
Technische Universität München

Fakultät für Elektrotechnik und Informationstechnik

Lehrstuhl für Kommunikationsnetze

Design and Performance Modeling of an

Application-Aware Network Abstraction

Layer for Partially Deployed SDNs

Christian Sieber, M.Sc.

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der

Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Gerhard Rigoll

Prüfer der Dissertation: 1. Prof. Dr.-Ing. Wolfgang Kellerer

2. Prof. Dr. Tobias Hoßfeld

Die Dissertation wurde am 20.11.2018 bei der Technischen Universität München eingereicht

und durch die Fakultät für Elektrotechnik und Informationstechnik am 05.04.2019 angenom-

men.

Design and Performance Modeling of an

Application-Aware Network Abstraction Layer for

Partially Deployed SDNs

Christian Sieber, M.Sc.

05.04.2019

iii

Abstract

Today, despite years of research and development, network management is still complex,

error-prone and requires human intervention. This is due to the fact that today’s traditional

forwarding devices are feature-packed, monolithic devices with proprietary interfaces and

non-standardized configuration data-models. In traditional networks, manually configured

virtual networks and distributed routing protocols executed on the devices, form a distributed

control logic. Software-Defined Networking (SDN) reduces complexity in the forwarding

devices by moving control decisions to a logically centralized entity, the SDN controller.

Through an open interface, the SDN controller can program the forwarding behavior of the

devices by pushing simple forwarding rules to the devices. The advantages of SDN-based

networks are comprehensively investigated in research. Operational experience from global-

scale Internet companies show an increase in flexibility and efficiency of SDN-based networks

in the field. However, techno-economical and operational considerations restrict most network

operators from fully replacing traditional forwarding devices with SDN-capable devices in

the short-term. Incremental migration strategies have to be devised which allow a network

operator to reap the benefits from the partially deployed SDNs during a potentially long-lasting

migration process. How to manage, operate and provide Quality of Service (QoS) in such

hybrid SDN/legacy networks is still a challenge in several areas. This doctoral thesis at hand

extends the state of the art in hybrid networking by tackling the following three challenges.

The first challenge is the design of a programmable abstraction layer for partially deployed

SDNs. Based on an informational Request-For-Comments (RFC), which introduces the

high-level architecture, the thesis proposes and demonstrates the detailed design of such an

abstraction layer. The challenge here is to combine different management data-models, e.g., for

QoS, with the traditional and SDN control plane for forwarding. Furthermore, trade-offs arise

when choosing the level of detail of the abstraction layer. Additionally, undesired side-effects

of frequent reconfigurations of traditional devices have to be considered. By modeling the

network as a graph augmented with the devices’ QoS processing pipelines and configuration

side-effects such as data-plane interruptions, control applications are able to programmatically

control forwarding and QoS simultaneously through a domain-specific programming language.

v

The design is implemented in a proof-of-concept setup and measurements of the set-up show

the feasibility of the design.

The second challenge is the performance modeling of such network abstraction layers for

hybrid SDNs. Two approaches are presented. The first approach uses queuing theory to derive

an analytical performance model for the flexibility of hybrid networks based on the topology

and the stage in the SDN migration process. The results show that traditional devices with

slow management interfaces can severely restrict the global flexibility of hybrid networks.

A survey of a collection of real-world topologies shows further that this holds true for most

networks even in late stages of the SDN-migration process. Hence, the feasibility of SDN

use cases requiring a high rate of reconfigurations, such as load-balancing or reactive control,

have to be re-evaluated for hybrid networks. The second approach applies machine-learning

for the performance estimation of abstraction layers at run-time. Here different performance

models are compared and a machine-learning pipeline proposed. The results show that the

pipeline enables robust estimations of the performance limits in environments with varying

compute resource availability or changes in control traffic patterns.

The third challenge is the user- and application-aware resource allocation through the

abstraction layer. The problem is divided in first, how to define application- and user-awareness

as part of the abstraction layer, second, how to determine shares of network resources based

on the needs of the applications and third, how to allocate the shares of network resources

in hybrid networks. To this end, the abstraction layer is adapted to include applications

and their requirements into the hybrid network abstraction. Measurements, application key

performance indicators and user experience models are then combined to derive application-

and user-aware utility functions. A mixed-integer linear program is formulated to calculate the

fair shares of the available capacity per application using the utility functions and enforced via

programmable pacers close to the applications. The results show an improved and predictable

application behavior in scenarios where over-utilized links restrict the available throughput.

Furthermore, the proposed approach can be implemented using only the management primitives

the abstraction layer offers for hybrid networks.

Kurzfassung

Computernetze sind ein integraler Bestandteil im Arbeitsumfeld, von der automatischen Erfas-

sung von Waren durch Sensoren, über die Bereitstellung von Diensten und Ressourcen aus einer

oder mehreren zentralen Cloudinfrastrukturen, bis hin zu Telefon- und Videokonferenzen über

Standorte hinweg. Während die Virtualisierung der Orchestrierung von Computersystemen

in den letzten Jahren viele Vorteile gebracht hat, wie einfache Wart- und Konfigurierbarkeit,

ist die Orchestrierung von größeren Netzen seit Jahrzehnten unverändert kompliziert, fehler-

anfällig und wenig flexibel. Dies liegt unter anderem an veralteten Verwaltungsprotokollen,

unterschiedlichen Implementierungen der Hersteller und in sich geschlossenen Switches und

Routern ohne Möglichkeiten der Programmierung aus der Ferne. Software-Defined Networ-

king ist ein neuer Ansatz, der Geräte und Protokolle vereinheitlichen und austauschbarer

machen soll. Hierbei werden die aktuell verteilten Steuerungsprotokolle auf den Geräten durch

einen zentralen Controller ersetzt und die Geräte dabei zu generischen und programmierbaren

Switches reduziert.

Die vorliegende Doktorarbeit beschäftigt sich mit der Umstellung von traditionellen Netzen

auf Netze mit Software-basierten Switches. Es wird eine Abstraktionsschicht entwickelt, die

die Verwaltung von Netzen mit traditionellen und Software-basierten Switches ermöglicht,

sogenannte hybride Netze. Weiterhin beschäftigt sich die Arbeit mit der Leistungsbewer-

tung dieser hybriden Netze. Die Leistungsbewertung wird auf der einen Seite mittels der

Warteschlangentheorie für das Gesamtnetz durchgeführt und auf der anderen Seite durch ma-

schinelles Lernen auf eine Instanz der Abstraktionsschicht während des Betriebs. Zusätzlich

stellt die vorliegende Arbeit eine Erweiterung der Abstraktionsschicht in Richtung benutzer-

und anwendungsorientierter fairer Ressourcenzuteiltung vor. Die Erweiterung ermöglicht es

der Netzorchestrierung Ressourcen je nach Bedarf an Anwendungen zuzuteilen um jedem

Netzteilnehmer eine zufriedenstellende Benutzererfahrung mit dem Netz zu ermöglichen. Die

Ergebnisse der Doktorarbeit erweitern den aktuellen Stand der Technik der Verwaltung von

hybriden Netzen in drei Richtungen.

Erstens wird eine programmierte Abstraktionsschicht vorgestellt, die in dieser Form bisher

nicht existierte. Die programmierbare Abstraktionsschicht erlaubt die Verwaltung von hybriden

vii

Netzen durch übergeordnete Netzanwendungen. Dabei wird die übliche abstrakte Netzstruktur

um die inneren Komponenten der Geräte erweitert. Dies bezieht sich im Besonderen auf die

Komponenten zur Dienstgüte, die bisher für Netzanwendungen nicht erkennbar waren und

deren Konfiguration bisher menschlichen Eingriff benötigt haben. Erste Versuche mit der

Abstraktionsschicht zeigen, dass diese Netzanwendungen erweiterte Eingriffsmöglichkeiten

bereitstellen kann, Fehler bei der Konfiguration vermeiden kann und Unterbrechungen der

datenübertragenden Netzschicht minimieren kann.

Zweitens wird eine Leistungsbewertung hybrider Netze und der Abstraktionsschicht durch-

geführt, die es erlaubt hybride Netzarchitekturen zu bewerten. Die Ergebnisse zeigen hier

auf, dass schon eine geringe Anzahl an traditionellen Geräten die Gesamtleistung des Netzes

hinsichtlich der möglichen Konfigurationsrate erheblich einschränken können. Weiterhin wird

eine Metrik entwickelt, die es ermöglicht das Potential einer Netzarchitektur bezüglich ihrer

Eignung zur Migration auf Software-basierte Geräte zu bewerten. Basierend auf den Erkennt-

nissen müssen viele der bisher für Software-basierte Netze entwickelten Einsatzszenarien, die

auf eine hohe Konfigurationsrate ausgelegt sind, für hybride Netze auf ihre Machbarkeit ge-

prüft werden. Weiterhin wird eine mehrstufige Pipeline für das maschinelle Lernen entwickelt,

welche es ermöglicht die maximale Leistung einer Instanz der Abstraktionsschicht im Betrieb

abzuschätzen. Zusätzlich wird hier ein Verfahren entwickelt, das Ressourcenschwankungen

des zugrundeliegenden virtuellen Systems erkennt und gegebenenfalls die Abschätzung kor-

rigiert. Die Ergebnisse zeigen, dass das entwickelte Verfahren genaue Abschätzungen der

Leistung auf eine Vielzahl von virtuellen Systemen und für verschiedene Instanzen der Ab-

straktionsschicht ermöglicht. Weiterhin werden Ressourcenschwankungen zuverlässig erkannt

und die Abschätzung zügig korrigiert.

Drittens wird das Problem der fairen Ressourcenverteilung durch die Abstraktionsschicht

in hybriden Netzen als Optimierungsproblem mit anwendungsspezifischen Kosten-/Nutzen-

funktionen formuliert und die Vorteile gegenüber herkömmlichen Netzen untersucht. Dabei

werden auch verschiedene Einsatzszenarien der untersuchten Anwendungen berücksichtigt

und basierend auf existierenden Benutzerstudien modelliert. Die Ergebnisse zeigen, dass der

vorgeschlagene Ansatz die Benutzererfahrung mit den Anwendungen erheblich steigern kann

und eine faire Verteilung der vorhandenen Netzressourcen erlaubt.

Contents

1 Introduction 1

1.1 Research Challenges . 3

1.2 Contributions . 5

1.3 Thesis Outline . 9

2 The State of the Art from the Migration to the Operation of Hybrid Networks 13

2.1 Software-Defined Networking Overview . 13

2.2 Evolution of SDN Towards Abstraction Layers 14

2.3 SDN/QoS Technical Implementation . 16

2.4 QoS Configuration in Traditional Networking and SDN 17

2.5 Migration Strategies . 18

2.5.1 Tunnels Through The Traditional Networking Domain 19

2.5.2 Combining Distributed and Central Routing 19

2.5.3 SDN Hardware Abstraction Layers for Traditional Devices 21

2.5.4 Discussion . 22

2.6 Operating Hybrid Networks . 22

2.6.1 Interfacing Traditional NMSs and Network Controllers 23

2.6.2 Replacement Order of Traditional Switches 23

2.6.3 Security . 24

2.6.4 Migration of Traditional Device Configuration to SDN 24

2.6.5 Failure Recovery and Convergence Time 24

2.6.6 IP Traffic Matrix Estimation . 24

2.6.7 Traffic Engineering . 25

2.6.8 Miscellaneous . 26

2.7 Summary . 26

3 Measuring Flexibility and the Impact of Configurations 29

3.1 Measuring Flexibility . 31

3.1.1 Testbed Set-up . 32

i

ii Contents

3.1.2 Results . 32

3.2 Reconfiguration Impact on the Data-Plane 35

3.3 Impact of Policing on Transport Layer . 36

3.4 Impact of Policing on Application Layer . 38

3.5 Discussion . 40

4 Design of an NSAL for Partially Deployed Software-Defined Networks 43

4.1 Design Challenges and Problem Definition 44

4.1.1 C2.1: Different Control and Management Data-Models 45

4.1.2 C2.2: Level of Abstraction . 46

4.1.3 C2.3: Different Reconfiguration Delays 46

4.1.4 C2.4: Non-inferable Reconfiguration Side-Effects 46

4.1.5 C2.5: Monitoring of Heterogeneous Devices 47

4.1.6 C2.6: Performance and Reliability 47

4.2 Background . 48

4.3 Proposed Design . 49

4.3.1 Architecture . 50

4.3.2 Design Trade-offs . 51

4.3.3 On-Demand and Long-Term Monitoring 52

4.3.4 Extended Graph and Device Models 53

4.4 Task Composition and Overall Timing Estimation 56

4.5 Use Cases and Prototype Evaluation . 57

4.5.1 UC1: VLAN Tunneling / Panopticon 57

4.5.2 UC2: QoS Discovery and On-demand Monitoring 59

4.6 Summary and Discussion . 62

5 Theoretical Performance Limits of an NSAL for Hybrid Networks 63

5.1 Challenges and Problem Definition . 64

5.1.1 C3.1: Determining Maximum Global Reconfiguration Rate 65

5.1.2 C3.2: Quantifying Benefit of SDN Upgrade for a Network 65

5.1.3 C3.3: Quantifying Average Benefit for Real-World Topologies 66

5.2 Background . 66

5.3 System Model . 67

5.3.1 Network Realizations . 69

5.3.2 Feasibility of Reconfiguration Rates 70

5.4 Potential P . 73

5.5 Topology Investigation . 73

Contents iii

5.6 Summary and Discussion . 76

6 Performance Modeling of a Software-Based NSAL at Runtime 79

6.1 Challenges and Problem Definition . 81

6.1.1 C5.1: Accuracy of the NSAL Performance Model 81

6.1.2 C5.2: Training of the Model at Run-time 81

6.1.3 C5.3: Detecting Concept Drift and Refreshing the Model 82

6.2 Background . 82

6.3 System Model . 84

6.4 The hvbench Load Generator . 85

6.5 Performance Model . 87

6.5.1 Model Candidates and Online Fitting Method 88

6.5.2 Testbed Configurations . 89

6.5.3 Model Accuracy and Convergence Time 90

6.5.4 Over- and Underestimation . 90

6.5.5 Model Selection . 92

6.6 Proposed Learning Pipeline . 93

6.6.1 Gradual Adaptation and Sample Weighting Function 95

6.6.2 Extended Performance Model . 95

6.7 Evaluation Methodology . 96

6.7.1 Experimental Set-up . 97

6.7.2 Budget Estimation Error . 98

6.7.3 Load Generation Process . 98

6.8 Evaluation . 98

6.8.1 Budget Estimation Error without ∆R-Detection 99

6.8.2 Convergence Time after ∆R-Detection 100

6.8.3 Extended Performance Model . 103

6.9 Summary and Deployment Guidelines . 104

6.9.1 Summary . 104

6.9.2 Deployment Guidelines . 105

7 Application-Aware Resource Allocation through the NSAL 107

7.1 Challenges and Problem Definition . 110

7.1.1 C7.1: Defining User-Level Resource Shares 110

7.1.2 C7.2: Determining Resource Shares under Resource Constraints . . . 110

7.1.3 C7.3: Allocating Resource Shares in the Network 111

7.2 Background . 112

iv Contents

7.3 Extensions to the NSAL Abstraction . 115

7.4 Utility Function Definition . 116

7.4.1 Applications, Intents and KPIs . 117

7.4.2 Utility from KPIs . 119

7.4.3 Utility Functions . 121

7.5 User-Level Resource Allocation Formulation 124

7.5.1 Notation . 125

7.5.2 Objective . 125

7.5.3 Utility Selection Constraints . 127

7.5.4 Routing Constraints . 128

7.5.5 Capacity Constraints . 129

7.5.6 Delay Constraints . 129

7.5.7 Problem Complexity and Possible Solving Strategies 132

7.6 Experiment Design and Set-up . 133

7.6.1 Experiment Set-up . 133

7.6.2 Pacing Implementation . 135

7.6.3 Parameter Space and Experiment Procedure 135

7.7 Evaluation . 136

7.7.1 Best Effort Throughput and Utility Distribution 137

7.7.2 Managed Utility Distribution . 138

7.7.3 Link QoS and VoIP Performance Details 140

7.7.4 Increasing Number of Applications 141

7.7.5 Video Streaming Performance Details 144

7.7.6 QoE Fairness . 145

7.7.7 Summary . 148

7.8 Conclusion . 148

8 Conclusions and Outlook 151

8.1 Summary and Discussion . 152

8.2 Future Work . 154

Bibliography 155

Acronyms 175

List of Figures 179

List of Tables 183

Chapter 1

Introduction

Modern society increasingly depends on local- and wide-area networks. Emerging trends

and technologies such as the Internet of Things, Cyber Physical Networks or 5G will further

reinforce this dependency and bring connectivity to everything, from refrigerators and traffic

lights, to production lines. Sufficient capacity, low latency, flexibility and dependability are

not nice-to-have anymore, but have to be an inherent part of every network’s design. At the

same time network operators have to be cost-efficient. Networks should operate autonomously,

hence requiring minimal human intervention, available capacity should be fully utilized and

new use cases be implemented without replacing existing devices or having to buy new ones.

Traditional forwarding devices are composed of three high-level parts, also referred to as

planes. The data-plane is responsible for fast processing and forwarding of packets according

to simple rules. It is commonly implemented as an Application-Specific Integrated Circuit

(ASIC) to achieve the required high packet processing rates close to the rate of the underlying

physical interface, e.g., typically 1 Gbps to 40 Gbps over copper-based wires. The control-

plane sits on top of the data-plane and generates the forwarding rules which are pushed to the

ASIC. It is commonly a piece of software running on a Central Processing Unit (CPU) inside the

device. The forwarding rules for the ASIC are derived based on forwarding graphs generated

by distributed routing algorithms such as Open Shortest Path Forwarding (OSPF) or Border

Gateway Protocol (BGP). The third part is the management-plane. The management-plane

is responsible for configuration, maintenance and monitoring of the devices. The network

operator can use the management interfaces provided by the devices, e.g., Command Line

Interface (CLI) or Hypertext Transfer Protocol (HTTP)-based interfaces, to configure the

different components and algorithms of the device. For example, the operator may use them

to configure the parameters of the routing algorithms, Virtual Local Area Networks (VLANs)

or power saving options.

1

2 Chapter 1. Introduction

Network management is still heavily human-centered with minor autonomous behavior.

The root cases are manifold. There exist no established management data-models and no

programmatic access to the devices. Furthermore, vendors implement custom CLIs and data-

models, often resulting in vendor lockin where network operators find themselves compelled

to buy all their required network hardware from the same vendor. As a result of this complexity

of data-models, protocols and interfaces, network management depends on domain experts,

studying of complex handbooks and frequent manual configuration. Network Management

Systems (NMSs) offer some support, but are often not extensible, do not offer interfaces to

network control applications and still require human interaction to write device-specific code

snippets for configuration actions. In the end, this leads to a high vulnerability to network

failures of traditional networks. Surveys account the human factor for a large percentage

of network outages, as a symptom of an overwhelming complexity of the system. A study

accounts configuration errors by humans for 50 % to 80 % of network outages [98]. Another

comprehensive data-center study by a big cloud provider shows that, although networks are

designed and configured to provide a high level of redundancy, configuration errors can still

lead to dramatic network outages [72].

Software-Defined Networking (SDN) is a paradigm shift which disaggregates the forward-

ing devices by moving the control-plane away from the devices and into a logically centralized

entity, referred to as SDN- or network controller [61, 104]. The network controller then

adds and modifies forwarding rules on the devices through an open interface based on its

global view of its network domain. As a result, the devices are reduced to simple rule-based

forwarding devices with no internal control-logic. As of today, production SDN networks

can only be found in data-centers and wide-area networks of the largest Internet companies.

Research and the experience of those companies show that SDN enables fast adaptation to

changes in the network. Furthermore, the ability to quickly add and modify rules increases

network utilization of data-center and wide-area networks [92].

Thanks to their size, the largest Internet companies can migrate whole networks and

data-centers to SDN at once. Furthermore, they are less dependent on the hardware vendors,

as their size allows them to develop and manufacture SDN-capable forwarding devices

according to their own specifications [178]. But, other network operators are forced by

techno-economical constraints to deploy SDN incrementally. The incremental migration from

traditional networking to SDNs and the operation of such partially deployed hybrid networks

bring their own sets of challenges. The doctoral thesis at hand investigates five challenges in

the research area of SDN migration and operation of such intermediate hybrid networks.

1.1. Research Challenges 3

1.1 Research Challenges

The following section gives an overview over the research challenges tackled in this thesis.

The challenges revolve around the design and performance modeling of an Network Services

Abstraction Layer (NSAL) for partially deployed SDNs with awareness for the applications

in the network. An NSAL abstracts hardware and implementations details of the deployed

network components and translates abstract control decisions to device-specific configurations.

The term NSAL is part of the terminology introduced in RFC7426 [RFC7426]. RFC7426

introduces the idea of an NSAL for hybrid networks which allows control applications on top

of the abstraction layer, such as network orchestration systems, to reconfigure heterogeneous

networks through a unified interface.

The challenges arise from two basic issues with hybrid networks. First, the heterogeneity

of the devices. Traditional devices were not designed with interoperability or predictable

reconfiguration performance in mind. This is a problem when moving from infrequent per-

device reconfigurations to frequent centralized control decisions. Furthermore, the difference

of the devices regarding Quality of Service (QoS) features makes it challenging to implement

application-aware resource allocation in the network. Second, the necessity of the NSAL as

intermediate layer between control applications and the devices. The reactivity of the network

control depends thus not only on the devices but also on the control message processing and

translating performance of the NSAL. Next, the challenges are introduced in detail.

C1: Quantifying Flexibility and the Interplay with the Data-Plane

The NSAL is a layer between the network and the control applications. It depends, in terms of

ability to reconfigure and performance it can offer to the control applications, on the deployed

devices and mechanisms in the network. The first challenge is therefore determining and

quantifying relevant influence factors on the design and flexibility of the NSAL. To this end,

measurement procedures have to be developed. The measurements procedures have to be able

to record the timings of reconfigurations and show the interplay of reconfigurations with the

data-plane for a range of forwarding devices. Of particular interest are here devices suitable

for incremental SDN deployment strategies, mechanisms for in-network resource allocation

and the impact of data-plane impairments on higher layers, e.g., the impact on the transport

and application layer. The hereby gained measurement results serve as a foundation for the

design and performance modeling of the NSAL as described in the subsequent challenges.

C2: Design of an Abstraction Layer for Partially Deployed Software-Defined Networks

The second challenge is the actual design of the NSAL for hybrid networks. The requirements

to the design are manifold. First, a common abstraction for the control- and management-plane

4 Chapter 1. Introduction

has to be found, including QoS-configuration abstraction which requires interaction with both

planes. This is challenging as traditional and SDN devices are conceptually different and

supported QoS mechanisms differ between devices. Second, the influence factors determined

by C1 have to be considered. Third, potential design trade-offs have to be analyzed and

deployment guidelines derived from the analyses. Forth, an architecture has to be devised

which provides the abstraction to control applications through a programmable interface.

Performance Modeling, Analytical (C3) and Learning-based (C4)

Network management is mostly proactive and static in traditional deployments. A new network

is set-up, configured and tested and afterwards the configuration stays unchanged for months.

In contrast to that, SDN and OpenFlow provide new possibilities. The logically centralized

view and a fast binary protocol facilitate reactive network management ideas where the

configuration is changed upon specific events such as link failures, a sudden rise in traffic

volume or even the arrival of specific network packets. Therefore, it can be expected that the

number of reconfigurations considerably increases in modern SDN-enabled networks. For

partial deployments this can be expected as well, as a network operator will want to profit

from the investment in SDN devices even if not all devices in the network are replaced.

Therefore, the performance of the NSAL is critical for the operation of a hybrid network.

An overloaded NSAL increases reconfiguration delay for control applications and can not

react fast enough to events in the network. Hence, the third and forth challenge is the

performance modeling of the NSAL from two research directions. An accurate performance

model can be used on the one side for system dimensioning (offline) and on the other side for

capacity estimation (online). Furthermore, an accurate performance model allows to assess

the feasibility of control use cases based on their frequency of reconfigurations.

In detail, the third challenge (C3) tackled in this thesis is the analytical modeling of the

NSAL for system dimensioning in terms of flexibility. The measurements in Chapter 3 will

show a significant difference between traditional and SDN devices regarding their maximum

reconfiguration rate. Hence, the NSAL’s reconfiguration rate depends, among other factors,

on the current state of SDN migration. An analytical model has to be found which allows to

assess the feasibility of reconfiguration work-loads in partially migrated SDNs.

When moving in the direction of real-world deployments, the performance of a software-

based NSAL executed on a shared computing system with varying workloads is complex to

model in detail. Machine-learning can help to create a model at runtime based on monitoring

samples. The forth challenge (C4) is therefore the learning-based performance modeling of

NSAL instances at runtime for capacity estimation. Mechanisms and procedures have to be

1.2. Contributions 5

developed which can cope with noise in the samples, adapt to the execution environment at

hand and still guarantee accurate estimations.

C5: Application- and User-Aware Resource Allocation through the NSAL

The measurements regarding data-plane impairments and user-awareness in this thesis will

show how critical a loss-free transport of application data is. Interruptions due to reconfigura-

tions, link over-utilization or forceful packet loss by traffic policing, can severely impact the

applications and users relying on the network. Hence, resource allocation has to be an integral

part of every NSAL design. Therefore challenge C5 concerns itself with the integration of

application-aware resource allocation into the proposed NSAL.

In detail, the challenge encompasses the following questions: First, how to integrate

applications as part of the NSAL abstraction in order to make them accessible for control

applications? Second, how to determine a resource allocation which is application-aware?

This includes deriving a relationship between network resources, application Key Performance

Indicator (KPI)s and the users’ Quality of Experience (QoE). Third, how to allocate the

resources for each application in the hybrid network through the NSAL, considering the

heterogeneous nature of the devices and only partial SDN-deployment?

1.2 Contributions

The following section highlights the contributions to the respective research areas.

Measurements of Flexibility and Interference [9, 12, 15, 16]

The first contribution concerns itself with measurements of the interference of management

actions on the data-plane, transport-level and application-level. In particular, the measurements

target the following questions: How often can a device be reconfigured? How long does it

take until the change is measurable on the data-plane? Are there any side-effects during the

reconfiguration, such as lost packets? Furthermore, the measurements take a closer look at

how the configuration of policing disrupts the data-plane and higher-layer applications, such

as video streaming clients.

[15] presents the measurement results regarding reconfiguration times of SDN and tra-

ditional devices. The measurements show that the investigated traditional devices are not

designed for fast reconfigurations and management actions are processed for several hundred

milliseconds before being applied to the data-plane. SDN-capable devices on the other hand

show sub-millisecond reconfiguration times. [12] takes a closer look at interruptions as a

consequence of management actions. The results show that the investigated SDN-capable

devices exhibit no data-plane interruptions during reconfiguration of the forwarding rules. For

6 Chapter 1. Introduction

the traditional devices, the measurements focus on VLAN reconfiguration, as VLAN tunnels

are an integral part of a popular SDN migration strategy. Here the results show that changing

the VLAN configuration can trigger reboots of the forwarding device’s interface. The reboot

results in data-plane interruptions of about 6 s.

[9] and [16] concern themselves with the effects of policing on the data-plane, transport-

level and application-level. The results show that policing has a negative effect on both

transport- and application-level. On transport-level, policing results in lost packets due to

the interaction between Transmission Control Protocol (TCP) congestion control and policing

dropping excess packets. On application-level, policing results in fluctuating throughput. This

is challenging for applications which adapt their behavior to the available throughput, such as

video streaming clients.

NSAL Design, Challenges and Trade-Offs [10, 12]

The concept of a NSAL is defined in [RFC7426] and enables the evolution of network control

and network management towards holistic programmable network control. As of writing, there

does not exist a design for such an NSAL for partially deployed SDN networks. In a first step,

[10] demonstrates abstractions for QoS which allow, with the help of a traditional NMS, to

configure QoS in hybrid networks. [12] then proposes a complete design for a programmable

NSAL for SDN and traditional networks. Furthermore, the paper discusses challenges and

trade-offs which influence the design. A Domain Specific Language (DSL) is introduced and

its effectiveness for QoS use cases in hybrid networks evaluated. The results show that, with

the help of the proposed NSAL, data-plane interruptions can be minimized by combining

knowledge from the control- and management-plane.

Offline Performance Modeling: Feasibility of Reconfiguration Rates [12, 15]

The measurements in [12, 15] show a difference in reconfiguration times of traditional and SDN

devices. Hence, traditional devices with slow reconfiguration times can slow down network

control applications. In [15], the impact of traditional devices on the global reconfiguration

rate is investigated in detail using queuing theory and a set of real-world topologies. In the

paper, the NSAL is modeled as a M/D/1 system for different stages of the incremental SDN

migration process. The results show that even a small number of traditional devices can

severely impact the global reconfiguration rate. As a consequence, the feasibility of common

SDN use cases, such as real-time load-balancing, have to be re-evaluated for hybrid networks.

Online Performance Modeling: Learning of Performance Limits [11, 13, 18]

The performance of software processes executed on CPUs is generally influenced by, among

others, the hardware platform, the CPU scheduler and co-location of other processes. Software-

1.2. Contributions 7

based NSALs are no exception. An overloaded NSAL increases the control latency and slows

down the propagation of important notifications from the forwarding devices to high-layer

control applications. Therefore, it is important to better understand the performance of NSALs

in dynamic environments. [13] presents the design and implementation of a scalable NSAL

load generator. By emulating distributed control applications with flexible request generators,

the generator is able to induce a specified target utilization at the NSAL. Furthermore, the

flexible request generators allow to generate realistic control traffic following Poisson arrival

processes. [11] introduces models for the performance of NSALs. Different models are

compared and evaluated on different hardware and virtualization platforms. As a result, a

model is proposed which can explain the performance of a software NSAL instance with a

small margin of error. The benchmark and results of [11, 13] are combined in [18] to train

the performance models at runtime. Furthermore, through the use of outlier detection using

Support Vector Machines (SVMs), concept drifts in the model are detected and the model

is refreshed. The whole training process is specified in a parameterized machine learning

pipeline. The results show that the pipeline is able to estimate the performance of an NSAL

accurately from measurements at runtime. Additionally, changes to the underlying hardware

platform are detected in a timely manner and the model is refreshed fast.

Application-Awareness [1, 6–8, 20, 17]

The studies [1, 6–8, 20, 17] contribute to the research area of application-awareness. In

detail, they take a close look at the main driving force behind the increasing global Internet

traffic: Video streaming [170]. On the one side, the studies measure, model and optimize the

interaction between network parameters, e.g., throughput and packet loss, on the KPIs of video

streaming [6, 7]. On the other side, the studies propose and compare novel video encoding and

quality adaptation mechanisms [1, 8, 20, 17] to optimize the interplay between network and

application. The results show that even global-scale video platforms can still improve their

adaptation to the network and that the frequency of adaptation decisions can be reduced with

minimal loss in video quality [6]. The proposed mechanisms for encoding improvements and

quality adaptation show that variable bit-rate encoding can reduce the required throughput of

video streaming [8] and that machine learning [20] and scalable video encoding [17] can help

to cope better with variations in the available throughput.

User-Awareness [4, 5, 2, 19]

User-awareness considers the relationship between the technical KPIs of a system, e.g., video

quality in video streaming, and the experience of the user, denoted as the QoE. The studies

[4, 5, 2, 19] contribute to this area of research by developing, conducting and evaluating

user-experience studies to better understand video streaming as the main contributor to the

8 Chapter 1. Introduction

global Internet traffic. The results show that the average video quality, the duration on each

quality level and the quality level switching frequency and amplitude are the strongest influence

factors on the user’s QoE for video streaming. In the context of this work, the findings enable

a mapping of application KPIs to the experience of the user and through this enable an

application- and user-aware resource allocation.

Application- and User-Aware (Fair) Resource Allocation [3]

This contribution revolves around the extension of the NSAL with application- and user-aware

resource allocation. The contribution can be divided in three parts. First, the definition of

user-awareness which requires subjective QoE studies. Second, the step from user-awareness

to application-awareness in terms of application KPIs and QoS requirements. Third, the

allocation of the resources in the network based on the QoS requirements. The mapping from

network parameter to and from KPIs towards user experience is combined in [3] to design an

application- and user-aware resource allocation schema for the NSAL. First, utility functions

are derived from application KPIs and user experience models. Through the utility functions

and a Mixed-Integer Linear Program (MILP) formulation, fair shares of the available capacity

are calculated per application and enforced via pacing at the end-hosts. The results show

that in this way available network resources can be used efficiently and the performance of

the applications in the network becomes predictable even in scenarios where the network is

overutilized. In terms of user-experience, almost all investigated application classes exhibit

an improvement in the eyes of the user.

Forwarding Devices based on Commodity Hardware [57, 14, P-NAII]

Along-side the paradigm shift for cost-efficient networking through SDN, network operators

aim to deploy cheap commodity hardware for packet forwarding and processing, instead

of expensive ASICs. The paper [14] and the patent application [P-NAII] investigate the

performance of modern off-the-shelf compute platforms with respect to the packet forwarding.

In particular, caching and architectural penalties are quantified and a novel optimization scheme

for platforms with segregated memory architectures outlined. The paper [57] investigates

this topic further and proposes a novel CPU cache allocation algorithm for co-located packet

processing functions. The results highlight the possible fluctuations in performance when

using commodity platforms for packet forwarding. This can have negative consequences on

the NSALs, as traditional and SDN-enabled switches usually provide predictable forwarding

performance. Future work has to investigate this issue further and define interfaces between

the server orchestration and the NSALs. Responsibilities have to be divided and algorithms

found to combine the areas of compute and packet forwarding.

1.3. Thesis Outline 9

1.3 Thesis Outline

Next, the outline of the thesis is presented.

Chapter 2, The State of the Art from the Migration to the Operation of Hybrid Networks, first

gives an overview over the principles of SDN. Second, it discusses the evolution of SDN

from simple network controllers for experimental network environments towards complex and

programmable NSALs. Third, the chapter elaborates on the relevant technical details of SDN.

In particular, the popular OpenFlow protocol is discussed and details on the configuration of

QoS on traditional and SDN-enabled devices is given. Afterwards, the chapter discusses the

state of the art of incremental migration strategies and of the operation of partially deployed

SDN networks. The chapter concludes with a short summary and an outlook on the general

challenges tackled in this thesis.

Chapter 3, Measuring Flexibility and the Impact of Configurations, presents the measurement

results regarding the flexibility of traditional and SDN-enabled devices. Flexibility is defined

and quantified here in terms of the reconfiguration timings of the devices. The focus is on

VLAN tagging, a popular technique for migration strategies due to its wide-spread availability

on traditional devices. Three different traditional devices and four SDN-capable devices are

evaluated. Furthermore, the chapter conducts measurements to investigate possible negative

impacts of the reconfigurations on the data-plane. First, VLAN tagging is evaluated while

monitoring the data-plane. Second, the impact of traffic policing as mechanism for QoS is

investigated on the transport-level (TCP) and on the application-level at the example of a video

streaming use case.

Chapter 4, Design of an NSAL for Partially Deployed Software-Defined Networks, introduces

the proposed NSAL and evaluates the design based on a proof-of-concept implementation

using a migration strategy based on VLAN tunnels. At first, the chapter discusses the design

challenges, how the challenges influence the proposed design and which trade-offs are the result

of conflicting design objectives. Afterwards, the chapter discusses how reconfigurations could

be combined and how the combined reconfiguration time and possible data-plane impairments

can be minimized through the NSAL. The NSAL is then evaluated by two migration use cases,

one with QoS settings, and the chapter is concluded with a summary and discussion.

Chapter 5, Theoretical Performance Limits of an NSAL for Hybrid Networks, models the

proposed NSAL as a queuing system and investigates the theoretical performance limits of

the rate of reconfigurations. At first, the system model is introduced and the feasibility of

reconfiguration rates defined. The system model shows that the feasibility of a rate depends on

the topology and on the stage in the SDN deployment process. Afterwards, the potential P is

10 Chapter 1. Introduction

proposed, a metric describing the expected gain in terms of reconfiguration rate for a topology

independent of the deployment stage. Then, the gain and potential P of a large collection of

real-world topologies is evaluated. The chapter concludes with a summary and discussion

about the impact of the results on migration planning.

Chapter 6, Performance Modeling of a Software-Based NSAL at Runtime, proposes a machine-

learning pipeline for the online training of performance models which describe the runtime

behavior of programmable NSALs. With the performance models, the maximum reconfigura-

tion rate of a specific software instance can be estimated. At first, three different performance

models are proposed and the errors of the models evaluated with measurements in static

scenarios on different hardware platforms. Afterwards, a machine learning pipeline based on

Orthogonal Distance Regression (ODR), sample weighting and SVM for outlier detection is

introduced. The pipeline is evaluated then in scenarios with fluctuating availability of compute

resources. The focus of the evaluation is on the estimation error and convergence time. The

chapter is concluded with a summary of the results and deployment guidelines in terms of

parameter and model selection.

Chapter 7, Application-Aware Resource Allocation through the NSAL, introduces resource

allocation with application- and user-awareness for the NSAL. First, the required extensions

to the graph-based NSAL model are described. Second, application- and user-awareness is

defined based on application KPIs and user experience models. Afterwards, utility functions are

derived from measurements which map QoS requirements in terms of guaranteed throughput

and delay to application KPIs and user QoE. Then an MILP is formulated to solve the problem

of max-min fair resource allocation for a given set of applications and utility functions. The

output of the MILP in terms of resource allocation is then implemented through the NSAL

via packet pacing at the end-hosts. An evaluation is conducted with an increasing amount

of parallel applications sharing a constrained link. The evaluation highlights the benefits in

terms of fairness between applications and predictable application performance compared to

best-effort scenarios. The chapter is concluded with a summary of the results, possible future

research directions and current shortcomings of the proposed solutions.

Chapter 8, Conclusions and Outlook, concludes this thesis by providing a short summary of

the results and contributions. Furthermore, future research directions are discussed.

1.3. Thesis Outline 11

Application-Aware Resource Allocation through the NSAL

Design of a Network Services Abstraction Layer

Measurements

Theoretical

Reconfiguration

Limits

Online Learning of

Reconfiguration Limits

User AwarenessApplication Awareness

Conclusion and Outlook

Introduction

Chapter 3

Chapter 4

Chapter 6

The State of the Art from the Migration to

the Operation of Hybrid Networks

Chapter 2

Chapter 4 Chapter 5

Software-Defined

Networking (SDN)

Software-Defined

Networking (SDN)
Evolution of SDNEvolution of SDN

Migration

Strategies

Migration

Strategies

Operating

Hybrid Networks

Operating

Hybrid Networks

ContributionsContributions OutlineOutlineChallengesChallenges

Flexibility of DevicesFlexibility of Devices … Data-Plane … Transport … Applications… Data-Plane … Transport … Applications

Design ChallengesDesign Challenges Proposed DesignProposed Design Prototype EvaluationPrototype Evaluation
Reconfiguration Tasks

Composition & Timings

Reconfiguration Tasks

Composition & Timings

The hvbench Load GeneratorThe hvbench Load Generator

Online Learning PipelineOnline Learning Pipeline

Performance ModelsPerformance Models

Evaluation

Convergence

&

Accuracy

Evaluation

Convergence

&

Accuracy
Topology SurveyTopology Survey

Potential PPotential P

Feasibility of Reconfiguration-ratesFeasibility of Reconfiguration-rates

User Experience

Models
Measurements KPIs Utility Functions

Application-Aware Resource

Allocation Formulation

Performance Evaluation

Summary and Discussion Outlook

Policing Impact on…Policing Impact on…

Performance Modelling

Application – Awareness

Abstraction Layer Design

PredictabilityGain Fairness

Chapter 2

The Long Journey of SDN: The State of

the Art from the Migration to the

Operation of Hybrid Networks

Software-Defined Networking (SDN) takes packet processing and forwarding decisions away

from the network devices and puts a logically centralized entity, the SDN controller, in charge.

This stands in contrast to traditional networking where devices make forwarding decisions

autonomously based on distributed routing protocols. SDN promises ease of management,

near real-time control, fine-grained monitoring and increased security.

But in the short-term it will not be economically feasible for most network operators to

replace all traditional switches with SDN devices. Hence, migration strategies have to be

found which, on the one side, guarantee reliable operation of the hybrid network, and on the

other side, make advanced SDN features available early during the migration process.

In the chapter at hand, we first introduce SDN in detail and compare it to traditional

networking. Afterwards, we discuss existing migration strategies from the literature. Subse-

quently, through the the shortcomings of the existing approaches, we motivate the need for

the proposed Network Services Abstraction Layer (NSAL) as a means for hybrid network

operation. We conclude this chapter with a survey over relevant literature in the area of hybrid

networking.

2.1 Software-Defined Networking Overview

Figure 2.1 highlights the key differences between traditional and SDN devices. Traditional

devices (Fig. 2.1a) combine data-plane and control-plane in one monolithic device. The

control-plane consists of distributed routing protocols such as Open Shortest Path Forwarding

13

14 Chapter 2. The State of the Art from the Migration to the Operation of Hybrid Networks

Management Plane

Network Management System (NMS)

Data-Plane

Control-Plane

SNMP NETCONF CLI

Data-Plane

Control-Plane

M

(a) Traditional Networking

Management Plane
Network Management System (NMS)

Data-Plane

SNMP NETCONF CLI

Data-Plane

SDN Protocol

(e.g., OpenFlow)

C

MControl Plane
Network Controller

(b) Software-Defined Networking

Figure 2.1: Traditional and SDN networking side-by-side. SDN moves the control-plane from the

devices to a logically centralized controller. In both cases the management-plane is responsible for

device maintenance and Quality of Service (QoS) configuration.

(OSPF) or Border Gateway Protocol (BGP) which communicate with other devices to converge

to a consistent and global view of the network domain. The forwarding rules are then derived

from the global view and pushed to the data-plane of each device. The data-plane is in charge

of processing and forwarding packets based on the rules dictated by the control plane. The

devices are managed through protocols such as NETCONF or Simple Network Management

Protocol (SNMP) or simply by custom device-dependent Command Line Interfaces (CLIs).

SDN (Fig. 2.1b) on the other hand disaggregates the forwarding devices and reduces them

to the data plane. The control plane is moved to the logically centralized SDN controller.

OpenFlow [180] is a popular protocol to connect the central controller with the data-plane

of the devices. Via OpenFlow, the controller can push match-action rules to the devices’

data-planes and request counters per rule such as sent or received packets. Furthermore, via

the two features packet_out and packet_in, the controller is able to send out packets via a

device or receive packets from the device, respectively. In SDN, device management is done by

protocols such as NETCONF, SNMP or by OF-CONF, a management protocol for OpenFlow

devices.

2.2 Evolution of SDN Towards Abstraction Layers

SDN has undergone an evolution from simple network controllers towards recent proposals of

holistic network services abstraction layers. In the following, we briefly discuss the history

and relevant recent developments of SDN. We begin with the introduction of the OpenFlow

protocol in 2008 [121]. With OpenFlow, major device vendors began to support the idea behind

SDN. There are other SDN protocols such as Forwarding and Control Element Separation

(ForCES) [RFC5810] or Protocol-Oblivious Forwarding (POF) [145], but OpenFlow is the

2.2. Evolution of SDN Towards Abstraction Layers 15

only protocol with broad vendor adoption. The interested reader is referred to [104] and [127]

for a comprehensive study of the history of SDN and alternatives to OpenFlow.

In 2008, McKeown et al. propose the OpenFlow switch specification and protocol [121]

as a means to implement and experiment with novel network protocols in campus networks,

such as routing or load-balancing algorithms, using commercial forwarding devices. The

protocol is a compromise between the vendors desire to hide the internals of their devices and

researchers’ needs to implement novel algorithms. Furthermore, it is designed to not require

any hardware changes to further motivate the device vendors to implement the protocol.

Simple Controllers, Fig. 2.2a

Shortly after, an ecosystem evolved around OpenFlow, which spawned the first simple network

controllers as depicted in Figure 2.2a. Controllers such as NOX [75], Beacon [59] and Maestro

[35] were proposed. These controllers implement OpenFlow as southbound protocol, i.e., as

controller to switch protocol, and offer some basic services such as routing, Access Control

Lists (ACLs) and load-balancing. Features such as a comprehensive northbound interfaces,

i.e., control application to controller interfaces, or the integration with Network Management

Systems (NMSs) are not part of their design.

Sophisticated Controllers, Fig. 2.2b

Driven by modern compute resource orchestration systems, e.g., OpenStack [181], which

can provide and operate large number of virtual machines, network controllers evolved into

feature-rich platforms with comprehensive Application Programming Interfaces (APIs) for

orchestration. Through them, the orchestration can exert control over routing and isolation

in terms of forwarding, security and network resource limitations for the virtual machines.

Controllers such as OpenDaylight [122] or ONOS [28] are supported by device manufactur-

ers, service providers and researchers alike. They provide features such as, among others,

high-availability, scalability, data-plane abstractions, service chaining and APIs for network

virtualization. Furthermore, they can be extended with third-party applications and internal

modules and implement multiple southbound protocols besides OpenFlow, such as NETCONF,

OF-CONF and SNMP. However, the focus of the controllers are on control and, as of now, the

management part is not yet evolved to the level of NMSs. Features such as network application

monitoring, long-term network performance monitoring and management, fault management,

configuration and change management, downtime scheduling, sophisticated reporting and

integration of other type of devices, such as sensors and access points, are generally missing

in the controllers.

Our measurements in Chapter 3 show that for a reliable network operation a tighter coupling

between network controllers and NMSs is necessary. The measurements highlight in particular

16 Chapter 2. The State of the Art from the Migration to the Operation of Hybrid Networks

Network

Controller

Forwarding

Module

NMS

S

S S

S

C M C M

C M

Configuration

Inventory

Services

(a) Simple Controller

Network Controller

Slicing

NMS

Routing ACL

Orchestration

S

S S

S

C M C M

C M

Open Interface / Programmable

M

Configuration

Basic

Management

QoS

Inventory

Services

(b) Sophisticated Controller

Network Services Abstraction Layer

Open Interface / Programmable

C M

Orchestration

Slicing

Routing ACL Configuration

Management

QoS

Inventory

Services

Control

Hybrid

Networking

S

S L

L

C M M

(c) NSAL [RFC7426]

Figure 2.2: Evolution of SDN from simple controllers primarily used in all-SDN (S) experimental

deployments to holistic abstraction layers for hybrid networks (S / L). The NSALs integrate south-

bound control and management into one entity and provide an open and programmable northbound

interface for higher-level resource orchestration systems.

that management actions, such as Virtual Local Area Network (VLAN) or QoS configuration,

can interrupt the data-plane and have to be considered also by the network controller.

Network Services Abstraction Layers, Fig. 2.2c

NSALs bridge the gap between control and management by introducing a third layer which

encompasses the functionality of control and management. The NSAL abstracts the data-

plane, control-plane and management-plane and provides a unified interface for northbound

applications such as orchestration systems. That way, the NSAL can not only be aware of the

data-plane and the control-plane, but also of the management plane. For example, changes to

the devices, such as scheduled downtimes, can be coordinated and links drained beforehand

to ensure uninterrupted network operation.

2.3 SDN/QoS Technical Implementation

In the following, we discuss relevant details of the implementation of forwarding devices in

general and OpenFlow-enabled devices in particular. If not otherwise stated, the information

provided refers to OpenFlow version 1.4. OpenFlow provides a standardized interface to the

forwarding plane. In a nut-shell, you are able to directly manipulate the forwarding rules

of the device by adding, changing and deleting rules from one or more flow tables. In the

remainder of this paragraph we illustrate the OpenFlow mechanisms by describing the path of

the packets through the device. For the sake of simplicity, some more complex mechanisms

of the OpenFlow protocol are left out.

Figure 2.3a illustrates the abstract architecture of an OpenFlow-enabled forwarding device.

First, the packets are received on one of the physical ports. A physical port is always associated

2.4. QoS Configuration in Traditional Networking and SDN 17

Network Controller

OpenFlow Agent

Network

Processor

SWITCH OS CPU

Management Interface

Network

Management System

ASIC

Flow

Table

C M

(a) OpenFlow Device Architecture

Network Controller
Network

Management System

ASIC

Flow

Table

Queues

Scheduler

C M

Input

Interface

Packet steering
Scheduling

Configuration

(b) Technical QoS Details

Figure 2.3: Technical details to the implementation of SDN on forwarding devices. Figure (a) illustrates

the general architecture of an SDN-enabled forwarding device. Figure (b) highlights the issue with QoS

configuration of such devices. Both entities, the network controller and the NMS, have to be involved

to configure scheduling on current SDN-enabled forwarding devices.

with a logical switch and therefore the packets get delegated to a specific logical switch. In

the logical switch, there are one or more flow tables. Each rule in the flow table is composed

of one or more match fields, of one or more actions and one instruction to take when a packet

matches the match fields. If none of the rules match in that first flow table, the packets are either

dropped or send through the control channel to the controller. Instructions enable to further

customize the processing of the packets in the logical switch in the case of a packet match,

e.g. adding or removing headers, such as the VLAN header. At the end of the processing,

each packet should include one Output action specifying the target interface or otherwise the

packet is dropped.

2.4 QoS Configuration in Traditional Networking and SDN

There are four basic types of QoS options when processing packets and flows. First, polic-

ing/metering where packets are dropped if they exceed a specific maximal rate. Second,

shaping or pacing where packets exceeding a specific rate are delayed, i.e. stored in a buffer

and released at later time. Third, scheduling where packets are put into queues and released

by a scheduling strategy, e.g., Weighted Fair Queuing (WFQ). Furthermore, there are tail

dropping strategies, e.g., Random Early Drop (RED), which discard already queued packets.

In traditional networks, the QoS configuration is generally done by an human expert

or by an NMS through the devices’ management interfaces. Packets are steered into the

queues or policer elements based on rules and header fields such as the VLAN header or

the Multiprotocol Label Switching (MPLS) tag. The main problem of QoS configuration in

18 Chapter 2. The State of the Art from the Migration to the Operation of Hybrid Networks

S

S
L

S

S

Network

Controller

Legacy

Tunnel

C

(a) Tunnels via Traditional Mecha-

nisms

S

S
L

S

S

HAL

Management

Protocol

M

Network

Controller

C

C

(b) Traditional-to-SDN HAL

S

S
L

S

S

(Fake)

Routing

Messages

Network

Controller

Routing Module

C

(c) (Fake) Routing Messages

Figure 2.4: Three common incremental migration strategies found in the literature.

traditional networks is the fact there is no unified management data model for QoS across

devices and vendors. There is no standardized way to determine the number and size of queues,

the available scheduling strategies or policing options. Often the only way to determine the

available options is to study the manual or rely on human domain experts.

In SDN, the packet steering and QoS configuration are independent of each other as

depicted in Figure 2.3b. E.g., in the case of OpenFlow, you can define an action for a packet

to put it into a specific queue. However, which scheduling strategy is deployed to process

the queue can not be defined that way. The scheduling strategy has to be defined beforehand

through a management interface. Metering on the other hand is an optional extension of the

OpenFlow protocol itself (not depicted in Fig.2.3b). Meters, which limit the maximal rate of

a flow, can be added, modified or removed through OpenFlow. Hence, SDN introduces the

problem of divided responsibility in terms of QoS configuration. Both entities, the network

controller and the NMS, have to be coordinated to implement a queuing QoS strategy in the

network.

2.5 Migration Strategies

A short-term replacement of all traditional devices with SDN-enabled devices is not an option

for most network operators. Economical and operational reasons restrict the number of devices

which can be replaced over time. Hence, incremental deployment strategies have to be found.

Next we discuss the three main incremental migration strategies found in the literature: a)

configuring tunnels through the traditional domain, b) implementation of traditional Hardware

Abstraction Layers (HALs), and c) combining central and distributed routing by (fake) routing

protocol messages emitted by the SDN devices.

2.5. Migration Strategies 19

2.5.1 Tunnels Through The Traditional Networking Domain

Figure 2.4a illustrates the tunnel-based migration strategy. Here traditional devices are pre-

configured, e.g., by an NMS, to forward traffic between the SDN devices. Hence, the network

controller is unaware of the traditional devices and they are seen by the controller as links.

The resulting hybrid SDN network can be operated in the same way as a fully-deployed SDN

network. However, the network controller has no control over the hidden traditional nodes

and is unable to monitor their utilization. This can decrease the efficiency of algorithms such

as for load-balancing or QoS, which might miscalculate the network utilization as a result of

the missing information.

In the following we discuss the tunnel-based migration strategies found in the literature.

The works can be put into the categories based on the used tunneling-protocol. Approaches

based on MPLS and VLAN are proposed as of now. In [36, 110, 111], Levin et al. and Canini

et al. propose Panopticon, which uses VLAN tunnels in the traditional domain to connect the

SDN devices in the network. This enables an abstraction of the network which only consists

of SDN devices and traditional devices are reduced to simple forwarders along the configured

VLAN tunnels. In [114], Lu et al. introduce HybNET, a framework for managing combined

traditional and SDN devices. As with Panopticon, traditional switches are reduced to simple

VLAN forwarding devices connected and control decisions are made at the SDN devices.

In [150], Tu et al. show how to combine SDN routing decisions with MPLS labels in the

traditional domain.

2.5.2 Combining Distributed and Central Routing

Figure 2.4c illustrates the migration strategy based on skillfully crafted routing messages. The

approach here is to inject an artificial global view into the traditional devices to control the

route computation of these devices. To this end, the network controller calculates a (fake)

topology per device with nodes, links and link weights. Afterwards, the controller uses the

packet_out feature of the SDN devices to deliver the routing messages to the traditional devices.

After the fake topology is injected into the traditional devices, the devices compute the shortest

paths, including backup paths, and populate their local Forwarding Information Bases (FIBs)

according to the fake topology.

In the following we discuss the routing-based migration strategies found in the literature.

The works can be distinguished by the used routing protocol. OSPF-, Interior Gateway Protocol

(IGP)-, BGP-, Address Resolution Protocol (ARP)-based and Spanning Tree Protocol (STP)-

based approaches are proposed. Furthermore, there is one approach which uses ACL rules to

achieve the same goal.

20 Chapter 2. The State of the Art from the Migration to the Operation of Hybrid Networks

OSPF-based. In [38, 42], Caria et al. partition OSPF networks into sub-domains by strategic

placement of SDN-enabled nodes. This way, the inter-domain traffic is still controlled by

OSPF, while SDN can be used for traffic engineering of intra-domain traffic through fine-tuned

routing protocol updates. The results show that in topologies with a majority of intra-domain

traffic, a full SDN deployment is not necessary. In [39], Caria et al. conduct link capacity

planning of partitioned OSPF networks. The results show that, while a pure-OSPF network

can require a spare capacity of over 50 %, the hybrid SDN/OSPF approach greatly reduces the

amount of spare capacity needed. In [153, 155], Vissicchio et al. introduce the concept of

fibbing. Fibbing generates fake OSPF routing messages to create a virtual topology to control

the forwarding behavior at the traditional devices. In [46], Chemalamarri et al. propose

SYMPHONY, a hybrid SDN controller with a traditional routing component. The authors

use Quagga at the SDN controller to create a Legacy Routing Server which uses the SDN

controller to distribute and receive OSPF updates. In [81], He et al. present the design and

implementation of a hybrid SDN space network where ground stations deploy traditional

equipment and the satellites are combined in an SDN domain. The main focus of the work is

the integration of OSPF and BGP through Quagga into the SDN controller POX. In [130], Peng

et al. propose combining OSPF and SDN for traffic engineering in wireless mesh networks.

IGP-based In [151], Vanbever et al. demonstrate how to augment the traditional IGP topology

with virtual nodes and virtual links to present each traditional device a fake virtual topology.

Through this virtual topology, the traditional devices behave as desired by the central SDN

controller.

BGP-based In [124, 135], Nascimento and Rothenberg et al. present RouteFlow and the

RouteFlow Control Platform (RFCP). The proposed framework shows how to move BGP

routing decisions from the core and edge of the network to the centralized SDN controller. In

[69], Gämperli et al. introduce an emulation framework for evaluating the convergence time

of combined SDN and BGP routing networks.

STP-based In [118], Markovitch et al. propose a hybrid network architecture which exploits

the STP protocol, VLANs and a few OpenFlow switches to divide the network into loop-free

sub-domains. The results show that with only 2 % to 10 % deployment of SDN-enabled

devices, it is possible to enhance traffic engineering and fail-over capabilities of traditional

networks.

ARP-based While most related work regarding the combination of central and distributed

routing considers traffic in the traditional domain as shortest-path-only, Jin et al. propose

Telekinesis [95], which uses fake layer 2 packets to trick the Medium Access Control (MAC)

learning of the traditional switches and provide route selection in the traditional domain. That

way, a forwarding entry for a single MAC address can be created on the traditional switches

2.5. Migration Strategies 21

via OpenFlow packet_out from the closest SDN device. The results show that with 20 % of

the devices updated, 70 % of the paths can be controlled. In [96], the same authors extend

the previous approach and propose Magneto, which uses fake ARP messages to end-hosts in

addition to tricking the MAC learning of the traditional switches to achieve better control over

the traffic. The results show that a 20 % deployment is sufficient for full network control.

ACL-based In [88], Huang et al. demonstrate HybridFlow. HybridFlow clusters traditional

switches together with one SDN switch. Static configuration on the HybridFlow switches

via ACL rules steer all traffic to the SDN devices in each cluster and therefore give the SDN

devices the full control over the network.

2.5.3 SDN Hardware Abstraction Layers for Traditional Devices

Figure 2.4b illustrates the migration strategy based on SDN HALs for traditional devices.

The OpenFlow protocol was designed to be compatible with current network processors on

the market to facilitate easy adoption. Therefore, for devices with replaceable software, it

is possible to replace the current traditional control plane with custom OpenFlow agents.

Furthermore, it is shown in the literature that even if the software on the device can not be

replaced, the provided interfaces such as the CLI or SNMP, are in some cases enough to

implement an external OpenFlow agent. Next, we discuss the HAL approaches proposed in

the literature.

As part of the European research project FP7 ALIEN [176], several proposals and demon-

strations of OpenFlow-control over traditional equipment were made. In [27, 68], Belter et

al. and Fuentes et al. demonstrate an HAL and OpenFlow agent for traditional devices which

allows the traditional devices, such as DOCSIS devices, to appear as OpenFlow devices. In

[128], Ogrodowczyk et al. and in [129], Parniewicz et al. describe the HAL in detail. In [60],

Farias et al. propose LegacyFlow. LegacyFlow translates OpenFlow actions to configuration

commands of the SNMP, CLI or Hypertext Transfer Protocol (HTTP) Representational state

transfer (REST) interfaces of the traditional switches. The results show a latency of up to

800 ms when applying VLAN configuration via SNMP. In [44], Casey et al. propose SDN

Shim, a Field-Programmable Gate Array (FPGA)-based approach for SDN experimentation.

The FPGA device is connected to one of the traditional ports and all traffic is forwarded to this

port via VLAN configuration and afterwards, via OpenFlow rules, redistributed to the output

ports. In [63], Feng et al. propose the OpenRouteFlow architecture consisting of an Open-

RouteFlow controller and of an OpenRouter agent, connected by the OpenFlow-compatible

OpenRouteFlow protocol. The OpenRouter agent is deployed on the traditional switches and

translates OpenFlow rules into ACL or Routing Information Base (RIB) rules for the specific

device.

22 Chapter 2. The State of the Art from the Migration to the Operation of Hybrid Networks

2.5.4 Discussion

Next we discuss the three migration strategies. The migration strategy to choose highly

depends on the existing devices in the network and on the desired network control use cases.

Furthermore, for companies there are individual techno-economical factors to consider. But

there is a lack of research on the techno-economical factors of SDN migration. Therefore, in

the following, we focus on the technical aspects.

A traditional HAL can be implemented on the devices and does not require any traditional

extensions to the network controller. If all network control operations are supported by the

combination of HAL and device, this presents a straight-forward migration strategy. However,

research in the area of traditional HALs as of today is limited to prototype implementations

and no study of the broader applicability is conducted.

Migration by traditional tunnels is well studied, e.g., for VLAN-based tunnels [110], and

can be implemented on a broad set of devices. VLAN configuration is a basic switch feature

and available on most managed forwarding devices. Problems arise through the fact that SDN

controllers are unaware of the tunnels and thus can not monitor the tunnel devices. However,

an NSAL with awareness of both SDN and traditional devices can set-up and monitor both the

tunneling traditional devices and the SDN devices. From the perspective of network operation,

the tunnel strategy has also the advantage that the tunnel configuration can be easily checked

and understood by a human operator.

Migration strategies based on combining distributed and central routing offer flexible,

per-destination, routing in the traditional networking domain. The research on this areas

shows that the proposed approaches are robust and applicable to a wide-range of network

topologies and use cases. However, the requirements are higher than for the tunnel-based

strategies. The approaches require all devices to support compatibly implementations of a

supported link-state protocol. Furthermore, network devices usually do not provide insights

into the internal workings and state of the distributed routing protocols. Thus, for a human

network operator, retrieving the current state and performing troubleshooting can be difficult.

2.6 Operating Hybrid Networks

Next, we take a closer look at different aspects of how to operate a hybrid traditional-SDN

network. Requirements to the operation of a network are manifold. The requirements range

from secure and reliable, over flexible and cost-effective, to manageable. The challenges arise

from the fact that most existing methods for network operation can not be applied to hybrid

networks. Either they are designed for only traditional networks in mind or already tailored to

full SDN deployments. There are three main problems. First, the different routing paradigms,

2.6. Operating Hybrid Networks 23

central vs. distributed routing. Second, the problem of two control entities, network controller

and NMS. Third, different supported features. In SDN the switches rely on match-action rules

and the interaction with the controller, while traditional switches have a large collection of

features built-in into the hardware. In the following, we discuss the state of the art regarding

the operation of hybrid networks.

First of all, four papers investigate the categorization of different approaches for migration

and operation. In [134], Rothenberg et al. survey hybrid networking approaches and discuss

the two approaches LegacyFlow and RouteFlow in detail. In [89, 152], Vissicchio et al. and

Huang et al. survey the related work in the area of hybrid SDN networks, define different

transitions models and show the current research challenges in this area. In [133], Rathee at

al. do a classification of different approaches for the coexistence of SDN and traditional in the

same network. Furthermore an overview over topology discovery options in hybrid networks

is given.

There are two papers showing the feasibility of such hybrid networks by sharing the

experience from experimental deployments. In [139, 140] Salsano et al. present the design

of a Open Source Hybrid IP/SDN (OSHI) networking node and the Mantoo management

tools. OSHI describes the design of a network node for experimenters with SDN-enabled

and traditional routing implementation. In [99], Kanaumi et al. introduce the RISE testbed,

a nation-wide experimental network in Japan and the lessons learned during the design and

deployment of the SDN devices.

2.6.1 Interfacing Traditional NMSs and Network Controllers

In [142], Sharma et al. propose the i-NMCS (integrated network management and control

system) framework. The framework shows how SDN controller and traditional NMSs can be

combined to provide QoS for selected flows in the network. In [166], Zhang et al. propose

SDNMP, an SNMP interface for SDN controllers through which traditional NMS can manage

the SDN-enabled devices via the SDN controller. For example, the NMS is able to query the

topology as seen by the SDN controller, retrieve statistics and inspect the flow table of each

device.

2.6.2 Replacement Order of Traditional Switches

In [87], Huang et al. propose heuristics for deciding which part of a traditional network to

replace first with SDN-enabled switches. The performance of the algorithms is evaluated by

two criteria. The first criteria is the running time of the algorithms. The second criteria is the

fraction of traffic in the network which passes through the SDN-enabled switches.

24 Chapter 2. The State of the Art from the Migration to the Operation of Hybrid Networks

2.6.3 Security

In [24], Amin et al. discuss how to detect ACL policy violations as a result of a topology

change in hybrid SDN networks. In [157], Wang et al. propose Woodpecker, a framework for

detecting and mitigating Link flooding attacks (LFA), a type of Distributed Denial of Service

(DDoS) attack. The results show that Woodpacker is able to detect LFA attacks and, through

appropriate load-balancing decisions, is able to reduce the link-load on the attacked links

by 50 %. In [107], Kwon et al. propose BASE, an incrementally deployable anti-spoofing

mechanism. In [48], Chen et al. propose SAVSH and tackle the problem of source Internet

Protocol (IP) address validation in hybrid networks. SDN nodes are strategically deployed to

filter packets with forged source IP address. The results show that with 15 % of full deployment

costs, 90 % of the network prefixes can be checked.

2.6.4 Migration of Traditional Device Configuration to SDN

In [119], Martínez et al. use an Web Ontology Language (OWL) and a learning algorithm to

automatically parse and abstract the configuration of traditional devices by analyzing the input

and output commands of the CLI of the device. The work provides an interesting approach to

investigate the capabilities of a heterogeneous device zoo and can help to settle for a specific

migration strategy. In [125], Nelson et al. propose Exodus, a system which takes the traditional

router configuration as an input and translates it to Flowlog, a SDN programming language.

Flowlog can then be compiled to comparable flow rules for SDN switches.

2.6.5 Failure Recovery and Convergence Time

In [45], Chang et al. show how to combine traditional and SDN-enabled devices to speed up

convergence time after a link or node failure. The authors implement a 2-stage forwarding

table, the first stage controlled by SDN, which makes it unnecessary for the traditional switch

to update the whole routing table after a link or node failure. In [51], Chu et al. discuss

single link failure recovery in hybrid SDN networks. In the proposal, each traditional switch

is assigned an SDN device as backup tunnel destination in case of link failure. The results

show that only a small number of SDN device is needed to allow congestion-free single link

failure recovery and full reachability between all nodes.

2.6.6 IP Traffic Matrix Estimation

In [40], Caria et al. uses OpenFlow byte counters and SNMP on traditional devices to construct

a IP traffic matrix in hybrid SDN/OSPF networks. The results show that a low number of

2.6. Operating Hybrid Networks 25

SDN devices is sufficient to generate a full IP traffic matrix and that optimal placement of

the SDN devices with respect to the measurements is aligned with the placement strategy for

traffic engineering. In [132], Polverini et al. also investigate the IP traffic matrix estimation

problem in hybrid SDN networks and draw similar conclusions.

2.6.7 Traffic Engineering

In [76], Guo et al. propose SOTE, an heuristic algorithm for traffic engineering in SDN/OSPF

hybrid networks. The algorithm is evaluated for different deployment ratios and the results

show that a 30 % deployment is enough for near optimal traffic engineering performance. In

[77], the same authors propose a genetic algorithm to decide which traditional devices to

upgrade to SDN, also from the perspective of the traffic engineering. The authors conclude

that a deployment ratio of 40 % gives the best results with the genetic algorithm and enables

near optimal traffic engineering. In [83], Hong et al. discuss traffic engineering in incremental

deployments and show that with a deployment ratio of 20 %, the maximum link usage is

one third of the all-traditional deployment. In [86], Hu et al. propose a Polynomial Time

Approximation Scheme for maximizing the capacity of the hybrid network through traffic

engineering. The results show that near optimal performance can be achieved with a 50 %

deployment ratio. In [94], Jia et al. discuss traffic control and show that you can control 95 %

of the flows with only 10 % upgrading costs.

In [100], Kar et al. propose and compare different algorithms for selecting traditional

devices to be upgraded to SDN with the goal of achieving 100 % SDN path/hop coverage, i.e.

every path between two nodes traverses at least one SDN device. In [41, 54], Caria and Das

et al. discuss an optimal placement strategy for SDN nodes in traditional networks for the

purpose of traffic engineering.

In [22], Agarwal et al. discuss the theoretical improvement in terms of traffic engineering

capabilities of partially deploying SDN-enabled devices in the network with shortest-path

hop-by-hop routing for the traditional devices. The authors present Fully Polynomial Time

Approximation Schemes (FPTAS) to solve the traffic engineering problem. The results show

that a low number of SDN devices in the network is enough for significant performance gains

in the network. In [148], Sun et al. extend the approach to disjoint multi-path planning.

In [79], He et al. also propose heuristics for traffic engineering based on slight modifications

of the traditional routing table to support programmable flow splitting.

26 Chapter 2. The State of the Art from the Migration to the Operation of Hybrid Networks

2.6.8 Miscellaneous

In [123], Mishra et al. propose a framework which maps OpenFlow match features to

unused IP ranges in the traditional network. This requires OpenFlow-enabled switches at

every entrance and exit of a sub-domain and static routes on the traditional devices for every

end-to-end communication in the network. The framework enables SDN-like policies in a

partially deployed SDN network. In [154], Vissicchio, et al. discuss consistent and reliable

network update sequences for networks with multiple control planes, e.g. a central SDN

control plane and a distributed traditional control plane. In [115], Lukovszki et al. provide

an exact and approximation algorithm for incremental deployment of middleboxes in SDN

networks. The proposed algorithms are also applicable to incremental deployment of SDN

devices in traditional networks.

Mobile Networks, 4G In [163], Kyung et al. propose a migration strategy for 4G networks

which incorporates traditional equipment in a SDN/Network Function Virtualization (NFV)

deployment strategy. The authors show which and how components of the mobile stack can

be virtualized through the SDN controller with the goal of operational expenditure (OPEX)

reduction.

Energy Savings In [156], Wang et al. investigate the potential for energy savings in partially

deployed SDNs. The authors propose a heuristic for the non-deterministic polynomial-time

(NP)-hard problem of finding a minimal set of required nodes. The results show that the

heuristic can save 40 % percent of the power consumption in a scenario with a deployment

ratio of 60 %.

Techno-economical Perspective In [53], Das et al. discuss migration strategies from the

techno-economical perspective and propose a near-optimal greedy algorithm for determining

the migration sequence. The results show that already a low number of strategically placed

SDN devices enables sufficient traffic engineering options.

Bootstrapping In [101], Katiyar et al. propose an extension to the DHCP protocol to assign a

newly attached switch to its controller.

2.7 Summary

In this chapter, we first introduced a) SDN and its evolution, b) relevant technical details of

forwarding devices and the SDN protocol OpenFlow and c) migration strategies and proposals

for how to operate hybrid networks.

SDN and OpenFlow were proposed as a way to ease the management of network infrastruc-

tures and provide a way for experimenters to innovate using programmable network devices.

2.7. Summary 27

The first network controllers which were introduced offered basic features such as L2/L3

forwarding and load-balancing, but only worked with OpenFlow-enabled devices. The current

generation of network controllers is more sophisticated. These controllers implement multiple

north- and southbound protocols, enable network virtualization and provide APIs to interact

with NMSs and orchestration systems. However, although they implement traditional south-

bound protocols, they do not implement any migration strategy and have limited awareness of

the traditional devices. Furthermore, there still exists two entities, the controller and the NMS,

with partly overlapping responsibilities. This makes it hard for network control applications to

interact with heterogeneous and/or partially deployed SDN networks. NSALs could bridge the

gap between management and control and provide a holistic view and control of heterogeneous

networks. By providing a single abstraction and interface to network control applications, the

control applications can evolve independently of the deployed devices or migration status. As

of writing, the author is not aware of any proposals for an NSAL as described in [RFC7426].

The proposed NSAL design in this work is a first step towards a comprehensive cross-plane

abstraction layer.

Chapter 3

Measuring Flexibility and the Impact of

Reconfigurations and Traffic Policing on

the Network and Applications

Designing a Network Services Abstraction Layer (NSAL) requires understanding of how

traditional and Software-Defined Networking (SDN) devices in the network react to recon-

figurations. Furthermore, application-awareness requires an understanding of in-network

Quality of Service (QoS) mechanisms and their impact. The chapter at hand summarizes

measurement results from experiments regarding the reconfiguration properties of devices and

QoS mechanisms. The subsequent chapters of this thesis pick up on the measurement findings

and incorporate them into the NSAL design and performance models. Figure 3.1 illustrates

the three areas of focus of the measurements, flexibility in terms of timings, data-plane

interruptions and policing impact on transport and application layer.

Flexibility / Timings In traditional networks, reconfigurations are rare and, as the measurement

results will show, devices are not designed to be reconfigured often. For SDNs on the other

hand, frequent reconfigurations are expected. Use cases such as short-term load-balancing or

reactive control for new flow arrivals require frequent changes to the flow rules. Therefore,

this chapter investigates the flexibility of forwarding devices. The flexibility is investigated in

terms of reconfiguration characteristics of traditional and SDN-enabled devices in the network.

We design a testbed where we measure the execution time of reconfiguration requests on

different devices from multiple vendors.

Data-Plane Interruptions We argue that the reconfiguration frequency of SDNs and hy-

brid networks is higher than for the mostly static traditional networks. Hence, data-plane

interruptions due to reconfigurations can become a challenge for the design of an NSAL.

Interruptions result in lost packets, decreased QoS and might also trigger falsely fail-over

29

30 Chapter 3. Measuring Flexibility and the Impact of Configurations

Reconfigurations

Host

Network Services

Abstraction Layer

PolicingApp.

Transport

Network

Host

App.

Transport

Network

Data-Plane

InterruptionsTimings

C M

Figure 3.1: The goal of the measurements is (i) to quantify how long reconfigurations take to be

completed, denoted as the flexibility of a device, (ii) to quantify the impact of reconfigurations on the

data-plane in terms of interruptions of the Internet Protocol (IP) packet stream and to investigate the

impact of the policing on the higher layers, i.e., on (iii) the transport and (iv) on the application layer.

mechanisms, depending on the duration of the interruption. In Section 3.2, we therefore

measure the influence of the reconfigurations on a stream of packets traversing the device

while the reconfigurations are triggered. In particular, we measure reconfigurations such as

creating, modifying or removing Virtual Local Area Network (VLAN) tags from interfaces or

changing the configuration of QoS mechanisms.

Policing Impact on Transport and Application Layer Application-awareness is often im-

plemented by configuring traffic policing to limit an application’s throughput at a point in

the network. Studies show that application policing is wide-spread in the Internet [66], in

particular in mobile networks and for video streaming applications. Therefore, in this chapter,

we also take a closer look at how the configuration of traffic policing impacts the data-plane’s

ability to forward application-level data and how it ultimately impacts the applications itself.

In particular, we want to answer the following questions: First, how does traffic policing

configurations impact Transmission Control Protocol (TCP)-based application transmission

streams? and second, how is the application ultimately impacted by the policing of the stream?

We answer the first question by exploring the parameter space of the token bucket policing

algorithm in combination with modern TCP algorithms in a testbed. The second question is

answered by evaluation of a popular adaptive video streaming service for different policing

configurations and measurements of the impact on application-specific metrics.

We first discuss the measuring of flexibility in Section 3.1. Afterwards, we discuss the

impact of the reconfigurations on the data-plane in Section 3.2. Subsequently, we evaluate

the impact of policing on the transport layer and on the applications in Section 3.3 and

3.1. Measuring Flexibility 31

Section 3.4, respectively. We conclude the chapter by summarizing and discussing the results

in Section 3.5.

The content of this chapter is based on the results presented in the following publications.

The measurements regarding the reconfiguration timings of traditional and SDN devices

are presented in [15]. In [12] data-plane interruptions as the result of reconfigurations are

investigated. [9] and [16] present the results of a large-scale measurement study of the effects

of policing on video streaming. The measurements of the impact of policing on the transport

layer are only published in this thesis as of writing.

[15] C. Sieber, R. Durner, and W. Kellerer. “How fast can you reconfigure your partially

deployed SDN network?” In: IFIP Networking Conference. 9 pages. Stockholm,

Sweden, 2017, p. 9. doi: 10.23919/IFIPNetworking.2017.8264845.

[12] C. Sieber, A. Blenk, A. Basta, D. Hock, and W. Kellerer. “Towards a Programmable

Management Plane for SDN and Legacy Networks.” In: IEEE Conference on Network

Softwarization (NetSoft). 9 pages. Seoul, South Korea, 2016. doi: 10.1109/NETSOFT.

2016.7502428.

[9] C. Sieber, A. Blenk, M. Hinteregger, and W. Kellerer. “The Cost of Aggressive

HTTP Adaptive Streaming: Quantifying YouTube’s Redundant Traffic.” In: IFIP/IEEE

International Symposium on Integrated Network Management (IM). 6 pages. Ottawa,

Canada, 2015. doi: 10.1109/INM.2015.7140478.

[16] C. Sieber, P. E. Heegaard, T. Hoßfeld, and W. Kellerer. “Sacrificing Efficiency for Quality

of Experience: YouTube’s Redundant Traffic Behavior.” In: IFIP Networking Conference.

9 pages. Vienna, Austria, 2016. doi: 10.1109/IFIPNetworking.2016.7497231.

3.1 Measuring Flexibility

We define flexibility of a forwarding device as the reconfiguration characteristics of the

device and by the control delays associated with the reconfigurations. We consider three

types of delay associated with the reconfiguration. Furthermore, we consider the duration

the data-plane is blocked, i.e., is not forwarding data and packets are dropped. Figure 3.2

illustrates the types of delay we are interested in and the duration the interface is blocked.

t0 is the time the reconfiguration request reached the device under test. tp is the time of

acknowledgment (or processing time on device) of the reconfiguration request, subsequently

referred to as reconfiguration time. Hence, tp gives the duration the device does not accept a

new reconfiguration until the previous one is finished. tb is the blocking time, e.g., an interface

restart as cause of atomic task execution. During this time, no data is forwarded on the specific

interface. td is the time difference between task reception at the device (t0) and the time the

https://doi.org/10.23919/IFIPNetworking.2017.8264845
https://doi.org/10.1109/NETSOFT.2016.7502428
https://doi.org/10.1109/NETSOFT.2016.7502428
https://doi.org/10.1109/INM.2015.7140478
https://doi.org/10.1109/IFIPNetworking.2016.7497231

32 Chapter 3. Measuring Flexibility and the Impact of Configurations

effect is measurable on the data plane. For example in case of VLAN tagging, this is duration

from the reconfiguration request to change the VLAN tag of an interface until the first packet

leaves the device with the new VLAN tag. td , tb, and tp are relative to t0 and there is no strict

ordering between the types of delay, e.g., a device can acknowledge a change after or before

the data plane effect is measurable.

To the best of our knowledge, there are no existing works about measuring management

timings of traditional devices in the literature. There are several works providing measurements

of SDN switches and also control plane delays such as in [80], or [108], [106], [162]. However,

the provided measurements investigate the installations of batches of rules and not the

installation of a single rule as in our scenario.

3.1.1 Testbed Set-up

Figure 3.3 shows our measurement setup. We use a tap device connected to the data plane

and to the OpenFlow/management port. For SDN devices, we tap the OpenFlow controller

port, for traditional devices we tap the TELNET connection to the management port. The tap

is connected to a high precision measurement card with nanosecond precision. On the data

plane, we generate a stream of marked User Datagram Protocol (UDP) packets with a packet

size of 1400 Bytes, with constant inter-arrival time and with a data-rate close to the interface’s

line rate. We decode the incoming packets on the OpenFlow/management port and record the

time of the last packet of the incoming reconfiguration command. That way we can identify

the exact packet when the reconfiguration was applied (td) and compare it to the time of the

reconfiguration command entering the device. Additionally, we record any periods of packet

loss (tb) and the duration until the interface acknowledges the processing of the command (tp).

3.1.2 Results

We measure different SDN and traditional devices from multiple vendors, different years of

release and sizes in our testbed. For traditional devices we include HP V1910 (for small

Reconfiguration

request

𝑡0
Processing on

device finished

Interface

unblocked

again

𝑡
Effect visible

on data-plane𝑡𝑝 𝑡𝑑 𝑡𝑏
Figure 3.2: Processing time on device tp, data-plane effect delay td and blocking delay tb. All three

times can be, but do not have to be, independent of each other, depending on the specific device.

3.1. Measuring Flexibility 33

Tap

Configuration

Agent

Data DUT

1
2

Figure 3.3: Measurement set-up consisting of a high-precision tap device, the self-developed reconfig-

uration agent and the Device Under Test (DUT) to be measured. Timing characteristics are measured

by tapping the management port (1) and the data plane interfaces (2).

organizations, 2010) and Cisco Catalyst 4500 (for campus access & distribution, 2007). For

SDN-enabled devices we include two OpenFlow hardware switches Pica8-P3290 and Pica8-

P3297 (for small cloud data centers, 2012). Additionally, we include the NEC PF5240 (for

data center, 2011) in the evaluation, which can be used in traditional and SDN-enabled mode,

and the software switch OpenvSwitch (OVS) in SDN-enabled mode.

As measuring all possible combinations and parameters of all devices is infeasible, we

focus for the measurements on the SDN transition strategy similar to Panopticon [110], which

uses VLAN tagging to control traditional devices in a partial SDN deployment. For traditional

networks, performing a VLAN reconfiguration is usually a text command sent via Command

Line Interface (CLI)/TELNET to the switch. With the OpenFlow protocol, VLAN tagging

can be set-up using OpenFlow flow modification messages. We use a custom OpenFlow

Controller based on the libfluid [168] framework to populate the tables of the switches and

install the rules that are measured. For the traditional devices, we use a custom configuration

agent which accesses the devices via TELNET. Each measurement is repeated between 50 and

100 times.

3.1.2.1 Traditional Devices

Figure 3.4 shows the measurement results for the reconfiguration times (tp) for the evaluated

traditional switches using the command to add VLAN tagging to a port. The reconfiguration

times (tp) are shown as a box-plot with the median, 25 % and 75 % quartile and outliers. The

results differ in two orders of magnitude from a median of 3.73 ms for the Cisco device to a

median of 652 ms for the NEC. The HP device shows a median delay of 25.3 ms. The variance

of the results is small for all three devices.

Table 3.1 gives a summary of the results for tp, tb and td of the measurement of the

traditional devices for the VLAN tagging. The standard deviation is omitted in the table. For

the NEC device, the standard deviation of tb is about 20 ms, for the CISCO and HP device

1.4 ms. The results show that there is a significant variation between the three evaluated

34 Chapter 3. Measuring Flexibility and the Impact of Configurations

CISCO HP V1910 NECPF

Device

100

101

102

103

D
el

ay
(m

s)

Figure 3.4: Reconfiguration times (tp) for VLAN tagging via TELNET for the three traditional devices

Cisco Catalyst 4500 (left), HP V1910 (middle) and NEC PF5240 (right). The Cisco device exhibits

the fasted reconfiguration time with a median of 3.73 ms, followed by the HP device with 25.3 ms and

the NEC device with 652 ms.

devices. For example, while the NEC device’s Ethernet interface is unavailable for about

126 ms after the VLAN reconfiguration (tb
= 125.8 ms), the HP switch is available again after

less than 1 ms.

3.1.2.2 SDN Devices

For measuring SDN devices there are more conditions to take into account. As other works

have shown [106], the behavior of OpenFlow switches depends on the number of installed

rules and the priority of the installed rules. Especially the priorities of the rules are important

as higher priority rules mask lower priority rules and the switch has to make sure that the

effects are independent of the order in which the rules are added. Therefore, for some cases, it

can be necessary to search all current rules before the new one can be added. We measure the

delay for four cases of flow table population: None, the flow table is empty. Decreasing, 1000

installed rules with decreasing priority, the measured rule has the lowest priority. Increasing,

1000 installed rules with increasing priority, the measured rule has the highest priority. Same,

1000 installed rules with the same priority, the measured rule has also the same as the others.

Table 3.1: Traditional devices VLAN tagging results

Switch tp tb td

NEC PF5240F 648.9 ms 125.8 ms 316.2 ms

Cisco Catalyst 4503-E 4 ms 5.6 ms 8.1 ms

HP-V1910 24.4 ms 0.3 ms 15.2 ms

3.2. Reconfiguration Impact on the Data-Plane 35

NECPF OpenVSwitch Pica8-P3290 Pica8-P3297

Device

100

101

102

D
el

ay
(m

s)

None

decreasing

increasing

same

Figure 3.5: Rule push time for the four OpenFlow-enabled devices NEC PF5240, Pica8 P3290/P3297

and OVS. None, decreasing, increasing, same denote the number and priority order of pre-installed

flows. OVS and NEC PF5240 can keep the rule push time between 0 ms and 1 ms for all four flow

insertion scenarios. For both Pica8 devices, the time ranges between 1 ms for a previously empty flow

table to 45 ms for 1000 pre-installed rules with increasing priority where the measured flow push has

the highest priority.

Figure 3.5 shows the measured delays starting from pushing an OpenFlow rule that enables

VLAN tagging until the first packet leaves the switch with a VLAN tag (td). Except OVS, the

rule table population strategies affect each investigated devices differently. OVS behaves the

same for all four strategies with a median delay of 1.27 ms to 1.31 ms. The approach used

in OVS is described in [131] and uses atomic rules which avoid overlapping rules at all and

therefore reduce the effects of priorities and population order to the rule update delay.

For the NEC, the delay varies between 0.85 ms and 1.65 ms. For the Pica8 devices we

observe a delay of about 2 ms for an empty flow table. The delay increases for 1000 pre-installed

rules with increasing priority. Here we observe a median delay of up to 34 ms and 45 ms for

the two devices. This confirms the results from previous work that the population strategy is

important. With the same priority the reconfiguration times are lowest while for the increasing

priority the reconfiguration times increase. In general the variance of the configuration

times using OpenFlow are much higher compared to the traditional reconfiguration through

management commands. tp was not measured in the testbed for OpenFlow devices.

3.2 Reconfiguration Impact on the Data-Plane

In the following we discuss the impact of the measured reconfigurations on the data-plane. In

particular, we are interested in if reconfigurations cause any loss of packets. Any side-effects

36 Chapter 3. Measuring Flexibility and the Impact of Configurations

0 5 10 15 20

Time (s)

0

200

400

600

800

1000

P
ac

k
et

s
p
er

se
co

n
d

td

tb

Figure 3.6: A packet stream traversing an interface of a NEC device while the processing pipeline, i.e.,

the QoS scheduler of the interface is changed. The reconfiguration triggers the restart of the interface

which results in dropped packets during the restart process. The duration between the device accepting

the reconfiguration and the interface restart td is about 1 s. The blocking duration tb (which includes

td), during which all packets are dropped, is on average about 6 seconds.

of reconfigurations are important in the design of a NSAL, as negative effects on the data-plane

can severely limit the number of reconfigurations a NSAL can issue to the devices.

Figure 3.6 illustrates a measurement where we select an alternative path in the processing

pipeline, i.e., changing the QoS scheduler of the NEC device in our testbed. At t0 + tt with tt

being zero, the switch receives the configuration command through the management interface.

As we define the blocking delay tb and the processing on device tp independent of each other,

tb is the time from t0 + tt until the interface is up again and transmits data. For this task and

device type, tb is about 6 seconds on average. tp is the time between the reception of the

configuration command and the switch’s confirmation.

An automated management system may want to frequently change the scheduler, depending

on the current situation. The measurements show that this is not possible with the evaluated

state-of-the-art hardware in our testbed. Hence, the design of the NSAL has to consider

mechanisms for detecting potential negative effects of management actions. For example, the

NSAL can drain the traffic on the interface before issuing the reconfiguration to prevent any

loss of packets during the reconfiguration.

3.3 Impact of Policing on Transport Layer

Policing is the most wide-spread used mechanism for reconfiguring the network to control

application throughput, as it does not require buffer space in the network elements for packets

exceeding the configured rate [66]. In following, we evaluate traffic policing at a device as a

3.3. Impact of Policing on Transport Layer 37

mechanism for a NSAL to limit the amount of resources assigned to a network application. In

particular, we discuss the effects of policing on the dominant transport protocol TCP. TCP

behavior is dictated by the congestion algorithm in use. CUBIC [78] is the default algorithm

configured on modern Linux-based (kernels 2.6.19 and above) systems. Furthermore we

evaluate BBR [37], a recent congestion control proposal by Google and DCTCP [23], the

default algorithm on use in Windows Server systems. Additionally, we evaluate QUIC, recent

proposal by Google as Hypertext Transfer Protocol (HTTP) transport alternative which is

based on UDP instead of TCP.

The measurement set-up consists of three nodes. One node with a simple HTTP/TCP

server. One node with activated Token Bucket (TB) filtering based on Linux Traffic Control

[185] and one node with a simple HTTP download client. We investigate three parameters.

The policing rate and burst size configured at the traffic filter and the TCP algorithm configured

at the server. Figure 3.7 illustrates the relative download duration of a 10 MB file. The relative

download duration is defined as the ratio between the recorded download duration and an

idealistic download duration based solely on file size and policing rate (FileSize
PolicingRate

). The

relative download duration is shown for different policing rates (in Kilobits per second) and

different burst sizes (in Kilobit). Values > 1 indicate that the policing rate disturbed the

congestion control and the download takes longer than the policing rate would allow. Values

close or equal to 1 show that the TCP sending rate equals the policing rate and no lost packets

are observed. Values < 1 are possible due to the TB policing which allows burst of packets,

e.g., at the beginning of the transmission when the bucket is full. Note that the absolute values

of the relative download time are only valid per algorithm and can not be compared across

the algorithms. Also note the different scale for BBR compared to the other three algorithms.

The different behavior can be explained by the different congestion control approach taken

by BBR. While the other algorithms base their sending rate calculation solely on observed

packet loss, BBR tries to estimate the available rate based on delay and packet loss. For some

combinations of policing rate and burst size, BBR misjudges the available throughput and

throttles the sending rate unnecessarily.

The figures 3.7a to 3.7d show the results for BBR, Cubic, DCTCP and QUIC. Multiple

observations can be made from the figures. First, Cubic, DCTCP and QUIC are affected by

policing in a similar manner. For the three algorithms the policing rate has no visible impact

on the relative download duration. Instead, the duration decreases for larger burst sizes. An

decrease for larger burst sizes is expected as this allows TCP to exceed the policing rate longer

at the beginning of the transmission. BBR exhibits different behavior. The download duration

increases for higher policing rates and lower burst sizes. Furthermore, while the maximum

38 Chapter 3. Measuring Flexibility and the Impact of Configurations

500 1000

Policing Rate [Kbps]

1

2

3

4

5

B
u

rs
t

S
iz

e
[k

b
]

1.00

2.00

3.00

4.00

5.00

6.00

R
elativ

e
D

o
w

n
lo

ad
D

u
ratio

n

(a) BBR

500 1000

Policing Rate [Kbps]

1

2

3

4

5

B
u

rs
t

S
iz

e
[k

b
]

0.90

0.93

0.95

0.97

1.00

1.02

1.05

1.07

1.10

R
elativ

e
D

o
w

n
lo

ad
D

u
ratio

n

(b) Cubic

500 1000

Policing Rate [Kbps]

1

2

3

4

5

B
u

rs
t

S
iz

e
[k

b
]

0.90

0.93

0.95

0.97

1.00

1.02

1.05

1.07

1.10

R
elativ

e
D

o
w

n
lo

ad
D

u
ratio

n

(c) DCTCP

500 1000

Policing Rate [Kbps]

1

2

3

4

5

B
u

rs
t

S
iz

e
[k

b
]

0.90

0.93

0.95

0.97

1.00

1.02

1.05

1.07

1.10

R
elativ

e
D

o
w

n
lo

ad
D

u
ratio

n

(d) QUIC

Figure 3.7: Impact of policing on TCP Cubic, BBR, DCTCP and QUIC in terms of the download

time relative to an idealistic download duration based on the burst size and policing rate. While

Cubic, DCTCP and QUIC exhibit similar behavior (download duration dictated by burst size), BBR is

influenced by both parameters and in general shows longer download durations.

relative download duration for the other algorithms varies between 5 % and 10 %, BBR exhibits

a download duration of up to six times the idealistic rate.

In a nutshell, the results show that policing negatively impacts the transport layer’s ability

to determine the available throughput, resulting in lost packets and unnecessary throttling of

the sending rate. Hence, to implement application-awareness in the NSAL, policing in the

forwarding nodes of a network should be avoided. Next, we investigate the negative impact of

policing on the layer above the transport layer, the application layer.

3.4 Impact of Policing on Application Layer

In the preceding section we discussed the impact of policing on TCP streams in the network.

The results there show that policing leads to packet loss and inability to estimate the available

throughput. For the design of an application-aware NSAL it is important to further understand

the impact of policing on the applications on top of TCP. In this section, we take a look

at policing of the most widespread Internet video application (YouTube) and how it effects

3.4. Impact of Policing on Application Layer 39

0.5 1.0 1.5 2.0 2.5 3.0

Policing Rate (Mbps)

0.0

0.5

1.0

1.5

2.0

E
v
en

ts
[m

in
−

1
]

Switches

Buffering

Figure 3.8: Impact of policing on the performance of YouTube’s adaptation algorithm. f denotes the

configured policing rate. The left axis denotes the frequency of buffering and switching events during

the playback with the configured policing rate. The figures shows the negative influence of policing

on the playback quality adaptation, as the adaptation it not able to prevent switches and buffering for

policed rates below 2.5 Mbps.

the performance of the application. We first describe the experiment set-up. Afterwards we

discuss the selected video content for the experiments and present the results.

The experiment set-up consists of a virtual machine Xubuntu 14.04 64-bit running a

browser (Firefox 21) with the YouTube player, an Secure Hypertext Transfer Protocol (HTTPS)

proxy inside the virtual machine and a virtual network which limits the available throughput

by TB filtering. The set-up is connected to the Internet through a lightly utilized lab network

and through the university’s Internet connection. We randomly select videos with a duration

of 1, 2, ..., 10 minutes with an allowed deviation of 5 seconds. In total, 35 different videos

were accessible during the whole experiment time and are included in the evaluation. Average

duration of selected videos is 5.3 minutes. The average bit-rate for each quality level is

0.11 Mbit/s for 144p, 0.24 Mbit/s for 240p, 0.37 Mbit/s for 360p, and 0.72 Mbit/s for 480p.

Next, we discuss the result of the experiment. Figure 3.8 shows the buffering rate and the

switching rate for the different policing rates and averaged over all videos. The error bars

indicate the 95 % confidence interval of the measurement points. The figure shows that the

buffering rate decreases non-linear with increasing policing rate, while the corresponding

decrease in quality switching rate is approximately linear. At the lowest evaluated bandwidth

0.4 Mbps, we observe an average buffering rate of 1.4 [min−1]. The quality switching rate is on

average between 1.75 [min−1] and 2.0 [min−1] for 0.4 Mbps to 0.5 Mbps. At about 2.6 Mbps,

the three metrics reach their minimum of zero for the buffering and switching events. We

conclude that for a bandwidth of 2.6 Mbps all videos in our result set are, on average, played

40 Chapter 3. Measuring Flexibility and the Impact of Configurations

back without buffering events and quality switches. Furthermore we see that switching events

are more frequent than buffering events and decrease slower for increasing policing rate.

In a nutshell, the negative impact of policing on the transport layer carries on to the

application layer for the investigated use case of adaptive video streaming. The inability

to estimate the available throughput accurately leads to unstable adaptive behavior which

manifests in the shape of frequent quality switches and buffering events for the user.

3.5 Discussion

In the following, we discuss the measurement findings and relate the results to the following

chapters of the thesis. Regarding the flexibility, the measurements answer the following two

questions. First, how long does it take a device to implement a reconfiguration request into

the network? and second, does the reconfiguration cause any undesired negative effects on the

data plane?. The measurements regarding the flexibility show that even though the devices

offer well-defined functionality, e.g. VLAN tagging, and well-defined forwarding speeds

on the data-plane, e.g., 1 Gbps and 10 Gbps, the timing characteristics of reconfigurations

vary significantly. The results show that all OpenFlow devices in our testbed allow fast

reconfigurations, where the exact duration depends on the number of previously installed

rules. The reconfiguration times of the traditional devices on the other hand vary between

less than 1 ms and up to 650 ms. The measurements emphasize the need for a sophisticated

reconfiguration management with detailed and device-specific reconfiguration models. A

NSAL has to be aware of how long a device needs for a reconfiguration to prevent routing

black holes or routing loops in the network. Furthermore, the NSAL has to know how often a

device can be reconfigured per time interval to prevent network applications from overloading

the network with reconfigurations and to define sensible rate-limits on those applications.

Regarding the negative side-effect for both device categories, the measurements results

show no blocking duration tb for the evaluated SDN devices. Hence, no packets are dropped

as a consequence of a reconfiguration via OpenFlow. For the traditional devices, the blocking

time ranges from about less than 1 ms to 126 ms. The longest blocking duration can be

observed for changing the QoS scheduler, where we observe blocking durations up to 6 s. The

measured blocking durations up to 6 s are an previously overlooked challenge for an NSAL.

Network control applications unaware of this problem may choose to frequently change the

packet scheduling, depending on the current situation in the network. However, this can lead

to frequent data-plane interruptions and must be prevented by the NSAL or at least disclosed

to the network application requesting the reconfiguration.

3.5. Discussion 41

In order to evaluate policing as mechanism for application-awareness in the network,

we asked the following questions. First, how does traffic policing configurations impact

TCP-based application transmission streams? and second, how is the application ultimately

impacted by the policing of the stream? Looking at the measurements regarding the impact of

configuring policing in the network on the TCP streams and on a popular video application,

following conclusions can be drawn. First, policing interferes severely with TCP congestion

control algorithms, resulting in unnecessary retransmissions of data packets. Second, due

to the unstable throughput caused by the policing, adaptation algorithms on the layer above

the transport protocol, e.g., HTTP/HTTP Adaptive Streaming (HAS) in case of YouTube, are

failing to estimate the available throughput accurately. The algorithms then make suboptimal

adaptation decisions resulting in playback stalling and frequent quality switching events. In

a nutshell, configuring policing in the network has significant negative effects and should be

avoided in combination with current congestion control algorithms.

Chapter 4

Design of a Network Services Abstraction

Layer for Partially Deployed

Software-Defined Networks

With Software-Defined Networking (SDN), a set of standardized interfaces emerged, e.g.,

OpenFlow and Forwarding and Control Element Separation (ForCES), to control the for-

warding behavior of network elements. Despite research and standardization efforts, the

management plane is still eluding an equivalent device- and vendor-neutral programmability.

Thus, innovation in the management plane is hampered by a dependency on human experts,

domain knowledge that is hidden in human-centered manuals, and the huge amount of diverse

device capabilities and configuration interfaces.

Accordingly, in this chapter we propose a Network Services Abstraction Layer (NSAL)

architecture that provides a unified interface to the control and management plane of heteroge-

neous devices, i.e., SDN and traditional devices with an enriched information model which

incorporates the insights gained from the device measurements in Chapter 3. We discuss the

properties of the chosen level of configuration abstraction and show how applications north-

bound of the abstraction layer are well prepared against undesired side-effects of management

actions. By example of a popular approach for enabling OpenFlow in mixed-SDN/traditional

networks based on Virtual Local Area Network (VLAN) tagging, i.e., Panopticon [110], we

provide a proof-of-concept implementation of the proposed architecture in a test-bed. VLAN

tagging is a feature available on most managed traditional devices and therefore a likely

candidate for a migration strategy in heterogeneous environments.

As the measurements in Chapter 3 highlight, there is a need to understand timing charac-

teristics of the devices in the network and potential side-effects such as unexpected data-plane

interruptions for certain reconfigurations. We show how a management application can use

43

44 Chapter 4. Design of an NSAL for Partially Deployed Software-Defined Networks

the abstraction layer to discover and configure Quality of Service (QoS) options in the network,

monitor the devices, and prevent undesired traffic interruptions in the traditional domain.

Section 4.1 gives a detailed definition of the problem and challenges the proposed NSAL

is solving. Section 4.3 introduces the architecture, components, design trade-offs, monitoring

and the device models of the NSAL in detail. Section 4.4 discusses how the timing informations

gained by the measurements allow to calculate optimal reconfiguration orders for multi-device

reconfigurations. Section 4.5 evaluates the proposed NSAL by two use cases from the domain

of the management of partially deployed SDNs. Section 4.6 summarizes the chapter and puts

the NSAL in the context of the subsequent chapters of this thesis.

The content of this chapter is based on the results presented in the following publications.

[12] presents the design of an NSAL following the [RFC7426] proposal. Furthermore, the two

investigated use cases are discussed and the Domain Specific Language (DSL) is introduced.

The architecture is implemented and for a special use case demonstrated in [10].

[12] C. Sieber, A. Blenk, A. Basta, D. Hock, and W. Kellerer. “Towards a Programmable

Management Plane for SDN and Legacy Networks.” In: IEEE Conference on Network

Softwarization (NetSoft). 9 pages. Seoul, South Korea, 2016. doi: 10.1109/NETSOFT.

2016.7502428.

[10] C. Sieber, A. Blenk, D. Hock, M. Scheib, T. Hohn, S. Kohler, et al. “Network Con-

figuration with Quality of Service Abstractions for SDN and Legacy Networks.” In:

IFIP/IEEE International Symposium on Integrated Network Management (IM). 2 pages.

Ottawa, Canada, 2015. doi: 10.1109/INM.2015.7140446.

4.1 Design Challenges and Problem Definition

Figure 4.1 introduces the abstract reference architecture for an NSAL. The reference archi-

tecture is proposed in the informal Request for Comments (RFCs) 7426 as Software-Defined

Networking (SDN): Layers and Architecture Terminology [RFC7426]. The figure shows a par-

tially deployed SDN network where some of the devices are already migrated to SDN-enabled

devices (S). Traditional/legacy devices are denoted by (L). The NSAL is located on top of

the network and consists of a control module for the SDN-enabled devices and a management

module for the management plane of both types of devices. The NSAL provides an interface

to the network orchestration and network control applications which allows to request the

topology and current state of the network, including monitoring information, and to initiate

reconfigurations to the network.

The RFCs does only provide the general architecture and does not go into details on how

to programmatically combine the control- and management-plane. Questions like, which

https://doi.org/10.1109/NETSOFT.2016.7502428
https://doi.org/10.1109/NETSOFT.2016.7502428
https://doi.org/10.1109/INM.2015.7140446

4.1. Design Challenges and Problem Definition 45

Network Applications / Orchestration

Control Module
(OpenFlow, I2R, ..)

Management Module
(CLI, NETCONF, ..)

Network Services Abstraction Layer

Reconfiguration

Request
Topology

Retrieval

Partially deployed SDN network

S

S S

L S

L

Monitoring

C M

Figure 4.1: A NSAL as defined by RFC7426: Software-Defined Networking (SDN): Layers and

Architecture Terminology [RFC7426] is a layer consisting of a control and management module which

provides northbound control applications a unified interface for reconfigurations and monitoring.

packet scheduling strategies are supported by a particular device?, or how long does it take

until a particular reconfiguration is applied to the data-plane?, can only be discovered by

studying the device’s handbook or conducting measurements. Recent proposals for vendor-

neutral management data-models, such as OFCONF, are still lacking majority and do not

provide a standardized way of device capability discovery, device status monitoring, timing

characteristics and side-effect discovery. For SDN-enabled devices, the control protocols such

as OpenFlow or ForCES offer a more detailed and standardized data-model than found in

traditional devices. However, those protocols do not offer timing information or QoS feature

discovery and especially in the case of the wide-spread OpenFlow, a particular device does not

have to support all standardized features. Furthermore, it is unclear which reconfigurations

and features trigger fast-path processing and which slow-path processing on a specific device.

Next, we discuss the key challenges when designing an NSAL for partially deployed SDN

networks. The described challenges C2.1 - C2.6 are sub-challenges of C2: Design of an

Abstraction Layer for Partially Deployed Software-Defined Networks.

4.1.1 C2.1: Different Control and Management Data-Models

While communication protocols and forwarding behavior of network elements are highly

standardized, the management and control data-models of the devices are less standardized.

This presents a key challenge for any NSAL which wants to control a heterogeneous network.

Challenge C2.1 is therefore the design of an abstraction layer considering different control and

46 Chapter 4. Design of an NSAL for Partially Deployed Software-Defined Networks

management data-models. Section 4.3.4 tackles this challenge by proposing a graph-based

representation of devices’ packet processing capabilities. That way a control application can

traverse the graph to find the desired features and configuration options.

4.1.2 C2.2: Level of Abstraction

There is a lack of research in the literature about which level of abstraction is the most suitable

one for an NSAL. Is it better to include as many parameters and exceptions from all the

different devices in the network into the NSAL data-model or is it better to design it light

and try to find the best parameter settings for each device automatically? A more detailed

data-model gives network applications on top of the NSAL more freedom in adjusting device

parameters. However, a very detailed model results in an increase in complexity for each of

the network applications, but the gain of adjusting every device’s parameters is not clear and

requires research for every device and use case. A slim data-model enables rapid development

of network control applications. However, the NSAL has to infer proper default values for

parameters not visible to the applications, which might result in non-optimal parameter choices.

Challenge C2.2 is therefore the selection of a suitable level of abstraction. The challenge is

tackled in Section 4.3.2 by analyzing the trade-offs and defining a sensible level of detail.

4.1.3 C2.3: Different Reconfiguration Delays

Especially traditional devices are not designed to be reconfigured fast or often. Hence,

configuration interfaces are often text-based and not streamlined for efficient processing of

reconfiguration requests. This is confirmed by the measurements in Chapter 3 which show that

reconfiguration delays differ greatly between different devices. Two questions arise from this.

First, how to provide the reconfiguration delay information to the network applications and that

way enable timed reconfiguration execution? Second, how to prevent network applications

from accidentally or deliberately overloading a slow device in the network? Challenge C2.3

is therefore the design of a mechanism for synchronizing reconfigurations across devices

and preventing device overload. The challenge is tackled in Section 4.4 of this chapter.

Furthermore, Chapter 5 takes a closer look at the theoretical problem of having devices with

different reconfiguration delays in a network.

4.1.4 C2.4: Non-inferable Reconfiguration Side-Effects

Section 3.2 shows how reconfigurations can trigger periods of packet loss on a network interface

of up to 6 s long. The knowledge of these side-effects is only known to domain experts and

poses challenge C2.4 for the design of an NSAL. An NSAL has to be aware of these side-effects

4.1. Design Challenges and Problem Definition 47

and either deploy automated countermeasures, e.g., temporary rerouting traffic, or inform

applications north of the NSAL about the side-effects of their desired reconfigurations. The

challenge is tackled in Section 4.4 by proposing a methodology for exposing the side-effects

to the northbound control applications.

4.1.5 C2.5: Monitoring of Heterogeneous Devices

As there is no unified interface to the heterogeneous devices, monitoring the devices also

poses a challenge for the NSAL. In order for the NSAL to provide programmable access to the

network for northbound control applications, providing the current state of the network as part

of the NSAL interface is necessary. Most devices support the Simple Network Management

Protocol (SNMP) monitoring protocol, but every device and vendor supplies their own

Management Information Base (MIB). The MIB describes which metrics of a device can be

monitored and how they are accessed. OpenFlow-enabled devices can be monitored through

the OpenFlow-protocol which supports basic counters per flow and per interface. Hence, the

NSAL has to provide a unified way for northbound applications to collect long-term metrics

from OpenFlow-enabled and traditional devices and on-demand real-time monitoring as part

of a programmable interface. Challenge C2.5 is therefore the design of a suitable monitoring

subsystem for the NSAL. Section 4.3.3 proposes a suitable and flexible monitoring subsystem

for hybrid networks based on distributed configuration agents and dynamic monitoring task

execution. The monitoring design is evaluated for two selected use cases.

4.1.6 C2.6: Performance and Reliability

Introducing the NSAL as a single unifying layer between devices and network management

applications raises concerns about the performance and scalability of this layer. The layer

has to process each reconfiguration with a low delay and must support multiple concurrent

reconfiguration requests. Furthermore, it should offer a unified view and thus be logically

centralized, but physically distributed to prevent a single point of failure and ensure scalability

for scenarios with a high reconfiguration load. These aspects of the NSAL design, scalability,

load-balancing, distributed operation and reliability are out of scope of this thesis. However,

in Chapter 5 we tackle the theoretical reconfiguration performance limits of hybrid networks

and in Chapter 6 we study the problem of determining the performance limit of an NSAL

instance at run-time.

48 Chapter 4. Design of an NSAL for Partially Deployed Software-Defined Networks

4.2 Background

Network management in general has received a lot of attention in the past and in the present

and is comprised of different topics. This chapter can be seen in the context of configuration

management, e.g., setting configuration options, monitoring, e.g., on-demand monitoring

tasks, and device capability discovery, e.g., QoS options. In the following, we introduce

publications most relevant to the topics of this chapter.

The ForCES protocol [RFC5810], which is positioned as alternative to OpenFlow, shares

similar concepts with the chapter at hand. In ForCES, the hardware of the forwarding elements,

e.g., switches, are modeled as processing pipelines of so called Logical Function Blocks which

can be discovered and configured. In this chapter, we aim for less complexity and model

the switches configuration interfaces as easy to use elements and abstract many low-level

details of ForCES. At [179], an informal working group of large network operators headed by

Google is working on transferring software-defined principles to the management plane. This

could greatly simplify the implementation of the device-specific modules in our configuration

agents. OFCONF [180], a data model for NETCONF, is the counterpart of OpenFlow for

the management plane. However, OFCONF is still new and the provided data models are

of limited scope. Furthermore, it is tailored to the specific needs of OpenFlow and does not

consider switch features outside of the scope of OpenFlow, e.g., input shaping. In [180], the

Open Networking Foundation (ONF) is working on a Core Information Model (CIM) which

specifies physical, logical and virtual switch components, relationships and protocols in great

detail. Our abstraction aims for a representation closer to the physical switch and does not

consider higher layer relationship between protocols. The defined relationship in CIM can be

implemented on top of our NSAL. In [188], OASIS is working on a Topology and Orchestration

Specification for Cloud Applications (TOSCA). However, the abstraction focuses on higher

level network services such as Database Management System (DBMS) and their relationship

to other entities, not on details of the individual forwarding elements.

In [49], the authors describe how domain knowledge is required for network configuration,

but hidden in domain experts and human-centered switch manuals, thus, inaccessible for

network automation. The authors introduce COOLAID, an interface similar to a database

Application Programming Interface (API) to create a logically centralized abstraction of

the network configuration. In [25], the authors argue that the management plane is too

complex due to devices exposing all their internal details and parameters. This leads to error-

prone configuration, fragmentation of management tools, and hard to understand configuration

parameters. They introduce CONMan, an abstraction layer which exposes device configuration

with inter-connected protocol configuration modules and dependencies. In [50], the authors

introduce PACMAN, a platform for automated operation and configuration management. The

4.3. Proposed Design 49

work defines active documents, which describe an abstract configuration task. One active

document represent higher-level abstractions, spanning multiple actions and one or more

devices. The work represents a vertical subset of the NSAL in our work, but designed

without northbound interface and focused on composed atomic tasks. In [47], the authors

introduce SWItch, a framework for the management of data center networks. SWItch uses

namespaces trees, similar to our switch component graph, to model the devices. COOLAID,

CONMan, SWItch and PACMAN are designed to be operated by humans and to be responsible

for the management of the traditional control algorithms. This differs from our work as we

see and design the management plane as a building block underneath a network services

abstraction layer tailored for automation. Furthermore, monitoring in the abstraction layer and

the management task timings in terms of delay and blocking are not part of their work.

In [147], the authors depict Statesman, a network-state management service deployed in

the Microsoft Azure cloud. Statesman offers a graph abstraction northbound and is designed to

resolve conflicts between different management applications accessing the graph. Compared

to our work, the abstractions are not as detailed, e.g., no QoS support, and the focus is on

network states instead of atomic tasks. Domain knowledge regarding the cost of change, i.e.,

the blocking time due to configuration change, are not available to northbound applications.

In [102], the authors conclude that monitoring the frequency of atomic management

tasks, e.g., configuration of a VLAN on an interface, can be used to classify seldom touched

configuration options as important and dangerous. This could be an extension to the estimation

in the abstraction layer introduced in our work. A way of automatically learning the capabilities

of a certain device is introduced in [119]. The authors show how an ontology-based information

extraction system can deduce the capabilities of a device by analyzing the Command Line

Interface (CLI) of the device. This could allow rapid prototyping of the device models

discussed in our work. In [114], the authors introduce Hybnet, a network manager for a hybrid

SDN/traditional networks. The work is related to the second use case in our work and to the

Panopticon approach. We see this as complementary to our work and as part of the NSAL. The

same applies to [95, 165], where the authors show OpenFlow agents and control for traditional

devices.

4.3 Proposed Design of a Programmable Abstraction Layer

In the following, we propose a reference architecture for a programmable abstraction layer

considering the challenges C2.1 - C2.5 as defined above. The NSAL and a DSL are the key

elements of this architecture. The NSAL provides a unified interface to configuration and

monitoring of the underlying network. Furthermore, it provides a stateless Hypertext Transfer

50 Chapter 4. Design of an NSAL for Partially Deployed Software-Defined Networks

In the

network

Network Services Abstraction Layer

Physical Infrastructure CLI REST SNMP NETCONF

Domain Specific Language (DSL)

REST WebSocket
Events,

Measurements

Queries,

Jobs

Monitoring

Agents

Configuration

Agents

Network

Management

System

Network Operator /

Domain experts

Processing

Pipelines

+

Task Timings
Backend

Frontend

Offline

Measurements
M

easu
rem

en
ts

Coordinator

Configuration

Store MonitoringConf. jobs

Task Scheduling

REST

Device

Database

Extended

Topology

Message

Bus
Graph DB

OpenFlow

Inventory / Discovery

Figure 4.2: The proposed architecture for an NSAL. The northbound-facing front-end consists of a

synchronous REST and asynchronous WebSocket interface. The back-end consists of a messaging bus,

distributed agents in the network and a configuration task queue. A custom device database stores the

devices timings and processing pipelines models. A proprietary Network Management System (NMS)

provides discovery and inventory services via a REST interface.

Protocol (HTTP)-based northbound Representational state transfer (REST) interface and a

WebSocket-based interface for asynchronous events, e.g., measurements and task completion

events. The DSL is a Python dialect tailored to the NSAL. It simplifies the programming for

northbound applications and coordinates the request/response model of the REST interface

with the asynchronous events of an event bus. Next, the architecture is introduced in detail.

4.3.1 Architecture

Figure 4.2 illustrates the proposed architecture for an NSAL. In order to support the NSAL,

multiple components are required southbound. In the network, distributed configuration and

monitoring agents execute configuration tasks, e.g., setting VLAN tagging through a CLI, and

gather device statistics such as device ports. Each agent is responsible for one or more devices

and uses device-specific modules to interface with the heterogeneous devices. Configuration

tasks and monitoring configuration are distributed among the agents through a task queue and

operational configuration is stored in a key-value store. A logically centralized event bus acts

as a broker for measurements and task completion events. The device database provides a

4.3. Proposed Design 51

model of the capabilities and the processing pipelines of a specific device type. A custom graph

database stores the high-level network topology and the processing pipeline of the devices

and makes it available through the NSAL. For the discovery of the network infrastructure,

including the inventory with the vendor and the model of each networking device, we utilize a

commercial NMS.

We implemented our proposed architecture relying on several open source projects, most

notable Apache ZooKeeper [190] as configuration store, Apache Kafka[169] and cross-

bar.io [172] as backend and frontend messaging bus, and RabbitMQ [183] as messaging queue.

For topology discovery and device inventory, we use the proprietary NMS StableNet [177].

4.3.2 Design Trade-offs

Next, we discuss the design trade-offs of the NSAL and its provided data model as a response

to the design challenge C2.2, the level of abstraction problem. The key metrics are the

model fidelity and the practicality as shown in Table 4.1. The data model fidelity describes

how many details of the heterogeneous configuration interfaces and hardware features of the

different devices should be exposed to the northbound management application. Practicality

describes the qualitative result of the "usefulness" of a combination of the three metrics

NSAL-intelligence, northbound-intelligence and hardware feature utilization.

First, we comment on the case of a low model fidelity. A low model fidelity requires

the NSAL to make more decisions on its own, as many parameters are hidden from the

northbound application. This is comparable to an intent- or policy-based interface where the

NSAL receives abstract requirements and translates them to device-specific configurations.

The metric NSAL intelligence required behaves inverse to the model fidelity. A low model

fidelity requires the NSAL to make decisions on its own about parameters not visible to the

northbound application. A high model fidelity requires less intelligence in NSAL, as most

decisions about parameters are the responsibility of the northbound control application. This

is comparable to a human-centric network management where a domain expert writes custom

configuration scripts for each device.

Table 4.1: NSAL Design Trade-Offs

Model fidelity→ low medium high

NSAL intelligence required high medium low

Northbound intelligence required low medium high

Device modeling effort low medium high

Hardware feature utilization low medium high

Practicality→ low high low

52 Chapter 4. Design of an NSAL for Partially Deployed Software-Defined Networks

From the point of view of the modeling effort per device type, a low fidelity NSAL design

requires the least modeling effort, as one has to create a basic common model for all switching

devices only, e.g., to distinguish OpenFlow from traditional devices. However, a low model

fidelity is not able to fully leverage all features of the hardware. For example, the OFCONF

management data model for OpenFlow does only support data-rate based scheduling, even

if the hardware could support mechanisms like Priority Queuing (PQ) or input queuing.

Furthermore, specific hardware features outside of a simple model cannot be considered from

the global perspective of the northbound management application.

A high model fidelity in turn only requires minimal NSAL intelligence. In the best case,

one northbound request translates exactly to one required configuration change, e.g., changing

a weight of a queue. On the other hand, this increases the complexity of the decision logic in

the NSAL, as it has to be able to handle many options and also device-specific exceptions and

limitations, e.g., one feature blocks another switch feature. Then again, a high model fidelity

in combination with a complex management module algorithm allows to globally utilize a

large portion of the features of specific device types, e.g., all the different scheduling strategies,

with the cost of a high modeling effort per device type.

The design of our NSAL aims for a medium practicality. Whenever possible, we design the

NSAL in a way that one northbound change requests translates to one southbound configuration

job. Furthermore, we do not expose all hardware features of the heterogeneous devices to the

management module to facilitate rapid development of novel management plane algorithms.

Device-specific features and parameters not covered by the NSAL are silently set to meaningful

default values by the configuration agents, still based on hand-crafted rules by domain experts.

4.3.3 On-Demand and Long-Term Monitoring

In following we describe how the proposed NSAL tackles design challenge C1.5, the on-

demand and long-term monitoring of heterogeneous devices. We see network monitoring

in the NSAL mostly as an enabler for northbound applications to verify the configuration.

Hence, traffic engineering techniques, e.g., load-balancing, are not in the focus, but possible

with the provided primitives. Figure 4.3 depicts the two modes of monitoring supported by

the platform, namely task-based on-demand monitoring and continuous monitoring. Both

modes are defined based on the unified NSAL specification, but executed in the context of

the device-specific modules in the monitoring agents. The choice of how to implement the

monitoring, e.g., SNMP traps or CLI polling, is up to the device-specific module and based

on human domain experts implementation.

The on-demand monitoring creates monitoring tasks consisting of the device and com-

ponent to monitor, e.g., interface X of device A, the metric to monitor, e.g., interface status or

4.3. Proposed Design 53

Device

Task A Task B

If condition == true:

return SUCCESS

Event Bus

SUCCESS /

TIMEOUT

Configuration

Store

Push

Monitor

Agents

Event Bus

Push

DSL

Northbound

Application

DSL

Northbound

Application

Network SAL

Device

Monitor

Agents

Q
u

eu
e

Network SAL

Figure 4.3: The two modes of monitoring supported by the proposed architecture. On-demand

monitoring executes arbitrary monitoring tasks close to the device with high frequency and defined

stop criteria. Long-term monitoring data configuration is pushed in the configuration store and from

there to the agents.

received bytes, a condition which terminates the task, e.g., average of received bytes samples

is smaller than 1000 Bytes, and a maximum execution time of the whole task. The condition is

expressed as arbitrary (Python) code that is executed in an isolated execution environment with

access to numerical statistic programming packages and the collected samples. On-demand

monitoring tasks allow for high frequency monitoring without burdening the northbound

interfaces with unnecessarily frequent samples and are designed for distributed synchronous

operation (do - wait for condition - continue).

The continuous monitoring mode is designed for long-term data acquisition and asyn-

chronous events. Continuous monitoring is not expressed as a monitoring task, but as a

permanent configuration in the configuration store. The application on top of the NSAL can

set an interval and optional threshold for all metrics defined in the NSAL. The configuration

is saved to the configuration store, which triggers the monitoring agent to update its local

configuration. If the metric exceeds the threshold, the agents send the measurement sample to

the message bus where the application on top of the NSAL, i.e., the management application,

can listen for the stream of samples.

4.3.4 Extended Graph and Device Models

In the following, we describe the structure of the (extended) topology graph which in-cooperates

the processing pipelines and QoS features of the devices into the high-level topology. The

54 Chapter 4. Design of an NSAL for Partially Deployed Software-Defined Networks

ASICInterface Matcher Scheduler

ASIC

Network Management

System (NMS)
SDN Controller

CM managedBy

Device

Device

containedIn

I O I O I O

Figure 4.4: Example of a extended graph with processing pipeline of an OpenFlow switch with

two connected ports, an Application-Specific Integrated Circuit (ASIC), a matcher, three queues,

and a scheduler. managedBy relationships define the responsible configuration entities. containedIn

relationships define dependencies, e.g., of a device or interface shutdown. Input (I) and Output (O)

define the packet processing path.

extended graph tackles the design challenge C2.1 of different control and management data-

models and QoS discovery.

We use three devices from our testbed as reference, an NEC PF5240F, a Cisco Catalyst

4503-E and an HP-V1910 switch. We define the graph as a list of components with attributes

and unidirectional relationships/links between the components. The components can be

put into two categories; components that describe the processing pipeline, e.g., a queue

or scheduler, and components that describe switch features, e.g., an OpenFlow interface

component. In the following we introduce the components associated with the processing

pipeline and discuss component relationships.

Table 4.2 summarizes the relationships between the switch components used in the extended

network graph. There are the input and output relationships, which are used to specify the

processing pipelines. managedBy allows to delegate the configuration interface of a component

to a different component. For example, a hardware interface of a switch does not have its

own configuration interface, but is configured through the CLI or NETCONF configuration

interface. containedIn specifies the physical or logical dependency of a component and allows

to deduce failure or maintenance impacts from the graph. For example, an interface restart

results in unavailability of the whole processing pipeline inside the interface.

To describe the processing pipeline, we use an input and output relationship. Depending

on the type of the component, a component can have zero or more inputs and zero or more

outputs, e.g., a scheduling component has multiple inputs and one output. Figure 4.4 gives an

example model of a simple OpenFlow switch with two connected ports. The interface shown

4.3. Proposed Design 55

Table 4.2: Relationships Between Switch Components

Type Description

managedBy Refers to the component/device which accepts the configuration changes

for the component.

containedIn Specifies which logical or physical component houses the component.

input & output Specifies the packet processing workflow for a component.

to the left is directly connected to the ASIC, the switching engine. The input path from the

interface to the right to the switching engine does not contain any components. Therefore it

has no input shaping mechanisms. The output path to the interface to the right offers three

queues, which are connected to a Weighted Fair Queuing (WFQ) scheduling component and

a matcher. The matcher is associated with a managedBy relationship with the SDN Controller

(C). All other configurable components are managed by an NMS (M). All components of

the switch use the containedIn relationship to associate them with the device.

Some of the switches in our testbed allow to adapt the processing pipeline to specific use

cases. We model this by introducing an alternative path start and end component in the graph.

This enables applications on top of NSAL to traverse the different alternatives like they would

traverse links and nodes in a standard high-level topology graph. Furthermore, this simplifies

modeling the processing pipeline, as it does not inflate the definition of generic scheduler and

generic queue components. Figure 4.5 presents a simplified model of the processing pipeline

of the NEC switch in our testbed using alternative path components. The processing path

on the top provides 8 queues scheduled by a WFQ scheduler, while the path on the bottom

schedules only 6 queues with a WFQ scheduler and two 2 queues, plus the output of the WFQ,

with a PQ scheduler.

Start PQ

WFQ

WFQ

End

ASIC

Figure 4.5: Example of an alternative output graph path from the switch’s ASIC to an interface of a

NEC device. The top path offers eight queues scheduled using WFQ. The bottom path two queues with

PQ and six queues with WFQ.

56 Chapter 4. Design of an NSAL for Partially Deployed Software-Defined Networks

The introduced extended graph enables control applications to discover path and QoS

options simultaneously. For example, a control application which embeds flows with low-

latency requirements into the network can discover the three queues and the scheduler in

Figure 4.4. The application can do this without having to know about implementation details

or vendor-specific configuration interfaces. After discovering the options, the application can

reconfigure the scheduler and the matcher to isolate specific flows. By using the managedBy

relationships, the NSAL is able to forward the configuration to the responsible entity for the

matcher (C) and for the scheduler (M).

4.4 Task Composition and Overall Timing Estimation

In this section, we discuss how an application on top of the NSAL can perform management

operations and query an estimation of the timing characteristics of the tasks to be executed.

Querying the impact of a management operation beforehand tackles design challenge C2.4:

non-inferable reconfiguration side-effects.

Management operations are expressed as atomic configuration tasks. One task, e.g.,

assigning a VLAN tag to an interface, either succeeds or fails and can be characterized by its

timing, e.g., the time it takes for the desired configuration to put into effect, and side-effects,

e.g., a necessary interface restart. In the following, we define a configuration task in detail.

Afterward, we introduce the methodology for estimation of task timings and side-effects based

on the measurements in Chapter 3. We give a generic solution to encompass a variety of use

cases from enterprise networks to networks with strict timing characteristics. In the presented

use cases we reduce the complexity as some aspects are not needed to describe the selected

use cases.

A composite task T is defined as a set of atomic tasks t (T := {t1, ..., tn}). Each atomic

task is defined by four types of delay. t0 denotes the time the atomic task is executed, tt the

transport delay caused by the NSAL, i.e., the task forwarding to the agent, the processing time

by the agent and the physical propagation delay between agent and the target device,

estimate(T) :=
©«

tt tp tb td

t1 tt
1

t
p

1
tb
1

td
1

t..

tn tn t
p
n tb

n td
n

ª®®®¬
(4.1)

4.5. Use Cases and Prototype Evaluation 57

exec(T) :=
©«

tt
+ tp

t1 tt
1
+ t

p

1

t.. tt
.. + tp

..

tn tt
n + t

p
n

ª®®®¬
(4.2)

A composite task can either be estimated or executed through the NSAL. An estimation

tries to estimate tt , td , tb, and tp based on the measurements. In our prototype implementation,

the estimation returns the average values of the measured delays and in case of the transport

delay, the average measured transport delay (round-trip) of previously executed tasks on a

specific device. Note that the device database does not only contain measurements, but

additional knowledge of domain experts is still required and implemented to capture corner

cases, e.g., changing from scheduler A to B restarts the interface, changing from B to A

not. Equations 4.1 and 4.2 summarize the output of the estimation and execution function,

respectively. We focus on tb in the remainder of this chapter, as interruptions are most relevant

to our investigated use cases.

4.5 Use Cases and Prototype Evaluation

In the following, we introduce and evaluate two use cases implemented on our proposed

architecture. Both use cases are from the domain of SDN-hybrid networking. In the first

use case we evaluate the VLAN-based Panopticon [110] approach from the perspective of

the management plane and show how the domain-specific knowledge provided by the NSAL

can reduce or prevent short-term interruptions of virtual networks. In the second use case,

we combine the first use case with QoS discovery and configuration. We use the NSAL to

discover alternative processing pipelines with low latency scheduling to prioritize traffic of

specific VLAN tunnels. Furthermore, in this use case, we deploy task prediction and the

on-demand monitoring to prevent mid-term, i.e., about 6 seconds, service interruptions of

virtual networks.

4.5.1 UC1: VLAN Tunneling / Panopticon

Figure 4.6 depicts the test-bed topology for the VLAN tunnel use case UC1. Two SDN

domains are connected by a traditional network consisting of five switches. The five switches

allow three paths between two SDN domains where the two traditional edge nodes are shared

by all three paths. For sake of simplicity, the relevant traditional hardware interfaces are

numbered from 1 to 15. tx denotes the atomic task to change the VLAN tagging of interface x.

58 Chapter 4. Design of an NSAL for Partially Deployed Software-Defined Networks

H

SDNSDN

SDN

Domain

SDN

Domain

2

3

4

5

6

7

8

9

C

N1

N2

N31 16

12

13

14

11

12

VLAN VLAN

15

Legacy DomainLegacy Domain

Figure 4.6: Two SDN domains in our test-bed connected by a VLAN tunnel. Dashed interfaces

indicate the configured VLAN tunnel on the top path. C (Cisco Catalyst 4500), N (NEC PF5240) and

H (HP V1910) denote the type of the switch.

Table 4.3: Task execution order and resulting interruptions

ID Execution order Blocking Duration tb

1 {t2, t7, t13}, {t4, t12, t15} 251.6 ms

2 {t4, t7, t12, t13}, {t2, t15} 125.8 ms

3 {t2}, {t4}, {t7}, {t12}, {t13}, {t15} 1984 ms

Now, we assume device N2 on the top path is scheduled for maintenance, e.g., a firmware

upgrade. Without any further information about the devices and without advanced monitoring,

a naive approach could be to execute the tasks tx, ∀x ∈ {2, 4, 7, 12, 13, 15} in parallel to create

a new VLAN tunnel between the SDN domains to steer the traffic through device H. Note

that tx, ∀x ∈ {2, 4}, tx, ∀x ∈ {7, 12} and tx, ∀x ∈ {13, 15} cannot be executed in parallel

as they require changes to the same device. A more advanced approach could first execute

tx, ∀x ∈ {4, 7, 12, 13} to configure a new tunnel and afterward, when the device acknowledged

the command, change the steering by executing tx, ∀x ∈ {2, 15}.

Table 4.3 lists the overall blocking for different task execution orders. The overall blocking

duration is derived from the task execution order and the per-device measurements presented

in Chapter 3.1. We assume that each set is executed in the order given in the table and that the

tasks in a set are executed in parallel. The orders with ID 1 and 2 are the worst and best case

task execution orders for parallel task execution, respectively. Order 3 represents the worst

case for sequential task execution, when the management application waits for confirmation

before continuing to the next task. From the table we conclude that a planned task execution

decreases the traffic interruptions on average by factor 16. Although the absolute interruption

time of up to 2 seconds seems negligible for low frequencies of configuration changes, we

argue that a future autonomous decision entity on top of the NSAL makes use of the interface

with a higher frequency than a static VLAN tunnel set-up. For example, this can be for

load-balancing reasons and, therefore, can result in frequent interruptions.

4.5. Use Cases and Prototype Evaluation 59

SDNSDN

SDN SDN

2

3

5

6

8

9

C

N

1 16

14

11

12VLAN

VLAN

15

Legacy DomainLegacy Domain

+ PQWFQ

WFQ
17

Figure 4.7: Set-up for the second use case consisting of two SDN domains, two named switches,

NEC and CISCO. Switch NEC supports an alternative QoS processing pipeline on the output interface

as shown in Figure 4.5

4.5.2 UC2: QoS Discovery and On-demand Monitoring

In the second use case UC2, we show how a management application uses the NSAL to first

discover low-latency options and second, configure low-latency tunneling through a traditional

network. Figure 4.7 depicts the test-bed for the second use case. The network consists of

an SDN and traditional domain. Two (physical) paths through the traditional domain are

connecting the two SDN domains. One path traverses the NEC switch on top and the second

path traverses a simple traditional switch with VLAN configuration options on bottom. The

NEC allows to switch to alternative packet processing pipelines as hinted in the upper part of

the figure and illustrated in detail in Figure 4.5.

In order to provide low-latency virtual networks, the management application first has to

discover the extended network graph through the NSAL. The discovery takes a path of nodes

and edges from the high-level topology and returns an extended path consisting of the switch

components on the path, including the alternative processing selectors and QoS schedulers.

In the extended graph, it can calculate all shortest paths where priority queuing is available

and based on the calculated paths, determine the alternative path selectors to configure. If the

path selector is configured without further analysis, i.e., without calling estimate of the task to

be executed, the virtual networks are interrupted for about 6 seconds as the measurements in

Chapter 3.2 showed.

In the following, we show how the domain knowledge of the device database provided by

the NSAL allows the management application to predict the interruption, monitor it on-demand,

and reroute the traffic accordingly. We denote tx, e ∈ {2, 3, ..15} as the atomic task to configure

the interfaces {2, 3, .., 15} and the alternative path selector {17}. A management application

aware of the prediction provided by the NSAL, first gathers a set of tasks required for changing

to an alternative processing pipeline, denoted as T , with T := {t17} in this case. Second, it

calculates the combined blocking delay by tb
max := max({tb

x }, ∀x ∈ T}) on the path. If the tb
max

is larger than a defined threshold tb
thress

of acceptable interruption, it decides to re-route the

60 Chapter 4. Design of an NSAL for Partially Deployed Software-Defined Networks

1 import nmdsl a s nm
2 import ne tworkx as nx
3
4 topo = nm . t opo l ogy ()
5 sp = nx . a l l _ s h o r t e s t _ p a t h s (topo , s o u r c e =1 , t a r g e t =16)
6
7 f o r s in sp :
8 e t = nm . e x t _ t o p o (s)
9

10 pq = [e f o r e in e t i f e . type () == " P r i o r i t y Q u e u i n g "]
11
12 i f not l en (pq) : cont inue
13 break
14
15 pq = pq [0] # on l y one pq s c h e d u l e r here
16
17 i f not pq . i s _ s e l e c t e d () :
18
19 i f pq . s e l e c t () . e s t i m a t e () [’ t _b ’] > 5 :
20 nm . e x e c u t e ([e . s e t _ v l a n (1 2) f o r e in sp [1] [1 : − 1]])
21
22 pq . s e l e c t () . e x e c u t e ()
23 pq . c o n t a i n e d _ i n () . w a i t _ f o r (’ i n t f _ s t a t u s =="up " ’ ,
24 f r e q = 4)
25 nm . e x e c u t e ([e . s e t _ v l a n (1 0) f o r e in sp [0] [1 : − 1]])

Listing 4.1: Implementation of use case 2 in the proposed DSL

traffic before the change of the processing pipeline. For example, the interruptions observed

in Section 3.2 can be expressed by estimate(t15), which returns an average tb of 6 seconds.

Next, we introduce the implementation of this use case in the Python-based DSL. We

assume the reader to be familiar with the general Python3 syntax. Listing 4.1 gives the

implementation in source code and the subsequent enumeration summarizes the steps with

corresponding line numbers in square brackets. Please note that the listing is over-fitted to

the scenario due to space constraints, i.e., additional loops and checks are required to make it

work under different scenarios and environments.

Step 1 [4] Retrieve high-level topology

Step 2 [5] Calculate shortest paths

Step 3 [8] Request extended graph for shortest paths

Step 4 [15] Select path with priority scheduler

Step 5 [19] Predict tb for alternative processing path

Step 6 [20] Re-route traffic to second shortest path

Step 7 [22] Execute conf. job for alternative processing

Step 8 [23] Monitor interface, wait until available again

Step 9 [25] Re-route traffic to first shortest path again

4.5. Use Cases and Prototype Evaluation 61

0 5 10 15 20

Time (s)

0

200

400

600

800

1000

T
h

ro
u

g
h

p
u

t
(P

ac
k

et
s

p
er

se
co

n
d

)

t0
2 t0

2

t0
17

Figure 4.8: Use case 2 implemented in our testbed. The short traffic interruptions are caused by

rerouting of the traffic by changing the VLAN configuration. t0
2

and t0
17

are the times when the

management application created the configuration tasks and before the task is executed by the agents.

First, we retrieve the high-level topology as a graph of connected interfaces. This requires

one call to the NSAL. Second, we calculate the path options between the two domains and

afterward, in Step 3, we query the NSAL to retrieve the extended graph including the interface

processing pipelines for each relevant path, i.e., the upper and lower one in this use case.

Subsequently, in Step 4, we traverse the extended graph to search for priority schedulers. Next,

we check if the scheduler is on a selected path segment by calling is_selected on the priority

queuing switch component. As the path segment is not selected, we create an anonymous task

object and retrieve tb by calling estimate. Note that this does not execute the task. Afterward,

as tb > 5s, we use VLAN tunneling to create a linear VLAN broadcasting domain (excluding

the SDN edge interfaces) to steer the traffic to the bottom path. This implicitly creates a list of

configuration jobs, which are forwarded to the configuration agents. In Step 7, we execute the

configuration job to select the priority scheduling. This creates one configuration job, which

is executed on the NEC switch and results in an interface restart, thus, a blocking time. In

Step 8, we create a monitoring job to check every 250 ms for the interface status and return

when the interfaces is available again. In the final step, we change the VLAN configuration to

steer the traffic again to the default upper path.

Figure 4.8 depicts a stream of packets traversing the set-up presented in Figure 4.7. The

figure shows how the packets are affected by the described configuration changes. The traffic

is interrupted two times, but only for a brief duration and the interruptions correspond to

the measured tb values in Chapter 3.1. This demonstrates how the interplay of discovery,

management, and monitoring enables an autonomous management application on top of the

proposed NSAL can correctly predict and reduce traffic interruptions.

62 Chapter 4. Design of an NSAL for Partially Deployed Software-Defined Networks

4.6 Summary and Discussion

In the following, we summarize the chapter, relate the architecture to the aforementioned

challenges and discuss open questions. In order to facilitate innovation in the management-

plane of modern network equipment, a device- and vendor-neutral unified NSAL for discovery,

monitoring and configuration of device resources is required. Such a unified abstraction is a

first step towards combining network control with network management in a programmable

manner. Thus it unifies the feature set of network control with the feature set of management

actions. Additionally, the abstraction layer provides means to capture domain knowledge

from human experts and human-centered manuals, such as device-specific limitations and

non-inferable side-effects of management actions. For example by making port-based QoS

schedulers available through the programmable abstraction layer, the number of possible QoS

options compared to the OpenFlow and OFCONF data model can be increased.

The chapter proposes an architecture with an extended network topology that provides a

hardware detail-level that includes even the processing pipelines of devices. Via a northbound

interface, management applications can run networking tasks through a vendor- and device-

neutral abstraction layer. By example of Panopticon, a strategy for OpenFlow networking in

mixed-SDN/traditional networks, we show how a management application can implement the

strategy through the NSAL. Furthermore, the architecture provides mechanisms to estimate

traffic interruptions due to the triggered management actions, e.g., due to the changes of the

QoS scheduler configurations. By example, we show how a smart task scheduling based on

the timings of the management actions can mitigate service interruptions in a QoS use case.

In summary, challenge C2.1, different control and management data-models, is tackled

by providing detailed device models which combine control and management aspects of a

device. Challenge C2.2, the level abstraction, is tackled by choosing a level of abstraction

which allows rapid development and semi-autonomous decisions. Challenge C2.3, different

reconfiguration times, is addressed by providing an API for northbound applications to query

beforehand the execution times of different reconfiguration tasks and thus gives the northbound

application the possibility to plan accordingly. Challenge C2.4, non-inferable reconfiguration

side-effects, is tackled by the same API as discussed for challenge C2.3. The API also offers

the opportunity for northbound applications to query possible data-plane interruptions as

side-effects of the reconfiguration. Challenge C2.5, on-demand and long-term monitoring of

heterogeneous devices, is approached by integrating monitoring in the detailed device models.

Monitoring can either be expressed as a task as short-term and high-frequency monitoring

or as long-term monitoring through a permanent configuration setting. Challenge C2.6 is

discussed in detail in the subsequent Chapters 5 and 6.

Chapter 5

Theoretical Performance Limits of an

NSAL for Hybrid Networks

Chapter 3 presented measurement results highlighting the differences in flexibility between

Software-Defined Networking (SDN) and traditional devices in terms of reconfiguration

speed. The measurements show an up to hundredfold difference of reconfiguration times

between SDN and traditional devices. Hence, traditional devices are not designed for frequent

reconfigurations and are slow to react to reconfiguration commands by the Network Services

Abstraction Layer (NSAL) management module. SDN-capable devices on the other hand are

fast to reconfigure through the simple match-action rules pushed by the NSAL control module.

In this chapter we focus on the question how the differences in reconfiguration speed constrain

the maximum achievable reconfiguration rate, denoted as λmax , of the NSAL. Furthermore, we

investigate a collection of real-world topologies and shed light on the achievable reconfiguration

rate in various stages of the SDN migration process, depending on the size and structure of

the real-world topologies.

We first introduce a methodology which allows to evaluate the impact of these differences

on the maximum reconfiguration rate of the whole network for different SDN deployment

stages. Second, we introduce a metric, the potential P, which describes how much a topology

benefits from SDN deployment. Third, we investigate a large number of real world topologies

and the gain in terms of flexibility that can be achieved by deploying SDN-capable devices

incrementally. The results show that even a small number of slow devices can severely

constrain the maximum reconfiguration rate. Furthermore, even with the majority of the

network nodes being replaced by SDN-capable devices, the maximum reconfiguration rate

increases in the best case only up to five times compared to the all-traditional network.

The contribution of this chapter is threefold. First, we introduce an analytical method based

on queuing theory to quantify and compare the maximum reconfiguration rate λmax based on

63

64 Chapter 5. Theoretical Performance Limits of an NSAL for Hybrid Networks

the ratio of SDN and traditional devices in the network. Second, we propose an intuitive metric

to compare different network topologies in terms of their benefit through SDN deployment in

terms of flexibility. Third, we investigate a large number of real world topologies and the gain

in terms of flexibility that can be achieved by increasing SDN deployment.

The chapter is structured as follows. Section 5.1 defines the problem and challenges of

determining the flexibility in terms of maximum reconfiguration rate of a hybrid network in

detail. Section 5.2 introduces the relevant background. Section 5.3 defines the general system

model and Section 5.4 introduces the potential P of a topology. Section 5.5 surveys a large

number of real world topologies based on the introduced methods and metric. Section 5.6

summarizes the chapter and discuss the findings.

The content of this chapter is based on the theoretical framework introduced in [15]

and the measurements results presented in [12]. [15] introduces the scenario, defines the

methodology, proposes the potential P and conducts the survey using a set of real-world

topologies. [12] introduces measurements regarding reconfiguration timings of different

traditional and SDN-enabled switching platforms.

[15] C. Sieber, R. Durner, and W. Kellerer. “How fast can you reconfigure your partially

deployed SDN network?” In: IFIP Networking Conference. 9 pages. Stockholm,

Sweden, 2017, p. 9. doi: 10.23919/IFIPNetworking.2017.8264845.

[12] C. Sieber, A. Blenk, A. Basta, D. Hock, and W. Kellerer. “Towards a Programmable

Management Plane for SDN and Legacy Networks.” In: IEEE Conference on Network

Softwarization (NetSoft). 9 pages. Seoul, South Korea, 2016. doi: 10.1109/NETSOFT.

2016.7502428.

5.1 Challenges and Problem Definition

Figure 5.1 depicts the NSAL as introduced in the previous chapter. The figure shows a network

consisting of traditional (L) and SDN-enabled devices (S). The network is controlled by

the unified control and management layer which provides applications northbound, e.g., an

orchestrator, control over the network. For example, the orchestrator could be OpenStack

[181], a cloud computing framework. The orchestrator uses the abstractions provided by the

NSAL to query the network topology and to trigger reconfigurations. We assume that these

reconfigurations are requested with a certain rate λ by the orchestrator and implemented by

the NSAL in the network on one or multiple devices. A problem arises if the global rate of

reconfiguration is over a certain threshold the network can handle, denoted as λmax . Hence, if

λ > λmax the system becomes overloaded and reconfiguration times increase.

https://doi.org/10.23919/IFIPNetworking.2017.8264845
https://doi.org/10.1109/NETSOFT.2016.7502428
https://doi.org/10.1109/NETSOFT.2016.7502428

5.1. Challenges and Problem Definition 65

Network Applications / Orchestration

Network Services Abstraction Layer

Reconfiguration

Requests

S

S S

L S

L

𝜆𝑚𝑎𝑥
1

n

T
ran

slatio
n

2

3

4

5

6

1

C M

Figure 5.1: Overview of the scenario and investigated challenges. Reconfigurations are done by

network control applications or orchestration systems (1) on top of the NSAL with a rate of λ (2).

Each reconfiguration request translates to multiple reconfiguration tasks (3). Reconfiguration tasks

are non-uniformly distributed to the devices in the network (4). Some devices react slowly, e.g.,

traditional devices, but receive a big fraction of the tasks (5).

5.1.1 C3.1: Determining Maximum Global Reconfiguration Rate

The NSAL is a platform for northbound control applications for use cases ranging from load

balancing, access control, Quality of Service (QoS) configuration to traffic accounting, each

with a certain demand on reconfiguration latency and rate. A use case becomes infeasible

if the demand in reconfiguration rate and latency exceeds the available rate and the control-

or management-planes of devices become overloaded with reconfigurations. Overloaded

devices result in reconfiguration queue buildup at the NSAL and increased control delay.

Challenge C3.1 is how to determine λmax for a given topology and SDN deployment stage.

The importance of λmax comes from the fact that λmax determines the feasibility of network

management use cases. Use cases which may be possible on fully deployed SDN networks,

such as per-flow routing, become infeasible with partially deployed networks where slow

traditional devices can not keep up with a reconfiguration per flow arrival.

5.1.2 C3.2: Quantifying Benefit of SDN Upgrade for a Network

From the survey in Chapter 2.6 we conclude that the (partial) deployment of SDN-capable

devices is mostly driven by use cases such as monitoring, load balancing or access control,

besides the promised ease of management. A deployment strategy therefore faces the question

at one point in time: How much is the benefit from upgrading more traditional devices to

66 Chapter 5. Theoretical Performance Limits of an NSAL for Hybrid Networks

SDN-capable devices? Challenge C3.2 is therefore how to quantify the benefit of continued

SDN upgrade for a network in terms of maximum reconfiguration rate.

5.1.3 C3.3: Quantifying Average Benefit for Real-World Topologies

The structure of evolved real-world provider and enterprise networks differs from synthetic

and well-structured topologies found in data-centers and simulations. It is therefore important

to evaluate the benefit of incremental SDN upgrade for realistic topologies. Challenge C3.3

is the investigation of the distribution of the benefit in realistic upgrade scenarios. The

distribution allows to deduce important insights into SDN deployment gains with respect to

reconfiguration rates. That way, popular SDN use cases can be evaluated for their feasibility

in realistic incremental deployment scenarios.

In the subsequent sections we first introduce the background, methodology, metrics

and notations for describing the flexibility of partial SDN deployments. Afterwards we

introduce the system model. Based on the system model, we show how the maximum global

reconfiguration rate of a network topology can be calculated. Besides the graph properties

of the topology, the placement of the traditional and SDN devices in the partial deployments

is important for the global reconfiguration rate. We discuss a best case, worst case and

random placement of traditional and SDN devices in the network. Afterwards, we discuss the

maximum feasible reconfiguration rate of all possible placements in general and of a specific

topology in particular as an example. Then, we introduce the potential P, an intuitive metric

for comparing different topologies in terms of their expected gain in flexibility when deploying

SDN. The last part of the chapter investigates a large collection of real-world topologies for

their suitability for incremental migration to SDN.

5.2 Background

To the best of our knowledge, the literature does not tackle the problem of different reconfigu-

ration speeds in hybrid networks so far. However, there are publications related to orthogonal

topics which we describe in the following. One orthogonal research angle is to reduce the

number of necessary reconfigurations. This can be done for SDN using wild-card rules.

Authors of [52, 164] aim to reduce the control plane load by limiting the network state view of

the centralized controller. As a side effect, this also reduces the necessary reconfiguration rate

and mitigates the issues we try to solve here. Differences in the time to update switches can

also cause congestion and inconsistencies in a network in general. Authors of [97] provide an

algorithm that schedules network updates efficiently. The focus of the work is on optimizing

5.3. System Model 67

rule ordering for network updates which are non-atomic in order to improve reconfiguration

speed. However, the global maximum reconfiguration rate is not evaluated.

Authors of [83] evaluate gradual deployments of SDN devices in terms of throughput.

They review real world topologies, where some percentage of the devices are replaced. They

observe that for traffic engineering a relatively small deployment of about 20 % can reduce

congestion and maximum link usage in real Internet Service Provider (ISP) and enterprise

topologies effectively. Authors of [93, 116] provide a traffic model of OpenFlow. However,

the authors focus on modeling reactive SDNs, while we aim to model the maximum achievable

reconfiguration rate independent of the reactive or proactive use case, and especially for mixed

SDN/traditional networks.

5.3 System Model

Figure 5.2 shows the arrival process at the NSAL with the global reconfiguration rate λg.

Table 5.1 summarizes the notation. The reconfigurations arrive through the NSAL in a proba-

bilistic manner following a Poisson process. The inter-arrival times are negative exponential

distributed. This mimics the combined request stream from different network applications

such as orchestrators, load balancers or firewalls on top of the NSAL. The NSAL translates

the reconfigurations to configuration commands or OpenFlow messages for each device and

forwards them to the devices. Different assumptions can be made in the way how the com-

mands are completed on the device. We assume a First-In First-Out (FIFO) queue of all the

commands for each node. For traditional devices this might not be an actual queue on the

device, but rather a blocking Transmission Control Protocol (TCP) management connection

which requires the NSAL to store the commands until the device is free again to accept the

next command. Regarding SDN devices, related work shows that the configuration times are

limited by the interaction between Central Processing Unit (CPU) and Application-Specific

Integrated Circuit (ASIC) [80]. As a result, the commands are queued by the switch software

running on the CPU, e.g. the OpenFlow agent.

The measurements in Chapter 3 show that the command execution times on the devices

depend on multiple influence factors. For our model we assume a common deterministic

reconfiguration time for all traditional devices and likewise for all SDN devices (hL and

hS). One device is therefore modeled as an M/D/1 system following Kendall’s notation.

Multiple reconfigurations can be performed in the network at the same time, if they require

reconfigurations of disjoint sets of devices. But if multiple reconfigurations are required to a

single device, the configuration commands of the device are enqueued.

68 Chapter 5. Theoretical Performance Limits of an NSAL for Hybrid Networks

Network Services Abstraction Layer

𝜆𝑔
𝜆 (𝐴)

𝜆 (𝐵)
𝜆 (𝐶)

𝜆 (𝐸)
𝜆 (𝐷)

Figure 5.2: Abstract reconfiguration model with one configuration queue for each device showing

local and global configuration arrival rates

Table 5.1: Key variables and notations used in the chapter.

Notation Description

λg Global arrival rate

λ(v) Arrival rate at device v

V All nodes/devices in the topology

h(v) Deterministic configuration time of device v in seconds

|V | Number of devices in the topology

σ(s, t |v) Boolean indicating path from device s to t includes v

cB(v) Centrality of device v

hL, hS Reconfiguration time of traditional and SDN devices

The maximum achievable reconfiguration rate can be computed using queuing theory.

Each device v has its deterministic reconfiguration time h(v). Not every global reconfiguration

includes every device, so only a fraction of λg has to be processed by one device which

leads to a local arrival rate λ(v). The fraction of the global reconfigurations processed by

a single device can be chosen in different ways. For example, the fraction for each device

can be deduced from historic data. Or, it can be estimated based on the intended use case of

the partial SDN-deployed network at hand. We choose the fractions based on the transition

use case of setting up Virtual Local Area Network (VLAN) tunnels in the network. If the

tunnel endpoints are chosen randomly from all devices in the network and all tunnels are setup

using the shortest path, the probability of device v being part of one tunnel is exactly the

betweenness centrality cB(v). Besides the use case of tunnel configuration, the betweenness

centrality follows the intuition that a more central device is part of more reconfigurations in

the network. cB(v) of a specific device v is defined in [67] and specifies the fraction of all

shortest paths which include the specific device:

5.3. System Model 69

cB(v) =
∑
s,t∈V

σ(s, t |v)

σ(s, t)
(5.1)

Here σ(s, t |v) equals one if the path from device s to device t includes v otherwise zero. The

local configuration rate can then be computed as:

λ(v) = cB(v) · λg (5.2)

For a given topology and configuration times, it must hold true:

∀v : λ(v) · h(v) < 1 (5.3)

or else the configuration queue grows unrestricted. This leads to a maximum global configu-

ration rate of a given network:

λg,max = max
v∈V

(
1

cB(v) · h(v)

)
(5.4)

5.3.1 Network Realizations

The measurements show that SDN devices support a higher reconfiguration rate compared to

traditional devices. However, to determine λmax it is not enough to just consider the number of

deployed SDN devices, but also their placement in the topology, i.e., which of the traditional

devices in the current network are replaced by faster SDN devices. For a given deployment

ratio and topology, the SDN devices can be placed in different ways. We call the resulting

networks different realizations of the same topology. For example, for a device count of 9 in

a topology and a deployment ratio of 22 %, there are
(9
2

)
= 36 possible network realizations,

including the best and worst case realizations. Two possible realizations, a best case and a

worst case realization, are shown in Figure 5.3. In the best case, the fast SDN devices are

placed most central (Fig. 5.3a). In the worst case, they are placed at the edge of the network

(Fig. 5.3b) . Best case and worst case result in largely different feasible configuration rates.

For a deployment ratio of 22 % and hL
= 650 ms and hS

= 1 ms, the best case realization

has a maximum rate of 1389 s−1, while in the worst case the network can only process 2.14

reconfigurations per second.

The maximum possible reconfiguration rates of all possible network realizations can be

summarized as follows: We assume that the reconfiguration bottleneck is always a traditional

node. This is true for most topologies if the SDN reconfiguration rate is much faster than the

traditional reconfiguration rate. Therefore, regarding the maximum global reconfiguration

rate, the most central non-SDN device constraints the reconfiguration rate.

70 Chapter 5. Theoretical Performance Limits of an NSAL for Hybrid Networks

0.72

0.42

0.58

0.22

0.22

0.22

0.22

0.22

0.22
SDN

(a) Best Case

0.72

0.42

0.58

0.22

0.22

0.22

0.22

0.22

0.22
SDN

(b) Worst Case

Figure 5.3: Best case (left) and one worst case realization (right) of a topology with 9 nodes and a

deployment ratio of 2
9 . The annotations in the nodes denote in-betweenness centralities.

The number of network realizations with a specific device as bottleneck can be deduced

from counting the placement combinations. The maximum reconfiguration rate of one device,

if the device is traditional, is given with:

λL
max,v =

1

hL · cB(v)
(5.5)

We sort all rates and index the resulting set Λ with index x:

Λmax = {λ
L
max,v(x)∀v | λ

L
max,v(x) ≤ λ

L
max,w(x + 1)} (5.6)

With this we can compute the fraction of all possible topology realizations which are constrained

by the maximum reconfiguration rate at index x of Λmax with l traditional devices out of |V |

total devices in the topology: (|V |−x
l−x

)
(|V |

l

) (5.7)

By applying the formula for all λmax,v in the set Λmax , we get the maximum reconfiguration

rate distribution of all realizations. Next, we discuss how the deployment ratio relates to λmax

and apply the described placement counting to an example topology.

5.3.2 Feasibility of Reconfiguration Rates

We define a reconfiguration rate λg feasible for a given SDN deployment ratio and network

realization if the rate λg is less than λmax . Therefore, when only considering the SDN

deployment ratio, there exists a range of feasible configuration rates. Depending on the

deployment ratio, we can identify three feasibility regions for a given network topology and

given reconfiguration times (hL and hS). Figure 5.4 qualitatively illustrates the three feasibility

regions I, II and III. The feasibility regions are defined as follows.

5.3. System Model 71

I. Not feasible

II. Feasibility depends

III. Always feasible

𝜆𝑔

SDN Deployment Ratio 1

Leap

Transition

in steps

0

(𝜆𝑚𝑎𝑥𝐵𝐶)

(𝜆𝑚𝑎𝑥𝑊𝐶)

Figure 5.4: Qualitative feasibility regions depending on the SDN deployment ratio and maximum

possible reconfiguration rate over all possible network realizations. For the best case λBCmax , the

maximum reconfiguration rate increases in steps with increasing deployment ratio. For the worst case

λBCmax , the rate stays low for higher deployment ratios until all devices are replaced by SDN devices.

I All reconfiguration rates in the region above the best case realization are infeasible,

independent of the SDN and traditional device placement.

II The reconfiguration rate is feasible if the different device types are placed such that

λg < λmax holds true.

III Even for the worst case realization the requested reconfiguration rate is always feasible.

For a network without any SDN devices, there is only one network realization and therefore

the worst case rate λWC
max equals the best case rate λBC

max and there is no feasibility region II.

With growing SDN deployment more and more central switches can be SDN-enabled and

the best case rate grows quickly until all devices in the network’s core are replaced by SDN

switches and the growths saturates. The border between region II and III, where the worst

case realizations are located, has a contrary behavior and first stays constant until it leaps to

λBC
max when 100 % deployment is reached. At 100 %, there is only one possible realization

again. Next, we take a closer look at feasibility region II for a real-world topology. The goal

is to better understand the expected benefit of SDN deployment, if the deployment strategy is

not optimal, e.g., a semi-random upgrade strategy. We evaluate the wide area network shown

in Figure 5.5, the AT&T MPLS topology, taken from the Internet Topology Zoo [186].

For the evaluation of the expected gain we use the configuration delays of the NEC device,

as the NEC is the most recent carrier-grade hardware among the measured devices with

traditional and SDN mode. Hence we set hL
= 650 ms and hS

= 1 ms. The topology has a

device count of 25 and there are 225 possible network realizations in total.

Figure 5.6 visualizes the maximum reconfiguration rate for all possible network realizations

of the AT&T MPLS topology. The x-axis denotes the SDN deployment ratio. The y-axis

72 Chapter 5. Theoretical Performance Limits of an NSAL for Hybrid Networks

Figure 5.5: AT&T MPLS topology (Internet Topology Zoo [186])

0.0 0.2 0.4 0.6 0.8 1.0

SDN Deployment Ratio

0

5

10

15

20

λ
m

a
x

[s
−

1
]

I

II

III

Figure 5.6: Analytical solution space for the AT&T topology for deployment ratios between 0 and 1

in steps of 0.1. λmax is quantized to steps of 1. Color density indicates where the majority of network

realizations are located. Green and red show the best case and the worst case realizations, respectively.

denotes the maximum global reconfiguration rate. The red line on the bottom indicates the

worst case network realization. The green line indicates the maximum reconfiguration rate

for the best case. We can observe that for this topology the border between feasibility area II

and III is constant at λmax = 4.16 s−1. The I/II border grows steadily for an increasing SDN

deployment ratio.

The figure also shows the number of possible network realizations in area II using density

indications. For the density indications we quantize λmax and the SDN deployment ratio to

steps of 1 and 0.1, respectively. It can be observed that until a ratio of ≈ 0.8 is reached, most

deployments are close to the worst case with respect to λmax . This is because a single slow

device at a central position can constrain the global reconfiguration rate and the probability

for this is high in a random SDN deployment.

From this it follows that the transition strategy has to carefully select which devices to

upgrade, as a random replacement of traditional devices with SDN devices will most likely

not benefit the flexibility of the network. This also holds true for faster traditional devices, i.e.,

5.4. Potential P 73

for smaller values of hL . Smaller values of hL result in an increase in reconfiguration rate of

the I-II and II-III borders. However, there is still a high density of slow reconfiguration rates

close to the II-III border for hL >> hS.

5.4 Potential P

In order to evaluate and compare topologies in terms of their expected increase in global

reconfiguration rate when deploying SDN, we propose the potential P of a topology. The

feasibility regions show that centrality is a key influence factor of the potential flexibility gain.

Therefore, we define P as independent of the configuration times of the devices and focus on

the centrality cB of each node. P is defined as the mean relative positive squared deviation

from the median of the node centralities. Cmed is defined as the median of all node centralities,

Cmed = median{cB(v), ∀v ∈ V}. C+ is the set of all node centralities greater than the median,

C+ = {hB(v), ∀v ∈ V |hB(v) > Cmed}.

P =

∑
∀c∈C+
c (

c−Cmed

Cmed
)2

|C+ |
(5.8)

With the deviation from the median, the potential P puts an emphasis on the beginning of the

migration phase with 0 % to 50 % of the devices being replaced by SDN devices. In general,

the metric favors topologies with a high number of nodes with a high centrality and decreases

for topologies without central nodes.

5.5 Topology Investigation

In the following, we evaluate the achievable gain in terms of global reconfiguration rate when

deploying SDN in real-world networks. We do so by applying the methodology to the Internet

topology zoo. The Internet topology zoo provides a database of about 250 publicly available

real-world topologies ranging from small testbed installations to large global-scale backbone

networks. We filter the topology zoo by discarding topologies which are not connected or

not unique in terms of node centralities. After filtering, the topology set for the evaluation

contains 81 topologies with a node count between 4 and 74 and an average of 22 nodes per

topology.

In the best case, to increase the maximum reconfiguration rate of the network, a network

operator would choose to upgrade devices to SDN which are central or receive the most

reconfiguration requests and are slow to reconfigure at present. Therefore, we define the best

case (BC) gain as the ratio between the achievable reconfiguration rate of a topology with

74 Chapter 5. Theoretical Performance Limits of an NSAL for Hybrid Networks

0.0

0.2

0.4

0.6

0.8

1.0

C
m
e
d
,C

+

*

1
10

P

*

0 5 10 15 20 25

Topologies

1
10

B
C
G
ai
n

*

Figure 5.7: Centrality distribution, potential and best-case gain for a deployment ratio of 25 % of a

random subset of the Internet topology zoo. Cmed is shown as red horizontal line. C+ as black dots.

The bigger the distance between maximum and median is, the bigger is the potential for increasing

reconfiguration rate and BC gain by deploying SDN.

and without SDN devices at the nodes in the topology graph with the highest centralities. For

example, a BC gain of 1 refers to a doubling of the maximum achievable reconfiguration rate.

Next, we first discuss a random subset of the topologies in greater detail. Afterwards we

summarize the findings over all topologies. At the end, we discuss the relationship of the gain

and the potential P based on the topology set. Reconfiguration times are set to hL
= 650ms

and hS
= 1ms.

Figure 5.7 illustrates the BC gain, the potential P and the centralities for 26 of the 81

topologies. The BC gain is given for a deployment ratio of 25 %. P and BC gain are shown

on a logarithmic scale and the topologies are sorted by P. The upper part of the figure shows

the median of the centralities Cmed with a wide red bar. The shorter gray bar shows the 75 %

quartile, i.e., the most utilized traditional node in a 25 % SDN deployment. The dots indicate

the centralities greater than the median (C+) of each topology. The AT&T Multiprotocol Label

Switching (MPLS) topology from Figure 5.6 is located at position 14 and marked with a star.

Two conclusions can be drawn from the figure. First, the potential P gives a good estimate

of how well topologies can profit from SDN deployment compared to each other. However

there are exceptions like topology 3, 17 and 20 which can profit far less from the SDN

deployment than P suggests. This is due to that the difference between topology 3’s most

central node (upper most dot) and the 75 % quartile (gray short bar) is smaller in comparison

to topology 2 and 4. Hence, topology 3 can not profit as much from an 25 % SDN deployment

as topology 2 and 4. Second, the achievable best case gain for 25 % deployment varies greatly

5.5. Topology Investigation 75

100 101

Best Case Deployment Gain

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F median

25%

50%

75% - 25%

75% Deployment

Figure 5.8: CDF of the best case deployment gain over 81 real world topologies for deployment ratios

of 25 %, 50 %, 75 % and the difference in gain between 75 % and 25 %. A deployment gain of 1

translates to a doubling of the maximum global reconfiguration rate of the network.

between different topologies. For topology 3 we observe a gain of only 0.18, whereas topology

26 exhibits a gain of about 27. The AT&T MPLS topology is with a gain of 1.6 close to the

median of 1.5 of all shown topologies. On average, there is a gain of 3.4.

Next, we evaluate the achievable gain for all topologies in the topology set for 25 %, 50 %

and 75 % SDN deployment. Figure 5.8 shows the Cumulative Distribution Function (CDF) of

the best case deployment gain on a logarithmic scale. "75 % - 25 %" denotes the difference

between the 25 % and 75 % gain for each topology. The points where 50 % of the topologies

have less than a specific gain are highlighted by the grey semi-transparent vertical line. The

line intersects the CDFs at a gain of 1.37, 1.67, 2.57 and 3.76 from the left to the right.

The figures shows that for half of the real-world topologies, upgrading half of the nodes to

SDN, results in the best case in an up to three to four times higher achievable reconfiguration

rate. If only one forth of the devices are upgraded, the gain drops to two to three times

in the best case. If three forth of the devices are upgraded, the achievable reconfiguration

rate increases to four to five times. The CDF for the difference between 75 % and 25 %

deployment answers the question of how much gain can be expected when continuing SDN

deployment from 25 % to 75 % of the devices. The results show that for half of the topologies,

an continuation in the upgrade process increases the reconfiguration rate up to two to three

times, similar to the upgrade from all-traditional to 25 %.

Next, we discuss the correlation between the best case gain and the potential P based on

the investigated topology set. Table 5.2 summarizes the Pearson linear-correlation between the

76 Chapter 5. Theoretical Performance Limits of an NSAL for Hybrid Networks

hL/hS

5 10 100 650 1000

25% 0.66 0.85 0.94 0.94 0.94

50% 0.48 0.71 0.80 0.80 0.80

75% 0.35 0.56 0.74 0.74 0.74

Table 5.2: Pearson correlation between potential P and BC gain for 25 %, 50 % and 75 % SDN

deployment and four different ratios of hL/hS with hL
= 1ms.

best case gain and the potential P for three different deployment ratios and five different ratios

between the configuration times of the traditional and SDN devices (hL/hS). In general, we

observe that the linear correlation is stronger for higher values of the ratio hL/hS. This comes

from the fact that P expects the slowest SDN device to be faster than the fastest traditional

device, which is less likely for lower ratios of hL and hS. Furthermore, the correlation

decreases for higher deployment ratios. This is not surprising as P is defined to favor lower

deployment ratios. The Spearman rank-correlation (not shown in the table) is ≥ 0.90 for all

combinations of 25 % and 50 % deployment and all configuration time ratios shown in the

table and ranges between 0.35 and 0.75 for 75 % SDN deployment. From this it follows that

the potential P is suitable for comparing the gain of topologies in magnitude and rank.

5.6 Summary and Discussion

In this section we summarize the chapter and discuss the presented methodology, metric and

the results of the topology investigation. Based on the results of the measurements in Chapter 3

we know that the evaluated traditional devices have highly varying reconfiguration times from

3 ms to 20 ms and up to 650 ms. For the system model we assume the worst case and define

a traditional reconfiguration time of 650 ms and a SDN reconfiguration time of 1 ms. This

is a best case choice from the perspective of the migration process. That way an upgraded

device can support a 650 times higher reconfiguration rate and thus a potential reconfiguration

bottleneck in the network is eliminated.

The following three challenges are investigated by this chapter. First, determining the

maximum global reconfiguration rate of a topology (C3.1). Second, quantifying the benefit of

SDN upgrade for a network (C3.2). Third, quantifying the distribution of the gain with real-

world topologies (C3.3). To this end, we introduce a system model and argue that configuration

tasks are formulated centrally, e.g., by a network management application on top of the NSAL,

and afterwards placed in device specific queues. Based on previous work on SDN migration,

we introduce a scenario where each device receives a fraction of the global reconfigurations

generated by the abstraction layer. This fraction defines the reconfiguration work-load of

5.6. Summary and Discussion 77

a device and is based on the device’s in-betweenness centrality. However, the presented

methodology is not limited to the in-betweenness centrality as workload metric for a device.

Other options could be to determine the workload of a device based on historic data. Afterwards,

we introduce the concepts of feasibility and maximum achievable global reconfiguration rate.

For a specific topology in a specific migration stage, a global reconfiguration rate is feasible if

no single device is overloaded by its fraction of the reconfigurations.

Subsequently, we discuss how the distribution of SDN and traditional devices in the network

influences the maximum achievable rate. Here we see that there is a best case strategy which

replaces first the devices with the highest workload and a worst case strategy to replace first all

edge devices with low workload. Additionally, we present how the maximum reconfiguration

rate of all possible upgrade strategies can be calculated. Based on an example we deduce

that a random upgrade strategy results much more likely in a maximum reconfiguration rate

close to the worst case than to the best case. This stems from the fact that a single slow device

can severely impact the global reconfiguration rate and that the number of devices with low

centrality is much higher compared to the number of devices with high centrality. At the end

of the section we introduce the metric P which captures how well a given topology responds

to the best case migration strategy. As we see in the evaluation, the potential P is suitable for

capturing the best case gain well up to a 50 % deployment ratio.

We then apply the methodology to a large number of real-world topologies from the

Internet topology zoo. We evaluate the expected best case gain for deployment ratios of 25 %,

50 % and 75 %. The results show that for 50 % of the topologies an SDN deployment ratio of

25 % increases the global reconfiguration rate up to two to three times. Furthermore, we see a

similar increase when continuing the migration from 25 % to 75 %. Hence, when three out

of four devices are upgraded, we observe the global reconfiguration rate being up to 5 times

compared to the all-traditional case. In general it is surprising that the 650-fold increase in

terms of possible reconfiguration rate of the SDN devices results in a relatively low increase

in the global reconfiguration rate even in the best case.

An operator can apply the following three step approach to determine the flexibility of his

network. In a first step, the operator measures the reconfiguration times of the devices (h(v))

in the network depending on the use cases at hand, e.g. for VLAN tagging. As a second

step, the operator determines for each node in this network the fraction of reconfiguration it

receives, either by monitoring the currently deployed network, or by approximating the future

transition scenario through other means, such as a simulation. Subsequently, the operator can

apply the presented methodology to determine a suitable upgrade strategy with respect to the

desired maximum global reconfiguration rate.

78 Chapter 5. Theoretical Performance Limits of an NSAL for Hybrid Networks

E

B

D

CA

Shortest

Path

Balanced

Configuration

Path

Figure 5.9: The design of a reconfiguration load-balancer could be a potential further research direction.

A device at a central location can be overloaded by reconfigurations (E). However, the path from A to B

going through C and D might be underutilization both in terms of data traffic and reconfiguration load

on the devices. Reconfigurations could be balanced by restricting the path choices for the data routing.

One future research direction is the design of a reconfiguration load balancer. By dis-

tributing the reconfiguration load between the devices, the maximum global reconfiguration

rate can be increased. However, this requires a careful design of a combined routing and

reconfiguration balancing algorithm. In the example in Figure 5.9, the device E is overloaded

in terms of reconfigurations. If link and control utilization allows it, the reconfigurations could

be assigned to devices C and D instead. That way, the reconfiguration load on device E could

be reduced and large queues of reconfiguration tasks prevented. This would not only increase

the maximum possible rate, but also the reconfiguration delay and thus enable use cases for

the NSAL which require frequent reconfigurations.

Chapter 6

Performance Modeling of a

Software-Based NSAL at Runtime

The Network Services Abstraction Layer (NSAL) processes all reconfigurations and control

messages to and from the network. This makes it a critical part of the infrastructure with high

requirements on availability and performance. Therefore, understanding the performance of the

NSAL at run-time is of importance. The chapter at hand investigates the application of machine-

learning for the online performance modeling of an NSAL at run-time. Figure 6.1 illustrates the

scenario and methodology. For reliability and horizontal scalability, the logically centralized

NSAL (1) is physically distributed. The NSAL consists of one or more instances (3) which

share (6) the reconfiguration load (λ) generated by the northbound control applications (2).

The NSAL instances must not be over-utilized to prevent reconfiguration delay and should

not be under-utilized to not waste resources. The central questions of this chapter are: which

model describes the performance of an NSAL under resource constraints best? and how

can this model be trained at runtime? And if there is a change in available resources, how

can this be detected and the model consequently be adapted to the new environment? An

accurate estimation of the maximum reconfiguration rate of a specific instance, denoted as the

reconfiguration budget (5 / 8), allows a load-balancer (6) to optimally distribute the load

between the instances. The challenges how to distribute the workload and how many instances

are required are out of scope of this chapter.

The contribution of this chapter is as follows. We first introduce the novel control message

load generator hvbench for dynamic and scalable generation of reconfigurations. Second, we

introduce multiple NSAL performance models and select, based on experiments, the model

which generalizes the best for different NSAL implementations and hardware platforms. Third,

we propose an online machine learning pipeline (7) to train (4) the performance models

and refresh the models in case of concept drift due to fluctuations of available resources.

79

80 Chapter 6. Performance Modeling of a Software-Based NSAL at Runtime

Network Applications

Network Services

Abstraction Layer

Instance

𝜆
1

Network Services

Abstraction Layer

Instance

Logically

Centralized

NSAL

Performance Modeling

of a Software-Based

NSAL at Run-time

Data-

Plane

Load-

Balancing

Outlier

Detection

Performance

Modeling

Budget

Estimation

Samples

Training

Estimation

Budget Estimation

Learning Pipeline

2

3

3

4

5

6

M
ea

su
re

m
en

t

7

8

C M C M

Figure 6.1: Performance modeling of a software-based NSAL at run-time. This chapter defines and

evaluates a machine-learning pipeline (7) for the maximum reconfiguration rate estimation (8) of

an NSAL instance. A load-balancer (6) distributes the reconfiguration load λ between the logically

centralized (1), but physically distributed, NSAL instances (3). The budget estimation can be used

by the load-balancer to decide on the required number of NSAL instances and the workload for each

NSAL instance.

The concept drift is detected using outlier detection (3). Forth, we evaluate the pipeline by

exploring the parameter space and give guidelines for different deployment scenarios. The

proposed pipeline can be deployed as part of an autonomous load-balancing/orchestration

layer which keeps track of current usage and capacity of running NSAL instances. This allows

load-balancing of northbound control applications based on their control message rate and

that way prevent over- and underutilization of the NSAL instances.

This chapter is structured as follows. Section 6.1 first defines the problem and challenges

in detail. Section 6.2 then gives the background of this area of research. In Section 6.3 the

formalized NSAL system model is presented. In Section 6.6 the proposed learning pipeline,

the performance models and the chosen machine learning techniques are introduced. Section

6.7 discusses the experimental evaluation methodology and Section 6.8 presents the results of

the evaluation. Section 6.9 concludes this chapter by deducing deployment guidelines from

the findings and give an outlook on future work in this area.

The content of this chapter is based on the results presented in the following publications.

[11] proposes and evaluates three models for the performance of an NSAL. From the three

proposed models, the best performing model is chosen and implemented in the learning

pipeline. The online learning pipeline is presented and evaluated in [18]. The dynamic load

generator tool is presented in [13] and made available as an open source project.

6.1. Challenges and Problem Definition 81

[18] C. Sieber, A. Obermair, and W. Kellerer. “Online learning and adaptation of network

hypervisor performance models.” In: IFIP/IEEE International Symposium on Integrated

Network Management (IM). 9 pages. Lisbon, Portugal, 2017. doi: 10.23919/INM.2017.

7987462.

[11] C. Sieber, A. Basta, A. Blenk, and W. Kellerer. “Online Resource Mapping for SDN

Network Hypervisors using Machine Learning.” In: 2nd IEEE Conference on Network

Softwarization (NetSoft). 5 pages. Seoul, South Korea, 2016. doi: 10.1109/NETSOFT.

2016.7502447.

[13] C. Sieber, A. Blenk, A. Basta, and W. Kellerer. “hvbench: An open and scalable SDN

network hypervisor benchmark.” In: IEEE NetSoft Conference and Workshops: Software-

Defined Infrastructure for Networks, Clouds, IoT and Services. 4 pages. Seoul, South

Korea, 2016. doi: 10.1109/NETSOFT.2016.7502475.

6.1 Challenges and Problem Definition

The problem can be divided into the three distinct challenges: Finding an accurate NSAL

performance model, training of the model and detecting concept drift with subsequent model

refresh. Next, we discuss the three challenges in detail.

6.1.1 C5.1: Accuracy of the NSAL Performance Model

A logically centralized, but physically distributed, NSAL requires accurate budget estimation

of each distributed NSAL instance to prevent under- or overutilization of instances. Budget

denotes here the maximum rate of messages the NSAL can process. Each instance may

vary in deployed software, software revision or underlying hardware, e.g., number of Central

Processing Units (CPUs), or which type of hardware virtualization is deployed, e.g., KVM or

XEN. Hence, it is of importance that the model generalizes well and provides high estimation

accuracy under different deployment scenarios. Challenge C5.1 is therefore the process of

developing and comparing different NSAL performance models.

6.1.2 C5.2: Training of the Model at Run-time

Hardware virtualization became ubiquitous in data-centers and allows convenient and secure

co-location of software and whole operation systems on the same physical hardware. Resources,

such as number of CPUs or Random Access Memory (RAM), can dynamically be added and

removed to satisfy increased or decreased demand. However, for accurate estimations of the

rate budget of the NSAL, the model parameters have to be fitted to the underlying platform.

https://doi.org/10.23919/INM.2017.7987462
https://doi.org/10.23919/INM.2017.7987462
https://doi.org/10.1109/NETSOFT.2016.7502447
https://doi.org/10.1109/NETSOFT.2016.7502447
https://doi.org/10.1109/NETSOFT.2016.7502475

82 Chapter 6. Performance Modeling of a Software-Based NSAL at Runtime

One way to solve this are offline benchmarks of every NSAL instance in every deployed

environment. However, this approach is not scalable to a larger number of platforms and

NSAL implementations. Challenge C5.2 is therefore the online fitting of the model parameters

to the underlying platform. To this end, a learning pipeline has to be designed which receives

and filters measurement samples and fits the model parameters. Additionally, hyper-parameter

of the pipeline, such as the samples weighting, have to be investigated for optimal estimation

accuracy in different environments.

6.1.3 C5.3: Detecting Concept Drift and Refreshing the Model

Concept drift describes the decrease of the model’s estimation accuracy over time. We focus

on dynamic resource assignments as a cause of concept drift. There are multiple reasons for

dynamic resource assignments in virtualized compute environments. For example, a dynamic

resource increase can happen with vertical auto-scaling. There, the infrastructure increases

the assigned resources when an application hits a predefined threshold. A temporary decrease

in assigned resources can happen for example when higher priority tasks are scheduled.

Virtual machine migration techniques are also known for decreasing resources to speed up the

incremental state transfer between two physical machines. Other causes of concept drift can

be changes of the operational parameters of the system, such as network transport tuning or

CPU scheduling parameters.

Challenge C5.3 is therefore to not only learn an accurate NSAL performance model but

also to recognize when the NSAL is subject to an increase or decrease in available resources,

which can result in concept drift. Furthermore, false positive detections should be avoided

while at the same time being sensitive enough to adapt the model fast to changes in available

resources. The challenge is not trivial as there is a lack of insights into the underlying physical

platform. From the perspective of the NSAL instance, the parameters of the hardware do not

change but instead the hardware just exhibits faster or slower processing.

6.2 Background

To the best of the knowledge of the author there exists no other works in the area of online

learning of NSAL performance at run-time. Often models are trained on offline samples

or samples gathered of isolated application instances. We discuss first the state of the art

regarding performance of NSAL implementations in general. Furthermore, we introduce the

alternatives to the proposed hvbench load generator. Afterwards, we introduce the state of the

art in the area of application resource demand estimation in cloud environments in general

and of abstraction layers in particular.

6.2. Background 83

General NSAL Performance / NSAL Benchmarking

Software-Defined Networking (SDN) network hypervisors such as OpenVirtX (OVX) [141]

and FlowVisor (FV) [144] abstract a given SDN network and allow multiple SDN controllers

to share this network. SDN network hypervisors are NSALs but with a focus on fully deployed

SDNs-based networks and a focus on the control protocol OpenFlow. Thus, the state of art in

the area of network hypervisors is relevant here. In [26, 29, 91, 103], the authors discuss and

survey SDN network virtualization in general and the network hypervisor placement problem

(HPP) specifically. HPP targets the amount of needed hypervisor instances and the placement

of the hypervisor instances inside the network. In [30, 161], the control plane latency and

monitoring overhead of different SDN network hypervisor architectures is evaluated. But

these approaches are not applicable to our problem as per-message resource consumption

and hardware details are not available. Furthermore, performance models based on offline

benchmarks can not adapt at run-time to changes in the available computing resources or to

new hardware platforms.

Resource Usage Modeling / Performance Prediction

A related area of research is the performance prediction and classification of applications

through online machine learning from the perspective of the infrastructure provider.

In [159], Weingärtner et al. present a survey on forecasting and profiling of cloud

applications for cloud resource management. The authors show the importance of cloud

resource modeling and argue that cloud dynamism is one of the biggest challenges in this area.

Two mechanisms in our proposed pipeline deal with this cloud dynamism. First, the gradual

adaptation of the performance models at run-time. Second, the concept drift detection which

triggers a re-training of the performance models. [55] use application profiling for dynamic

scalability and contention prediction in public infrastructure. As with the other works, the

models are training offline for a specific hardware platform without considering changes to at

run-time. In [120], the authors propose and compare different approaches for per-application

resource usage prediction. In [74, 126, 143], the authors propose machine learning pipelines

to provide medium-term resource demand predictions and elastic resource scaling. In [70,

109, 160], the authors show that machine learning techniques can accurately predict future

database query resource requirements based on previously monitored queries. [90] provides

an extensive survey on anomaly detection in cloud environments in general. But anomaly

detection on performance models is not considered in [90].

This chapter extends the state of the art by tackling the dynamic budget estimation problem

from the point of view of an orchestrator with limited control and information about the

underlying virtual resources and the resources assigned to the NSAL. Furthermore, a complete

84 Chapter 6. Performance Modeling of a Software-Based NSAL at Runtime

Network Services

Abstraction Layer

Instance

NOSNOSNOSNOSNorthbound Apps

λ

Network
CPUs

Physical Resources

Network

Reconfigurations

Arrival Process

Compute

Virtualization

Fixed / Dynamic

Resource

Allocation

vCPUs𝑅
Message

Processing

S

S S

L S

L

1

2

4

3
Virtual Environment

5

6

C M

Figure 6.2: The figure illustrates the relationship between compute virtualization and the NSAL. A

resource scheduler on the physical machine (1) allocates R physical resources (2) to the NSAL

instance executed in a virtual environment (3), which uses its virtual resources to process and/or

forward control messages (4) from/to the northbound applications and the network. The resource

allocation (2) can be dynamic and be adapted at any time.

methodology is developed from the collection and filtering of samples, up to the budget

estimation and detection of concept drift.

6.3 System Model

Next, we formalize the relationship between the physical resources, e.g., CPU, the virtualized

NSAL instance and the reconfiguration rate. Figure 6.2 depicts the abstract system model.

Table 6.1 summarizes the notation. The system model extends the system model from previous

chapters by focusing on the underlying compute virtualization and processing resources. The

figure shows that from the perspective of the compute on the left, the NSAL instance (5) is

a process consisting of one or multiple threads executed inside a virtual environment (3),

e.g., KVM. The virtual environment with the NSAL inside is assigned resources R (2) by

the host’s resource scheduler based on a fixed or dynamic scheduling strategy. For example,

out of six physical CPUs, the scheduler assigns the NSAL two CPUs, so called virtual CPUs

or Virtual Central Processing Units (vCPUs), which the NSAL is allowed to utilize each up

to 50 %. We assume a dynamic scheduling strategy where the resource scheduler assigns

resources dynamically between an upper limit Rmax and a lower guaranteed limit of Rmin. ∆R

denotes a change of resource allocation. We consider compute resources, i.e., the CPU, as the

only limited resource.

6.4. The hvbench Load Generator 85

Table 6.1: Notation & Variables

Nomenclature

f m, ot(ot = { f r, er, sp, s f , po}) Reconfiguration types.

λ Total arrival rate of reconf.

λot = wot · λ Arrival rate of ot reconf.

λ f m = w f m · λ Arrival rate of f m reconf.

wot,w f m,wot + w f m = 1 Reconf. type distribution in λ.

R, Rmin, Rmax,∆R Resources assigned to NSAL.

B Total reconf. budget of the NSAL.

ρ, 0 ≤ ρ ≤ 1 Instantaneous resource utilization.

ρmax, ρmax ≤ 1 Max allowed system utilization.

ρ or ρ(λ) Performance model.

From the perspective of the network control, the NSAL consists of one or multiple NSAL

instances in between the network’s control- and data-plane. The abstraction layer allows

multiple network applications to share the control of the physical network. In OpenFlow, a

network application can control the network by adding or updating forwarding rules in the

devices using flow modification messages. Furthermore, it can request the current state of the

network, such as throughput, by sending statistic request messages. Each of the reconfiguration

or state requests has to pass through a NSAL instance, which uses its assigned resources to

process the messages (4). We assume a negative exponential (Poisson) message arrival

process with an average rate λ (6).

Some message types are computational more complex than others, e.g., simple echo

requests compared to reconfigurations. For our evaluation, we consider the OpenFlow message

types feature request (fr), echo request (er), port stats request (sp), flow stats request (sf),

packet out (po) and flow modification (fm). During our experiments with OVX and FV, we

noticed that flow modifications exhibit a much larger cost per message than each of the other

message types. Hence, for the remainder of this chapter we summarize { f r, er, sp, s f , po} as

other (ot) and denote the combined message rate as λot .

6.4 The hvbench Load Generator

There is a lack of scalable and realistic NSAL control message generators capable of emulating

dynamic load scenarios. Hence, we present an extensible and distributed NSAL load generator

framework based on flexible statistical request generators. The request generators are able to

generate Poisson arrivals of custom distributions of control message types. The framework

can be scaled out horizontally to multiple compute nodes that are centrally controlled and

reconfigured at run-time.

86 Chapter 6. Performance Modeling of a Software-Based NSAL at Runtime

Request

Weights

Poisson

Process

Category

Discrete

Distribution

Sending Process Configuration

λ
Average

rate

Dummy Data Plane

Cache

Receiving Process

Calculate

Latency

NSAL

instance

Network Services

Abstraction Layer

Network

Emulation

Resource

Monitor
Message

Processing

Northbound

Applications

Emulation

Message Generator

Northbound

Protocol Driver

hvbench

hvbench

2

1

3

4

5

6

7

Figure 6.3: Detailed view of a hvbench load generator with a single northbound application including

the message generator, one data plane node and the NSAL.

The architecture consists of four main modules. A configuration and directory service,

distributed hvbench instances, a high-throughput messaging bus and host monitors. A

command-line front-end and Python bindings simplify the usage of the distributed architecture.

hvbench instances are containers for multiple, independent, control applications and emulated

forwarding devices. When the distributed hvbench instances are started, the instances register

at the configuration and directory service. We use etcd [175] as configuration directory service

for its simplicity and support of change notifications. From this service, they receive the

run-time configuration, e.g., number of control applications per instance, and report their host

configuration, e.g., the host’s Internet Protocol (IP) address. The configuration for a specific

instance is identified by an Identifier (ID) given to each instances on start-up. Additionally,

etcd pushes run-time configuration changes, e.g., an update to the average message rate, to the

hvbench instances and the instances in return report their utilization to the directory service.

A message bus distributes injected data plane packets received from the NSAL between

the data plane nodes (packet out). This allows topology discovery via Link Layer Discovery

Protocol (LLDP) packets, as used for example by FV and OVX. We use Apache kafka [169] as

message bus because of its low latency properties and scalable architecture. For handling the

control connections and message parsing, denoted as OF driver for the control applications

and OF agent for the data-plane node, we use a customized version of libfluid [168]. The

host monitor uses a database of known implementation names to identify and monitor NSAL

6.5. Performance Model 87

processes. From the process it collects performance metrics such as CPU utilization as

reported by the underlying Linux kernel.

Figure 6.3 gives a detailed overview of a set-up consisting of one hvbench instance (1)

and one NSAL instance (2). A northbound application is described by the used northbound

protocol driver (3), e.g., OpenFlow, and the used request generator (4). As of now, two

types of request generators are implemented for a northbound application. A constant message

generator generates requests of one specific type with a specific rate, e.g., 1000 feature requests

per second. A probabilistic generator generates different requests based on a set of weights

and an average rate λ. At first, the sending process in the probabilistic generator chooses

the point in time of the next message to send based on a Poisson process with exponential

distributed inter-arrival times and an average rate of λ (5). Next, the type of the requests to

be generated is determined by a categorical (discrete) distribution based on a set of weights

(6). The average rate and the weight of each request type can be adjusted at runtime.

In the receiving process of the northbound application, we measure the latency of recon-

figuration messages (7). We use messages with replies such as echo requests to calculate the

round-trip time. Measured one-way latency depends on the quality of clock synchronization

in cases the network emulation and the northbound application are not located on the same

physical machine. The data-plane nodes emulate the OpenFlow agents and answer messages

either with random values, e.g., port statistics, or with pre-configured values, e.g., feature

requests.

6.5 Performance Model

In the following we evaluate three different performance model candidates for the learning

pipeline. A performance model has to a) make accurate estimations of the reconfiguration bud-

get, b) converge fast on unknown or changed hardware platforms, and c) avoid overestimation

of the available budget.

We define ρ(λ) as the (injective) relationship between the message arrival rate λ and the

resulting utilization of the NSAL instance. For example, ρ(10000) = 1 describes a resource

usage of 100 % of the resources R assigned to the NSAL at a message rate of 10000 messages

per second. We denote ρ−1 as the inverse of ρ, which translates resource usage to λ. The

message rate an instance can process at specific maximum utilization ρmax is denoted as

budget B:

B = ρ−1(ρmax) (6.1)

We set ρmax = 0.90 as target utilization for the estimation in the evaluation. A target of

90 % allows for inaccuracies in the prediction and leaves headroom for an unexpected increase

88 Chapter 6. Performance Modeling of a Software-Based NSAL at Runtime

in the control message rate. Thus a target of 90 % minimizes the risk of over-utilization and the

consequential increased control delay. Accordingly, the budget is defined as B = ρ−1(0.90).

Next we discuss the model candidates for ρ in detail.

6.5.1 Model Candidates and Online Fitting Method

We define three performance models for the NSAL CPU utilization ρ. The first two models are

linear models with one or multiple dependent predictors. The third model is an exponential

model. The requirements to a model are twofold. First, the model has to fit to the ground

truth, i.e., to the samples gathered offline. Second, the model must be able to estimate the

control message rate budget on potentially unknown hardware platforms not seen during

training. Furthermore, the estimation has to converge to a low error state even if only unevenly

distributed training samples are available, e.g., in the case where only a low utilization was

observed so far.

Linear Model

Equation 6.2 defines the linear model ρlin where ρ depends on the total average messages per

second λ and on the model coefficients β1 and β2. β1 represents the processing cost per one

message and assumes that the processing cost for all message types is equal. This model is

based on the intuition that the CPU utilization of the NSAL depends solely on the messages

to be processed and that each message has a fixed processing cost.

ρlin(λ) := β1 · λ + β2 (6.2)

Multiple Linear Model

The multiple linear model extends the simple linear model and introduces a breakdown of

the message rate into control message types. Equation 6.3 describes the model ρlin2 where ρ

depends on the message rate λo and cost βo for each of the message types (∀o ∈ O). Hence,

this model is able to capture the difference in processing costs of each message type.

ρlin2(λ) := (
∑
o∈O

βo · λo) + βI (6.3)

Exponential Model

The third model (ρexp) in Equation 6.4 assumes an exponential relationship between the

message rate λ and ρ. β2, βI, βb are constant offsets. The model is based on the intuition that

processing of batches of control messages becomes more efficient with increased message

rate. For example it is more efficient to collect multiple data packets from the networking

6.5. Performance Model 89

interface at once than single packets, known as batching [171]. Hence, the model describes

an decreasing cost per message with higher message rates.

ρexp(λ) := βc · (1 − e−βa ·λ) + βb (6.4)

Iterative Fitting Process and Initial State

Next, we describe the iterative fitting process to estimate the model coefficients β0, β1, βo,

βa, βb and βc during run-time. Subsequently, we denote the CPU utilization estimated by

the models at point in time t as ρt and ρt
meas as the measured CPU utilization at time t. βt

describes the value of β at time t in the learning process. Based on an initial training, we define

the following initial state for the model coefficients β. In the initial training, ground truth of

the utilization at varying message rates and on different hardware platforms was collected.

Afterwards, the coefficients of the proposed models where fitted based on the collected data.

Thus the coefficients represent the average over multiple platforms. For ρlin, β1 = 0.29× 10−4

and β2 = 0.1. For ρlin2, βo := 1 × 10−5, ∀o ∈ O and βI := 0.1. For ρexp, βa = 0.26 × 10−4,

βb = 0.201, and βc = 1.004103.

The online learning is an iterative process structured in three phases. In the first phase,

new samples are collected. The resource monitor continuously gathers a new sample each

second (l = l + 1). Second, fitting the model function(s) to the collected samples. Third, the

models are updated based on the fitting results. The process is continuously repeated when a

new measurement sample is available.

We restrict the adaptation of β per iteration to 10 % (βt+1 ∈ [βt · 0.9, βt · 1.1]) to make the

process more robust against short-term fluctuations or fitting errors. For fitting the models, we

use weighted Orthogonal Distance Regression (ODR) as introduced by Boogs et al. in [31].

ODR considers measurement errors in the input, e.g., clock drift or inaccuracy in the sending

process of hvbench or in the resource monitor, and output dimension, e.g., model discrepancy.

6.5.2 Testbed Configurations

In order to test how well the proposed performance models generalize to different hardware

platforms and virtualized environments, we perform a study with three different configurations.

Table 6.2 gives details on the configurations. The first configuration C1 is a virtual machine

based on VirtualBox which has two cores of an Intel i7-4470 CPU at 3.40 GHz assigned to it.

For the second configuration C2, we reduce configuration C1 to one CPU core. Configuration

C3 is a physical platform with 2 cores of a i7-4790 CPU at 3.0 GHz.

90 Chapter 6. Performance Modeling of a Software-Based NSAL at Runtime

Table 6.2: Hardware Configurations

C1: Virtual, 2 x i7-4770 CPU 3.40GHz

C2: Virtual, 1 x i7-4770 CPU 3.40GHz

C3: Physical, 2 x i7-4790 CPU 3.60GHz

6.5.3 Model Accuracy and Convergence Time

Next, we evaluate the estimation accuracy of the three models with the three testbed config-

urations (Table 6.2) and the two implementations OVX and FV. Furthermore, the software

switch OpenvSwitch (OVS) as a data-plane implementation is evaluated to test how well the

model generalizes to other use cases. Figure 6.4 shows the convergence times of the models

in a scenario where the reconfiguration rate is increased by 200 messages per second every

5 s, starting at 0 messages per second. The convergence time is the duration until the model

can estimate the reconfiguration rate budget within 5 % CPU utilization. Hence, the figure

illustrates how suitable and how fast the models are for the estimation of unseen utilization

values. The lower axis of the figures depicts all combinations of hardware configurations and

NSALs. The left axis gives the convergence time in seconds. The whiskers indicate the range

of the values, the box indicates the 25 % and 75 % quartiles, respectively, and the line the

median of the values.

From the figure we conclude that ρexp can estimate the CPU usage of the NSALs at about

200 s into the experiment for most combinations. Furthermore, the linear model, which does

not distinguish the request types, outperforms the second linear model, which considers the

types of the requests. The results also show that there is a difference between the different

configurations. While the linear models are good in predicting the usage for OVS in the virtual

environments, for the hardware environment C3, the prediction quality is significant lower.

For FV on the physical hardware, the ρlin2 and the exponential model show a long and highly

varying convergence time compared to the linear model ρlin.

6.5.4 Over- and Underestimation

Next, we take a closer look at whether the three models under- or overestimate the CPU

utilization and we quantify the under- or overestimation for each model for one configuration.

Overestimating the future CPU utilization can result in degrading the overall performance,

e.g., slow message processing or message rejection, and it could also result in an inefficient

resource utilization due to over-dimensioning. On the other hand, underestimation can result

in an overload of the NSAL instance by accepting messages exceeding the CPU capacity. The

under- or overestimation are calculated as follows:

6.5. Performance Model 91

F
V

C
1

F
V

C
2

F
V

C
3

O
V

S
C

1

O
V

S
C

2

O
V

S
C

3

O
V

X
C

1

O
V

X
C

2

0

500

1000

1500

2000

2500

3000

C
o
n
v
er

g
en

ce
ti

m
e

(s
)

ρlin

ρlin2

ρexp

Figure 6.4: Experiment time t where the Mean Squared Error (MSE) between the model and the

measured CPU time is and stays lower than threshold 0.05. Lower values are better. ρexp outperforms

the ρlin and ρlin2 models for most configurations.

X t
m := {∀α ∈ {t, t + 1, .., l}|ραmeas − ρ

t
m(r

α) > 0} (6.5)

φt
m :=

∑
x∈X t

m
(ραmeas − ρ

t
m(r

α))

|X t
m |

(6.6)

Y t
m := {∀α ∈ {t, t + 1, .., l}|ραmeas − ρ

t
m(r

α) < 0} (6.7)

ψt
m :=

∑
x∈X t

m
(ραmeas − ρ

t
m(r

α))

|X t
m |

(6.8)

X t
m in Equation 6.5 defines the points in time where the model ρt

m,m ∈ M at experiment

time t underestimates the future CPU utilization ρx
meas, ∀x : x > t. In Equation 6.6, φt

m defines

the mean absolute underestimation of model m starting from time t till the end of experiment

time l. Y t
m and ψt

m in Equations 6.7 and 6.8 define the mean absolute overestimation, analogous

to X and φ for underestimation.

Figure 6.5 depicts φ and ψ for OVX on hardware configuration C1 over experiment time t.

Overestimation ψ is shown on the top of the figure, i.e., positive values > 0. Underestimation

φ is shown on the lower part of the figure, i.e., negative values < 0. From the figure we

conclude that ρlin and ρexp both underestimate the utilization in this configuration. ρlin2

exhibits mostly overestimation. In terms of convergence speed, both, ρlin and ρexp, decrease

the underestimation at a similar rate starting from experiment time t = 100 s. For the

92 Chapter 6. Performance Modeling of a Software-Based NSAL at Runtime

0 100 200 300 400 500 600 700 800

Experiment time t [s]

−0.5

0.0

0.5

1.0

1.5

φ
t m

an
d

ψ
t m

ψ t
m

φ t
m

ρlin

ρlin2

ρexp

ρlin

ρlin2

ρexp

Figure 6.5: Mean absolute over- and underestimation of the models over time for an OVX instance

running on hardware configuration C1. The top part of the figure depicts the overestimation, the bottom

part the underestimation. Overestimation can lead to inefficient resource usage, while underestimation

can overload the NSAL, thus effecting all northbound applications.

overestimation case, the figure shows that ρlin and ρlin2 exhibit high overestimation compared

to ρexp. In addition to high overestimation, ρlin2 shows an oscillating behavior. ρexp can

decrease the amount of overestimation soon into the experiment and can keep it stable at a

low level starting from t > 130 s. Although the results of the figure can not be generalized

to all hardware configurations, the results give important indications on the under- and

overestimation characteristics of the three models.

6.5.5 Model Selection

In the preceding sections we compared different NSAL performance models for ρ. The results

show that a negative exponential performance model can describe the performance of an

NSAL accurately. Hence, we choose the following negative exponential model for the learning

pipeline:

ρ(λ) := Θc · (1 − e−Θa ·λ) + Θb (6.9)

While in general the model yields good results, it exhibits unstable behavior in cases where

a majority of the samples report a low utilization, e.g., ≤ 15 %. This comes from the fact

that there are many possible regression results for the coefficients Θb and Θc which fit well

to low utilization samples but do not allow accurate estimation of the budget at ρmax . Hence,

based on training experiments, we fix Θb to 0 and Θc to 1.6. Despite the fixed coefficients, the

model can still adapt through the coefficient Θa.

6.6. Proposed Learning Pipeline 93

NSAL

Resource Monitor

Application

Message Rates

Outlier Detection

(SVM)

Model Fitting
(with sample weighting)

Budget

Estimation

no outlier outlier

more than 10

outlier in a row?

discard old model,

create new from

queued samples

put sample aside

yes

no

Preprocessing /

Interpolation

ΔR Detection

Figure 6.6: Proposed NSAL performance learning pipeline. Input parameters are the resource

utilization and the northbound application message rates. Output is the estimation of the current

message rate budget. Outlier detection is used to invalidate the current model in case of significant

changes in available resources ∆R.

6.6 Proposed Learning Pipeline

In the following, we introduce the proposed learning pipeline. The objective of the learning

pipeline is to estimate the maximum performance in terms of reconfiguration message rate

λ the NSAL instance can process with the currently assigned resources R. This maximum

rate is denoted as the message budget B. Furthermore, it must detect and adapt the reported

message budget to resources fluctuations ∆R. This adaption can be gradual, by decreasing

the importance of older samples compared to more recent samples. This approach does not

require to detect ∆R. Or the adaptation can be rapid, by implementing ∆R-detection, which

detects ∆R and, if necessary, discards the current model.

We first give a general overview of the elements in the learning pipeline, including

the ∆R-detection based on an Support Vector Machine (SVM). Afterwards, we discuss the

implementation of the performance model based on the overall message rate λ from the

previous section and how we adapt it to the pipeline. Subsequently, we discuss the sample

weighting function for the gradual adaptation. At the end of this section we discuss an extended

performance model which distinguishes different message types (λ f m, λot).

Figure 6.6 presents the proposed pipeline. There are two input data sources. One is the

NSAL resource monitor which measures the exact amount of cumulative CPU time used by

the NSAL. The second one is the cumulative message counters provided by the NSAL which

denote how many messages are processed by the NSAL per message type and per application.

94 Chapter 6. Performance Modeling of a Software-Based NSAL at Runtime

Resource usage and message counter values are provided unsynchronized with a frequency of

1 Hz each. The pipeline consists of the three high-level steps: i) Collecting and preprocessing

of the monitoring samples, ii) ∆R-detection to check for concept drift and if necessary discard

the current model and iii) the model fitting and budget estimation.

First Step: Collecting and Preprocessing Monitoring Samples

The samples are then processed as follows. The first step is combining the asynchronously

collected samples of cumulative resource usage Σρ and message counters Σλ by linear

interpolation. For this, two cumulative resource usage samples before and after the point

in time t of a message rate sample st
Σλ

are taken, s<t
Σρ

and s>t
Σρ

. Afterwards, the cumulative

resource usage sample st
Σρ

for the message rate sample st
Σλ

is linearly interpolated. As a result,

we have a sample (st
Σλ
, st
Σρ
) of the message counter with the approximate cumulative resource

usage for those messages at time t. Finally, the instantaneous resource usage sρ for the message

rate at t, i.e., sλ, is calculated by element-wise subtraction (st
Σλ
, st
Σρ
) − (st−1

Σλ
, st−1
Σρ
) = (sλ, sρ).

Second Step: ∆R-detection and Model Invalidation

In the second step, the ∆R-detection checks if the current performance model is still valid and

not invalidated by a change in resources ∆R. To do so, it calculates the difference between the

sample (sλ, sρ) and the current performance model ρ() by ρ(sλ) − sρ. On this error, it applies

a one-class SVM [117] for outlier detection. The SVM is configured with a Radial Basis

Function (RBF) kernel, γ = 0.1 as kernel parameter and we consider 10 % of the training

data as outliers (ν = 0.1). Then, if none of the samples in the last Tthres = 10 seconds fit to

the current model, we assume a big resource change ∆R and invalidate the current model. If

no resource change is detected, the sample is added to the previous samples of the current

model and the model is re-trained with updated sample weights where old samples become

less important than the newer samples. A maximum of 120 samples, equal to the last 120 s,

are stored and older samples are discarded. The idea behind this is, that if there is a small ∆R

which can not be detected by the ∆R-detection, we instead adapt the model over time using

the sample weighting function and the limited sample memory of 120 s.

Third Step: Model Fitting and Budget Estimation

The training of the model uses ODR [31] which considers errors in the data in both dimensions,

i.e., in the measurement of the resource usage and the message counters. In the following we

introduce the performance model p, the sample weighting function w(t) for gradual adaptation,

the extended performance model pext and the budget B in detail.

6.6. Proposed Learning Pipeline 95

0 20 40 60 80 100 120

Sample Age Time t [s]

0.0

0.2

0.4

0.6

0.8

1.0

w
β
(t
)

β = 0

β = 0.01

β = 0.04

β = 0.2

Figure 6.7: Sample weighting function w(t) (Eq. 6.10) describes the important of each sample in the

regression depending on the age t of the sample in seconds. Parameter β describes how fast the weights

of the samples decrease. The figure illustrates w for β = [0.0, 0.2, 0.04, 0.01]. For β = 0, w becomes

w(t) = 1, which makes the weight of a sample independent of its age. For β = 0.2, the weight of a

sample becomes half after five seconds.

6.6.1 Gradual Adaptation and Sample Weighting Function

If the resources R assigned to the NSAL instance do change, but the ∆R-detection does not

detect it, the performance model has to incrementally adapt over time. We perform the gradual

adaptation of the model by reducing the importance of each sample in the regression based on

its age. In Eq. 6.10 we define a function w(t) which describes a negative exponential decay

process. t denotes the age of the sample in seconds. The negative exponential decay process

was chosen based on preliminary experiments.

w
β(t) := e−t·β (6.10)

Figure 6.7 illustrates w for four different values of β. For β = 0, w becomes w(t) = 1,

which makes the weight of a sample independent of its age and all 120 samples are equally

important in the regression. For β = 0.2, the importance of a sample decreases fast so that

after approximatively 5 seconds, a sample has half of the weight of a new sample. We evaluate

the impact of the weight function on the adaptation for 15 different values between 0.0 and

0.2 (β = [0.0, 0.015, .., 0.2]).

6.6.2 Extended Performance Model

The performance model discussed so far only considers the relationship between the total

message rate λ and the resulting utilization ρ. Hence, in cases when it is desired to differentiate

96 Chapter 6. Performance Modeling of a Software-Based NSAL at Runtime

the cost of different message types, the simple exponential model is not sufficient. Next, we

introduce an extended exponential model which considers λ f m and λot separately.

The following equations define the extended performance model. The model is made up

of separate equations for λ f m (Eq. 6.11) and λot (Eq. 6.12) with each consisting of two parts,

a linear part and a negative exponential part. The two parts are added together using the

parameters A, B, C and D:

ρext, f m(λ f m) = A · (ΘA · λ f m) + B · ΘB · (1 − e−ΘC ·λ f m) (6.11)

ρext,ot(λot) = C · (ΘD · λot) + D · ΘE · (1 − e−ΘF ·λot) (6.12)

Equation 6.13 describes the total utilization as sum of the utilizations induced by λ f m and λot

message rates:

ρext(λ f m, λot) = ρext, f m(λ f m) + ρext,ot(λot) (6.13)

The parameters A, B, C and D allow for fine-tuning of the performance model between linear

and negative exponential behavior. From preliminary experiments for this work we concluded

that this gives the best possible result. As depending on the platform, NSAL and message type

(λ f m or λot), the performance behavior varies between linear and negative exponential behavior.

B = 0.7 and D = 0.7 provided the best balance between linear and negative exponential model

in our experimental environments. Therefore we set B = 0.7 and D = 0.7 in the evaluation.

Following the constraints A + B = 1 and C + D = 1 we set A = 0.3 and C = 0.3.

To learn the parameters ΘA, ΘB, ΘC and ΘD from the samples, we use the two equations

Eq. 6.14 and Eq. 6.15. Two independent ODR regressions are used to learn the coefficients

of both equations.

ρext,lin(λ f m, λot) = (ΘA · λ f m) + (ΘD · λot) (6.14)

ρext,exp(λ f m, λot) = ΘB · (1 − e−ΘC ·λ f m) + ΘE · (1 − e−ΘF ·λot) (6.15)

6.7 Evaluation Methodology

In the following we present the methodology used for the evaluation of the proposed pipeline.

We first present a general overview of the experimental set-up. Afterwards, we discuss how

6.7. Evaluation Methodology 97

Network Services

Abstraction

Layer

Load

Generator(s)

CPU 𝑅
CPUCPU

Physical

Machine
Monitor

Emulated

Network

Message

Bus

Learning

Pipeline

Budget

Estimation

Random Walk /𝑅esource

Control

λResource

Allocation

1

2

3

4

5

6

7

Figure 6.8: Experimental set-up consisting of the load generator hvbench (2), a simple emulated

network (3), the NSAL resource monitor monitor (4) and a message bus (5). The message bus

distributes the measurement samples to the learning pipeline (6), which in turn outputs the model for

the budget estimation.

we evaluate the accuracy of the budget estimation. At the end of this section, we show the

message arrival process we use to emulate northbound applications and their reconfiguration

or statistics messages.

6.7.1 Experimental Set-up

Figure 6.8 describes the experimental set-up consisting of the load generator hvbench [13]

(2), a simple emulated network (3), the resource monitor [13] (4) and a message bus (5)

(implemented with kafka [169]), which distributes the measurement samples to the learning

pipeline (6). The pipeline in turn outputs the model for the budget estimation. A control

component adjusts the overall message rates and message type mixes based on a random walk

process (1). Furthermore, it adjusts the assignment of R to the NSAL instance (7). For

the set-up, the resource R assignment is implemented by scaling the CPU frequency of the

NSAL host through the Linux CPU governor. For example, the experiment is started with

assigning the maximum possible resources Rmax = 3.2 GHz to the NSAL process. After 60 s,

R is reduced to Rmax

2 = 1.6 GHz. For this, the performance CPU governor has to be activated

so that the Linux kernel always scales the CPU to the maximum configured CPU frequency.

During the experiment, the monitor component queries the total time the NSAL instance

used the CPU (st
Σρ

) with an accuracy of 10 ms and sends it to the message bus. Furthermore,

the simple emulated network answers all messages it receives from the NSAL with static,

98 Chapter 6. Performance Modeling of a Software-Based NSAL at Runtime

pre-configured, responses. Additionally, hvbench reports the message counters (st
Σλ

) to the

message bus. The following hardware and software set-up is used for the evaluation presented

in this paper: Intel(R) Core(TM) i5-3470 CPU with a maximum frequency of 3.20 GHz, 8 GB

RAM and Ubuntu 14.04.4 LTS. FV is used as NSAL in version 1.4.0, hvbench as load generator

and hvmonitor monitor in version 0.1.0.

6.7.2 Budget Estimation Error

The budget estimation error ǫ is defined as the difference between the true budget, denoted

as ground truth, and the estimated budget. We use offline benchmarks to determine an

approximation of the true budget of a specific NSAL on a specific hardware platform. For this,

we linearly increase the message rate λ in small steps until the monitor component reports an

average utilization of ρmax . Based on the results of the offline benchmark, we can define the

relative estimation error ǫ as: ǫ =
|GroundTruth−B |

B

6.7.3 Load Generation Process

We configure hvbench with a Poisson message arrival process and we use two random walk

processes to model the change of λ and (wot,w f m) over time. At the beginning of the

experiment run we set λ to ρ−1(0.5) based on the ground truth. Then, each 5 s we use random

number generator to decide to keep λ constant with a chance of 40 % or change it with a

chance 60 % according to the following rule:

λ =

λ · 0.9 if ρ(λ) > 0.5

λ · 1.1 if ρ(λ) < 0.5

When the random walk process of the message type distribution is activated, we adjust

(wot,w f m) also every 5 s. With a chance of each 1
3 , we either decrease or increase w f m by 10 %

of the previous value. With a chance of 1
3 , we keep w f m constant. wot is updated accordingly

(wot + w f m = 1). An example of the generated rates and weights of the random walk process

is given in Figure 6.9. At t = 0, we start with λT = 2000s−1. Until about 200 s into the

experiment, the rate decreases. From 200 s the message rate increases up to 400 s into the

experiment with a peak message rate of about 2600.

6.8 Evaluation

Next we evaluate the effectiveness of the proposed pipeline by using the methodology defined

in the previous section. The main performance metrics here are the relative budget estimation

6.8. Evaluation 99

0 200 400 600

Time [s]

0

500

1000

1500

2000

2500

R
at

e
[s
−

1
]

(a) Message Rate (λ)

0 250 500

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

g
h

t
w

fm

(b) Message Weight (w f m)

Figure 6.9: Example load generation process for a) the message rate and b) the message type weights.

At t = 0 the process is initiated with a rate equal to 50 % NSAL utilization and with a message weight

of w f m = 0.5. Every 5 s a new value for the rate and weights is generated by the random walk process.

error ǫ and the model convergence time after a change in resources. If not otherwise stated,

the experiments were conducted in the described test-bed (Section 6.7). For space reasons we

focus on the results for FV as NSAL implementation. The results for OVX do not considerable

differ from the presented ones.

6.8.1 Budget Estimation Error without ∆R-Detection

We fist discuss the budget estimation error ǫ for different combinations of β and constant

available resources R. We evaluate β in the range of [0, 0.2] with a step size of 0.015 and R

in the range of [1.6, 3.2] with a step size of 0.1. The result of a combination of β and R is

presented as median over 20 runs. For each run, after a warm-up phase of 120 s, a sample is

taken each second for a period of 180 s and the error averaged over all samples. We use the

random walk process described in Section 6.7.3 for the message rate λ. wot and w f m we keep

constant at wot = 0.5 and w f m = 0.5.

Figure 6.10 illustrates the mean estimation error over the evaluated parameter space of β

and R. The results show that on average the estimation error is 5.8 % with a standard deviation

of 2.5 %. Furthermore, we conclude from the figure that the estimation error depends on R.

For example, while for R = 1.6 we observe ǫ to be 3.8 % on average, ǫ for R = 3.0 is on

average 9.5 %. The lowest error can be observed for R = 1.6 with ǫ = 2.6 % Additionally, the

figure suggests a minor correlation between the estimation error and parameter β. However,

the maximum (Pearson) correlation we observe is for R = 2.6 with 0.18.

Two main conclusions can be drawn from the figure. First, we observe only an insignificant

influence of β in the evaluated parameter range. Therefore, β can be chosen freely in the

100 Chapter 6. Performance Modeling of a Software-Based NSAL at Runtime

0.0 0.03 0.06 0.09 0.11 0.14 0.17 0.2

Weight β

1.6
1.7
1.8
1.9
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.9
3.0
3.1
3.2

R
es

o
u

rc
es

R

3.2%

4.0%

4.8%

5.6%

6.4%

7.2%

8.0%

8.8%

9.6%

E
stim

atio
n

E
rro

r
ε

Figure 6.10: Mean estimation error for resource values R = [1.6, 3.2] and sample weighting factors

β = [0, 0.2] for constant allocated resources during the experiment. R = 1.6 exhibits the lowest error

with ǫ = 2.6 %. R = 3.0 with ǫ = 9.5 % the highest. No correlation between e and β can be observed.

evaluated range in cases when R is constant. This gives freedom in the choice of a β value.

Second, the error depends on R and ranges between 2.6 % and 9.5 %. Next, we discuss the

influence of parameter β on the convergence time in scenarios where R varies over time.

6.8.2 Convergence Time after ∆R-Detection

In compute environments with dynamic assigned resources R, it is important for the learning

pipeline to quickly adapt to changes of R. We focus on the use case of a sudden decrease of R

and measure the time period between the decrease and the point in time the model reaches a

relative estimation error ǫ of less than 10 % again. First, we illustrate the convergence time

by example for a gradual adaptation through sample weighting, afterwards we explore the

parameter space with and without ∆R-detection.

Figure 6.11 illustrates the convergence time by example for four different values of the

sample weighting factor β, with a sudden decrease in CPU frequency of 1.4 GHz (∆R = 1.4)

and a relative error threshold of 10 % (ǫ = 0.1). A training phase with a duration of 125 s is

omitted in the figure. At 175 s into the experiment, the available resources are decreased from

3.0 GHz to 1.6 GHz. Two observations can be made from the figure. First, up to 175 s into the

experiment all four model instances can estimate the available budget with a high accuracy

of ǫ ≤ 0.04. Second, the choice of β has a significant influence on the convergence time.

For β = 0.2, which only considers recent samples, the model adapts rapidly (7 s) to the new

resources. However, as few samples have a strong influence on the regression, we observe a

higher variance in the figure. For β = 0.0 it takes 99 s to reach the low-error threshold and no

variance is visible.

Convergence Time without ∆R-Detection

6.8. Evaluation 101

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

ε β = 0β = 0.2

150 200 250 300 350 400

Experiment time t (s)

1.5
2.0
2.5
3.0
3.5

R ∆R

Figure 6.11: Convergence time after a resource change ∆R = 1.5 for the sample weighting factors

β = [0.0, 0.0143, 0.0429, 0.2]. The horizontal (red) line marks an low error threshold of ǫ = −0.1.

Circles mark the time when the model reaches the error threshold. Higher values of β result in fast

convergence, but also in instability in terms of estimation accuracy.

0.0 0.03 0.06 0.09 0.11 0.14 0.17 0.2

Weight β

0.1
0.2
0.3
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.3
1.4
1.5
1.6

R
es

o
u
rc

e
C

h
an

g
e

∆
R

0

6

12

18

24

30

36

42

48

54

≥ 60

C
o
n
v
erg

en
ce

T
im

e
(s)

Figure 6.12: Evaluation of convergence time without ∆R-detection for different ∆R and β. β and ∆R

are divided in 15 equally-spaced values. Convergence time increases with decreasing values of β and

increasing values of ∆R.

Next, we evaluate the convergence time without ∆R-detection for different values of the

sample weight parameter β and the amplitude of resource change ∆R. Figure 6.12 depicts

the relationship between β = [0, 0.2] and ∆R = [0.1, 1.6] with a step size of 0.015 and 0.1,

respectively, and the convergence time. Each value for a combination of ∆R and β is presented

as the median of 20 runs. Note that all values of a convergence time ≥ 60s are displayed in

black. The figure shows that with increasing β, i.e., with a faster decay of the weight of a

sample, the model converges to a state of low estimation error faster for most combinations of

∆R and β. Furthermore, the figure illustrates that the model converges slower if the amplitude

of the resources change ∆R is larger. For small ∆R, i.e., ∆R = {0.5, 0.6}, a low error threshold

102 Chapter 6. Performance Modeling of a Software-Based NSAL at Runtime

0.0 0.06 0.11 0.17

Weight β

0.1
0.2
0.3
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.3
1.4
1.5
1.6

R
es

o
u

rc
e

C
h

an
g

e
∆

R

0

10

20

30

40

50

60

C
o

n
v
erg

en
ce

T
im

e
(s)

Figure 6.13: Evaluation of convergence time with ∆R-detection for different ∆R and β. Standard

deviation over all combinations decreases from 21.2 s to 3.9 s. Convergence times are homogeneous

with minor variations for almost all parameters. Hence, with ∆R-detection, a wider range of values for

β can be selected while maintaining a low convergence time.

is reached in less than 4 s. While a combination of large values of ∆R and small values of β

can result in an average convergence time of up to 95 s.

Convergence Time with ∆R-Detection

The findings of Figure 6.12 motivate the need for a sophisticated ∆R-detection to accelerate

convergence in cases of large ∆R and low β. With activated ∆R-detection, if a change is

detected, the sample buffer is flushed and the model re-trained with the outlier samples and any

subsequent samples as described in Section 6.6. Figure 6.13 depicts the relationship between β,

∆R and the convergence time with ∆R-detection. Figure 6.14 illustrates the difference between

Figure 6.12 and 6.13. Compared to the case without ∆R-detection, we observe a decrease

in convergence time for 46 % of the investigated combinations of β and ∆R, mostly in the

upper-left triangle of the figure. On average, the decrease is 16.6 s. Furthermore, the standard

deviation over all combinations decreases from 21.2 s to 3.9 s From the figure we conclude

that with ∆R-detection, a wider range of values for β can be selected while maintaining a low

convergence time after ∆R.

However, the figure also illustrates that the convergence time can increase, especially for

high values of β and low ∆R found in the lower-right triangle of the figure. On average, the

increase is 3 s. This is due to the way outliers are treated in the pipeline. After an outlier is

detected, the outlier sample is stored in a separate buffer and not used for the regression. When

we observe ten outliers in a row, we signal a detected ∆R and discard the current performance

model and use the outlier buffer to learn a new model. But if we do not observe ten outliers in

a row, the samples in the outlier buffer are discarded. Hence, there are less samples available

to learn from in cases where an undetected change in resources happened and this increases

6.8. Evaluation 103

0.0 0.06 0.11 0.17

Weight β

0.1
0.2
0.3
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.3
1.4
1.5
1.6

R
es

o
u
rc

e
C

h
an

g
e

∆
R

−10

−5

0

5

10

15

≥ 20

Im
p
ro

v
em

en
t

(s)

Figure 6.14: Difference between Figure 6.12 and Figure 6.13. Evaluation of the improvement of

convergence time with ∆R-detection for different ∆R and β. On average, the decrease is convergence

time is 16.6 s. A degradation of on average 3 s can be observed for some parameter combinations.

the convergence time. This effect could be mitigated by increasing the sensitivity of the SVM.

However, increasing the sensitivity increases the chance of falsely detected resources changes

and unnecessary re-training.

6.8.3 Extended Performance Model

The extended performance model enables the estimation of the message budget per message

type. In the following section we evaluate the accuracy of the extended performance model.

For the evaluation of the extended model we use two random walk processes for the load

generator, one random walk process which controls the overall mean message rate (λ) and

one which controls the allocation of how many messages of each type are send (λ f m and λot).

The allocated resources R are constant. Nevertheless, ∆R-detection is turned on to simulate

the full proposed pipeline. Each experiment run consists of a warm-up phase of 400 s where

no model training was performed. After the warm-up phase, 600 samples are collected at

1 Hz and used in the training of the model. Hence, for the evaluation we take a snapshot of

the extended model coefficients at 1000 s into the experiment. Offline benchmarks provide

accurate ground truth. β is fixed to 0.0.

Figure 6.15 presents the results. The (blue) markers illustrate offline benchmarks, i.e.

the ground truth. For the offline benchmark we selected 11 allocations of λ f m and λot

with (λ f m, λot) ∈ [(a · λ, (1 − a) · λ)|∀a ∈ [1, 0.9, .., 0]], denoted as Υ. Each allocation is

presented as a distinct marker. For example, the upper left dot represents a composition of

λ f m ≈ 1 · 115000 = 115000 and λot = (1 − 1) · 115000 = 0. The confidence intervals of the

offline benchmarks are omitted as they would not be visible on the presented scale. The links

between the (blue) markers are for better readability and do not represent measurements.

104 Chapter 6. Performance Modeling of a Software-Based NSAL at Runtime

0 5000 10000 15000 20000 25000 30000

Flow Modifications λ f m [s−1]

0

25000

50000

75000

100000

O
th

er
M

es
sa

g
e

T
y
p
es

λ
o
t

[s
−

1
]

Ground truth

ρ = 0.9

Estimation

Figure 6.15: Budget estimation accuracy of different message type distributions using the extended

model. The blue dots depict the ground truth from offline benchmarks. Red dots show the estimation

results of 21 random experiment runs. The two stars highlight the 0.5 allocation, i.e., λ f m = λot .

The estimation results of 21 random experiment runs per allocation are shown in red. For

the estimation we use the coefficients of the extended model at 1000 s into the experiment

run to approximate ρ−1
ext(0.9) for the allocations of λ f m and λot defined in Υ. The confidence

intervals for the estimations are indicated with error bars in the direction of λ f m and λot .

For most evaluated allocations we observe stable estimation results and therefore most of the

confidence intervals are hardly visible. From the figure we conclude that for allocations with

a share of ≥ 0.5 in favor of λ f m (λot ≤ 20.000 to λ f m ≥ 20.000), the extended model can

accurately estimate the message budget. For shares ≥ 0.5 in favor of λot , it becomes less

accurate and varies between underestimating, e.g., at λot = 40.000 to λ f m = 15.000, and

overestimating the utilization, e.g., where λ f m is close to 0. Confidence intervals increase if

either λ f m or λot dominates λ, but in general are small.

6.9 Summary and Deployment Guidelines

The evaluation results show that the choice of model, pipeline configuration and parameters

can be optimized depending on the use case. Next, we summarize the results and discuss how

to achieve optimal budget estimation results for different use cases.

6.9.1 Summary

In Section 6.8.1 we discussed the general budget estimation error with constant resource

assignment. The results show that the sample weighting parameter β has no significant effect

on the estimation error in the evaluated parameter range and that the error ranges between

6.9. Summary and Deployment Guidelines 105

Table 6.3: Deployment Guidelines

Use Cases ↓ Static R, Stable distribution Dynamic R and/or unstable distribution

Overall budget sufficient Simple model, β ≥ 0.1 Normal model with SVM β ≤ 0.1

Budget estimation

per message type

required

Simple & ext. model,

accept cost per type

inaccuracy

If unstable distribution,

extended model.

If stable distribution,

simple & ext. model.

2.6 % and 9.5 %. In Section 6.8.2 we evaluated the convergence time after a change in allocated

resource with and without ∆R-detection. For this we measure the time it takes for the pipeline

to accurately estimate the current budget after ∆R. Without ∆R-detection, for minor ∆R and

a large value of β, we observe a fast convergence, whereas large changes and a low values

of β show low convergence time. With ∆R-detection, the results exhibit a homogeneous

convergence time in the evaluated parameter range. On the one side, we conclude that the

∆R-detection speeds up the convergence time considerable after a large change in resources

allocation and low β. On the other side, the ∆R-detection slows down the convergence time

for minor changes. The evaluation of the extended model in Section 6.8.3 shows that accurate

estimation of the resource consumption per message type is possible. In particular, the results

show that the asynchronously collected message counters and resource usage samples are

sufficient for the regression to learn the model coefficients in scenarios where the message

type distribution is not constant.

6.9.2 Deployment Guidelines

Next, we discuss the following questions: when do I choose the extended model and which

values do I use for the parameters? Based on the evaluation, we identify three criteria which

dictate the choice of model and parameters. First, is it enough to know the overall budget or

do I need the budget per message type? Second, do I expect the available resources R to be

constant or are they likely to change frequently? Third, is the message type distribution of

the incoming messages mostly stable or is it likely to be unstable? Table 6.3 gives guidelines

based on these three criteria.

Overall budget sufficient, R static, stable type distribution

If the overall budget is sufficient and R is mostly static with a stable message type distribution,

then the simple model with β ≥ 0.1 is sufficient. However, note that a large value of β

increases the influence of measurement noise on the estimation accuracy.

Overall budget sufficient, R dynamic, unstable type distribution

If the overall budget is sufficient, but R is likely to change and/or the distribution of message

type is unstable, use the normal model with SVM, but select β ≤ 0.1.

Budget per message type, R dynamic, stable type distribution

106 Chapter 6. Performance Modeling of a Software-Based NSAL at Runtime

If you require budget estimation per message type and R is either static or dynamic and you

observe a stable message type distribution, then deploying the simple and extended model

in parallel is the best choice. However, the stable message type distribution will not contain

enough information to accurately learn the cost per message type.

Budget per message type, R dynamic, unstable type distribution

If you require budget estimation per message type and R is either static or dynamic and the

message type distribution is changing over time, then the extended model gives accurate

estimation results per message type. However, note that in our experiments the extended

models in general converged slower than the simple model. Furthermore, note that for best

estimation results the trade-off parameters between linear and negative exponential behavior

might require adjustments to the systems at hand. For example, during our experiments we

noticed that in environments with power saving settings turned on, the relationship between λ

and ρ tends to be less linear and more negative exponential.

In general, the estimation accuracy also depends on the range of samples seen by the

learning process. The estimation becomes better if many samples close to 90 % utilization

exist. If the samples are dominated mostly by low utilization samples, e.g., ρ ≤ 10 %, the

estimation will be worse. This can present a challenge where very large message budgets

are allocated to control applications at the same time. However, we expect that in a realistic

deployment the budget allocated to one control application is far less than the overall budget

and as our previous study shows [11], samples with an utilization of about 20 % − 25 % are

already well suited for estimation using the negative exponential model.

In summary, in this chapter we propose and evaluate an online machine learning pipeline

for the capacity estimation of NSAL instances in dynamic cloud environments. The evaluation

shows that the learned performance model provides accurate estimations of the message rate

budget at run-time. Furthermore, a reduction or increase of available resources assigned to

the abstraction layer is detected by the pipeline and the estimations are adapted accordingly.

The proposed pipeline is an important step towards autonomous scaling and load-balancing

of NSAL instances. Future work in this area should investigate the convergence time of the

extended model and evaluate the trade-off between SVM sensitivity and convergence time in

more detail.

Chapter 7

Application-Aware Resource Allocation

through the NSAL

The presented Network Services Abstraction Layer (NSAL) enables the device and vendor-

neutral control and Quality of Service (QoS)-configuration of forwarding devices. In the

preceding chapters we first discussed how to design an NSAL for enterprise networks. Af-

terwards, we discussed the control-plane performance of such an NSAL from a theoretical

and deployment perspective. However, there is an important aspect missing in the NSAL

design so far: The applications. At the end of every service transported over an enterprise

network stands an application and a human user behind the application. From web browsing

to Voice-over-IP (VoIP) and video streaming applications, a user is involved and expects a

certain Quality of Experience (QoE) with the service. To account for the application and user

behind the transported data, the NSAL is extended in this chapter with application-awareness.

Application-awareness it closely related to the problem of resource allocation. Resource

allocation is the question of how to distribute the available network resources to satisfy every

application. Hence, the NSAL is extended with both, application-awareness and resource

allocation. Achieving efficient and application-aware multi-application resource allocation

in enterprise networks is challenging when applications can send packets into the network

at will. But enterprise networks are not bound to the same net neutrality laws which govern

most parts of the public Internet and access to an enterprise network is not limited to approved

devices. The network operator is in full control of the applications deployed in the network

and on the end-hosts. This is driven by security concerns (malware, leakage of sensitive

documents/data) and the need for performance guarantees for mission-critical applications.

This means that end-hosts are restricted to a small set of applications, potentially depending

on the role of the employee, and that the communication of each application is monitored.

HTTP(S) traffic is passed through a proxy to perform Deep Packet Inspection (DPI) to identify

107

108 Chapter 7. Application-Aware Resource Allocation through the NSAL

sensitive documents being uploaded on an external website or malware being accidentally

downloaded.

In Chapter 3.3 we evaluated policing on the forwarding devices as a means to restrict

applications. The results show that traffic policing or shaping on forwarding devices in the

network leads to queuing and packet loss, which introduces delay and decreases transmission

efficiency. Furthermore, it destabilizes the congestion control algorithms which results in

under-utilization of the allocated throughput. Therefore we propose a methodology for multi-

application resource allocation in enterprise networks based on delay-constrained central

routing configured through the NSAL and fine-grained per-application pacing at the end-hosts.

Pacing refers to the method of restricting the amount of data an application is allowed to

send into the network by implementing local back-pressure to the application sockets and

introducing artificial delay between packets. Moving application pacing from the forwarding

devices to the end hosts, e.g., to user PCs, servers, smartphones and tablets, is scalable,

increases transmission efficiency, reduces the required complexity of forwarding devices and

allows cost-efficient high link utilizations [105, 137].

Figure 7.1 gives an overview over the extended NSAL. The graph model is extended with

applications (A), pacing components (P) and virtual switches (V). The NSAL itself is ex-

tended by a module for application-awareness (1) which provides P , A and V to northbound

control applications. Based on the extensions, it is possible to implement application-aware

control applications (2) on top of the extended NSAL. The control applications are able to

query the active applications in the network (3). The novel control application can then decide

on pacing rates for each application and delay-constrained routing policies. The decisions

are based on the provided application list and available resources provided by the NSAL

abstraction, e.g., available bandwidth and network topology.

The chapter is structured as follows. First, the problems and challenges are discussed in

detail (Section 7.1). Afterwards, Section 7.2 takes a closer look at the related work in this area

of research. Section 7.3 subsequently introduces the extensions required to the NSAL’s graph-

based abstraction model. Then, throughput- and delay-dependent utility functions for five

application classes are defined (Section 7.4). Compared to other works, the utility functions

are based on actual subjective studies and measurements of the applications. Afterwards,

the utility bandwidth- and delay-aware allocation problem is formulated as a 2-step Mixed-

Integer Linear Program (MILP). The first step maximizes the minimum utility in the network

(max-min-fairness), while the second step maximizes the sum of all utilities for a constrained

minimum utility (Section 7.5). Application mixes with over 100 parallel application of 5

common use cases are evaluated in a proof-of-concept set-up (Section 7.6). By evaluating the

measurements, it is shown how the NSAL with pacing can improve QoS metrics such as delay

109

S

S S

L S

L

A

A

A A

A

A

A

Applications
Resource

Allocation

Host

Host

3 4

Network Services Abstraction Layer

Application-Aware Extension 1
P

P

P

V

P

P

P

P
V

V

V

Host

Host

Application-Aware Control Application 2

Fairness

Criteria

Allocation

Formulation

Utility

Functions

C M

Figure 7.1: Extension of the NSAL with application-awareness. The topology abstraction is extended

with applications (A), pacers (P) and virtual switches (V) on the hosts. An extension to the

abstraction layer (1) allows discovery of applications (3) and centrally-controlled pacing (4) at

end-hosts for novel application-aware control applications (2).

and packet loss and significantly increase inter-application fairness compared to a best-effort

scenarios (Section 7.7).

The content of this chapter describes the results presented in the following publications.

The majority of the results are based on [3]. The paper [3] discusses dependable application-

aware resource allocation in managed networks through end-host pacing. In [4, 2] results

regarding the user-experience of video streaming are presented. The results are a part of

the selection and evaluation process of the video streaming use cases and Key Performance

Indicators (KPIs) in this chapter.

[3] C. Sieber, S. Schwarzmann, A. Blenk, T. Zinner, and W. Kellerer. “Scalable Application-

and User-aware Resource Allocation in Enterprise Networks Using End-host Pacing.” In:

Under minor revision for ACM Transactions on Modeling and Performance Evaluation of

Computing Systems (ToMPECS) 34 pages (2018). arXiv: 1811.02367.

[2] T. Hoßfeld, M. Seufert, C. Sieber, T. Zinner, and P. Tran-Gia. “Identifying QoE Optimal

Adaptation of HTTP Adaptive Streaming Based on Subjective Studies.” In: ELSEVIER

Computer Networks 81.23 pages (2015). doi: 10.1016/j.comnet.2015.02.015.

[4] T. Hoßfeld, M. Seufert, C. Sieber, and T. Zinner. “Assessing effect sizes of influence

factors towards a QoE model for HTTP adaptive streaming.” In: Sixth International

Workshop on Quality of Multimedia Experience (QoMEX). 6 pages. Singapore, Sept.

2014. doi: 10.1109/QoMEX.2014.6982305.

http://arxiv.org/abs/1811.02367
https://doi.org/10.1016/j.comnet.2015.02.015
https://doi.org/10.1109/QoMEX.2014.6982305

110 Chapter 7. Application-Aware Resource Allocation through the NSAL

7.1 Challenges and Problem Definition

This chapter investigates the following three main challenges for an application- and user-aware

NSAL design and provides the definition of the problems. The challenges can be summarized

to defining, determining and allocating resource shares:

• Challenge C7.1: How to define resource shares in terms of QoE considering the possible

variety of application classes and their demands?

• Challenge C7.2: How to determine the shares under resource constraints?

• Challenge C7.3: How to allocate each application a share of the network resources

through the abstractions offered by the NSAL?

7.1.1 C7.1: Defining User-Level Resource Shares

Ultimately, a user of an application does not care about what share of the resources is allocated

to her/him as long as her/his user experience, or QoE, with the application is positive. Challenge

C7.1 is how to define a resource allocation based on user experience. This is challenging

as the experience of a user with an application can only by determined through subjective

studies. For example by implementing options for live feedback into the used applications

or by conducting laboratory or crowd-sourcing studies. The experience of a user with an

application is commonly measured on the Mean Opinion Score (MOS) scale [167], which

describes the experience of a user as 1 (bad) to 5 (excellent). From the subjective studies, a

model has to be derived which can describe the experience of the user in terms of tangible

KPIs. The KPIs can be technical metrics such as response time or web page load time, but the

model may also include parameters of the environment or the user itself, such as screen size

or user expectation.

We address this challenge by defining the user experience as a per-application utility

function of throughput and delay demand. For this we rely on user experience models

from the literature, selected KPIs and automated measurements. We measure the KPIs

of each investigated application under different emulated throughput and delay restrictions.

Afterwards, we apply the models from the literature on the measured KPIs and derive the

per-application utility function.

7.1.2 C7.2: Determining Resource Shares under Resource Constraints

Based on the utility functions defined in challenge C7.1 and the available network resources,

a feasible and fair allocation of network shares has to be determined. A formulation of the

7.1. Challenges and Problem Definition 111

allocation problem must consider the 2-dimensional utility functions, the network topology,

the available bandwidth on each link, the queuing, processing and propagation delay at each

hop and a fairness criteria. The utility functions are defined in C7.1, the network topology,

available bandwidth and processing and propagation delay can be provided by the NSAL

topology abstraction. Multiple fairness criteria exist in the literature, e.g., proportional

fairness, weighted proportional fairness, balanced fairness or max-min fairness [32]. Which

fairness criteria to apply depends on the specific deployment scenario. The queuing delay at

each hop depends on the inter-arrival times of the arriving packets. However, for practical

purposes the delay can be modeled with the rates of the traversing flows and the link utilization

[33]. The allocation problem formulation has to balance the target link utilization in order

to full-fill the delay demands as given by the utility functions. While the min-max utility

proportional fair bandwidth allocation problem is well studied in literature, the problem

combination of bandwidth allocation and delay-aware routing for arbitrary utility functions is

less studied.

We address challenge C7.2 by formulating the allocation problem as a MILP and solve

the problem for the max-min fairness criteria. By jointly optimizing the utility and network

resources usage, a share in terms of max-min utility can be determined given a set of

applications, utility functions and constrained network resources.

7.1.3 C7.3: Allocating Resource Shares in the Network

The main problems with implementing QoS mechanisms for resource allocation in the network

are as follows. a) Buffers in forwarding devices are expensive and there is only a limited

number of queues to configure per egress interface, typically about 8 [189]. This is insufficient

to implement a sophisticated strategy to distinguish hundreds of active applications of multiple

classes in a network. Furthermore, congestion can then happen inside an application class

which then degrades the performance of all applications of the class. b) Policing interacts

badly with transport-level congestion avoidance algorithms resulting in lost packets. Lost

packets cause retransmissions and decrease transmission efficiency [66]. c) Heterogeneous

enterprise networks with diverse forwarding devices from different vendors are complex and

error-prune to manage. Furthermore there are no common QoS abstractions across switching

hardware vendors. Hence deploying a single QoS strategy across devices might not be

possible, especially if not all devices support the required features. d) Encryption or header

field ambiguity can prevent the correct identification of application classes in the network.

For challenge C7.3 we address the resource allocation problem by implementing centrally-

controlled pacing by the NSAL of individual applications at the end-hosts, combined with

delay-aware routing in the network. Packet pacing at the end-hosts ensures that a stream of

112 Chapter 7. Application-Aware Resource Allocation through the NSAL

Table 7.1: Overview of related works targeting multi-application QoE-awareness.

C7.1) Define C7.2) Determine C7.3) Allocate

[73] Mapping KPIs to QoE Not specified Generic control concepts

[149] Mapping network QoS to QoE Particle swarm optimization

(PSO) based algorithm

Applying the proposed algo-

rithm to resource block alloca-

tion technique in LTE

[136] Mapping network QoS to QoE Game theoretic approach Radio resource management

applying proposed game the-

oretic approach

[113] Mapping network QoS and

KPIs to QoE

Optimization based on multi-

choice knapsack problem

(MCKP)

Carrier scheduling applying

proposed optimization algo-

rithm

[62] Mapping of network band-

width to QoE

Solving multi-objective opti-

mization problem

Joint subcarrier and power al-

location scheme

[64, 65] Application feedback instead

of utility functions

Not specified Admission Control, band-

width guarantees

[138] Hypothetical utility functions

mapping network QoS to QoE

Proposed algorithm optimiz-

ing bandwidth allocation

WFQ scheduling with QoE-

optimized weights

[71] Mapping screen resolution and

bitrate to Structural Similarity

Index (SSIM)

Branch and bound algorithm

to find optimal set of video bi-

trates

Video bitrate guidance for het-

erogeneous clients

[105] Mapping bandwidth to an arbi-

trary fair share

Novel Multi-Path Fair Alloca-

tion (MFAA) algorithm

Enforced via pacing at the

hosts

packets conforms to a specified data-rate by adding artificial delays during the sending process

in-between consecutive packets. Pacing prevents packet loss by smoothing out packet bursts

and allows for shallow buffers in intermediate forwarding nodes. Shallow buffers reduce

queuing delay and avoid expensive switch buffer space. Applications can reliably determine

their available goodput and it is unnecessary to probe the throughput by loss-based congestion

control mechanisms. Furthermore, pacing at the end-host allows for implementation of

effective backpressure to the applications producing the data, reducing the amount of buffered

data in the network stack. Pacing at the end-hosts can scale to thousands of traffic classes

[137], congestion in the network can be avoided by central management of the available

resources [105] and application flows can be identified at the source. Recent works show that

bandwidth allocation to applications can be implemented holistically at global scale, enabling

high percentages of link utilization [105]. Sender congestion control and QoS in the network

are downgraded both to failsafe solutions and supportive roles in the overall QoS strategy, e.g.,

in cases the central control fails or embedded devices can not be modified.

7.2 Background

Several efforts have been made towards QoE-awareness in multi-application scenarios. Some

relevant approaches are summarized in Table 7.1. The table columns represents the three

7.2. Background 113

challenges introduced beforehand: define, determine, and allocate. Many related works on

multi-application QoE-aware network design are associated to the mobile domain [62, 73, 113,

136, 149].

Several KPIs are proposed to be monitored at network elements in the architecture of [73],

including packet loss rate, throughput, and Round Trip Time (RTT). At the clients, network-

related parameters, e.g., delay, and application-based metrics including web page download

time or video buffer and bitrate can be measured. The collected KPIs metrics are used to

estimate the per-application QoE using models from literature. One of the presented use-cases

considers an optimization based on estimated QoE values. To do so, the authors list a variety

of parameters that can be configured along the protocol stack in order to control QoE. The

work does not provide a specific algorithm for determining the required resources, nor does

it propose a designated method for allocating them. Instead, the authors outline several

possible control actions like bandwidth limiting or QoE-aware capacity planning. As the

utility functions applied only rely on KPIs, the QoE can only be controlled in a qualitative

manner, meaning enhancing and degrading the QoE, but not controlling it so to achieve e.g. a

specific MOS value.

[149] proposes a novel algorithm for resource block allocation in Long Term Evolution

(LTE) systems to maximize QoE whilst preserving fairness among users. The authors also

use existing models to estimate user QoE, but adapt the models so to express the MOS

solely from network-parameters like delay or packet error probability. Based on these models,

the authors present a resource block allocation algorithm that is based on Particle Swarm

Optimization (PSO). Another QoE-aware resource scheduling algorithm for mobile networks

is based on a game-theoretic approach [136]. The QoE is estimated for various applications

using models from literature that map network parameters to MOS. The users’ data flows

cooperate with each other in a proactive manner and jointly optimize the QoE in a game

theoretic based manner. Instead of using the conventional throughput maximizing algorithm

in radio resource management of orthogonal frequency-division multiple access (OFDMA),

the authors propose to implement their scheduling algorithm which aims on maximizing the

fairness among heterogeneous users.

The approach described in [113] targets QoE-awareness in mobile LTE-Advanced networks.

In the QoE modeling step, both network QoS and application KPIs are used for estimating

the user perceived quality for different types of application. The QoE estimates and available

bandwidth are inputs to the resource scheduling algorithm, which solves a multi-choice

knapsack problem (MCKP) that maximizes the sum of all users’ MOS values. The component

carriers are dynamically scheduled according to the network traffic load by this QoE-aware

scheme.

114 Chapter 7. Application-Aware Resource Allocation through the NSAL

A further approach towards QoE-driven resource allocation in wireless networks is [62].

The authors apply utility functions which express MOS for various applications as functions

of different network QoS parameters. Thereby, they assume a packet error probability of 0, a

packet loss rate of 0, and fix frame rate in the case of video streaming applications. Using these

simplified utility functions, the authors propose a solution to a multi-objective optimization

problem which aims at maximizing MOS. As network resource control mechanisms, the

authors apply an efficient allocation of subcarriers among the active users.

The concept of Participatory Networking is proposed in [64, 65]. It describes an Application

Programming Interface (API) that can be used by applications, end-hosts, and devices to interact

with the network. A centralized controller is authorized to delegate read and write access to the

network participants. Using the write access, applications, users or end-hosts can reconfigure

the network according to their needs and can provide knowledge to the network, e.g., their

future traffic demands. Hence, no utility functions that map KPIs or network QoS to QoE are

needed, as the application instances directly communicate their requirements to this controller.

[138] applies hypothetical piecewise linear functions that map bandwidth to QoE and

propose a new scheduler for fair and efficiently bandwidth allocation in shared networks.

Using these utility functions, they optimize the bandwidth per flow so to have a fair utility

over all active applications. According to the bandwidth shares, the weighted fair scheduler

allocates respective weights to the flows. Simulation results show that the minimum utility

can be increased significantly, while maintaining the same average utility in most of the cases,

compared to a conventional max-min-fairness approach.

[71] presents an Software-Defined Networking (SDN)-based framework to support a fair

video QoE allocation for all clients within a shared network domain. The utility function

maps a client’s device resolution and bitrate to SSIM [158]. Considering the current network

capacity, a controller decides about the bitrate for each video client, so to provide a similar

quality to each of them. The bitrates are communicated to the streaming clients, which in turn

request the respective quality layer from the video content server.

BwE[105] introduces a global hierarchical top-down bandwidth allocation schema used in

Google’s internal network for distributed computing tasks. Bandwidth allocation is done via

a function mapping bandwidth to a "relative priority on an arbitrary, dimensionless measure

of available fair share capacity." [105] The BwE reference is important as it shows that global

and large-scale bandwidth allocation is indeed possible in production environments. But how

to derive an allocation for end-user applications and how they benefit from it, is not discussed

in BwE. In contrast, this chapter at hand focuses on end-user applications and the interplay

with, and possibilities for, network control to guarantee a specific user experience to the end

users through the NSAL.

7.3. Extensions to the NSAL Abstraction 115

The presented strategies are all steps towards QoE-awareness in multi-application systems.

Some of the works rely on state of the art control mechanisms, but propose novel resource

scheduling or allocation techniques. However, the applied utility functions often depend

on features which cannot be influenced in a direct manner. As a result, those approaches

allow for a qualitative, less targeted QoE control compared to the proposed solution. For

example, a low video quality implies a low MOS value. Providing more bandwidth will

enhance the playback quality and increase MOS, but it is not possible to quantify the impact of

providing a certain amount of bandwidth on the MOS scale. This chapter presents an approach

that allows to quantitatively map the network QoS parameters bandwidth and delay to MOS

(Challenge C7.1). Furthermore, we propose to apply pacing, which allows us to control both,

the bandwidth allocated to a flow and the end-to-end delay (Challenge 7.3). Having the utility

functions only relying on controllable parameters allows for a targeted, fine granular QoE

optimization (Challenge 7.2). In summary, the proposed extensions to the NSAL abstraction in

combination with the novel application control opportunities northbound of the NSAL enable

true multi-application QoE control in the network.

7.3 Extensions to the NSAL Abstraction

There are three extensions to the NSAL graph-model required to implement the proposed

solutions to the challenges C7.1 to C7.3. Figure 7.2 illustrates the additional components which

extend the control of the NSAL beyond the network to the end-hosts. The term applications

refers to client- and server-applications alike. Both types, client and server applications,

contribute to network congestion. Thus client applications, e.g., web browsers, and server

applications, e.g., Hypertext Transfer Protocol (HTTP) servers, have to be known to the NSAL.

Each application registers at startup with the NSAL through a local agent at the end-host. The

technical implementation of this is out of scope of this work.

Next, we describe the additional components and their interfaces. First there is the

application component (A). The application has as a property which class the application

belongs to, e.g., a video streaming client. Furthermore, the application component provides

the intent of the communication, e.g., which video is watched. Intents are defined in detail in

Section 7.4. The application is connected to a pacing component (P). The pacing component

allows to configure an egress data-rate and a maximum queue size. When the maximum

queue size is reached, the application is blocked from sending more data (backpressure),

but no packets are dropped. The pacer is connected to a software switch component (V).

The software switch forwards the data from the applications to the physical interface of the

host. Furthermore, the virtual switch provides in- and egress counters of each application to

116 Chapter 7. Application-Aware Resource Allocation through the NSAL

Interface

Software

Bridge

Host

P

P
V

A

A

interface of

next hop

physical link

PacerApplication

Queue

Figure 7.2: Extensions to the NSAL graph-model for application-awareness. The NSAL graph-model

is extended with the three components application (A), pacer (P) and virtual switch (V). The

host’s interfaces were already part of the design of the NSAL in Chapter 4. Component A allows

identification of applications. Component P allows to set application egress rate. Component V

provides in- and egress packet and Byte counters for each application.

the NSAL. That way the control applications can monitor the sending and receiving rate of

each application. At the end-hosts, the association between flows and applications is straight

forward. In the network this is often not possible due to encryption or header field ambiguity.

7.4 Utility Function Definition

Comparing the performance of different applications with conceptual different KPIs requires

mapping functions to a common scale. We denote the scale as user-aware utility scale and

we define it with a dimensionless quantity in the range of [1, 5]. The utility functions then

describe the relationship between the amount of resources allocated to an application and

the resulting experience of the user with the application. In the following section, we define

the utility functions for selected classes of applications and intents. First, we present the

considered application classes, intents, and KPIs of the deployed implementations. Second,

we discuss the selected user experience models from the literature. Third, we define the utility

functions based on measurements and the user experience models.

We consider five application classes: Web browsing, file download, video streaming,

remote terminal work, and VoIP (Table 7.2). Web browsing covers a wide range of use cases,

as modern web standards facilitate the move from proprietary and platform-dependent software

to responsive web applications running in the browser. File download is the batch-transfer of

data the user is waiting for, such as an email attachment. Use cases for adaptive video streaming

in the enterprise range from announcements to training videos, such as on-boarding lectures

for new employees. In particular major announcements are taxing for the infrastructure when

viewed by a large fraction of the staff in a short time-frame. Remote terminal work by secure

shell access allows administrators to access the terminals of servers, hosts, and switches from

7.4. Utility Function Definition 117

Table 7.2: Applications, Intents and Key Performance Indicators

Class Application Intent(s) Shorthand(s) Evaluated KPI(s)

Web Browsing Firefox, selenium [184] science_lab WEB Page Load Time

File Download Python requests emailattach DL Download Time

Video Streaming TAPAS [56] bbb, bbb_live VoD, Live Quality(+ Switches, Stalls)

Remote Terminal SSHv2, paramiko [182] sshadmin SSH Response Time

Voice-over-IP D-ITG [34] g729.1 VoIP Delay, Loss, (+ Jitter)

anywhere. The application class VoIP includes office phones, conferencing by software or in

the browser, and VoIP applications on smartphones. We denote the combination between an

application class and intent as application type and use the types WEB, DL, VoIP, Live, SSH

and VoIP as shorthands for the investigated combinations of application classes and intents.

7.4.1 Applications, Intents and KPIs

Next we discuss the implementations, KPIs, and intents per application class in detail. KPIs

in parentheses in Table 7.2 are not inputs for the user experience models, but are part of the

evaluation in this paper.

7.4.1.1 Remote Terminal Work

For remote terminal work we define the intent of an administrator typing commands over a

Secure Shell (SSH) connection. An automated SSH client enters commands and measures

the duration until the output of the command appears in the terminal. Only commands which

require minimal processing on the server-side, e.g., uptime and date, are entered. The SSH

connection is established before the start of the experiment. OpenSSH 7.2 is used as server

implementation on Ubuntu 16.04.4 LTS systems. Client-side automation is implemented using

paramiko [182].

7.4.1.2 File Downloads / Web Browsing

File download is the batch transfer of a chunk of data over one Transmission Control Protocol

(TCP) connection. As intent we define emailattach, a file with random content and a size of

10 MB, which is placed on a HTTP server for download. In an enterprise environment this

intent could represent the maximum size of email attachments. The download is implemented

using a short Python script and the requests library. As KPI, the script measures the duration

from when the GET request is sent, up to the last received Byte.

Web browsing is implemented using the open-source browser Firefox in version 58.0.2,

automated with selenium [184]. The settings are left to the default state and the cache is

cleared after every page view. The number of parallel connections is limited to six per server

118 Chapter 7. Application-Aware Resource Allocation through the NSAL

and HTTP pipelining is not supported anymore by recent Firefox versions. The connections

are configured to be persistent between requests. The browser interface is disabled (headless

mode) and no page rendering is performed in the experiments to minimize the influence of

system load and deployed testbed hardware.

This is a scenario where a limited number of browser-based business applications are used

frequently and/or all web browsing sessions are tunneled through an enterprise proxy. With

proxies, connections can be persistent even when requesting content from different domains.

General web browsing, where multiple domains are involved without proxy, is not represented

well by assuming persistent connections. This is due to the fact that connection establishment

can significantly influence the page load time for longer transport delays. We define the KPI

for one web browsing request as the duration from the initial GET request to the time all

embedded resources are received (page load time). For web browsing we define the intent

science_lab. The science_lab template [187] is an example web-site with 22 objects with a

total size of about 1.3 MB.

7.4.1.3 Adaptive Video Streaming

HTTP adaptive video streaming is implemented using the TAPAS [56] Dynamic Adaptive

Streaming over HTTP (DASH) player. The conventional [112] bit-rate adaptation strategy is

selected. We consider one video view as one request and select the average quality level of

all downloaded segments as KPI. We define the intent bbb for on-demand video streaming.

For this intent, we encode the open-source movie Big Buck Bunny in six quality levels with

average bit-rates of 486 Kbps, 944 Kbps, 1389 Kbps, 1847 Kbps, 2291 Kbps, and 2750 Kbps.

Only the first 60 s of the movie are selected and segmented into 15 chunks of 4 s each. The

playback buffer is configured with a maximum size of 60 s

Additionally, we define the live-streaming intent bbb_live where the chunk size is reduced

to 1 s and the buffer is limited to 10 s. Due to encoding overhead for the shorter chunk

duration, the bit-rates increase to 572 Kbps, 1103 Kbps, 1625 Kbps, 2145 Kbps, 2660 Kbps,

and 3172 Kbps.

7.4.1.4 Voice-over-IP

We emulate VoIP traffic using the Distributed Internet Traffic Generator (D-ITG) by Botta et al.

[34]. D-ITG reproduces the inter departure-times and packet sizes of VoIP traffic and measures

the KPIs jitter, packet loss, and delay of the resulting User Datagram Protocol (UDP) packet

stream. We define the intent G.729.1 for VoIP and configure D-ITG to emulate Real-Time

Transport Protocol (RTP) VoIP calls with the audio codec G.729.1. In this configuration, a

7.4. Utility Function Definition 119

Table 7.3: Subjective Models

Class Model KPI(s) Subjective Model

Web Browsing Page Load Time (pl) Egger et al. [58]

File Download Download Time (dl) Egger et al. [58]

Video Streaming Average Quality (ql) custom

Remote Terminal Response Time (rt) Casas et al. [43]

Voice-over-IP Delay (delay), Loss (loss) Sun et al. [146]

0.0 0.5 1.0

Response Time rt (s)

1

2

3

4

5

U
S
S

H
(r

t)

MOS

(a) Terminal Work (M (SSH))

0 10 20 30 40 50 60

Page Load Time pl (s)

1

2

3

4

5

U
W

E
B
(p

l)

(b) Web Browsing (M (WEB))

0 30 60 90 120 150 180

Download Time dl (s)

1

2

3

4

5

U
D

L
(d

l)

(c) File Download (10M) (M (DL))

Figure 7.3: Utility from application KPIs (M: KPIs 7→ Utility) derived from subjective study results

scaled to range [1, 5]. M (SSH) is derived from subjective study [43, Fig. 5 (a)] by Casas et al. Plus signs

indicate the MOS data points as collected by the authors in the study. Web and file download utility

models are derived from subjective user studies in [58] by Egger et al.

constant bit-rate stream with 50 packets per second is generated with a packet size of about 20

Bytes, resulting in data-rate of ≈ 8 Kbps.

7.4.2 Utility from KPIs

We define the current utility value of an application as an estimation of the instantaneous

satisfaction of a user with the interaction with the application. The relationship between

KPIs and user experience has to be determined through subjective studies, either directly by

conducting dedicated laboratory, field, or crowd-sourcing studies, or indirectly by measuring

user-relevant success metrics such as task completion times. We denote this relationship as M:

KPI 7→ Utility. In case there is a suitable QoE MOS [167] model available for the application,

we take a scaled version of the MOS model as the utility function (Table 7.3). The MOS scale

describes the experience of a user with the application on a scale of one to five where the

scale is labeled with {Bad, Poor, Fair, Good, Excellent}. However, the range of some user

experience models does not reach up to 5.0 (Excellent). In those cases, we define the utility

function by scaling up the experience model to [1, 5]. If no model is available, we define the

utility based on hand-picked application KPIs.

120 Chapter 7. Application-Aware Resource Allocation through the NSAL

QoE is an active area of research and holistic models do not exist yet for most applications.

There could be alternatives or more complex models available for the selected user experience

models. Furthermore, custom enterprise applications might require custom user experience

studies. In any case, the presented system design and findings of this chapter are independent

of the concrete deployed user experience models. Therefore, the selected models in this work

should be seen as rough approximations of the true underlying user experience.

7.4.2.1 Remote Terminal Work

We piece-wise interpolate a utility model for remote typing from the results presented in [43,

Fig. 5(a)]. There, Casas et al. study the QoE of remote desktop services for different use cases.

For the investigated typing use case, the test subjects where asked to type a short text on a text

processor in a remote desktop session. The higher the delay in the network, the longer the user

has to wait until his actions, e.g., typing a character or deleting character, appear on the screen.

The delay until the actions result in visual feedback is denoted as response time and we choose

it as the KPI for remote terminal work. Figure 7.3a illustrates the piece-wise interpolated

model based on the presented opinion scores in [43]. The authors only investigated response

time values up to 0.5 s. We linearly extrapolate the results up to 1.2 s where the utility reaches

1. We define M as M (SSH)(t) := MOS(SSH)(t) − 1) · 4
3.3 + 1 to project the MOS values to a

utility range of [1, 5].

7.4.2.2 Web Browsing / File Downloads

Egger et al. [58] propose models for the user experience of web browsing and file downloads

based on subjective user studies. The web browsing model uses the page load time (pl) as KPI.

For the file download, the download time (dl) of a 10 MB file is used as KPI. The MOS value

for web browsing is proposed as MOSWEB(pl) := −0.88 · ln(pl)+ 4.72. For the file download,

MOSDL(dl) := −1.68 · ln(dl) + 9.61.

Figure 7.3b illustrates the web browsing model. The figure highlights the severe impact

of the page load time on the user experience in web browsing. After only 2.2 s waiting time,

the MOS is already down from 5 (Excellent) to 4 (Good). With additional 4.6 s waiting time,

the MOS decreases to 3 (Fair). After a total waiting time of 20 s, the score ranges between

Poor and Bad. For web downloads (Figure 7.3c), the users are more willing to accept longer

waiting times. For example it takes a waiting time of 28 s for the opinion score to decrease to

4. We use the MOS(DL) model as proposed by the authors as M with M (DL)(t) := MOS(DL)(t).

M (WEB) we define as M (WEB)(t) := (MOS(WEB)(t) − 1) · 4
3.6 + 1.

7.4. Utility Function Definition 121

7.4.2.3 Adaptive Video Streaming

The user experience during an adaptive video streaming session depends on factors such as

average presented quality, number and amplitude of quality switches, frequency and duration

of stalling events, device’s screen size, viewing environment, user expectation, encoding,

adaptation strategy, and content type [4]. To the best of our knowledge there is no holistic

model for the user experience of adaptive streaming available at the moment. One option for

enterprises is to create custom models, for example for onboarding videos for new employees.

Studies show the average quality as a dominant influence factor [2] for the user QoE. For

the evaluate we therefore assign a utility value to a streaming application based on the observed

average quality q(avg) and the maximum and minimum quality level, q(max) and q(min). The

utility value is then determined by M (HAS)(q(avg)) :=
q(avg)−q(min)

q(max)−q(min) · 4 + 1.

7.4.2.4 Voice-over-IP

Sun et al. [146] propose a model for the MOS of VoIP depending on the used audio codec and a

user’s interactivity, i.e., whether the user is only listening or also conferencing. The MOS value

is presented as polynomial equation with constants a to j and with packet loss ratio and delay

as input parameters (Eq. 7.1). The constants depend on the used codec. We configure D-ITG

to emulate G.729. The MOS function MOSVoIP(loss, delay) is then described by Eq. 10 and

Table II in [146]. Equation 7.1 gives the resulting equation with the specific constants for the

codec. We define M accordingly as M (VoIP)(loss, delay) := MOS(VoIP)(loss, delay)−1)· 4
2.65+1.

MOS(VoIP)(loss, delay) = 3.61 − 0.13 · loss + 1.22 · 10−3 · delay + 3.76 · 10−3 · loss2−

2.29 · 10−5 · delay2
+ 4.71 · 10−6 · loss · delay−

5.16 · 10−5 · loss3
+ 2.54 · 10−8 · delay3

+

1.28 · 10−7 · loss · delay2 − 4.43 · 10−8 · loss2 · delay

(7.1)

7.4.3 Utility Functions

The utility function Ua : (Throughput [Kbps], Delay [ms]) 7→ [1, 5] approximates the QoE-

aware utility for a specific application type a for a unidirectional pacing rates and maximum

delay threshold using the utility model. Hence, the function solves the problem of linking

network resource demands with the resulting user experience. The hereinafter described

methodology for constructing the utility functions can be applied in an automated fashion to

any enterprise application and its intents.

122 Chapter 7. Application-Aware Resource Allocation through the NSAL

Measurement Set-up
Throughput tp

D
el

ay
 d

KPI, e.g.,

response time

300ms
Subjective

Model

C SP

+ delay

E

Measurements KPI Utility Function
Subjective

Model

Emulator Pacer

Domain

of𝑈(𝑡𝑝, 𝑑)

Throughput tp

D
el

ay
 d

1

5

U
tility

MOS, e.g., 3.2

Scaler

Scaler, e.g.,

MOS 3.2 to 3.7 utility

Parameters, e.g.,

tp = 100 Kbps

d = 200 ms
A A

Figure 7.4: Utility functions for (class, intent) are generated by first defining a measurement domain in

terms of throughput and delay. Second, the domain is quantized and the application KPIs are measured

in an emulated network environment using the quantized parameters for throughput and delay. Third,

user experience models are used to derive the utility for the measured parameters.

Figure 7.4 illustrates the process of constructing the utility functions. A set-up measures

the utility of each application and intent for different pacing rates and delays in an isolated

environment. Two hosts (Host S and Host C) with the applications (A) are connected through a

network emulator. On the emulator, Linux netem is adding delay to all packets passing through

it. Host S is running the server endpoint of the application, e.g., in case of web browsing a

HTTP web server. The client endpoint is assigned to Host C, e.g., the web browser. Host S

egress traffic is paced using the cfg queuing discipline (Section 7.6.2). From the measurements

we derive the 2-dimensional utility functions. Note that to account for asymmetric data-rates

in a conversation, which is the case for the most server-client traffic such as web traffic, the

two directions of a conversation have to be described by different utility functions. For the

sake of simplicity, we consider only one direction per conversation as constrained and only

present the server-to-client utility functions. For the throughput, we measure DL in the range

of [100, 5000] Kbps, WEB in the range of [100, 12000] Kbps, VoD and Live in the range

of [750, 5000] Kbps and VoIP and SSH in the range of [100, 500] Kbps. For the delay, we

measure WEB, DL, VoD, Live in the range of [0, 240] ms and VoIP and SSH in the range of

[0, 500] ms. The maximum pacing rate per intent is set so that further increasing the pacing

rate does not improve the utility for any delay demand.

Figure 7.5 presents the measurement results for the utility of the applications depending

on delay and throughput. The intersections of the grid indicate the quantization as used by the

resource allocation problem formulation. The figure shows that DL, WEB, and VoD are highly

dependent on the throughput and only a minor dependency on delay is visible. Live depends

7.4. Utility Function Definition 123

1000 2000 3000 4000 5000

Throughput [Kbps]

0

50

100

150

200

D
el

ay
[m

s]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

U
tility

(a) DL

2500 5000 7500 10000

Throughput [Kbps]

0

50

100

150

200

D
el

ay
[m

s]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

U
tility

(b) WEB

1000 2000 3000 4000 5000

Throughput [Kbps]

0

50

100

150

200

D
el

ay
[m

s]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

U
tility

(c) VoD

1000 2000 3000 4000 5000

Throughput [Kbps]

0

50

100

150

200

D
el

ay
[m

s]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

U
tility

(d) Live

Figure 7.5: Utility functions Ua: (Throughput, Delay) 7→ [1, 5] which map throughput and delay to

utility for the application classes file download, web browsing and video streaming and intents defined

in Table 7.2.

on delay and throughput. SSH (not shown) depends solely on the delay. For DL (Fig. 7.5a), the

impact of the delay is limited to the TCP handshake, the file request and acknowledgements

packets. The impact is insignificant compared to the download time and not visible on the

figure. For VoD, the impact of delay depends additionally on the number and playtime duration

of video segments and the adaptation strategy. As illustrated by Figure 7.5c, the influence of

delay for the intent VoD is minor. For Live there is a clear influence of delay on the utility

(Fig. 7.5d). For SSH, the delay is the important influence factor, as every typed character

triggers an outgoing packet and requires an immediate response packet. As we use persistent

HTTP connections for web browsing, there is no influence of the delay on the WEB utility due

to the TCP handshake. The influence of the delay is limited to the requests of the Hyper Text

Markup Language (HTML) index object and the embedded resources (Fig. 7.5b).

The maximum utility values an application can reach in the measurements are determined

by implementation-specific factors and the domain and range of the utility function. For

example WEB is limited by the browser processing time and VoD/Live depend on the behavior

of the adaptation algorithm. SSH can reach the highest utility of 5 with 100 Kbps throughput

124 Chapter 7. Application-Aware Resource Allocation through the NSAL

Allocation

Problem

Formulation

Active

Applications

Utility Functions

Network

Topology /

Resources

Delay-Constrained

Flow

Routing

Application

Pacing

Inputs Outputs

Network Service

Abstraction

Layer

End-Host Agents

Maximize:

1. Minimum utility

2. Total utility

Networking Stack

Forwarding

Devices

SDN ControlOptimization

Pacing

Routing

Subjective

Models

Measurements

KPIs

1

2

3

4

5

6

7

8

9

part of network control application

Figure 7.6: Overview over the fair resource allocation problem. Based on the set of applications

(1), resources (2) and application utility functions (3), the allocation problem solver maximizes the

minimum and total utility over all active applications (4). As a result, delay-constrained flow routing

(5) and application pacing rates (6) are implemented by the NSAL (7) in the network (8) and on

the end-hosts (9).

and 0 ms delay. VoIP can reach 5 with 100.0 Kbps and 34.5 ms. For WEB the highest utility

is 4.5 with 11589.7 Kbps and 33.1 ms delay. VoD can reach its highest utility of 4.9 with

3479.3 Kbps and 41.4 ms. Live can reach 4.8 with 5000.0 Kbps and 41.4 ms. DL can reach an

utility of 4.8 with 5000 Kbps and 99.3 ms delay.

7.5 User-Level Resource Allocation Formulation

We formulate the problem of network-wide application fair resource allocation as a MILP. The

objective of the MILP is in the first step to maximize the minimal utility value θ(min,1) over all

applications (max-min fairness). In the second step the MILP maximizes the sum of all utility

values while the minimum utility θ(min,2) is restricted to the range θ(min,2) ∈ [θ(min,1)−ǫ, θ(min,1)]

with ǫ = 0.3.

Next, we give the complete description of the resource allocation problem formulated as a

MILP. The MILP has to consider the two-dimensional utility function of every application,

the capacities of all paths between application endpoints and the queuing time on intermediate

nodes depending on the link utilization. The decision variables describe which pacing rate to

apply to which application and how to configure the routing between application endpoints.

The problem can be summarized with the following inputs, objectives, high-level constraints

and outputs.

7.5. User-Level Resource Allocation Formulation 125

Inputs (I) Number of applications.

(II) Utility function U of each application.

(III) Network topology with link capacity information and delay on the links

based on link utilization.

Objectives (I) Min-max utility fairness in the first step.

(II) Increasing average utility in the second step.

Constraint Unidirectional application routing (source to destination) has to be valid,

considering link capacity and maximum delay per application.

Outputs (I) Target utility value and allocated throughput per application.

(II) Application flow routing.

7.5.1 Notation

Table 7.4 summarizes the notation. A, a ∈ A is the set of all unidirectional application

flows a. For simplification, application a and intent i are merged in the notation to only

a. The two directions of a bidirectional application flow are considered as two independent

applications by the formulation. This allows different paths and utility functions for both flow

directions. We define the topology as a directed graph G(V, E) with nodes v ∈ V and edges

(u, v) ∈ E and edge capacity Cu,v. A flow a is defined by the source node Sa, target node Ta

and its utility function U. The utility function describes the relationship between allocated

throughput and delay and the application’s resulting utility (Fig. 7.5). It can be determined

for example through measurements and user experience models, as we do in the paper at

hand in Chapter 7.4. Mathematically, the utility function is split into its three components,

the utility values (U), the throughput demands (η) and the delay demands (D). F describes

the application flow routing. An edge (u, v) is traversed by an application a if Fa,u,v equals 1.

Delay on a link is describes as a function of the link usage. ψ and Ψ define the piece-wise

defined relationship between usage (ψ) and resulting delay (Ψ).

7.5.2 Objective

The objective of the MILP is in the first step to maximize the minimal utility value θ(min) over

all applications. In the second step the MILP maximizes the sum of all utility values while

the minimum utility is θ(min) restricted to range based on the minimum value determined by

the first step, denoted as θ(min,1), θ(min) ∈ [θ(min,1) − ǫ, θ(min,1)] with ǫ = 0.3. The second step

allows the problem formulation to improve the average utility over all applications by relaxing

126 Chapter 7. Application-Aware Resource Allocation through the NSAL

Table 7.4: Notation Allocation Problem Formulation

Symbol Type Unit Description

Constants

G(V, E) Network topology graph with nodesV and edges (u, v) ∈ E.

A, a ∈ A Set of all unidirectional application flows.

S, T ∈ V |A | Start and target nodes of application flows.

ψ, Ψ ∈ R+
|E |×|E |×m Translation between link usage and delay for a specific link.

C ∈ R+
|V |×|E | Kbps Unidirectional link capacity between u and v.

τ ∈ R+
|A |×n Kbps Utility functions’ throughput demands of the applications.

δ ∈ R+
|A |×n ms Utility functions’ delay demands of the applications.

U ∈ ([1, 5]) |A |×|τ |× |δ | Utility functions’ utility values of the applications.

Decision Variables

θ(min) ∈ [1, 5] Minimum utility for all applications.

T ∈ {0, 1} |A |×|τ | 1 if a specific throughput demand index is selected.

∆ ∈ {0, 1} |A |×|δ | 1 if a delay demand index for application is selected.

F ∈ {0, 1} |A |×|E |×|E | 1 if an edge is traversed by an application.

Functions

η(a) A 7→ R+ Kbps Selected throughput for application a.

D(a) A 7→ R+ ms Selected delay requirement for application a.

Λ(a) A 7→ [1, 5] Target utility value of application a.

Ω(u, v) E 7→ R+ Kbps Assigned throughput to link (u, v) in Kbps.

ω(u, v) E 7→ R+ ms Delay on link (u, v) in milliseconds.

Υ(a) A 7→ R+ ms End-to-end delay of application a in milliseconds.

Miscellaneous

θ(min,{1|2}) ∈ [1, 5] Solution of θ(min) in first and second step.

ǫ [= 0.3] ∈ R+ Slack parameter for θ(min) in the second step.

n, m ∈ N Quantification factors for the utility and link delay functions.

the max-min fairness constrain using the slack parameter ǫ . This prevents solutions where the

optimization would stop when the utility of a single application can not be increased further,

but where there are plenty of resources left to increase the utility of other applications.

We define θa as utility value of an application a. In the first step we maximize the minimum

utility value (max-min fairness) subject to all application utilities have to be larger than the

minimum utility value θ(min):

maximize: θ(min) (7.2)

subject to: Λ(a) ≥ θ(min)
∀a ∈ A (7.3)

and (7.8) - (7.27) (7.4)

We denote the optimal value of θ(min) of the first step as θ(min,1). In the second step we relax

the max-min constraint by ǫ and maximize the sum of all utility values. We denote the optimal

value of θ(min) of the second step as θ(min,2) and add the additional constraint to bound θ(min,2)

by θ(min,1) − ǫ = 0.3:

7.5. User-Level Resource Allocation Formulation 127

maximize:
∑
a∈A

Λ(a) (7.5)

subject to: θ(min) ≥ θ(min,1) − ǫ (7.6)

and (7.8) - (7.27) (7.7)

For remainder of this formulation and if not otherwise stated, θ(min) denotes the optimal

value as determined by the second step (θ(min,2)). Next we formulate the constraints. Table 7.5

summarizes the constraints.

Table 7.5: Overview of all constraints

Type Constraints Description

Objectives (7.3), (7.6) Maximize minimum utility (1st step) and sum of utilities

(2nd step).

Utility (7.8) - (7.12) Select target utility, throughput allocation and maximum

allowed delay per application.

Routing (7.13) - (7.15) Application routing (multi-commodity flow problem).

Capacity (7.16) - (7.17) Link capacity (in Kpbs) can not be exceeded by applications.

Delay (7.18) - (7.27) Determine delay per link (in milliseconds) depending on link

usage. Ensure applications’ maximum delay demand is not

exceeded.

7.5.3 Utility Selection Constraints

For each application, one throughput, delay and target utility value have to be selected. We first

introduce the equations and afterwards illustrate the selection process by a simplified example.

Eq. 7.8 and Eq. 7.9 dictate that only one throughput and delay demand for application a can

be chosen at a time:

|Ta |∑
i=1

Ta,i = 1 ∀a ∈ A (7.8)

|∆a |∑
i=1

∆a,i = 1 ∀a ∈ A (7.9)

Hence the chosen throughput demand in Kbps ηa and delay requirement in milliseconds Da

for application a are given by the following element-wise multiplications.

128 Chapter 7. Application-Aware Resource Allocation through the NSAL

η(a) := TT
a · τa (7.10)

D(a) := ∆T
a · δa (7.11)

The resulting utility value of application a, Λ(a), is then selected from the quantified utility

functions (Fig. 7.5) by the following equation:

Λ(a) :=

|T|∑
tp=1

|∆|∑
d=1

(Ta,tp · ∆a,d ·Ua,tp,d) (7.12)

Next we give an example for a target utility, throughput and delay demands calculations for

an arbitrary application a. The discretized utility function Ua has a domain of [100, 500,

1000] Kbps for the throughput and [150, 100, 50] milliseconds for the delay demand. At an

allocation of 1000 Kbps and 50 ms the utility of the application reaches its highest point with

4.9, while for 100 Kbps and 150 ms the target utility drops to 1.3. In the following example

the decision variables Ta,1 and ∆a,1 are set to 1 by the solver based on other constraints like

the available link capacity. Hence, an allocation of η(a) = 500 Kbit/s is chosen with a target

utility of Λ(a) = 3.0.

Λ(a) =
©«

Ta,0 Ta,1 Ta,2

∆a,0 Ua,0,0 Ua,1,0 Ua,2,0

∆a,1 Ua,0,1 Ua,1,1 Ua,2,1

∆a,2 Ua,0,2 Ua,1,2 Ua,2,2

ª®®®¬
=

©«

0 1 0

0 1.3 1.6 2.1

1 2.9 3.0 3.5

0 4.2 4.3 4.9

ª®®®¬
= 3.0

η(a) =
©«
τa,0

τa,1

τa,2

ª®®®¬
·
(
Ta,0 Ta,1 Ta,2

)
=

©«
100

500

1000

ª®®®¬
·
(
0 1 0

)
= 500 Kbit/s

D(a) =
©«
δa,0

δa,1

δa,2

ª®®®¬
·
(
∆a,0 ∆a,1 ∆a,2

)
=

©«
150

100

50

ª®®®¬
·
(
0 1 0

)
= 100 ms

7.5.4 Routing Constraints

We formulate the application flow routing problem as the multi-commodity flow problem

[85] with non-fractional flows. First we formulate the constraints required to route the flow

from source to destination. Afterwards we formulate the link capacity and application delay

7.5. User-Level Resource Allocation Formulation 129

constraints. A flow is subject to the following routing constraints. Number of incoming and

outgoing edges of in-between nodes has to be equal (flow conservation):

∑
w∈V

Fa,u,w =

∑
w∈V

Fa,w,u | u , Ta, Sa ∀a ∈ A, ∀u ∈ V (7.13)

Flow conservation at the source (Eq. 7.14) and destination (Eq. 7.15):

∑
w∈V

Fa,Sa,w −
∑
w∈V

Fa,w,Sa = 1 ∀a ∈ A (7.14)

∑
w∈V

Fa,w,Ta
−

∑
w∈V

Fa,Ta,w = 1 ∀a ∈ A (7.15)

7.5.5 Capacity Constraints

Capacity constraints ensure that the assigned throughput to a link does not exceed the capacity

of the link. Next we formulate the required link capacity constraints. We define the link

usage in Kbps Ω(u, v) on the directed edge (u, v) as the sum of the throughput values of all

applications traversing that edge/link:

Ω(u, v) :=
∑
a∈A

Fa,u,v · η(a) (7.16)

And assigned throughput can not exceed the capacity:

Ω(u, v) ≤ Cu,v ∀(u, v) ∈ E (7.17)

7.5.6 Delay Constraints

We define the delay of each link as a function of the link usage. That way, the delay function

can express a combination of constant, e.g., propagation delay, and dynamic, e.g., queuing and

processing delay, use cases. For example, an added constant delay can describe significant

propagation delay, or the queuing delay can be modeled based on the target link utilization.

We first provide the necessary equations and then provide a simple example.

We do a piece-wise linear interpolation to approximate the link delay for edge (u, v),

denoted as ω(u, v), for a given link usage Ω(u, v) of the edge. ψu,v,i and Ψu,v, j describe

the piece-wise defined translation sets between a usage in Kbps with index i and delay in

milliseconds with index j for a link (u, v) with |ψu,v | = |Ψu,v |. We introduce the variables lu,v,p

130 Chapter 7. Application-Aware Resource Allocation through the NSAL

with lu,v,p ∈ {0, 1} and Su,v,p ∈ [0, 1] for p = {0, 1, .., |ψu,v | − 1}. Variable l selects the closest,

lower, link usage from ψ and S is the linear scaling factor. l and S are subject to:

Su,v,p ≤ lu,v,p ∀(u, v) ∈ E, p = {0, 1, .., |ψu,v | − 1} (7.18)

Constrain the selection variable lu,v,p and scale variable Su,v,p according to the link usage Ωu,v:

Ω(u, v) −

|ψu,v |−1∑
p=0

[lu,v,p · ψu,v,p + (ψu,v,p+1 − ψu,v,p) · Su,v,p] = 0 ∀(u, v) ∈ E (7.19)

ω(u, v) then defines the delay for the given link usage:

ω(u, v) :=

|ψu,v |−1∑
p=0

[lu,v,p · Ψu,v,p + (Ψu,v,p+1 − Ψu,v,p) · Su,v,p] (7.20)

Let’s consider the following simple example. A hypothetical link (u, v) has a maximum

capacity of 1000 Kbps and a propagation delay of 10 ms. Up to a link usage of 100 Kbps, there

is no queuing delay. Between 100 Kbps and 1000 Kbps the queuing delay increases linearly

up to a maximum of 70 ms. Hence, at a link usage of 1000 Kbps the delay on the link is

70 ms + 10 ms = 80 ms. We can model this by setting ψ and Ψ as follows:

ψu,v =

©«
ψu,v,0

ψu,v,1

ψu,v,2

ª®®®¬
=

©«
0

100

1000

ª®®®¬
Kbps Ψu,v =

©«
Ψu,v,0

Ψu,v,1

Ψu,v,2

ª®®®¬
=

©«
10

10

80

ª®®®¬
ms

Let us assume the decision variables assign link (u, v) a total link usage of 500 Kbps. The

resulting total delay on that link can then be calculated by first determining l and S:

Ω(u, v) −

|ψu,v |−1∑
p=0

[lu,v,p · ψu,v,p + (ψu,v,p+1 − ψu,v,p) · Su,v,p] = 0

↔ 500 − ([lu,v,0 · 0 + (100 − 0) · Su,v,0] + [lu,v,1 · 100 + (1000 − 100) · Su,v,1]) = 0

The statement is true for lu,v = [0, 1] and Su,v = [0, 0.4̄4]. The delay on the link is then

calculated as follows:

7.5. User-Level Resource Allocation Formulation 131

ω(u, v) =

|ψu,v |−1∑
p=0

[lu,v,p · Ψu,v,p + (Ψu,v,p+1 − Ψu,v,p) · Su,v,p]

=[lu,v,0 · 10 + (10 − 10) · 0] + [1 · 10 + (80 − 10) · 0.4̄4] ≈ 41 ms

The end-to-end delay of an application is then the sum of delays on the links traversed by the

application. We denote the end-to-end delay of application a with Υ(a):

Υ(a) :=
∑
(u,v)∈E

ω(u, v) · Fa,u,v (7.21)

As ω(u, v) ·Fa(u, v) is quadratic, we re-write it to a linear constraint. We introduce the function

ϑa(u, v), which describes the delay of an application flow a on a single link (u, v). Furthermore

we set D(max) := 100000 to a arbitrary large number as the maximal observable delay. ϑa,

∀a ∈ A, is subject to:

0 ≤ ϑa(u, v) (7.22)

ϑa(u, v) ≤ D(max) · Fa(u, v) (7.23)

0 ≤ ω(u, v) − ϑa(u, v) (7.24)

ω(u, v) − ϑa(u, v) ≤ D(max) · (1 − Fa(u, v)) (7.25)

The end-to-end delay of application a can then be defined as Υa:

Υ
a :=

∑
(u,v)∈E

ϑa(u, v) (7.26)

The delay of the flow is not allowed to exceed the requirement:

Υa ≤ Da ∀a ∈ A (7.27)

132 Chapter 7. Application-Aware Resource Allocation through the NSAL

7.5.7 Problem Complexity and Possible Solving Strategies

The optimization formulation combines variations of the non-splittable multi-commodity flow

problem (routing) and of the knapsack problem (balancing demand and utility), both known to

be non-deterministic polynomial-time (NP)-hard. Hence, approximation algorithms have to

be found to solve the formulation in a reasonable runtime for larger topologies with potentially

multiple bottleneck links and a large number of simultaneous applications. The efficient

and fast solving of the problem is out of scope of this work and is left to future work. This

work provides the necessary abstractions and implementation proof that once the allocation

decision is made, it can be efficiently and accurately be implemented in the network. As with

other network resource allocation problems, such as the Virtual Network Embedding (VNE)

problem, the efficient solving of the theoretical problem can now be explored independently

of the implementation concepts.

Solving the problem for our evaluation scenario (one bottleneck link, ≤ 120 applications)

takes on average less than one minute on a standard eight-core Intel Core i7-4770 3.4 GHz

desktop PC with 32 GB RAM using the commercial Gurobi1 solver. In detail, Figures 7.7

illustrate the solving time, total number of variables and total number of constraints of the

problem instances with increasing number of applications with one bottleneck link. The solving

time stays below 10 s up to approximately 50 applications. Between above 90 applications the

solving time increases drastically up to 66.2 s. Afterwards, when high number of applications

does not leave much room for allocating higher utility values, the solving time decreases again.

Figures 7.7b and 7.7c show that the number of variable increases linearly with the number of

applications with 2889 variables and 86 constraints for each additional application. Thus, the

total number of variables and constraints depends on the number of applications, on the used

quantification of the utility and link delay functions and on the size of the network topology.

One greedy algorithm for finding a viable solution could be to start with a target utility

of 1.0 for all application flows and shortest path routing. Subsequently the utility can be

increased by increments of 0.1 in a round-robin order until an allocation is reached where no

application’s utility can be increased anymore without violating capacity or delay constraints.

One problem with this algorithm is that it does not find sophisticated solutions where the

utilization of one path is kept low to support low volume-low delay applications, e.g., web

browsing, and other paths are dedicated to batch transfers, e.g., file download.

1http://www.gurobi.com/

7.6. Experiment Design and Set-up 133

50 100

#Applications

0

20

40

60
S

o
lv

in
g

T
im

e
[s

]

(a) Solving Time

50 100

#Applications

1

2

3

#
V

ar
ia

b
le

s

×105

(b) Variables

50 100

#Applications

0.25

0.50

0.75

1.00

#
C

o
n

st
ra

in
ts

×104

(c) Constraints

Figure 7.7: Problem size and solving time of the optimization formulation for increasing number of

applications (|A|) sharing one bottleneck link. Maximum of 66.2 s solving time for 110 applications.

2896 variables and 86 constraints for each additional application.

7.6 Experiment Design and Set-up

The objective of the experiments is to show the dependability and scalability of resource

allocation via end-host pacing through the NSAL and how the different application classes

profit and/or suffer from the enforced packet pacing. The experiments are conducted in a set-up

where we monitor sets of increasing number of parallel applications sharing a throughput-

constrained link. For each set of applications we measure the utility with and without resource

allocation and discuss the differences in the evaluation. Dynamic embedding of applications

at run-time and additional intents are out of scope of this evaluation. Next, we elaborate on the

deployed experimental set-up (Section 7.6.1) and the custom pacing implementation (Section

7.6.2). Afterwards, we discuss the experiment parameters (Section 7.6.3). The results of the

evaluation are presented in the subsequent Section 7.7.

7.6.1 Experiment Set-up

The set-up consists of two groups of hosts, one server and one client group, connected via a

link. The link is throughput-constrained and the applications running on the host groups have

to share the limited throughput. Figure 7.8 illustrates the experiment set-up. The network

consists of two switches, one SDN-enabled Pica8 P-3290 (1) and one unmanaged off-the-shelf

100 Mbps switch (2). The link between the two switches constrains the available data-rate

between the hosts on the left and on the right side to 100 Mbps. The Pica8 switch is equipped

with a maximum queue size of 1 MB and maximum queuing delay of about 80 ms towards the

100 Mbps link. We deploy three modern desktop PCs on each side to meet the processing and

memory resources required by the experiment scenarios.

134 Chapter 7. Application-Aware Resource Allocation through the NSAL

Bottleneck

Application

Network Services

Abstraction Layer

Agent

P

Server Applications

• Web Server

• SSH Server

• VoIP Sender

Application

4 3

Pica8 Off-the-shelf
1

2
1 Gbps 100 Mbps

Agent

OpenFlow

Control

5

8

N
et

w
o

rk

N
am

es
p

ac
es

7

C M

Client Applications

• Browser

• Downloader

• VoIP Receiver

• HAS Clients

Application-Aware Control

Application

Application P Application

A

A

A

A

V V

Host Host

Figure 7.8: Evaluation set-up. Two groups of hosts, one server (4) and one client (3) applications

group, are connected via an SDN-capable 1 Gbps switch (1) and an unmanaged 100 Mbps legacy

device (2), i.e., a bottleneck, to each other. The application-aware control application on top uses the

NSAL to collect statistics, available resources and active applications (A) in the network. Afterwards

the control application calculates the resource shares and uses the NSAL to configure the pacers P

accordingly.

Each application consists of a server and client endpoint, e.g., a web server and a browser.

All endpoints are confined to a separate network namespace (7) and connected via virtual

interfaces and a software bridge to the host’s physical interface (8). Each namespace is

configured with a unique Internet Protocol (IP) and Medium Access Control (MAC) address.

Furthermore, every client is connected to an exclusive server application. That way, the pacing

rate can be set per namespace and no further control is needed to assign outgoing server

packets to different pacers. In case of web browsing, video streaming, and web download,

each client is assigned to an exclusive light-weight HTTP server, but with shared content.

The server endpoints are placed left of the bottleneck and the client endpoints to the right

of the bottleneck, which makes the egress queue and interface of the Pica8 the bottleneck.

Pacers (P) based on our cfq implementation (Section 7.6.2) restrict the egress rate of the

namespaces/applications towards the hosts’ software bridges.

All management and monitoring operations are performed out-of-band. The KPIs of

each application are measured at the client endpoint, e.g., the page load time at the browser,

and reported to the NSAL and the application-aware control application. Additionally, we

frequently poll the statistics counters of all physical and virtual network interfaces to measure

throughput, queue length and packet loss.

7.6. Experiment Design and Set-up 135

7.6.2 Pacing Implementation

In Linux, pacing is implemented as a queuing discipline. Furthermore, a mechanism called

TCP small queues [174] exerts backpressure on the applications to mitigate buffer bloat

and packet loss by limiting the allowed number of Bytes per flow in the queuing discipline

and device queue (default: 128 Kilobytes). Other operation systems offer similar pacing

mechanisms. We implemented a custom queuing discipline based on the existing Fair Queuing

(fq) discipline [173], referred to as Custom Fair Queuing (cfq). Every conversation defined

by (class, intent) and by one or multiple sockets, can be assigned to an exclusive queue with

a target packet release rate as configured by the network controller through the local agent.

Packets from the queues are released time-based. The departure time of the next packet

time_next_packet is determined by the current time now, the size of the current packet

pkt_len and the target pacing rate target_rate: time_next_packet = now +
pkt_len

target_rate

7.6.3 Parameter Space and Experiment Procedure

The parameter space of the experiments is limited to the number and types of the applications

and whether the experiment is managed or best effort. In detail, the bottleneck link is shared

by {2, 4, .., 24} applications per class, in total |A| ∈ {10, .., 120}. For video streaming, half of

the applications are of type Live and the other half of VoD.

At the start of the experiment, the applications register at the NSAL through the local agent.

Once all applications are registered, the network control application calculates the resource

shares of utility for each application and pushes the corresponding pacing rates to the agents

via the NSAL. The agents configure the pacers accordingly. The SDN-enabled Pica8 switch

is configured via OpenFlow for simple forwarding. Besides the forwarding rule configuration,

the OpenFlow connection is used to poll queue and interface statistics.

The duration of one experiment run is 15 minutes with an additional 1 minute warm-up

and cool-down phase. The applications are started at random times during the warm-up

phase and requests during the warm-up or cooldown phase are discarded for the evaluation.

Each experiment is repeated 11 times. The applications are configured with a constant

inter-request time of 100 ms. One request equals one video view for VoD and Live. For

VoIP, one request equals one 30 s phone call. The reason for the static inter-request time of

100 ms is that this results in an almost constant number of concurrent applications using the

bottleneck link. Hence, each application in a specific scenario is constantly sending/receiving

requests/responses, except of a 100 ms break between requests to allow for a reset of an

application’s state. Increasing the inter-arrival time between requests would effectively

decrease the number of concurrently active applications at a specific point in time. Cubic is

136 Chapter 7. Application-Aware Resource Allocation through the NSAL

configured as TCP congestion control algorithm. Cubic is chosen as comparison as it shows

better performance on congested links compared to Compound and New Reno TCP [21] and it

is the default algorithm for many Linux server variants. BBR congestion control proposed by

Google fails to show performance benefits and fairness in heterogeneous environments [82]

compared to Cubic.

There exist valid optimal solutions to the allocation problem formulation with applications

of the same type to be assigned different utility values. For easier presentation of the results,

we constrain the problem formulation to choose one utility value per type tuple. The bottleneck

link is modeled with a capacity of 100 Mbps. As the sum of all paced flow rates does not

exceed the available capacity, and due to the short inter-request pauses of the application

requests, the link in the managed case is slightly under-provisioned. Thus, a large queue

build-up is unlikely and the link delay of the bottleneck is modeled with a constant delay of

2 ms. In the best effort case, the link is already over-utilized with 10 competing applications

and experiences 58 ms delay and 0.5 % packet loss (discussed later in Section 7.7.3).

7.7 Evaluation

We evaluate the performance of an increasing number of applications sharing a throughput-

constrained link with and without data-rate management. The evaluation is pursuing the

following questions. i) How does the minimum and average utility of the applications compare

between the managed and best effort scenarios? ii) Which applications benefit, which utility

values are decreased, and why? iii) Can pacing result in configurable and thus predictable

application performance in terms of the difference between the target and the measured utility?

iv) How fair, in terms of utility, are the best effort and the managed utility distribution?

First, we evaluate how the available data-rate is distributed among the applications in a best

effort scenario and present the resulting utility distribution. Second, we solve the allocation

formulation for the scenario, implement the pacing in the set-up and present the gains in terms

of utility. Third, we present how pacing affects the QoS parameters, such as packet loss and

jitter, of the link. Fourth, we conduct a parameter study on the number of parallel applications

and show how the gains and fairness changes with increasing number of parallel applications.

Error bars in the result figures indicate the standard deviation over 11 experiment repetitions

if not otherwise stated. In cases the error bars are not clearly visible on the presented scale,

they are omitted from the figures.

7.7. Evaluation 137

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Mbps

0.00

0.25

0.50

0.75

1.00

C
D

F

WEBDL

VoD
Live

SSH/VoIP

(a) Throughput

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Utility

0.00

0.25

0.50

0.75

1.00

C
D

F

VoIP

WEB

SSHDL

Live

VoD

(b) Utility

Figure 7.9: Best effort throughput and utility of the different application types for 16 clients per

application class. The markers at the top are for better visual indication of the application types.

7.7.1 Best Effort Throughput and Utility Distribution

First, we take a close look at the best effort application performance for single scenario with

16 clients per application class, 16 ×WEB, 16 ×DL, 16 × SSH, 16 × VoIP, 8 × VoD, 8 × Live,

in total |A| = 80. The scenario with 80 applications is selected due to the fact that among

the investigated scenarios, one of the highest gains is observed here. With the 80 applications

competing for the bandwidth, the link is fully utilized resulting in an average packet loss of

4 % and queuing delay of 80 ms.

Figure 7.9a presents the Cumulative Distribution Functions (CDFs) of the average through-

put and Figure 7.9b the CDFs of the utility values of all requests per application type. Multiple

observations can be made from the figures. First, the throughput as well as the utility is

distributed non-uniformly between the application types. For example, while WEB enjoys high

throughput and utility (median ≥ 3.9 Mbps, 3.8 utility), Live’s achieved throughput is less than

1 Mbps and median utility is about 1.4. WEB’s high throughput is due to the use of multiple

persistent parallel TCP connections, while video streaming clients, DL, and SSH establish only

138 Chapter 7. Application-Aware Resource Allocation through the NSAL

one TCP connection. Parallel TCP connections allow an application to receive a proportional

larger fraction of the available throughput. As web download has no idle periods during the

download, web download exhibits a higher average throughput than video streaming.

Second, even VoD and Live, which belong to the same application class (video streaming)

and achieve similar throughput rates, suffer from unfair utility distribution (1.3 vs. 2.1). This

is due to the smaller playback buffer for live streaming and the increased encoding overhead for

the shorter video chunks. Third, the average throughput of SSH and Voice-over-IP (VoIP) is

below 100 Kbps, while the utility is 3.7 and 4.9, respectively. SSH’s performance is influenced

by delay, caused by queuing at the bottleneck link, and retransmissions, due to lost packets

when the bottleneck’s queue is overflowing. VoIP is barely influenced in this scenario, as

the maximum delay and packet loss over the single bottleneck is acceptable for VoIP traffic

according to the user experience model. Details on the performance of VoIP is given in Section

7.7.3. Fourth, the utility distributions per application type are varying with a standard deviation

of 0.2 (WEB) to 0.5 (DL), with the exception of VoIP. Hence, application performance is not

consistent across requests of the same application type, and, as a consequence, there is an

unfair distribution of shares, even within the same application type.

In summary, best effort delivery is inadequate to provide fair and consistent application

performance for multiple applications sharing a constrained link. Best effort delivery does

not consider different demands (throughput vs. delay-sensitivity), transport protocols (TCP

vs. UDP), or multiple flows per application. Furthermore, the constrained link is overloaded,

resulting in lost packets and queuing delay.

7.7.2 Managed Utility Distribution

Next, we solve the allocation problem formulation with the max-min fairness criteria for the

scenario with 80 parallel applications and apply the calculated pacing rates. Figures 7.10a to

7.10f illustrate the best effort (solid lines) and managed utility (dashed lines) for the scenario

with 16 clients per application class. Improvements in median utility due to the data-rate

management are indicated by (→, +). Deteriorations are shown by (←, −). The target utility

per application type, as calculated by the allocation formulation, is indicated by (|, ⋆).

The figures 7.10a to 7.10f show that all application types, except WEB and VoIP, profit

from the management. Live benefits most from the management, with a median increase of 3.1

(from 1.3 to 4.4). VoD, SSH and DL’s median utility improve by 2.0, 1.0, and 0.4, respectively.

On the other hand, WEB’s median utility decreases by 1.3 (from 3.8 to 2.5). No noteworthy

improvement or deterioration in utility is measurable for VoIP.

Live (b) exhibits a deviation of about 0.5 between the target and measured utility. The

deviation is the result of an inaccuracy in the live streaming utility function. The samples

7.7. Evaluation 139

1 2 3 4 5

Utility

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F +

(a) VoD

1 2 3 4 5

Utility

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F +

(b) Live

1 2 3 4 5

Utility

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F +

(c) SSH

1 2 3 4 5

Utility

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F -

(d) WEB

1 2 3 4 5

Utility

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F +

(e) DL

1 2 3 4 5

Utility

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F +

(f) VoIP

Figure 7.10: Figures (a) to (f) show measured best effort and managed application utility for |A| = 80

applications sharing the constrained link. The dashed lines indicate the utility CDF for the managed

scenario, the solid lines the best effort scenario. The star and vertical line mark the target utility UV

for the application type. Arrows to the right highlight the improvement in median utility.

collected from the utility measurement setup are supplemented with interpolated values to

build the quantized utility function. In the case of live streaming and low delay values, the

interpolation results in an utility error of about 0.5. The error can be reduced by collecting

more measurement samples from the throughput-delay parameter space and/or fine-tuning the

interpolation algorithm.

Figure 7.11 presents the standard deviations per client of a specific type for the best effort

scenario. The smaller the standard deviation is, the more consistent is the experience of a

single user. The dashed vertical line indicates the maximum (= 0.05) of the standard deviations

in the managed case (per type CDFs are not shown for the managed case). DL (©) clients

exhibit the largest median standard variation (0.64) among the application types, followed

by SSH (△) with 0.41. WEB (⋄) clients’ median variation is the second smallest with 0.25.

There is no visible variation for VoIP (◦). The figure also shows that not only the utility value

per client request varies, but also the behavior of each client. For example for VoD (⊳), the

standard deviation varies between 0.1 and 0.43. Hence, some clients experience a smaller

quality variation for their video views than other clients.

140 Chapter 7. Application-Aware Resource Allocation through the NSAL

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Utility Standard Deviation

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
VoD

LiveDL

Figure 7.11: Standard deviations of a client’s utility values per application type in the best effort

scenario. Smaller values indicate a more consistent behavior of a client instance. The dashed vertical

line indicates the maximum standard deviation for the managed case (CDFs of managed scenario not

shown). Video streaming exhibits most unstable behavior. VoIP’s clients (◦) are unaffected.

7.7.3 Link QoS and VoIP Performance Details

Next, we take a closer look at the QoS metrics of the constrained link in terms of packet loss,

queuing delay and jitter for an increasing number of parallel applications. As the MOS and

utility functions of VoIP are based on the QoS metrics, we also discuss why the QoS metrics

have only minor influence on the VoIP performance in the evaluation.

Figure 7.12a shows the median packet loss as measured by the VoIP clients during a call

for 10 to 120 parallel applications. The dashed lines indicate the 95 % percentile. The figure

shows that there is no packet loss for the investigated number of applications in the managed

experiments. In the best effort experiments, the packet loss increases linearly from 0.5 % to

7.1 % (0.9 % to 8.1 % for the 95 % percentile).

Figure 7.12b shows the RTT. Note that the client-to-server flow direction of the constrained

link is only lightly utilized and therefore, the given RTT approximates the one-way delay

experienced by the applications. In the best effort case, the delay increases roughly logarithmic

from 53 ms for 10 applications and saturates for 70 parallel applications at 79 ms. The 95 %

percentile shows that even at 10 parallel application the experienced RTT is in 5 % of the cases

already greater than 79 ms. In the managed experiments the measured RTT increases linearly

from 0.9 ms to 1.1 ms (1.5 ms to 2.4 ms).

Figure 7.12c shows the median and 95 % percentile of the average jitter as measured by

the VoIP clients during a call. In general, the figure shows that in the best effort case the

jitter decreases for increasing application count, while for the managed experiments the jitter

increases. The decrease in jitter in the best effort case shows that due to the link saturation,

there are almost constant inter-arrival times of packets. The high link utilization results in a

7.7. Evaluation 141

20 40 60 80 100 120

#Applications (|A|)

0

2

4

6

8
P

ac
k
et

L
o

ss
[%

]

(a) Packet Loss

20 40 60 80 100 120

#Applications (|A|)

0

20

40

60

80

D
el

ay
[m

s]
(b) RTT

20 40 60 80 100 120

#Applications (|A|)

0

1

2

3

Ji
tt

er
[m

s]

Managed

Best Effort

(c) Jitter

Figure 7.12: QoS metrics of the constrained link in terms of packet loss, delay and jitter for increasing

number of applications (|A|) as recorded by the VoIP clients. The dashed lines without markers

indicate the 95 % percentile. The markers indicate the managed (�) and best effort (◦) median values.

Without data-rate management the queue at the bottleneck is overflowing quickly even at low numbers

of parallel applications and thus causing packet loss and delay.

full link queue and packets are processed at line-rate by the switch’s outgoing interface. In

the managed case, the arrivals of the multiplexed requests of the clients result in minor RTT

variations, but even for 120 applications the 95 % percentile of the jitter stays below 0.9 ms.

As there are no retransmissions for VoIP, the maximum delay for the successful transmission

of a voice sample is about 80 ms in our set-up. For 8 % packet loss and 80 ms delay, the utility

for VoIP is estimated as 4.9 (UVOIP(80, 0.08) = 4.9). Hence, as defined by utility function

UVOIP, there is a maximum utility difference of 0.1 in the set-up (5 - 4.9).

In summary, data-rate management significantly improves the QoS metrics of the con-

strained link. There is no packet loss, the RTT stays in most cases far below 2.5 ms and

the jitter is at least halved. Regarding the influence of the QoS metrics on the VoIP utility,

the VoIP clients in combination with the selected audio codec are marginally affected by the

unmanaged link degradation. However, one can imagine how applications with stricter QoS

requirements or VoIP calls with longer network paths profit from the QoS improvements.

7.7.4 Increasing Number of Applications

Figure 7.13 illustrates the gain in utility per application type for increasing number of

simultaneous applications. Results are shown as the mean of the 10 % percentiles of the utility

values per application. The 10 % tail as summary metric is chosen to allow for a small budget

of random error compared to the minimal utility over all requests, e.g., for random delays in

processing on the experiment PCs or requests which take longer due to rare latency spikes in

the network. Hence, on average 90 % of the requests of a client result in an utility equal or

better than the given value.

142 Chapter 7. Application-Aware Resource Allocation through the NSAL

10 30 50 70 90 110

#Applications

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

U
ti

li
ty

(a) VoD

10 30 50 70 90 110

#Applications

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

U
ti

li
ty

(b) Live

10 30 50 70 90 110

#Applications

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

U
ti

li
ty

(c) SSH

10 30 50 70 90 110

#Applications

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

U
ti

li
ty

(d) WEB

10 30 50 70 90 110

#Applications

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

U
ti

li
ty

(e) DL

10 30 50 70 90 110

#Applications

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
in

im
u

m
U

ti
li

ty

Managed

Best Effort

θ
(min)

(f) min

Figure 7.13: Comparison of managed measurements (�), target utility (×) and best effort (◦) mea-

surements per application type for increasing number of applications sharing the constrained link. In

Figure (f), the crosses and the dashed line indicate the solution to the allocation formulation (θ(min))

over all types.

Figures 7.13a to 7.13e present the findings per application type. The application class

VoIP is omitted as there is no significant difference between the managed and best effort

scenario. Figure 7.14 summarizes the difference in utility per application type between the

managed and best effort experiments. Application types with a positive difference (top half

of the figure) profit from management. The performance of application types with negative

differences deteriorate. The following general observations can be made based on the figures.

First, the utility for all shown types decreases with increasing number of applications in

the best effort case. This is expected as with increasing |A| more flows compete for the

scarce constrained link capacity. In the managed case, only DL and WEB exhibit an equivalent

degradation in utility. VoD, Live, and SSH on the other hand can sustain a high utility in

the managed experiments even while the number of competing flows increases. Second,

for |A| < 40 the potential gain is low as the available capacity is sufficient to reach close

to maximum utility for all applications in the managed and best effort cases. Third, the

performance of WEB deteriorates while all other classes (except VoIP) profit for most of the

evaluated values of |A|. Fourth, the minimum utility over all applications (θ(min)) in the

7.7. Evaluation 143

10 30 50 70 90 110

#Applications

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

U
ti

li
ty

G
ai

n

WEB

Live
VoD

SSH

DL

Figure 7.14: Summary of the differences between best effort and managed utility for all application

classes for increasing number of applications. SSH and VoD exhibit the highest gains for > 90 number

of parallel applications. WEB looses up to 1.1 utility by the data-rate management.

managed case is mostly determined by WEB and Live. The minimum for the best effort case is

mostly dictated by SSH for |A| < 30 and by Live for |A| ≥ 30. Fifth, the measurements from

the managed scenario deviate less than 0.5 from the target utility as determined by the solution

to the optimization formulation for all application types. For DL, WEB, VoD, and SSH the

deviation is even less than 0.2 for the investigated number of parallel applications. Hence,

data-rate management leads to predictability of application performance. Furthermore, the

results show that pacing can implement the output of the allocation optimization formulation

accurately. Next, we investigate the measurement results for each application type in detail.

For VoD (Fig. 7.13a), the utility decreases approximately linear with an increasing number

of parallel applications for |A| > 30. For |A| ≤ 30, best effort management is sufficient to

provide a utility of 4.5 or higher. With data-rate management, the fairness formulation can

allocate enough resources to the VoD clients to sustain a high utility value even for up to

|A| = 120. Hence, for |A| = 120 the utility gain is about 3.1.

For Live (Fig. 7.13b), the figure shows that the utility decreases rapidly without data-rate

management. There, data-rate management is most effective at 60 to 70 parallel applications

where the increase is up to 3.4. In terms of predictable performance, the target utility is

met most of the time with a deviation of 0.1 to 0.3. However for |A| ≥ 100, the fairness

formulation decreases the utility target to the minimum of 1.0, which is the same low utility

as Live reaches in the best effort case for the same number of applications.

For SSH (Fig. 7.13c), profit increases roughly linear with |A|, from about 0.7 up to

2.1 for |A| = 120. Data-rate management avoids bursts and keeps the total data-rate under

144 Chapter 7. Application-Aware Resource Allocation through the NSAL

the constrained link capacity. Hence, there is little queuing delay and the delay-sensitive

applications like SSH can sustain a high utility even for large |A|.

For WEB (Fig. 7.13d), the difference between managed and best effort is less than 1 utility

(maximum difference of 0.9 at |A| = 90). For |A| < 90 and |A| > 90 the difference decreases.

The target utility is close to the measured managed utility.

DL (Fig. 7.13e) exhibits the smallest utility gains (besides VoIP). The gain is below 0.8

for |A| ≤ 90 and around zero for |A| = 100. The decrease of utility with increasing |A| is

roughly linear for the managed and best effort experiments. For |A| ≥ 100, the solution to

the fairness problem increases the utility target for DL again, which results in a utility gain

close to 1.0. Managing the utility is accurate and the deviation from the target utility can be

neglected for all investigated numbers of parallel applications.

VoIP exhibits no benefit or degradation from the activated management according to the

user experience model (further discussed in Section 7.7.3).

Figure 7.13f shows the minimum 10 % percentile utility as measured in the best effort and

managed experiments and as calculated by the fairness formulation. The figure shows that in

the managed scenario, every client’s utility is at least 3.0 up to 80 parallel applications, which

is denoted as fair on the MOS scale. In the best effort case, the observed minimum utility

drops below 3 for 40 applications and down to 1.0 for 80. When comparing θ(min) (×) and

managed (�), the managed minimum utility does not differ more than 0.1 from the calculated

minimum utility.

In summary, the presented measurements for increasing number of parallel applications

sharing the constrained link highlight the benefits of the proposed approach. VoD, Live, DL,

and SSH exhibit gains in utility between 0.5 and up to 3.3, even for 100 and more applications

sharing the 100 Mbps link. WEB’s utility degrades, but the decrease is less than 1.0. The

minimum utility θ(min) can be greatly increased, especially for |A| > 30, and the target utility

is mostly met, resulting in predictable application performance. VoIP shows no benefit or

degradation due to the nature of its user experience model.

7.7.5 Video Streaming Performance Details

Stallings and switches are not part of our utility functions UVoD and ULive, but studies show

their negative influence on the user’s perceived video quality [4, 2]. Therefore, for video

streaming, we now consider the two additional KPIs initial stalling time and quality switching

frequency. Initial stalling is the short unavoidable stalling time at the beginning of the video

to download the first segment. Stalling during the playback was prevented in all experiment

runs by the quality adaptation algorithm.

7.7. Evaluation 145

Figures 7.15 illustrate the median initial stalling time ((a) and (b)) and the median number

of quality switches ((c) and (d)) per video view for VoD and Live. In terms of initial stalling the

figures show for the best effort case a strong linear correlation with the number of applications.

For VoD, the median stalling time increases approximately linear from 0.9 s to 4.5 s for 10 to

120 parallel applications. For Live, the increase is from 2.0 s to 9.3 s. In the managed case

the initial stalling duration does not exceed 1.9 s and 5 s for VoD and Live up to |A| < 100,

respectively. For |A| ≥ 100, the initial stalling increases to about 10 s. This is due to fairness

formulation assigning Live the minimum bandwidth which allows interruption-free playback

of the video. But with minimum bandwidth the initial buffer time increases.

In terms of mean quality switches per playback minute, which is equal to the mean number

of switches in the case of our 60 s video, we observe a difference in behavior between VoD

and Live. For VoD, the switching frequency is low (approximately one or two switches per

minute) for a small number of applications (|A| ≤ 30) and for a large number of applications

(|A| > 110). In-between, the frequency ranges between 1 m−1 and 3 m−1 for the managed

experiments and between 2 m−1 and 5 m−1 for the best effort experiments. The reduced

switching frequency for |A| ≤ 30 and |A| > 110 can be explained by the fact that there are

fewer reasonable choices for a quality level to choose when the goodput demand of the highest

quality level is satisfied or the goodput demand for the lowest quality level is barely met.

For Live, the number of switches increases in the best effort experiments from 2.5 up to

6.5 switches and then decreases roughly linear to 0 for 120 applications. As shown by Figure

7.13b, the utility, and therefore the mean quality level, drops fast to the lowest level with

increasing number of applications for Live intent and best effort congestion control. Hence,

the number of switches for Live is also decreasing as the adaption logic has limited options

and must often choose the lowest quality level. In the managed case, the switches increase

from 2 m−1 to 7 m−1 at 90 applications. For |A| ≥ 100 the switches drop to zero as only the

lowest quality level is shown to the user. The managed results show that the adaptation logic

is not able to take advantage of the stable goodput for the Live intent.

In summary, data-rate management results in most cases in a smoother playback experience

for the user in terms of quality switching. There is also an opportunity for novel adaptation

logics to further improve video adaptation. If the bit-rate variations of all video chunks are

known beforehand, which can be the case for DASH-based video streaming, a stable goodput

allows for computing near-optimal adaptation decisions.

7.7.6 QoE Fairness

To the best of our knowledge, there is no fairness measure to quantify the fairness for dif-

ferent application types with orthogonal resource demands, e.g., throughput-sensitive and

146 Chapter 7. Application-Aware Resource Allocation through the NSAL

20 40 60 80 100 120

#Applications

0

5

10

In
it

ia
l

S
ta

ll
in

g
[s

]
Managed

Best Effort

(a) Initial Stalling (VoD)

20 40 60 80 100 120

#Applications

0

5

10

In
it

ia
l

S
ta

ll
in

g
[s

]

(b) Initial Stalling (Live)

20 40 60 80 100 120

#Applications

0

2

4

6

S
w

it
ch

es

(c) Switches (VoD)

20 40 60 80 100 120

#Applications

0

2

4

6

S
w

it
ch

es

(d) Switches (Live)

Figure 7.15: Initial stalling duration and switching frequency for the VoD and Live clients for increasing

number of total applications. There are no recorded stallings during the playback sessions. The results

in terms of benefit of the pacing for video streaming clients show unstable adaptation behavior. There

is an opportunity for novel quality adaptation logics to benefit from the stable throughout.

delay-sensitive demands. For example, VoIP is in our set-up always close to a utility of

5.0, independent of other applications. Hence, any fairness measure which considers only

differences between values will consider this as unfair. But enforcing equal utility for all appli-

cation types, including artificially restricting VoIP, would result in a non-Pareto-optimal utility

distribution where the target utility of VoIP could be increased without negatively impacting

other applications. Therefore, we evaluate the inter-application fairness per application type.

Note that for the evaluation we are restricting the allocation formulation to allocate only one

target utility value per application type. Hence the target utilities per type exhibit always

perfect fairness and are omitted.

We evaluate the inter-application fairness using the F-index [84] defined by F = 1− 2σ
4 for

a utility scale of 1 to 5. The F-index is selected as fairness measure as it is specifically designed

and evaluated for user experience fairness. An F-index of 1.0 indicates perfect fairness between

the applications. An F-index of 0.0 is the result of half of the application experiencing a

utility of 1.0 and the other half an utility of 5.0. Figures 7.16a to 7.16e illustrate the F-index

7.7. Evaluation 147

20 60 100

#Applications

0.7

0.8

0.9

1.0

Q
o
E

F
ai

rn
es

s
In

d
ex

(a) VoD

20 60 100

#Applications

0.7

0.8

0.9

1.0

Q
o
E

F
ai

rn
es

s
In

d
ex

(b) Live

20 60 100

#Applications

0.7

0.8

0.9

1.0

Q
o
E

F
ai

rn
es

s
In

d
ex

(c) SSH

20 60 100

#Applications

0.7

0.8

0.9

1.0

Q
o
E

F
ai

rn
es

s
In

d
ex

(d) WEB

20 60 100

#Applications

0.7

0.8

0.9

1.0

Q
o
E

F
ai

rn
es

s
In

d
ex

Managed

Best Effort

(e) DL

Figure 7.16: Comparison of the F-index between managed (�) and best effort (◦) scenarios per

application type for increasing number of applications sharing the constrained link. An F-index of

1.0 denotes perfect fairness. All managed scenarios exhibit nearly perfect fairness, while best effort

scenarios show unfairness when applications compete for the link.

per application type t for |A| = {10, 20, .., 120} applications sharing the constrained link,

measured for the best effort and managed scenarios. From the figures, we conclude that in the

managed case, the F-index does not drop below 0.98 for any of the evaluated scenarios and

application types.

In the best effort case, the fairness depends strongly on the application type and the number

of parallel applications. The WEB clients exhibit a fairness similar to that in the managed

scenario (≥ 0.98). For SSH and DL, the fairness fluctuations are larger, but in general the

fairness is still high (≥ 0.95). The two video streaming types VoD and Live suffer the most in

the best effort scenarios. For Live, the fairness drops down to 0.7 for |A| = 44 and for VoD

down to 0.77 for |A| = 55. However, for video streaming there is a high level of fairness for

|A| < 30 and |A| > 100. This is due to the fact that for low number of parallel applications,

there is sufficient capacity for all clients to reach close to maximum utility while for a high

number of parallel applications all clients are close to a utility value of 1.0.

In summary, the evaluation of the fairness per application type shows that VoD and Live

profit the most from the management. SSH and DL show some improvement. WEB and VoIP

148 Chapter 7. Application-Aware Resource Allocation through the NSAL

improve only marginally. In the managed measurements, we observe nearly perfect fairness

for all application types.

7.7.7 Summary

The evaluation set out to discuss the following four subjects: i) comparison of minimum

and average utility for managed and best effort scenarios, ii) advantages and disadvantages

of central data-rate management for each application class, iii) predictability of application

performance, and iv) fairness between the applications.

First, a scenario with 80 applications sharing a 100 Mbps link is presented. The measure-

ments show that for the best effort case, web browsing consumes about four times more of the

available throughput than the other applications. This is due to web browsers using multiple

parallel TCP connections. As a consequence, the utility of the web browsing sessions is high

(3.5 to 4.0), while other applications like live video streaming suffer (≤ 2). Next, the allocation

formulation is solved for the 80 applications and pacing is applied to the applications. The

results show that video streaming, remote terminal work, and file download can increase their

utility by 1 to 3 while web’s utility is only decreased by 1. The measurements for 10 to 120

parallel applications sharing the link support the findings of the 80 applications scenario. The

evaluation of the fairness shows that in the managed scenarios, the application types exhibit

close to perfect fairness. For the best effort scenarios, the fairness results show that the two

video streaming intents profit the most from the management, followed by DL and SSH. The

WEB clients do not profit much from the management in terms of fairness.

In summary, the results show that there is a significant benefit of centrally controlled

application pacing via the NSAL in terms of utility, inter-application fairness, and predictability.

Furthermore, compared to classical QoS measures in the network, the approach can be

implemented with heterogeneous forwarding devices without any special features, it does not

require expensive switch buffer space, and it is fully software-based.

7.8 Conclusion

In this chapter we propose an NSAL extension for the resource allocation in heterogeneous

networks based on central software-defined network control, fine-grained per-application

pacing at the end-hosts, and utility functions derived from measurements and user-experience

models. Traditional methods of QoS control in the network, such as policing or scheduling,

interact badly with end-host congestion control (Section 3.3) and do not scale to larger number

of applications and application classes. Moving application pacing from in-network QoS

methods to the end hosts, e.g., to user PCs, servers, smartphones, and tablets, is scalable,

7.8. Conclusion 149

increases transmission efficiency, reduces the required complexity of forwarding devices,

and allows cost-efficient high link utilizations. To the best of our knowledge, this is the

first work proposing, formulating, and evaluating a scalable NSAL architecture for resource

allocation for end-user applications in enterprise environments based on real applications and

user-experience models.

We define application- and user-level utility using selected user-experience models from the

literature. Based on the models, we derive per-application utility models for the five common

network use cases web browsing, file download, remote terminal, adaptive video streaming,

and Voice-over-IP. Afterwards, we determine sensible resource allocations by formulating a

two-stage mixed-integer linear program based on the number and types of applications, their

utility functions, and network resources. The mixed-integer linear program decides on how

to embed the applications in the network in terms of the allowed data-rate per application

and the delay-constrained routing of the application flows. Once the allowed rate and routing

is determined, the flow routing is configured through the NSAL and the pacing is enforced

through local agents at the end-hosts.

We evaluate the methodology by implementing an experiment set-up with a throughput-

constrained link and an increasing number of parallel applications sharing the link. The results

show that QoS metrics, such as delay and packet loss of the link, considerable improve with

pacing, due to the controlled link utilization. When looking at the fairness per application type,

the results show that there is near perfect fairness between the clients. For the five evaluated

application types, the results show that web browsing’s utility decreases, as it has an unfair

advantage in the best effort case due to its multiple parallel TCP-connections. However, the

loss in utility of web browsing is low, compared to the gain for the other types. Real-time

applications, such as remote terminal work and VoIP, profit due to the reduced delay and

packet loss. From the experiments, we conclude that the proposed architecture enables scalable

resource allocation and predictable application performance. This chapter is a step towards

extending the NSAL towards the edge of the network with scalable resource allocations from

the perspective of the human users.

Chapter 8

Conclusions and Outlook

Traditional forwarding devices are closed boxes with proprietary Command Line Interfaces

(CLIs) and no standardized way for the discovery of supported features. Hence, network

management often involves human experts writing device-specific snippets of code. As a

result, evolving an existing network towards more efficient operation or implementing new use

cases is slow and cumbersome. Furthermore, studies show that human errors account for 50 %

to 80 % of network outages [98] and that precautionary measures such as redundant links are

broken by too complex configurations [72].

Software-Defined Networking (SDN) disaggregates the devices by removing the control-

plane from the individual devices and logically centralizing the forwarding decision into the

SDN controller. Through an standardized interface and protocol, e.g., OpenFlow, the controller

can add and modify forwarding rules on the devices. Research and production experience of

SDN by large Internet companies shows that SDN enables fast adaptation to changes in the

network and increased network utilization for data-centers and wide-area networks [92].

Techno-economical considerations force most network operators to migrate to SDN in-

crementally, instead of replacing all devices at once. Therefore, approaches are needed for

how to operate traditional and SDN devices side-by-side in the same network. This thesis

investigates three main aspects of the migration towards fully deployed SDNs. First, the design

of an abstraction layer which can combine control and management of the traditional and SDN

devices in the network and offer a unified view to control applications. Second, modeling the

performance of such an abstraction layer. On the one side from an abstract perspective which

considers the diversity of devices in the network and their different reconfiguration timing char-

acteristics. And on the other side from a deployment perspective where the abstraction layer

is implemented as a software component in virtualized environments. Third, enabling Quality

of Service (QoS) and resource allocation for applications and general application-awareness

through the abstraction layer despite the diverse set of devices with different feature sets.

151

152 Chapter 8. Conclusions and Outlook

8.1 Summary and Discussion

Next, we summarize and discuss the challenges, results and contributions of this thesis.

Background on Software-Defined Networking and Hybrid Networks (Chapter 2)

The thesis first elaborates on SDN in general, on the technical implementation via OpenFlow

and on the evolution of SDN from laboratories to comprehensive Network Services Abstraction

Layers (NSALs). Furthermore, three popular migration strategies are discussed in detail and

the state of the art of hybrid networking is introduced. The analyses of the state of the

art reveals that there is a lack of research on how to manage hybrid networks, specifically

concerning QoS configuration and features discovery.

Measurements (Chapter 3)

Measurements of hardware and software components are conducted as part of this thesis. The

goal of the measurements is to better understand the flexibility of forwarding devices in terms of

timings characteristics and effects of management actions. Especially, we measure the timing

of configuring Virtual Local Area Networks (VLANs), a popular approach for combining

traditional and SDN routing. The measurement results show that VLAN reconfiguration

on traditional devices is by more than two orders of magnitude slower and than on SDN

devices (s. 600 ms vs. 1 ms). Furthermore, we measure QoS configuration on traditional

and SDN devices. There the results show that changing the QoS packet processing can result

in data-plane interruptions of up to 6 s. We also measure the impact of configuring traffic

policing on Transmission Control Protocol (TCP) and on applications. The results highlight

the negative impact of in-network policing on the data-plane. Congestion control algorithm

show an degradation of performance due to the dropped packets of up to one sixth of the

expected performance. For the measured video streaming use case, the quality adaptation

algorithm can not reliably determine the available throughput and decide on a suitable quality

level. As a consequence, quality switches and re-buffering events can be observed.

NSAL Design, Challenges and Trade-Offs (Chapter 4)

Chapter 4 proposes an NSAL architecture that consists of an extended network graph that

provides a hardware detail-level that includes the QoS processing pipelines of devices. Via

a northbound interface, control applications can run networking tasks through the vendor-

and device-neutral NSAL. By example of Panopticon, an approach for OpenFlow networking

in mixed-SDN/traditional networks, we show how a control application on top of the NSAL

can run configuration tasks. These configuration tasks include, e.g., VLAN tagging on non-

SDN devices, discovering of QoS options in the network, or changing the packet scheduling.

Furthermore, the architecture provides mechanisms to estimate traffic interruptions due to

8.1. Summary and Discussion 153

the triggered management actions, e.g., due to the change of the scheduler configurations.

By example, we show how a smart task scheduling based on the known timings of the

management actions mitigates service interruptions. Besides, the proposed NSAL enables

novel management applications capable of autonomous network management.

Performance Modeling (Chapter 5 and 6)

The results of Chapter 5 show that even a small number of inflexible traditional devices

severely reduce the maximum reconfiguration rate of the network. Even at higher deployment

ratios, the global reconfiguration rate does not increase by more than factor five compared to

the all-traditional deployment. Therefore the results raise the question how advanced SDN

use cases, which require timely reconfigurations, can be realized in networks with only partial

SDN deployment. This is a gap in current research and has to be investigated further to enable

a smooth and beneficial migration phase of existing networks to SDN-enabled networks.

Chapter 6 proposes and evaluates an online machine learning pipeline for the capacity

estimation of NSAL instances in dynamic cloud environments. The evaluation shows that the

learned performance model provides accurate estimations of the control message rate budget

at run-time. Furthermore, a reduction or increase of available compute resources assigned

to the NSAL is detected by the pipeline and the estimations are adapted accordingly. The

proposed pipeline is an important step towards autonomous scaling and load-balancing of

virtualized NSAL instances..

Application-Awareness (Chapter 7)

In Chapter 7, we propose a methodology for application control through the NSAL based

on fine-grained per-application pacing at the end-hosts and utility functions derived from

measurements and user-experience models. Traditional methods of QoS control in the network,

such as policing or scheduling, require expensive buffer space and support for specific features

by the switching Application-Specific Integrated Circuit (ASIC), have complex configurations,

interact badly with end-host congestion control and do not scale to larger number of applications

and application classes. We evaluate the methodology by implementing a proof-of-concept

testbed with a throughput-constrained link and increasing number of parallel applications

sharing the link. The results show that QoS metrics such as delay and packet loss of the link

considerable improve with pacing due to the controlled link utilization. Furthermore, when

looking at the fairness in terms of utility, the results show that the minimum and total utility

over all applications is significantly improved. From the experiments, we conclude that the

proposed extension to the NSAL enables a fair resource allocation and predictable application

performance in hybrid networks.

154 Chapter 8. Conclusions and Outlook

8.2 Future Work

The operation and management of hybrid networks is still an active area of research and the

results presented in this thesis suggest the following further directions of research.

NSAL Design

The NSAL itself should be extended towards a logically centralized, but physically distributed

design. Furthermore, the design should be evaluated against a larger set of use cases to

confirm or refute the choice of the level of abstraction. Some use cases may also require a

more dynamic level of abstraction where additional details can be made available to control

applications on-demand. In general, the amount of required human effort can be further

reduced. Analyzing the QoS processing pipeline of a device requires a human expert studying

the device’s handbook and its interfaces. It remains an open question how this could be

automated. First proposals are made how machine learning could be used to derive the

features of a device from its CLI [119], but they should be extended towards QoS.

Performance Modeling

The performance modeling of NSALs lacks a model for the distribution and types of recon-

figurations in production networks. Future research here should analyze current production

deployments and derive models for the types and frequency of reconfigurations. Further

research is also required regarding the reconfiguration timings of traditional and SDN de-

vices. Here the focus should be on increasing the number of measured devices to generate

an abstract model of the reconfiguration times of different devices and explore the possibility

of configuration load-balancing to circumvent slow configuration interfaces of traditional

devices. Regarding the machine learning for online performance estimation, future work

should investigate the convergence time of the extended model and evaluate the trade-off

between Support Vector Machine (SVM) sensitivity and convergence time in more detail.

Application-Aware Resource Allocation

Integrating applications and end-host pacers into the NSAL enables the application-aware

resource allocation. To further improve the resource allocation, the end-host pacers should

be combined with the available in-network QoS features. Future work in this area should

also focus on how to autonomously create and update utility functions and investigating the

impact of inaccurate utility functions. Furthermore, a fast heuristics has to be developed for

the optimization problem formulation which also enables solving the problem of dynamically

embedding applications at run-time.

Bibliography

Publications by the author

Journal publications

[1] T. Hoßfeld, M. Seufert, C. Sieber, T. Zinner, and P. Tran-Gia. “Close to Optimum?

User-centric Evaluation of Adaptation Logics for HTTP Adaptive Streaming.”

In: PIK - Praxis der Informationsverarbeitung und Kommunikation, 37.4 11

pages (2014). doi: 10.1515/pik-2014-0029.

[2] T. Hoßfeld, M. Seufert, C. Sieber, T. Zinner, and P. Tran-Gia. “Identifying QoE

Optimal Adaptation of HTTP Adaptive Streaming Based on Subjective Studies.”

In: ELSEVIER Computer Networks 81.23 pages (2015). doi: 10.1016/j.comnet.

2015.02.015.

[3] C. Sieber, S. Schwarzmann, A. Blenk, T. Zinner, and W. Kellerer. “Scalable

Application- and User-aware Resource Allocation in Enterprise Networks Using

End-host Pacing.” In: Under minor revision for ACM Transactions on Modeling

and Performance Evaluation of Computing Systems (ToMPECS) 34 pages (2018).

arXiv: 1811.02367.

Patents

[P-NAII] C. Sieber and P. Sharma. Network Affinity Index Increase (Under Review).

Application number: 15/611095. July 2017.

Conference publications

[4] T. Hoßfeld, M. Seufert, C. Sieber, and T. Zinner. “Assessing effect sizes of

influence factors towards a QoE model for HTTP adaptive streaming.” In: Sixth

International Workshop on Quality of Multimedia Experience (QoMEX). 6 pages.

Singapore, Sept. 2014. doi: 10.1109/QoMEX.2014.6982305.

155

https://doi.org/10.1515/pik-2014-0029
https://doi.org/10.1016/j.comnet.2015.02.015
https://doi.org/10.1016/j.comnet.2015.02.015
http://arxiv.org/abs/1811.02367
https://doi.org/10.1109/QoMEX.2014.6982305

156 Bibliography

[5] T. Hoßfeld, M. Seufert, and C. Sieber. “Impact of Intermediate Layer on Quality

of Experience of HTTP Adaptive Streaming.” In: 11th International Conference

on Network and Service Management (CNSM). 6 pages. Barcelona, Spain, 2015.

doi: 10.1109/CNSM.2015.7367367.

[6] C. Moldovan, K. Hagn, C. Sieber, W. Kellerer, and T. Hoßfeld. “Keep Calm

and Don’t Switch: About the Relationship Between Switches and Quality in

HAS.” In: Modeling Communication Networks Workshop at the International

Teletraffic Congress (ITC). 6 pages. Stockholm, Sweden, 2017. doi: 10.23919/

ITC.2017.8065802.

[7] C. Moldovan, C. Sieber, P. E. Heegaard, W. Kellerer, and T. Hoßfeld. “YouTube

Can Do Better: Getting the Most Out of Video Adaptation.” In: Workshop on

QoE Centric Management (QCMan). 6 pages. Würzburg, Germany, 2016. doi:

10.1109/ITC-28.2016.309.

[8] S. Schwarzmann, T. Zinner, C. Sieber, and S. Geissler. “Evaluation of the

Benefits of Variable Segment Durations for Adaptive Streaming.” In: QoE

Management Workshop at the Tenth International Conference on Quality of

Multimedia Experience (QoMEX) 6 pages (2018).

[9] C. Sieber, A. Blenk, M. Hinteregger, and W. Kellerer. “The Cost of Aggressive

HTTP Adaptive Streaming: Quantifying YouTube’s Redundant Traffic.” In:

IFIP/IEEE International Symposium on Integrated Network Management (IM).

6 pages. Ottawa, Canada, 2015. doi: 10.1109/INM.2015.7140478.

[10] C. Sieber, A. Blenk, D. Hock, M. Scheib, T. Hohn, et al. “Network Configura-

tion with Quality of Service Abstractions for SDN and Legacy Networks.” In:

IFIP/IEEE International Symposium on Integrated Network Management (IM).

2 pages. Ottawa, Canada, 2015. doi: 10.1109/INM.2015.7140446.

[11] C. Sieber, A. Basta, A. Blenk, and W. Kellerer. “Online Resource Mapping for

SDN Network Hypervisors using Machine Learning.” In: 2nd IEEE Conference

on Network Softwarization (NetSoft). 5 pages. Seoul, South Korea, 2016. doi:

10.1109/NETSOFT.2016.7502447.

[12] C. Sieber, A. Blenk, A. Basta, D. Hock, and W. Kellerer. “Towards a Pro-

grammable Management Plane for SDN and Legacy Networks.” In: IEEE

Conference on Network Softwarization (NetSoft). 9 pages. Seoul, South Korea,

2016. doi: 10.1109/NETSOFT.2016.7502428.

https://doi.org/10.1109/CNSM.2015.7367367
https://doi.org/10.23919/ITC.2017.8065802
https://doi.org/10.23919/ITC.2017.8065802
https://doi.org/10.1109/ITC-28.2016.309
https://doi.org/10.1109/INM.2015.7140478
https://doi.org/10.1109/INM.2015.7140446
https://doi.org/10.1109/NETSOFT.2016.7502447
https://doi.org/10.1109/NETSOFT.2016.7502428

157

[13] C. Sieber, A. Blenk, A. Basta, and W. Kellerer. “hvbench: An open and scalable

SDN network hypervisor benchmark.” In: IEEE NetSoft Conference and Work-

shops: Software-Defined Infrastructure for Networks, Clouds, IoT and Services.

4 pages. Seoul, South Korea, 2016. doi: 10.1109/NETSOFT.2016.7502475.

[14] C. Sieber, R. Durner, M. Ehm, W. Kellerer, and P. Sharma. “Towards Optimal

Adaptation of NFV Packet Processing to Modern CPU Memory Architectures.”

In: Workshop on Cloud-Assisted Networking (CAN) at the 13th International

Conference on emerging Networking EXperiments and Technologies (CoNEXT).

6 pages. ACM. Seoul, South Korea, 2017. doi: 10.1145/3155921.3158429.

[15] C. Sieber, R. Durner, and W. Kellerer. “How fast can you reconfigure your

partially deployed SDN network?” In: IFIP Networking Conference. 9 pages.

Stockholm, Sweden, 2017, p. 9. doi: 10.23919/IFIPNetworking.2017.8264845.

[16] C. Sieber, P. E. Heegaard, T. Hoßfeld, and W. Kellerer. “Sacrificing Effi-

ciency for Quality of Experience: YouTube’s Redundant Traffic Behavior.”

In: IFIP Networking Conference. 9 pages. Vienna, Austria, 2016. doi: 10.1109/

IFIPNetworking.2016.7497231.

[17] C. Sieber, T. Hoßfeld, T. Zinner, P. Tran-Gia, and C. Timmerer. “Implementation

and User-centric Comparison of a Novel Adaptation Logic for DASH with SVC.”

In: IFIP/IEEE International Symposium on Integrated Network Management

(IM). 6 pages. Ghent, Belgium, 2013.

[18] C. Sieber, A. Obermair, and W. Kellerer. “Online learning and adaptation of net-

work hypervisor performance models.” In: IFIP/IEEE International Symposium

on Integrated Network Management (IM). 9 pages. Lisbon, Portugal, 2017. doi:

10.23919/INM.2017.7987462.

Technical Reports

[19] T. Hoßfeld, M. Seufert, T. Zinner, and C. Sieber. “Crowdsourced Subjective

User Study Results on QoE Influence Factors of HTTP Adaptive Streaming.” In:

Technical Report 491, Lehrstuhl for Informatik III, University of Würzburg 26

pages (2014).

[20] C. Sieber, K. Hagn, C. Moldovan, T. Hoßfeld, and W. Kellerer. “Towards Machine

Learning-Based Optimal HAS.” In: 9 pages (Aug. 2018). arXiv: 1808.08065.

url: http://arxiv.org/abs/1808.08065.

https://doi.org/10.1109/NETSOFT.2016.7502475
https://doi.org/10.1145/3155921.3158429
https://doi.org/10.23919/IFIPNetworking.2017.8264845
https://doi.org/10.1109/IFIPNetworking.2016.7497231
https://doi.org/10.1109/IFIPNetworking.2016.7497231
https://doi.org/10.23919/INM.2017.7987462
http://arxiv.org/abs/1808.08065
http://arxiv.org/abs/1808.08065

158 Bibliography

Request-For-Comments (RFCs)

[RFC7426] S. Denazis, E. Haleplidis, J. H. Salim, O. Koufopavlou, D. Meyer, et al. Software-

Defined Networking (SDN): Layers and Architecture Terminology. 2015. doi:

10.17487/rfc7426.

[RFC5810] W. Wang, R. Haas, J. H. Salim, A. Doria, and H. M. Khosravi. Forwarding

and Control Element Separation (ForCES) Protocol Specification. 2010. doi:

10.17487/rfc5810.

General publications

[21] I. Abdeljaouad, H. Rachidi, S. Fernandes, and A. Karmouch. “Performance

analysis of modern TCP variants: A comparison of Cubic, Compound and New

Reno.” In: 25th Biennial Symposium on Communications. IEEE. 2010, pp. 80–

83. doi: 10.1109/BSC.2010.5472999.

[22] S. Agarwal, M. Kodialam, and T. V. Lakshman. “Traffic engineering in software

defined networks.” In: Proc. of IEEE INFOCOM. IEEE. 2013, pp. 2211–2219.

doi: 10.1109/INFCOM.2013.6567024.

[23] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, et al. “Data center

TCP (DCTCP).” In: Proc. of ACM SIGCOMM conference. 2010, pp. 63–74.

doi: 10.1145/1851275.1851192.

[24] R. Amin, N. Shah, B. Shah, and O. Alfandi. “Auto-Configuration of ACL

Policy in Case of Topology Change in Hybrid SDN.” In: IEEE Access 4 (2016),

pp. 9437–9450. doi: 10.1109/ACCESS.2016.2641482.

[25] H. Ballani and P. Francis. “CONMan: a step towards network manageability.” In:

ACM SIGCOMM Computer Communication Review. Vol. 37. 4. 2007, pp. 205–

216.

[26] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, et al. “Data

Center Network Virtualization: A Survey.” In: IEEE Communications Surveys &

Tutorials 15.2 (2013), pp. 909–928. doi: 10.1109/SURV.2012.090512.00043.

[27] B. Belter, D. Parniewicz, L. Ogrodowczyk, A. Binczewski, M. Stroinski, et al.

“Hardware abstraction layer as an SDN-enabler for non-OpenFlow network

equipment.” In: Proc. of IEEE 3rd European Workshop on Software-Defined

Networks (EWSDN). 2014, pp. 117–118. doi: 10.1109/EWSDN.2014.16.

https://doi.org/10.17487/rfc7426
https://doi.org/10.17487/rfc5810
https://doi.org/10.1109/BSC.2010.5472999
https://doi.org/10.1109/INFCOM.2013.6567024
https://doi.org/10.1145/1851275.1851192
https://doi.org/10.1109/ACCESS.2016.2641482
https://doi.org/10.1109/SURV.2012.090512.00043
https://doi.org/10.1109/EWSDN.2014.16

159

[28] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, et al. “ONOS: towards

an open, distributed SDN OS.” In: Proc. of 3rd ACM SIGCOMM Workshop on

Hot Topics in Software-Defined Networking (HotSDN). CM. 2014, pp. 1–6. doi:

10.1145/2620728.2620744.

[29] A. Blenk, A. Basta, J. Zerwas, and W. Kellerer. “Pairing SDN with network

virtualization: The network hypervisor placement problem.” In: Proc. of IEEE

Network Function Virtualization and Software Defined Network (NFV-SDN).

2015. doi: 10.1109/NFV-SDN.2015.7387427.

[30] A. Blenk, A. Basta, J. Zerwas, M. Reisslein, and W. Kellerer. “Control Plane

Latency with SDN Network Hypervisors: The Cost of Virtualization.” In: IEEE

Transactions on Network and Service Management 13.3 (2016), pp. 366–380.

doi: 10.1109/TNSM.2016.2587900.

[31] P. T. Boggs, R. H. Byrd, and R. B. Schnabel. “A stable and efficient algorithm

for nonlinear orthogonal distance regression.” In: SIAM Journal on Scientific

and Statistical Computing 8.6 (1987), pp. 1052–1078. doi: 10.1137/0908085.

[32] T. Bonald, L. Massoulié, A. Proutiere, and J. Virtamo. “A queueing analysis

of max-min fairness, proportional fairness and balanced fairness.” In: Springer

Queueing systems 53.1-2 (2006), pp. 65–84. doi: 10.1007/s11134-006-7587-7.

[33] T. Bonald and J. Roberts. “Internet and the Erlang formula.” In: ACM Com-

puter Communication Review 42.1 (2012), pp. 23–30. doi: 10.1145/2096149.

2096153.

[34] A. Botta, A. Dainotti, and A. Pescapè. “A tool for the generation of realistic

network workload for emerging networking scenarios.” In: Elsevier Computer

Networks 56.15 (2012). doi: 10.1016/j.comnet.2012.02.019.

[35] Z. Cai, A. L. Cox, and T. S. Ng. Maestro: A system for scalable openflow control.

Tech. rep. 2010.

[36] M. Canini, A. Feldmann, D. Levin, F. Schaffert, and S. Schmid. “Software-

defined networks: Incremental deployment with Panopticon.” In: IEEE Computer

47.11 (2014), pp. 56–60.

[37] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson. “BBR:

Congestion-Based Congestion Control.” In: ACM Queue 14.5 (2016), p. 50. doi:

10.1145/3012426.3022184.

https://doi.org/10.1145/2620728.2620744
https://doi.org/10.1109/NFV-SDN.2015.7387427
https://doi.org/10.1109/TNSM.2016.2587900
https://doi.org/10.1137/0908085
https://doi.org/10.1007/s11134-006-7587-7
https://doi.org/10.1145/2096149.2096153
https://doi.org/10.1145/2096149.2096153
https://doi.org/10.1016/j.comnet.2012.02.019
https://doi.org/10.1145/3012426.3022184

160 Bibliography

[38] M. Caria, T. Das, A. Jukan, and M. Hoffmann. “Divide and conquer: Partitioning

OSPF networks with SDN.” In: Proc. of IFIP/IEEE International Symposium

on Integrated Network Management (IM). 2015, pp. 467–474. doi: 10.1109/

INM.2015.7140324.

[39] M. Caria and A. Jukan. “Link Capacity Planning for Fault Tolerant Operation in

Hybrid SDN/OSPF Networks.” In: IEEE Global Communications Conference

(GLOBECOM). 2016. doi: 10.1109/GLOCOM.2016.7841957.

[40] M. Caria and A. Jukan. On the IP Traffic Matrix Problem in Hybrid SDN/OSPF

Networks. Tech. rep. 2016. arXiv: 1610.08256. url: http://arxiv.org/abs/1610.

08256.

[41] M. Caria, A. Jukan, and M. Hoffmann. “A performance study of network

migration to SDN-enabled Traffic Engineering.” In: Proc. of IEEE Global

Communications Conference (GLOBECOM). 2013, pp. 1391–1396. doi: 10.

1109/GLOCOM.2013.6831268.

[42] M. Caria, A. Jukan, and M. Hoffmann. “SDN Partitioning: A Centralized Control

Plane for Distributed Routing Protocols.” In: IEEE Transactions on Network

and Service Management 13.3 (2016), pp. 381–393. doi: 10.1109/TNSM.2016.

2585759.

[43] P. Casas, M. Seufert, S. Egger, and R. Schatz. “Quality of experience in remote

virtual desktop services.” In: Proc. of IFIP/IEEE International Symposium on

Integrated Network Management (IM). 2013. isbn: 978-1-4673-5229-1.

[44] D. J. Casey and B. E. Mullins. “SDN shim: Controlling legacy devices.” In:

Proc. of IEEE 40th Conference on Local Computer Networks (LCN). 2015,

pp. 169–172. doi: 10.1109/LCN.2015.7366298.

[45] M. A. Chang, L. Vanbever, and M. Happe. “Supercharge me: Boost Router

Convergence with.” In: Proc. of ACM SIGCOMM (Poster/demo session). 2015,

pp. 341–342. doi: 10.1145/2829988.2790007.

[46] V. D. Chemalamarri, P. Nanda, and K. F. Navarro. “SYMPHONY - A Controller

Architecture for Hybrid Software Defined Networks.” In: Proc. of IEEE Euro-

pean Workshop on Software Defined Networks (EWSDN). 2015, pp. 55–60. doi:

10.1109/EWSDN.2015.61.

[47] C.-C. Chen, P. Sun, L. Yuan, D. A. Maltz, C.-N. Chuah, et al. “SWIM: A Switch

Manager for Datacenter Networks.” In: IEEE Internet Computing 18.4 (2014),

pp. 30–36. doi: 10.1109/MIC.2014.41.

https://doi.org/10.1109/INM.2015.7140324
https://doi.org/10.1109/INM.2015.7140324
https://doi.org/10.1109/GLOCOM.2016.7841957
http://arxiv.org/abs/1610.08256
http://arxiv.org/abs/1610.08256
http://arxiv.org/abs/1610.08256
https://doi.org/10.1109/GLOCOM.2013.6831268
https://doi.org/10.1109/GLOCOM.2013.6831268
https://doi.org/10.1109/TNSM.2016.2585759
https://doi.org/10.1109/TNSM.2016.2585759
https://doi.org/10.1109/LCN.2015.7366298
https://doi.org/10.1145/2829988.2790007
https://doi.org/10.1109/EWSDN.2015.61
https://doi.org/10.1109/MIC.2014.41

161

[48] G. Chen, G. Hu, Y. Jiang, and C. Zhang. “SAVSH: IP source address validation for

SDN hybrid networks.” In: IEEE Symposium on Computers and Communication

(ISCC). IEEE. 2016, pp. 409–414. doi: 10.1109/ISCC.2016.7543774.

[49] X. Chen, Y. Mao, Z. M. Mao, and J. der Merwe. “Declarative configuration

management for complex and dynamic networks.” In: Proc. of ACM Conference

on emerging Networking EXperiments and Technologies (CoNEXT). 2010, p. 6.

doi: 10.1145/1921168.1921176.

[50] X. Chen, Z. M. Mao, and J. der Merwe. “PACMAN: A Platform for Automated

and Controlled Network Operations and Configuration Management.” In: Proc.

of ACM CoNEXT. 2009, pp. 277–288. isbn: 978-1-60558-636-6. doi: 10.1145/

1658939.1658971.

[51] C. Y. Chu, K. Xi, M. Luo, and H. J. Chao. “Congestion-aware single link

failure recovery in hybrid SDN networks.” In: Proc. of IEEE Conference on

Computer Communications (INFOCOM). Vol. 26. 2015, pp. 1086–1094. doi:

10.1109/INFOCOM.2015.7218482.

[52] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, et al.

“DevoFlow: scaling flow management for high-performance networks.” In: Proc.

of ACM SIGCOMM conference. 2011, pp. 254–265. doi: 10.1145/2043164.

2018466.

[53] T. Das, M. Caria, A. Jukan, and M. Hoffmann. “A Techno-economic Analysis

of Network Migration to Software-Defined Networking.” In: (2013). arXiv:

1310.0216.

[54] T. Das, M. Caria, A. Jukan, and M. Hoffmann. “Insights on SDN migration

trajectory.” In: Proc. of IEEE International Conference on Communications

(ICC). 2015, pp. 5348–5353. doi: 10.1109/ICC.2015.7249174.

[55] W. Dawoud, I. Takouna, and C. Meinel. “Dynamic scalability and contention

prediction in public infrastructure using internet application profiling.” In: Proc.

of IEEE 4th International Conference on Cloud Computing Technology and

Science (CloudCom). 2012, pp. 208–216.

[56] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo. “TAPAS - Tool

for rApid Prototyping of Adaptive Streaming algorithms.” In: Proc. of ACM

Workshop on Design, Quality and Deployment of Adaptive Video Streaming.

2014. doi: 10.1145/2676652.2676654.

https://doi.org/10.1109/ISCC.2016.7543774
https://doi.org/10.1145/1921168.1921176
https://doi.org/10.1145/1658939.1658971
https://doi.org/10.1145/1658939.1658971
https://doi.org/10.1109/INFOCOM.2015.7218482
https://doi.org/10.1145/2043164.2018466
https://doi.org/10.1145/2043164.2018466
http://arxiv.org/abs/1310.0216
https://doi.org/10.1109/ICC.2015.7249174
https://doi.org/10.1145/2676652.2676654

162 Bibliography

[57] R. Durner, C. Sieber, and W. Kellerer. “Towards reducing Last-Level-Cache

Interference of co-located Virtual Network Functions.” In: Submitted to IEEE

Conference on Network Softwarization (NETSOFT). 9 pages. 2019.

[58] S. Egger, P. Reichl, T. Hoßfeld, and R. Schatz. ““Time is bandwidth”? Narrowing

the gap between subjective time perception and Quality of Experience.” In: Proc.

of IEEE International Conference on Communications (ICC). 2012, pp. 1325–

1330. doi: 10.1109/ICC.2012.6363769.

[59] D. Erickson. “The beacon openflow controller.” In: Proc. of 2nd ACM SIGCOMM

Workshop on Hot Topics in Software-Defined Networking (HotSDN). 2013,

pp. 13–18. doi: 10.1145/2491185.2491189.

[60] F. Farias, J. Salvatti, P. Victor, and A. Abelem. “Integrating Legacy Forwarding

Environment to OpenFlow/SDN Control Plane.” In: Proc. of IEICE Network

Operations and Management Symposium (APNOMS). 2013. doi: 10.13140/2.1.

4455.1684.

[61] N. Feamster, J. Rexford, and E. Zegura. “The road to SDN: an intellectual history

of programmable networks.” In: ACM SIGCOMM Computer Communication

Review 44.2 (2014), pp. 87–98. doi: 10.1145/2602204.2602219.

[62] Z. Fei, C. Xing, and N. Li. “QoE-driven resource allocation for mobile IP

services in wireless network.” In: Springer Science China Information Sciences

58.1 (2015), pp. 1–10.

[63] T. Feng and J. Bi. “OpenRouteFlow: Enable legacy router as a software-defined

routing service for hybrid SDN.” In: Proc. of IEEE International Conference

on Computer Communications and Networks (ICCCN). 2015. doi: 10.1109/

ICCCN.2015.7288441.

[64] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi. “Participa-

tory networking: an API for application control of SDNs.” In: ACM SIGCOMM

Computer Communication Review. Vol. 43. 4. 2013, pp. 327–338.

[65] A. D. Ferguson, A. Guha, J. Place, R. Fonseca, and S. Krishnamurthi. “Partic-

ipatory Networking.” In: USENIX Workshop on Hot Topics in Management of

Internet, Cloud, and Enterprise Networks and Services (Hot-ICE). 2012.

[66] T. Flach, P. Papageorge, A. Terzis, L. Pedrosa, Y. Cheng, et al. “An Internet-Wide

Analysis of Traffic Policing.” In: Proc. of ACM SIGCOMM conference. 2016,

pp. 468–482. doi: 10.1145/2934872.2934873.

https://doi.org/10.1109/ICC.2012.6363769
https://doi.org/10.1145/2491185.2491189
https://doi.org/10.13140/2.1.4455.1684
https://doi.org/10.13140/2.1.4455.1684
https://doi.org/10.1145/2602204.2602219
https://doi.org/10.1109/ICCCN.2015.7288441
https://doi.org/10.1109/ICCCN.2015.7288441
https://doi.org/10.1145/2934872.2934873

163

[67] L. C. Freeman. “A Set of Measures of Centrality Based on Betweenness.” In:

JSTOR Sociometry 40.1 (1977), pp. 35–41. doi: 10.2307/3033543.

[68] V. Fuentes, J. Matias, A. Mendiola, M. Huarte, J. Unzilla, et al. “Integrating

complex legacy systems under OpenFlow control: The DOCSIS use case.” In:

Proc. of IEEE 3rd European Workshop on Software-Defined Networks (EWSDN).

2014, pp. 37–42. doi: 10.1109/EWSDN.2014.35.

[69] A. Gämperli, V. Kotronis, and X. Dimitropoulos. “Evaluating the Effect of

Centralization on Routing Convergence on a Hybrid BGP-SDN Emulation

Framework.” In: Proc. of ACM SIGCOMM Computer Communication Review.

Vol. 44. 4. 2014, pp. 369–370. arXiv: 1611.03113.

[70] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, et al. “Predicting multiple

metrics for queries: Better decisions enabled by machine learning.” In: Proc. of

IEEE 25th International Conference on Data Engineering. 2009, pp. 592–603.

doi: 10.1109/ICDE.2009.130.

[71] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race. “Towards

network-wide QoE fairness using openflow-assisted adaptive video streaming.”

In: Proc. of ACM SIGCOMM Workshop on Future human-centric Multimedia

Networking (FhMN). 2013, pp. 15–20. doi: 10.1145/2491172.2491181.

[72] P. Gill, N. Jain, and N. Nagappan. “Understanding Network Failures in Data

Centers: Measurement, Analysis, and Implications.” In: Proc. of ACM SIG-

COMM conference. New York, NY, USA: ACM, 2011, pp. 350–361. isbn:

978-1-4503-0797-0.

[73] G. Gómez, J. Lorca, R. García, and Q. Pérez. “Towards a QoE-driven resource

control in LTE and LTE-A networks.” In: Journal of Computer Networks and

Communications Article ID 505910 (2013). doi: 10.1155/2013/505910.

[74] Z. Gong, X. Gu, and J. Wilkes. “PRESS: PRedictive Elastic ReSource Scaling

for cloud systems.” In: Proc. of IEEE International Conference on Network and

Service Management (CNSM). 2010. doi: 10.1109/CNSM.2010.5691343.

[75] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, et al. “NOX: towards an

operating system for networks.” In: ACM SIGCOMM Computer Communication

Review 38.3 (2008), pp. 105–110. doi: 10.1145/1384609.1384625.

[76] Y. Guo, Z. Wang, X. Yin, X. Shi, and J. Wu. “Traffic engineering in SDN/OSPF

hybrid network.” In: Proc. of IEEE International Conference on Network Proto-

cols (ICNP 2014). 2014, pp. 563–568. doi: 10.1109/ICNP.2014.90.

https://doi.org/10.2307/3033543
https://doi.org/10.1109/EWSDN.2014.35
http://arxiv.org/abs/1611.03113
https://doi.org/10.1109/ICDE.2009.130
https://doi.org/10.1145/2491172.2491181
https://doi.org/10.1155/2013/505910
https://doi.org/10.1109/CNSM.2010.5691343
https://doi.org/10.1145/1384609.1384625
https://doi.org/10.1109/ICNP.2014.90

164 Bibliography

[77] Y. Guo, Z. Wang, X. Yin, X. Shi, J. Wu, et al. “Incremental deployment for

traffic engineering in hybrid SDN network.” In: Proc. of IEEE 34th International

Performance Computing and Communications Conference (IPCCC). 2015. doi:

10.1109/PCCC.2015.7410320.

[78] S. Ha, I. Rhee, and L. Xu. “CUBIC: a new TCP-friendly high-speed TCP

variant.” In: ACM SIGOPS Operating Systems Review 42.5 (2008), pp. 64–74.

doi: 10.1145/1400097.1400105.

[79] J. He and W. Song. “Achieving near-optimal traffic engineering in hybrid

Software Defined Networks.” In: Proc. of 14th IFIP Networking Conference.

2015. doi: 10.1109/IFIPNetworking.2015.7145321.

[80] K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash, et al. “Measuring

control plane latency in SDN-enabled switches.” In: Proc. of 1st ACM SIGCOMM

Symposium on Software Defined Networking Research (SOSR). 2015. doi:

10.1145/2774993.2775069.

[81] L. He, X. Zhang, Y. Jiang, and I. Engineering. “Design and Implementation of

SDN/IP Hybrid Space Information Network Prototype.” In: Proc. of IEEE/CIC

International Conference on Communications in China (ICCC Workshops).

2016. doi: 10.1109/ICCChinaW.2016.7586705.

[82] M. Hock, R. Bless, and M. Zitterbart. “Experimental evaluation of BBR conges-

tion control.” In: 2017 IEEE 25th International Conference on Network Protocols

(ICNP). IEEE. 2017. doi: 10.1109/ICNP.2017.8117540.

[83] D. K. Hong, Y. Ma, S. Banerjee, and Z. M. Mao. “Incremental Deployment of

SDN in Hybrid Enterprise and ISP Networks.” In: Proc. of 2nd ACM SIGCOMM

Symposium on Software Defined Networking Research (SOSR). 2016. doi:

10.1145/2890955.2890959.

[84] T. Hoßfeld, L. Skorin-Kapov, P. E. Heegaard, and M. Varela. “Definition of QoE

Fairness in Shared Systems.” In: IEEE Communications Letters 21.1 (2017),

pp. 184–187. doi: 10.1109/LCOMM.2016.2616342.

[85] T. C. Hu. “Multi-commodity network flows.” In: Operations research 11.3

(1963), pp. 344–360.

[86] Y. Hu, W. Wang, X. Gong, X. Que, Y. Ma, et al. “Maximizing Network Uti-

lization in Hybrid Software-Defined Networks.” In: Proc. of IEEE Global

Communications Conference (GLOBECOM). 2015. doi: 10.1109/GLOCOM.

2014.7417144.

https://doi.org/10.1109/PCCC.2015.7410320
https://doi.org/10.1145/1400097.1400105
https://doi.org/10.1109/IFIPNetworking.2015.7145321
https://doi.org/10.1145/2774993.2775069
https://doi.org/10.1109/ICCChinaW.2016.7586705
https://doi.org/10.1109/ICNP.2017.8117540
https://doi.org/10.1145/2890955.2890959
https://doi.org/10.1109/LCOMM.2016.2616342
https://doi.org/10.1109/GLOCOM.2014.7417144
https://doi.org/10.1109/GLOCOM.2014.7417144

165

[87] M. Huang and W. Liang. “Incremental SDN-Enabled Switch Deployment for

Hybrid Software-Defined Networks.” In: Proc of. IEEE 26th International

Conference on Computer Communication and Networks (ICCCN). 2017. doi:

10.1109/ICCCN.2017.8038498.

[88] S. Huang, J. Zhao, and X. Wang. “HybridFlow : A Lightweight Control Plane for

Hybrid SDN in Enterprise Networks.” In: Proc. of IEEE/ACM 24th International

Symposium on Quality of Service (IWQoS). 2016. doi: 10.1109/IWQoS.2016.

7590411.

[89] X. Huang, S. Cheng, K. Cao, P. Cong, T. Wei, et al. “A Survey of Deployment

Solutions and Optimization Strategies for Hybrid SDN Networks.” In: IEEE

Communications Surveys & Tutorials (2018). doi: 10.1109/COMST.2018.

2871061.

[90] O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth. “Performance Anoma-

ly Detection and Bottleneck Identification.” In: ACM Computing Surveys (CSUR)

48.1 (2015), p. 4. doi: 10.1145/2791120.

[91] R. Jain and S. Paul. “Network virtualization and software defined networking for

cloud computing: a survey.” In: IEEE Communications Magazine 51.11 (2013),

pp. 24–31. doi: 10.1109/MCOM.2013.6658648.

[92] S. Jain, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, et al. “B4: Experience with

a globally-deployed software defined WAN.” In: Prof. of ACM SIGCOMM

conference. 2013, pp. 3–14. doi: 10.1145/2486001.2486019.

[93] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, et al. “Modeling

and performance evaluation of an OpenFlow architecture.” In: Proc. of 23rd

International Teletraffic Congress (ITC). 2011. isbn: 978-0-9836283-0-9.

[94] X. Jia, Y. Jiang, and Z. Guo. “Incremental Switch Deployment for Hybrid

Software-Defined Networks.” In: Proc. of IEEE 41st Conference on Local

Computer Networks (LCN). 2016, pp. 571–574. doi: 10.1109/LCN.2016.95.

[95] C. Jin, C. Lumezanu, Q. Xu, Z.-L. Zhang, and G. Jiang. “Telekinesis: Controlling

Legacy Switch Routing with OpenFlow in Hybrid Networks.” In: Proc. of 1st

ACM SIGCOMM Symposium on Software Defined Networking Research (SOSR).

2015. doi: 10.1145/2774993.2775013.

[96] C. Jin, C. Lumezanu†, Q. Xu, H. Mekky, Z.-L. Zhang, et al. “Exerting Fine-

Grained Path Control over Legacy Switches in Hybrid Networks.” In: TR 16-035

January (2016), pp. 81–105. doi: 10.1089/lap.2006.05083.

https://doi.org/10.1109/ICCCN.2017.8038498
https://doi.org/10.1109/IWQoS.2016.7590411
https://doi.org/10.1109/IWQoS.2016.7590411
https://doi.org/10.1109/COMST.2018.2871061
https://doi.org/10.1109/COMST.2018.2871061
https://doi.org/10.1145/2791120
https://doi.org/10.1109/MCOM.2013.6658648
https://doi.org/10.1145/2486001.2486019
https://doi.org/10.1109/LCN.2016.95
https://doi.org/10.1145/2774993.2775013
https://doi.org/10.1089/lap.2006.05083

166 Bibliography

[97] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, et al. “Dynamic scheduling

of network updates.” In: Proc. of ACM SIGCOMM Computer Communication

Review. Vol. 44. 4. 2014.

[98] Juniper Networks. What’s behind network downtime? Proactive Steps to Reduce

Human Error and Improve Availability of Networks. Tech. rep. 2008. url:

https://www-935.ibm.com/services/au/gts/pdf/200249.pdf.

[99] Y. Kanaumi, S.-i. Saito, E. Kawai, S. Ishii, K. Kobayashi, et al. “RISE: A

Wide-Area Hybrid OpenFlow Network Testbed.” In: IEICE Transactions on

Communications E96.B.1 (2013), pp. 108–118. doi: 10.1587/transcom.E96.B.

108.

[100] B. Kar, E. H.-k. Wu, and Y.-d. Lin. “The Budgeted Maximum Coverage Problem

in Partially Deployed Software Defined Networks.” In: IEEE Transactions on

Network and Service Management 13.3 (2016), pp. 394–406. doi: 10.1109/

TNSM.2016.2598549.

[101] R. Katiyar, P. Pawar, A. Gupta, and K. Kataoka. “Auto-Configuration of SDN

Switches in SDN/Non-SDN Hybrid Network.” In: Proc. of ACM Asian Internet

Engineering Conference (AINTEC). 2015, pp. 48–53. doi: 10.1145/2837030.

2837037.

[102] H. Kim, T. Benson, A. Akella, and N. Feamster. “The evolution of network

configuration: a tale of two campuses.” In: Proc. of ACM SIGCOMM IMC. 2011,

pp. 499–514.

[103] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, et al. “Network Vir-

tualization in Multi-tenant Datacenters.” In: Proc. of USENIX 11th Symposium

on Networked Systems Design and Implementation (NSDI). 2014, pp. 203–216.

isbn: 978-1-931971-09-6.

[104] D. Kreutz, F. M. V. Ramos, et al. “Software-Defined Networking: A Compre-

hensive Survey.” In: Proceedings of the IEEE 103.1 (2015), pp. 14–76. doi:

10.1109/JPROC.2014.2371999.

[105] A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasinadhuni, et al. “BwE:

Flexible, Hierarchical Bandwidth Allocation for WAN Distributed Computing.”

In: Proc. of ACM SIGCOMM conference. Vol. 45. 4. 2015. doi: 10 .1145/

2785956.2787478.

[106] M. Kuźniar, P. Perešini, and D. Kostić. “What you need to know about SDN flow

tables.” In: Proc. of International Conference on Passive and Active Network

Measurement (PAM). 2015. doi: 10.1007/978-3-319-15509-8_26.

https://www-935.ibm.com/services/au/gts/pdf/200249.pdf
https://doi.org/10.1587/transcom.E96.B.108
https://doi.org/10.1587/transcom.E96.B.108
https://doi.org/10.1109/TNSM.2016.2598549
https://doi.org/10.1109/TNSM.2016.2598549
https://doi.org/10.1145/2837030.2837037
https://doi.org/10.1145/2837030.2837037
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1145/2785956.2787478
https://doi.org/10.1145/2785956.2787478
https://doi.org/10.1007/978-3-319-15509-8_26

167

[107] J. Kwon, D. Seo, M. Kwon, H. Lee, A. Perrig, et al. “An incrementally deployable

anti-spoofing mechanism for software-defined networks.” In: Elsevier Computer

Communications 64 (2015), pp. 1–20. doi: 10.1016/j.comcom.2015.03.003.

[108] A. Lazaris, D. Tahara, X. Huang, E. Li, A. Voellmy, et al. “Tango: Simplifying

SDN Control with Automatic Switch Property Inference, Abstraction, and Op-

timization.” In: Proc. of ACM 10th International on Conference on emerging

Networking Experiments and Technologies (CoNEXT). 2014, pp. 199–212. doi:

10.1145/2674005.2675011.

[109] K. Lee, A. C. König, V. Narasayya, B. Ding, S. Chaudhuri, et al. “Operator and

Query Progress Estimation in Microsoft SQL Server Live Query Statistics.” In:

Proc. of ACM International Conference on Management of Data (SIGMOD).

2016, pp. 1753–1764. doi: 10.1145/2882903.2903728.

[110] D. Levin and M. Canini. “Panopticon: Reaping the Benefits of Incremental SDN

Deployment in Enterprise Networks.” In: Proc. of USENIX Annual Technical

Conference. 2014, pp. 333–345. doi: 10.1109/JPROC.2014.2371999.

[111] D. Levin, S. Schmid, F. Schaffert, M. Canini, and A. Feldmann. Logical SDNs:

Reaping Software-Defined Networking Benefits Through Incremental Deploy-

ment. Tech. rep. 2013.

[112] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, et al. “Probe and Adapt: Rate Adaptation

for HTTP Video Streaming At Scale.” In: IEEE Journal on Selected Areas in

Communications 32.4 (2014), pp. 719–733. doi: 10.1109/JSAC.2014.140405.

[113] F. Liu, W. Xiang, Y. Zhang, K. Zheng, and H. Zhao. “A novel QoE-based

carrier scheduling scheme in LTE-Advanced networks with multi-service.”

In: Proc. of IEEE Vehicular Technology Conference (VTC Fall). 2012. doi:

10.1109/VTCFall.2012.6398912.

[114] H. Lu, N. Arora, H. Zhang, C. Lumezanu, J. Rhee, et al. “HybNET: network

manager for a hybrid network infrastructure.” In: Proc. of ACM/IFIP/USENIX

13th International Middleware Conference, Industrial Track. 2013. doi: 10.

1145/2541596.2541602.

[115] T. Lukovszki, M. Rost, S. Schmid, and S. Schmid. “It’s a Match! Near-Optimal

and Incremental Middlebox Deployment.” In: Proc. of ACM SIGCOMM Com-

puter Communication Review. Vol. 46. 1. 2016, pp. 30–36. doi: 10 .1145/

2875951.2875956.

https://doi.org/10.1016/j.comcom.2015.03.003
https://doi.org/10.1145/2674005.2675011
https://doi.org/10.1145/2882903.2903728
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/JSAC.2014.140405
https://doi.org/10.1109/VTCFall.2012.6398912
https://doi.org/10.1145/2541596.2541602
https://doi.org/10.1145/2541596.2541602
https://doi.org/10.1145/2875951.2875956
https://doi.org/10.1145/2875951.2875956

168 Bibliography

[116] K. Mahmood, A. Chilwan, O. Østerbø, and M. Jarschel. “Modelling of OpenFlow-

based software-defined networks: the multiple node case.” In: IET Networks 4.5

(2015), pp. 278–284. doi: 10.1049/iet-net.2014.0091.

[117] L. M. Manevitz and M. Yousef. “One-class SVMs for document classification.”

In: Journal of Machine Learning Research 2.Dec (2001), pp. 139–154.

[118] M. Markovitch and S. Schmid. “SHEAR: A highly available and flexible network

architecture marrying distributed and logically centralized control planes.” In:

Proc. of IEEE International Conference on Network Protocols (ICNP). 2015,

pp. 78–89. doi: 10.1109/ICNP.2015.47.

[119] A. Martinez, M. Yannuzzi, J. E. L. De Vergara, R. Serral-Gracia, and W. Ramirez.

“An Ontology-Based Information Extraction System for bridging the configu-

ration gap in hybrid SDN environments.” In: Proc. of IFIP/IEEE International

Symposium on Integrated Network Management (IM). 2015, pp. 441–449. doi:

10.1109/INM.2015.7140321.

[120] A. Matsunaga and J. A. B. Fortes. “On the Use of Machine Learning to Predict the

Time and Resources Consumed by Applications.” In: Proc. of 10th IEEE/ACM

International Conference on Cluster, Cloud and Grid Computing (CCGRID).

2010, pp. 495–504. doi: 10.1109/CCGRID.2010.98.

[121] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, et al.

“OpenFlow: Enabling Innovation in Campus Networks.” In: ACM SIGCOMM

Computer Communication Review 38.2 (2008), p. 69. doi: 10.1145/1355734.

1355746.

[122] J. Medved, R. Varga, A. Tkacik, and K. Gray. “Opendaylight: Towards a model-

driven SDN controller architecture.” In: Proc. of IEEE 15th International Sym-

posium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM).

2014. doi: 10.1109/WoWMoM.2014.6918985.

[123] A. Mishra, D. Bansod, and K. Haribabu. “A Framework for OpenFlow-like

Policy-based Routing in Hybrid Software Defined Networks.” In: Proc. of 11th

International Network Conference (INC). 2016, pp. 97–102.

[124] M. R. Nascimento, C. E. Rothenberg, M. R. Salvador, C. N. A. Corrêa, S. C. de

Lucena, et al. “Virtual routers as a service: the routeflow approach leveraging

software-defined networks.” In: Proc. of ACM 6th International Conference on

Future Internet Technologies (CFI). 2011, pp. 34–37. doi: 10.1145/2002396.

2002405.

https://doi.org/10.1049/iet-net.2014.0091
https://doi.org/10.1109/ICNP.2015.47
https://doi.org/10.1109/INM.2015.7140321
https://doi.org/10.1109/CCGRID.2010.98
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1109/WoWMoM.2014.6918985
https://doi.org/10.1145/2002396.2002405
https://doi.org/10.1145/2002396.2002405

169

[125] T. Nelson, A. D. Ferguson, D. Yu, R. Fonseca, and S. Krishnamurthi. “Exodus:

Toward Automatic Migration of Enterprise Network Configurations to SDNs.”

In: Proc. of ACM 1st SIGCOMM Symposium on Software Defined Networking

Research (SOSR). 2015. doi: 10.1145/2774993.2774997.

[126] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes. “Agile: Elastic distributed

resource scaling for infrastructure-as-a-service.” In: Proc. of USENIX 10th

International Conference on Autonomic Computing (ICAC). 2013, pp. 69–82.

[127] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti.

“A survey of software-defined networking: Past, present, and future of pro-

grammable networks.” In: IEEE Communications Surveys & Tutorials 16.3

(2014), pp. 1617–1634.

[128] L. Ogrodowczyk, B. Belter, A. Binczewski, K. Dombek, A. Juszczyk, et al.

“Hardware abstraction layer for non-OpenFlow capable devices.” In: (2014).

[129] D. Parniewicz, B. Belter, E. Jacob, K. Pentikousis, R. Doriguzzi Corin, et al.

“Design and implementation of an OpenFlow hardware abstraction layer.” In:

Proc. of ACM SIGCOMM Workshop on Distributed Cloud Computing (DCC).

2014. doi: 10.1145/2627566.2627577.

[130] Y. Peng, L. Guo, Q. Deng, Z. Ning, and L. Zhang. “A novel hybrid routing

forwarding algorithm in sdn enabled wireless mesh networks.” In: Proc. of

IEEE High Performance Computing and Communications (HPCC), IEEE 7th

International Symposium on Cyberspace Safety and Security (CSS), IEEE 17th

International Conference on Embedded Software and Systems (ICESS). 2015,

pp. 1806–1811. doi: 10.1109/HPCC-CSS-ICESS.2015.271.

[131] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, et al. “The Design and

Implementation of Open vSwitch.” In: Proc. of USENIX 12th Symposium on

Networked Systems Design and Implementation (NSDI). 2015.

[132] M. Polverini, A. Iacovazzi, A. Cianfrani, A. Baiocchi, and M. Listanti. “Traffic

matrix estimation enhanced by SDNs nodes in real network topology.” In: Proc.

of IEEE Conference on Computer Communications Workshops (INFOCOM

WKSHPS). 2015. doi: 10.1109/INFCOMW.2015.7179401.

[133] S. Rathee, Y. Sinha, and K. Haribabu. “A Survey: Hybrid SDN.” In: Elsevier

Journal of Network and Computer Applications 100.December (2017), pp. 35–

55. doi: 10.1016/j.jnca.2017.10.003.

https://doi.org/10.1145/2774993.2774997
https://doi.org/10.1145/2627566.2627577
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.271
https://doi.org/10.1109/INFCOMW.2015.7179401
https://doi.org/10.1016/j.jnca.2017.10.003

170 Bibliography

[134] C. E. Rothenberg, A. Vidal, M. R. Salvador, C. Correa, S. Lucena, et al. “Hybrid

networking towards a software defined era.” In: Network Innovation through

OpenFlow and SDN: Principles and Design. 2014, pp. 153–198.

[135] C. E. Rothenberg, M. R. Nascimento, M. R. Salvador, C. N. A. Corrêa, S.

Cunha de Lucena, et al. “Revisiting routing control platforms with the eyes

and muscles of software-defined networking.” In: Proc. of 1st Workshop on

Hot Topics in Software Defined Networks (HotSDN). 2012, pp. 13–18. doi:

10.1145/2342441.2342445.

[136] C. Sacchi, F. Granelli, and C. Schlegel. “A QoE-Oriented Strategy for OFDMA

Radio Resource Allocation Based on Min-MOS Maximization.” In: IEEE Com-

munications Letters 15.5 (2011), pp. 494–496. doi: 10.1109/LCOMM.2011.

031411.101672.

[137] A. Saeed, N. Dukkipati, V. Valancius, C. Contavalli, A. Vahdat, et al. “Carousel:

Scalable Traffic Shaping at End Hosts.” In: Proc. of ACM SIGCOMM conference.

2017, pp. 404–417. doi: 10.1145/3098822.3098852.

[138] R. M. Salles and J. A. Barria. “Fair and efficient dynamic bandwidth allocation

for multi-application networks.” In: Computer Networks 49.6 (2005), pp. 856–

877. doi: 10.1016/j.comnet.2004.12.008.

[139] S. Salsano, P. L. Ventre, F. Lombardo, and G. Siracusano. “Hybrid IP/SDN

Networking: Open Implementation and Experiment Management Tools.” In:

IEEE Transactions on Network and Service Management 13.December (2015),

pp. 138–153. doi: 10.1109/TNSM.2015.2507622.

[140] S. Salsano, P. L. Ventre, L. Prete, G. Siracusano, M. Gerola, et al. “OSHI -

Open source hybrid IP/SDN networking (and its emulation on mininet and on

distributed SDN testbeds).” In: Proc. of 3rd European Workshop on Software-

Defined Networks (EWSDN). 1. 2014, pp. 13–18. doi: 10.1109/EWSDN.2014.

38.

[141] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, W. Snow, et al. “Open-

VirteX: A Network Hypervisor.” In: Open Networking Summit (ONS). 2014.

[142] P. Sharma, S. Banerjee, S. Tandel, R. Aguiar, R. Amorim, et al. “Enhancing net-

work management frameworks with SDN-like control.” In: Proc. of IFIP/IEEE

International Symposium on Integrated Network Management (IM). IEEE. 2013,

pp. 688–691. isbn: 978-1-4673-5229-1.

https://doi.org/10.1145/2342441.2342445
https://doi.org/10.1109/LCOMM.2011.031411.101672
https://doi.org/10.1109/LCOMM.2011.031411.101672
https://doi.org/10.1145/3098822.3098852
https://doi.org/10.1016/j.comnet.2004.12.008
https://doi.org/10.1109/TNSM.2015.2507622
https://doi.org/10.1109/EWSDN.2014.38
https://doi.org/10.1109/EWSDN.2014.38

171

[143] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. “Cloudscale: elastic resource scaling

for multi-tenant cloud systems.” In: Proc. of ACM 2nd Symposium on Cloud

Computing. ACM. 2011. doi: 10.1145/2038916.2038921.

[144] R. Sherwood, G. Gibb, K.-k. Yap, G. Appenzeller, M. Casado, et al. FlowVisor:

A Network Virtualization Layer. Tech. rep. 2009.

[P-NAII] C. Sieber and P. Sharma. Network Affinity Index Increase (Under Review).

Application number: 15/611095. July 2017.

[145] H. Song. “Protocol-oblivious forwarding: Unleash the power of SDN through a

future-proof forwarding plane.” In: Proc. of ACM 2nd SIGCOMM Workshop on

Hot Topics in Software-Defined Networking. 2013, pp. 127–132.

[146] L. Sun and E. C. Ifeachor. “Voice quality prediction models and their application

in VoIP networks.” In: IEEE Transactions on Multimedia 8.4 (2006), pp. 809–

820. doi: 10.1109/TMM.2006.876279.

[147] P. Sun, R. Mahajan, J. Rexford, L. Yuan, M. Zhang, et al. “A network-state

management service.” In: ACM SIGCOMM Computer Communication Review

44.4 (2015), pp. 563–574.

[148] X. Sun, Z. Jia, M. Zhao, and Z. Zhang. “Multipath Load Balancing in SDN/OSPF

Hybrid Network.” In: IFIP International Conference on Network and Parallel

Computing (NPC), Lecture Notes in Computer Science. Vol. 9966. 2016. doi:

10.1007/978-3-319-47099-3_8.

[149] P. Tang, P. Wang, N. Wang, and V. N. Ngoc. “QoE-Based Resource Alloca-

tion Algorithm for Multi-Applications in Downlink LTE Systems.” In: Proc.

of International Conference on Computer, Communications and Information

Technology (CCIT). Atlantis Press, 2014, pp. 1011–1016.

[150] X. Tu, X. Li, J. Zhou, and S. Chen. “Splicing MPLS and OpenFlow Tunnels

Based on SDN Paradigm.” In: Proc. of IEEE International Conference on Cloud

Engineering (IC2E). IEEE. 2014, pp. 489–493. doi: 10.1109/IC2E.2014.20.

[151] L. Vanbever and S. Vissicchio. “Enabling SDN in Old School Networks with

Software-Controlled Routing Protocols.” In: Open Networking Summit (ONS).

2014.

[152] S. Vissicchio, L. Vanbever, and O. Bonaventure. “Opportunities and research

challenges of hybrid software defined networks.” In: ACM SIGCOMM Com-

puter Communication Review 44.2 (2014), pp. 70–75. doi: 10.1145/2602204.

2602216.

https://doi.org/10.1145/2038916.2038921
https://doi.org/10.1109/TMM.2006.876279
https://doi.org/10.1007/978-3-319-47099-3_8
https://doi.org/10.1109/IC2E.2014.20
https://doi.org/10.1145/2602204.2602216
https://doi.org/10.1145/2602204.2602216

172 Bibliography

[153] S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford. “Central Control Over

Distributed Routing.” In: ACM SIGCOMM Computer Communication Review

45.5 (2015), pp. 43–56. doi: 10.1145/2829988.2787497.

[154] S. Vissicchio, L. Vanbever, L. Cittadini, G. Xie, and O. Bonaventure. “Safe

Update of Hybrid SDN Networks.” In: IEEE/ACM Transactions on Networking

(TON) 25.3 (2017), pp. 1649–1662. doi: 10.1109/TNET.2016.2642586.

[155] S. Vissicchio, L. Vanbever, and J. Rexford. “Sweet Little Lies: Fake Topologies

for Flexible Routing.” In: Proc. of ACM 13th Workshop on Hot Topics in Networks.

ACM. 2014. doi: 10.1145/2670518.2673868.

[156] H. Wang, Y. Li, D. Jin, P. Hui, and J. Wu. “Saving Energy in Partially Deployed

Software Defined Networks.” In: IEEE Transactions on Computers 65.5 (2016),

pp. 1578–1592. doi: 10.1109/TC.2015.2451662.

[157] L. Wang, Q. Li, Y. Jiang, and J. Wu. “Towards mitigating Link Flooding Attack

via incremental SDN deployment.” In: Proc. of IEEE Symposium on Computers

and Communications (ISCC). 2016, pp. 397–402. doi: 10.1109/ISCC.2016.

7543772.

[158] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. “Image quality

assessment: from error visibility to structural similarity.” In: IEEE Transactions

on Image Processing 13.4 (2004), pp. 600–612. doi: 10.1109/TIP.2003.819861.

[159] R. Weingärtner, G. B. Bräscher, and C. B. Westphall. “Cloud resource manage-

ment: A survey on forecasting and profiling models.” In: Journal of Network and

Computer Applications 47 (2015), pp. 99–106. doi: 10.1016/j.jnca.2014.09.018.

[160] P. Xiong, Y. Chi, S. Zhu, H. J. Moon, C. Pu, et al. “SmartSLA: Cost-Sensitive

Management of Virtualized Resources for CPU-Bound Database Services.”

In: IEEE Transactions on Parallel and Distributed Systems 26.5 (2015). doi:

10.1109/TPDS.2014.2319095.

[161] G. Yang, K. Lee, W. Jeong, and C. Yoo. “Flo-v: Low Overhead Network

Monitoring Framework in Virtualized Software Defined Networks.” In: Proc.

of ACM 11th International Conference on Future Internet Technologies (CFI).

2016, pp. 90–94. doi: 10.1145/2935663.2935677.

[162] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali. “On scalability of software-

defined networking.” In: IEEE Communications Magazine 51.2 (2013), pp. 136–

141. doi: 10.1109/MCOM.2013.6461198.

https://doi.org/10.1145/2829988.2787497
https://doi.org/10.1109/TNET.2016.2642586
https://doi.org/10.1145/2670518.2673868
https://doi.org/10.1109/TC.2015.2451662
https://doi.org/10.1109/ISCC.2016.7543772
https://doi.org/10.1109/ISCC.2016.7543772
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1016/j.jnca.2014.09.018
https://doi.org/10.1109/TPDS.2014.2319095
https://doi.org/10.1145/2935663.2935677
https://doi.org/10.1109/MCOM.2013.6461198

173

[163] K. Yeunwoong, N. T. M., H. Kiwon, P. Jongkwan, and P. Jinwoo. “Software

Defined Service Migration through Legacy Service Integration into 4G Networks

and Future Evolutions.” In: IEEE Communications Magazine September (2015),

pp. 108–114. doi: 10.1109/MCOM.2015.7263353.

[164] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. “Scalable flow-based networking

with DIFANE.” In: ACM SIGCOMM Computer Communication Review 41.4

(2011), pp. 351–362. doi: 10.1145/1851275.1851224.

[165] A. Zaalouk and K. Pentikousis. “Network configuration in OpenFlow networks.”

In: Proc. of International Conference on Mobile Networks and Management.

Springer. 2014, pp. 91–104. doi: 10.1007/978-3-319-16292-8_7.

[166] Y. Zhang, X. Gong, Y. Hu, W. Wang, and X. Que. “SDNMP: Enabling SDN

management using traditional NMS.” In: Proc. of IEEE International Conference

on Communication Workshop (ICCW). 2015, pp. 357–362. doi: 10.1109/ICCW.

2015.7247205.

Miscellaneous

[167] I. T. U. (ITU). P.800: Methods for subjective determination of transmission

quality. Published: 30.08.1996. url: https://www.itu.int/rec/T-REC-P.800-

199608-I/en (Last Accessed: 7.11.2018).

[168] C. R. A. Vidal E. Fernandes and M. Salvador. libfluid. Published: 25.08.2014.

url: http : / / opennetworkingfoundation . github . io / libfluid/ (Last Accessed:

7.11.2018).

[169] Apache kafka. url: https://kafka.apache.org/ (Last Accessed: 7.11.2018).

[170] Cisco Visual Networking Index: Forecast and Methodology, 2016–2021. Pub-

lished: 15.07.2017. 2018. url: https://www.cisco.com/c/en/us/solutions/

collateral / service - provider / visual - networking- index- vni / complete - white -

paper-c11-481360.html (Last Accessed: 7.11.2018).

[171] J. Corbet. Batch processing of network packets. Published: 2018-08-21. url:

https://lwn.net/Articles/763056/ (Last Accessed: 7.11.2018).

[172] crossbar.io. url: https://crossbar.io/ (Last Accessed: 7.11.2018).

[173] E. Dumazet. pkt_sched: fq: Fair Queue packet scheduler. Published: 24.08.2013.

url: https://lwn.net/Articles/564825/ (Last Accessed: 7.11.2018).

https://doi.org/10.1109/MCOM.2015.7263353
https://doi.org/10.1145/1851275.1851224
https://doi.org/10.1007/978-3-319-16292-8_7
https://doi.org/10.1109/ICCW.2015.7247205
https://doi.org/10.1109/ICCW.2015.7247205
https://www.itu.int/rec/T-REC-P.800-199608-I/en
https://www.itu.int/rec/T-REC-P.800-199608-I/en
http://opennetworkingfoundation.github.io/libfluid/
https://kafka.apache.org/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://lwn.net/Articles/763056/
https://crossbar.io/
https://lwn.net/Articles/564825/

174 Bibliography

[174] E. Dumazet. tcp: TCP Small Queues. Published: 10.07.2012. url: https://lwn.

net/Articles/506237/ (Last Accessed: 7.11.2018).

[175] etcd. url: https://coreos.com/etcd/ (Last Accessed: 7.11.2018).

[176] EU FP7 ALIEN project. url: http : / / www. fp7 - alien . eu/ (Last Accessed:

7.11.2018).

[177] infosim GmbH & Co. KG. StableNet. url: https://www.infosim.net/ (Last

Accessed: 7.11.2018).

[178] Open Compute Project. url: https://www.opencompute.org/ (Last Accessed:

7.11.2018).

[179] OPENCONFIG. url: http://www.openconfig.net/ (Last Accessed: 7.11.2018).

[180] OpenFlow, OF-Conf and Core Information Model (CIM). url: https://www.

opennetworking.org/ (Last Accessed: 7.11.2018).

[181] OpenStack. url: https://www.openstack.org (Last Accessed: 7.11.2018).

[182] Paramiko. url: http://www.paramiko.org/ (Last Accessed: 7.11.2018).

[183] RabbitMQ. url: https://www.rabbitmq.com/ (Last Accessed: 7.11.2018).

[184] Selenium. url: https://www.seleniumhq.org/ (Last Accessed: 7.11.2018).

[185] tc-tbf. url: https:/ /www.systutorials.com/docs/ linux/man/8- tc- tbf/ (Last

Accessed: 7.11.2018).

[186] The internet topology zoo. url: www. topology - zoo . org (Last Accessed:

7.11.2018).

[187] Themezy. Science Lab Website Template. url: https://www.themezy.com/free-

website- templates/121-science- lab- free- responsive-website- template (Last

Accessed: 7.11.2018).

[188] TOSCA. url: https://www.oasis-open.org/committees/tc_home.php?wg_

abbrev=tosca (Last Accessed: 7.11.2018).

[189] J. Warner. packet buffers. url: https://people.ucsc.edu/~warner/buffer.html

(Last Accessed: 7.11.2018).

[190] ZooKeeper. url: https://zookeeper.apache.org/ (Last Accessed: 7.11.2018).

https://lwn.net/Articles/506237/
https://lwn.net/Articles/506237/
https://coreos.com/etcd/
http://www.fp7-alien.eu/
https://www.infosim.net/
https://www.opencompute.org/
http://www.openconfig.net/
https://www.opennetworking.org/
https://www.opennetworking.org/
https://www.openstack.org
http://www.paramiko.org/
https://www.rabbitmq.com/
https://www.seleniumhq.org/
https://www.systutorials.com/docs/linux/man/8-tc-tbf/
www.topology-zoo.org
https://www.themezy.com/free-website-templates/121-science-lab-free-responsive-website-template
https://www.themezy.com/free-website-templates/121-science-lab-free-responsive-website-template
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://people.ucsc.edu/~warner/buffer.html
https://zookeeper.apache.org/

Acronyms

ACL Access Control List 15, 19, 21, 23

API Application Programming Interface 15, 26, 48, 62, 114

ARP Address Resolution Protocol 19, 20

ASIC Application-Specific Integrated Circuit 1, 8, 54, 55, 67, 153

BGP Border Gateway Protocol 1, 13, 19, 20

CDF Cumulative Distribution Function 75, 137, 138, 139, 138

CLI Command Line Interface 1, 13, 21, 24, 33, 49, 50, 52, 54, 151, 154

CPU Central Processing Unit 1, 6, 8, 67, 81, 82, 84, 86, 88, 89, 90, 91, 93, 97, 100

DASH Dynamic Adaptive Streaming over HTTP 118, 145

DBMS Database Management System 48

DSL Domain Specific Language 6, 44, 49, 60

DUT Device Under Test 32

FIB Forwarding Information Base 19

FIFO First-In First-Out 67

ForCES Forwarding and Control Element Separation 14, 43, 44, 48

FPGA Field-Programmable Gate Array 21

FV FlowVisor 83, 85, 86, 89, 90, 97, 98

HAL Hardware Abstraction Layer 18, 21, 22

HAS HTTP Adaptive Streaming 40

175

176 Acronyms

HPP hypervisor placement problem 83

HTML Hyper Text Markup Language 122

HTTP Hypertext Transfer Protocol 1, 21, 36, 37, 40, 49, 115, 117, 118, 121, 122, 133

HTTPS Secure Hypertext Transfer Protocol 39

ID Identifier 85

IGP Interior Gateway Protocol 19, 20

IP Internet Protocol 23, 24, 29, 85, 133

ISP Internet Service Provider 67

KPI Key Performance Indicator 5, 7, 8, 10, 109, 110, 112, 113, 114, 116, 117, 118, 119, 120,

121, 134, 144

LLDP Link Layer Discovery Protocol 86

LTE Long Term Evolution 113

MAC Medium Access Control 20, 133

MIB Management Information Base 47

MILP Mixed-Integer Linear Program 8, 10, 108, 111, 124, 125

MOS Mean Opinion Score 110, 113, 114, 119, 120, 121, 139

MPLS Multiprotocol Label Switching 17, 19, 74

MSE Mean Squared Error 90

NFV Network Function Virtualization 26

NMS Network Management System 1, 6, 15, 17, 18, 22, 23, 26, 50, 54

NP non-deterministic polynomial-time 26, 131

NSAL Network Services Abstraction Layer 2, 3, 4, 5, 6, 8, 9, 10, 13, 16, 22, 26, 29, 35, 36,

38, 40, 43, 44, 45, 46, 47, 48, 49, 50, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62,

63, 64, 67, 76, 77, 79, 80, 81, 82, 83, 84, 85, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 92,

93, 94, 96, 97, 98, 106, 107, 108, 109, 110, 111, 114, 115, 124, 132, 134, 135, 148, 149,

152, 153, 154, 179, 180, 183

Acronyms 177

ODR Orthogonal Distance Regression 10, 89, 94, 96

ONF Open Networking Foundation 48

OPEX operational expenditure 26

OSHI Open Source Hybrid IP/SDN 23

OSPF Open Shortest Path Forwarding 1, 13, 19, 24, 25

OVS OpenvSwitch 32, 35, 34, 89, 90

OVX OpenVirtX 83, 85, 86, 89, 91, 98

POF Protocol-Oblivious Forwarding 14

PQ Priority Queuing 51, 55

QoE Quality of Experience 5, 7, 8, 10, 107, 110, 112, 113, 114, 119, 120, 183

QoS Quality of Service 3, 6, 8, 9, 10, 14, 15, 17, 18, 23, 29, 35, 36, 40, 43, 44, 47, 49, 53,

55, 57, 59, 61, 62, 64, 107, 108, 111, 112, 111, 113, 114, 136, 139, 141, 148, 149, 151,

152, 153, 154

RAM Random Access Memory 81, 97

RBF Radial Basis Function 94

RED Random Early Drop 17

REST Representational state transfer 21, 50, 49

RFC Request for Comment 44

RIB Routing Information Base 21

RTP Real-Time Transport Protocol 118

RTT Round Trip Time 113, 140, 141

SDN Software-Defined Networking 2, 3, 4, 5, 6, 8, 9, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23,

24, 25, 26, 29, 31, 32, 33, 34, 40, 43, 44, 49, 57, 59, 58, 60, 62, 63, 64, 65, 66, 67, 69,

70, 71, 72, 73, 74, 73, 74, 75, 76, 75, 76, 77, 83, 114, 133, 134, 135, 151, 152, 153, 154

SNMP Simple Network Management Protocol 13, 14, 15, 21, 23, 24, 47, 52

SSH Secure Shell 117

178 Acronyms

SSIM Structural Similarity Index 112, 114

STP Spanning Tree Protocol 19, 20

SVM Support Vector Machine 6, 10, 93, 94, 102, 105, 106, 154

TB Token Bucket 37, 39

TCP Transmission Control Protocol 6, 9, 30, 36, 37, 38, 40, 67, 117, 122, 134, 137, 138, 148,

149, 152

UDP User Datagram Protocol 32, 36, 118, 138

vCPU Virtual Central Processing Unit 84

VLAN Virtual Local Area Network 1, 5, 9, 15, 16, 17, 19, 20, 21, 22, 29, 31, 33, 34, 40, 43,

49, 50, 56, 57, 58, 61, 60, 67, 77, 152

VNE Virtual Network Embedding 131

VoIP Voice-over-IP 107, 116, 118, 121, 140, 141, 149

WFQ Weighted Fair Queuing 17, 54, 55

List of Figures

2.1 Software-Defined Networking . 14

2.2 Evolution of SDN . 16

2.3 SDN Implementation in Forwarding Devices . 17

2.4 Three common SDN migration strategies . 18

3.1 Measuring Flexibility and Traffic Policing Impact 30

3.2 Different types of reconfiguration delay . 32

3.3 Measurement set-up . 33

3.4 Reconfiguration times (tp) VLAN tagging . 34

3.5 Measurement of rule push time for OpenFlow 35

3.6 NEC device QoS scheduler change . 36

3.7 Impact of policing on TCP congestion control algorithms. 38

3.8 Impact of policing on the performance of YouTube’s adaptation algorithm. 39

4.1 NSAL Overview . 45

4.2 Proposed NSAL Design . 50

4.3 NSAL Monitoring Tasks . 53

4.4 NSAL model of simple OpenFlow switch . 54

4.5 Example of an alternative output graph path . 55

4.6 Two SDN domains in our test-bed connected by a VLAN tunnel. 58

4.7 QoS testbed set-up . 59

4.8 Use case 2 implemented in our testbed . 61

5.1 Problem statement flexibility. 65

5.2 Abstract SAL reconfiguration model . 68

5.3 Best and worst case topology realizations . 70

5.4 Qualitative feasibility regions . 71

5.5 AT&T MPLS topology (Internet Topology Zoo) 72

5.6 Analytical solution space AT&T topology . 72

179

180 List of Figures

5.7 Centrality distribution, potential and best-case gain 74

5.8 Best case deployment gain over 81 real world topologies 75

5.9 Reconfiguration Load Balancing . 78

6.1 Performance Modeling of a Software-Based NSAL at Run-time 80

6.2 NSAL system model overview with compute virtualization. 84

6.3 The hvbench load generator. 86

6.4 Time where MSE between model and measured CPU time stays lower than threshold. 91

6.5 Models over- and underestimation . 92

6.6 Proposed learning pipeline . 93

6.7 Sample weighting function w(t) . 95

6.8 Experimental set-up learning pipeline . 97

6.9 Example load generation process . 99

6.10 Mean estimation error . 100

6.11 Convergence time after a resource change . 101

6.12 Evaluation of convergence time without ∆R-detection 101

6.13 Evaluation of convergence time with ∆R-detection 102

6.14 Evaluation of the improvement of convergence time with ∆R-detection 103

6.15 Budget estimation accuracy of different message type distributions 104

7.1 Application-Aware NSAL Overview . 109

7.2 Extensions to the NSAL graph-model for application-awareness 116

7.3 Utility models from application KPIs derived from subjective study results. . . . 119

7.4 Utility functions generation methodology . 122

7.5 Utility functions for file download, web and streaming. 123

7.6 Overview over the fair resource allocation problem. 124

7.7 Solving time, variable and constraint count for problem formulation. 133

7.8 Evaluation set-up. 134

7.9 Best effort throughput and utility of the different application types for 16 clients

per application class. 137

7.10 Measured best effort and managed application utility for 80 applications. 139

7.11 Standard deviations of a client’s utility values per application type. 140

7.12 Quality of Service metrics of the constrained link. 141

7.13 Comparison of managed measurements, target utility and best effort measurements

per application type. 142

7.14 Summary of differences in measured utility. 143

7.15 Detailed evaluation of video quality metrics. 146

List of Figures 181

7.16 F-index comparison. 147

List of Tables

3.1 Traditional devices VLAN tagging results . 34

4.1 NSAL Design Trade-Offs . 51

4.2 Relationships Between Switch Components . 55

4.3 Task execution order and resulting interruptions 58

5.1 Key variables and notations used in the chapter. 68

5.2 Pearson correlation between potential P and BC gain 76

6.1 Notation & Variables . 85

6.2 Hardware Configurations . 90

6.3 Deployment Guidelines . 105

7.1 Overview of related works targeting multi-application Quality of Experience

(QoE)-awareness. 112

7.2 Applications, Intents and Key Performance Indicators 117

7.3 Subjective Models . 119

7.4 Notation Allocation Problem Formulation . 126

7.5 Overview of all constraints . 127

183

	Introduction
	Research Challenges
	Contributions
	Thesis Outline

	The State of the Art from the Migration to the Operation of Hybrid Networks
	Software-Defined Networking Overview
	Evolution of SDN Towards Abstraction Layers
	SDN/QoS Technical Implementation
	QoS Configuration in Traditional Networking and SDN
	Migration Strategies
	Tunnels Through The Traditional Networking Domain
	Combining Distributed and Central Routing
	SDN Hardware Abstraction Layers for Traditional Devices
	Discussion

	Operating Hybrid Networks
	Interfacing Traditional NMSs and Network Controllers
	Replacement Order of Traditional Switches
	Security
	Migration of Traditional Device Configuration to SDN
	Failure Recovery and Convergence Time
	IP Traffic Matrix Estimation
	Traffic Engineering
	Miscellaneous

	Summary

	Measuring Flexibility and the Impact of Configurations
	Measuring Flexibility
	Testbed Set-up
	Results

	Reconfiguration Impact on the Data-Plane
	Impact of Policing on Transport Layer
	Impact of Policing on Application Layer
	Discussion

	Design of an NSAL for Partially Deployed Software-Defined Networks
	Design Challenges and Problem Definition
	C2.1: Different Control and Management Data-Models
	C2.2: Level of Abstraction
	C2.3: Different Reconfiguration Delays
	C2.4: Non-inferable Reconfiguration Side-Effects
	C2.5: Monitoring of Heterogeneous Devices
	C2.6: Performance and Reliability

	Background
	Proposed Design
	Architecture
	Design Trade-offs
	On-Demand and Long-Term Monitoring
	Extended Graph and Device Models

	Task Composition and Overall Timing Estimation
	Use Cases and Prototype Evaluation
	UC1: VLAN Tunneling / Panopticon
	UC2: QoS Discovery and On-demand Monitoring

	Summary and Discussion

	Theoretical Performance Limits of an NSAL for Hybrid Networks
	Challenges and Problem Definition
	C3.1: Determining Maximum Global Reconfiguration Rate
	C3.2: Quantifying Benefit of SDN Upgrade for a Network
	C3.3: Quantifying Average Benefit for Real-World Topologies

	Background
	System Model
	Network Realizations
	Feasibility of Reconfiguration Rates

	Potential P
	Topology Investigation
	Summary and Discussion

	Performance Modeling of a Software-Based NSAL at Runtime
	Challenges and Problem Definition
	C5.1: Accuracy of the NSAL Performance Model
	C5.2: Training of the Model at Run-time
	C5.3: Detecting Concept Drift and Refreshing the Model

	Background
	System Model
	The hvbench Load Generator
	Performance Model
	Model Candidates and Online Fitting Method
	Testbed Configurations
	Model Accuracy and Convergence Time
	Over- and Underestimation
	Model Selection

	Proposed Learning Pipeline
	Gradual Adaptation and Sample Weighting Function
	Extended Performance Model

	Evaluation Methodology
	Experimental Set-up
	Budget Estimation Error
	Load Generation Process

	Evaluation
	Budget Estimation Error without Delta-R-Detection
	Convergence Time after Delta-R-Detection
	Extended Performance Model

	Summary and Deployment Guidelines
	Summary
	Deployment Guidelines

	Application-Aware Resource Allocation through the NSAL
	Challenges and Problem Definition
	C7.1: Defining User-Level Resource Shares
	C7.2: Determining Resource Shares under Resource Constraints
	C7.3: Allocating Resource Shares in the Network

	Background
	Extensions to the NSAL Abstraction
	Utility Function Definition
	Applications, Intents and KPIs
	Utility from KPIs
	Utility Functions

	User-Level Resource Allocation Formulation
	Notation
	Objective
	Utility Selection Constraints
	Routing Constraints
	Capacity Constraints
	Delay Constraints
	Problem Complexity and Possible Solving Strategies

	Experiment Design and Set-up
	Experiment Set-up
	Pacing Implementation
	Parameter Space and Experiment Procedure

	Evaluation
	Best Effort Throughput and Utility Distribution
	Managed Utility Distribution
	Link QoS and VoIP Performance Details
	Increasing Number of Applications
	Video Streaming Performance Details
	QoE Fairness
	Summary

	Conclusion

	Conclusions and Outlook
	Summary and Discussion
	Future Work

	Bibliography
	Acronyms
	List of Figures
	List of Tables

