-state transition com-
pression step, the redundant state transitions in the member states are compressed
using the Member Transition Bitmask (MTB). In this step, the state transition at
each and every index in a member state is compared against the corresponding
state transition in the leader state. If the state transitions are identical, they are
compressed. The member transition bitmask is generated for each of the member
state to identify those specific indices at which the state transitions were com-
pressed as part of the inter-state compression step.

The various steps in the MSBT and the bitmask generation process are explained
further through an example below.

3.1.1 MSBT - An Example

Figure 3.1(a) shows an uncompressed DFA with state transitions for 8 states and 8
characters!. Figure 3.1(b) shows the compressed DFA after the intra-state transition
compression step. In this step, the state transitions corresponding to character ‘h’ in
states 0, 2, 3, 4 and 7 are compressed as they are identical to the state transition
corresponding to character ‘g’ in their respective states. After the intra-state compression
step, the bitmap corresponding to the states either belong to the bitmap pattern BMPO
(11111110) or to the bitmap pattern BMP1 (11111111). The bitmaps are represented in
Figure 3.1(b) through separate colors for easy identification.

Tt should be noted that the example considered to explain the MSBT transition compression is identical
to the example which was used in Chapter 2 to describe the bitmap based signature matching
solutions.

44

3.1 Member State Bitmask Technique

Unigue Transition Index
>

——Character Axis—» >
ab cdef gh 0123 4567

o|lof1|o|2|o|3|0]|0 ojo|1|{o|2|o]3]|0

1|o|1]|of2|o|3|0]s 1|o|1|0|2|o|3]|ofs abcdefoegh

5251020300 §25102030 T a2 ilTiT2To] BMPO

= 3(o|1]o|7|0|3]|0]0 = 3|of1|o|7|o|3]|o0

b m 1|1(1|1|1|1|1|1| BMP1

r 4jo|ilol2lof2]0]0 F 4|o|1joj2fo]2]0

v s|(o|1]|o|3|of3|o|a w s5|ofi1|lo|3|o]|z|o|a

s|lo|1|o|afo|3|0|s s|o|1({0|alo|3]|ofs

7|3|1|o|2|o|3|0]0 7|3|1|0|2|o]3]|0

{a) (b)
Unigue Transition Index State ID
—_—
LeaderlD
0123456 7’"\\
Leader —
| ofo[1]o]2]o[3]ole— o] [o]o MemberlD
© State | puyipg 0
o 2|s|l1|o|l2|0f3]|0 2 0|1
® 3lofl1jo|7|o|(3]|0| | GO 3 0|2
§40102020 Member 4 L E
o ||
v 7[2|z]of2]o|2]0]|) States 7 of4
012 34567
1{o]1]ofz2]o[3]0]s BMP1 1 1[0
s|ofj1]o|3|o|3|o]|a G1 5 1)1
s|lof1]o]alo|3|o]|s & 1|2
(<) (d)

Unigue Transition Index Unigue Transition Index Unigue Transition Index

_— _—»

012 3456 0123456 012 3456
| ofo 2[o[3]o0 of -T-T-T-T-T-T- - Ew | ofof2]o]2]0]3
2 ale 2[1]|o]ofofofo]o o] v 8 2 ale 2| |3
z — g = x
o 3 7 3slojo|o|1|o]ofo 1 ;g% ® 3|0 7 3

-~ m
?,4 2 4/oflo|ofo]o|1]o 2 = ?.40 2 2
(%] — wi
vy 7|3 7|1|o|ojofo]ofo 3 %‘5 v 7|3 2 3
— [&]

012 34567 01234567 012 3 4567

1 1|lo|2|0|3 6 1 -1 -] - i|lo|1f{of2|0|3 6

5 3 4 5 o|lo|1]o 0|1 0 5 3 4

6 4 5 6|lojo|o|1|o]ofo]1 2 6 4 5

(e) (f) (&)

Figure 3.1: (a) Original DFA before compression (b) The DFA after bitmap based intra-state
transition compression (c¢) The DFA states grouped into subset of states (d) En-
coded state representation of the DFA states (e¢) The DFA after inter-state transi-
tion compression (f) The MTB and the cumulative sum of transitions after inter-
state compression (g) Compressed DFA generated after FEACAN

Figure 3.1(c) shows the states being grouped into subsets of states as part of the state
grouping step. The transition threshold T, is set to 75%, i.e., the states are grouped into
subsets of states if and only if they share a minimum of 75% of identical state transitions.
After the state grouping step, the states 0, 2, 3, 4 and 7 are grouped into a subset (GO0),
while states 1, 5 and 6 are grouped into another subset (G1) based on the predefined

45

3 Bitmask: A Secondary Indexing Layer for Bitmap based Transition Compression

clustering constraints. After the state grouping step, the states ‘0’ and ‘1’ are designated
as the leader states for groups GO and G1, respectively. The other states in the groups
are referred to as the member states.

The last and final step in the MSBT is the inter-state compression step. In this step,
the state transitions between the member states and the leader state are individually
compared at every unique transition index. If the state transition at an index is identical
to the state transition in the leader state, then the state transition in the member state is
compressed. In order to identify the indices at which the state transitions are compressed
in the member states, a member transition bitmask (MTB) is generated for each of the
member state. If there are k state transitions in a member state after the intra-state
compression step, a k-bit MTB is populated to identify the indices at which the state
transitions are compressed as part of the inter-state compression step. If the state
transition in the member and the leader state are identical at a unique transition index,
then the bit position corresponding to the index is marked ‘0’ in the MTB. If not, the
bit position is marked ‘1’ in the MTB.

Figure 3.1(e) shows the compressed DFA after the inter-state compression step, while
Figure 3.1(f) shows the MTB which is populated for the member states. For example,
the state transition at the unique transition index 0 in state 2 is 6 while the state
transition at the corresponding index in state 0 is 0. Since these two state transitions
are different, the state transition at index 0 in member state 2 is not compressed and the
bit position corresponding to index 0 in the MTB for state 2 is set to 1. On the other
hand, the state transition at the unique transition index 1 in state 2 and state 0 is 1
and are identical. So, the state transition corresponding to the unique transition index
1 in state 2 is compressed and the bit position corresponding to this index is set to 0
in the MTB. In this way, the MTB for all the member states is populated as shown in
Figure 3.1(f). The empty blocks in Figure 3.1(e) are the state transitions in the member
states which are compressed as part of the inter-state compression step in the MSBT
in the considered example. Thus, in this way, the MTB is used as the secondary layer
of indexing to compress the redundant state transitions after performing bitmap based
transition compression.

The state transitions which remain uncompressed after the MSBT are the ones which
are stored in the memory as part of the compressed DFA. The compressed state tran-
sitions belonging to the leader states (yellow blocks in Figure 3.1(e)) are called as the
leader transitions, while the compressed state transitions which belong to the member
states are called as the member transitions (blue blocks in Figure 3.1(e)). It can be seen
from Figure 3.1(e) that a total of 41 state transitions are compressed using the MSBT
in comparison to 33 transitions that were compressed in FEACAN seen in Figure 3.1(g)
on the same DFA. The primary difference between both the compression methods is the
introduction of the member transition bitmask, which is the secondary layer of indexing
that is used to identify the redundant state transitions between the states.

The cost paid for the additional compression achieved is the memory required to store
the MTB. As mentioned earlier, the number of unique transition indices in the states
after the intra-state compression step decides the width of the MTB for each of the
member states. For example, since there are 7 unique transition indices for the states

46

3.1 Member State Bitmask Technique

in GO, this results in a 7-bit MTB for each member state in the group. In order to
efficiently store the M'TB, additional 0’s are padded to make them byte aligned. This
helps to easily store and fetch the MTB from the memory.

As part of the MSBT, since the states are clustered into groups, the original state
identifiers used for the states cannot be directly used to identify the states after state
grouping. Consequently, the states are encoded and represented as a combination of a
leader identifier (leaderID) and a member identifier (memberID). The leaderID identifies
the group to which a state belongs to, while the memberlD is used to identify each of the
individual states within a group. The memberID for the leader state is set ‘0’ to easily
differentiate between the leader state and the member states in a group. Figure 3.1(d),
shows the encoded state representation.

3.1.2 Compressed DFA Organization

The compressed DFA which is generated after the MSBT is organized into four different
tables (or memories). The leader transitions across all the leader states are consolidated
and stored in the Leader Transition Table (LTT), while the member transitions across all
the member states are consolidated and stored in the Member Transition Table (MTT).
Since the LTT and the MTT only store the compressed transitions, they are collectively
called as the ‘Transition Memories’.

Apart from the LTT and the MTT, two other tables are used to only store the con-
trol information which is used to locate the compressed transitions from the transition
memories. The MTBs across all the member states, across all the groups are consoli-
dated and stored in the Member Bitmask Table (MBT). The Address Mapping Table
(AMT) stores a multitude of control information for each of the groups. The control
information include the bitmap, the address of the first compressed leader and member
state transition in the group and the address of the first MTB in the group. The address
location of the first leader transition, member transition and member transition bitmask
are also called as the leader base address, member base address and the bitmask base
address for the group.

As far as the member base address, the address of the first member transition in the
first member state is stored in the address mapping table. So, a cumulative sum of
all the member transitions which remain uncompressed until each member state in a
group is generated along with the MTBs as shown in Figure 3.1(f). For example, a
cumulative sum of ‘3’, corresponding to state 7 represents that 3 member transitions are
stored in memory before the first uncompressed member transition belonging to state 7
is stored. This information is used to precisely locate the compressed member transition
in the state. The MBT and the AMT are collectively called as the ‘Control Memories’,
since they store the control information that is primarily used to locate the compressed
transition from the transition memories.

Figure 3.2 shows the compressed DFA organization corresponding to the example
shown in Figure 3.1. The compressed transitions which belong to the leader states
shown in yellow in Figure 3.1(e) are sequentially arranged in the leader transition table.
Similarly, the compressed transitions which belong to the member states shown in blue

47

3 Bitmask: A Secondary Indexing Layer for Bitmap based Transition Compression

ADDRESS MAPPING TABLE LEADER TRANSITION TABLE MEMBER TRANSITION TABLE
LTT | MTT | MBT
LULLI e R BITMAP ADDR | TRANS ADDR | TRANS
0 0 0 0 01111111 0 0 0 6
1 7 4 4 11111111 1 1 1 7
2 0 2 2
3 p 3 3
MEMBER BITMASK TABLE 4 0 4 3
CUMULATIVE 5 3 5 4
ADDR MTB SUM . o . "
0 00000001 (] 7 0 7 5
1 00001000 1 8 1
2 00100000 2 9]
3 00000001 3 10 2
4 10001000 0 11 0
5 10001000 2 12 3
13 0
14 6
Y / \ J
| |
Control Memories Transition Memories

Figure 3.2: The compressed transitions stored in the Leader and Member Transitions Tables
while the control information is stored in Address Mapping Table and Member
Bitmask Table

in Figure 3.1(e) are sequentially arranged in the member transition table. It can be seen
that the MTBs seen in Figure 3.1(f) are sequentially stored in the member bitmask table
seen in Figure 3.2. It can be seen in Figure 3.2 that the address mapping table stores
the bitmap and the base addresses for each of the groups in it. It should be noted that
all the data in the tables are stored first for GO, followed by G1 in a successive manner.

The transitions shown in Figure 3.2 are shown in their pre-encoded form to explain
the idea behind the memory organization. In actual implementations, the transitions are
stored in their encoded form, i.e., as a combination of the leaderID and the memberID.
Figure 3.2 shows the bitmap and the bitmask in the binary format while all the other
data such as the statelDs, addresses etc., are represented in the decimal number format
for simplicity. The bitmap corresponding to the character ‘a’ is shown in the right (least
significant bit position), while the bitmap corresponding to the character ‘h’ is shown in
the left (most significant bit position). Similarly, the MTB corresponding to the unique
transition index ‘0’ is shown in right, while the one corresponding to the index ‘7’ is
shown in the left.

3.1.3 Decompression

This section details how the compressed state transition corresponding to a state-character
combination is fetched from the above mentioned tables. As part of the decompression,
the current state is first decoded into its leaderID and the memberID. If the memberID
corresponding to the current state is ‘0’, then the the current state is a leader state, while
it is a member state if not. If the current state is a leader state, then the compressed
state transition is identified from the leader transition table. The location of the com-

48

3.1 Member State Bitmask Technique

pressed state transition is calculated by performing the population count operation on
the bitmap which is added to the leader base address fetched from the address mapping
table.

On the other hand, if the current state is a member state, the bitmask bit correspond-
ing to the unique transition index in the MTB decides the next state. If the bitmask
bit at the unique transition index is ‘1’, it signifies that the transition corresponding
to the index is not compressed. So, the compressed state transition is fetched from the
member transition table. The location of the transition in the table is calculated by
performing a population count operation on the MTB, which is added to the cumulative
sum of transitions and the member base address. If the bitmask bit corresponding to the
unique transition index is ‘0’, it signifies that the state transition in the member state
was compressed during inter-state compression step. In such a case, the compressed
state transition is fetched from the leader transition table similar to how the compressed
transition was fetched in the case of the leader state.

3.1.3.1 Decompression - An Example

The compressed state transition fetch for character ‘f” in state ‘4’ is used as an example
to explain the decompression process. In Figure 3.3, the specific locations in the tables
which are accessed are highlighted in green, while the bits of interest in the bitmap and
the MTB are highlighted in red.

As shown in Figure 3.3(a), the leaderID and the memberID corresponding to state ‘4’
are ‘0" and ‘3’, respectively. Since the memberID of the state has a non-zero value, the
current state is a member state. The leaderID, i.e., ‘0’ is used as the address to fetch
the various base addresses and the bitmap from the address mapping table. As shown
in Figure 3.3(b), the population count operation is performed on the bitmap to generate
the unique transition index corresponding to the character. This is also referred to as
the leader offset.

Since state ‘4’ is a member state in GO, the bitmask bit at the leader offset position is
first checked to identify the location of the compressed transition. So, the MTB is first
extracted from the member bitmask table. The address of the MTB is directly calculated
by adding the memberID to the bitmask base address (MBT BA). Since the memberID
and the bitmask base address for GO are 2 and 0 respectively, the MTB and the cu-
mulative sum of transitions are fetched from location ‘2’ in the member bitmask table.
After locating the MTB, it is examined to identify if the state transition of interest was
compressed during the inter-state compression step. Since the bitmask bit at the leader
offset position is ‘1’, the transition corresponding to the state character combination is
not compressed and has to be fetched from the member transition table. The location of
the compressed state transition is calculated by adding an offset address to the member
base address. The offset address consists of two components, i.e., the cumulative sum
of transitions which identifies the total number of member transitions stored prior to
the member state of interest and the member offset, which is calculated by performing
the population count operation on the MTB. The member offset calculation shown in
Figure 3.3(c) identifies the offset address of the compressed state transition of interest

49

3 Bitmask: A Secondary Indexing Layer for Bitmap based Transition Compression

STATE-ID DECODING

LEADER MEMBER
[7]e[s[afs][2]1]0] statelD TRANSITION TRANSITION
TABLE MEMBER BITMASK TABLE TABLE
ofi|i1jo|o|o|1|o| LeaderlD
alz2|1)3|z2|1|0|0| MemberlD ADDR | TRANS ADDR MTB CUMStﬂTNE ADDR | TRANS
(a) 0 0 o 00000001 0 0 &
1 1 T 00001000 1 1 7
ADDRESS MAPPING TABLE 2 o 2 00100000 2 2 2
T T 3 2 3 00000001 3 3 3
ADDR | o | g | ga | BITMAP 4 0 4 10001000 0 4 3
5 3 5 10001000 2 5 4
o | o| o | om11112
6 o & 4
1 7 4 4 [1111111
7 0 7 5
<—Unigue Transition Index
<—Character Axis—— 8 1
hefedchba Bitmap for ‘3’ set s c 76543210
|0|§|1|111|1|1|1| to 0 since start 10 - [oJo]1TeJoJofo]0]
addressin LTTis 0 1 0] | | | | Member offset
12 3 Eﬁ*&ﬁ@ﬂ ojojojo i
77771 ENEA Y EN () S 5 | o Fomeutten
. vy 14 &
(b)

0+0+0+0+0=0

1+1+1+1+1+0=5
(c)

Figure 3.3: Representation of the compressed DFA with respect to MSBT decompression sys-
tem

within the member transitions corresponding to the member state. In this example, the
member base address, the member offset and the cumulative sum of transitions are ‘0’,
‘0’ and ‘2’, respectively. So, the compressed state transition is fetched from address loca-
tion ‘2’ in the member transition table, which is the same as the transition corresponding
to the state transition for ‘4’; ‘f” seen in Figure 3.1(a).

3.1.3.2 Hardware Decompression Engine for MSBT - Logical Block Level
Description

Similar to the bitmap based transition compression techniques proposed in the literature,
the decompression through the MSBT can be performed in a dedicated hardware accel-
erator. A short logical block level description of the hardware accelerator is provided
in this section while a detailed architecture of the accelerator is described in Chapter 5.
Figure 3.4 shows the block level representation of the decompression engine. The hard-
ware accelerator is composed of three processing stages and four memory blocks. The
focus of this representation is to show how the various functions described above are
mapped to each of the hardware processing stages. Each of the processing stage consists
of a memory lookup followed by a combinatorial function to calculate the address for the
memory lookup in the subsequent stage. The sequential logic in the processing stages
and the memories are synchronized using the same clock signal. So, it would take a
minimum of three clock cycles to fetch the compressed transition from the transition
memories corresponding to a state-character combination.

The first stage is called as the Address Lookup Stage (ALS). In this stage, the cur-
rent state and the character are taken as the inputs, to primarily generate the address

50

3.1 Member State Bitmask Technique

LEADER

ADDRESS LOOKUP STAGE OFFSEr LEADER TRANSITION & BITMASK MEMBER
CHAR—) e omeer | —17r ADDR— FETCH STAGE FETCH STAGE
State Computation —MTAFB%';SE - —MTT_ADDR— —NEXT_STATE—
Decoding = MTB Processing
LTT Address Lookup Next State
Computation LEADER Assignment ACCEPTED
- - - —
o MBT_ADDR— rrans STATE
i |—MEMBER_ID—» ;
STATE - CHOOSE_ MZE(T;’;“ SIGNATURE
AMT MBT Address MBT MTT Address —MEMBER— I _mATGH
Lookup Computation Lookup Computation _TRANS _DETECTED
MTT Lookup
AMT_ADDR AMT_DATA LTT_ADDR MBT_ADDR MTT_ADDFMTT_DATA
| l LTT DATA l MBT_DATA
] |
LEADER MEMBER MEMBER
ADDRESS MAPPING TABLE TRANSITION BITMASK TABLE TRANSITION
TABLE TABLE

Figure 3.4: Functional description of the hardware based decompression architecture for MSBT

locations for the leader transition table and the member bitmask table. The leaderID,
decoded from the current state is first used to fetch the data from the address map-
ping table. The logic calculations related to the leader transition table and the member
bitmask table address calculations are performed in parallel in separate hardware blocks.

The second stage is called the Leader Transition and Bitmask Fetch Stage (LTBFS).
The leader transition corresponding to the unique transition index is fetched from the
leader transition table in this stage. Further, the MTB from the memory is fetched
from the pre-calculated member bitmask table address location. Then the bitmask bit
corresponding to the leader offset is identified in this stage. Simultaneously, the address
location of the compressed state transition to be fetched from the member transition
table is also calculated in a separate hardware block in this stage.

The third stage is called the Member Fetch Stage (MFS). The third stage fetches
the member transition from the computed member transition table address location,
if required. As explained earlier, the transition is fetched from the member transition
table, if and only if the current state is a member state and the bitmask bit corresponding
to the unique transition index is ‘1’. Subsequently, the next state is assigned from the
state transition which was either fetched from one of the transition tables in this stage.
Moreover, if a signature match is detected after the next state assignment, the signature
match detected signal is driven to ‘1’ for a single clock cycle.

3.1.4 Summary

There are various advantages when the bitmap is used to compress the redundant state
transitions in the DFA. Performing the transition compression using the bitmap allows
the decompression function to be performed in a dedicated hardware accelerator at fixed,
but guaranteed rates. Though the bitmap based transition compression has this advan-
tage, the various bitmap based techniques proposed in the literature do not efficiently

o1

3 Bitmask: A Secondary Indexing Layer for Bitmap based Transition Compression

compress the DFA. In order to reduce the memory requirements associated with the
bitmap storage, the existing bitmap based compression algorithms do not compress the
DFA efficiently and store a significant number of redundant transitions in the memory.

Considering the advantages of bitmap based transition compression techniques, a novel
two-dimensional transition compression method called MSBT was proposed in this sec-
tion. The MSBT uses a combination of bitmaps and an additional secondary indexing
layer called bitmask to efficiently compress the redundant state transitions in the DFA.
In the next section, an extension to the MSBT called the Leader State Transition Tech-
nique is proposed to further improve the transition compression rates through the usage
of the bitmap and the bitmask.

3.2 Leader State Compression Technique

The state transitions belonging to a state in the DFA can primarily be split into the
forward transitions and the failure transitions. The forward transitions are those state
transitions which progressively lead towards a signature match and the failure transitions
are those which do not. A majority of the state transitions in a state are the failure
transitions as only a few ASCII characters within a state lead towards a signature match.
The failure transitions in a state either leads the DFA to the root state or to one of the
states which is closer to the root state. The organization of the forward and the failure
transitions in a state completely depends on the combination of characters which are
found in the signature set. Given that there is an uncertainty in the organization of the
forward and failure transitions within a state, there is always a possibility that a forward
transition occurs between a sequence of failure transitions. In such a case, the bitmap
alone may not always be effective in compressing the redundant state transitions in a
state.

Unigue Transition Index Unigque Transition Index Unigque Transition Index
012 3456 Leader 012 3456 0123456
| ofo[1]o]z2[o[3]o state blno 1] [2] [s ofof1]o[1]o]1]0][0])
gzs o 2|6 2{1]|ofofo]ofafo]]3] Cumulative
T 3 7 B 3 7 s[o]olo]1]o]o]o] [4] Sum of
z"l 2 iq 7 alololololol1]o E Transitions
L]
$?3 Member ¢ 7|3 7[1]ofo]o]o]o]o] 6]
States Most Repeated IE‘
012 3 456 7 Transition
g L L LD 2 D[2 012345867 012345867
3 2 = o Jal T2 I3] e 1fo]1]o2]o]1]o]1] [o]
6 = Z 5 3 P slofofo[1]o]ofo[1] [4]
(a) 6 a 5 6|lofofof1]o]o]o]1] 6]
a
Most Repeated IE‘ (c)
Transition
(b)

Figure 3.5: (a) Compressed DFA after the MSBT (b) Compressed DFA after LSCT (c) The
LTB & the MTB for each state

52

3.2 Leader State Compression Technique

In the MSBT, the redundant state transitions in the member states are first com-
pressed using the bitmap and then through the MTB. So, if a redundant state transition
is not compressed in a member state just because it is blocked by a forward transition, it
can possibly be compressed during the inter-state compression step through the MTB.
On the other hand, in the case of the leader state, there is no secondary indexing after
bitmap based compression. Due to this reason, some of the redundant state transitions
in the leader states are not effectively compressed. Figure 3.5(a) shows the compressed
transitions generated after the MSBT for the DFA considered in Figure 3.1(a). The state
transition corresponding to the unique transition indices 0, 2, 4 and 6 in state 0, which
is the leader state of GO leads to the same next state. It should be noted that these state
transitions are identical but are not adjacent to each other and are not compressed just
because they are blocked by several state transitions which are different from them.

In order to address this inefficiency in the transition compression in the leader states,
a secondary layer of indexing called the Leader Transition Bitmask (LTB) is proposed.
The idea behind the usage of the LTB to compress the redundant state transitions in the
leader states is an extension of the MSBT and is called as the Leader State Compression
Technique (LSCT). The details behind the LSCT and the LTB are detailed below.

3.2.1 Leader Transition Bitmask

As part of the LSCT, a single most repeated state transition is identified in the leader
state by sorting all the state transitions in the unique transition list based on the fre-
quency of their occurrence. Generic sorting algorithms such as quick sort [85] can be
used to identify the most repeated transition. After determining the single most repeated
state transition, an LTB is created for the leader state. A state transition in the unique
transition list is compressed if it is identical to the most repeated state transition. The
bit position corresponding to the unique transition index in the LTB is set to 0, if the
index contains the most repeated state transition. If not, the bit position corresponding
to the LTB is set to 1. So, in this way, the most repeated transition which is likely to
be the failure transition need not be stored multiple times. The LTB is populated after
performing the inter-state compression step.

Since the LSCT is a logical extension of the MSBT, the intra-state compression and
the state grouping steps are also performed in the LSCT. However, as part of the inter-
state compression step in the LSCT, the redundant state transitions are first compressed
using the MTBs and then through the LTB. Figure 3.5(b) shows the compressed DFA
after the inter-state compression step in the LSCT. In this particular example, the most
repeated state transition in both the leader states is ‘0’. After the LSCT, the LTB and
the MTBs corresponding to the leader and the member states are shown in Figure 3.5(c).
For example, the entry corresponding to the unique transition index ‘2’ for state ‘0’ has
a ‘0’ in the LTB. This represents that the leader transition corresponding to the entry is
the most repeated transition. On the other hand, the entry corresponding to the unique
transition index ‘3’ in state ‘0’ has a ‘1’ in the LTB, which represents that the leader
transition corresponding to the entry is different from the most repeated transition.

93

3 Bitmask: A Secondary Indexing Layer for Bitmap based Transition Compression

As seen in Figure 3.5(b), the compressed DFA after the LSCT only consists of a total
of 17 compressed transitions? in comparison to 23 compressed transitions in the case of
the MSBT. The cost paid for the additional compression is the control memory used
to store the LTB for each leader state. However, this additional storage cost results in
an improved transition compression, and in turn results in a reduced transition memory
usage. Since the LSCT is an improvement over the MSBT, the core ideas with respect
the state encoding and the bitmask storage are retained for implementation purposes.

3.2.2 Compressed DFA Organization - LSCT

The compressed DFA generated after the LSCT is organized into three tables. The
compressed DFA organization in the LSCT is very similar to that of the MSBT and
the tables are split into the transition and the control memories. The compressed state
transitions across all the states (both leader and member) from all the groups are con-
solidated and stored in a single Transition Table (TT). The Bitmask Table (BT) and
the Address Mapping Table (AMT) belong to the control memories. The bitmask table
consolidates and stores the LTBs and the MTBs across all the states from all the groups.
Similar to the bitmask storage in the MSBT, the cumulative sum of transitions is stored
together with the MTB and the LTB. The address mapping table stores the address of
the first bitmask (LTB in this case), the address of the first compressed transition, the
bitmap and the most repeated state transition for each of the groups. The address of
the first bitmask and the first compressed transition are referred to as the bitmask base
address and the transition base address respectively.

Figure 3.6 shows the organization of the compressed DFA into the transition and
control data for the example considered in Figure 3.5. The storage of the compressed
transitions in the transition table is showed on the right in Figure 3.6. For each of
the groups, the leader transitions are stored first, followed by the member transitions.
Similar to the MSBT, the compressed transitions corresponding to GO are stored first
followed by G1. As far as the bitmask table, the LTB is stored first followed by the
MTBEs for all the member states along with the cumulative sum of transitions. As seen
in Figure 3.6, the address mapping table stores the base addresses along with the bitmap
and the most repeated transition.

3.2.3 Decompression

The decompression process in the LSCT is very similar to that of the one proposed in the
MSBT. As a first step, the current state is decoded into its leaderID and the memberID
to identify if the current state is a leader or a member state. Irrespective of whether the
current state is a leader or a member state, the population count operation is performed
on the bitmap to identify the unique transition index corresponding to the incoming
character. The unique transition index is also referred to as the transition offset (similar
to the leader offset in the MSBT) in the case of the LSCT.

2The total number of compressed transitions generated is the sum of the leader transitions, the member
transitions and the most repeated state transition per leader state

o4

3.2 Leader State Compression Technique

ADDRESS MAPPING TABLE TRAMSITION TAELE
T BT REPEATING
ADDR | oo | Ba BITMAP TRANS ADDR | TRANS
0 0 0 | 01111111 0 0 1 Group O
1 7 5 11111111 0 1 2 Leader
2 3 Transitions
3 6
BITMASK TABLE = = Group O
CUMULATIVE 5 2 Member
ADDR | BITMASK Transitions
sUM 6 3
o 00101010 o 7 1
Group 1
1 00000001 3 8 2
Leader
2 00001000 4 9 3 T it
3 00100000 5 10 6 ransitions
4 00000001 6 11 3
Group 1
5 10101010 0 12 4 Memb
6 10001000 4 13 4 T emit.er
7 10001000 1 14 5 ransitions
% : / ,, : 4
Control Memories Transition Memory

Figure 3.6: The compressed DFA organized into the AMT, BT and the TT after LSCT tran-
sition compression

If the current state is a leader state, then the bit position corresponding to the unique
transition index in the LTB is first investigated. If the bitmask bit is ‘1’, this represents
that the state transition corresponding to the character is not compressed during the
inter-state compression step and the compressed transition is fetched from the transi-
tion table. The location of the compressed transition is calculated by performing the
population count operation on the LTB which is added to the transition base address of
the group. If the bit position at the unique transition index in the LTB is ‘0’, then the
most repeated state transition is directly assigned as the next state.

If the current state is a member state, then the bit position at the unique transition
index is first investigated in the MTB, and then in the LTB if needed. If the bit position
corresponding to the unique transition index in the M'TB is ‘1’, this represents that the
state transition of interest was not compressed during the inter-state compression step.
So, the compressed state transition is fetched from the transition table. The location
of the compressed transition is calculated by performing the population count operation
on the MTB which is added to the cumulative sum of transitions and the transition
base address of the group. If the bitmask bit in the MTB is ‘0’, this represents that
the state transition corresponding to the state character combination was compressed
during the inter-state compression step. So, in this case, the state transition in the leader
state corresponding to the unique transition index is assigned as the next state. The
steps which were carried out to identify the compressed transition in the leader state are
followed in this scenario.

95

3 Bitmask: A Secondary Indexing Layer for Bitmap based Transition Compression

STATE-ID DECODING

TRAMSITION
[7[6]s[«]s]2][1]o] statelD BITMASK TABLE TABLE
ojif1fofojoj1]of LeaderD ADDR | Bimmask | CUMULATIVE ADDR | TRANS
alzl1|3|2|1|o|o| MemberlD UM
0 00101010 0 0 1
(a) 1 00000001 3 1 2
ADDRESS MAPPING TABLE 2 L] & : 2
3 00100000 5 3 &
T | BT REPEATING 4 00000001 & 4 7
ADDR [l g | pa | BTMAP TRANS 5 10101010 0 5 2
[} [3} o | o1111111 o & 10001000 a4 & 3
1 7 5 | 11111112 0 7 10001000 [5 7 1
4—Character Axis . . 5 2
hgfedcha 4-Unigue Transition Index— 9 3
|D|1|1|1|1|1I1|1l 76543210 10 6
[oJo]1]o]o]o]a]o] 11 3
ij1j11j1(0 12 a
e g olo[olo[0)
;'—/ 13 4
1+1+1+1+1+0=5 Member 14 E
0+0+0+0+0=0

Bitmap for ‘a’ set Offset

(b) to 0 since start (c)
address in TT is 0

Figure 3.7: Representation of the compressed DFA with respect to the LSCT decompression
system

3.2.3.1 Decompression - An Example

The transition fetch corresponding to character ‘f’ in state ‘4’ in the DFA shown in
Figure 3.1(a) is used as an example to explain the decompression process. The memory
locations which are accessed as part of the decompression are shown in green, while the
specific bits of interest are shown in red in Figure 3.7.

As shown in Figure 3.7(a), state ‘4’ is first decomposed into its leaderID and the
memberID. Since the memberID corresponding to state ‘4’ is 3, it is a member state
in group 0 (since the leaderID is 0). The leaderID is used to fetch the base addresses,
the bitmap and the most repeated transition from the address mapping table. The bit
position corresponding to character ‘f” in the bitmap is ‘1’. This represents that the
state transition corresponding to character ‘f’ in state ‘4’ was not compressed in the
intra-state compression step. The unique transition index corresponding to character
‘f is ‘5’ and is calculated by performing the population count operation as shown in
Figure 3.7(Db).

As a next step, the LTB and the MTB are fetched from address locations ‘0’ and ‘3’
from the bitmask table, respectively. The LTB address is the same as the bitmask base
address stored in the address mapping table, while the memberID added to the bitmask
base address generates the address location from which the MTB is fetched. Since state
‘4’ is a member state, the MTB is first investigated. The bit position corresponding to the
unique transition index is in the MTB is ‘1’. So, this represents that the state transition
of interest was not compressed during the inter-state compression step. So, the location

56

3.2 Leader State Compression Technique

of the state transition to be fetched from the transition table is calculated by adding O,
0 and 5, which are the transition base address, member offset and the cumulative sum of
transitions, respectively. The member offset is calculated by performing the population
count operation on the MTB as shown in Figure 3.7(c). The compressed state transition
is fetched from the transition table address location ‘5’. The compressed transition, ‘2’
which is fetched from the transition table is the same as seen in the uncompressed DFA
shown in Figure 3.1(a).

3.2.3.2 Hardware Decompression Engine for LSCT - Logical Block Level
Description

Figure 3.8 shows the logical block level description of the accelerator which is used to
perform the decompression corresponding to the LSCT. Similar to the one shown in the
MSBT, the intention of this section is to show the mapping of the specific functions
which are performed as part of the decompression into a hardware accelerator system.
The decompression engine consists of three processing stages. Similar to the MSBT, each
stage consists of a memory lookup followed by a logic function to generate the address
for the memory access in the subsequent stage. The sequential elements in the logic
block and the memories are synchronized using the same clock signal. So, it would take
a minimum of three clock cycles to identify the compressed transition corresponding to
the state character combination.

The first stage is called as the Address Lookup Stage (ALS). In this stage, the state
identifier is first decoded into the leaderID and the memberlID from which the leaderID is
used to fetch the data from the address mapping table. The transition offset computation
is performed from the bitmap, as it is required to scrutinize the data in the LTB and the
MTB. Simultaneously, the address locations from which the LTB and the MTB have to
be fetched are calculated in parallel to the transition offset computation.

LEADER

ADDRESS LOOKUP STAGE OFFSEr] BITMASK FETCH STAGE TRANSITION
—CHAR—» —LTB_ADDR—» FETCH STAGE
TT_BASE
State Transition Offset ™ ADDR . ——TT_ADDR— ——NEXT_STATE—»
Decoding Computation - LTE & MTE Processing Next State
LEADER Assignment ACCEPTED
core |—MTB_ADDR—» o Thans " orate —
i |—MEMBER_ID—> .
STATE REPEATED Lookup CHOOSE_ Msgf;ax;(k SIGNATURE
AMT BT Address M TRANS TT Address |—REPEATED—| T _matH
Lookup Computation - Computation _TRANS _DETECTED
MTT Lookup
AMT_ADDR AMT_DATA MET_ADDR MTT_ADDFMTT_DATA
‘ MBT_DATA
|
ADDRESS MAPPING TABLE BITMASK TABLE T“‘:_':-“'B':'E'U”

Figure 3.8: Logical block level description of the hardware based decompression engine for the
LSCT

o7

3 Bitmask: A Secondary Indexing Layer for Bitmap based Transition Compression

The second stage is called as the Bitmask Fetch Stage (BFS). The addresses computed
in the previous stage are used to fetch the bitmasks from the bitmask table. Unlike the
member bitmask table in the MSBT which was a single port memory, the bitmask table
is proposed to be architected using a dual-port memory. This would allow the LTB and
the MTB to be simultaneously fetched in a single clock cycle. Once the bitmask data
is fetched from the table, the LTB and the MTB are scrutinized to identify the bitmask
bits corresponding to the incoming character. Simultaneously, the address location of
the compressed state transition to be fetched from the transition table is also calculated
in this stage.

The third stage is called as the Transition Fetch Stage (TFS). The compressed state
transition is fetched from the transition table based on the computations performed in
the previous stages. Depending on whether the incoming state is a leader or a member
state and the bitmasks, the next state is assigned either from the transition fetched from
the transition table or the registered most repeated transition. Furthermore, it is also
checked if the identified next state results in a signature match in this stage.

3.2.4 Summary

In the case of the MSBT, since the bitmap alone is used to compress the redundant
transitions in the leader state, some of the failure transitions are not effectively com-
pressed in the leader state. So, the leader transition bitmask was proposed to effectively
compress the redundant state transitions in the leader state after performing the MSBT.
The idea of compressing the redundant transitions in the leader state in combination
with the MSBT is called as the LSCT. Though an additional cost is incurred to store the
bitmask for the leader states, multiple redundant state transitions in the leader states
can effectively be compressed through this proposal. The next section describes the
experimental evaluation of the MSBT and the LSCT.

3.3 Experimental Evaluation

3.3.1 Signature Sets

The MSBT and the LSCT are thoroughly evaluated using a combination of 5 different
signature sets. Table 3.1 shows an overview of the signature sets which are used for the

Table 3.1: Signature sets used for evaluation

Signature Set || # Signatures | # DFA States | # State Transitions
Snort34 34 13834 3541504
Snort31 31 19522 4997632
Snort24 24 13882 3553792

Exact_Match 500 15149 3878144
Bro217 217 6533 1672448

o8

3.3 Experimental Evaluation

evaluation. Ezact_match is a set of 500 synthetic string signatures generated using the
regex tool [86] whose average signature length is about 50 bytes. Bro217 is a set of 217
regular expressions extracted from the Bro intrusion detection system [87]. The other
3 signature sets, i.e., the snort24, snort31, snort34 are a set of 24, 31 and 34 regular
expressions extracted from the Snort intrusion detection system [88]. The signatures
were first converted into their corresponding DFA representations using the regex tool
[86]. Columns 3 and 4 in Table 3.1 show the total number of states and the state
transitions in the generated DFA.

After the signature sets were converted into the DFA, the redundant transitions are
compressed using the MSBT and the LSCT. The various steps in the MSBT and the
LSCT were implemented using unix AWK scripts. The experimental evaluation dis-
cussed in this section was performed in an Intel Xeon server CPU running at 4.4 GHz
with 500GB of memory. The state grouping algorithm proposed in FEACAN [4] is used
to group the DFA as part of the state grouping step in the MSBT and the LSCT. The
authors in [4] mention that the transition compression results do not vary when the
transition threshold T is varied between 80-95%. So, based on this observation, the
transition threshold, T is set to 80% for the state grouping step in this evaluation.

Table 3.2 shows the compressed DFA separated into the leader and the member states
after the state grouping step. Column 2 in Table 3.2 shows the total number of groups
generated, while columns 3 and 4 in Table 3.2, respectively show the total number of
leader states and the member states generated after the state grouping step. Since there
is only a single leader state for each group, the total number of leader states generated is
identical to the total number of groups. The remaining states in the DFA are organized
across various groups as member states. The actual number of member states in each
group varies depending on multiple factors such as the bitmap, the transition threshold,
T and the characteristics of the signature set.

Table 3.2: Signature characteristics after bitmap compression and state grouping

Signature Set || # groups | # Leader States | # Member States
Snort34 575 575 13259
Snort31 584 584 18938
Snort24 538 538 13344

Exact_Match 298 298 14851
Bro217 173 173 6360

3.3.2 Transition Compression Rate (TCR)

The transition compression rate is the percentage of the number of transitions that are
compressed to the total number of transitions in the original DFA. A higher compression
rate infers that a higher number of redundant state transitions are compressed in the
DFA. Figure 3.9 compares the compression rate achieved by the MSBT and the LSCT in
comparison to the theoretical maximum compression limit. Additionally, the compres-

99

3 Bitmask: A Secondary Indexing Layer for Bitmap based Transition Compression

100 —
§ - - i - _
) N ey N
I a _
=) M 7
.9 N 1 [
2 96 a
e _
:
S 94| .
= 1f
.S BN’
Z 920 NEL -
=] ENRA
< 1100
90 T I —

A1 AL
Snort34 Snort31 Snort24 Exact_Match Bro2l17
I Theoritical limit] A-DFABIFEACANIMSBTILSCT |

Figure 3.9: Comparison of transition compression rate across various techniques

sion results are also compared against that of the A-DFA and FEACAN. The A-DFA
and FEACAN represent the state-of-the-art software and hardware oriented transition
compression techniques and are subsequently chosen for comparison. The algorithmic
pseudocode available in [4] was used to reproduce the transition compression results for
FEACAN [4]. The software implementation of the A-DFA which is available as part of
the regex tool [86] is used to generate the compression results for the A-DFA3.

As seen in Figure 3.9, a 4-5% improvement in the transition compression rate is ob-
served in the MSBT in comparison with FEACAN in most of the signature sets. An
additional 0.2-0.5% improvement in the transition compression rate is observed in the
LSCT in comparison to the MSBT. In order to better understand the results, Table 3.3
compares the average number of compressed transitions generated per state across var-
ious methods. Columns 2 and 3 in Table 3.3, respectively show the average number of
member transitions generated per state member state after FEACAN and the MSBT. It
is clearly seen from the table that the improvement in the compression rate in the MSBT
is a direct consequence of using the MTBs to compress the redundant state transitions in
the inter-state compression step. About 50-80% of the member state transitions in FEA-
CAN are redundant which are efficiently compressed by the introduction of the MTB in
the MSBT. Similarly, the improvement in the compression rate in the LSCT is attributed
to the introduction of the LTB in the LSCT. Columns 4 and 5 in Table 3.3, respectively
show the average number of leader transitions per leader state after the MSBT and the
LSCT. It can be observed from the table that about 30-60% of the leader transitions are
redundant and are effectively compressed in the LSCT.

3The parameter k in A-DFA was set to 1 which allows to achieve the best transition compression results
in the A-DFA [2].

60

3.3 Experimental Evaluation

Table 3.3: Comparison of the average number of transitions in the member state after compres-
sion

#Avg. Member Trans./state || #Avg. Leader Trans/state
Signature Set || FEACAN MSBT MSBT LSCT
Snort34 17.12 2.16 43.53 13.98
Snort31 18.38 5.18 52.66 14.63
Snort24 17.49 3.14 51.07 19.13
Exact_Match 10.62 5.84 104.96 82.42
Bro217 19.27 6.74 79.66 56.80

The A-DFA achieves the best transition compression results when compared with
all the bitmap based compression techniques and is also close to the theoretical limit.
However, a closer look at the results from Table 3.4 will detail the cost paid for the high
transition compression rate in the case of the A-DFA. Columns 3, 4, 5 and 6 represent the
average number of transitions that have to be fetched from the memory before identifying
the compressed transition in the A-DFA, FEACAN, MSBT and LSCT, respectively.
Column 2 represents the maximum number of transitions that have to be fetched from
the memory in the case of the A-DFA before identifying the compressed transition. The
numbers shown in columns 3 to 6 are directly calculated from the respective compressed
automata representations. The data in column 2 and 3 are calculated by analyzing the
compressed DFA generated through the A-DFA compression mechanism. The software
implementation of the A-DFA was used to calculate these numbers.

Table 3.4: Average number of transitions fetched before fetching the compressed state transition

Signature Set A-DFA FEACAN | MSBT | LSCT
Max. | Avg. Avg. Avg. Avg.
Snort34 1036 9.8 1.06 1.01 1.01
Snort31 288 | 12.84 1.07 1.02 1.02
Snort24 1109 | 21.01 1.07 1.01 1.01
Exact_Match 26 6.65 1.04 1.02 1.03
Bro217 44 | 10.05 1.07 1.03 1.03

Columns 2 and 3 clearly show that multiple tens of transitions have to be fetched
from the memory before identifying the compressed transition corresponding to the
state character combination in the case of the A-DFA. Simulations performed in [4] also
show similar results to what has been shown in Table 3.4 in the case of the A-DFA. The
additional memory bandwidth that is required to search the compressed state transition
is the cost paid by the software oriented techniques such as the A-DFA. On the other
hand, in the case of the bitmap based techniques, only a maximum of 2 memory accesses
are required to fetch the compressed transition. The best case scenario to identify the
compressed transition is a single memory fetch in all the cases. However, the ability to

61

3 Bitmask: A Secondary Indexing Layer for Bitmap based Transition Compression

Table 3.5: Parameters used for memory usage estimation

Bit-Width (in bits)
Parameter
FEACAN | MSBT LSCT
LTT Base Address 18 16 -
MTT Base Address 18 16 -
TT Base Address - - 18
MBT Base Address - 16 -
BT Base Address - - 16
MTB & LTB - Variable | Variable

Bitmap 256 256 256
Transition 20 20 20

fetch the compressed transition without introducing additional memory bandwidth is
the differentiating factor in the case of bitmap based transition compression techniques.

3.3.3 Estimated Memory Usage

After evaluating the achieved transition compression rates, the amount of on-chip SRAM
space required to store the compressed DFA is estimated in this section. Table 3.5 lists
the assumptions pertaining to the width of the various information that is stored in the
memories. The details associated with the compressed DFA storage is not discussed in
detail in FEACAN [4]. So, the memory space required to store the compressed DFA
generated by FEACAN is also estimated together with the MSBT and the LSCT.

Since the ASCII character set is used for DPI, the width of the bitmap in all the
methods is set to 256 bits. The compressed state transition is represented through 20
bits which allows to uniquely represent a DFA consisting of a maximum of 22" states,
which is much higher than the number of states in the DFA’s used for evaluation. The
base address widths for the various tables is chosen in such a way that the compressed
information is addressable using the assumed values. Since the width of the bitmask
varies depending on the number of transitions compressed in the intra-state compression
step, it is rounded-off to the nearest byte which varies depending on different signature
sets?.

Figure 3.10 shows a comparison of the estimated memory footprint of the compressed
DFA generated across various methods. The estimated memory footprint is differentiated
into the transition and the control memory. The memories which store the compressed
state transitions are referred to as the transition memories while the others are referred
to as the control memories. It can be seen from Figure 3.10 that a small improvement
of 4-5% in the transition compression rate in the case of the MSBT results in a 50%
reduction in the overall memory footprint of the compressed DFA in comparison to

4The theoretical maximum width of the bitmask can be 256 bits and this corresponds to a scenario
where none of the state transitions in a state are compressed as part of the inter-state compression
step.

62

3.3 Experimental Evaluation

1,000 |- .
m
e
= 800 - 8
3
g 600 - 8
[} - o
= : i
g 400p ; 3 |
£ 5 g 117
= 200 | 3 % g /
~ 7

0 AT

Snort34 Snort31 Snort24 Exact_Match Bro217

BFEACAN Trans. HFEACAN Cont. EIMSBT Trans.
] MSBT Cont. [l LSCT Trans. Ll LSCT Cont.

Figure 3.10: Comparison of transition and control memory usage across various techniques

FEACAN. Similarly, in the case of the LSCT, even a very minute (~0.5%) increase in
the transition compression rate results in a significant 5 — 10% reduction in the memory
footprint when compared with the MSBT.

It should also be noted from Figure 3.10 that there is a significant difference between
the transition and control memory usage between FEACAN and the proposed tech-
niques. FEACAN only stores the base addresses and the bitmap for each of the groups
as part of the control data. So, the control memory portion only represents a very negli-
gible portion of the overall memory usage, while a major portion of the memory is used
to store the compressed state transitions as shown in Figure 3.10. On the other hand,
in the case of the MSBT and the LSCT, a considerable portion of the overall memory is
used by the control memories to store the bitmasks, which in turn efficiently compresses
the redundant state transitions.

As seen in Figure 3.10, the Exact_Match signature set is an exception where the
estimated memory required to store the compressed DFA in the case of the MSBT and
the LSCT is slightly higher than FEACAN. The average length of the bitmask in the
case of the Exact_match signature set was about 112 bits, which when stored for each
member state required a considerable amount of on-chip memory. Nevertheless, the
overall transition compression achieved in the case of the Exact_Match signature set in
the case of the MSBT and the LSCT is higher than FEACAN.

The memory space required to store the compressed transitions in the case of software
based techniques such as the A-DFA, depends on the chosen memory layout [89] and so
is not compared with the proposed techniques.

63

3 Bitmask: A Secondary Indexing Layer for Bitmap based Transition Compression

3.3.4 Functional Evaluation - Software Model

The functionality of the MSBT and the LSCT based signature matching engines was
verified through a software based model. Verifying the functional correctness of the
proposed techniques is paramount as the DPI applications cannot afford a true negative
during the signature matching step. Figure 3.11 shows an overview of the software based
simulation setup which is split across four steps.

In the first step, the signature set is first converted into the DFA using the regex tool
[86]. This tool first converts the signatures into the NFA and then to its corresponding
DFA representation.

The second step consists of two different functions. Firstly, the DFA is compressed
through the MSBT and the LSCT and the corresponding compressed DFA is generated.
A compiler was developed using the UNIX AWK script to perform this process. The
resulting compressed DFA was converted into the table formats as described in sections
3.1.2 and 3.2.2 through the compiler. Secondly, a synthetic payload byte sequence is
generated by the traffic generator which is injected into the signature matching engines
to verify their functionality. The traffic generation methodology proposed by Becchi
et al. [90] is used to generate the byte sequence for each of the signature sets. The
model proposed in [90] generates the payload byte sequence based on the probability of
maliciousness, Py. In this process, the traffic generator takes the NFA or the DFA as
the input and generates a sequence of characters, where each character in the sequence
is decided based on the defined Py value by simultaneously traversing the automata®.
The Py value is generally chosen between 0 and 1, where a lower Py value indicates a
lower probability of the generated trace consisting of signatures in it. The traces were

5A detailed description of the traffic generation function is described in Appendix A

Automata Generation Transition Signature Matching Verification
Compression
5'8’::'—'“ » MSBT Compiler > MSBT :qasri?gna‘ture »| Comparison of results
€ atening from DFA and MSBT
h 4 1
NFA DFA ~ DFA based S-lgnature
Matching
v
. Comparison of results
»{ LSCT Compiler p| LSCTbased Signature » from DFA and LSCT
Matching
A
> Traffic Generator

Figure 3.11: Overview of the software based simulation environment to verify the transition
compression

64

3.4 Conclusion

individually generated for each of the signature sets corresponding to 4 different Py
values, i.e., 0.35, 0.55, 0.75 and 0.95. The traffic trace generated with the Py; value of
0.35 represents the average case, while a traffic trace generated with the Py; value of
0.95 represents the worst case scenario [90]. A total of 1IMB payload byte sequence was
generated corresponding to each of the Py values. The process of verifying the signature
matching engines through the synthetic traces allows to verify the signature matching
engines across a multitude of scenarios ranging between the average case to the worst
case scenario.

In the next step, the generated traces are injected into the MSBT, LSCT and the
DFA based signature matching engines. The core part of the signature matching in
both the MSBT and the LSCT is the decompression function. The signature matching
starts with the root state being assigned as the current state. The compressed state
transition corresponding to a current state character combination is identified during the
decompression process and is assigned as the next state. For the subsequent character,
the identified next state is assigned as the current state and the process continues further.
The MSBT and the LSCT based signature matching engines generate an alert if a
signature match is identified in the trace. The generated traces are injected into a DFA
based signature matching engine implemented using the software available in [86]. In
this way, the signature matching results from the DFA based signature matching engines
are used as the reference to compare the results with the MSBT and the LSCT based
signature matching engines.

In the last step, the total number of signature matches generated in the MSBT and the
LSCT based signature matching engines are compared to that of the DFA based signature
matching engine. The step by step comparison across the traces were performed for all
the signature sets across all the Py values. Table 3.6 shows the signature matching
results across the different signature sets across the different Py values. It can be seen
from the table that the total number of signatures matched in the MSBT and the LSCT
based signature matching engines are identical to the signature matching results seen in
the case of the DFA. In addition to the total number of signature matches, the location
of the signature match occurrence in the byte stream was also identical between the
proposed methods and the DFA. The identical signature matching results seen in the
simulation results further show that the MSBT and the LSCT only compresses the
redundant state transitions in the DFA and the functional equality is maintained during
the transition compression process.

3.4 Conclusion

The major advantage of using the bitmap to compress the DFA is the possibility of
performing the decompression in a dedicated hardware accelerator, in turn enabling to
perform line rate signature matching. However, in the case of bitmap based compression
approaches, the bitmaps corresponding to the states have to be stored together with the
compressed state transitions. In order to minimize the storage cost associated with the
bitmaps, the existing bitmap based compression algorithms store more redundant state

65

3 Bitmask: A Secondary Indexing Layer for Bitmap based Transition Compression

Table 3.6: Comparison of signature matching results across the compression methods across

different Py values

Py; || Method Signature Sets
Snort34 | Snort31 | Snort24 | Exact_Match | Bro217
DFA 5 1 29 46 11631
0.35 || MSBT 5 1 29 46 11631
LSCT 5! 1 29 46 11631
DFA 7 2 45 117 6347
0.55 || MSBT 7 2 45 117 6347
LSCT 7 2 45 117 6347
DFA 8 1 22 331 28701
0.75 || MSBT 8 1 22 331 28701
LSCT 8 1 22 331 28701
DFA 14591 1286 22818 7841 69976
0.95 || MSBT 14591 1286 22818 7841 69976
LSCT 14591 1286 22818 7841 69976

transitions in the transition memories, resulting in inefficient transition compression of

the DFA.

Addressing this problem, two different bitmap based transition compression meth-
ods called the MSBT and the LSCT were proposed and evaluated in this chapter. The
MSBT and the LSCT compress the redundant state transitions efficiently by introducing
a secondary layer of indexing called bitmasks after bitmap based transition compression.
Though, the bitmasks have to be stored along with the compressed DFA, the resulting
improvement in the transition compression rates effectively reduces the memory footprint
of the compressed DFA. Since the proposed techniques are bitmap based, the decom-
pression can be performed in a dedicated hardware accelerator to perform signature
matching at multi gigabit line rates. The proposed methods were experimentally eval-
uated to show the improvements resulting in the transition compression rates through
the introduction of bitmasks. The MSBT and the LSCT consistently achieved transition
compression rates of 97-98%. This corresponds to a 4-5% improvement in the transition
compression rates in comparison to the existing bitmap based techniques. The simula-
tions performed as part of the memory usage estimation further showed that the memory
required to store the compressed DFA after the MSBT and the LSCT is ~50% lesser
than the existing bitmap based approaches.

Additionally, as part of the experimental evaluation, a software implementation of
the signature matching engine was designed to verify the functional correctness of the
proposed approaches. The signature matching was performed across various signature
sets against multiple synthetic traffic traces using the MSBT, the LSCT and the DFA
to represent the signatures. The signature matching results obtained after MSBT and
LSCT were identical to that of the DFA, which further validated the functional cor-

66

3.4 Conclusion

rectness of the approach. The next chapter details additional optimizations which are
performed on top of the MSBT and the LSCT to further reduce the memory footprint
of the compressed DFA.

67

4 Memory Footprint Optimizations -
MSBT & LSCT

4.1 Motivation

Since the compressed DFA is proposed to be stored in the on-chip memories after the
MSBT and the LSCT, it is paramount to reduce the memory footprint of the compressed
DFA through additional optimizations. Moreover, when a signature matching engine
is designed to perform the transition decompression, the physical boundaries of the
memories which are used to store the compressed DFA will definitely be predefined. So,
it is essential to make the memory footprint of the compressed DFA as small as possible,
as this will allow more signatures to be stored in the on-chip memories.

As discussed in Chapter 3, the memories which store the compressed DFA can broadly
be classified into the transition and the control memories. The transition memories store
the compressed state transitions, while the control memories store the control data such
as the bitmap and the bitmasks. In order to reduce the transition memory usage in the
compressed DFA, it is essential to make sure that the DFA is compressed as efficiently
as possible. Similarly, it is also important to make sure that only the essential control
data is stored in such a way that the transition decompression is performed in a lossless
manner!. So, three different optimizations are proposed for the MSBT and the LSCT
in this chapter which focus on reducing the overall memory footprint of the compressed
DFA. A short introduction to the optimizations is provided below.

e Divide & Conquer State Grouping: The Divide & Conquer state grouping
method proposes a structured methodology for the state grouping method in the
MSBT and the LSCT. The proposed state grouping method is compression-aware,
i.e., the state grouping decision is optimized to generate the best transition com-
pression results. Organizing the states into state clusters with the knowledge of
the resulting number of compressed transitions greatly reduces the number of state
transitions generated after the inter-state compression step in the proposed tran-
sition compression methods.

e Alphabet Compression: Although there are 256 characters in the ASCII char-
acter set, yet not all the characters are used to compose the signatures. Due to
this reason, when a signature set is converted into the DFA, there are certain

The compressed DFA should always be equivalent to the original DFA in terms of the signature
representation. The compression algorithm should not compress the state transitions or the associated
control data in such a way that it results in incorrect signature matching results.

69

4 Memory Footprint Optimizations - MSBT & LSCT

indistinguishable characters in the DFA, i.e., those characters whose state transi-
tions are identical across all the states in the DFA. Alphabet compression is a well
known technique which is generally used to compress the redundant state transi-
tions corresponding to these indistinguishable characters and is also orthogonal to
transition compression. So, performing the MSBT and the LSCT after performing
the alphabet compression will further improve the transition compression rates.

¢ Bitmask Compression: Unlike the two methods mentioned above which focus
on improving the transition compression rate, the bitmask compression focuses
on compressing the redundant bitmasks generated during transition compression.
Due to the predictable organization of the state transitions in the member states,
the bitmasks corresponding to certain member states are redundant and can be
compressed. The compression of these bitmasks helps to reduce the control data
generated during transition compression. However, the cost paid for the bitmask
compression is the additional processing that is incurred to identify if the bitmask
corresponding to a member state is compressed or not.

All of the above mentioned methods are explained with the MSBT. Since the LSCT
is a logical extension over the MSBT, each of the proposed techniques is applicable to
LSCT also. The proposed optimizations are explained in detail in the following sections.

4.2 Improved Transition Compression through State Grouping

4.2.1 Background

The state grouping step plays a significant role in efficiently organizing the states for
the inter-state compression step in the MSBT and the LSCT. The state grouping algo-
rithm proposed in FEACAN [4], which was originally used in the MSBT and the LSCT,
does not focus on clustering the states which would result in the best compression re-
sults. Figure 4.1 shows a scenario where the state grouping step proposed in FEACAN
when used together with the MSBT results in sub-optimal transition compression. Fig-
ure 4.1(a) shows a DFA with 8 states and 8 characters with a total of 64 state transitions.
After the intra-state compression step, the states are clustered into 3 groups as shown
in Figure 4.1(c). The transition threshold T, is set to 75%? in this particular example.
Figure 4.1(d) shows the final compressed DFA after the inter-state compression step.
As discussed in Chapter 3, all the transitions in the leader state generated after the
intra-state compression step are consolidated and stored in the memory after the MSBT.
So, more groups generated after the state grouping step will result in more leader tran-
sitions stored in the memory>. Moreover, a state should be clustered into a group with

2The Transition threshold, T of 75% is just set to explain the problem associated with FEACAN state
grouping.

SFEACAN does not discuss the implications of varying T to the number of groups generated in the
state grouping step. However, the experimental evaluation performed in this chapter identified that
the higher the value of set to T, a higher number of groups are generated during the state grouping
step.

70

4.2 Improved Transition Compression through State Grouping

Unigue Transition Index
>

——Character Axis—» >
a b cde f gh 012 3 456867
olof1f{of2|o|3|o]0 olof1fjo|2|o|3]|0
1{of1fof2|o|3|o]e 1{ofl1fjof2|o|3|o]e
w 2|e6|1]|o|2|0|3]|0]0 v 2|e6|1]|o]|2]|0|3]|0
%3010?0300 %3010?030
r alojilof2]of2]o0]0 T ajojilof2]o]2]0
w s5|(o|1|o0|3|0|3|0|a w s5|o|l1|/o|3|0|3|0|a
clof1fjofalo|3|o]s clof1|ofalo|3|o]s
7|3|1|ofalo|3|0]>5 7|3|1|ofalo|3|0]s5
a b cdef gh
1]1|1f{1|2|1|1]|0]| BMPO
1{1|1f{af{a|1|2|1]| BMPL
(a) (k)
Unique Transition Index Unigue Transition Index
—_—
012 3456 012 34586
| ofol1]efz[0]s3]0 L -~ | ofo[a]af2]0[3]0
wy wy
o 2|e6|1|ofz]|of3]0 = o 2|8
o = @ o
™ 3lo|l1|lo|7|0(3]|0 M L m 3 7
240102020 24 2
v v
012 34567 012 34567
1|of1f|of2|o|3|o]s L“h_”_. 1 1{of2|o0|3 6
s{of1]of3|o|3|o]a _H% 5 3 4
M o=
clof1]ofafo|3]o]s P 6 4 5
012 34567 ~3 012 34567
7[lafola[ol3]ols] }t } § & » [3[2[o[a[o[3]e]5]
o
(c) (d)
Unique Transition Index Unigue Transition Index
—_—
012 3 456 012 34586
| ofa]zolz]e]=]0 L | ofao]aelz]a[z]e
o SE @
o 2|6|1]o|2|0|3]|0 L 25 o 2|8
g 0= =
%3010?030 M 23 7
% alo|1]|o|2|o|2|0 = 4 2
v v
01234567 0123456867
1{of1f|of2|o|3|0]6 L 101 2(0|3 6
s{o[1[o|3|0|3|o]a | -~ 5 3 a
-
elol1fofalo|3]|o]|s| FMm (DE 6 4 5
7(3|1|oflalo|3|0]|s 7|3 4 5

(e) (f)

Figure 4.1: (a) An uncompressed DFA with 8 states and 8 charcaters (b) DFA after Intra-state
transition compression step in MSBT (c) The DFA split into 3 groups after the state
clustering step (d) DFA after Inter-state transition compression step in MSBT (e)
State 7 merged with G1 as it shares the same bitmap defying the constraint with
transition threshold (f) More transitions compressed when Inter-state transition
compression is performed after merging G1 and G2

71

4 Memory Footprint Optimizations - MSBT & LSCT

whose leader state it shares the maximum number of identical transitions, as this will
result in the least number of member transitions from the state. So, clustering a state
into the right group and simultaneously balancing the overall number of groups is very
important to achieve high transition compression rates. Though, the FEACAN grouping
algorithm clusters the states into groups, it is neither compression-aware, nor it opti-
mizes the state clusters to achieve the best transition compression results. For example,
as shown in Figure 4.1(d), performing the inter-state compression on the groups gener-
ated after FEACAN results in a total of 30 compressed transitions. However, if state
7 shown in G2 in Figure 4.1(c) is merged with G1 as shown in Figure 4.1(e), the total
number of compressed transitions generated reduces to 25 as shown in Figure 4.1(f).
This state merging is possible as the bitmap of state 7 is identical to the bitmaps of the
states in G1. FEACAN grouping algorithm creates a separate group with state 7 as the
leader state since it does not satisfy the clustering constraint associated with the transi-
tion threshold, as state 7 only has 5 (62.5% < T=75%) state transitions identical to the
leader state in G1. Although merging state 7 into G1 violates the clustering constraint
associated with the transition threshold, it results in fewer compressed state transitions
in comparison to state 7 being added into a separate group.

4.2.2 Divide & Conquer State Grouping

Addressing the shortcomings associated with the FEACAN grouping algorithm, a compression-
aware Divide and Conquer state grouping method is proposed in this section. The pro-
posed method consists of two major steps, a divide step and a conquer step as described
below:

e Divide Step: The divide step compares a state with all the available groups
before clustering the state into a group, with which the state has the maximum
number of identical transitions. In this way, the number of member transitions
generated from the state is minimized.

e Conquer Step: The conquer step combines multiple groups of states into a sin-
gle group, if and only if, the combined group results in fewer compressed transi-
tions than the compressed transitions generated from the groups before combining.
Moreover, an optimal leader state is identified for each of the groups which results
in the least number of member transitions per group after performing the inter-
state compression step.

The overall motive of the proposed method is to make sure that the states are grouped
optimally to achieve efficient transition compression results. Although an additional
processing cost is incurred to make the state step grouping compression-aware, yet this
results in an improved transition compression. The DC state grouping method consists
of four different algorithms and are described in detail below.

72

4.2 Improved Transition Compression through State Grouping

4.2.2.1 The Divide Step

The divide step performs a preliminary grouping of the states using a set of clustering
constraints. A state is clustered into a group if and only if the following clustering
constraints are met.

(i) The bitmap of the state to be clustered is the same as the bitmap of the leader
state in the group. Having an identical bitmap across all the states in the group
enables to compress the redundant state transitions between the states.

(ii) The number of states in the group is lesser than the predefined maximum number
of states, B. The typical values of B ranges anywhere between 128 and 512. The
smaller the value set to B, the higher the number of groups generated in comparison
to a higher value set to B. However, the transition compression rates do not vary
greatly depending on the chosen value of B.

(iii) A state has at least T identical transitions with the leader state of a group, where
T is called the transition threshold. A function called similarity (sim), is used to
calculate the number of identical transitions (it) between any two states. The tran-
sition threshold is identical to the transition threshold which is used in FEACAN.

The clustering constraints used for the divide step are similar to the ones used in the
FEACAN grouping algorithm. After running through the divide procedure, a DFA with
S states is split into G groups with each group ‘g’ represented as a 4-tuple (L, M, BMP,
ST), where

e L. € S, is the leader state of the group

e M € S, is the set of states in the group apart from the leader state, called the
member states

e BMP, the bitmap of the leader state in the group

e ST, the number of states in the group

During the divide step, each of the states in the DFA is compared against a set of
groups during which the clustering constraints are checked. If all the clustering con-
straints are met, a state is clustered to the group with which it has the maximum
number of identical transitions among all the groups at that time instance. Even if
one of the clustering constraint is not met, a new group is created with the state being
added as the leader state. Since the divide step is an incremental process, the number
of groups with which a state is compared during the divide procedure varies over time.
For example, at time instance ¢, a state s € S is only compared against j groups, which
have formed over time ¢. On the other hand, at a later time instance t+A, a state r €
S is compared with j+§ groups, where ¢ is the number of groups formed within the A
time.

73

4 Memory Footprint Optimizations - MSBT & LSCT

01 2 3 45 6 7 8 9 01 2 3 45 6 7 8 9
0 0
G1
1 || 2
2
-
3 1
4 3 G2
5 2
-
6
7 5
8
8 - @63
9 [T 1] 10
10 11 .
11
6
G4
7

Figure 4.2: Example of DFA states clustered into a set of 5 groups using the divide step

Figure 4.2 shows an example of the DFA being clustered into groups using the divide
step. A total of 12 states are clustered into 5 groups represented through G1 to Gb5.
Three different colors are used to represent the bitmap of the states after the intra-state
compression. The state grouping starts with state 0 and ends with state 11. State ‘0’ is
added as the leader state of G1 as there are no other groups to compare the state. After
grouping state ‘0’ state ‘1’ is added as the leader state of G2 as the bitmap of the states
‘0’ and ‘1’ do not match. This increases the overall number of groups to 2. In the case of
state ‘27, it is compared with groups G1 and G2 before eventually deciding on the state
grouping for state ‘2’. In this way, as part of the divide step, the grouping decision is
made by comparing the state with the available groups, one at a time. By making sure
that the state is added into the group with which it has the maximum number identical
transitions, the number of member transitions generated after inter-state compression is
kept to a minimal.

Algorithm 1 shows the pseudocode for the divide procedure. The processing complex-
ity associated with the algorithm is O(Slog.5).

4.2.2.2 State Reorganization

As part of the divide step, a state is clustered into one of the groups with which it has
the highest number of identical transitions during the time of comparison. However,
there are certain groups with which the state is not compared, i.e, the groups which
were created after the state was clustered, with which it may have a higher number of
identical transitions than the one to which it is clustered into. So, as part of the state
reorganization procedure, each member state in a group is compared only with those
groups which were created after the member state was clustered into its group.

74

4.2 Improved Transition Compression through State Grouping

Algorithm 1 Divide Automata States into Groups
1: for all s € S do
2. s.grp<« 0 > Initialization
3: forallgej|jeGdo

> Clustering Constraint Check (i) & (ii)

4: if (9.7 < B) & (s.BMP = g.BMP) then
5: it < sim(s,g.L)
> Clustering Constraint Check (iii)
6: if it > T then
7: if (s.grp =0) || (s.it < it) then
8: s.t « it
9: 5.9rp g
10: if s.grp =0 then > New group with s as leader
11: je i+l
12: j.L s
13: else > s added as member state in s.grp
14: s.grp(M) < s.grp(M)U s

The state s € S, which is already clustered into one of the groups in j € G, is compared
with the set of groups h € G | h N j — 0, where h is the set of groups created after s
is clustered. After the state reorganization step, the state s is added to the group with
which it has the maximum number of identical transitions, either in j or h. Since, a state
is added into the group with which it has the highest number of identical transitions,
this results in the least number of member transitions from the state during the inter-
state compression step. Algorithm 2 shows the pseudocode for the state reorganization
procedure and the processing complexity associated with the algorithm is O(Slog S).

Figure 4.3 shows an example of the state reorganization step. As part of the state
reorganization step, state ‘2’, which was originally clustered into G1 is now moved into
G4, after being compared with G3, G4 and G5. These were the groups which were
created after state ‘2’ was clustered into G1 after comparison with G1 and G2. As
shown in Figure 4.3, state ‘2’ has 2 non-identical state transitions at indices ‘3’ and ‘4’
in G1, while it only has ‘1’ non-identical state transition in G4. By reorganizing state
2’ from G1 to G4, an additional state transition in state ‘2’ is compressed.

4.2.2.3 The Conquer Step

More groups resulting from the divide and the state reorganization steps will result in
more leader transitions stored in the memory. So, it is necessary to combine the groups
whenever possible to reduce the number of leader transitions. Any two groups ¢, h € G
can be combined into a single group g, if the resulting number of compressed transitions
after combining them is fewer than the sum of the compressed transitions when they
remain as separate groups. If the above mentioned property is satisfied for the groups ¢
and h, all the states in the group h are added as member states in the group ¢. In this way,

75

4 Memory Footprint Optimizations - MSBT & LSCT

Algorithm 2 State Reorganization

1: for all g € G do
2: for all s € g(M) do

> h created after s added to g(M)

3: for all h € G do
> Clustering Constraint Check (i) & (ii)
4: if (h.ST < B) & (s.BMP = h.BMP) then
5: it < sim(s, h.L)
6: if s.it < it then
> Clustering Constraint Check (iii)
: s.4t <1t
8: s.grp < h
> State Reorganization Decision for state s
9: if s.grp # g then
10: s.grp(M) « s.grp(M) U s
012 3 456 7 8 9 01 2 32 45867 89
a | L o [TTTTTTT] ;e
1 1 b
G2 - 3 3 — @2
4 4
5 5 ™
8 8
@ - o -~ G3
11 11
Ga { 1 6 N
7 7 — G4
2 BT 7)
s { of [TTTTTTTT] s[TTTTTTTTT] I e
% Non-ldentical Transition Identical Transition

Figure 4.3: Example of state reorganization step performed on the states after the divide step

the groups which only improve the transition compression rate are actually combined
together to reduce the number of leader transitions generated. The above mentioned
property is defined as the conquer criteria along with the clustering constraints (i) and
(ii) which were defined as part of the divide procedure. A group is iterated through
all the other groups to find the best combination that will result in the least number
of compressed transitions when combined. The conquer step continues until it reaches
a point where it cannot continue further. Algorithm 3 shows the pseudocode of the
conquer step. The processing complexity associated with algorithm 3 is O(G?).

76

4.2 Improved Transition Compression through State Grouping

Algorithm 3 Conquer Step

1: conquer_done < (

2: grps < G

3: for all g € G do

4: g.trans < #CTrans(g)

5. g.mergetrans < 0

6: g.combine < g

7: while conquer_done = 0 do

8: grps_before_combine < grps
9: for all g € G do

10: for allh € G| h # g do

11: if ((9.BMP = h.BMP) & (9.ST + h.ST) < B)) then
> Conquer Condition Check
12: if (g.trans + h.trans) > [g U h].trans) then
13: if ((g.mergetrans > [gU h|.trans) | (g.mergetrans =0)) then
14: g.mergetrans < [g U h].trans
15: g.combine < h
16: if g.combine # g then
17: g(M) + g(M)Uh.LUh(M) > Merge Groups
18: grps <— grps — 1
19: g.trans <— g.mergetrans
20: if (grps_before_combine = grps) then
21: conquer_done < 1
01234567839 01234567889
6t o[[TTTTTT] ol [TTTTTT] F e

1 1
Gz - 3 3 L G2
4 4._
9|
(s
8
Ga—w 5
1 12 = G3
6 11 y.
G4 - 7 ~
2 6
= 7 - G4
2
6 Lo[[TTTTTTTT]

% Non-Identical Transition Identical Transition

Figure 4.4: State 9 merged with G2 as part of conquer step

7

4 Memory Footprint Optimizations - MSBT & LSCT

Figure 4.4 shows an example of the conquer step performed as part of the DC state
grouping method. After the divide and the state reorganization steps, state ‘9’ is origi-
nally clustered into G5 as the clustering constraint pertaining to the transition threshold
did not satisfy in the divide step. Since state ‘9’ is the only state in G5, it is also the
leader state in the group which necessitates all the 10 state transitions to be stored in
the memory after the divide step. However, after the conquer step, the state is merged
with G2 with which it shares 6 identical transitions. Thus, by combining G5 and G2, a
total of 6 transitions are additionally compressed even though the clustering constraint
pertaining to the transition threshold is violated. Since, the priority of the DC state
grouping is to reduce the number of compressed transitions, the violations can be waived.
It should be noted that two groups are merged, if and only if, the clustering constraints
pertaining to the bitmap and the number of states are strictly maintained after merging
the groups.

4.2.2.4 Optimal Leader State Identification

When the divide step is originally performed, the first state added to the group is
designated as the leader state by default and is never changed over the grouping process.
However, there could be a state among the member states, which when made as the leader
state is capable of producing fewer member transitions in the group than the default
leader state. Identifying this optimal leader state for the group improves the overall
transition compression. So, each of the member states in a group is temporarily made
as the leader, to calculate the resulting number of member transitions in the group. The
state which results in the least number of member transitions will be the optimal leader
and is finally chosen as the leader state of the group. If none of the states generate
the least number of member transitions in comparison to the default leader state, the
default leader state is maintained as the leader state in the group. Algorithm 4 shows
the pseudocode to modify the leader state. Assuming that there are k states per group
on average, the worst case time complexity to identify the best leader state in a group

is O(k).

Algorithm 4 Identify Best Leader State

1: min_trans < #member_trans with g.L

2: Add g.L to g(M)

3: for all ¢t € g(M) do

g.L <t > Make t as the Leader State
5. t.trans < #member_trans with g.L
6 if min_trans > t.trans then

7: leader <t
8
9

o

min_trans < t.trans
. g.L + leader > Optimal Leader State

Figure 4.5 shows the optimal leader identification step performed on G3. The figure
in the left shows G3 with state ‘5’ set as the leader state which generates a total of 6

78

4.2 Improved Transition Compression through State Grouping

01234567¢829 012345678239
6@ { o [TTTTTT] o TTTTTTT]
1 1
3 3
Gz—q a
9 g
b
5
Ga - °
10
11
~
6
G4 - 7 7
\“2 2

% MNon-Ildentical Transition Identical Transition

Figure 4.5: States 5 and 8 swapped in G3 as part of optimal leader state identification

member transitions within the group. On the other hand, after the optimal leader state
identification, state ‘8’ is chosen as the leader state which results in 4 member transitions
in comparison to 6 with the default case. Thus, this is a step in which the states are
reorganized internally within a group to improve the transition compression.

4.2.3 Complexity Analysis Comparison

The complexity associated with the various algorithms proposed as part of the DC is
summarized in Table 4.1. The DC method increases the complexity of the grouping
process in comparison to the FEACAN which achieves the state grouping in O(S log S).
However, the increased time complexity is the cost paid to achieve to improve the tran-
sition compression rate in the case of the DC state grouping method.

The RCDFA [5] also uses a state reorganization algorithm to reorganize the states
before performing bitmap based transition compression. As part of this algorithm, the
states are reorganized within the DFA, so that the states which have identical transitions
are placed next to each other. The authors claim the complexity of the algorithm to be
O(Slog S). However, when a state is reorganized within the DFA, the state identifier
corresponding to the reorganized states will also have to be swapped and the complete
DFA has to be updated to reflect the changes in the state modifier. The complexity
associated with this step is not accounted by the authors which increases the complexity
of the algorithm to O(S3logS). This is very high in comparison to the FEACAN and
the DC state grouping algorithms.

The time complexity associated with the A-DFA [2], the state of the art software
oriented algorithm is O(S?). In comparison to [2], the DC method splits the states into
groups in logarithmic time in the divide step and further improves the grouping in the

79

4 Memory Footprint Optimizations - MSBT & LSCT

Table 4.1: Algorithmic complexity of various algorithms proposed in DC

Algorithm Complexity

Divide Step O(Slog S)

State reorganization Step O(SlogS)
Conquer Step O(G?)
Optimal Leader State Identification O(k)

conquer step in quadratic time. Since, the number of groups is very small in comparison
to the total number of states after the divide step, the quadratic complexity associated
with the conquer step doesn’t affect the performance of the overall grouping process.
Moreover, as mentioned in [2], a huge amount of memory is required by the A-DFA
algorithm to store the intermediate data structures which makes it impractical to build
a single compressed automaton.

4.2.4 Experimental Evaluation

The signature sets which were used to evaluate the MSBT and the LSCT in Chapter 3
are also used to evaluate the DC state grouping method. In order to evaluate the effect
of the state grouping on the transition compression, the states are grouped into subsets
using the FEACAN and the DC state grouping methods separately. After this step,
the respective inter-state compression steps proposed in the MSBT and the LSCT are
performed on the generated subsets of states. The transition compression rate achieved
through the MSBT and the LSCT under both the grouping methods are calculated
and compared to show the improvement which the DC state grouping method brings.
After evaluating the transition compression rates, the estimated memory footprint of the
compressed DFA is calculated similar to the evaluations performed in Chapter 3. This
helps to understand the reduction in the memory footprint in the compressed DFA after
using the DC state grouping method.

4.2.4.1 State Grouping Results

Table 4.2 compares the number of groups (G) and the average number of Member states
Per Group (MPG) generated after performing the state grouping through the DC and
FEACAN. The G and MPG values are reported for different values of the transition
threshold (T) which is represented as a percentage of the minimum number of identical
transitions within the group. This experiment intends to show the relationship between
T and the state grouping results. So, the maximum number of permitted states per
group (B) is set to 256 in this experiment. After evaluating the effect of the transition
threshold on the state grouping results, the effect of varying the maximum number of
states is evaluated separately in the later part of this section.

In the case of FEACAN grouping, as the value of T increases, there is an increase in
the number of groups generated with a corresponding reduction in the MPG. Since the
FEACAN grouping is not compression-aware, a state is not always clustered into the

80

4.2 Improved Transition Compression through State Grouping

best group due to the strict grouping policy associated with the transition threshold.
Moreover, as the value of T increases, more new groups are formed due to the clustering
constraint imposed by the transition threshold. This can be seen in Table 4.2 in which
the G value increases with a reduced MPG corresponding to an increase in the transi-
tion threshold, T across all the signature sets. On the other hand, in the case of the
DC state grouping method, the conquer step combines the state groups with a liberal
policy associated with the transition threshold. This can be seen through state groups
converging to similar G and MPG values across different values of T. So, the G and the
MPG values are independent of the chosen T value in the DC state grouping method.

Table 4.2: Comparison of the Number of Groups and the Average Members per Group between
FEACAN & DC, B=256

T 70% 80% 90%

FEACAN DC FEACAN DC FEACAN DC

G | MPG | G | MPG G | MPG | G | MPG G MPG | G | MPG
Snort34 564 24 519 26 575 23 518 26 1163 11 519 26
Snort31 496 38 410 47 584 32 420 45 5456 3 431 44
Snort24 488 27 416 32 538 25 428 31 857 16 439 31

Exact_Match || 298 50 109 138 298 50 109 138 304 49 107 141
Bro217 137 47 91 71 173 37 98 66 273 23 94 67

Grouping

4.2.4.2 Transition Compression Rate

Table 4.3 compares the transition compression rate achieved in the MSBT, when the
FEACAN and the DC grouping are used in the state grouping step. Columns 2, 4
and 6 show the transition compression rate achieved through the MSBT across different
values of T when the FEACAN state grouping algorithm is used for state grouping.
Similarly, columns 3, 5 and 7 show the transition compression rate achieved through
the MSBT when the states are grouped using the DC state grouping method across
different values of T. It can be seen from Table 4.3 that an improvement of the order of
0.1-2% is seen in the transition compression rates in the MSBT, when the state grouping
method is modified from FEACAN to DC. The improvement is directly attributed to the
compression-aware state grouping approach proposed in the DC. Figure 4.6 compares

Table 4.3: Comparison of transition compression rate achieved in MSBT with FEACAN and
DC state grouping, B=256

T 70% 80% 90% A-DFA
Grouping FEACAN | DC || FEACAN | DC | FEACAN | DC
Snort34 98.50 98.60 98.49 98.60 97.92 98.60 99.02
Snort31 97.42 97.46 97.42 97.96 93.61 97.96 98.79
Snort24 97.92 98.61 98.05 98.61 98.09 98.62 99.09
Exact_Match 96.96 99.06 96.96 99.06 97.42 99.07 99.60
Bro217 95.34 98.43 96.61 98.44 97.06 98.43 99.57

81

4 Memory Footprint Optimizations - MSBT & LSCT

100

80 | a
60 - a
40 | N
20 a
(N

Snort34 Snort31 Snort24 Exact_Match Bro217

Percentage Difference

1% Difference Leader Transitionsll % Difference Member Transitions

Figure 4.6: Percentage reduction in the Leader and Member transitions between FEACAN and
DC grouping in MSBT, T=80%, B=256

the percentage reduction in the number of leader and member transitions generated after
the MSBT, when FEACAN and the DC are used for state grouping. The reduction in
the leader transitions is directly attributed to the conquer step, in which the groups are
merged to optimize the number of generated leader transitions. Similarly, the percentage
reduction in the member transitions seen in Figure 4.6 is attributed to the state reor-
ganization and the optimal leader identifications steps, as these steps focus on reducing
the number of member transitions in the group.

Table 4.4 compares the transition compression rate achieved through the LSCT, when
FEACAN and the DC state grouping methods are used in the state grouping step.
Since the LSCT is an improvement over the MSBT, the improvement in the transition
compression rate seen in the LSCT is very similar to the results in the MSBT. It can
also be seen from Table 4.4 that the DC state grouping, in combination with the LSCT
achieves compression results close to that of the A-DFA. Moreover, when the DC state
grouping method is used in the MSBT and the LSCT, the transition compression rate
that is achieved always converges to an optimal ceiling, irrespective of the value set to
T. This shows that the DC state grouping method is compression-aware and clusters the
DFA efficiently to result in the best transition compression results.

After evaluating the effect of the transition threshold, additional experiments are
performed to evaluate the relationship between the choice for the maximum number of
states in a group, B and the resulting transition compression rate. In this experiment,
the transition threshold is set to 80%, while the value for B is varied between 128 and
512. Table 4.5 shows the grouping and the transition compression results when B is
changed in the DC state grouping. It can be seen that the number of groups generated
slightly varies based on the choice of B. As the value for B increases, the number of

82

4.2 Improved Transition Compression through State Grouping

Table 4.4: Comparison of transition compression achieved in LSCT with FEACAN and DC
state grouping, B=256

T 70% 80% 90% A-DFA
Grouping FEACAN | DC || FEACAN | DC || FEACAN | DC
Snort34 98.97 99.04 98.97 99.04 98.85 99.04 99.02
Snort31 97.80 98.29 97.87 98.29 97.58 98.31 98.79
Snort24 98.36 98.99 98.53 99.00 98.85 99.02 99.09
Exact_Match 97.13 99.13 97.13 99.13 97.60 99.13 99.60
Bro217 95.52 98.55 96.85 98.57 97.43 98.55 99.57

Table 4.5: Comparison of transition compression achieved in MSBT & LSCT when the maxi-
mum number of states in the groups, T=80%
B=128 B=256 B=512
G | MPG | MSBT | LSCT || MSBT | LSCT G | MPG | MSBT | LSCT
Snort34 536 26 98.58 99.03 98.60 99.04 516 27 98.60 99.04
Snort31 462 42 97.93 98.31 97.96 98.29 411 48 97.98 98.31

Snort24 450 31 98.59 99.00 98.61 99.00 || 424 33 98.61 99.00
Exact_Match || 165 92 98.91 99.01 99.06 99.13 85 178 99.14 99.19
Bro217 110 59 98.36 98.51 98.44 98.57 92 71 98.47 98.60

groups generated decreases with an increase in the average number of states per group.
Since the value of B defines the room for the maximum number of states in the group,
a higher value for B enables more states with similar characteristics to be clustered
together. Though there is a very minor improvement in the transition compression rate
with a higher B, there is no drastic change in the transition compression rates due to
the variation in the value of B.

4.2.4.3 Estimated Memory Usage

Figure 4.7 shows a comparison of the estimated memory required to store the compressed
DFA, both in the case of the MSBT and the LSCT. Since the transition compression rates
achieved doesn’t depend on the value of T and B in the DC state grouping, the estimated
memory usage comparison is shown for T set to 80 and B set to 256. Although the DC
state grouping only improves the transition compression rates by 0.5-2% in comparison
to FEACAN, yet this results in a substantial memory savings of the order of 10-30%
in the compressed DFA representation. It can be clearly seen from Figure 4.7 that the
reduction in the compressed DFA’s memory footprint primarily results from the reduced
transition memory usage due to the increase in the transition compression rates. Though
the DC state grouping method generates an increased number of member states, this
doesn’t alter the associated control memory usage in the compressed DFA representation.
The observed reduction in the estimated memory usage further verifies the fact that the
optimal state grouping plays a significant role in improving the memory footprint of the
compressed DFA.

83

4 Memory Footprint Optimizations - MSBT & LSCT

500 |- g |

400 | i . |

300 |- Bl |
0 ‘ ‘ 1 t \

Snort34 Snort31 Snort24 Exact_Match Bro217

i

Estimated Memory (in K
I
]

EMSBT (FEACAN) Trans. OMSBT (FEACAN) Cont.
MSBT (DC) Trans. L MSBT (DC) Cont.
LSCT (FEACAN) Trans. J LSCT (FEACAN) Cont.
H LSCT (DC) Trans. B LSCT (DC) Cont.

Figure 4.7: Estimated on-chip SRAM memory usage to store the compressed DFA

4.2.5 Discussion & Summary

The state grouping step plays a critical role in defining the transition compression rate
that is achieved in the MSBT and the LSCT. The primary aim of the state grouping
step is to cluster the DFA and prepare it for the inter-state compression step. However,
making the state grouping algorithm compression-aware will effectively group the states
to result in better transition compression results. The existing algorithms which have
been proposed in the literature do not group states in a coherent manner and the gener-
ated groups do not always achieve the best transition compression results. So, a Divide
and Conquer state grouping method was proposed in this section which is a group of al-
gorithms that cluster the states in a compression-aware manner. The proposed method
is split into the divide and the conquer steps, where the divide step focuses on effi-
ciently clustering a state into the best possible group. After the divide step, the conquer
step combines multiple groups into a single group, provided the resulting number of
compressed transitions in the combined group is lesser than the sum of the compressed
transitions when they are stored separately. Experimental evaluation of the proposed
DC with the MSBT and the LSCT, across various signature sets showed an increase in
transition compression by about 0.5-2%. Furthermore, the improvement in the transi-
tion compression rate reduced the memory footprint of the compressed DFA by about
10-30%, which is a very significant reduction.

The additional cost paid to make the state grouping method compression-aware is
the increased complexity in the algorithms proposed as part of the DC state grouping.

84

4.3 Alphabet Compression

Considering that the state grouping is a one-time step performed during the DFA com-
pression, the additional complexity is acceptable. Moreover, performing the transition
compression in a compute platform with high processing and memory capabilities can
remove the processing cost involved in the state grouping step.

The signature matching engine designed based on the MSBT would require a logical
maximum value on the total number of groups that can be supported to fix a boundary
for the AMT. In such a case, an additional extension in the conquer step can limit the
maximum number of groups generated by combining groups together. However, this
may result in a reduced transition compression rate which is a cost that may be incurred
to limit the number of groups to be supported. So, using the DC method in this way also
grouping opens up an avenue to limit the maximum number of groups in the compressed
DFA.

4.3 Alphabet Compression

As described in Chapter 2, alphabet compression is the process of compressing the
indistinguishable characters in the character set and in turn compressing the redundant
state transitions associated with the indistinguishable characters. One of the biggest
advantages of alphabet compression is its is orthogonality to other forms of transition
compression [32]. Utilizing this advantage, this section discusses the need to combine
alphabet compression with bitmap based compression techniques and details how the
alphabet compression is combined with the MSBT and the LSCT.

4.3.1 Combining Alphabet Compression with MSBT & LSCT

The inherent idea behind bitmap based transition compression mechanisms is to com-
press the identical transitions which are adjacent to each other. However, if a sequence
of identical transitions are blocked by a transition which is different from the sequence,
the state transition following the non-identical transition® cannot be compressed.

In a DFA corresponding to the character set 3, the identical transitions corresponding
to the indistinguishable characters in a state are generally distributed over the character
axis. Moreover, the organization of the indistinguishable characters among the character
set also depends on the characters used in the signature set. So, there are chances
that the identical state transitions corresponding to the indistinguishable characters
are blocked by the forward transitions in a state. In such a scenario, bitmap based
transition compression mechanisms alone cannot compress all the redundant transitions
corresponding to the indistinguishable characters in the state.

So, a two step solution is required to compress the redundant state transitions. As
a first step, the alphabet compression should be performed to compress the redundant
state transitions corresponding to the indistinguishable characters. As a second step, the
transition compression methods such as the MSBT or the LSCT should be performed on
the alphabet compressed DFA. Performing the MSBT or the LSCT after the alphabet

4The state transition which blocks the sequence the identical transitions

85

4 Memory Footprint Optimizations - MSBT & LSCT

compression removes the intra-state and the inter-state redundancy in the alphabet
compressed DFA. So, combining alphabet compression together with the MSBT and the
LSCT further reduces the memory footprint of the compressed DFA. However, the cost
paid to combine these two methods is the requirement to store the Alphabet Translation
Table (ATT) which stores the encoded representation of the original character set.

Figure 4.8 shows a comparison of the compressed DFA corresponding to the signature
set abc and egh generated before and after alphabet compression®. Figure 4.8(a) shows
the original uncompressed DFA while Figure 4.8(b) shows the compressed DFA after
performing the MSBT transition compression alone. The uncompressed DFA consists
of 64 state transitions, while the compressed DFA after performing the MSBT consists
of 26 state transitions. Figure 4.8(c) shows the transitions which are compressed and
the ones which are not compressed in relation to the uncompressed DFA. The empty
boxes in Figure 4.8(c) are those state transitions which have been compressed through
the MSBT, while the others are the transitions which remain uncompressed. As pointed
out in Figure 4.8(c), the state transition corresponding to §(4,f)=0 is not compressed
since it is blocked by the transition §(4,e)=4, which is different from the state transition
corresponding to §(4,d)=0. This is exactly the scenario which was identified as the
drawback when the bitmap alone is used to compress the redundant state transitions in
a state.

Figure 4.8(d) and (e), respectively show the compressed DFA after alphabet compres-
sion and the compressed DFA after performing the MSBT on the alphabet compressed
DFA. As seen in Figure 4.8(e), the compressed DFA consists of 23 transitions in com-
parison to the 26 compressed transitions in the previous case. As seen in Figure 4.8(f),
the scenario observed in Figure 4.8(c) does not happen when both alphabet compression
and the MSBT are combined together to compress the redundant state transitions in
the DFA.

Since the LSCT is an improvement over the MSBT, performing the LSCT after alpha-
bet compression further enables to compress more redundant state transitions. As seen
in Figure 4.8, the failure transitions in the leader states are not fully compressed after
the MSBT and the LTB removes these redundant transitions. Figure 4.9(a) shows the
compressed DFA after performing the MSBT over the alphabet compressed DFA, while
Figure 4.9(b) shows the compressed DFA after performing the LSCT over the alphabet
compressed DFA. It can be seen that an additional 5° transitions are compressed after
the LSCT which are highlighted through the dashed blocks in Figure 4.9(b).

As explained earlier, the cost incurred to perform alphabet compression is the need
to store the ATT. For the MSBT and the LSCT implementations, the ATT will be
composed of 256 entries each of which is 8-bit wide. The width of each of the character
in the encoded character set varies depending on the number of characters that are
compressed after alphabet compression. Since the MSBT and the LSCT perform the

5The signature set consisting of the signatures abc and egh were used to explain the idea behind
alphabet compression in Chapter 2. So the same DFA is used to explain the combination of the
transition compression and alphabet compression techniques.

59 transitions are compressed after the MSBT, while 4 of them need to be stored, i.e, one most repeated
state transition per leader state.

86

——Character Axis—»
ab cdef gh
o|i1|0|0|O|4)0OfO|0O
h i1(1|2|0|0|4)0|0]|0O
o 2(1|0|3|0|4)0|0)|0O
® 3|(1|0|0|0|4)0|0D|0O
?‘ 4(1|0|0|O|4jO|5]|0
1 5|/1|0|0|0|4)0|0|B
l 6|1|0|0|O|4)0O|0O|0O
(a)
_ Modified s
Character Axis

a b cd e g h
o(1|0|0|jO)|4|0|0
i(1|2|0|0)|4(0|0

w
o 2|1|0|3|0o)4a|0|0
o 3|1|0|0|j0o)4a|0O|0O
E 4|1|0|0|0|4(5(0
9 S(1|0|0|0O)4|0|6
l 6(1|0|0|0O|4(0|0

(d)

Figure 4.8: (a-c) MSBT transition compression in a DFA without Alphabet Compression

Unigue
——Transition—»

Index Bitmap

012 3 45 a b cdef gh
o|l1|olalo [1]1]o]o]1]1]0]0]
3
&

1[1]2]o]a]o] [1]2]1]0]1]1[o]o]

2[1]o]s|of4]of [1]1]1]1]1]1]0]o0]

a4[1]ofalo]sfo] [2]1]ofo]2]1]1]1]

s[1[o]afofe] [2][2]ofof2[1[o]1]

(b)

Unigue
Transition——#
Index

Bitmap

012 3 45
o|1j0|4]|0
3
6

a b cd e g h

[1]1]o]o]1]1]0]

1[1]2]ofaJo] [2]1]1]o]1]1]0]

2[1]o]a]o]a]o] [2]2]2]2]2]1]0]

4|11|0|4|5
5 410

EECICIEYEVEY

=i =]

(e)

4.3 Alphabet Compression

“+—SIXy 31EIS

+—sIxy 21R1S

(= Y R T R =

—Character Axis—»

c d

E

h

P | | |

(=R N =R -a
(=]
RS K-

S|o|o|=-

(=]
-

=0 =]

L= T Y T S TR R]

(c)

Modified
Character Axis

c o

= il Il I
Q|mlo|T

S T N

o|o|o|m

F-Y

(=N Y]

(f)

MSBT transition compression in a DFA after Alphabet Compression

Unigue
—Transition—#
Index

012 3 45
o(1|0|4|0

[
I

[o]4]

[3]0]
5
1]

2

a
5 4

(=)

Unique
—Transition—#
Index

01 2 3 45

01 4

3

6

1[a[27] a7

a1 4

5 4|06
(b)

|E| Most Repeated Transition GO

|E| Most Repeated Transition G1

2 naﬂ%n% @ Most Repeated Transition G2

5 @ Most Repeated Transition G3

Figure 4.9: Example showing the LSCT implemented after Alphabet Compression

(d-f)

transition decompression in a hardware accelerator, 8 bits are required to represent the
encoded character set to support worst case scenarios. However, this is a negligible cost

87

4 Memory Footprint Optimizations - MSBT & LSCT

in comparison to the additional storage savings achieved due to the improvement in the
transition compression.

Combining alphabet compression together with the MSBT and the LSCT does not in-
troduce an additional latency in the corresponding decompression engines. As discussed
in Chapter 3, the first stage in the transition decompression decomposes the encoded
state representation into the leaderID and the memberID. After this step, the further
processing in the transition decompression only continues after fetching the relevant base
addresses and the bitmap from the AMT which requires a memory fetch. So, the en-
coded character corresponding to the original character can be fetched from the ATT in
parallel to the AMT memory fetch. In this way, all the information for the transition
decompression is available at the same time for the transition decompression to continue.

4.3.2 Experimental Evaluation

There are two algorithms which have been proposed in the literature to perform the
alphabet compression. The algorithm proposed by Brodie et al. [64] performs alpha-
bet compression in O(|$|2S), while the one proposed by Becchi et al. [32] performs in
O(S?|£])". Since the ASCII character set is used to define the signatures for DPI appli-
cations, the size of the character set is always constant. On the other hand, the number
of states generated in the DFA varies depending on the characteristics of the signature
set. So, the proposal by Brodie et al. is a better choice for alphabet compression since
its time complexity is quadratically related to the size of the character set and not the
number of states. Due to this advantage, the alphabet compression algorithm proposed
by Brodie et al. has been used for the experimental evaluation in this proposal.

The signature sets which were previously used to evaluate the MSBT and the LSCT
are also used to evaluate the effect of combining alphabet compression with the MSBT
and the LSCT. Table 4.6 shows a summary of the characteristics of the signature sets
before and after alphabet compression. Since, the signatures are composed of the char-
acters from the ASCII character set, there are a total of 256 characters in the DFA
before performing alphabet compression. Column 5 in Table 4.6 shows the number of
unique characters in the encoded character set generated after performing the alphabet
compression. Over 50% of the characters are compressed in the Exact_Match and the
Bro217 signature sets, while about 70% of the characters are compressed in the Snort
signature sets. Among all the signature sets, a majority of the characters within the
extended ASCII character range (128-255) were compressed. The signature sets from
Snort (24/31/34) have a smaller signature count in comparison to the Exact_Match and
the Bro217 signature sets. So, they contained fewer distinguishable characters from the
first half of the ASCII character set (between 0-127), which resulted in a higher number
of characters being compressed from the first half of the ASCII character set.

The MSBT and the LSCT was performed on the DFA generated after alphabet com-
pression. The DC state grouping method was used in the state grouping step during

It should be remembered that S represents the overall number of states in the DFA while ¥ represents
the total number of characters in the character set.

88

Table 4.6: Summary of the Signature set before and after alphabet compression

4.3 Alphabet Compression

Bef. Alpha. Comp. || Aft. Alpha. Comp.
Signature Set || |X| | G MPG X | G MPG
Snort34 256 | 518 26 74 | 509 26
Snort31 256 | 420 45 77 | 458 42
Snort24 256 | 428 31 67 | 453 30
Exact_Match || 256 | 109 138 112 | 107 141
Bro217 256 | 98 66 111 | 100 64

the transition compression. The transition threshold (T) was set to 80% while the max-
imum number of states per group (B) was set to 256 for this experiment. Column 6
and 7 in Table 4.6, respectively show the number of groups and the average number
of member states per group in the compressed DFA that is generated after performing
the MSBT/LSCT on the alphabet compressed DFA. It can be seen from Table 4.6 that
there are no major variations in the characteristics of the generated state clusters when
alphabet compression is introduced in the overall compression process.

4.3.2.1 Transition Compression Rate

Table 4.7 compares the number of compressed transitions generated when the MSBT and
the LSCT are used to compress the redundant transitions before and after performing
alphabet compression. Columns 2 and 3 respectively show the number of compressed
transitions generated when the MSBT is used to compress the DFA before (BAC)® and
after performing alphabet compression (AAC)?, respectively. Column 4 in Table 4.7
shows the percentage reduction in the compressed transitions after combining alphabet
compression in the case of the MSBT. It can be seen that there is a reduction of about
10% in the compressed transition count, primarily in the case of the DFA’s generated
from the Snort signature sets. Since the snort signature sets consist of regular expres-
sions with character classes, the redundant state transitions associated with these are
efficiently compressed with MSBT performed after alphabet compression. On the other
hand, since the Exact_Match and the Bro217 signature sets do not have character classes,
the reduction in the compressed transition count is not as substantial as seen in the case
of the Snort signature sets. Moreover, the organization of the indistinguishable charac-
ters were linear in Exact_Match and Bro which were effectively compressed through the
bitmaps alone.

Columns 5 and 6 in Table 4.7 compare the number of compressed transitions generated
when the LSCT is used to compress the DFA, before and after alphabet compression.
Column 7 shows the additional reduction in the compressed transition count in the case
of LSCT after combining alphabet compression. The trend of a higher percentage of

8MSBT alone is performed as part of transition compression
9MSBT is performed on the alphabet compressed DFA

89

4 Memory Footprint Optimizations - MSBT & LSCT

Table 4.7: Compressed Transitions Before and After Alphabet Compression

MSBT LSCT
Signature Set | BAC | AAC | % Diff. | BAC | AAC | % Diff.
Snort34 49711 | 44228 9 34175 | 31087 9
Snort31 101924 | 93631 8 8444 | 77467 9
Snort24 49300 | 44938 11 35433 | 33060 6
Exact_Match 36182 | 35055 3 33718 | 33017 2
Bro217 26117 | 25911 1 23853 | 23854 0

transitions compressed in the Snort signature sets is also observed in the case of the
LSCT, when it is performed on the alphabet compressed DFA.

4.3.2.2 Estimated Memory Usage

Figure 4.10 compares the estimated memory footprint of the compressed DFA when the
transition compression techniques are combined with the alphabet compression. Before
Alphabet Compression (BAC) refers to the scenario where the MSBT and the LSCT
alone are performed on the DFA, while After Alphabet Compression (AAC) refers to
the combination of alphabet compression and the transition compression methods. As
in the previous scenarios, the estimated memory usage is split into transition and control
memory usage. The reduction in the transition memory seen in Figure 4.10 is a direct
consequence of the increased number of redundant transitions compressed by combining
alphabet compression together with the MSBT and the LSCT. For example, an addi-
tional 9% reduction in the compressed transition count in the case of Snort34 signature
set seen in Table 4.7 reduces the memory footprint of the compressed DFA by 20KB.
This is roughly about a 10% reduction in the memory footprint corresponding to the
compressed DFA. On the other hand, there is no major change in the control memory
usage when the transition compression is performed after the alphabet compression. The
ATT which only needs 256 bytes to store the encoded character set results in a substan-
tial memory savings of about 20-50 KB which is the result of the additional redundant
transitions compressed due to alphabet compression combined with the MSBT and the
LSCT.

4.3.3 Discussion & Summary

Though there are 256 characters in the ASCII character set, not all the characters are
used to construct the signatures for DPI applications. So, when the signatures are
converted into the DFA, some of the characters are indistinguishable, i.e., the state
transitions corresponding to these characters are identical across all the states. Since
the bitmap based methods focus on compressing the redundant state transitions which
are only adjacent to each other, the redundant transitions corresponding to the indistin-
guishable characters are not always efficiently compressed through the bitmaps alone.

90

4.4 Bitmask Compression

2 400 - .
= :
i : B
z> 300 SHENT BRERE 8
o 1 J NN
< i 77 i] — NN .
= 200 |1 ‘hele 1M T .
= : 211 H : Ef 4
8 1 .
g : ’ : NN
Z 100 @A 0 HE HH B)
~ g / g I Zh7
Zi 7 Zl Zh7 7zl
Snort34 Snort31 Snort24 Exact_Match Bro217

B MSBT (BAC) Trans. OMSBT (BAC) Cont.
EIMSBT (AAC) Trans. .JMSBT (AAC) Cont.
LSCT (BAC) Trans. J LSCT (BAC) Cont.
HLSCT (AAC) Trans. JLSCT (AAC) Cont.

Figure 4.10: Estimated on-chip SRAM memory usage to store the compressed DFA

Alphabet compression is a well known method to compress the state transitions corre-
sponding to the indistinguishable characters in the DFA. In order to efficiently compress
the redundant transitions corresponding to the indistinguishable characters, a method
was proposed to combine the alphabet compression mechanism with the MSBT and
the LSCT. Experimental evaluation further showed that the reduction in the number of
redundant transitions further reduces the memory footprint of the compressed DFA by
about 10%. The reduction in the memory footprint also depends on the characteristics
of the signature set, i.e., the effect of the combined compression methods improves the
compression rate, specifically in the signature sets which consist of regular expressions
with character classes.

4.4 Bitmask Compression

The MSBT and the LSCT use a combination of bitmaps and bitmasks to effectively
compress the redundant state transitions in the DFA. As seen in Chapter 3, the intro-
duction of bitmasks resulted in a considerable increase in the control memory usage in
comparison to the previous bitmap based transition compression methods. Since the bit-
masks should also be stored in the on-chip memories together with the compressed state
transitions, reducing the number of bitmasks will further result in a reduced memory
footprint corresponding to the compressed DFA. So, this section proposes a mechanism
which leverages the inherent arrangement of characters in the signatures to reduce the
number of bitmasks generated after the MSBT and the LSCT.

91

4 Memory Footprint Optimizations - MSBT & LSCT

4.4.1 Background

To further understand the background behind bitmask compression, the DFA corre-
sponding to the signature set ‘acd’, ‘bh’ and ‘gh’ is used as an example as shown in Fig-
ure 4.11. The characters in the signatures belong to the alphabet ¥={a,b,c,d,e,f,g,h}. It
should be noted that the signature set has multiple occurrences of character ‘4’ among
the three signatures. Figure 4.11(a) shows the conversion of the signatures into the DFA.
The state table corresponding to the DFA is shown in Figure 4.11(b). Figure 4.11(c)
and (d), respectively show the intra-state compression and the state grouping steps in
the MSBT. The compressed DFA after the inter-state compression step and MTBs are
shown in Figure 4.11(e) and (f), respectively.

It can be seen from Figure 4.11(f) that the MTBs corresponding to states 3, 5 and 7
are identical to each other. Similarly, the MTBs corresponding to states 4 and 6 are also
identical to each other. In order to further understand the occurrence of the identical
MTBs among the states, it is necessary to understand the organization of the state
transitions within the DFA. The state transitions within the DFA can be categorized
into one of the following subsets, depending on where a state transition leads to during
the signature matching function.

e Root state diverter: Not all the characters in a character set are always used
to construct the signatures in a signature set. So, the state transitions associated
with those characters which are not used by the signature set generally direct the
DFA towards the root state. For example, the state transitions corresponding to
characters e and f, seen in Figure 4.11(b) belong to this category and the state
transitions associated with these characters divert the DFA towards the root state,
i.e., state 0.

e Initiators: The state transitions corresponding to the first character in each of
the signatures direct the DFA to a single unique state across all the states in the
DFA'0. For example, the state transitions corresponding to the characters a, b and
g belong to this category and lead to states 1, 4 and 6, respectively. These state
transitions make sure that the first character in a signature is promptly matched
irrespective of the current state in which the signature matching function is in.

e Partial match: As part of the signature matching function, a series of characters
could have led the DFA to a partial match and the state transition belonging to this
category further continues this trend, potentially resulting in a plausible signature
match. For example, the state transition corresponding to character h in states 4
and 6, and the state transition corresponding to character ¢ in state 1 belong to
this category.

e Failure match: Although a sequence of characters can lead the DFA towards a
plausible signature match, yet in certain cases after a partial match, an incoming

10This is applicable when the first character is not repeated in the same or other signatures. If it occurs,
that specific transition will be a part of the partial match category.

92

4.4 Bitmask Compression

1[1]a]2]o]e]o]

2[1]a]o]s]o]s]o]

a @ g
| | b |
i\a__ b»._ B
Signature Set
1. acd
2.bh ¢ h h
3.gh .7i’\\.
é 3 ©
d
©
(a)
Unigue
Character Axis—» Transition Index
abcdefgh 012 3456 0123456
o|{1|a|o|o|o|o|&|0 ol1|a{o|6|0 o|l1|a|o|e|0
1{1|a|2|o]o|ols&|0 1/1|a[2|0]s6 3|1|alo6]0
w 2({1]4|ao|s|ofo]s]0 w 2/1]4]o0|3|o]s]0 al1]{alo]e|s
%314000050 %314050 s|1|alo|s]o
r 4/1]alofofofols]s r a1]|alo[s]|5 6|1|alo|6|7
o s(1|alo|o]o|ole|0 w s|1|lajo|e|o 7|1|alole|0
6|1|a|ofo|o]o|e|7 6l1|a|o|6|7
7|{1|a]ofo]o|o|&|0 7(1|a{o0|6|0 1[1]a]2]o]6]0]
[1]1]1]o]o]o[1]1] BmPo 2[1]a]o[3]o]s]0]
[1]1]1]1]ofo[1]1] BmP1
[1]1]1]1]{1]o[1]1]| smp2
(b) (c) (d)
o
=
3 9.
5 %5
- =
0123456 0123456
0 0 [o] [o]o
3 3] [o]1
4 = Identical ﬂ 02
3 Bitmasks E 0]3
& 7 6| [o]a
7 ols

HH

(e) (f)

—
m
—_—

Figure 4.11: Example of redundant bitmasks generated during MSBT transition compression

character may not lead the automata towards a signature match. The state tran-
sitions corresponding to the characters apart from the root state diverters and the
initiators, which do not continue with the partial (or even full) signature match

93

4 Memory Footprint Optimizations - MSBT & LSCT

belong to this category. For example, the state transition corresponding to the
character ¢ in state 4 belongs to this category. State 4 is reached after successfully
matching the character b and the DFA generates a signature match if and only if
the subsequent character is h.

The state transitions which belong to the initiator and the root state diverter are very
linear across all the states and the M'TB bits resulting from these transitions are generally
0. On the other hand, the state transitions from the partial and the failure matches are
the ones which differ from the state transitions at the leader state, thus generating a 1
in the corresponding MTB bit position. When same characters occur across multiple
signatures, the state transitions which belong to the partial match will differ from the
leader state and generate an identical MTB pattern across different member states. This
scenario can be seen in the case of states ‘4’ and ‘6’ corresponding to unique transition
index 4 (character ‘h’), where the state transition belongs to a partial match. On the
other hand, the state transitions which belong to the failure match will more or less be
identical with the leader state resulting in identical MTB patterns across the member
states, i.e., as seen in the case of states 3, 5 and 7.

The organization of the state transitions within the DFA is highly dependent on the
specific characters which are used in the signature set. To summarize, majority of the
state transitions in the DFA are linearly organized and the state transitions specific
to certain states vary depending on the organization of the individual characters in a
signature set. Due to the repetitive usage of certain characters within signature sets,
even if the state transitions differ, it corresponds to a specific index resulting in identical
MTB patterns during the inter-state compression step in the MSBT. Leveraging this
observation, a mechanism to compress the redundant M'TBs is proposed to further reduce
the memory footprint of the compressed DFA. The combination of bitmask compression
together with the MSBT is called as the the Bitmask Optimized Member State Bitmask
Technique (BOMSBT). The only difference between the MSBT and the BOMSBT is the
bitmask compression step which is performed after the inter-state transition compression
step. So, the transition compression rate achieved through BOMSBT is identical to that
of the MSBT, while the only difference between the two methods is the total number of
MTBs generated in the compressed DFA. The next section provides the details on how
the redundant MTBs are compressed in BOMSBT.

4.4.2 Bitmask Optimized Member State Bitmask Technique
4.4.2.1 Bitmask Compression

As seen in Figure 4.11(f), the identical MTBs do not always occur next to each other. So
the member states have to be reorganized within a group in such a way that the identical
MTBs occur next to each other, so that the redundant MTBs are easily compressed.
Figure 4.12(a) shows the member states after reorganization. The states 3, 5 and 7
which had identical MTBs are organized first followed by the states 4 and 6 which also
have identical MTBs. The reorganization of the states also require the memberID’s
corresponding to the states to be modified. For example, as seen in Figure 4.11(g), the

94

4.4 Bitmask Compression

original memberID corresponding to state 4 is 2. However, after reorganizing the states,
the memberID corresponding to 4 is modified to 4.

After reorganizing the states, the bitmask compression is performed similar to how
the redundant transitions were removed in the intra-state compression step using the
bitmap. A wunique_bitmask is generated to identify if the MTB of the member state
within a group is compressed during the bitmask compression. The unique_bitmask is
as wide as the number of member states in a group. If there is a maximum of B states in
a group!'!, the unique_bitmask consists of B bits. If the MTB corresponding to a member
state is different from its predecessor, the bit position corresponding to the memberID
is set to 1 in the unique_bitmask. If the MTB corresponding to a state is identical to its
predecessor, then the bit corresponding to memberID in the unique_bitmask is set to 0.

Figure 4.12(b) shows the bitmask compression performed in the example shown in
Figure 4.11. The MTB’s corresponding to states ‘5’ and ‘7’ are compressed as they are
identical to the MTB of state ‘3’. Similarly, the MTB of state ‘6’ is compressed as it is
identical to that of state ‘4’. Since there is a maximum of 6 states in the first group, a
6-bit unique_bitmask is generated for all of the groups. The bit position corresponding
to indices ‘1’ (state ID 3) and ‘4’ (state ID 4) in the unique_bitmask are set to 1 in GO,

" The maximum number of states, B was defined as a clustering constraint in the Divide & Conquer
State grouping method in Chapter 4.

o) 9%
s 52
8 BE
7] u v
01 2 156 0123456 - =
0 0 ol -T-T-1-1- (o] [o]o
3 slofofofo]a (3] [o]1
5 s|o|o]ofo]o oz
7 7lofofofo]o o[s
a alolofofof1 (a] [o]a
6 6jo|ojofo]1 E ols
1[1]4]2]o[6]0] tl-[-]-]- -] [1] [2]o]
2(1]a]o[s[o[6]o] 2[-[-[-[-[-[-[-] [2]
(a)
012 3 4586 —Member ID—»
Only the ol -[-T-T-T-
unique ____, 1|ofofofo]o | 012345
bitmasks 2(oflofo]o]1 5 ofo|1]o|of1]|0
stored o 1({ojlo|o|o|of0
HEEEEEE % 2[oololofo]e
[T il Unique Bitmask

for each of the
groups

(b)

Figure 4.12: Compressing the MTBs to reduce the storage requirements of bitmasks

95

4 Memory Footprint Optimizations - MSBT & LSCT

as the MTBs corresponding to these memberID’s are not compressed, while the other
bits are set to 0. The unique_bitmask bit corresponding to the leader state is always
set to 0 as it doesn’t have an MTB. Even though the other groups do not have any
member states, the unique_bitmask is created for them to maintain the uniformity in
the unique_bitmask construction.

Algorithm 5 shows the pseudocode of the bitmask compression and the state reorga-
nization steps performed on each of the groups. As a first step, the MTB corresponding
to each of the member state is examined and organized into the ‘unique bitmask’ set.
The unique bitmask set only consists of those MTBs which are indistinguishable. As a
next step, each of the MTB in the unique bitmask set is compared across all the member
states, so that the member states which have the same MTBs are organized next to each
other. The modified memberID for each of the member state is set after a successful
MTB match. After assigning the new memberID to a state, the corresponding bit is also
set to a 1 or 0 in the unique_bitmask entry.

Algorithm 5 State Reorganization
1. for all s € g(M) do

> Unique Bitmask Identification

s.bmsk_match < 0
s.reorganized < 0
for all b € uniq_-bmsk do

if b = s.bmsk then

s.bmsk_match + 1

if s.bmsk_match = 0 then

uniq_bmsk < uniq_bmsk U s.bmsk

> State Reorganization
9: reorg-memberlD + 1
10: for all b € uniq_bmsk do
11: set_unique_bitmask < 1
12: for all s € g(M) do

13: if s.reorganized =0 & s.bmsk = b then

14: s.memberlD < reorg-memberl D > Assign the new memberID
15: if set_unique_bitmask = 1 then

16: unique_bitmask|[reorg-memberI D] « 1 > Assign Unique Bitmask
17: set_unique_bitmask < 0

18: else

19: unique_bitmask[reorg-memberID] < 0

20: s.reorganized < 1 > Member State is reorganized
21: reorg_memberlD + +

96

4.4 Bitmask Compression

4.4.2.2 Memory Organization

Figure 4.13 shows the organization of the compressed DFA after the BOMSBT. Since
the BOMSBT is an extension of the MSBT along with the bitmask compression, the
organization of the compressed DFA is very similar to that of the MSBT.

The compressed transitions from the leader and the member states are organized into
the Leader Transition Table (LTT) and the Member Transition Table (MTT), respec-
tively. In comparison to the MSBT, the Member Bitmask Table (MBT) only stores
the indistinguishable MTBs corresponding to various groups along with the cumulative
sum of transitions. The major difference between the MSBT and the BOMSBT is with
respect to the organization of the data in the Address Mapping Table (AMT). In addi-
tion to the base addresses and the bitmap, the AMT also stores the unique_bitmask for
each of the groups in the AMT. Moreover, as far as the MBT base address is concerned,
the location of the first compressed MTB in the group is stored in the AMT. Similar
to the memory organization in the MSBT, the LTT and the MTT are categorized into
the transition memories while the MBT and the AMT are categorized into the control
memories.

4.4.2.3 Transition Decompression

The current state-character combination is taken as the input to identify the compressed
state transition. The processing associated with the transition decompression depends
on whether the current state is a leader or a member state. The computations associated
with the leader transition fetch is identical to the ones performed in the MSBT. So, this
is not explained again in this section. On the other hand, the computations performed

LEADER TRANSITION TABLE

ADDRESS MAPPING TABLE ADDR TRANS ADDR TRANS
LTT | MTT | MBT UNIQUE 0 1 9 6
ADDR | gp | Ba | Ba | BTMAP | girmask 1 2 10 0
o o 0 0 11000111 010010 2 0 11 1
1 5 0 - | 11001111 | oooo00D 3 6 12 4
2 1| o - | 11011111 | ooo00D 4 0 13 0
5 1 14 3
3 4 15 o
MEMBER BITMASK TABLE 7 7 16 6
CUMU LATIVE B 0 17 o
ADDR MTB UM
0 00000000 0 MEMBER TRANSITION TABLE
1 00010000 0
ADDR | TRANS
0 5
1 7
.Y / Y J
T |
Control Memories Transition Memories

Figure 4.13: Organization of the compressed DFA between the control and the data memories

97

4 Memory Footprint Optimizations - MSBT & LSCT

MEMBER BITMASK TABLE
+——MemberlD——
| BITMAP [11000111 | 7 6 5 4 3 2 1 0 ADDER T, SRS
SUM
[werea | a | [o]oft[ofo]o]1]o] 0__| 00000000 0
[wrmea | & | PlE]i]ofofo]o]o] - e >
2 00000010 0
| uniquE BITMASK | oo100010 | 5 s 3 0001 5
Y S fewan [
(Bitmask Offset)
Data fetched from AMT 6 10010000 a
7 00000010 14
(a) (b)
Unigue Unigue MEMBER TRANSITION TABLE
4+——Transition——— <«#——Transition
ADDR | TRANS ADDR | TRANS ADDR | TRANS
Index Index
8 10 16 7 24 [
7 65 4 3 2 10 7 6 5 4 3 2 10 g 2 17 0 25 15
lofofo|1]ofo[1]o] [o]ofo]1][o]o]1]0] 10 0 18 13 26 12
76543210 76543210 11 1 E) 3 27 il
o] B o[o]1]o 12 11 20 5 28 12
s 0| 13 10 21 14 29 8
e e 14 3 22 5 30 12
15 1 23 10 31 7
0 0+0+1+0=1

(€) (d)

Figure 4.14: Compressed Transition fetch from the MTT when the unique_bitmask bit for the
member state is 1

to identify the compressed transition corresponding to a member state varies depending
on whether the MTB of the member state is compressed or not.

Figure 4.14 shows an example of the scenario in which the MTB corresponding to
the member state is not compressed as part of bitmask compression. In the case of
the MSBT, the memberID and the MBT base address were used to locate the MTB
corresponding to the member state. In the case of the BOMSBT, the unique_bitmask is
used to locate the compressed MTB corresponding to the member state. Figure 4.14(a)
shows the data fetched from the AMT to initiate the compressed transition fetch!2.
Assuming that the memberID corresponding to the current state (which is a member
state) as 5, the calculation of the MTB address from the unique_bitmask is shown in
Figure 4.14(a). The population count operation is performed on the unique_bitmask
which generates the bitmask offset. The bitmask offset provides the relative position
of the MTB of the member state among the compressed bitmasks within the group.
The MBT BA stores the address of the first compressed MTB in the group, while the
bitmask offset added to the MBT BA provides the location of the MTB of the member
state among the compressed MTBs. In the example being discussed, the compressed
MTB corresponding to MemberID’s 1 through 4 are fetched from MBT address location

12Tt should be noted that the example considered to explain the member transition fetch in Figure 4.14
and Figure 4.15 are not connected to the previous example shown to explain bitmask compression.

98

4.4 Bitmask Compression

‘4’ while the MTB corresponding to MemberID’s 5 through 7 are fetched from MBT
address location ‘5’13,

Once the compressed MTB is fetched, it is further inspected to decide if the compressed
transition has to be fetched from the MTT or the LTT. If the bitmask bit corresponding
to the unique transition index in the MTB is ‘0’, then the compressed state transition
is fetched from the LTT. On the other hand, if the bitmask bit corresponding to the
unique transition index in the MTB is ‘1’, then the compressed state transition is fetched
from the MTT. The location of the compressed state transition in the MTT is the sum
of the MTT base address, the cumulative sum of transitions stored together with the
MTB and the member offset as shown in (4.1). The member offset is calculated by
performing the population count operation on the MTB, similar to that in the case of
the MSBT. So, as far as the example shown in Figure 4.14(c), the compressed state
transitions corresponding to the unique transition indices ‘1’ and ‘4’'* are fetched from

the MTT address locations 16 and 17, respectively as shown in Figure 4.14(d).

MTT Address = MTT BA + Cumulative Sum + Member Of fset (4.1)

If the unique_bitmask bit corresponding to the memberID is ‘0’, the MTT address
calculation includes an additional offset computation in comparison to the one shown
in (4.1). The ‘additional offset’ computes the total number of transitions stored in the
MTT, from the state preceding the member state of interest until the member state
with which the MTB is identical to. For example, if the state with memberID ‘7’ is
considered as the member state of interest as shown in Figure 4.15, the additional offset
to be added is ‘4, i.e., 2 transitions each corresponding to states with memberID ‘6’ and
‘5, respectively'®. The additional offset is computed by multiplying the total number
of compressed transitions in a member state generated after the inter-state compression
step (Trans/State) and the number of member states to be offset with (MID_to_offset)
as shown in (4.2).

Additional Of fset = (T'rans/State) = MI1D _to_ Of fset (4.2)

MTT Address = MTT BA + Cumulative Sum + Member Of fset (4.3)
Additional Of fset

13The location of the MTB for member states with memberID 1 through 4 are located from MBT
address 4 as the MTBs corresponding to the states with memberID 2; 3 and 4 are compressed. The
same applies for the states with memberID 6 and 7.

These are the only indices in the member state at which the state transitions are not compressed in
the member state.

15 As shown in the previous example in Figure 4.14(c) & (d), the compressed transitions corresponding
to the unique transition indices ‘1’ and ‘4’ in the state with memberID ‘5’ are stored in MTT address
locations 16 and 17, respectively. The compressed transitions corresponding to the same indices for
the state with memberID ‘6’ are stored in M'T'T address locations ‘18’ and ‘19’ respectively. These are
the 4 transitions which are offset by the ‘additional offset” which have to be taken into consideration
when the compressed transitions in the state with memberID ‘7’ is fetched from the MTT.

99

4 Memory Footprint Optimizations - MSBT & LSCT

MEMBER BITMASK TABLE
«——MemberlD CUMULATIVE
[mimar [11000111 | 76543210 ADDR L SUM
| MBT BA | a | loJof1]o]o]o1]o0] 0 00000000]
[wmmea | & | [ofe[z]e]eJo]o]e] 1 00010000 0
2 00000010 0
| UNIQUE BITMASK | 00100010 | . s 3 50010000 -
\ : J D+0+1+0+0+0+0+0 = 1 3 Sann1001 0
(Bitmask Offset) 2 010010 2
Data fetched from AMT 6 10010000 0
7 00000010 14
(a) (b)
MEMBER TRANSITION TABLE
ADDR | TRANS ADDR | TRANS B ADDR | TRANS
Unique — 5 o = MemberlD=5 53 ~
«+——Transition 9 2 17 0 25 15
Index 10 0 18 13 MemberlD=6 o T
11 1 19 3 27 11
76543210 - = o - = =
[o]o]o[1]o]o]1]0] 13 10 21 14 MemberlD=7 29]
14 3 22 5 30 12
15 1 23 10 31 7
(c)
T Encoded Unique Bitmask
Member 76543210
Transition [o]ofo]1]o]e]1]0] 76543210 76543210
[o]o[1]ofofo]1]o] —— [of1]1]o[ofo]o]0]

Bitmask N s

0+0+0+1+0+0+1+0=2 Unique 0+1+1+04+0+0+0+0 =2

Trans/State Bitmask MID_to_Offset

(d) (e)

Figure 4.15: Compressed Transition fetch from the MTT when the unique_bitmask bit for the
member state is 0

As shown in Figure 4.15(a), since the unique bitmask bit corresponding to the state
with memberID ‘7’ is ‘0’, the MTB corresponding to the member state is fetched from
MBT location ‘5’16, If the bitmask bit corresponding to the unique transition index of
interest is ‘0’, then the compressed state transition is fetched from the LTT. If not, the
additional offset has to be computed to identify the location of the compressed state
transition. Figure 4.15(d) shows the population count operation being performed on
the MTB which generates the Trans/State information while Figure 4.15(e) shows the
calculation of the MID_to_offset. The unique_bitmask is first converted into an encoded
representation on which the population count operation is performed to calculate the
MID _to_offset. The MTT address location is computed as shown in (4.3). Based on the

167t should be remembered that the bitmask offset is added with the MBT BA from which the MTB is
fetched.

100

4.4 Bitmask Compression

equation described above, the address locations of the compressed member transitions
corresponding to the unique transition indices ‘1’ and ‘4’ are computed to be ‘20’ and
‘21’ in the MT'T.

The additional cost paid for the bitmask compression is the cost to identify the com-
pressed MTB corresponding to the member state during the transition decompression.
When the decompression is performed through a hardware accelerator, additional hard-
ware logic circuits will be required to perform the processing associated with the bitmask
decompression. The additional hardware cost incurred is further detailed in Chapter 5.

4.4.2.4 Hardware Engine for Decompression - Logical Block Level Description

Similar to the MSBT and the LSCT, the decompression in BOMSBT can be performed
in a hardware accelerator. Figure 4.16 shows the logical block level description of the
hardware accelerator. Similar to the MSBT, the decompression is performed across three
stages. The additional processing which is introduced in the BOMSBT in comparison to
the MSBT due to the bitmask compression is highlighted in the blue boxes in Figure 4.16.

The ‘Address Lookup Stage’ (ALS) is the first stage in the transition decompression.
The current state identifier is broken down into its leaderID and the memberID from
which the leaderID is used to fetch the data from the AMT. The base addresses, the
bitmap and the unique_bitmask that is fetched from the AMT is used to calculate the
address locations of the leader transition and the compressed MTB which is used in the
next stage. Since the bitmask offset is necessary to locate the compressed MTB, the
bitmask offset is computed from the unique_bitmask in this stage.

The ‘Leader Transition Bitmask Fetch Stage’ (LTBFS) forms the second stage in the
decompression. The leader transition is fetched from the LTT based on the address
location calculated in the previous stage. The compressed MTB and the cumulative
sum of transitions are fetched from the MBT from the address location calculated in the
previous stage. The various offsets (additional offset & member offset) are computed

in parallel which are used to calculate the location of the compressed transition to be
fetched from the MTT.

The ‘Member Fetch Stage (MFS)’ is the last of the 3 stages, in which the compressed
member transition is fetched from the MTT, if required. Depending on whether the
current state is a leader or a member state, the next state is assigned accordingly. If
the identified next state is an accepted state, a signature match detection signal is set
to logic high for a clock cycle.

The idea of bitmask compression can be combined together with the LSCT to form
the Bitmask Optimized Leader State Compression Technique (BOLSCT). The LSCT
primarily consists of the MTBs and a single LTB for each of the groups. Since the
bitmask compression focuses on compressing the redundant MTBs alone, the LTB is
not compressed as part of the bitmask compression. So, the resulting processing associ-
ated with the bitmask decompression is identical in the case of the BOMSBT and the
BOLSCT and is not described further in detail.

101

4 Memory Footprint Optimizations - MSBT & LSCT

LEADER

ADDRESS LOOKUP STAGE | ;7| LEADER TRANSITION & BITMASK MEMBER
CHAR—» Leader Offset LTT_ADDR—» FETCH STAGE FETCH STAGE
State Computation | | MTT_BASE_J Unique_Bitmask |—MTT_ADDR— —NEXT_STATE—»
) _ADDR L Processing
Decoding LTT Address Lookup Next State
Computation MTB Processing LEADER Assignment ACCEPTED
—NMBT_ADDR— — — STaTE —*
TRANS =
_ CQURR___ |)) | MEMBER ID—»! Additional Offset -)
STATE O;’"'“;E Bitmask = Computation CHOOSE_ Ms'g”hag‘hre . SIGNATURE
AMT set Computation | | UNIQUE MEBET MEMBER—»| atcl ec| — _MATCH —_—
_BITMASK Lookup TRANS DETECTED
Lookup MBT Address MTT Address - -
Computation Computation MTT Lookup
AMT_ADDR AMT_DATA LTT_ADDR MBT_ADDR MTT_ADDEMTT_DATA
LTT DATA l MBT_DATA
1 |
LEADER MEMBER MEMEER
ADDRESS MAPPING TABLE TRANSITION BITMASK TABLE TRANSITION
TABLE TABLE

l:| Additional HW logic
introduced in BOMSBT

Figure 4.16: Functional Description of the Hardware Accelerator to perform the Transition
Decompression

4.4.3 Experimental Evaluation

The BOMSBT and BOLSCT methods were evaluated using the same signature sets that
were used to evaluate the other methods described in this dissertation. The DC state
grouping method proposed in the previous section was used to group the states in the
BOMSBT and the BOLSCT. As part of the evaluation, the transition threshold, T was
set to 80% and the maximum number of states within each of the groups, B was set to
256.

Figure 4.17 compares the number of MTBs generated in the MSBT and the BOMSBT,
respectively. In the case of the MSBT, the total number of MTBs generated is identical
to the total number of member states in the DFA. On the other hand, in the case of the
BOMSBT, a majority of the MTBs are compressed through the bitmask compression.
It can further be seen from Figure 4.17 that about 60-70% of MTBs are redundant and
are compressed through the bitmask compression. However, it should be noted that the
individual number of MTBs compressed varies depending on the individual signature
sets.

4.4.3.1 Estimated Memory Usage

Figure 4.18 shows a comparison of the estimated memory required to store the com-
pressed DFA generated after the MSBT, the BOMSBT, the LSCT and the BOLSCT,
respectively. The memory estimation results are explained in detail through the MSBT
and the BOMSBT first. Since the bitmask compression primarily focuses on compressing
the redundant MTBs alone, the total number of compressed transitions generated before
and after bitmask compression doesn’t vary. This can be confirmed from the identical

102

4.4 Bitmask Compression

transition memory usage between the MSBT and BOMSBT. On the other hand, the
reduction in the number of MTBs after the bitmask compression, reduces the control
memory usage in the case of the BOMSBT. The bitmask compression reduces the con-

257000 r 1 L | L 1 L L .
20,000 |- .
& 15,000 |- |
= F i
= -]
F 10,000 - .
5,000 } E
O : HW T T]H T T [H T T T ‘D T T T T :

Snort34 Snort31 Snort24 Exact_Match Bro217

] IMSBTIBOMSBT \

Figure 4.17: The total number of MTBs generated before and after Bitmask Compression

400 |- & |
300 |- SR : a
200 | || [hell= B : .

7 NN N B 4 y -
s N
1 H A ZHlw . Z
A 7 N ;
1 H a 07 z
A 7 A
1 H a YR . =]
a A | A .
1 H . YL a
A wRE A
a g A
2 i |

A1 H 12
Snort31 Snort24 Exact_Match Bro217

100

Estimated Memory (in KB)

B MSBT Trans. 0 MSBT Cont.
[ABOMSBT Trans. JBOMSBT Cont.
[l LSCT Trans. [LSCT Cont.
E BOLSCT Trans. £l BOLSCT Cont.

Figure 4.18: Comparison of estimated on-chip SRAM memory usage to store the compressed
DFA before and after bitmask compression

103

4 Memory Footprint Optimizations - MSBT & LSCT

o
o=
Na¥
S 150
=] AN 0 o
o 7 o
RN 2 RN
e 00 o7
A 50 00 w2 27
S - W 00 /27 00 -
122 00 /22
172} /27 00 ‘22
/22 00 ‘22
= 00 020 W
00 22 020
00 100 007
27 00 27 27 000
/27 00 007 000 27
0 1 e s A 17

Snort34 Snort31 Snort24 Exact_Match Bro217

BMSBT MBTHMSBT AMTEBOMSBT MBTLEHBOMSBT AMT

Figure 4.19: Comparison of the control memory usage between MSBT and BOMSBT

trol memory usage by 30-50%, as seen from Figure 4.18. Moreover, it can also be seen
from Figure 4.18 that the control memory reduction in BOMSBT is not directly propor-
tional to the reduction in the number of MTBs as seen in Figure 4.17. This is primarily
due to the increase in the memory required to store the unique_bitmask for each of the
groups to identify if the MTBs corresponding to the member states are compressed or
not. Since the unique_bitmask is stored for each of the groups in the AMT, there is a
small increase in the memory required to store the AMT, which offsets the reduction in
the MBT memory usage. The increase in the AMT usage is clearly seen in Figure 4.19
which compares the estimated memory used for the AMT and the MBT between the
MSBT and the BOMSBT. The number of groups generated after the state grouping
step are much higher in the case of the signature sets extracted from Snort (between
400-500), in comparison to the other signature sets (~100). This is the reason why the
AMT memory usage is high in the case of the signature sets from Snort in the case of
the BOMSBT, while the others are relatively negligible.

Figure 4.18 also shows a comparison of the estimated memory required for the tran-
sition and control memories in the case of the LSCT and BOLSCT. As seen in Fig-
ure 4.18, the reduction in the memory usage is very similar to that seen in the case of
the BOMSBT. Since the most repeated state transition in the leader state is compressed
as part of the LSCT and BOLSCT, the transition memory usage is slightly lesser than
the MSBT and the BOMSBT, respectively.

4.4.3.2 Functional Evaluation - Software Model

Though the bitmask compression is performed to compress the redundant MTBs in the
member states, it is mandatory to make sure that the generated compressed DFA is

104

4.4 Bitmask Compression

functionally equivalent to the original uncompressed DFA. In order to verify the func-
tional equivalence, a software model of the BOMSBT and the BOLSCT based signature
matching engines were implemented using the UNIX AWK scripting language. Since
the DC state grouping is used to perform the state grouping step in the BOMSBT and
the BOLSCT, the DC state grouping method was also verified in this evaluation step.

The synthetic traffic generator models which were originally used to verify the MSBT
and the LSCT were reused to verify the BOMSBT and the BOLSCT implementations.
It should be remembered that the synthetic traffic traces of 1IMB were generated for
4 different Py values, i.e., 0.35, 0.55, 0.75 and 0.95 for each of the signature sets.
After the traffic was injected into the system, the total number of signature matches
generated across different Py; values were extracted from the system. Table 4.8 shows
the signature matching results which were obtained from the DFA, the BOMSBT and
the BOLSCT based signature matching engines. It can be seen from Table 4.8 that the
total number of signature matches are identical between all the methods. In addition to
the total number of signature matches, the individual character positions at which the
signature matches occurred were also identical between all the three methods. Thus,
this experiment verified the functional correctness of the bitmask compression and the
DC state grouping method.

Table 4.8: Comparison of signature matching results across the compression methods across
different Py values

Py, Method Signature Sets
Snort34 | Snort31 | Snort24 | Exact_Match | Bro217
DFA 5 1 29 46 11631
0.35 || BOMSBT 5 1 29 46 11631
BOLSCT 5 1 29 46 11631
DFA 7 2 45 117 6347
0.55 || BOMSBT 7 2 45 117 6347
BOLSCT 7 2 45 117 6347
DFA 8 1 22 331 28701
0.75 || BOMSBT 8 1 22 331 28701
BOLSCT 8 1 22 331 28701
DFA 14591 1286 22818 7841 69976
0.95 || BOMSBT 14591 1286 22818 7841 69976
BOLSCT 14591 1286 22818 7841 69976

4.4.4 Discussion & Summary

The content of the compressed DFA generated after the MSBT and the LSCT are clas-
sified into the transition and the control data. The primary focus of the MSBT and the
LSCT is to effectively compress the redundant state transitions in the DFA by introduc-
ing additional control information in the form of the MTBs and the LTBs. However, a

105

4 Memory Footprint Optimizations - MSBT & LSCT

majority of the MTBs are redundant due to the linearity in the state transition organi-
zation and they can be compressed to reduce the memory footprint of the compressed
DFA. So, the bitmask compression mechanism was proposed in this section to effectively
compress the redundant MTBs in the compressed DFA.

As part of the bitmask compression, a state reorganization algorithm was proposed
to organize the member states in such a way that the identical MTBs are placed next
to each other. After bitmask compression, a unique_bitmask was generated to easily
idenitfy the member states with the redundant MTBs. The bitmask compression mech-
anism was effectively integrated with the MSBT and the LSCT to result in two new
compression methods called the BOMSBT and the BOLSCT. Experimental evaluation
of the proposed methods further showed that about 60-70% of the redundant MTBs
could be compressed through the bitmask compression method. The compression of the
redundant MTBs further reduces the control memory footprint of the compressed DFA
in the BOMSBT and the BOLSCT by about 30-50%. However, the cost paid for the
bitmask compression is the additional processing which has to be performed during the
decompression in order to identify the compressed MTB corresponding to a member
state.

4.5 Conclusion

The primary focus of the MSBT and the LSCT is to remove the transition redundancy
in the DFA through the bitmaps and the bitmasks. Performing the transition com-
pression through the bitmaps and bitmasks allows the decompression to be performed
in a hardware accelerator to achieve line rate signature matching. In this process, the
compressed DFA is stored in the on-chip memories which allows them to be fetched at
low latencies. Since, the on-chip memories are expensive resources due to their area and
power consumption in comparison to the off-chip memories, it is important to compress
the DFA as efficiently as possible to reduce the memory footprint of the compressed
DFA. This will allow more signatures to be stored in the predefined on-chip memory
boundaries.

So, three different techniques were proposed in this chapter to reduce the memory
footprint of the compressed DFA generated after the MSBT and the LSCT. The first
two techniques were targeted towards improving the transition compression rates with-
out compromising on the functional equivalence to the original uncompressed DFA. The
compression-aware DC state grouping method added additional intelligence to the state
grouping step in the MSBT and the LSCT, which resulted in more redundant state
transitions being compressed. Though the DC state method comes at the cost of an
increased algorithmic complexity, this is a one time step which is performed during the
transition compression and can be managed by performing the function in a proces-
sor heavy compute cluster. The second method proposed in this chapter combined the
alphabet compression together with the MSBT and the LSCT. The combination of al-
phabet compression and the proposed bitmap based methods focused on compressing
those redundant state transitions in the DFA which could not be compressed through

106

4.5 Conclusion

the bitmaps alone. Experimental evaluation showed that the DC state grouping method
reduced the memory footprint of the compressed DFA by about 10-30%. Furthermore,
combining the alphabet compression together with the MSBT and the LSCT, in com-
bination to the DC state grouping method further reduced the memory footprint by an
additional 10%.

The third technique focused on reducing the memory footprint of the bitmasks, which
played a key role in improving the transition compression rates in comparison to the
state-of-the-art bitmap methods. The bitmask compression primarily focused on com-
pressing those indistinguishable M'TBs generated in each of the groups. The redundant
MTBs are generated due to the linearity in the organization of the state transitions in
the DFA. Experimental evaluation showed that the bitmask compression reduces the
memory footprint of the control data in the compressed DFA by about 30-50%.

When all these three methods are combined with the MSBT and the LSCT, the overall
memory footprint of the compressed DFA reduces by a factor of about 70% in compar-
ison to the state-of-the-art bitmap based compression method [4]. The importance of
the proposed optimizations becomes extremely valuable, when the compressed DFA is
downloaded into a signature matching engine with predefined memory boundaries. In
such a scenario, the reduction in the memory footprint paves way for more signatures
to be packed and stored in the on-chip SRAM in an effective manner. This also allows
the signature matching to be performed at line rate with an increased signature count.

The next chapter describes the architecture of the signature matching engine which
is developed based on the MSBT and the BOMSBT compression techniques. The next
chapter details the nuances required to design a signature matching engine which is
programmable, scalable and flexible which are the key requirements for it to be part of
a network processor.

107

5 Hardware Coprocessors for Signature
Matching

5.1 Overview

This chapter details the internal hardware architecture of the signature matching en-
gines proposed in this dissertation. Figure 5.1 shows an overview of the Deep Packet
Inspection Accelerator (DPIA) which consists of the signature matching engines (BiS-
ME/BOBISME) which perform the signature matching function at multi-gigabit line
rates. Though the DPIA consists of various blocks, the signature matching engines
form the primary focus of this dissertation. The internal architecture of the signature
matching engines is described from a bottom up approach. The storage methodologies
associated with the compressed DFA is described first, after which the logical processing
blocks are described.

As discussed in the previous chapters, the compressed DFA generated after the MS-
BT/BOMSBT is split into the transition and the control memories. The number of
compressed state transitions and the control information generated are highly non-linear
and heavily depend on the characteristics of the signature sets. However, in order to
design a programmable and a flexible signature matching engine, it is important to de-
fine efficient storage architectures to store the compressed DFA. So, this chapter first
proposes two different storage methodologies which can flexibly store the compressed
DFA. Section 5.2 discusses the Packed Storage Methodology, which proposes an efficient
method to store the bitmasks in the on-chip memories. Later, Section 5.3 describes the
Shared Memory Methodology through which the compressed state transitions are stored
in a programmable and a configurable manner in the on-chip memories.

H Control Interface
V2
Networking Multicore DMA ProcZ::il::;t HW // Bus Control
Interfaces Processor Engines Accelerators / Unit —— Register Bank
l | [| !
| Crossbar / Network-on-Chip ‘ /
I I I ! +—— Network Data
Deep Packet BISME/ Management
Memory Peripheral Interfaces Inspection BOBISME Engine
Controller (SPI/ UART etc.) P 9
Accelerator 75
Network Processor System-on-Chip Datapath Interface U

Figure 5.1: Overview of the Deep Packet Inspection Accelerator

109

5 Hardware Coprocessors for Signature Matching

A bitmap based signature matching engine called BiSME is proposed in section 5.4
which is capable of performing signature matching at 9.3 Gbps. The BiSME utilizes
the storage methodologies discussed in sections 5.2 and 5.3 to efficiently store the com-
pressed DFA and performs the decompression through dedicated logic circuits. Further-
more, the BiSME is optimized to support the bitmask compression and the resulting
signature matching is called as the Bitmask Optimized BiSME (BOBiSME). The BO-
BiSME is capable of performing signature matching at 10.6 Gbps. Section 5.5 proposes
the Deep Packet Inspection Accelerator, which engulfs the proposed signature matching
engines and discusses how they can be integrated with the network processors used by
the RGR. Finally, section 5.6 thoroughly evaluates the proposed signature matching en-
gines. The signature matching engines were synthesized on a commercial 28nm library
and the synthesis results are discussed first in this section. The functionality of the pro-
posed engines was evaluated on the Cadence Palladium platform by injecting multiple
gigabytes of payload bytes into the emulated system. The payload bytes were simulta-
neously injected into a DFA based signature matching engine which was implemented as
a software running on a linux platform. The signature matching results from all the sys-
tems were compared and total number of signature matches were identical across all the
implementations which further verified the functionality of the BiISME and BOBiSME.

5.2 Bitmask Storage

5.2.1 Requirements

The bitmap and the bitmasks are the major control information which are stored in the
on-chip SRAM which help to identify the compressed state transition corresponding to
the state character combination. Since the width of the bitmap® is constant across all
the states in the DFA, it is straightforward to store it in the on-chip memories. On the
other hand, the width of the MTB which is generated during the inter-state compression
step is not uniform across the signature sets. Moreover, even within a signature set, the
width of the M'TB varies across different groups. The reason for the same is explained
further.

Figure 5.2 shows the average number of compressed state transitions in a state after the
intra-state compression step and the average number of unique characters across different
signature sets, which have been used for the evaluation purposes. The primary vertical
axis (shown in red in the left) represents the average number of compressed transitions
generated in a state after the intra-state compression step. The secondary vertical axis
(shown in blue) represents the unique number of characters in a signature set. It can
be seen from Figure 5.2 that the average number of state transitions generated after
the intra-state compression step varies across different signature sets. This observation
can be attributed to the variation in the character combinations found in the signature
sets. For example, as seen in the secondary vertical axis in Figure 5.2, the more the

1Since the ASCII character set is used to describe the signatures, the width of the bitmap is always
256 bits.

110

5.2 Bitmask Storage

number of unique characters in the signature sets, the higher the number of compressed
state transitions that are generated after the intra-state compression step. Since the
width of the MTB depends on the number of transitions generated after the intra-state
compression step, the MTB width varies depending on individual signature sets.

Figure 5.2 also shows the variation in the number of compressed state transitions
generated across different groups after the intra-state compression step (shown through
error bar). Since different bitmap patterns are generated across different groups in a
signature set, the number of state transitions compressed during the intra-state com-
pression depends on the bitmap of the group. Consequently, the width of the MTB also
depends on the number of state transitions which are compressed after the intra-state
compression step. To summarize, unlike the bitmap which is uniform across the different
signature sets, the MTBs are irregular, non-linear structures which have to be carefully
stored in the memory. So the following are the requirements which have to be addressed
by the MTB storage methodology.

e The MTB storage methodology should be able to support the storage of the MTBs
of varying widths. This also includes the theoretical worst-case scenario, in which
none of the state transitions may be compressed as part of the intra-state com-
pression step. In such a case, the maximum width of the MTB would be 256 bits.
As discussed in Chapter 3, the cumulative sum of state transitions is also stored
along with the MTB. Assuming that 16 bits are used to represent the cumulative
sum of transitions; in worst case scenarios, a 272 bit bitmask? has to be stored in
the memory.

2As part of the rest of the dissertation, the term bitmask will be used to represent the MTB and the
cumulative sum of transitions together.

‘ 150
£ =
£ il

e}

<3 .
: 100 o o &
1100 =
é 80 I 5
) = Q
: o o
E ® =
60 - 190 =
o @)
S n
2 % =
< 40 |- Ik

‘ 0

| | | |
Snort34 Snort31 Snort24 Exact_Match Bro217
Signature Sets

Figure 5.2: MTB width variation across signature sets and within a signature set

111

5 Hardware Coprocessors for Signature Matching

e The MTB storage methodology should be able to fetch the MTB from the on-
chip memories in a single clock cycle. Fetching the MTB across multiple clock
cycles will introduce arbitration in the memory accesses and also complicates the
signature matching process across multiple streams. So, the MTB should be stored
in the memory in such a way that it can be fetched in a single clock cycle.

5.2.2 Packed Storage Methodology

In order to satisfy the requirements discussed above, the Packed Storage Methodology
(PSM) is proposed to store the bitmasks in the on-chip memory without resulting in any
memory wastage. Figure 5.3(a) shows an example of the bitmasks corresponding to 10
member states, split across 4 different groups with different MTB widths. Figure 5.3(b)
shows the storage of the bitmasks using the PSM for the bitmasks considered in Fig-
ure 5.3(a). As part of the PSM, the width of the physical memory, W is chosen to be of
a value which is greater than 272 bits (512 in this example), so that the longest bitmask
can be accommodated in a single address location. In the PSM, once a bitmask corre-
sponding to a member state is stored, the bitmask corresponding to the next member
state is immediately stored in a contiguous fashion without wasting precious memory
resources.

In order to make sure that the bitmask corresponding to the member state is accurately
located, the physical memory which stores the bitmasks is made byte addressable. The
Most Significant Byte (MSB) address of a bitmask is calculated to identify the physical
address location of the bitmask in the memory. The red arrows in Figure 5.3(b) point the
location of the most significant byte in each of the bitmasks considered in Figure 5.3(a).
Similarly, the black arrows shown in Figure 5.3(b) identify the location of the least
significant byte position of the first bitmask (bitmask corresponding to the first member
state) in every group and is called as the bitmask base address. The most significant byte
location of the bitmask is calculated using the bitmask base address and the bitmask
length (in bytes). The bitmask length refers to the sum of the width of the MTB and
the width of cumulative sum of transitions in bytes.

As discussed in Chapter 3, the compressed state transition is encoded as a combination
of the leaderID and the memberID. The location of the most significant byte in the
bitmask is calculated as the product of the memberID and the bitmask length which
is further added to the base address as shown in (5.1). For example, the location of
the most significant byte corresponding to the member state 2 (MemberID: 0x2) in
group 2 is calculated as shown in (5.2). Once this address is calculated and the bitmask
length is known, the actual MTB and the cumulative sum of transitions can be fetched
between address locations 0x37 and 0x2E as shown in Figure 5.3(b). Table 5.1 shows
the calculated addresses for all the bitmasks considered in Figure 5.3(a).

Bitmask MSB = (MemberID x Bitmask Length) + Bitmask Base Address —1 (5.1)

Bitmask MSB = (0x2 x 0xA) 4+ 0x24 — 1 = 0x37 (5.2)

112

5.2 Bitmask Storage

0x38 0x24
0x3F 0x37 0x2D 0x23 ox17 0x0B
Members MTB Width -/ l -/ l /
Group . L
ina group (in bits) ‘
L 3 - Start of End of bitmask
2 2 64 D | bitmaskox37 Ox2E 0B,/ gy55 N\, T NLOH4F T\ 047
3 3 43 0x50
4 2 32
< W=512 >
D CUMULATIVE SUM OF
TRANSITIONS MTB
(a) (b)

Figure 5.3: Example of how the bitmasks are stored using the “Packed Storage Methodology”

Table 5.1: MTB address calculation example

leaderID | Base Address | Bitmask Length | Member ID | Calculated Address
0x1 0x0B
0x0 0x00 0xC (96 bits) 0x2 0x17
0x3 0x23
0x1 0x24 0xA (80 bits) Oxl 0x2D
0x1 0x37
0x1 0x3F
0x2 0x38 0x8 (64 bits) 0x2 0x47
0x3 0x4F
0x3 0x50 0x6 (48 bits) Ol 0x55
0x1 0x5B

5.2.2.1 Split Memory Implementation

As shown in Figure 5.4(a), due to the contiguous storage of the bitmasks in the on-
chip memory, there are chances that a single bitmask can be stored across multiple
physical locations. In such a scenario, multiple clock cycles are required to fetch the
bitmask from the memory which is not desirable. In order to support this scenario,
the physical memory in which the bitmasks are stored is split width-wise into multiple
smaller memories. As shown in Figure 5.4(b), the memory is broken down into 4 blocks
with each of width 128 bits. The individual memory blocks are referred as A, B, C and
D where memory block A stores the bits 127 to 0 while memory block D stores the bits
511 to 384. The individual address locations from which the data is fetched from each
of the memory block depends on which memory block the most significant byte of the
bitmask belongs to.

113

5 Hardware Coprocessors for Signature Matching

I:I Bitmask Length in worst case — 272 bits

511-0

[LEnd/of Bitmask
‘ —1

Start !)f Bitmask

—

(a)

511 - 384 83 - 256 255 - 128 127 -0
T-i—’] End of Bitmask
)
—_—T— v
Start of Bitmask
Memory D Memory C Memory B Memory A

(b)

| T-1:6 | 5:4 | 3:0 |
N : //' AN T J
Physical Mer_norv Block Position Bits
Address Bits Identification Bits

(c)

| I | | | i | |

(d)

Figure 5.4: Packed Storage Methodology - split memory storage implementation

To generalize this discussion, the longest bitmask of width LB bits can be fetched in
a single clock cycle, if it satisfies the condition shown in (5.3). In (5.3), A’ refers to
the number of individual memory blocks into which the memory is split into, while BW
refers to the width of each of the memory blocks in bits®. The worst case scenario with
respect to the longest bitmask storage is when a single byte in the bitmask has to be
stored in one of the blocks (e.g., block A), while the rest of the bitmask doesn’t fit into
the remaining blocks (e.g., blocks B,C,D). In this situation, longest bitmask overflows
and has to be stored in the block in which the first byte was stored (block A), but in the
next address location. This scenario would require two clock cycles to fetch the bitmask.
So, the values for BW and A’ have to be chosen in such the way that the condition in
(5.3) is satisfied, which makes sure that the above mentioned problem doesn’t occur.

LB -8
BW

-‘ < A’ such that {W > LB} (5.3)

Figure 5.4(c) shows the organization of the T’ bit address which identifies the location
of the most significant byte in the bitmask. The calculated address is split into 3 different
portions. The lowermost 4 bits are called as the Position Bits, i.e., those bits which

SW=BWxA’

114

5.2 Bitmask Storage

identify the location of the most significant byte within a memory block. The next 2
bits, i.e., the bits 5 and 4 are called as the Block Identification Bits, which identify
the physical block to which the most significant byte address location belongs to. The
third portion is called as the Physical Memory Address Bits and is used to identify the
physical memory address of the memory block in which the most significant byte is
stored. So, for example, if T’ is 12 bits wide, the physical memory address bits is 6 bit
wide, which implies that each memory block (A/B/C/D) has 2% address locations with
128 bits of information stored in each of the blocks. To generalize, log,(BW/8) bits are
required to represent the position bits and log,(A’) bits are required to represent the
block identification bits.

The physical memory address corresponding to the calculated address location is as-
sumed to be T. As far as the example considered in Figure 5.4(b), since the most sig-
nificant byte location starts from memory block C, the bitmask is fetched from address
location T in memory blocks C, B and A while the data is fetched from the location T-1
for memory D. Once the data is fetched from the memories, the 512 bit data is recon-
structed as shown in Figure 5.4(d). Figure 5.5 shows a generic way of how the 512 bit
data is reconstructed depending on the block identification bits in T'. The reconstructed
data from the physical memory address T is shown using Dout/T] while the ones from
physical address T-1 is shown with a Dout/T-1] in Figure 5.5.

5.2.2.2 Bitmask Extraction

Figure 5.6 details the various steps to be performed to extract the bitmask and to convert
it into a usable form. Figure 5.7 shows the associated hardware structures which are
required to manage the memory accesses associated with the physical memory blocks
and the bitmask extraction, respectively. As shown in Figure 5.7, the circuits are broadly
split into the bitmask address preprocess and the bitmask extraction blocks. The bitmask
address preprocess block is responsible to assign the address to each of the physical
memory blocks, while the bitmask extraction block is responsible to extract the bitmask
from the data fetched from the different memories. As discussed earlier, the data from the
physical memory blocks are either fetched from the physical address T’ or T’-1 depending
on the block identification bits which is decided using a multiplexer. The select signals
for the individual multiplexers are generated based on the block identification bits.

Block Identification: 2'b11 Dout [T] Dout [T] Dout [T] Dout [T]

Block Identification: 2'b01 Dout [T-1]

{0}
Block Identification: 2'b10 | Dout [T] | Dout [T] | Dout [T] | Dout [T-1] |

| |
| | I
Dout [T] I Dout [T] | Dout [T-1] I
| | |

Block Identification: 2'b00 Dout [T] Dout [T-1] Dout [T-1] Dout [T-1]

Figure 5.5: Packed Storage Methodology - split memory implementation data reorganization

115

5 Hardware Coprocessors for Signature Matching

116

% L
T-1 4—————Bitmask Length=—————

— 7.7 Vi v

\ /
|

Bitmask stored in memory

Reconstructed 512 bit Data

Bits of Interest: Bitmask
|

Bitmask After Shifting

‘ _—

-~ \

" : M .
X 7 i G Bl

Dat:t_Sev:;_ap:ping &\\\\\\\\\\\\N&\\ m \\‘!

Bitmask After Swapping
s | T
Data Masking
\
I

Bitmask in usable form

Figure 5.6: Extracting the bitmask from the data fetched from the memory

e Step 1 - Data Reconstruction In this step, the data which is fetched from

the individual memory blocks are reconstructed based on the block identification
bits as explained previously in Figure 5.5. All the combinations of the aggregated
data are prepared, amongst which the specific combination is chosen based on the
registered block identification bits through a multiplexer as shown in Figure 5.7.

Step 2 - Data Shift: After the data reconstruction step, the most significant
byte in the bitmask is shifted to the most significant byte position in the recon-
structed data. This is done by left shifting the bitmask by a certain number of
byte positions based on the value of the position bits. For example, if the position
bits corresponding to the calculated address location T’ is ‘0’, the reconstructed
data is shifted by 15 byte positions. To generalize, if the byte position indicated
by the position bits is ‘P’, the reconstructed data is left shifted by ‘15-P’ byte po-
sitions. The data shift block is implemented in the hardware through multiplexer
circuits, whose select signals are driven by the registered position bits as shown
in Figure 5.7. A total of log,(BW/8) combinations have to be processed by the
multiplexers to effectively shift the data as part of the shift operation.

Step 3 - Data Swap: After the data shift operation, the required bitmask in-
formation is available from the most significant byte position in the reconstructed
data. However, in order to make the bitmask data usable, the required bitmask

5.3 Compressed Transition Storage

data has to start from the least significant byte position. So, in this step, the data
is swapped bit by bit, between the most significant and the least significant bit
positions. For example, the data in bit position 511 is swapped with bit position
0. Similarly, data in bit position 510 is swapped with data in bit position 1 and
this process continues until all the 512 bit data is swapped. In order to support
this swapping step, the bitmask is swapped in a bit by bit manner before being
stored in the memory.

e Step 4 - Data Masking: Out of the 512 bit data that is fetched from the memory;,
only a certain portion of the reconstructed data contains the bitmask. The actual
data of interest is defined by the bitmask length for a group and a 512-bit mask
is generated remove the non-bitmask bits among the 512 bit data extracted from
the memories. A decoder circuit is used to generate the mask from the bitmask
length which finally ends the bitmask extraction process as shown in Figure 5.7.

5.2.3 Summary

The bitmasks are highly non-linear data structures, i.e, the width of the bitmasks gen-
erated varies depending on the characteristics of the signatures. Moreover, the bitmasks
which are stored in the on-chip memories should be fetched in a single clock cycle, so
that there are no memory contention issues when multiple streams are inspected by the
hardware accelerator. Addressing these requirements, the Packed Storage Methodology
was proposed in this section through which the bitmasks can be flexibly stored in the
on-chip memories without resulting in memory wastage. Moreover, using the PSM, the
bitmasks can also be fetched in a single clock cycle which satisfies all of the requirements
pertaining to the bitmask storage.

The next section discusses a flexible storage architecture which is used to store the
compressed state transitions in the on-chip memories.

5.3 Compressed Transition Storage

5.3.1 Requirements

As discussed in Chapter 3, the compressed state transitions generated after the MSBT
are segregated into the leader transitions and the member transitions. The total number
of leader and member transitions generated for each of the signature sets vary depending
on the following factors:

e Leader Transitions: The leader transitions generated in a single leader state
vary depending on the number of transitions which are compressed during the
intra-state compression step. Moreover, as explained in section 5.2, the number of
transitions which are compressed in a state after the intra-state compression step
depends on the combination of characters which occur in the signature set. Since
the leader transitions corresponding to all the leader states are consolidated and

117

5 Hardware Coprocessors for Signature Matching

JIV¥VD ANV Lld 242
A Fy
NOILYHINID »
ASYIN
=
x 0
g g dVARS '8 HALIHS Y1va e
-
o E T
/ HIXTIAILINIA NOILONYISNODTY YIvd o
F 3 F 3 b h
HOLYD IOV Yivd
A ¢ -t
1noag 1noag
> > >= T o o
i g8 g |
1 58 + al loa
=< S« S
| I
4
w
>
w
E
]
2
=
=
s il
ﬁ 3 1 2
2 a o, =
o =4 [l
o 9 = E
w 4] — % e
E E = '_—' | s
4 2 = E 2
8 1 NOILY43INID z =
o 2 g E
8 | | TYNDIS @
< T I LIS XN
=5 o
g l
= * I
o = =
[9,
= %
ce
8 <
=T
' E
&5 s
s

Figure 5.7: Hardware logic used to extract the bitmask from the memory

118

5.3 Compressed Transition Storage

stored in the LTT, the total number of leader transitions which are stored in the
memory also depends on the total number of groups generated during the state
grouping step. To summarize, the total number of leader transitions generated after
the transition compression varies depending on the characteristics of the signature
set and the total number of groups generated as part of the state grouping step.

e Member Transitions: As far as the member transitions are concerned, the mem-
ber transitions across all the groups are consolidated and stored in the MTT. Unlike
the leader transitions, the aggregate number of member transitions only depends
on the state grouping step. Though, the DC state grouping step proposed in
Chapter 4 focuses on minimizing the number of member transitions through vari-
ous algorithms, the actual number of member transitions generated solely depends
on the state grouping.

So, the underlying transition storage architecture should be able to handle varying
leader and member transition counts which depends on the characteristics of the signa-
ture set.

The simplest way to design the transition storage architecture is to architect the
physical memories (LTT & MTT) in such a way that a predefined fixed number of leader
and member transitions can be stored in the memories. However, due to the uncertainty
in the actual number of transitions generated after the transition compression, designing
the LTT and the MTT in this way will result in inefficient usage of on-chip memory space.
For example, scenarios could occur in which the number of member transitions generated
are higher than the predefined capacity of the MTT, while the LTT is inadequately used
or vice versa. In such scenarios, using the same physical memory to store the leader
and the member transitions will result in memory contention issues as the LTT and
the MTT are accessed in different stages of the transition decompression process?. In
order to work around the memory contention issues, a memory arbiter will have to
be used to manage the memory accesses which will introduce additional latency in the
decompression process. So, the storage architecture which is used to store the compressed
state transitions should be capable of addressing the following requirements:

e The underlying transition storage architecture should be flexible and programmable
so that a varying number of leader and member transitions can be stored in the
on-chip memories in a configurable manner.

e The storage architecture should not introduce additional complexity to the decom-
pression engine architecture, so that the latency to fetch the compressed transition
increases.

Addressing these requirements, a flexible; run time programmable Shared Memory
Methodology (SMD) is proposed to store the compressed transitions. The details of the
storage architecture is explained further.

41t should be remembered from Chapter 3 that the LTT is accessed during the LTBFS, which is the
second stage while the MTT is accessed in the MF'S, which is the third stage.

119

5 Hardware Coprocessors for Signature Matching

5.3.2 Shared Memory Methodology

Figure 5.8 shows the organization of the state transitions which allows a configurable
storage of leader and member transitions in the on-chip memories through the SMD.
The on-chip memories are logically split into three partitions, i.e., the LTT, the MTT
and the Shared Memory (SM). The LTT and the MTT are dedicated physical blocks
of memory®, which only store the leader and the member transitions, respectively. On
the other hand, the SM consists of multiple blocks of physical memories, where each
of the individual memories can be configured to either store the leader or the member
transitions. The LTT, the MTT and the memories in the SM store one compressed
state transition per address location. The LTT and the MTT are architected to store
L leader transitions and M member transitions, respectively. As seen in Figure 5.8,
the SM is organized into R physical memory blocks, where each of the blocks can store
S compressed state transitions. The individual physical memory blocks belonging to
the shared memories can either be allocated to the LTT or the MTT regions, so that
the capacity of the dedicated memories can be dynamically increased depending on the
number of compressed transitions which are generated after the transition compression.
The decision regarding the allocation of the individual memory blocks in the SM is
made by the compiler which performs the MSBT. The choices for ‘L’, ‘M’, ‘R’ and ‘S’
are made during the implementation stages depending on the number of signatures to
be supported by the signature matching engine.

Table 5.2 shows the assumptions made to further explain the shared memory method-
ology. Based on the assumptions described in Table 5.2, the LTT and the MTT can store
a total of 8192 transitions while the SM is composed of 4 physical memory blocks each

®Though the LTT and the MTT are shown as single memory blocks in the illustration, in order to meet
the area and timing requirements, they can be implemented as multiple physical memory blocks.

] 1] |
5M
L M 5
LTt Ul (Rlnst) ol
l | | L1
L
|/ MTT
Memory N L+M-1
blocks for
Shared L+M
Memory (SM) Incremental SM
Addressing with (Rinst}
one transition
stored per L+M+(R"S) -1
address

Figure 5.8: Shared memory architecture with state transitions flexibly stored in the LTT, the
MTT and the shared memories

120

5.3 Compressed Transition Storage

of which can store 1024 transitions. Figure 5.9 describes the overall flow of the shared
memory allocation and how it is decided during the compile time. After the transition
compression, it is assumed that the compiler generates 9192 leader transitions and 11192
member transitions. Since the maximum capacity of the LTT is only 8192 transitions,
the first block from the shared memory is allocated to the LTT. Similarly, since there
are 11192 member transitions, the rest of the shared memory blocks are allocated to the
MTT as shown in Figure 5.9. The compiler also generates the ownership bits for the
shared memories after deciding the allocation of the shared memories to the LTT or the
MTT. The ownership bits provide information on whether the LTT or the MTT own
the physical block of the shared memory, further providing information on whether the
physical shared memory block is used to the extend the capacity of the LTT or the MTT.
In this way, by introducing the ownership bits, the issue associated with the memory
contention in accessing the shared memory by the hardware block is eliminated. As
shown in Figure 5.9, the SM ownership bits are set to 0, 1, 1 and 1, respectively which
inform the hardware accelerator that the SM block 0 belongs to LTT, while the SM
blocks 1, 2 and 3 belong to the MTT.

Table 5.2: Example values used for the parameters to explain the Shared Memory Methodology

LTT | L | 8192
MTT | M | 8192
SM R 4

S | 1024

The individual physical blocks of memory are incrementally addressed starting with
the LTT followed by the MTT and the shared memory as shown in Figure 5.8. Table 5.3
describes the address ranges for the LTT, the MTT and the SM entries, assuming that the
memory parameters are assigned as shown in Table 5.2. This information is essential
as the address ranges together with the ownership bits determine the actual physical
memory location which is accessed to fetch the compressed state transition.

5.3.2.1 Transition Memory Access

Figure 5.10 shows the organization of the physical memory blocks and how the memories
are accessed without any contention in a single clock cycle as part of the SMD. The LTT,
the MTT and the SM are organized in the physical memory blocks and are individually
accessible through a dedicated SRAM interface. The transition memory control block
connects the memories to the hardware accelerator block, which accesses the memories
as part of the decompression process. The transition memory control block provides a
dedicated SRAM interface to access the leader transitions and the member transitions
alone and is called the leader transition and the member transition access interfaces.
Based on the incoming address of the memory transaction, the leader and the member
control block can differentiate if the incoming transaction is directed to the LTT, the
MTT or the shared memory blocks.

121

5 Hardware Coprocessors for Signature Matching

Signature Set ko
a
. £
=]
h A L]
DFA g
A 4 Shared memory ownership bits
MSBT Transition Compression (compiler) & generated after compilation
E. (0-LTT / 1-MTT)
r ¥ - S SMO0 -0
Leader Transitions Member Transitions E / sM1-1
(9192) (11192) = SM2 -1
SM3 —1
¥ h 4 =~
—— ' 2.
£2 c
g c 9 g
- Z22% ¢
LTT SMO MTT SM 1-3 w®mES
2 0 ; w
3=
w

Figure 5.9: Overview of memory block allocation during compile time

Table 5.3: Shared memory architecture - memory addressing

Memory || Start Address | End Address
LTT 0x0000 0x1FFF
MTT 0x2000 0x3FFF
SMO 0x4000 0x43FF
SM1 0x4400 0x47FF
SM2 0x4800 0x4BFF
SM3 0x4C00 0x4FFF

There are 2 levels of demultiplexers which classify a memory transaction. The first
demultiplexer (L1 Demux) either directs the memory transaction towards the dedicated
memory (LTT/MTT) or the SM blocks. The second level of the demultiplexer (L2 De-
mux) is only used, if a transaction is directed to the SM blocks and selects the individual
block to which the transaction is directed to. The select signal of the demultiplexers
are generated based on the incoming address of the transaction falling into a specific
memory range as shown in Table 5.3.

Once a transaction is directed to the shared memories through the 2-level demulti-
plexing process, either the transaction generated by the leader transition or the member
transition access interface is selectively directed towards the physical memory. Since a
transaction from both the leader and the member transaction access interfaces can be

122

5.3 Compressed Transition Storage

Leader transition
access interface

Leader Control

Transition
Memory
Control

Member transition
access interface

Member Control

LTT

MTT

SMO0

SM 1 SM 2 SM 3

Physical Memory Blocks

e——|TT Interface——pe
o———MTT Interface——po

-

SM Interface P

+———Demultiplexer Select Signal—=

o

SM Ownership bit pe

Figure 5.10: Overview of the transition memory access using the shared memory methodology

directed towards the SM blocks, a multiplexer (Mux) is used to direct the request from
one of the access interfaces to the SM blocks. The select signal of the multiplexer is
controlled through the individual ownership bits which were generated during the com-
pilation process. The ownership bits are stored in the accelerator as internal registers
and are appropriately connected to the corresponding multiplexer’s select signal. So,
the multiplexer logic makes sure that only one of the transition interfaces access the
physical memory. So, a scenario can never occur where both the leader and the member
transition interfaces access the same physical memory among the shared memory blocks.

123

5 Hardware Coprocessors for Signature Matching

5.3.3 Discussion & Summary

The actual number of leader and member transitions which are generated after the
transition compression is variable and are highly dependent on the characteristics of
the signature set. The Shared Memory Methodology was proposed in this section to
effectively store the varying number of compressed state transitions in a flexible and a
configurable way. The SMD proposes a flexible and programmable methodology to store
the compressed transitions by introducing the concept of shared memories to dynamically
increase the capacity of the dedicated memory blocks, which store the leader and member
transitions, respectively. Moreover, the proposed architecture prevents any memory
contention issues which can potentially introduce additional latency in the transition
decompression process.

Though the SMD allows a configurable and flexible storage of the compressed transi-
tions, an additional latency is introduced in the transition fetch due to the demultiplexers
and the multiplexers (combinatorial logic) introduced in the memory access path. This
additional latency, varies depending on the partitioning of the physical memories. The
additional latency which is introduced can be classified into a fixed component and
a variable component. The fixed latency component includes the latency of the first
level demultiplexing operation and the last level multiplexing operation. On the other
hand, the variable component depends on the second level demultiplexing which in turn
depends on the number of physical memory blocks in the SM. The second level demulti-
plexing latency corresponds to logy(R) demultiplexer latency and should be considered
when designing the memory architecture for the transition memories. The choice for ‘R’
and ‘S’ affects the latency introduced in the memory access and the flexibility achieved
in the transition storage.

A shared memory region partitioned into small physical blocks results in a higher
degree of flexibility in the transition storage. However, this also introduces a higher
latency than a shared memory region partitioned into bigger physical blocks with a
smaller ‘R’. Since the additional latency that is introduced is due to the latency of the
combinatorial logic, this only affects the achievable clock frequency making sure that
the intended data is fetched in a single clock cycle. With shrinking technology nodes,
the additional latency will also be minimal and will not greatly affect the frequency of
operation of the signature matching hardware accelerator.

5.4 BiSME - Internal Architecture

After defining the flexible storage architectures to store the bitmasks and the compressed
state transitions, this section describes the detailed internal architecture of BiSME, a
Bitmap based Signature Matching Engine proposed to accelerate the signature matching
operation.

The internal architecture of the BiSME is shown in Figure 5.11(a) and consists of 4
major blocks, namely the Memory Shell (MS), the Address Decoder (AD), the Memory
Access Multiplexer (MAM) and the Decompression Engine (DE). The BiSME consists
of a combination of various proprietary and non-proprietary interfaces which are used to

124

5.4 BiSME - Internal Architecture

SME CONTROL SIGNATURE_
& STATUS PRELOAD_
SIGNALS INTERFACE
——CLK—» [
«—RST_N-»] MEMORY SHELL ADDRESS DECODER
]
| S ol I
= MEMORY Mt AM;AD MBT_AD LTED MTT_AD
a\

. CONTROL)
Tl B
MBT Je—
Je—f] BITMASK MEMORY ACCESS
= ADDRESS |
a e[preprocres | 4—we—s] MULTIPLEXER

s 5 w
G o m— | Q
S ¢ 25
e I 2 g
= SEE
Y ou AMT ——————————————p| < ——AMT <] 4 B4 ™ = = E
W = ' 2 3E
£= AMTDE MBT_DE LTT_DE MTT_DE v =
= = ‘ 9
- :
' ! .
f AY M |><|
SIGN_
»—STATE AATGH—b
ADDRESS LOOKUP STAGE LEADER TRANSITION BITMASK . MEMEBER FETCH T
*—CHAR » FETCH STAGE STAGE ACCEPTED, -4»
STATE
DECOMPRESSION ENGINE

BiSME

(a)

SRAM INTERFACE —

& B
CLOCK READ-WRITE —
ADDRESS——»] b SRAM_INTERFACE "
| MEMORY_ENABLE—» READ ONLY n
D— —{x]

I WRITE_ENABLE—»]
DATA_IN——»
|—DATA_WRITE_MASK—>]
le— DATA_OUT

SRAM_INTERFACE

SRAM Master
SRAM Slave

(b)

Figure 5.11: (a) Internal Architecture of the Signature Matching Engine (b) SRAM interface
description

communicate with the hardware blocks. The signature preload interface is used to down-
load the signatures into the memory shell, which consists of multiple on-chip SRAMs
that store the compressed DFA. So, the SRAM interface shown in Figure 5.11(b) is
used as the interface of communication for the signature preload interface. On the other
hand, the byte stream interface and the signature match output interface are proprietary
interfaces, which are used to input the payload bytes for inspection and send appropri-
ate information related to a signature match, respectively. The SME control and status
signals are a collection of signals which are fed from the register bits programmed by

125

5 Hardware Coprocessors for Signature Matching

the network processor. Moreover, it also consists of signals which provide the status
information about BiSME to the network processor.

5.4.1 Memory Shell

Before describing the details with respect to the individual memories in the memory
shell, a short description on the state encoding is described first. Since the states in
the DFA are organized into the leader and the member states after the MSBT, a state
transition is also encoded as a combination of the leaderID and the memberID as shown
in Figure 5.12(a). The leaderID identifies the group to which a state belongs to, while
the memberID identifies each of the individual states in a group. 8 bits are used to
represent the leaderID and the memberID to support a theoretical maximum of 64k
states spread across a maximum of 256 groups with each group consisting of a maximum
of 256 states. Finally, the most significant bit in the encoded state representation is
called as the ‘Signature Match Bit’ which recognizes an accepting state.

The exact_match signature set was used as the reference to architect the various mem-
ories in the memory shell, so that a minimum of 500 string signatures can be stored in
the signature matching engine. The transition and the control memories are architected
to store the compressed DFA corresponding to a maximum of 16k states. As seen in
Chapter 4, the experimental evaluations on the DC state grouping method identified
that the average number of states generated in a group after the state grouping step is
always smaller than the allowed predefined maximum number of states, B. Moreover, the
individual number of states clustered into a group also depends on the characteristics
of the signature set. Considering these issues, even though a maximum of 64k states
can be represented using the encoded state representation, the memories are architected
to store the state transitions for a maximum of 16k states only, supporting transition
compression rates of 98%°5. However, a compressed DFA with a higher state count can
be stored, if it can fit into the predefined memory boundaries. This corresponds to a
scenario where the transition compression rate achieved by the MSBT in the signature
set of interest is higher than 98%.

The memory shell primarily stores the compressed DFA in various on-chip SRAMs as
shown in Figure 5.12(b-d). Based on the shared memory methodology, the transition
memories are composed of the leader transition table, the member transition table and
the shared memories as shown in Figure 5.12(b). A cumulative total of 96k” compressed
transitions can be stored in a configurable way within the transition memories. The
leader and the member transition tables respectively are architected to store a maximum
of 16k and 48k transitions, respectively, while the shared memory consists of 4 blocks,
with each block capable of storing 8k state transitions. Since each of the group only
has a single leader state, a maximum of 64 leader transitions can be stored in the leader

5The choice of 98% for the transition compression rates were made after the experimental results seen
in Chapter 4

"The total number of state transitions generated from the uncompressed DFA with 16k states is 4096k.
2% of the uncompressed transitions is ~84k transitions. So, the memories are capable of storing
slightly over 2% of the overall transitions in the DFA corresponding to 16k states.

126

5.4 BiSME - Internal Architecture

< 17 > « 17 ¢ 17 17 +
] 8 ——8 T lIl I
] | 3 & S
g g z
[T T]
leaderID memberlD
LY
T T T
Signature Leader Member Shared
Match Bit Transition Transition Memory
Table Table (R=4)
(a) (b)
128~ «128— +128— +128—~ + 64 > 256
T LTT Base | MTT Base | MBT Base | Bitmask Bit
g Address Address Address Length mag
i |
1 !
[Ty]
[
\ r A ; M I
7 12 128—

Member Bitmask Table

I
Address Mapping Table

(c) (d)

Figure 5.12: (a) DFA state encoding (b) Organization of the compressed transitions in the
memory (c) Table to store the MTB and the cumulative sum of transitions (d)
Table to store the base addresses and other control information

transition table corresponding to a maximum of 256 leader states®. If more leader
transitions are generated, the memory blocks in the shared memories can be used to
extend the capacity of the leader transition table. The transition memory control block,
described in the previous section is also a part of the memory shell and performs the
logic operations pertaining to address assignment to the individual physical memories.

The MBT is designed using the packed storage methodology and is capable of storing
the bitmasks for a maximum of ~16k states, assuming that each member state has an

8The average number of leader state transitions generated across various signatures sets used in the
MSBT evaluation, varied between 60-80. So, it was assumed to use an average value of 64 leader
transitions per state to define the boundaries of the LTT.

127

5 Hardware Coprocessors for Signature Matching

average bitmask width of 128 bits?. Furthermore, based on the previous discussions on
the composition of the characters in the signature set, it should be remembered that
not all characters are always represented in a signature set. Moreover, only a very
small portion of the extended ASCII codes (128-255) are found in real signature sets.
So, based on these observations and the experimental results seen in Figure 5.2, the
average width of the bitmask to be stored for each member state is set to 128 bits.
Though, this assumption is just used to define the boundary for the MBT, the bitmasks
corresponding to an increased number of member states can be stored if the average
bitmask width in the member states is smaller than the original assumption. The MBT
is split across 4 physical blocks whose memory width is set to 128 bits to make sure that
the 272 bit longest bitmask can be fetched in a single clock cycle. The bitmask address
preprocess block performs logic operations associated with the address assignment to the
individual memories in the PSM and also generates the consolidated 512-bit data from
the memories.

Figure 5.12(d) shows the Address Mapping Table (AMT) which stores the control
information for the 256 groups. The AMT stores the address location of the first leader
transition and the first member transition in the group which are referred to as the LTT
and the MTT base address, respectively. Similarly, the MBT base address refers to the
least significant byte of the first bitmask in each of the groups (i.e., locations referred
by the black arrows in Figure 5.3). Together with the base addresses, the bitmap and
the Bitmask Length (BL) in bytes are also stored in the AMT. The bitmap and the
BL are common for all the states in the group and are stored only once in the AMT.
Since, a total of 320 bits of information is stored per group, the AMT is split width-wise
and physically implemented as three separate memories to minimize the SRAM access
latencies.

5.4.2 Address Decoder & Memory Access Multiplexer

The address decoder is the gateway to access the memories through an external agent,
e.g., the network processor to download the compressed DFA. The address decoder block
routes the incoming read or the write transactions to one of the memories, based on the
transaction address falling into a specific predefined address range corresponding to the
individual memories.

The memory access multiplexer regulates the access to all the individual memories, in
such a way that they are accessed by the address decoder when the compressed DFA is
downloaded and the decompression engine during the decompression operation. In this
way, the signature download process is decoupled from the signature matching operation

9The 128 bits chosen for the bitmask, includes the cumulative sum of transitions which utilizes a fixed
16 bits. It should be remembered that the MBT was made byte addressable, which requires the
bitmask width to be a multiple of 8 bits. Additional 0’s are padded to the MBT to make sure that
the MBT is a multiple of 8 bits. Similarly, the cumulative of sum of transitions was allocated 16 bits
as part of the bitmask. The number of member transitions generated in certain groups were over 256
in the experimental evaluation of the MSBT and this required the cumulative sum of transitions to
be set to 16 bits. This would allow a maximum of 2'¢ transitions to be offset from the base address
which is more than enough for the considered configuration.

128

5.4 BiSME - Internal Architecture

CHARACTER-STATE CHARACTER-ONLY INVALID
TRANSACTION TRANSACTION TRANSACTION

owewns ([1 [1

| RPN, W R L — =
~

SIGNATURE ACCEPTED_STATE [16:0] ‘% % i %
| S?;}:,;EE SIGN_MATCH |—|
NEXT_STATE [16:0] - W/////-///////////////////

Figure 5.13: Details of the byte stream interface and signature match output interface

and also ensures that the content of the memories are not modified when the signature
matching is ongoing. The multiplexers in the memory access multiplexer block and
the ownership bits are controlled through the registers which are programmed by the
network processor. The SMFE control signals connects these signals from a register bank
which is external to BiISME.

5.4.3 Decompression Engine

The Decompression Engine (DE) is the heart of BiSME and performs the compressed
transition lookup corresponding to a state-character combination. The DE receives the
current state information and the payload byte through the Byte Stream Interface and
performs various calculations in the hardware to fetch the compressed state transition.
After identifying the compressed state transition, the DE checks if there is a signature
match corresponding to the processed sequence of payload bytes. If a signature match
is detected, the DE generates the required information to initiate the post-processing
corresponding to the signature match through the Signature Match Output Interface.
The byte stream interface is a custom interface that is used to inject the payload bytes
into the BiSME for signature matching. The byte stream interface is a collection of 5
signals as shown in Figure 5.13. The clock signal represented in the byte stream interface
is the clock signal which is used to synchronize all the sequential circuits and the mem-
ories in BiSME. The byte stream interface consists of the char, state and the context_id
signals, which represent the ‘payload byte’, the ‘current_state’ and the ‘context_id’ for
which the compressed state transition is fetched. A single bit enable signal is provided

129

5 Hardware Coprocessors for Signature Matching

for the char and the state signals to assert their validity in a transaction. It is mandatory
for the char signal to always have the char_enable signal asserted during a transaction,
while it is optional in the case of the state signal. It takes multiple clocks cycles!? (N)
as shown in Figure 5.13 to identify the compressed state transition corresponding to a
state character combination. In order to keep the hardware pipeline occupied, the pay-
load bytes corresponding to different 5-tuple streams are interleaved and processed by
the decompression engine. So, in a given time, the payload bytes corresponding to ‘N’
different streams are processed in parallel by the hardware. Each of these ‘N’ streams
are individually identified using a specific context_id. So, the context_id is also provided
as an input along with the character-state combination. Since, it takes ‘N’ clock cycles
to identify the compressed transition, it is mandatory to input the subsequent character
corresponding to a stream after ‘N’ clock cycles to enable the correct operation of the
signature matching function.

As part of the byte stream interface, only a certain valid signal combinations are
accepted by the decompression engine and are described below:

e Character-state transaction: In this transaction, both the payload byte and the
current state information are input to the engine for which the corresponding
compressed state transition is identified. This transaction is used to input the root
state into the decompression engine when the signature matching corresponding to
a new 5-tuple stream starts. Similarly, this transaction is also used to communicate
the state information to the decompression engine when the signature matching
function is resumed corresponding to a specific 5-tuple network stream. In this
specific transaction type, the char_enable and the state_enable signals must be
asserted to inform the validity of the incoming character state combination.

o Character-only transaction: If the stream of bytes corresponding to the context_id
are continuously input to the engine every ‘N’ clock cycles, the state information
is not mandatory to be input to the decompression engine. The current_state
information in this case is directly used from the next_state that was generated in
the previous comparison cycle. In this case, the enable signal associated with the
state is set to 0. However, the char_enable signal should be asserted to inform the
validity of the incoming character in this transaction.

o Inwalid transaction: This is the third scenario where there is no valid character
that is input to the decompression engine. So, in this scenario, the enable signal
corresponding to both the state and the payload byte are set to logic low to identify
an invalid transaction. The decompression engine doesn’t consume a byte during
an invalid transaction.

Once the compressed state transition is identified, the identified state transition is
assigned as the next_state. Then, the relevant information corresponding to the sig-

10 As described in Chapter 3, the hardware accelerator requires a minimum of 3 clock cycles to identify
the compressed state transition. However, the value of N depends on the additional number of
pipeline stages added to improve the achievable clock frequency in the design and will be discussed
further in this chapter.

130

5.4 BiSME - Internal Architecture

nature match are output through the signature match output interface as shown in
Figure 5.13. The signature match output interface consists of a total of three signals
which are described further. The next_state signal contains the compressed state transi-
tion corresponding to the state-character combination. If the next_state is an accepting
state, the corresponding next_state information is driven in the accepted_state signal
along with a sign_match signal set to logic high for a single clock cycle.

The processing associated with the transition decompression is very simple and is
performed across 3 hardware blocks as described below.

Address Lookup Stage: The character and the state information are received through
the byte stream interface in the address lookup stage. Then the current state information
is first decoded into its leaderID and the memberID. Then, the leaderID is used as the
address to fetch the control data from the address mapping table. The data is fetched
from the address mapping table through a dedicated SRAM interface which connects
the address lookup stage to the memory shell.

The base addresses corresponding to the transition memories, bitmask memory to-
gether with the bitmap and the bitmask length is fetched from the address mapping
table. After the data is fetched from the memories, the address of the leader transition
and the most significant byte address of the bitmask are calculated through separate
hardware blocks simultaneously. (5.4) shows the computation performed to calculate
the address of the leader state transition (LTT_Addr.) corresponding to the incoming
state character combination. The base address (LTT_-BA) which is fetched from the
address mapping table is added to an offset address which is calculated by performing
the population count operation on the bitmap. According to previous bitmap based
implementations [4, 5], an efficient implementation of the population count function in
the hardware enables to achieve the decompression in low latencies. In order to achieve
this task, the accumulative parallel adder [91] circuit is used to perform the population
count operation'!. Though, various implementations have been proposed to perform
the population count operation [91, 92, 93, 94], it has been shown that the usage of
accumulative parallel adder is the most efficient method to implement the population
count operation [95].

The calculation performed to generate the MBT address (MBT_Addr.) is shown in
(5.5). The bitmask base address (MBT_BA) fetched from the address mapping table
is added to the product of the memberID and the bitmask length. The multiplication
in the address generation process is implemented through the wallace tree multiplier
circuits [96] to enable low latency processing. As discussed during the packed storage
methodology description, the base address refers to the location of the least significant
byte of the first bitmask in the group. Omnce the addresses are calculated, they are
passed as internal signals to the next stage, i.e., the leader transition and the bitmask
fetch stage.

LTT_Addr. = LTT_BA + popcount (bitmap) (5.4)
MBT_Addr. = MBT BA + (memberID x BL) - 1 (5.5)

1 Appendix A describes the architecture of the accumulative parallel adders

131

5 Hardware Coprocessors for Signature Matching

MTT_Addr. = MTT_BA + Cum._Sum + Popcount(MTB) (5.6)

Leader Transition Bitmask Fetch Stage: In this stage, the leader transition and the
bitmask are fetched simultaneously from the respective memories using the dedicated
SRAM interfaces. The address locations which were calculated in the previous stage are
used to fetch the data from the memories. After the memory access, the data returned
from the leader transition table directly corresponds to the leader transition. On the
other hand, the bitmask extraction is performed in this stage to extract the MTB and
the cumulative sum of transitions. The MTB bit corresponding to the incoming payload
byte is fetched by using a multiplexer circuit in this stage. Simultaneously, the location
of the transition to be fetched from the member transition table is calculated as shown
in (5.6). The member transition base address (MTT_BA) fetched previously is added
to two different offsets. The first offset, i.e., the cumulative sum of transitions provides
information about the number of member transitions stored in the member transition
table prior to the current member state of interest. The population count operation
performed on the MTB provides the member offset. The population count operation in
this stage is also performed using the accumulative parallel adder circuitry.

Member Fetch Stage: This is the last stage of calculations performed in the decom-
pression engine. In this stage, the next_state is assigned either from the registered
leader transition or the member transition fetched from the MTT. If the current_state
is a leader state, then the registered leader transition is assigned as the next_state. If
the current_state is a member state, the next_state is either assigned from the leader
transition or the member transition depending on the MTB bit corresponding to the
character. After identifying the next_state, the ‘signature match bit’ corresponding to
the next state is checked and the results are sent to the signature match output interface
accordingly.

5.4.4 BOBIiSME - Modified BiSME to support Bitmask Compression

This section describes the architectural modifications which are made in BiSME to sup-
port the bitmask compression. The signature matching engine which is capable of sup-
porting bitmask compression is called as the Bitmask Optimized BiSME (BOBiSME).
Various modifications are made to the internal architecture of BiSME to accommodate
bitmask compression. The modifications are made to the internal organization of the
physical memories in the memory shell, the address decoder and the decompression en-
gine. However, there are no modifications required for the external interfaces which
communicate with the signature matching engine. The block level architecture of the
BiSME and the BOBiSME are identical and due to this reason, the block level descrip-
tion of BOBISME is not discussed in detail in this section.

Figure 5.14 shows the modified organization of the memory shell. As seen in Fig-
ure 5.14, there are two modifications which are made to the memory shell to support
bitmask compression. Firstly, the unique_bitmask is stored in the address mapping table
in addition to the other data which are originally stored in it. Since a maximum of 256
member states are permitted per group, a corresponding 256-bit unique_bitmask is re-
quired for each of the groups. This brings the information stored in the address mapping

132

5.4 BiSME - Internal Architecture

-« 17— —17— —17— —I17—
138 8 | | 1
3 a o
[| 2 3 5
[T 7 i I
] 1 !

leaderlD memberlD

Signature (a) Leader Member Shared
Match Bit Transition Transition Memory
Table Table (R=4)
(b)
128 « 128+ « 128+ « 128~ ¢ 64 » 256——+—256—
T LTT Base | MTT Base | MBT Base | Bitmask Bitma Unique Bitmask
g Address Address Address Length P que_
~
]]
[Ty]
1
I k T 2 L A T % T T
4 128412 12 128—

Member Bitmask Table

Address Mapping Table
(c) (d)

Figure 5.14: (a) DFA state encoding (b) Organization of the compressed transitions in the
memory (c) Member Bitmask Table to store the MTB and the cumulative sum of
transitions (d) Table to store the base addresses and other control information

table to 576 bits per group. As in the case of the BiSME, the AMT is split width-wise
and stored across five different physical memories to reduce the latency associated with
the memory fetch. Secondly, the member bitmask table which stores the bitmasks for
the member states is reduced by half. Based on the experimental evaluation performed
in Chapter 4, it was identified that about ~50-70% of the bitmasks can be compressed
after the bitmask compression. Based on the experimental results, the MBT is reduced
to half of its original size in BOBiSME. Apart from these two modifications, no further
changes are made to the memory shell in BOBiSME. The organization of the transition
memories in BOBiSME is the same as in the case of BISME, as the bitmask compression
primarily focuses on compressing the bitmasks and not the state transitions.

In addition to the changes implemented to the memory shell, additional hardware
logic is added to the decompression engine in the BOBiSME. Firstly, the bitmask offset
is computed in the ‘address lookup stage’, which is used to compute the location of the
most significant byte of the bitmask. In the case of BISME, the memberID was multiplied
with the bitmask length and added to the bitmask base address to compute the location
of the most significant byte of the bitmask. In the case of BOBiSME, the bitmask offset

133

5 Hardware Coprocessors for Signature Matching

is used instead of the memberID to compute the same. The bitmask offset is computed
by performing the population count operation on the unique_bitmask. Secondly, the
additional offset'? is computed in the ‘leader transition bitmask fetch stage’ which is
required to compute the location of the compressed state transition in the member state
corresponding to the state character combination. To summarize, the introduction of
bitmask compression introduces additional logic circuits in the decompression engine in
the first and second stages of the decompression engine to reduce the memory used to
store the compressed DFA in BOBiSME.

5.4.5 Throughput

If T, F and B represent the overall throughput achieved by the signature matching
engine, the frequency of operation and the number of bytes inspected per clock cycle,
respectively; then their relationship is represented through (5.7).

T =F x B x 8 bits/s (5.7)

Assuming that all the memories and the sequential logic is clocked using the same
clock signal in BiSME and BOBiSME, the transition decompression process requires a
minimum of three clock cycles to identify the compressed state transition corresponding
to a state character combination. The various required internal signals in the decom-
pression engine are registered to maintain the integrity of the hardware pipeline. Since
it takes three (N=3) clock cycles to identify the compressed state transition, it would
take a minimum of three clock cycles for BISME/BOBiSME to consume the subsequent
byte in the sequence of the bytes corresponding to a single 5-tuple stream. In such a
scenario, in order to fully utilize the hardware pipeline, the payload bytes from multiple
(N) contexts are input to BiSME in an interleaved fashion, as proposed in [97]. This
allows to initiate a compressed transition fetch for a single byte every clock cycle and
keep the hardware pipeline busy. Fundamentally, a context refers to a unique 5-tuple
network stream whose payload is being inspected.

The maximum throughput achieved by each individual context, T is the ratio of the
overall throughput T and N as shown in (5.8), where N represents the number of clock
cycles required to identify the compressed state transition corresponding to a single byte.

T
T. = N (5.8)
The signature matching throughput, T can either be increased by increasing the fre-
quency of operation, F or by increasing the number of bytes inspected per clock cycle,
B. In order to increase the number of bytes inspected per clock cycle, the signature

matching operation has to be performed against a corresponding multi-stride DFA®3,

12The details related to the additional offset computation was explained in Chapter 4 and is not explained
here again.

13For example, if 2 bytes are inspected per clock cycle, the corresponding 2-stride DFA will have state
transitions corresponding to 22 X ® characters per state.

134

5.5 Deep Packet Inspection Accelerator

The process of converting a DFA to a multi-stride DFA results in an exponential explo-
sion in the number of state transitions generated and is not a feasible option to improve
the throughput [98]. So, the only mechanism to improve the throughput is to scale the
operating frequency F, by effectively pipelining the decompression engine. In order to
achieve signature matching rates of 10 Gbps, the BiSME and BOBiSME engines have to
be clocked at 1.25 GHz. In order to achieve such high frequencies, additional registers
were added to the processing stages to achieve higher frequencies.

Figure 5.15 shows an overview of the context based pipelining process. Figure 5.15(a)
and (b) respectively show the total number of pipeline stages in BISME and BOBiSME.
In the case of BiSME, in order to achieve the intended signature matching through-
put, the processing associated with the address lookup stage is split into two pipeline
stages and the processing associated with the leader transition bitmask fetch stage is
split into three pipeline stages. Thus, it would require a total of 6 clock cycles (N=6)
to identify the compressed state transition in the case of BiSME. In the case of BO-
BiSME, due to the introduction of the processing associated with bitmask compression,
an additional pipeline stage is required for both the address lookup stage and the leader
transition bitmask fetch stage. This brings the total number of pipeline stages to 8
in BOBiSME. Figure 5.15(c) shows the context based payload interleaving to keep the
hardware pipeline busy in the case of BiISME. As shown in the figure, the payload bytes
across 6 different streams are injected into the signature matching engine every successive
clock cycle.

However, the maximum clock frequency achieved also depends on the memory access
latencies which in turn depends on the choice of the implemented technology node. The
increase in ‘N’ resulting from the deeper pipeline impacts the per context throughput Tk,
but improves the overall throughput achieved by BiSME and BOBiSME. The increase
in the pipeline depth, also requires a corresponding increase in the number of contexts
supported to keep the pipeline busy.

5.5 Deep Packet Inspection Accelerator

The signature matching engines which were described in the previous sections primarily
focused on accelerating the decompression function to perform signature matching at line
rates. Though, the signature preload interface in BiSME / BOBiSME can be directly
used to communicate with the signature matching engines, additional hardware logic,
external to the signature matching engine is required to extract the payload bytes from
the network packets and sequentially inject into the engine. So, in order to complement
the functionality and to improve the ease-of-use of BiISME & BOBiSME, a Deep Packet
Inspection Accelerator (DPIA) is proposed in this section. The proposed DPIA is an
integrated entity which consists of the signature matching engines and the additional
hardware accelerators which manage the network payload bytes which are inspected by
the engine. The following subsection details the internal blocks and the interfaces which
are used to communicate with the DPTA.

135

5 Hardware Coprocessors for Signature Matching

& pipeline stages In the decompression 8 pipeline stages in the decompression engine

engine in BISME in BOBISME
| |
/ \ / N
LTBFS | LTBFS | LTBFS
ALSL | ALS2 MES ast | asz | auss | LTBFS | LTBFS | LTBFS | LTBFS |
1 2 3 1 2 3 4
(2) (b)
| I | I 1 I 1 I 1 I | | | I
1 2 4 3 4 5 | 6 7 | 8 9%) 10112 12 ; 13
Clock cycle F + + + } + } + t + + »
| ‘ | LTBFS l LTBFS | LTBFS | | | | | | l
_ | [| I 1 I 1 I | [| I
Context1-Bytel | ALS1 LALS2J 102 1 3 L‘MFSL | | | | | | |
f ™ > ™ < bre I 1 I | | | |
! ! ! l'rs | Lters | LTers ! ! ! ! ! ! !
Context 2 —Bytel | | ALS1 | ALS2 | 1 MFS | 1 I | | | I
| ¢ ple ple 1 plet 2 »le 3 » »l 1 | | | | |
| | | I 1 I 1 I | | | I
Context3—Bytel | ! last | sy | UTBFS | LTBES | LTBES |y 1 ! ' ! ' !
| I I N 11 | 2 o K I | I | I
| I ¢ T+ g i a gl I | I | I
! ! I ' ! Lters | Lmers | LTers ! ! I ! ! '
Context 4 —Byte1l | I | | ALS1 | ALS2 I | MFs | | I | I
| | | e »le ple—l ple2 ol 3 g N | | | |
| I | I 1 I 1 I | I | I
| [| I 1 LTBFS | LTBFS | LTBFS | | [| I
Context5-Bytel | | | | l‘ALSLI“ALSZL 102 3 JJMFSJ | | |
| I | I re M e 1 et 1 [| I
! ! ! ! ! limees ! Liers ! Lrers ! ! ! !
Context 6 —Byte1 | I | I | Alst | oaLs2 | [I I MFs | | |
I [I I 1 . el e 2 ple I e) I I
| [| I 1 I 1 I | [| |
| | | I 1 | [I | LTBFS | LTBFS | LTBFS | I |
Context1-Byte2 | | | | | | jALSL | ALSZ T T T MES |
| I | I 1 PP B I
| | | I 1 | 1 I 1 e vy I
Context 2 —Byte2 | I | | | | | I oast |oaisz | | I I Mrs |
1 I 1 | 1 | 1 e »le el Jle 2 Jlg 3 g »!
Pipeline full (c)

Figure 5.15: (a) ALS & LTBFS split into multiple pipeline stages in BiSME (b) ALS and
LTBFS split into multiple pipeline stages in BOBiSME (c) Pipelined operation of
BiSME with context based byte interleaving

5.5.1 DPIA Interfaces

Figure 5.16 shows the block level internal architecture of the DPIA. The proposed ac-
celerator consists of two major interfaces to communicate with the signature matching
engine and are called as the control and the datapath interfaces, respectively. The control
and datapath interfaces will be compliant with standard on-chip network communication
interfaces such as the AXI [99] or the OCP[100], to enable easy integration of the DPTA
with the network-on-chip fabric in a network processor.

As shown in Figure 5.16, the control interface is used to access control and status
registers which configure the functionality of the DPIA. Additionally this interface is
also used to write and read back the internal memories which store the compressed
signatures.

The datapath interface is used by the host processor or the DMA engines in the SoC, to
send the network packets for signature matching. The post-processing associated with a
signature match is proposed to be performed as a software function in the host processor.

136

5.5 Deep Packet Inspection Accelerator

Performing the post-processing in the software provides the flexibility to define the post-
processing functions corresponding to the specific signature matches. Furthermore, this
also introduces the critical software interaction with the hardware accelerator to enable
efficient hardware software coordination.

5.5.2 DPIA Internal Architecture

As seen in Figure 5.16, the DPIA consists of four different internal blocks, i.e., the
Bus Control Unit (BCU), the Register Bank (RB), the signature matching engine (BiS-
ME/BOBISME) and the Network Data Management Engine (NDME).

The signature matching engine in the DPIA performs the signature matching function
and can either be composed of BiSME or BOBiSME.

The bus control unit receives a transaction through the control interface and either
forwards the transaction to the register bank!* or the signature_preload_interface in the
signature matching engine depending on the incoming address.

The register bank is a collection of various control information which are programmed
by the host processor to configure the functionality of the hardware accelerators in the
DPIA. For example, the ownership bits and the memory access multiplexer configuration
bits are stored in the register bank. Moreover, the register bank also stores various
status information from the accelerators in the DPIA which can be accessed by the host
processor to assess the status of the hardware blocks in the DPIA.

SRAM interface is used for the register_program_interface.

NETWORK-ON-CHIP

/L CONTROL \
_ INTERFACE A

REGISTER_
[4——PROGRAM_——|

BUS CONTROL UNIT |NTERFACE REGISTER BANK
A
——CLOCK—» SIGNATURE_ SME_CONTROL_ NDMI_CONTROL_
PRELOAD_ STATUS_INTERFACE STATUS_INTERFACE
INTERFACE
A 4
——RESET—» SIGNATURE_
MATCH_
OUTPUT_ ’ <
INTERFACE
DATAPATH
NE[I)')\;\;?‘RK INTERFACE
BiSME / BoBISME MANAGEMENT

BYTE_ ENGINE
|&—— STREAM_ ——
INTERFACE

INTERRUPT

DEEP_PACKET_INSPECTION_ACCELERATOR|

Figure 5.16: Block level description of the Deep Packet Inspection Accelerator

137

5 Hardware Coprocessors for Signature Matching

The Network data management engine receives the network packets for DPI and ex-
tracts the payload bytes and sends them to the signature matching engines through the
byte stream interface. The next subsection provides a detailed overview of the NDME.

5.56.3 Network Data Management Engine

A network processor processes a multitude of network streams in parallel and the signa-
ture matching engines should also be capable of inspecting these network streams. The
signature matching engines proposed in this work (BiSME/BOBiSME) only inspect a
maximum of ‘N’ contexts in parallel. So, multiple streams have to be mapped to the
available contexts to efficiently process the network streams. Additionally the signature
matching engines proposed in this work also require the extracted payload bytes to be
input to them in a specific interleaved format. In order to satisfy these requirements,
the network data management engine is proposed to perform the following functions:

e Map streams to contexts: The network streams have to be efficiently mapped
into contexts in a programmable manner such that the streams are equally divided
and allocated to the contexts.

e Payload Extraction & Buffering: The payload from the network packets have
to be extracted and input to the signature matching engine’s contexts in a se-
quential manner. In order to do this function efficiently, the NDMI should be
capable of buffering the packets. However, the NDMI assumes that the packets
corresponding to specific network streams are reordered appropriately before the
payload extraction and buffering function.

5.5.3.1 Configurable Stream Mapping

Certain network streams should be processed with a higher priority than the other
streams. On the other hand, certain streams may have strict requirements with respect
to the packet processing latency. In order to make sure that all the network scenarios
are addressed by the NDME, a programmable, rule based decision making engine is
proposed for the stream to context mapping process. The main focus of this proposal
is to not detail the rule organization or the algorithms involved in handling the packets
associated with the streams, but to propose a flexible methodology to complement the
functionality of the signature matching engines.

Figure 5.17 shows the description of the stream to context mapping process in which
‘S’ streams are mapped into ‘N’ contexts by the NDME. In order to configurably map
the streams into contexts, the NDME maintains two tables called the stream table and
the context table. The stream table consists of information about packets corresponding
to different streams which have been provided to the DPIA for signature matching. The
stream table also consists of information such as the pointers to the location of the
packets and the various additional metadata which are extracted after the initial packet
classification. Additionally, each entry in the stream table also has the state information
from which the signature matching is started (or resumed). On the other hand, the

138

5.5 Deep Packet Inspection Accelerator

Stream Table

Rule Decision Engine Context Table

s Table (HW / FW) T

| _I

Figure 5.17: Functional description of the programmable rule based stream to context mapping

context table only maintains information about the contexts which are being inspected
by the signature matching engines.

The rule table defines the set of rules through which a stream is mapped from the
stream table into the context table. The additional data which are extracted after packet
classification is generally used by the decision engine to decide the specific streams which
are mapped to the context table. In order to make the stream to context mapping con-
figurable, the rule table is programmed by the network processor. The decision engine
makes decisions on the stream to context mapping process based on the programmed
rules. The decision engine also keeps track of the number of bytes to be sent to the
signature matching engine for inspection and further initiates a stream to context trans-
fer or vice versa. The decision engine further seamlessly transfers the data between
the context and the stream table to not affect the integrity of the signature matching
function. Finally, the decision engine also monitors the signature matching results and
accordingly initiates the specific post-processing functions corresponding to a signature
match.

5.5.3.2 Postprocessing: Software-Hardware Interaction

In addition to the configurable stream mapping, the NDME is also responsible to inform
the higher layer software by rising an interrupt after a signature match is found in one
of the streams. After the interrupt is raised by the engine, the software takes over
to identify the specific signature match after analyzing the accepted state information.
As discussed in Chapter 2, of all the states in the DFA, only a small subset of states
identify a signature and are called the accepting states. Once an accepting state is
reached, it uniquely identifies the signature which is matched by the sequence of payload
bytes. The actual number of accepting states in the DFA varies depending on the total
number of signatures represented by the DFA. So, the accepting states and the actions
corresponding to them are stored in the off-chip memories using a hash table as shown
in Figure 5.18. The state identifier is used as the hash key to identify the actions
corresponding to a signature match. Similarly, if there are hash collisions corresponding
to a hash index, the accepting state information can be chained using a linked list
implementation as shown in Figure 5.18.

139

5 Hardware Coprocessors for Signature Matching

Hash Key

Accepting State ID 1 Hash Index

. Accepting . Accepting .
Accepting State D 2 Ox1 4b| State ID Action H State ID Action
0x2

Accepting . Accepting .
State ID Action | *| stateip Action |
. O0x3
Accepting State ID K Accepting | o
ccepting e State ID ion

Figure 5.18: The accepting states used as the hash index to identify the postprocessing function
associated with a signature match

Traffic Stream

| NETWORK-ON-CHIP | ‘

CONTROL

INTERFACE

REGISTER_ BiSME / BiSME / BiSME / BiSME /
BUS CONTROL UNIT . REGISTER BANK BoBISME BoBISME BoBISME BoBISME
(sig A) (sig B) (sig €) (sig D)
CLOCK—%) SIGNATURE_ SME_CONTROL_ NDMI_CONTROL_ (b)
PRELOAD_ STATUS_INTERFACE (*M) STATUS_INTERFACE
INTERFACE (*11) l
——RESET—»| ¢ SIGNATURE_ Traffic Traffic Traffic Traffic
| MATCH_
OUTPUT_
INTERFACE (*M) NETWORK DATAPATH
. INTERFACE
BiSME / BoBISME DATA
(M Instances) MANAGEMENT
BYTE_ ENGINE E
= STREAM_ ——f a
INTERFACE (M) T BiSME / BiSME / BiSME / BiSME /
£ BoBISME BoBISME BoBISME BoBISME
—_— (Sig A) (Sig A) (sig A) (sig A)
DEEP_PACKET_INSPECTION_ACCELERATOR|

(=) (e)

Figure 5.19: (a) DPIA with multiple instances of signature matching engine (b) Signature count
scalability (c) Signature matching throughput scalability

5.5.4 Scalability

The growing network bandwidth and requirement to support increasing signature counts
makes the scalability of the DPIA a very important topic to be addressed. As shown in
Figure 5.19(a), multiple instances of the signature matching engines can be used to scale
the number of signatures supported as well as to scale the achievable signature matching
throughput. The associated interfaces of communication with the signature matching
engines also linearly scale to support the communication with the individual signature
matching engines.

The scalability associated with the signature matching throughput can be achieved
by downloading the same signature set into multiple instances of the signature matching
engines. In such a scenario, network traffic corresponding to different streams can be
injected into different engines to linearly scale the signature matching throughput as
shown in Figure 5.19(c). Similarly, as shown in Figure 5.19(b), in order to scale the
number of signature sets supported by the DPIA, the compressed DFA corresponding

140

5.6 Experimental Evaluation & Discussion

to different signature sets are stored in the signature matching engines, to which the
same sequence of payload bytes are injected. So, through the proposed DPIA, multiple
signature matching engine instances can be used to configurably scale the achievable
signature matching throughput as well as the supported signature counts.

One of the major disadvantages with the signature matching engines such as RegEx
[37] and UAP [81] is the deterioration in the signature matching throughput as the
signatures are stored in a combination of on-chip and off-chip memories. Since the
signature matching is a highly memory intensive function, fetching the compressed DFA
at low latencies is crucial to perform signature matching at multi gigabit rates. So, as
part of the DPIA, the scalability aspect is addressed by using multiple instances of the
signature matching engines. Since each of the signature matching engine has its own
dedicated memories to store the compressed DFA, the memory bandwidth will not be
a bottleneck to support scalable throughput and signature count. Similarly, since the
signatures are effectively compressed and stored in the on-chip memories, the compressed
signatures can be accessed at low latencies to support multi gigabit line rate signature
matching.

5.6 Experimental Evaluation & Discussion

5.6.1 Synthesis Results

The BiSME and the BOBiSME were implemented using Verilog and were synthesized
using the Synopsys Design Compiler [101] on a commercial 28nm technology library
operating at 0.81V. The BiSME design was pipelined with N set to 6, to achieve an
operating frequency of F=1.165 GHz. So, each BiSME instance is capable of performing
signature matching at 9.3 Gbps, while the per-context throughput (T.) that is achieved
is 1.55 Gbps. On the other hand, the BOBiSME design was pipelined with N set to
8, to achieve an operating frequency of F=1.325 GHz. Consequently, each BOBiSME
intance is capable of performing signature matching at 10.6 Gbps (T) and the per context
throughput, T, that is achieved is 1.325 Gbps. As discussed in section 5.4, the effect of
increasing clock frequencies, resulting in an increased signature matching throughput can
be observed in the case of BOBiSME in comparison to BiSME. Similarly, the increased
N in the case of BOBISME, resulted in ~15% reduction in the per context throughput
T, in comparison to BiSME.

Table 5.4 shows a summary of the logic and the memory area corresponding to a single
BiSME and BOBiSME instances. Columns 3 and 4 in Table 5.4 shows a summary of
the logic and memory area corresponding to a single BiSME instance. It can be seen
from Table 5.4 that a significant portion of the BiSME (~97.7%) is composed of the
on-chip SRAMs which store the compressed DFA. The logic (both combinatorial and
sequential) portion in BiSME consisted of 110k gates and consumed only ~2.3% of the
overall area. The memories used for BiSME were provisioned with the related test logic
to yield realistic area numbers during synthesis. Power analysis simulations performed
during the design synthesis resulted in 155 mW (115.7 mW dynamic power + 35.3 mW
static power) of power consumed by each BiSME instance.

141

5 Hardware Coprocessors for Signature Matching

Table 5.4: Synthesis Area Results

BiSME BOBiSME
Component Area (in pmm?) | Percentage | Area (in pmm?) | Percentage

Memory | MS 1401641 97.7 % 1143535 96.5 %
MS 6915 7449
. DE 16439 21915

Logic AN 5032 2.3 % 5516 3.5 %
AD 7431 8983

Total Area 1434508 100 % 1184428 100 %

On the other hand, columns 5 and 6 show the logic and the memory area corresponding
to a single BOBiSME instance. Similar to BiSME, a significant portion of BOBiSME
is composed of the on-chip SRAMs which constitutes ~96.5% of the overall area. In
comparison to BiSME, the reduction in the MBT memories, resulting from the bitmask
compression in BOBISME reduces the overall memory area by a factor of ~20%. On
the other hand, only an additional 22k gates are required to perform the calculations
associated with the bitmask decompression and the member transition fetch. This overall
increase in the logic just corresponds to 0.01 mm? of logic area which is very minor in
comparison to the 0.26mm? reduction in the memory area due to bitmask compression.
Similarly, the power analysis simulations performed during the design synthesis resulted
in 167 mW of power consumed by each BOBiSME instance.

Table 5.5 compares the throughput, area and power consumption of BiSME and BO-
BiSME against various other signature matching engines proposed in the literature. The
technology node in which each of the design was implemented is represented in brackets
in Table 5.5. The signature matching throughput achieved by these systems is differenti-
ated into peak and achievable throughput. The peak throughput refers to the theoretical
maximum throughput for which the system is designed, while the achievable through-
put represents the throughput that is achieved when the signature matching operation
is performed across realistic workloads in these systems. Since the various signature
matching engines which have been considered for comparison are implemented across
various technology nodes, a simple comparison of the achievable signature matching
throughput is not possible. Moreover, since these are hardware implementations, there
is neither a standard platform and nor standard datasets through which the signature
matching throughput can be compared across all these systems.

The signature matching engines proposed by Tuck et al. [63] and FEACAN are bitmap
based engines and are capable of performing signature matching at 8 Gbps. Similarly,
each instance of HAWK is also capable of performing signature matching at 8 Gbps'®. In
comparison, each instance of BiSME performs signature matching at 9.3 Gbps which is
about ~1.15 times higher than the solutions described above. On the other hand, due to a

5Though there are variations in HAWK which can process multiple bytes per clock cycle, the HAWK
version which consumes a single byte per clock cycle is considered for comparison purposes.

142

5.6 Experimental Evaluation & Discussion

Table 5.5: Comparison of BiSME against other Hardware Engines

Throughput (in Gbps) | Area (in mm?) | Power
Peak Achievable | Logic | Mem.
BiSME (28nm) 9.3 9.3 0.03 | 14 |.155W
BOBiSME (28nm) 10.6 10.6 0.04 1.14 167TW
FEACAN 8 8 N.A
Tuck et al.[63] ~8 ~8 N.A.
HAWK (45nm) 8 8 14 | 57 | 26W
RegX (45nm) 73.6 15-40 15.4 N.A.
UAP (32nm) 9.6/lane | ~5/lane 22 | 35 1w

deeper hardware pipeline in the decompression engine, the BOBiSME performs signature
matching at 10.6 Gbps, which is ~1.325 times higher than the bitmap based solutions
[63, 4] described above. Since all the engines mentioned above store the signatures in the
on-chip memories alone, the achievable throughput is identical to the peak throughput
for which the system is designed. With respect to area and power consumption, there are
no results available for FEACAN and the one proposed by Tuck et al. in the respective
publications. On the other hand, each instance of HAWK consumes 7.1 mm? silicon
area and 2.6W power. Since the technology nodes in which these systems are evaluated
are completely different, a direct comparison of the area and the power consumption is
not discussed further in this dissertation.

Unlike the other implementations discussed above, both the UAP and RegX engines
store the automata in a combination of on-chip and off-chip memories. So, the achievable
throughput varies depending on the number of signatures compiled into the system
and the sequence of payload bytes inspected by the system!'. The throughput results
corresponding to RegX (4 physical lanes) seen in Table 5.5 shows the variation in the
achievable throughput which is roughly between 20-50% of the peak throughput for
which the system is designed for. Similar results are also seen in the case of a single
instance of UAP, in which the achievable throughput is only about 5 Gbps/lane (~50%
efficiency) when it is used to compare the payload bytes against the compressed DFA
representations. The RegX engine also employs a cache controller to fetch the data
from the off-chip memories which consumes a considerable portion of the engine which
is seen from the area usage of the accelerator. While in the case of UAP, no specific
results associated with such controllers are discussed, but will inevitably be required to
fetch the data from the off-chip memories. In comparison, since BiSME and BOBiSME
completely store the compressed DFA in the on-chip memories, the signature matching
throughput and the number of signatures supported can be linearly scaled by using
multiple instances of these engines. The specific number of BISME/BOBiSME instances

16The RegX implementation only uses a sequence of 1000 bytes to evaluate the throughput of the
system. The implications of increasing the length of the byte sequence is never discussed by the
authors. Similarly the implications of varying the number of signatures inserted in the injected byte
sequence is also not compared in the publication.

143

5 Hardware Coprocessors for Signature Matching

to be part of an overall system depends on the requirements pertaining to number of
signatures and the throughput to be supported.

5.6.2 Signature Capacity
5.6.2.1 BiSME

BiSME’s capacity was evaluated using the five different signature sets which have been
used over the dissertation for evaluation purposes. A compiler was developed to per-
form the MSBT transition compression and to convert the compressed DFA into the
required memory formats defined in BiSME. The exact_match and the bro signature
sets were compiled into one BiSME instance. On the other hand, since the total number
of groups generated during the state grouping step exceeded 2567, the snort signatures
were partitioned into 2 DFAs and were compressed separately!®.

Columns 3, 4 and 5 in Table 5.6 show the memory utilization in BiSME. Since the
transition compression rates achieved by MSBT are much higher than 98%, only a small
portion of the transition memories were used in BiSME. On the other hand, the control
memory utilization varied depending on the signature sets. For example, due to the long
average bitmask width, the exact_match signature set resulted in 92% of MBT utilized.
In the case of other signatures, the MBT usage was not as high as the exact_match
signature set. However, it can be seen from Table 5.6 that each instance of BiSME is
capable of storing over 500 string signatures with a possibility to use multiple instances
to scale higher signature counts.

5.6.2.2 BOBiSME

Similar to the evaluation of BiSME, the signature sets are compressed and converted
into the memory formats supported by BOBiSME. Table 5.7 shows the usage of various
memories in BOBiSME when the considered signatures are converted into BOBiSME

17Tt should be remembered that Snort24, Snort31 and Snort34 signature sets generated 428, 420 and
518 groups, respectively as discussed in Chapter 4.

8The current version of the compiler developed to convert the DFA into the memory formats in BiSME
did not have the capability to optimize the transition compression to store the signature sets in the
predefined memories.

Table 5.6: Signature sets compiled into BiSME

_ #BiSME Memory Utilization (%)
Signature Set
Instances | AMT | MBT LTT/MTT/SM
exact_match 1 43 92 37
bro217 1 38 29 27
snort24 2 64 7 11
snort31 2 46 15 16
snort34 2 38 4 6

144

5.6 Experimental Evaluation & Discussion

specific memory formats through a compiler. The trends which were observed in BiSME
with respect to transition storage are also observed in the case of BOBiSME. Since the
bitmask compression only focuses on compressing the redundant MTBs, the percentage
of the transition memories being used to store the signatures remain the same between
BiSME and BOBiSME. On the other hand, due to the introduction of bitmask compres-
sion, even in the case of the exact_match signature set, only ~50% of the MBT is used
after being converted into BOBiSME formats, which allows more string signatures to be
stored in a single BOBiSME instance.

In order to identify the maximum capacity of BOBiSME, additional synthetic string
signatures were generated using the regex tool [86]. The average length of the signatures
were set to 50 bytes and two additional signature sets were generated with 750 and
1000 signatures, respectively. Table 5.8 shows the transition compression rates and the
memory utilization for the newly created signature sets. It can be seen from Table 5.8
that a maximum of 1000 string signatures can be comfortably stored in BOBiSME and
the additional number of signatures which are stored is due to the increased memory
availability due to bitmask compression. It can also be seen from Table 5.8 that a
compressed DFA whose state count is more than 16k can be comfortably stored in the
BOBIiSME if higher transition compression rates are achieved and the bitmasks are
effectively compressed.

5.6.3 Hardware Implementation Validation

The BiSME and the BOBiSME were evaluated on the Cadence Palladium platform [102].
Palladium is a processor based compute engine which is used to emulate and verify the
functionality of the hardware design. The palladium platform allows the emulated design

Table 5.7: Signature sets compiled into BOBiSME

, #BiSME Memory Utilization (%)
Signature Set
Instances | AMT | MBT || LTT /MTT/SM
exact_match 1 43 49 37
bro217 1 38 28 27
snort24 2 64 8 11
snort31 2 46 8 16
snort34 2 38 4 6

Table 5.8: Evaluation BOBiSME string signature capacity

, . ‘ Transition Memory Utilization (%)
Signature Set # Signatures | # States Comé)ﬂrfismn AMT | MBT | LTT/MTT/SM
exact_match_500 500 15149 99.07 43 49 37
exact_match_750 750 24034 99.18 67 73 51
exact_match_1000 1000 31633 99.17 88 93 68

145

5 Hardware Coprocessors for Signature Matching

to interact with various real high speed and low speed interfaces which allow to verify
the design with real traffic patterns, but at emulated speeds.

Figure 5.20(a) shows the pictorial representation of the evaluation setup which is used
to verify the functionality of the signature matching engines. A compiler running on
the Palladium Host Computer (a dedicated computer which communicates with the
Palladium hardware) compiles the hardware design and the testbench components into
Palladium specific hardware primitive blocks. The packets to be injected into the system
were either generated through a software based Ethernet packet generation tool called
Bittwist [103] or using the Spirent Test Center platform [104]. Since the emulated
design frequency was much lesser than the original operating frequency of the design, the
Ethernet Speedbridge [105] was used to regulate the communication between the traffic
generation system (which operates at line rates) and the emulated design. Furthermore,
the Palladium was connected to a reference board which enables to communicate with
various serial control interfaces which are used to download various control information
into the emulated design. A computer connected to the reference board through the
RS-232 port was used to download the signatures and the control information into the
emulated design.

Figure 5.20(b) shows an overview of the evaluation setup from the system perspective,
to show the various interfaces which were used for communication. The evaluation setup
consisted of 2 Ethernet ports terminating at the Gigabit Media Independent Interface
(GMII) and a Universal Asynchronous Transmitter Receiver (UART) interface. The
UART interface was used to program the various register signals in the signature match-
ing engine and to download the compiled signatures into the emulated design. The first
GMII interface (port 0) was used to inject the traffic into the signature matching engine
while the other interface (port 1) was used to monitor the packets in which a signature
match is identified. A short overview of the traffic generation process is explained first
before detailing the overview of the design and the testbench components implemented
in Cadence Palladium.

5.6.3.1 Traffic Generation

The network traffic traces which are used to evaluate the signature matching engines
should comprise varying number of signatures in it. This allows to verify the function-
ality of the engines across a multitude of scenarios. To verify the signature matching
engines, the traces can either be extracted from real network traffic captures or can be
generated synthetically. In the case of the former, it is very difficult to obtain traces
which contain the signatures corresponding to each and every signature set. On the
other hand, synthetic traffic generation provides the flexibility to generate traffic traces
with varying number of signatures in it. Due to this advantage, various other automata
based signature matching engines proposed in the literature [90, 89, 36, 62] have used
the synthetic traffic generation mechanism to evaluate their signature matching engine
implementations. So, the synthetic traffic generation mechanism is used to verify the
proposed signature matching engines.

146

5.6 Experimental Evaluation & Discussion

\ Ethernet Ethernet
Palladium Host
Computer Packet Packet
Computer
Generator Analyzer

Emulation
Reference
Board Cadence Ethernet
Cadence Palladium platform Speedbridge
(a)
EMULATION
UART
TX/RX REFERENCE [4-R5-232 COMPUTER Control
EVALUATION BOARD
SETUP — g
{emulated in GMII ETHERNET PACKET
[—R 45—
PCEIIICIZTCE || (Port 0) | | capence GENERATOR
EI' f_'f '“"; ETHERNET | Datapath
platform — — |
GMII SPEEDBRIDGE —RJA5—> ETHERNET PACKET
(Port 1) ANALYZER
(b)

Figure 5.20: A pictorial representation of the evaluation setup used to verify the SME hardware

The byte sequences to be injected into the system are generated through two different
methods and are evaluated separately. In the first method, i.e., controlled sequence, the
payload bytes are generated in a controlled manner. In this method, the number of
signatures which are introduced in the trace is made configurable. The trace generation
mechanism proposed in [90] which is part of the regex tool [86] is used in this method
to generate the payload byte sequences. In this method, each byte in the sequence is
generated based on a fixed predefined probability of maliciousness Pyr, by simultane-
ously traversing the automaton (either the NFA /DFA) corresponding to the individual
signature sets. The Py defines the probability with which a byte (among the 256 ASCII
characters) is chosen for the payload byte sequence such that, the chosen byte leads the
byte sequence towards plausible signature match!'®. In order to cover a range of scenar-
ios, the Py values 0.35, 0.55, 0.75 and 0.95 are used to generate the traffic traces. The
Pyt value of 0.35 represents the average network traffic scenario while 0.95 represents

19 Appendix A provides the details of Py based trace generation.

147

5 Hardware Coprocessors for Signature Matching

the worst case network traffic scenario [90]. In this mechanism, the raw payload byte
sequence to be inspected is generated first which is further split into multiple Ethernet
frames. Figure 5.21(a) shows an example of how a payload byte sequence of 4500 bytes
in a context is split across multiple Ethernet frames each consisting of a maximum of
1500 bytes?.

Since BiSME and BOBiSME are only capable of processing 6 and 8 contexts in parallel,
the payload byte sequences are generated separately for 6 and 8 streams, respectively. In
this way, the hardware pipeline is always kept busy to effectively evaluate the proposed
signature matching engines. The Ethernet frame corresponding to each of the contexts is
encapsulated with a unique combination of source and destination Media Access Control
(MAC) addresses as shown in Table 5.9 for easy packet classification. Figure 5.21(b)
shows the order in which the Ethernet frames sent in the physical link. The packets
from each of the respective streams are arbitrated and sent in a round-robin fashion, so
that the payload bytes are distributed efficiently. A UNIX bash script was written to
completely automate the above mentioned process.

In the second scenario, i.e., random sequence, the payload bytes in the Ethernet frames
are generated in a random fashion. Since the payload bytes are generated in a random
fashion, the number of signatures generated in the payload byte sequence cannot be
determined prior to the generation. The Spirent Test Center [104] is used to generate
the Ethernet frames with the random payload byte sequence. The Spirent Test Center
has an inbuilt feature to generate the Ethernet frames corresponding to multiple streams

20FEthernet packets are generated with 1500 bytes as this would be the worst case scenario corresponding
to signature matching for a given packet.

-
A 4500 byte Trace (4500 bytes)
trace per
context
generatedis 1-1500 (PKT 0) 1501-3000 (PKT1) 3001-4500 (PKT 2)
converted into
a sequence of e
packets Ethernet Ethernet Ethernet
(a) - Header Fthernet Payload Header Ethernet Payload Header Ethernet Payload
-~
ce c7 Ce Ccs c4 Cc3 c2 C1
/— 0 0 . 0 0 0 0 0
Packets from
mulktiple contexts Ethernet . i
sent in the i packet
Ethernet link in 2 2 . 2 2 2 2 2
an interleaved
fashion l Order of packets sent in the
Ethernet link
(b)
a a 0 a a . 0 0 1 1 1 1
"- Time axi »

Figure 5.21: Functional overview of Traffic generation

148

5.6 Experimental Evaluation & Discussion

Table 5.9: Source and Destination MAC address combinations to identify a context

Context || Source MAC address | Destination MAC Address
1 00:00:00:00:00:01 00:00:00:00:00:02
2 01:00:00:00:00:03 01:00:00:00:00:04
3 02:00:00:00:00:05 02:00:00:00:00:06
4 03:00:00:00:00:07 03:00:00:00:00:08
5 04:00:00:00:00:09 04:00:00:00:00:0A
6 05:00:00:00:00:0B 05:00:00:00:00:0C
7 06:00:00:00:00:0D 06:00:00:00:00:0E
8 07:00:00:00:00:0F 07:00:00:00:00:10

and send them in a round-robin fashion in the physical link. So this feature is directly
used to generate the Ethernet frames.

The next section describes the detailed internal architecture of the evaluation setup
and how the testbench components extract the payload bytes from the packets and send
them to the signature matching engines.

5.6.3.2 Internal Architecture of the Evaluation Setup

Figure 5.22(a) shows the block level internal architecture of the evaluation setup. The
evaluation setup primarily consists of the signature matching engine and various addi-
tional testbench components to interface the signature matching engines with the exter-
nal interfaces shown in Figure 5.20(b). Since the interface of communication to BiSME
and BOBiIiSME are identical, both the engines are verified using the same evaluation
setup. The testbench components designed to evaluate the signature matching engines
are split into the control and the datapath subsystems.

The control subsystem assists in downloading the compressed signatures and the vari-
ous other control information required in the evaluation setup and the signature matching
engines. The control subsystem consists of the UART controller and the control status
block. The UART controller converts the serial data transmitted through the UART
interface into the parallel PDI 16-bit interface as shown in Figure 5.22(d). Once the
data is received in the PDI interface, the incoming address is used to identify if the
transaction is directed towards the signature preload interface or to program one of the
control signals defined in the evaluation setup. The other blocks seen in Figure 5.22(a)
constitutes the datapath subsystem. The datapath subsystem consists of various blocks
to receive, prepare and process the Ethernet frames for signature matching. Figure 5.23
shows an example of how the Ethernet frames are processed in the datapath subsystem.
The functions performed by various blocks within the datapath subsystem is described
below:

e The datapath block consists of a Gigabit Media Access Control (GMAC) block
that is capable of sending and receiving the Ethernet frames. The GMAC block

149

5 Hardware Coprocessors for Signature Matching

GMII (Port 0) GMII {Port 1)
L
Ve .Y s N
| |
UART T/ RX | GMII RX ‘ + GMIITX GMIITX T
| | | !
| | I I
h 4] | [
| I emaco | |
UART CONTROLLER v \ \
I
CRCCHECK A /| ETHERNET FRAME GMAC1 \
— GENERATION \
16 — BITPDI PAYLOAD EXTRACTION
: 151 \
| é |
CONTROL STATUS |[——DESTMAC*N | CONTEXT CLASSIFICATION 7 I
] BLOCK POSTPROCESSOR /
T | g G . . G ‘
F
ROOT_STATE * N
_ \ i
SME \ CONTEXT BUFFER
SIGN. CONTROL N
MATCH STATUS ‘ \' CONTEXT BYTE MULTIPLEXER FSM ‘ /
COUNTERS * N SIGNALS ‘.\ p /
~, BYTE STREAM INTERFACE 4
~ -
¥ -
SIGNATURE N [l — - SIGN.
PRELOAD _ SIGNATURE MATCHING ENGINE MATCH
INTERFACE i (BiSME / BOBiSME) OUTPUT
{32-BIT SRAM) INTERFACE
EVALUATION SETUP
a — — — — LOOPBACKPATH- — — — @
Control Subsystem | Datapath Subsystem ()
— — —SIGNATURE MATCH PATH — — &
| erirsz] R
CLOCK—— CLOCK——] CLOCK
i HDR_VALID—# w o [—ADDRESS[19:0—d CS_N -
. @ [4—HDR_READY— _ I = CN—b = E RDS oy
5 = |——HDR[111:0]—» 5 ¥ g {——WRTE_ENABLE—® 2 WRS <
% = [—PLD_TVAUD—® 3 % S [oATAN ROl 3 =3 ADDR [150—» <
= E le—pi0_TREADY—] * B = DATA_BE [3:0]—] é 5 WDATA 1501 &
I PLD_TLAST— & Ui |4-DATA_OUT [31:0] ¢ RDATA [150] |
PLD [7:0]— f—SRAM_WAT—| “« READY

(b) (c) (d)

Figure 5.22: Detailed block level internal architecture of the evaluation setup

receives the Ethernet frames and performs the cyclic redundancy check to identify
the validity of the frame and further regenerates the valid frames to loop them back
to the source. The frames are looped back to the source to verify the signature
matching results through an alternate source, if required. The incoming Ethernet
frame is split into its header and payload in this block and is sent to the context
classification block for further processing. A modified version of the AXI4 stream
interface [106], shown in Figure 5.22(b) is used to communicate between the various
blocks after the payload extraction.

150

5.6 Experimental Evaluation & Discussion

Ethernet
Packets [4] [4] 0 [4] [4] . 0 0 1 1 1 1
in the link

(a)

Time axi »

_ Cc1 c2 c3 ca cs ce c7 cs
Context
Classification & s o o H.|| © 0 0 . 0 0
Context based rl" |
buFf:rmg \ 1 1 f’ 1 1
(b) Q l
\\ \
~ N
e S —_—
(T | g| TTooTTTTTTTT - |0
B1| B2 | B3 . . Bn Bl | B2 | B3 . . Bn
FSM to send
load
b:ta:s?: an - Byte Multiplexing between contexts
interleaved
fashion I | | | | |
(e) Byte Stream
Interface
\ Bl | B1|B1|B1|B1 . Bl | B1| B2 |B2| B2| B2

Figure 5.23: Extraction of the payload bytes and injection into the signature matching engine

e After the frame is split into its header and payload, it is further classified into a
stream context. The destination Media Access Control (MAC) address is used to
classify the frames into contexts. A context definition table in the context classi-
fication block stores the MAC addresses of the contexts, which is used to classify
the incoming frames into their respective contexts. The context classification block
compares the destination MAC address of the incoming frame against the MAC
addresses stored in the context definition table. The content of the context defi-
nition table is configured through the UART interface so that the content of the
table can be modified, if required. After classifying the frames into their respective
contexts, the frames corresponding to each of the contexts are sent to the context
buffer block through a dedicated AXI4 interface for each of contexts as shown in
Figure 5.23(b).

e As the frames are being filled into the context buffers, a finite state machine in the
context buffer block fetches the payload bytes across all the contexts and sends
them to the signature matching engine in an interleaved fashion. This is pictorially
represented in Figure 5.23(c). The finite state machine logic streams all the payload
bytes of a frame into the signature matching engine before the arrival of the next
frame across all the streams. The root state of the DFA is programmed through the
UART interface and is stored in the context buffer block. So, the root state is also

151

5 Hardware Coprocessors for Signature Matching

sent to the signature matching engine when the first payload byte corresponding
to the stream is sent across to the signature matching engine.

e As the payload bytes are sent to the signature matching engine, they are simul-
taneously sent to the postprocessor block. If a signature match is identified by
the signature matching engine, the postprocessor is notified through the signature
match output interface. The postprocessor keeps track of the number of signature
matches identified by the hardware on a per context basis. The signature match
counters in the postprocessor block are made accessible through the UART inter-
face. Additionally, the accepted states are also tracked for each of the context
in the postprocessor block to keep track of the unique signatures which matched
among the payload bytes. The postprocessor block also sends those frames in which
a signature match is identified through the GMAC 1. If the signature match is
identified in the first half of the frame?!, the frame in which the signature match
is found and its predecessor are sent to the GMAC. If not, the frame with the
signature match and its successor are sent to the GMAC. Sending two frames cor-
responding to a signature match enables to identify the signature match by an
external agent even if the signature is spread across multiple frames.

In order to simplify the evaluation setup implementation, all the blocks are supplied
with the same clock signal. A clock signal with frequency of 125 MHz is chosen to enable
the GMAC to virtually process the packets at 1 Gbps?2. The signature matching engine
is also clocked at 125 MHz, resulting in a slowdown factor of ~9-10x. The reduction in
the clock frequency doesn’t affect the functionality of the implementation but simplifies
the overall evaluation setup. Even if the signature matching engine was clocked at the
target clock frequency at which it was synthesized, the actual achievable clock frequency
in Palladium doesn’t vary. This is because of the fact that the achievable frequency in
palladium is restricted by the physical implementation of the design in the platform and
is typically in the range of 0-4 MHz [102].

Two different emulation databases®® were separately created to verify BiSME and
BOBISME, respectively. The actual frequency corresponding to the 125 MHz clock in
both the databases were 1.1 MHz. So, the signature matching throughput achieved by
the emulated design is 8.8 Mbps. This is roughly a scaledown factor of 1000x in the
evaluation setup in comparison to the original target frequency of operation.

5.6.3.3 Results & Discussion

BiSME and BOBiSME were thoroughly evaluated using the bro217 and the exact_match
signature sets described in Chapter 3. The compressed signatures were downloaded

21For example, if there are 128 payload bytes in a frame, bytes 1-64 are considered the first half while
bytes 65-128 are considered the second half.

22Gince the Palladium is a cycle accurate system, the reduction in the clock frequency doesn’t affect the
functionality of the implementation

2The term database is used to represent the hardware design which is compiled and emulated in
Palladium

152

5.6 Experimental Evaluation & Discussion

into the emulation platform through the UART interface along with the other control
information required to configure the signature matching engines and the evaluation
setup. As described earlier, both the controlled and the random sequence of payload
bytes were injected to verify the signature matching engines. In both the cases, the
generated traffic was also compared against the DFA based signature matching engine
implemented as software through the Regex tool [86].

The payload bytes for the controlled sequence was generated from the DFA corre-
sponding to the signature set using the regex tool. In order to minimize the storage of
the traffic traces, the payload bytes for the controlled traffic test was split across multi-
ple passes. In each pass, ~384 KB?* of payload bytes per context was generated, which
resulted in 2.3 MB of data injected per pass in the case of BiISME and 3 MB of payload
bytes injected per pass in the case of BOBiSME. The controlled traffic injection test was
automated using a UNIX bash script which performed the following functions.

e Step 1: 384KB Payload byte sequence generation per context.

e Step 2: Compare the payload byte sequence with the DFA to collect the signature
matching statistics per context.

e Step 3: Convert the payload byte sequence into Ethernet frames for each of the
contexts.

e Step 4: Interleave the Ethernet frames across multiple contexts and inject them
into the emulated design through the Ethernet link in the computer.

The above mentioned steps were performed on a computer which was running on an
Intel processor. The processor was running at 3 GHz and consisted of 3 MB of on-chip
cache memories. The tests were first performed on BiSME and then on BOBiSME. The
corresponding test results are discussed separately.

5.6.3.3.1 BiSME

As a first test, the Ethernet frames were injected into the evaluation setup only for 10
passes. This test was basically performed to verify the traffic generation methodology?®.
Since BiSME is only capable of processing 6 contexts in parallel, the Ethernet frames were
injected corresponding to 6 unique streams. In order to verify the signature matching
engine across different traffic characteristics, the payload byte sequence for the streams
were generated with different Py; values. Py values of 0.35, 0.55, 0.75, 0.95, 0.35, 0.55

24The amount of payload bytes injected in every pass was carefully optimized to not affect the rate of
traffic injection by bittwist as injecting a bigger amount of data will add additional processing latency
to fetch the packets from off-chip memories.

Z5Prior to this test, cycle accurate RTL simulations were performed in the evaluation setup to verify the
complete evaluation setup. In the RTL simulations, traffic traces of 4KB corresponding to different
Pm values were injected into the system. The location of the signature matches observed in the
Ethernet frames were identical to that of the uncompressed DFA which verified the implementation
of the overall evaluation setup.

153

5 Hardware Coprocessors for Signature Matching

—k— BiSME - Total Signatures Matched —=- DFA - Total Signatures Matched
—— BiSME - Unique Signatures Matched —&— DFA - Unique Signatures Matched

g Context 1, Py=0.35 Context 2, Py=0.55 Context 3, Py=0.75
% 7 r 5| I B B
g | : - s 10% | €
P |10}] f]
5 1074 g E 1 F i
& B § - | 103 F E
2 - : 102 £ E i]
= 101] | 102k E
z 0 0 0
@)
g Context 4, Py=0.95 Context 5, Py=0.35 Context 6, Py=0.55
"% 10° Fr T T T T T 11 =] F =
g g e - | " B]
; I y 2L . F E
5 10t |0 ; 5
n g E -] - .
2 5 : . i : 102 | E
= 10° F E 1L i r 1
T o o s s] 10° E - 8
= Rkl ET] R N N
g 12345678910 12345678910 12345678910
© #Pass #Pass #Pass

Figure 5.24: Signature Matching results on the exact_match signature set in BiSME for 10
passes

were chosen to generate the payload bytes corresponding to contexts 1, 2, 3, 4, 5 and 6,
respectively.

Figure 5.24 shows the signature matching results corresponding to the exact_match
signature set for each of the individual passes across the 6 contexts. It can be seen from
Figure 5.24 that the cumulative number of signatures matched across all the contexts,
for each of the incremental passes is identical between BiSME and the DFA. Certain sig-
natures in the traffic trace do occur multiple times. So, the unique number of signatures
matched is also tracked which represents the total number of non-repetitive signature
matches observed in the traffic traces. It can also be seen from Figure 5.24 that the
unique number of signatures matched across all the contexts with every incremental
pass is also identical between BiSME and the DFA. The identical signature matches in
this test verifies the functional correctness of the evaluation setup.

As a next step, BiSME is stress tested by injecting multiple gigabytes of payload
bytes. In this test, a total of 2.3 GB of payload bytes (~366 MB/context) were in-

154

5.6 Experimental Evaluation & Discussion

#Total Sign. Matches #Unique Sign. Matches

B (= 600

o E 3|

S . i

e i 2 500 =

= i <

= £ E 400

. 6 | < [

g) = 2

z . =300

=z . B = g

E & 200

ER » = =

8 [F* 100

:H: : E\ | | | DT | 0 DT | | | TD |
1 2 3 4 5 6 1 2 3 4 5 6

(a) Context (b) Context

OBiSME x DFA \

Figure 5.25: Signature matching results after 2.3 GB of controlled traffic inspection on the
exact_match signature set

#Total Sign. Matches #Unique Sign. Matches
250

[
S
g

150 = [E3]

100

—_
o
B
(SN
o
I

#Cumulative Sign. Matches
Signature Matches

| | | | | | 0 | | L | | |

(a) Context (b) Context

OBiSME x DFA \

Figure 5.26: Signature matching results after 2.3 GB of controlled traffic inspection on the
bro217 signature set

jected into the system over a period of 12 hours?® across 1000 passes. Figure 5.25 and

Figure 5.26 show the signature matching results for the exact_match and the bro217
signature sets, respectively. Figure 5.25(a) and Figure 5.26(a), respectively show the
cumulative total number of signature matches observed after injecting 2.3 GB of pay-

26Gince the Palladium is a shared emulation platform, the maximum time for running the tests was set
to 12 hours to share the resource with other projects.

155

5 Hardware Coprocessors for Signature Matching

load bytes, while Figure 5.25(b) and Figure 5.26(b), respectively show the total number
of unique signature matches observed. It can be seen from both the figures that the
signature matching results across all the contexts are identical between BiSME and the
DFA. Thus, the identical signature matching results in both the signature sets further
verifies the functionality of BiSME.

An important observation can also be made from the figures shown above. The signa-
ture matches (both cumulative total and unique signatures) seen in each of the contexts
varies as it depends on the characteristics (Py value) of the payload bytes being in-
spected. However, the number of signature matches (both cumulative total and unique
signatures) observed in BiSME and the DFA are identical across all the contexts. This
clearly shows that the per context signature matching throughput in BiSME is always
constant and is independent of the characteristics of the payload bytes being inspected.

By performing the tests over a longer period of time, a signature coverage of 100% was
achieved for the exact_match signature set. This can be seen from Figure 5.25(b), where
all the 500 signatures are matched at least once in the case of context 4 (Py=0.95).
On the other hand, a signature coverage of 99% (215/217) was achieved for the bro217
signature set as seen in Figure 5.26(b).

After performing the tests based on the controlled sequence traffic, BISME is further
verified through the random sequence traffic. The spirent test center?” is configured to
inject Ethernet frames corresponding to the contexts in an interleaved manner as shown
in Figure 5.21(b). In the case of the controlled sequence tests described previously, the
generated traces were simultaneously compared against the DFA to double confirm the
results. Since, this is not possible in the case of the random sequence traffic tests, the
generated Ethernet frames were captured using wireshark [108] and processed offline.
After the Ethernet frames were captured and saved, the payload bytes corresponding to
the individual contexts were extracted and further compared against the DFA separately.
In this way, the signature matching results extracted from BiSME was cross-verified with
that of the DFA in the case of the random sequence tests.

Similar to the controlled sequence test, the random sequence test was performed on
the exact_match and the bro217 signature sets separately. Unlike the controlled sequence
test, a total of 1 GB (~ 172M B/context) of data was injected into the evaluation setup.
Since the signature matching on the DFA was performed offline, the traffic injected was
kept to 1GB. Figure 5.27(a) and (b), respectively show the cumulative total number of
signature matches and the unique number of signature matches on the bro signature set
across all the contexts. Figure 5.27(c) shows the unique number of signature matches
on the exact_match signature set. Similar to the results seen in the controlled sequence,
the signature matching results are identical across the signature sets in the random
sequence as well. However, the total number of signatures matched in the case of the
random sequence is much lesser than the number of signatures matched in the case
of the controlled sequence observed previously. Since the payload bytes are generated
in a random fashion, the chances of a signature being part of the random payload

2"The Spirent Test Center uses z2> + z'® 4+ 1 as the polynomial to generate the random sequence of
bytes [107].

156

5.6 Experimental Evaluation & Discussion

" .106 bro217 bro217 exact_match
9 n 8 w 8
[} < =
E L EmBEREEE T 7 S T
& N S E = . 5|
7 3 &
S0 4 HAE B E 2 4
: 7 Z
£ 1 o 3| ¢ 3|
< =) =
= g 2 = 20
= 5 =
= =1 1)
i 0 I | I | I | :H: 0 | | I | I | :H: 0
1 23 456 1 23 456 % % % % % %
(a) Context (b) Context (b) Context
[OBiSME=DFA

Figure 5.27: Signature matching results after 1 GB of random traffic inspection on the bro217
signature set

byte sequence is very minimal. Since the bro217 signature set consisted of a few short
signatures, they could be matched through the random sequence test. On the other
hand, in the case of the exact_match signature set, the average length of the signatures
was about 50 bytes and none of the signatures could be matched by the random sequence
of traffic generated as seen in Figure 5.27(c). However, the identical signature matching
results seen in the random sequence tests also verify the functionality of BiSME.

5.6.3.3.2 BOBiISME

This section describes the signature matching test results performed on BOBiSME based
on the controlled and the random sequence traffic injection mechanisms proposed ear-
lier. The verification methodologies and the signature sets used to verify BOBiSME are
similar to the ones which were used to verify BiSME. However, the only difference in
the verification methodology is the number of unique streams for which the traffic is
injected into the system. Since BOBiSME is capable of inspecting 8 contexts in parallel,
the traffic is generated for a maximum of 8 streams for evaluating BOBiSME. For the
controlled sequence tests, the payload byte sequence for contexts 1, 2, 3, 4, 5, 6, 7 and
8 were generated with Py; values set to 0.35, 0.55, 0.75, 0.95, 0.35, 0.55, 0.75 and 0.95,
respectively.

As in the case of BiSME evaluation, a total of 2.3 GB of traffic was injected over
12 hours, with each context being injected with ~275 MB of payload bytes as part of
the controlled sequence tests. Figure 5.28(a) and (b), respectively show the cumulative
sum of signature matches and the total number of unique signature matched in the ex-
act_match signature set across the various contexts. Figure 5.29(a) and (b), respectively
show the signature matching results for the bro217 signature set. Figure 5.30 shows the

157

5 Hardware Coprocessors for Signature Matching

#Total Sign. Matches #Unique Sign. Matches
L, 107r 600
= i) &
S - 2 500 = =
S i 5
o108 F = = 5 400|
o0 i % = =
U@) | 5 300
2 i E & =
= o105} % 200
= . :
E i H# 100 ©®
g = = 5 .
| | | | | | 0 | I I | | |
1 2 3 5 6 7 8 1 2 3 45 6 7 8

| |
4
(a) Context OBOBISME«DFA |

Figure 5.28: Signature matching results after 2.3 GB of controlled traffic inspection on the
exact_match signature set

#Total Sign. Matches #Unique Sign. Matches
. 108 250
2 B
e B
= i % E B E E
g I % 200 - = =
B [E3| £ %3
150 |-
'c%o L o = [E3|
o =
5 g 100
% 107 B B 20
B n
5 - = & 4 50|
O i
3| 3|
:H: LI | | | | | 0 | I I | | | |
1 2 3 5 6 7 8 1 2 3 5 6 7 8

| |
1
(a) Context OBOBISMExDFA |

Figure 5.29: Signature matching results after 2.3 GB of controlled traffic inspection on the
bro217 signature set

signature matching results on the BOBiSME after the random sequence tests. Similar to
BiSME, 1 GB (128 MB/context) of payload bytes across multiple contexts were injected
into BOBiSME during the random sequence tests. Various trends which were observed
in BiSME evaluation are also observed in BOBiSME and are described below.

e It can be seen from Figures 5.28, 5.29 and 5.30 that the signature matching results
are identical between BOBiSME and DFA in both the controlled and the random

158

5.7 Summary

" .106 bro217 bro217 exact_match
8 8 L8
S g g
R g 7 S 7
g HEEEEEEH . 5| . 5|
7 3 &
20 4 EEE 4
S 1 N &
-5 o JHHEEH E3] e 3r
< = =
= g 2 2 20
= =
-] 1 -] 1+
5 H
i 0 | I [N A S 0 A S S N S S M :H: 0
12345678 12345678 %%%%%%f%
(a) Context (b) Context (b) Context
[OBOBISME=DFA

Figure 5.30: Signature matching results after 1 GB of random traffic inspection on the bro217
signature set

sequence tests. In both the test methodologies, the cumulative total number of
signatures matched across all the contexts and the individual number of signatures
matched are identical, further validating the correctness of BOBiSME hardware im-
plementation. Similarly, the per context signature matching throughput achieved
in BOBiSME is also independent of the traffic characteristics.

e As part of the controlled traffic injection tests, all the signatures among the ex-
act_match signature set were matched at least once resulting in 100% signature
coverage while 99% of the signatures were covered in the bro217 signature set.

e With respect to random traffic injection tests, none of the signatures among the
exact_match signature set could be matched by the traffic generated, while a very
small number of signatures in the bro217 were matched.

5.7 Summary

Hardware acceleration of signature matching is essential to achieve deep packet inspec-
tion at line rates. Addressing this topic, two hardware acceleration engines called BiSME
and BOBiSME were proposed in this chapter which perform the signature matching
function at 9.3 Gbps and 10.6 Gbps, respectively.

The various data which were generated after compressing the DFA using the MSBT
and the BOMSBT are highly non-linear and signature dependent. Storing these data in
the on-chip memories required flexible and efficient storage methodologies. The Packed
Storage Methodology and the Shared Memory Methodology were first proposed in this
chapter to effectively store the bitmasks and the compressed state transitions, respec-
tively. The proposed architectures effectively allowed to store the compressed DFA in

159

5 Hardware Coprocessors for Signature Matching

a flexible and programmable manner in the on-chip memories. In this way, the com-
pressed DFA was completely stored in the on-chip memories which enabled to fetch the
compressed state transitions at low latencies.

The BiSME and BOBiSME were implemented using Verilog and were synthesized
on a commercial 28nm standard library operating at 0.81V. The proposed signature
matching engines were effectively pipelined to achieve clock frequencies of 1.165 GHz
and 1.325 GHz, respectively. This enabled them to achieve an overall signature match-
ing throughput of 9.3 Gbps and 10.6 Gbps, respectively. Since the compressed DFA is
completely stored in the on-chip memories, the achievable signature matching through-
put is identical to the peak throughput for which the system is designed. The BiSME
and BOBiSME take multiple clock cycles to process a single payload byte. So, in order
to effectively utilize the hardware, payload bytes across multiple streams (contexts) are
interleaved and injected into the signature matching engines. However, the signature
matching throughput corresponding to a single context is always constant and it doesnt
depend on the characteristics of the network traffic. The synthesis results showed that
BiSME and BOBiSME only consumed 1.43 mm? and 1.18 mm? of on-chip area and only
consumed .155W and .167W of power, respectively.

The BiSME and the BOBiSME signature matching engines are engulfed by the Deep
Packet Inspection Accelerator. The DPIA is proposed to consist of the Network Data
Management Engine which can effectively inject the payload byte stream for inspection
into the signature matching engines. In this way, the processing associated with the
payload injection and the postprocessing is proposed to be decoupled from the actual
signature matching engine. Multiple instances of the signature matching engines can be
instantiated within the DPIA to scale the supported signature matching throughput as
well as the supported signature counts.

The functionality of the proposed signature matching engines were thoroughly verified
on the Cadence Palladium platform by injecting ~2.3 GB of payload bytes over more
than 12 hours. The extended verification performed in the Palladium platform enabled
to achieve 100% signature coverage to further verify that all the signatures within a
signature set can be identified by the proposed signature matching engine. The traffic
which was generated for the signature matching was simultaneously injected into a DFA
based signature matching engine. The identical signature matching results between
the hardware engines and the DFA, further verified the functional correctness of the
hardware implementation.

160

6 Conclusion & Outlook

The signature matching is the most time critical function which has to be accelerated
to perform deep packet inspection at line rates. The signatures which are represented
through the strings and the regular expressions are either converted into the NFA or the
DFA against which the payload bytes are compared. Since each payload byte can be
compared against the DFA in constant time, the DFA is preferred over the NFA for line
rate signature matching implementations. However, due to the transition redundancy
and the state explosion problem, the DFA is highly storage inefficient. So, the DFA is
generally compressed through the transition and the state compression algorithms and
the payload bytes are compared against the compressed DFA as part of signature match-
ing. Thus, the compression algorithms not only plays a role in effectively compressing
the DFA, but also plays an important role in defining the achievable signature matching
throughput.

The transition compression algorithms which have been proposed in the literature
suffer from a variety of problems. Those solutions which use the default transitions
to compress the redundant state transitions achieve very high transition compression
rates, typically of the order of over 95%. However, since the transition compression is
performed at the cost of increased memory bandwidth, the decompression cannot be
performed in a dedicated hardware accelerator. On the other hand, the bitmap based
approaches compress the DFA in such a way that the signature matching function can be
performed in a dedicated hardware accelerator. However, these approaches only achieve
transition compression rates of about 90-95% as they compromise the compression rates
to minimize the number of bitmaps stored in the memory.

Addressing the inefficient transition compression rates in the bitmap based approaches,
two bitmap based transition compression methods, the MSBT and the LSCT were pro-
posed and evaluated in this dissertation. The MSBT and the LSCT primarily use the
bitmap to eliminate intra-state transition redundancy and introduce the bitmasks to
eliminate the inter-state transition redundancy. The bitmasks form the secondary layer
of indexing which efficiently identify the redundant state transitions between multiple
states within the DFA and generates an effectively compressed DFA representation.
Additionally, a compression-aware divide and conquer state grouping method was pro-
posed to effectively group the states through which the states are coherently clustered to
effectively perform bitmask based inter-state transition compression. Experimental eval-
uation of the proposed methods showed that the MSBT and the LSCT in combination
with the proposed state grouping method can effectively compress the DFA and achieve
transition compression rates of the order of 98-99%, a 4-5% increase in comparison to
the state-of-the-art. The cost paid to achieve such high transition compression rates is
the necessity to store the bitmask together with the compressed state transitions. How-

161

6 Conclusion & Outlook

ever, the linearity in the organization of the characters in the signature sets were further
leveraged to compress the redundant bitmasks. The evaluation on the estimated memory
used to store the compressed DFA further showed that the overall memory footprint of
the compressed DFA reduced by 70% through the MSBT and the LSCT in combination
with the bitmask compression.

Compressing the redundant state transitions through the bitmaps and the bitmasks
effectively allows the decompression to be performed in a dedicated hardware accelera-
tor. Two signature matching engines, BiISME and BOBiSME were proposed and imple-
mented to perform the signature matching function after compressing the DFA through
the MSBT. The BiSME and the BOBiSME store the compressed DFA in the on-chip
memories, which allows them to be accessed at low latencies to perform the signature
matching function at lines rates. The proposed signature matching engines implement
two flexible and programmable storage methodologies to effectively store the compressed
state transitions and the control data in the on-chip memories, while the decompression
is performed through dedicated hardware circuits. The BiSME and the BOBiSME were
effectively pipelined to achieve signature matching throughput of 9.3 Gbps and 10.6
Gbps, respectively. Since the compressed signatures are completely stored in the on-
chip memories, the achievable signature matching throughput is equivalent to the peak
throughput for which the engines are designed for. The proposed signature matching
engines were implemented using Verilog and synthesized on the TSMC 28nm technology
node operating at 0.81V. The BiSME and the BOBiSME only consume 1.43 mm? and
1.18 mm? of silicon area and 155 mW and 170 mW power, respectively which make
them area-efficient and power efficient architectures. The proposed hardware acceler-
ators were verified using cycle-accurate RTL simulations and further on the Cadence
Palladium platform by injecting over 2GB of synthetic traces over a period of 12 hours.
The generated traces were simultaneously injected into a DFA based signature match-
ing engine implemented as a software to further verify the signature matching results
from the hardware implementation. The identical signature matching results between
the hardware implemented in Palladium and the DFA based signature matching engines
further verified the correctness of the hardware implementation.

The Deep Packet Inspection Accelerator was further proposed which engulfs the pro-
posed signature matching engines and effectively enables them to be integrated with
standard network-on-chip architectures. Multiple instances of the signatures matching
engines can be implemented to effectively scale the signature matching throughput, the
number of supported signatures or a combination of both. The DPIA also consists of
the network data management engine which decouples the functionality associated with
stream related data processing from the signature matching engines.

Though the key concept behind the network data management engine was proposed,
they were not implemented as part of the dissertation. The programmable methodology
to map the network streams into contexts will be an exciting future research area to
complement the signature matching engines. Through the programmable stream map-
ping methodology, the network streams can effectively be mapped to the contexts to
enable payload inspection across a multitude of network streams. Moreover, intelligent
algorithms to self-optimize the stream to context mapping process will add additional

162

intelligence to the network data management engine and would be an exciting research
area.

The population count function forms the most important part of the transition de-
compression when the redundant transitions are compressed through the bitmaps. The
population count is available as an instruction in major processor architectures includ-
ing the Intel x86, ARM etc. Though the main intention of the bitmap based transition
compression algorithms is to perform the decompression in a dedicated hardware accel-
erator, the population count instruction in general purpose processor architectures can
be leveraged for software implementations. Though various bitmap based compression
algorithms have proposed the usage of the population count instructions, there have
been no specific implementation results which have been published. So, it would be an
exiting next step to implement a software centric decompression engine after perform-
ing the compression through the MSBT and the LSCT leveraging the population count
instruction sets. It would be an interesting work to further ponder the performance
and the storage trade-offs when the decompression function is implemented as software
based implementation. These implementations should be targeted towards general pur-
pose processor architectures used by server or client systems which implement host based
DPI. Moreover, majority of the processor architectures used in the server or client plat-
forms consists of multiple processor cores with a deep memory hierarchy. It would be
an interesting future extension to implement software based decompression engines to
target these platforms.

163

Bibliography

[1] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner. Algorithms
to accelerate multiple regular expressions matching for deep packet inspection.
SIGCOMM Comput. Commun. Rev., 36(4):339-350, August 2006.

[2] M. Becchi and P. Crowley. A-dfa: A time- and space-efficient dfa compression
algorithm for fast regular expression evaluation. ACM Trans. Archit. Code Optim.,
10(1):1-26, April 2013.

[3] D. Ficara, A. D. Pietro, S. Giordano, G. Procissi, F. Vitucci, and G. Antichi.
Differential encoding of dfas for fast regular expression matching. IEEE/ACM
Transactions on Networking, 19(3):683-694, June 2011.

[4] Y. Qi, K. Wang, J. Fong, Y. Xue, J. Li, W. Jiang, and V. Prasanna. Feacan:
Front-end acceleration for content-aware network processing. In 2011 Proceedings
IEEE INFOCOM, pages 2114-2122, April 2011.

5] K. Wang, Y. Qi, Y. Xue, and J. Li. Reorganized and compact dfa for efficient
regular expression matching. In 2011 IEEFE International Conference on Commu-
nications (ICC), pages 1-5, June 2011.

[6) URL: https://medium.com/iotforall/who-is-buying-into-iot-8f65c701blef.

[7] URL: https://www.accenture.com/t00010101TO00000Z__w__/nz-en/
_acnmedia/PDF-49/Accenture-Internet-0f-Things.pdf.

[8] URL: https://www.internetsociety.org/wp-content/uploads/2017/08/
ISOC-IoT-0Overview-20151221-en.pdf.

[9] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas. Ddos in the iot: Mirai and
other botnets. Computer, 50(7):80-84, 2017. doi:10.1109/MC.2017.201.

[10] URL: https://www.infoworld.com/article/3176673/internet-of-things/
your-smart-fridge-may-kill-you-the-dark-side-of-iot.html.

[11] URL: https://www.bleepingcomputer.com/news/security/
about-90-percent-of-smart-tvs-vulnerable-to-remote-hacking-via-rogue-tv-signals/.

[12] URL: https://www.cisco.com/c/dam/m/hu_hu/campaigns/security-hub/
pdf/acr-2018.pdf.

165

https://medium.com/iotforall/who-is-buying-into-iot-8f65c701b1ef
https://www.accenture.com/t00010101T000000Z__w__/nz-en/_acnmedia/PDF-49/Accenture-Internet-Of-Things.pdf
https://www.accenture.com/t00010101T000000Z__w__/nz-en/_acnmedia/PDF-49/Accenture-Internet-Of-Things.pdf
https://www.internetsociety.org/wp-content/uploads/2017/08/ISOC-IoT-Overview-20151221-en.pdf
https://www.internetsociety.org/wp-content/uploads/2017/08/ISOC-IoT-Overview-20151221-en.pdf
http://dx.doi.org/10.1109/MC.2017.201
https://www.infoworld.com/article/3176673/internet-of-things/your-smart-fridge-may-kill-you-the-dark-side-of-iot.html
https://www.infoworld.com/article/3176673/internet-of-things/your-smart-fridge-may-kill-you-the-dark-side-of-iot.html
https://www.bleepingcomputer.com/news/security/about-90-percent-of-smart-tvs-vulnerable-to-remote-hacking-via-rogue-tv-signals/
https://www.bleepingcomputer.com/news/security/about-90-percent-of-smart-tvs-vulnerable-to-remote-hacking-via-rogue-tv-signals/
https://www.cisco.com/c/dam/m/hu_hu/campaigns/security-hub/pdf/acr-2018.pdf
https://www.cisco.com/c/dam/m/hu_hu/campaigns/security-hub/pdf/acr-2018.pdf

Bibliography

[13]

[20]

[21]
[22]

23]

[24]

166

H. Zimmermann. Osi reference model - the iso model of architecture for open
systems interconnection. IEEE Transactions on Communications, 28(4):425-432,
April 1980. doi:10.1109/TCOM. 1980.1094702.

URL: https://www.asus.com/my/Networking/RT-AC5300/.

URL: https://www.netgear.com/home/products/networking/wifi-routers/
R8500.aspx.

URL: http://us.dlink.com/products/connect/
ax6000-ultra-wi-fi-router-dirx6060/.

URL: http://www.ieee802.0rg/3/cfi/0715_2/CFI_02_0715.pdf.

M. S. Afaqui, E. Garcia-Villegas, and E. Lopez-Aguilera. Ieee 802.11ax: Challenges
and requirements for future high efficiency wifi. IEEE Wireless Communications,
24(3):130-137, June 2017. doi:10.1109/MWC.2016.1600089WC.

J. Park, G. Y. Kim, H. J. Park, and J. H. Kim. Ftth deployment status amp;
strategy in korea: Gw-pon based ftth field trial and reach extension strategy of
ftth in korea. In IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications
Conference, pages 1-3, Nov 2008. doi:10.1109/GLOCOM.2008.ECP.1074.

W. Bo. China telecom ftth deployment - lessons learnt and future plans. In 2012
Asia Communications and Photonics Conference (ACP), pages 1-3, Nov 2012.
doi:10.1364/ACP.2012.ATh3C.1.

URL: http://www.arris.com/products/nvghb78-gpon-gateways/.

URL: http://www.sscqueens.org/sites/default/files/WP_Deep_Packet_
Inspection_Parsons_Jan_2008.pdf.

R. Antonello, S. Fernandes, C. Kamienski, D. Sadok, J. Kelner, I. Gédor, G. Szabd,
and T. Westholm. Deep packet inspection tools and techniques in commodity
platforms: Challenges and trends. Journal of Network and Computer Applications,
35(6):1863 — 1878, 2012. doi:https://doi.org/10.1016/j.jnca.2012.07.010.

M. Handley, V. Paxson, and C. Kreibich. Network intrusion detection: Evasion,
traffic normalization, and end-to-end protocol semantics. In Proceedings of the 10th
Conference on USENIX Security Symposium - Volume 10, SSYM’01, Berkeley, CA,
USA, 2001. USENIX Association. URL: http://dl.acm.org/citation.cfm?id=
1251327.1251336.

T. H. Cheng, Y. D. Lin, Y. C. Lai, and P. C. Lin. Evasion techniques: Sneaking
through your intrusion detection/prevention systems. IEEE Communications Sur-
veys Tutorials, 14(4):1011-1020, Fourth 2012. doi:10.1109/SURV.2011.092311.
00082.

http://dx.doi.org/10.1109/TCOM.1980.1094702
https://www.asus.com/my/Networking/RT-AC5300/
https://www.netgear.com/home/products/networking/wifi-routers/R8500.aspx
https://www.netgear.com/home/products/networking/wifi-routers/R8500.aspx
http://us.dlink.com/products/connect/ax6000-ultra-wi-fi-router-dirx6060/
http://us.dlink.com/products/connect/ax6000-ultra-wi-fi-router-dirx6060/
http://www.ieee802.org/3/cfi/0715_2/CFI_02_0715.pdf
http://dx.doi.org/10.1109/MWC.2016.1600089WC
http://dx.doi.org/10.1109/GLOCOM.2008.ECP.1074
http://dx.doi.org/10.1364/ACP.2012.ATh3C.1
http://www.arris.com/products/nvg578-gpon-gateways/
http://www.sscqueens.org/sites/default/files/WP_Deep_Packet_Inspection_Parsons_Jan_2008.pdf
http://www.sscqueens.org/sites/default/files/WP_Deep_Packet_Inspection_Parsons_Jan_2008.pdf
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2012.07.010
http://dl.acm.org/citation.cfm?id=1251327.1251336
http://dl.acm.org/citation.cfm?id=1251327.1251336
http://dx.doi.org/10.1109/SURV.2011.092311.00082
http://dx.doi.org/10.1109/SURV.2011.092311.00082

[26]

[27]

Bibliography

X. Yu, W. Feng, D. Yao, and M. Becchi. O3fa: A scalable finite automata-
based pattern-matching engine for out-of-order deep packet inspection. In 2016
ACM/IEEE Symposium on Architectures for Networking and Communications
Systems (ANCS), pages 1-11, March 2016. doi:10.1145/2881025.2881034.

N. F. Huang, H. W. Hung, and W. Y. Tsai. A unique-pattern based pre-filtering
method for rule matching of network security. In 2012 18th Asia-Pacific Conference
on Communications (APCC), pages 744-748, Oct 2012. doi:10.1109/APCC.2012.
6388294.

I. Sourdis, V. Dimopoulos, D. Pnevmatikatos, and S. Vassiliadis. Packet pre-
filtering for network intrusion detection. In Proceedings of the 2006 ACM/IEEE
Symposium on Architecture for Networking and Communications Systems, ANCS
06, pages 183-192, New York, NY, USA, 2006. ACM. URL: http://doi.acm.
org/10.1145/1185347.1185372, doi:10.1145/1185347.1185372.

N. Weng, L. Vespa, and B. Soewito. Deep packet pre-filtering and finite state
encoding for adaptive intrusion detection system. Comput. Netw., 55(8):1648—
1661, June 2011. URL: http://dx.doi.org/10.1016/j.comnet.2010.12.007,
d0i:10.1016/j.comnet.2010.12.007.

M. Nourani and P. Katta. Bloom filter accelerator for string matching. In 2007
16th International Conference on Computer Communications and Networks, pages
185-190, Aug 2007.

S. S. Shankar, L. PinXing, and A. Herkersdorf. Deep packet inspection in residen-
tial gateways and routers: Issues and challenges. In 201/ International Symposium
on Integrated Circuits (ISIC), pages 560-563, Dec 2014.

M. Becchi and P. Crowley. An improved algorithm to accelerate regular expression
evaluation. In Proceedings of the 3rd ACM/IEEE Symposium on Architecture for
Networking and Communications Systems, ANCS ’07, pages 145-154. ACM, 2007.

F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz. Fast and memory-
efficient regular expression matching for deep packet inspection. In Proceedings of
the 2006 ACM/IEEE Symposium on Architecture for Networking and Communi-
cations Systems, ANCS 06, pages 93-102, 2006.

C. Xu, S. Chen, J. Su, S. M. Yiu, and L. C. K. Hui. A survey on regular expression
matching for deep packet inspection: Applications, algorithms, and hardware plat-
forms. IEEE Communications Surveys Tutorials, 18(4):2991-3029, Fourthquarter
2016.

X. Yu, B. Lin, and M. Becchi. Revisiting state blow-up: Automatically building
augmented-fa while preserving functional equivalence. IEFEE Journal on Selected
Areas in Communications, 32(10):1822-1833, Oct 2014.

167

http://dx.doi.org/10.1145/2881025.2881034
http://dx.doi.org/10.1109/APCC.2012.6388294
http://dx.doi.org/10.1109/APCC.2012.6388294
http://doi.acm.org/10.1145/1185347.1185372
http://doi.acm.org/10.1145/1185347.1185372
http://dx.doi.org/10.1145/1185347.1185372
http://dx.doi.org/10.1016/j.comnet.2010.12.007
http://dx.doi.org/10.1016/j.comnet.2010.12.007

Bibliography

[36]

37]

[42]

[43]

[44]

168

R. Antonello, S. Fernandes, D. Sadok, J. Kelner, and G. Szabd. Design and opti-
mizations for efficient regular expression matching in dpi systems. Comput. Com-
mun., 61(C):103-120, May 2015.

J. V. Lunteren, C. Hagleitner, T. Heil, G. Biran, U. Shvadron, and K. Atasu.
Designing a programmable wire-speed regular-expression matching accelerator. In
Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-45, pages 461-472, Washington, DC, USA, 2012. IEEE
Computer Society.

URL: https://www.mcafee.com/enterprise/en-us/assets/reports/
rp-quarterly-threats-sep-2018.pdf.

S. S. Shankar, P. Lin, A. Herkersdorf, and T. Wild. Hardware acceleration of
signature matching through multi-layer transition bit masking. In 2016 26th In-
ternational Telecommunication Networks and Applications Conference (ITNAC),
pages 217-224, Dec 2016.

S. S. Subramanian, P. Lin, A. Herkersdorf, and T. Wild. Bitmaps & bit-
masks: Efficient tools to compress deterministic automata. Australian Journal
of Telecommunications and the Digital Economy, 6(3):41-75, sep 2018. URL:
https://doi.org/10.18080/ajtde.v6n3.125, doi:10.18080/ajtde.v6n3.125.

S. S. Shankar, P. Lin, A. Herkersdorf, and T. Wild. A divide and conquer state
grouping method for bitmap based transition compression. In 2017 18th Interna-
tional Conference on Parallel and Distributed Computing, Applications and Tech-
nologies (PDCAT), pages 400-406, Dec 2017.

S. S. Shankar, P. Lin, A. Herkersdorf, and T. Wild. Bisme: A hardware coprocessor
to perform signature matching at multi-gigabit rates. In 2018 IEEE 29th Inter-
national Conference on Application-specific Systems, Architectures and Processors
(ASAP), pages 227-235, July 2018.

R. Sommer and V. Paxson. Enhancing byte-level network intrusion detection
signatures with context. In Proceedings of the 10th ACM Conference on Computer
and Communications Security, CCS 03, pages 262-271, 2003.

R. Smith, C. Estan, and S. Jha. Xfa: Faster signature matching with extended
automata. In 2008 IEEE Symposium on Security and Privacy (sp 2008), pages
187-201, May 2008.

D. E. Knuth, J. James H. Morris, and V. R. Pratt. Fast pattern matching in
strings. SIAM Journal on Computing, 6(2):323-350, 1977.

A. V. Aho and M. J. Corasick. Efficient string matching: An aid to bibliographic
search. Commun. ACM, 18(6):333-340, June 1975.

https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-sep-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-sep-2018.pdf
https://doi.org/10.18080/ajtde.v6n3.125
http://dx.doi.org/10.18080/ajtde.v6n3.125

[47]

[48]

[53]

[54]

Bibliography

R. S. Boyer and J. S. Moore. A fast string searching algorithm. Commun. ACM,
20(10):762-772, October 1977. URL: http://doi.acm.org/10.1145/359842.
359859, doi:10.1145/359842.359859.

S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, and J. W. Lockwood. Deep
packet inspection using parallel bloom filters. IEEE Micro, 24(1):52-61, January
2004.

B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7):422-426, July 1970. URL: http://doi.acm.org/10.1145/362686.
362692, doi:10.1145/362686.362692.

M. Becchi and P. Crowley. A hybrid finite automaton for practical deep packet
inspection. In Proceedings of the 2007 ACM CoNEXT Conference, CONEXT ’07,
pages 1-12. ACM, 2007.

M. Sipser. Introduction to the Theory of Computation. International Thomson
Publishing, 1st edition, 1996.

J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2006.

K. Thompson. Programming techniques: Regular expression search algorithm.
Commun. ACM, 11(6):419-422, June 1968. URL: http://doi.acm.org/10.1145/
363347.363387, doi:10.1145/363347.363387.

R. McNaughton and H. Yamada. Regular expressions and state graphs for au-
tomata. IRE Transactions on Electronic Computers, EC-9(1):39-47, March 1960.
doi:10.1109/TEC.1960.5221603.

J. E. Hopcroft. An n log n algorithm for minimizing states in a finite automaton.
Technical report, Stanford, CA, USA, 1971.

T. Liu, A. X. Liu, J. Shi, Y. Sun, and L. Guo. Towards fast and optimal group-
ing of regular expressions via dfa size estimation. IFEFE Journal on Selected Ar-
eas in Communications, 32(10):1797-1809, Oct 2014. doi:10.1109/JSAC.2014.
2358839.

Y. Xu, J. Jiang, R. Wei, Y. Song, and H. J. Chao. Tfa: A tunable finite automaton
for pattern matching in network intrusion detection systems. IEEE Journal on
Selected Areas in Communications, 32(10):1810-1821, Oct 2014.

C. Liu, A. Chen, D. Wu, and J. Wu. A dfa with extended character-set for fast
deep packet inspection. In Proceedings of the 2011 International Conference on
Parallel Processing, ICPP ’11, pages 1-10. IEEE Computer Society, 2011.

169

http://doi.acm.org/10.1145/359842.359859
http://doi.acm.org/10.1145/359842.359859
http://dx.doi.org/10.1145/359842.359859
http://doi.acm.org/10.1145/362686.362692
http://doi.acm.org/10.1145/362686.362692
http://dx.doi.org/10.1145/362686.362692
http://doi.acm.org/10.1145/363347.363387
http://doi.acm.org/10.1145/363347.363387
http://dx.doi.org/10.1145/363347.363387
http://dx.doi.org/10.1109/TEC.1960.5221603
http://dx.doi.org/10.1109/JSAC.2014.2358839
http://dx.doi.org/10.1109/JSAC.2014.2358839

Bibliography

[59]

170

M. Becchi and P. Crowley. Extending finite automata to efficiently match perl-
compatible regular expressions. In Proceedings of the 2008 ACM CoNEXT
Conference, CoNEXT ’08, pages 25:1-25:12, New York, NY, USA, 2008.
ACM. URL: http://doi.acm.org/10.1145/1544012.1544037, doi:10.1145/
1544012.1544037.

J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society, 7(1):48-50,
1956.

URL: https://ark.intel.com/products/52213/
Intel-Core-i7-2600-Processor-8M-Cache-up-to-3-80-GHz-.

T. Liu, Y. Yang, Y. Liu, Y. Sun, and L. Guo. An efficient regular expressions com-
pression algorithm from a new perspective. In 2011 Proceedings IEEE INFOCOM,
pages 21292137, April 2011. doi:10.1109/INFCOM.2011.5935024.

N. Tuck, T. Sherwood, B. Calder, and G. Varghese. Deterministic memory-efficient
string matching algorithms for intrusion detection. In IEEE INFOCOM 2004, vol-
ume 4, pages 2628-2639 vol.4, March 2004. doi:10.1109/INFCOM.2004.1354682.

B. C. Brodie, D. E. Taylor, and R. K. Cytron. A scalable architecture for high-
throughput regular-expression pattern matching. In 33rd International Symposium
on Computer Architecture (ISCA’06), pages 191-202, 2006.

S. Kong, R. Smith, and C. Estan. Efficient signature matching with multiple
alphabet compression tables. In Proceedings of the 4th International Conference

on Security and Privacy in Communication Netowrks, SecureComm ’08, pages
1:1-1:10, New York, NY, USA, 2008. ACM.

R. Smith, N. Goyal, J. Ormont, K. Sankaralingam, and C. Estan. Evaluating gpus
for network packet signature matching. In 2009 IEEFE International Symposium
on Performance Analysis of Systems and Software, pages 175-184, April 2009.
doi:10.1109/ISPASS.2009.4919649.

R. Sidhu and V. K. Prasanna. Fast regular expression matching using fpgas.
In Proceedings of the the 9th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, FCCM ’01, pages 227-238, Washington, DC, USA,
2001. IEEE Computer Society. URL: https://doi.org/10.1109/FCCM.2001.22,
doi:10.1109/FCCM.2001.22.

C. H. Lin, C. T. Huang, C. P. Jiang, and S. C. Chang. Optimization of pattern
matching circuits for regular expression on fpga. IFEE Transactions on Very
Large Scale Integration (VLSI) Systems, 15(12):1303-1310, Dec 2007. doi:10.
1109/TVLSI.2007.909801.

http://doi.acm.org/10.1145/1544012.1544037
http://dx.doi.org/10.1145/1544012.1544037
http://dx.doi.org/10.1145/1544012.1544037
https://ark.intel.com/products/52213/Intel-Core-i7-2600-Processor-8M-Cache-up-to-3-80-GHz-
https://ark.intel.com/products/52213/Intel-Core-i7-2600-Processor-8M-Cache-up-to-3-80-GHz-
http://dx.doi.org/10.1109/INFCOM.2011.5935024
http://dx.doi.org/10.1109/INFCOM.2004.1354682
http://dx.doi.org/10.1109/ISPASS.2009.4919649
https://doi.org/10.1109/FCCM.2001.22
http://dx.doi.org/10.1109/FCCM.2001.22
http://dx.doi.org/10.1109/TVLSI.2007.909801
http://dx.doi.org/10.1109/TVLSI.2007.909801

[69]

[70]

[71]

[74]

[75]

Bibliography

C. R. Clark and D. E. Schimmel. Scalable pattern matching for high speed net-
works. In Proceedings of the 12th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, FCCM ’04, pages 249-257, Washington, DC, USA,
2004. IEEE Computer Society. URL: http://dl.acm.org/citation.cfm?id=
1025123.1025834.

G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and S. Ioannidis.
Gnort: High performance network intrusion detection using graphics processors.
In Proceedings of the 11th International Symposium on Recent Advances in In-
trusion Detection, RAID 08, pages 116-134, Berlin, Heidelberg, 2008. Springer-
Verlag. URL: http://dx.doi.org/10.1007/978-3-540-87403-4_7, doi:10.
1007/978-3-540-87403-4_7.

N. Cascarano, P. Rolando, F. Risso, and R. Sisto. infant: Nfa pattern match-
ing on gpgpu devices. SIGCOMM Comput. Commun. Rev., 40(5):20-26, Oc-
tober 2010. URL: http://doi.acm.org/10.1145/1880153.1880157, doi:10.
1145/1880153.1880157.

Y. Zu, M. Yang, Z. Xu, L. Wang, X. Tian, K. Peng, and Q. Dong. Gpu-
based nfa implementation for memory efficient high speed regular expression
matching. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 12, pages 129-140, New York,
NY, USA, 2012. ACM. URL: http://doi.acm.org/10.1145/2145816.2145833,
doi:10.1145/2145816.2145833.

X. Yu and M. Becchi. Exploring different automata representations for ef-
ficient regular expression matching on gpus. SIGPLAN Not., 48(8):287-288,
February 2013. URL: http://doi.acm.org/10.1145/2517327.2442548, doi:
10.1145/2517327.2442548.

X. Yu and M. Becchi. Gpu acceleration of regular expression matching for large
datasets: Exploring the implementation space. In Proceedings of the ACM Inter-
national Conference on Computing Frontiers, CF ’13, pages 18:1-18:10, New York,
NY, USA, 2013. ACM. URL: http://doi.acm.org/10.1145/2482767.2482791,
doi:10.1145/2482767.2482791.

F. Yu, R. H. Katz, and T. V. Lakshman. Gigabit rate packet pattern-matching
using tcam. In Proceedings of the 12th IEEFE International Conference on Network
Protocols, 2004. ICNP 2004., pages 174-183, Oct 2004. doi:10.1109/ICNP.2004.
1348108.

J.-S. Sung, S.-M. Kang, Y. Lee, T.-G. Kwon, and B.-T. Kim. A multi-gigabit
rate deep packet inspection algorithm using tcam. In GLOBECOM °05. IEEE
Global Telecommunications Conference, 2005., volume 1, pages 5 pp.—, Dec 2005.
doi:10.1109/GLOCOM.2005.1577667.

171

http://dl.acm.org/citation.cfm?id=1025123.1025834
http://dl.acm.org/citation.cfm?id=1025123.1025834
http://dx.doi.org/10.1007/978-3-540-87403-4_7
http://dx.doi.org/10.1007/978-3-540-87403-4_7
http://dx.doi.org/10.1007/978-3-540-87403-4_7
http://doi.acm.org/10.1145/1880153.1880157
http://dx.doi.org/10.1145/1880153.1880157
http://dx.doi.org/10.1145/1880153.1880157
http://doi.acm.org/10.1145/2145816.2145833
http://dx.doi.org/10.1145/2145816.2145833
http://doi.acm.org/10.1145/2517327.2442548
http://dx.doi.org/10.1145/2517327.2442548
http://dx.doi.org/10.1145/2517327.2442548
http://doi.acm.org/10.1145/2482767.2482791
http://dx.doi.org/10.1145/2482767.2482791
http://dx.doi.org/10.1109/ICNP.2004.1348108
http://dx.doi.org/10.1109/ICNP.2004.1348108
http://dx.doi.org/10.1109/GLOCOM.2005.1577667

Bibliography

[77]

78]

[79]

[83]

[84]

[85]

[36]
[87]

[33]

172

M. Alicherry, M. Muthuprasanna, and V. Kumar. High speed pattern matching
for network ids/ips. In Proceedings of the 2006 IEEE International Conference on
Network Protocols, pages 187-196, Nov 2006. doi:10.1109/ICNP.2006.320212.

K. Peng, S. Tang, M. Chen, and Q. Dong. Chain-based dfa deflation for fast and
scalable regular expression matching using tcam. In 2011 ACM/IEEE Seventh
Symposium on Architectures for Networking and Communications Systems, pages
24-35, Oct 2011. doi:10.1109/ANCS.2011.13.

C. R. Meiners, J. Patel, E. Norige, E. Torng, and A. X. Liu. Fast regular expres-
sion matching using small tcams for network intrusion detection and prevention
systems. In Proceedings of the 19th USENIX Conference on Security, USENIX
Security’10, pages 88, Berkeley, CA, USA, 2010. USENIX Association. URL:
http://dl.acm.org/citation.cfm?id=1929820.1929831.

C. R. Meiners, J. Patel, E. Norige, A. X. Liu, and E. Torng. Fast regular expression
matching using small tcam. IEEE/ACM Transactions on Networking, 22(1):94—
109, Feb 2014. doi:10.1109/TNET.2013.2256466.

Y. Fang, T. T. Hoang, M. Becchi, and A. A. Chien. Fast support for unstructured
data processing: The unified automata processor. In Proceedings of the 48th Inter-
national Symposium on Microarchitecture, MICRO-48, pages 533-545, New York,

NY, USA, 2015. ACM.

P. Tandon, F. M. Sleiman, M. J. Cafarella, and T. F. Wenisch. Hawk: Hard-
ware support for unstructured log processing. In 2016 IEEE 32nd Interna-
tional Conference on Data Engineering (ICDE), pages 469-480, May 2016. doi:
10.1109/ICDE.2016.7498263.

J. van Lunteren. High-performance pattern-matching for intrusion detection. In
Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on
Computer Communications, pages 1-13, April 2006. doi:10.1109/INFOCOM.
2006.204.

L. Tan and T. Sherwood. A high throughput string matching architecture for in-
trusion detection and prevention. In Proceedings of the 32Nd Annual International
Symposium on Computer Architecture, ISCA 05, pages 112-122, Washington, DC,
USA, 2005. IEEE Computer Society.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms, Third Edition. The MIT Press, 3rd edition, 2009.

URL: http://regex.wustl.edu/.
URL: https://www.bro.org/.

URL: https://www.snort.org/.

http://dx.doi.org/10.1109/ICNP.2006.320212
http://dx.doi.org/10.1109/ANCS.2011.13
http://dl.acm.org/citation.cfm?id=1929820.1929831
http://dx.doi.org/10.1109/TNET.2013.2256466
http://dx.doi.org/10.1109/ICDE.2016.7498263
http://dx.doi.org/10.1109/ICDE.2016.7498263
http://dx.doi.org/10.1109/INFOCOM.2006.204
http://dx.doi.org/10.1109/INFOCOM.2006.204
http://regex.wustl.edu/
https://www.bro.org/
https://www.snort.org/

[89]

[90]

[91]

[100]

[101]

Bibliography

X. Chen, B. Jones, M. Becchi, and T. Wolf. Picking pesky parameters: Optimizing
regular expression matching in practice. IEEE Transactions on Parallel and Dis-
tributed Systems, 27(5):1430-1442, May 2016. doi:10.1109/TPDS.2015.2453986.

M. Becchi, M. Franklin, and P. Crowley. A workload for evaluating deep packet
inspection architectures. In 2008 IEEE International Symposium on Workload
Characterization, pages 79-89, Sept 2008.

B. Parhami and C.-H. Yeh. Accumulative parallel counters. In Conference Record
of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers,
volume 2, pages 966-970 vol.2, Oct 1995.

V. Sklyarov and I. Skliarova. Design and implementation of counting net-
works. Computing, 97(6):557-577, Jun 2015. URL: https://doi.org/10.1007/
s00607-013-0360-y, doi:10.1007/s00607-013-0360-y.

S. J. Piestrak. Efficient hamming weight comparators of binary vectors. Electronics
Letters, 43(11):611-612, May 2007. doi:10.1049/e1:20070141.

V. A. Pedroni. Compact hamming-comparator-based rank order filter for digital
vlsi and fpga implementations. In 2004 IEEFE International Symposium on Clircuits
and Systems (IEEE Cat. No.04CH37512), volume 2, pages 11-585-8 Vol.2, May
2004. doi:10.1109/ISCAS.2004.1329339.

B. Parhami. Efficient hamming weight comparators for binary vectors based on
accumulative and up/down parallel counters. IEEE Transactions on Circuits and
Systems II: Express Briefs, 56(2):167-171, Feb 20009.

C. S. Wallace. A suggestion for a fast multiplier. IEEFE Transactions on Electronic
Computers, EC-13(1):14-17, Feb 1964.

A. Basu and G. Narlikar. Fast incremental updates for pipelined forwarding en-
gines. IEEE/ACM Trans. Netw., 13(3):690-703, June 2005.

M. Becchi and P. Crowley. Efficient regular expression evaluation: Theory to
practice. In Proceedings of the 4th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, ANCS ’08, pages 50-59, New York,
NY, USA, 2008. ACM. URL: http://doi.acm.org/10.1145/1477942.1477950,
doi:10.1145/1477942.1477950.

URL: http://www.gstitt.ece.ufl.edu/courses/fall15/eel4720_5721/
labs/refs/AXI4_specification.pdf.

W. D. Schwaderer. Introduction to Open Core Protocol: Fastpath to System-on-
Chip Design. Springer, 2012.

URL: https://www.synopsys.com/implementation-and-signoff/
rtl-synthesis-test/dc-ultra.html.

173

http://dx.doi.org/10.1109/TPDS.2015.2453986
https://doi.org/10.1007/s00607-013-0360-y
https://doi.org/10.1007/s00607-013-0360-y
http://dx.doi.org/10.1007/s00607-013-0360-y
http://dx.doi.org/10.1049/el:20070141
http://dx.doi.org/10.1109/ISCAS.2004.1329339
http://doi.acm.org/10.1145/1477942.1477950
http://dx.doi.org/10.1145/1477942.1477950
http://www.gstitt.ece.ufl.edu/courses/fall15/eel4720_5721/labs/refs/AXI4_specification.pdf
http://www.gstitt.ece.ufl.edu/courses/fall15/eel4720_5721/labs/refs/AXI4_specification.pdf
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html

Bibliography

[102]

[103]
[104]
[105]
[106]

[107]

[108]

174

URL: https://www.cadence.com/content/cadence-www/global/en_US/home/
tools/system-design-and-verification/acceleration-and-emulation/
palladium-xp.html.

URL: http://bittwist.sourceforge.net/
URL: https://www.spirent.com/Products/TestCenter/Platforms.

URL: https://www.cadence.com/content/dam/cadence-www/
global/en_US/documents/tools/system-design-verification/
speedbridge-adapter-multi-ethernet-ds.pdf.

URL: https://www.xilinx.com/support/documentation/ip_documentation/
ug761_axi_reference_guide.pdf.

URL: https://support-kb.spirent.com/infocenter/index?page=content&
id=FAQ11176&cat=SOFTWARE&actp=LIST.

URL: https://www.wireshark.org/.

https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/acceleration-and-emulation/palladium-xp.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/acceleration-and-emulation/palladium-xp.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/acceleration-and-emulation/palladium-xp.html
http://bittwist.sourceforge.net/
https://www.spirent.com/Products/TestCenter/Platforms
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-design-verification/speedbridge-adapter-multi-ethernet-ds.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-design-verification/speedbridge-adapter-multi-ethernet-ds.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-design-verification/speedbridge-adapter-multi-ethernet-ds.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://support-kb.spirent.com/infocenter/index?page=content&id=FAQ11176&cat=SOFTWARE&actp=LIST
https://support-kb.spirent.com/infocenter/index?page=content&id=FAQ11176&cat=SOFTWARE&actp=LIST
https://www.wireshark.org/

A Trace Generation

This section provides a short description of the pseudorandom trace generation method-
ology proposed in [90]. In this method, the sequence of payload bytes are generated by
traversing through an automata as described further below. Figure A.1 shows the DFA
corresponding to the signature set acd, bh and gh. The characters used in the signature
set belongs to the alphabet ¥={a,b,c,d,e,f,g,h}.

The trace generation methodology takes the DFA (or the NFA) as an input and
generates a sequence of characters based on the probability of maliciousness Py, which
is chosen between 0 and 1. The lower the value chosen for the Py, the lower the
number of signatures resulting in the generated sequence of payload bytes. Table A.1
describes an example of the trace generation process corresponding to the DFA shown
in Figure A.1.The Pyt value chosen for this exercise is 0.35.

The trace generation process starts with the root state being set as the current state.
As discussed earlier in Chapter 2, the state transitions in the DFA are split into forward
and the failure transitions. The forward transitions are those state transitions which
lead the state machine towards an accepting state, while the failure transitions are those
which don’t. As part of the trace generation process, a character is chosen among all
the characters in the alphabet in such a way that the probability of the chosen character
resulting in a forward transition is Py;. For example, as seen in Table A.1, when the
current state is ‘0’, among all the characters in the alphabet, the characters a, b and g
alone lead the state machine towards a plausible signature match. So, the probability of
one of these characters being chosen in the trace generation process is Py;=0.35. In the

ar@x —Character Axis—»
Signature Set g
1. acd | || b
2. bh g b
3.gh - i

c h

C{%) Ig;l

d

.«-«"t'%

\2J

A IR R
AN E-IE-EE-R -1 E-NE-
olo|lo|o|lo|o|m]|o|a
ala|lo|la|la|lw|ala|a
olo|lo|o|lo|lo|la|o|n
olo|lo|lao|lo|o|o|o|=-
alo|o|o|n|o|o|;|m
(=R ENE N=0 EUN =N N =0 N=1 F=T 0=

= ;o B W RO

=
.
«—S Xy I)E1S

Figure A.1: Example DFA to explain the trace generation mechanism

175

A Trace Generation

Table A.1: Sequence of characters generated with Py;=0.35

Current_State 0 0 4 0 1 2
Characters which g.;e‘nerate abg | ab.g L abg . q
a forward transition
Characters which generate || ¢,d,e, | c,d,e, | a,b,c,d, | ¢,d,e | a,b,d,e, | a,b,c,e,
a failure transition f,h f,h e,f,g f,h f,g,h f.g.h
Generated character ¢ b d a c a
Next_State 0 4 0 1 2 0

specific example being considered, the character which is generated is ‘¢’ which results in
the next state ‘0’. Subsequently, the next state is assigned as the current state and the
next character in the trace is generated in a similar fashion as explained above. Following
this process, the sequence of characters generated specific to this example are cbdaca. In
this way, by generating the sequence of characters in a pseudorandom fashion, it is made
sure that the traces which are generated for payload inspection do contain a certain
number of signatures and the number of signatures generated is controlled through the
Pyt value. A higher value set to Py will result in traces with higher signature count in

comparison to a lower value.

176

B Accumulative Parallel Adder

As discussed in Chapter 5, the population count is a critical operation which is per-
formed as part of the decompression process. So, it is essential to implement an efficient
hardware block to perform the population count function. Existing literature on popula-
tion count implementations have identified that the Accumulative Parallel Adder (APA)
[91] is the most effective way to implement the population count function [95]. A short
description of the APA is described in this section.

The population count is the process of counting the total number of set bits in an
N-bit vector. The APA consists of a tree of increasing wider ripple carry adders. The
first level consists of logy N full adders while the last level consists of a single log,N wide
ripple carry adder. Through each successive level, the width of the ripple carry adders
increases and the number of ripple carry adders reduces in a logarithmic fashion. The
worst case latency of the parallel adder circuit is 2xlogaN — 1 full adder delays and is also
the critical path in the combinatorial computation. The APA is also capable of adding
a logoN wide initial value which is added to the output of the APA. In the context of
the decompression engine, the initial value can be the base address to be added to the
output of the population count operation performed on the bitmap or the bitmask.

Figure B.1 shows an example of the parallel adder circuit for N set to 16 together with
a 4 bit initial value. As seen in Figure B.1, the first level of the adder tree consists of
4 full adders. For every subsequent level, the width of the ripple carry adders increases
with the last level consisting of a 4 bit ripple carry adder. The circuit finally outputs a 4
bit sum with a single bit carry which detects an overflow in the addition operation. Thus,
the proposed circuit performs the population count operation and simultaneously adds
the output to an initial value. In the case of BISME and BOBiSME implementations,
a 256 bit APA is used which results in a worst case processing latency of 15 full adder
delays.

177

B Accumulative Parallel Adder

Initial Value (4 bit) N bit vector (N = 16)
ll Lo e [

Al A2 Cin Al A2 Cin

Cout 5 Cout S Cout S Cout S

| — | =

Al A2 Cin Al A2 Cin Al A2 Cin

Ve i) vbi] ved

Critical Path <-1-————q1r——--—1 Tr=—————1 e -

t lS Cout ¥S _Crnut ¥S _Clnut &S
Population Count Carry (Cout) Population Count Sum (4 bit)

Figure B.1: Example of the Accumulative Parallel Adder circuitry to perform the population
count function

178

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Introduction to Deep Packet Inspection
	1.2.1 Packet Inspection Methodologies - Overview
	1.2.2 Steps in Deep Packet Inspection
	1.2.3 Signature Matching - Requirements & Challenges

	1.3 Thesis Contributions
	1.4 Dissertation Organization

	2 State-of-the-Art
	2.1 String Based Signature Matching Engines
	2.2 Automata Based Approaches
	2.2.1 Introduction to NFA & DFA
	2.2.2 Automata Based Signature Matching - Complexity Analysis

	2.3 DFA Compression
	2.3.1 State Compression
	2.3.1.1 State Explosion Problem
	2.3.1.2 State Compression Solutions

	2.3.2 Transition Compression
	2.3.2.1 Software Oriented Algorithms
	2.3.2.2 Hardware Oriented Algorithms
	2.3.2.3 Alphabet Compression

	2.3.3 Summary of DFA Compression

	2.4 Line Rate Signature Matching Engine Implementations
	2.4.1 FPGA - Logic Based Implementations
	2.4.2 GPU Based Signature Matching Engines
	2.4.3 Hardware Accelerators - ASIC
	2.4.3.1 Automata Storage - TCAM
	2.4.3.2 Automata Storage - RAM

	2.5 State-of-the-Art Summary

	3 Bitmask: A Secondary Indexing Layer for Bitmap based Transition Compression
	3.1 Member State Bitmask Technique
	3.1.1 MSBT - An Example
	3.1.2 Compressed DFA Organization
	3.1.3 Decompression
	3.1.3.1 Decompression - An Example
	3.1.3.2 Hardware Decompression Engine for MSBT - Logical Block Level Description

	3.1.4 Summary

	3.2 Leader State Compression Technique
	3.2.1 Leader Transition Bitmask
	3.2.2 Compressed DFA Organization - LSCT
	3.2.3 Decompression
	3.2.3.1 Decompression - An Example
	3.2.3.2 Hardware Decompression Engine for LSCT - Logical Block Level Description

	3.2.4 Summary

	3.3 Experimental Evaluation
	3.3.1 Signature Sets
	3.3.2 Transition Compression Rate (TCR)
	3.3.3 Estimated Memory Usage
	3.3.4 Functional Evaluation - Software Model

	3.4 Conclusion

	4 Memory Footprint Optimizations - MSBT & LSCT
	4.1 Motivation
	4.2 Improved Transition Compression through State Grouping
	4.2.1 Background
	4.2.2 Divide & Conquer State Grouping
	4.2.2.1 The Divide Step
	4.2.2.2 State Reorganization
	4.2.2.3 The Conquer Step
	4.2.2.4 Optimal Leader State Identification

	4.2.3 Complexity Analysis Comparison
	4.2.4 Experimental Evaluation
	4.2.4.1 State Grouping Results
	4.2.4.2 Transition Compression Rate
	4.2.4.3 Estimated Memory Usage

	4.2.5 Discussion & Summary

	4.3 Alphabet Compression
	4.3.1 Combining Alphabet Compression with MSBT & LSCT
	4.3.2 Experimental Evaluation
	4.3.2.1 Transition Compression Rate
	4.3.2.2 Estimated Memory Usage

	4.3.3 Discussion & Summary

	4.4 Bitmask Compression
	4.4.1 Background
	4.4.2 Bitmask Optimized Member State Bitmask Technique
	4.4.2.1 Bitmask Compression
	4.4.2.2 Memory Organization
	4.4.2.3 Transition Decompression
	4.4.2.4 Hardware Engine for Decompression - Logical Block Level Description

	4.4.3 Experimental Evaluation
	4.4.3.1 Estimated Memory Usage
	4.4.3.2 Functional Evaluation - Software Model

	4.4.4 Discussion & Summary

	4.5 Conclusion

	5 Hardware Coprocessors for Signature Matching
	5.1 Overview
	5.2 Bitmask Storage
	5.2.1 Requirements
	5.2.2 Packed Storage Methodology
	5.2.2.1 Split Memory Implementation
	5.2.2.2 Bitmask Extraction

	5.2.3 Summary

	5.3 Compressed Transition Storage
	5.3.1 Requirements
	5.3.2 Shared Memory Methodology
	5.3.2.1 Transition Memory Access

	5.3.3 Discussion & Summary

	5.4 BiSME - Internal Architecture
	5.4.1 Memory Shell
	5.4.2 Address Decoder & Memory Access Multiplexer
	5.4.3 Decompression Engine
	5.4.4 BOBiSME - Modified BiSME to support Bitmask Compression
	5.4.5 Throughput

	5.5 Deep Packet Inspection Accelerator
	5.5.1 DPIA Interfaces
	5.5.2 DPIA Internal Architecture
	5.5.3 Network Data Management Engine
	5.5.3.1 Configurable Stream Mapping
	5.5.3.2 Postprocessing: Software-Hardware Interaction

	5.5.4 Scalability

	5.6 Experimental Evaluation & Discussion
	5.6.1 Synthesis Results
	5.6.2 Signature Capacity
	5.6.2.1 BiSME
	5.6.2.2 BOBiSME

	5.6.3 Hardware Implementation Validation
	5.6.3.1 Traffic Generation
	5.6.3.2 Internal Architecture of the Evaluation Setup
	5.6.3.3 Results & Discussion

	5.7 Summary

	6 Conclusion & Outlook
	Bibliography
	A Trace Generation
	B Accumulative Parallel Adder

