
Lehrstuhl für Biomedizinische Physik
Technische Universität München

Real-time iterative reconstruction
for x-ray computed tomography

Andreas Fehringer

PhD Thesis

T E C H N I S C H E U N I V E R S I TÄT M Ü N C H E N

Physik Department

Lehrstuhl für Biomedizinische Physik

Real-time iterative reconstruction

for x-ray computed tomography

Andreas Fehringer

Vollständiger Abdruck der von der Fakultät für Physik der Technischen Universität München

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Martin Zacharias

Prüfer der Dissertation: 1. Prof. Dr. Franz Pfeiffer

2. Priv.-Doz. Dr. Tobias Lasser

Die Dissertation wurde am 08.01.2019 bei der Technischen Universität München eingereicht

und durch die Fakultät für Physik am 16.09.2019 angenommen.

Abstract

We introduce a scientific reconstruction framework for tomographic reconstruction includ-

ing an integral concept to make statistical iterative reconstruction a real-time approach for

high-resolution computed tomography (CT). The practical consequence of our findings is a

multiplication of the throughput in future high-resolution CT systems. The presented methods

show how to make use of projective geometry and a heterogeneous single-computer system

for this purpose. They include a way to formulate the problem efficiently and divide it into

several components. The first set of optimization approaches deals with the synergy of the

required components, the second with each component itself and the third with the Ordered-

Subsets Momentum solver. It is shown in each step how the performance of our approach

is connected to the current hardware limits. A low-statistics micro-CT measurement and a

high-statistics reference are used to prove that our method is able to decrease the acquisition

time at least by a factor of four at the same image quality. The timing results in about 42 s per

iteration and an overall reconstruction time of 24 min for 18 iterations on the 2k-cubed voxel

cone-beam volume. This is about 17 times faster than the total low-statistics acquisition time.

Zusammenfassung

Wir stellen ein Framework für tomografische Rekonstruktion im wissenschaftlichen Umfeld vor,

das ein umfassendes Konzept enthält, um statistisch iterative Rekonstruktion ein Echtzeitver-

fahren für hochauflösende Computertomographie (CT) zu machen. In praktischer Konsequenz

ermöglichen unsere Erkenntnisse eine Multiplikation des Durchsatzes künftiger hochauflösen-

der CT Systeme. Die vorgestellten Methoden zeigen, wie man mittels projektiver Geometrie

und einem heterogenen Einzelcomputersystem genanntes Ziel umsetzen kann. Sie beinhalten

eine effiziente Formulierung des Problems und einen Weg, es in mehrere Bestandteile aufzu-

teilen. Die erste Gruppe der vorgestellten Optimierungsansätze behandelt das Zusammenspiel

dieser Bestandteile, die zweite die Bestandteile selbst und die dritte das Ordered-Subset

Momentum Lösungsverfahren. In jedem Schritt wird gezeigt, wie die Leistungsfähigkeit unserer

Ansätze mit den Fähigkeiten aktueller Hardware zusammenhängt. Eine Mikro-CT Messung

mit geringer Statistik und eine Referenzmessung mit hoher Statistik werden herangezogen,

um unter Beweis zu stellen, dass durch unsere Methode die Messzeit bei gleichbleibender

Bildqualität um mindestens Faktor vier verringert werden kann. Die Zeitmessung ergab etwa

42 s pro Iteration und eine Rekonstruktionszeit von insgesamt 24 min für 18 Iterationen auf

dem 2k-Voxelkubus mit Kegelstrahlgeometrie. Dies ist etwa 17 mal schneller als die gesamte

Messzeit des verwendeten Testdatensatzes.

For in him [, Jesus Christ,] all things were created:

things in heaven and on earth,

visible and invisible,

whether thrones or powers or rulers or authorities;

all things have been created through him and for him.

He is before all things, and in him all things hold together.

The Apostle Paul

(Col 1:16-17)

Contents

Abstract ... v

Contents.. x

List of Figures .. xii

List of Algorithms .. xiii

1 Preface.. 3

1.1 What the world is all about ... 4

1.2 Faith and the difference it makes for research... 5

2 Introduction.. 9

2.1 Motivation .. 10

2.2 Overview ... 11

I Theory 13
3 X-ray computed tomography .. 17

3.1 Data acquisition and challenges from the real world .. 18

3.2 Analytical reconstruction.. 21

3.3 Iterative reconstruction .. 25

4 Projective geometry .. 31

4.1 Mathematical background .. 32

4.2 Projection matrices in CT... 33

4.3 Some special use cases .. 36

5 Heterogeneous computing ... 45

5.1 Basic concepts ... 46

5.2 GPGPU computing ... 49

II Implementation 53
6 The building blocks ... 57

6.1 Preliminary considerations ... 58

6.2 The kernels.. 61

6.3 Handling big data.. 64

6.4 Remarks on the OpenCL framework ... 68

7 The reconstruction framework .. 71

7.1 Visions and their realization ... 72

7.2 An overview ... 74

8 Integral optimization .. 79

8.1 The right components and their synergy .. 80

8.2 Component-wise optimization... 82

8.3 Optimizing the minimizer.. 86

III Results 91
9 Real-time SIR for micro-CT .. 95

9.1 Constraints and potential ... 96

9.2 Benchmark and profilings .. 98

Outtake ...107

Appendix 109
A Derivations of the cost function ...110

B A possible definition of the Euler angles...113

C Computing the parallel-beam direction vector ...114

D Optimizing the workgroup size without considering transfers115

Acknowledgments...119

Picture credits ..120

List of publications ..122

Bibliography ...129

List of Figures

1 A camel supposed to fit through the eye of a needle.. 4

2 A witness to early western research .. 5

3 An early x-ray image. .. 10

4 The development of x-ray sources over time... 19

5 Interaction cross section over the energy ... 20

6 A simple image and its sinogram .. 23

7 FBP with noise and undersampling ... 23

8 Geometry required for the FDK reconstruction.. 25

9 The Huber penalty function. ... 27

10 Two straight rails touch at infinity. .. 32

11 The 2-D projective and Euclidean space. .. 33

12 A schematic of the CT geometry with all relevant measures 34

13 A fully-automated rectified reconstruction .. 37

14 Microprocessor evolution over the last 45 years .. 46

15 Theoretical CPU and GPU single-precision peak performance over the last

decade .. 47

16 The GPU memory layout ... 50

17 The hierarchy inside the Geometry class ... 61

18 Two basic types of tomographic projectors. .. 62

19 Data splitting for cone-beam CT computations on GPUs.................................. 64

20 Mean runtime for the gradient on heterogeneous hardware.............................. 82

21 Performance of FP and BP over the workgroup shape..................................... 86

22 Performance of the BP over the walk parameter ... 87

23 A reference for the convergence of SIR ... 88

24 Runtime for different numbers of subsets in SIR ... 89

25 Several quality measures over the interations ...100

26 Benchmark quality reference: A real sample ..101

27 Profiling SIR...103

28 Outtake ...107

29 Performance of over the workgroup shape (FP, BP without transfers)115

List of Algorithms

1 The filtered backprojection (FBP).. 22

2 The method of Feldkamp-Davis-Kress (FDK) ... 25

3 Statistical iterative reconstruction (SIR) with a Gaussian noise model................ 26

4 A popular regularization term ... 27

5 Bit-reversal sorting implemented in Python .. 29

6 Useful operations with projection matrices ... 35

7 Fully automated sample rectification ... 38

8 Assessing the maximum number of float32 terms in a sum 49

9 The OS-OGM 2 implemented in Python ... 80

10 Derivatives of the cost function ...111

1. Preface

What is this world all about? - This funda-

mental question about life usually evokes two

different kinds of reactions: One is laughter.

Many people resigned on finding an answer.

The other is struggle. Struggle means, ac-

cepting the challenge and starting to search

because a meaningless world is unaccept-

able. During my time at university I found that

many of my fellow students were, just like me,

on the second track. This question was the

driving force for my studies.

Picture: A tribute to Michelangelo’s famous painting

The creation of Adam. c

Before starting the scientific examination of

my topic real-time iterative reconstruction for

x-ray computed tomography I would like to

explain my motivation for doing science. The

intention of an author is crucial for the inter-

pretation of any text. We know that there is a

great difference whether an author intended

to write a fictional scenario or a factual report.

Scientific texts are usually not fiction. How-

ever, the motivation and assumptions of the

author still play an important role. History has

shown that research was often carried out

with predefined goals or limits. These were

implied by wrong convictions of the scientific

community at a certain time, the personal in-

terests of the scientist or those of his or her

funders.

Among the conclusions I was allowed to draw

from my years of study, the engagement in

science and everything around it, I learned

that the underlying beliefs are crucial to sci-

ence and all other areas of life.

1.1. What the world is all about

Jesus answered, “If you want to

be perfect, go, sell your posses-

sions and give to the poor, and you

will have treasure in heaven. Then

come, follow me.” When the young

man heard this, he went away sad,

because he had great wealth. Then

Jesus said to his disciples, “Truly I

tell you, [...] it is easier for a camel

to go through the eye of a needle

than for someone who is rich to

enter the kingdom of God.” When

the disciples heard this, they were

greatly astonished and asked, “Who

then can be saved?” Jesus looked

at them and said, “With man this is

impossible, but with God all things

Figure 1 A camel supposed to fit through the eye of a
needle.
An illustration of the famous figure of speech used by Jesus
Christ to describe the chances of a rich man to enter the
kingdom of God by his own means. © by Judith Ganter.

are possible.” [1]

This very story was the beginning of my con-

crete search for the meaning of this world

and especially of my life. I do not remem-

ber where I first heard it, but these powerful

words took root deeply in my mind. They

did not stop bothering me for two or three

years until I finally found answers. Later, I was

astonished to notice that all of these words

had already been included in this exact same

story in Matthew 19 in the Bible.

Leaving your treasures behind and following

Christ in order to enter the kingdom of God.

This seems, at first sight, to be God’s answer

to the purpose of life in this passage. But

what would that mean? Does God require

to abstain from all pleasures? Does a life

devoted to Christ mean to become a priest

or joining a monastery? And what about the

camel not fitting through the eye of a needle?

(Figure 1 tries to meet the picture in my mind.)

Is there any chance at all? Which standard

has to be applied to life? What is good and

how good is good enough? Or is there a god

just throwing dice in the end [2]?

In 2006, I started to study physics. It is the

mother and still the most fundamental of all

4 Real-time iterative reconstruction for x-ray computed tomography

Figure 2 A witness to early western research.
The inscription of the coat of arms of Oxford University says
The Lord is my Light. In the Bible, the coming to the light is
related to finding the truth. p

natural sciences and I expected to find reli-

able answers to life there. Contrary to my

hopes, however, my thirst did not get satisfied

in one of the great lectures of this renowned

university. It was in a small group of students

reading the Bible. The answer I found is bril-

liantly summarized in John’s world-famous

verses:

For God so loved the world that he

gave his one and only Son, that

whoever believes in him shall not

perish but have eternal life. [3]

And in Paul’s letter to the Ephesians:

For it is by grace you have been

saved, through faith—and this is

not from yourselves, it is the gift of

God—not by works, so that no one

can boast. [4]

Among all the things I studied and worked for

only the words from the Bible could satisfy my

need for answers. Yes, I can say, it turned my

life from vanity into magnificence. A savior

that makes imperfect, selfish and weak hu-

man beings match his majesty and generous

character is exactly what this world lacks. His

grace alone is sufficient. We are created to

benefit from it and, therefore, give all glory to

him and no more to ourselves. This is the key

fitting into the hole. The conviction of abso-

lute truth, justification by Christ’s grace alone,

and the relationship to the living God have

not only become the answer to an intellectual

question for me, but the basis and motivation

for my life and especially my research.

1.2. Faith and the difference it
makes for research

During my studies I was able to attend a one-

week seminary at one of the oldest univer-

sities: Cambridge University. I was amazed

by the multitude of reminders of an almost

lost thinking: college names like Trinity, St.

John’s, Christ’s, or Jesus, and the chapel as

the central building of each school—just a few

witnesses that remained from the beginning

of western research and higher education.

Another interesting piece of very early aca-

demic heritage spatially not too far away is

shown in figure 2. It is the coat of arms of

Oxford University. The Latin inscription says

The Lord is my Light. This quote from the be-

ginning of Psalm 27 reminds us in its original

context of the Lord as savior and source of all

power. Further, it hints to one of the names

of the Lord Jesus Christ, who is called The

Light of the World which reveals the truth ac-

cording to the gospel of John. Jesus explains

that the truth can be found by remaining in

his word and that only the truth can set men

free. [5]

I consider this statement to be one of the

most important foundations of education and

research, especially in times where access to

the truth and freedom of speech is heavily re-

stricted for many people. Usually, we tend to

first think of some remote dictatorial regimes

where freedom of speech is restricted. But

even in our culture a liberal and self-centered

worldview is increasingly propagated without

Real-time iterative reconstruction for x-ray computed tomography 5

allowing rational discussion. This is an alarm-

ing circumstance.

Last year, the 500th anniversary of the Refor-

mation in Germany reminded us once again

of the Christian roots of our culture and the ba-

sic Christian convictions. The German state

secretary Thomas Rachel said in an interview

to the German federal ministry for education

and research (BMBF):

„Die Freiheit der Forschung vor

jeder unsachgemäßen und fach-

fremden Bevormundung wurzelt für

mich genuin im protestantischen

Freiheitsverständnis und in dem

durch die Rechtfertigungslehre be-

gründeten Menschenbild.“ [6]

(The freedom of research be-

fore any inappropriate and non-

specialist dictation is for me gen-

uinely founded in the Protestant un-

derstanding of freedom and in the

conception of the human being orig-

inating from the doctrine of justifica-

tion.)

Only the truth will set us free. And research

should be all about finding and defending it.

The existence of absolute truth equally valid

for all people—independent of their location,

time and beliefs—is the very basis of science.

Theories are only valid if they can globally

be confirmed or falsified. Unfortunately, this

very foundation of free science is nowadays

profoundly attacked by modern relativism and

lifestyle. If truth as the highest goal is put

aside, rational research gets replaced by arbi-

trary results. The most dangerous threads for

truth probably remained the same through-

out history: self realization, career prospects,

personal success and wealth which are prop-

agated as modern lifestyle. They are base

motives deep inside human nature. I am, for

sure, not excluded from their influence. But,

if at all, the way to overcome them can only

be with a perspective beyond mankind.

Coming back to the the old Oxford statement

The Lord is my Light, it has often been ar-

gued that a biblical worldview led to modern

science [7, for example]. The biblical under-

standing of truth perfectly meets the require-

ments. The God of the Bible did not remain

mere theory. He became flesh and made his

dwelling among us [8] and if we search for

him with all our mind and heart, as he calls

us to do, he reveals himself. He can be ex-

perienced, which is the very nature of truth.

This experience allowed early pioneers in sci-

ence to be confident that in the same way as

God reveals himself as a person, he also re-

veals the natural laws of his creation for those

who search. And they were right. Science is

known to work great. Today, however, it is im-

portant to note that it is not the only access to

truth and by definition limited [9, for example].

It can teach us the how ’s of this world, but we

need the creator himself to tell us the why ’s.

My personal motivation for doing science is to

give glory to my Lord and creator by search-

ing for the truth, maybe revealing a little more

of his genius, and by knowing that all good

thoughts are not achievements, but gifts.

6 Real-time iterative reconstruction for x-ray computed tomography

2. Introduction

When Wilhelm C. Röntgen discovered x-rays

in 1895 [10] and received the first Nobel price

for Physics in 1901, he was not yet aware of

the great implications of his discovery. These

new kind of rays allow deeper insights in as-

tronomy as well as nano technology. Their

greatest value has been found in medical ap-

plications, where x-rays have played an im-

portant role in diagnostics since the very be-

ginnings.

Picture: Wilhelm C. Röntgen imaged with visible light. p

2.1. Motivation

Today, same as 120 years ago when Rönt-

gen took the image shown in figure 3, x-ray

physics is still an active field of research. In

1979, another Nobel Price is awarded to Sir

Godfrey N. Hounsfield and Allan M. Cormack

for their part in developing a technique based

on x-rays called computed tomography (CT)

[11]. A computer algorithm helps to recon-

struct a three-dimensional (3-D) map of the

local x-ray attenuation coefficients inside a

sample from a set of transmission images.

Only one decade after the first clinical CT was

built, the foundation for another important ap-

plication was lain: x-ray micro tomography

(micro CT) [12]. Since then, synchrotrons

and laboratory sources have provided great

3-D insights into the microscopic and even

nanoscopic world. Today it plays a major

role in industrial non-destructive testing with

a steeply increasing number of applications.

Fast analytical reconstruction approaches

made it possible to make CT a wide-spread

technique that can be found in most modern

hospitals around the world. Their high de-

mands on the acquisition process, especially

concerning noise and angular sampling, drew

the attention of the CT community already

very early to iterative techniques [13, 14]. The

high computational requirements have, how-

ever, almost let it fall into oblivion again dur-

ing the last decades. Only recently the vast

computing power started to make those tech-

niques attractive again and they have become

a very active field of research. Especially the

massive development of graphic processor

units (GPU) pushed by the gaming industry

lead to great advances in cheap computing

power. Some basic iterative features are thus

already implemented in commercial devices

in the clinics. A long-term case study showed

Figure 3 An early x-ray image.
W. C. Röntgen imaged the hand of a fellow professor, Albert
von Kölliker, in 1896. p

that these methods allow to reduce the dose

of the hazardous radiation during the acquisi-

tion [15].

A very recent and promising class of new ap-

proaches is model-based reconstruction. It

directly takes into account the physical effects

known to lower the image quality in order to

receive the most realistic image. Statistical

iterative reconstruction (SIR) is, in contrast

to many commercial solutions [16], fully it-

erative. It is able to model the whole pro-

cess and drastically reduce the high noise

that has been characteristic for CT images

over decades [17]. Advanced models further

allow to tackle source and detector blurring

[18], time-resolved measurements [19] and

task-based reconstructions like material de-

composition [20]. First commercial realiza-

tions were implemented recently [21].

It is still a long way to go until the full capabili-

ties of SIR will be exploited. Active exchange

with the leading manufacturers of medical and

industrial CTs over the last few years has

shown that the main obstacles for broader ap-

plication are usability and reconstruction time.

The work described in this thesis emerged

from the investigation of these two obstacles.

10 Real-time iterative reconstruction for x-ray computed tomography

2.2. Overview

The main result of this work is that SIR can be

run as real-time application especially for the

big data sizes relevant in industry and science.

For that means an integral pipeline is pre-

sented that goes from investigating available

methods and selecting the components meet-

ing best the requirements to their implemen-

tation from scratch, optimization and synchro-

nization. In the end, some basic showcases

prove the value of these efforts for micro-CT

applications.

Before going into details, it is important to un-

derstand the driving idea behind SIR, its func-

tional principle and its potential. Part I, the

theory, therefore provides all the background

information required. After a short introduc-

tion into x-ray physics and x-ray imaging, it

concentrates on tomographic reconstruction

(chapter 3). There are two different basic ap-

proaches: The filtered backprojection (FBP),

the by far most successful representative of

very fast analytical approaches and statistical

iterative reconstruction (SIR), the currently

most promising representative of the family

of high-quality iterative techniques. The first

part also includes an introduction to projective

geometry (chapter 4), a very powerful mathe-

matical tool to describe the geometric param-

eters of a CT scan and consider it in recon-

struction. It ends with an introduction to het-

erogeneous computing (chapter 5), which is

computing on different hardware according to

a specific task. The configuration that turned

out most suitable for the implementation pre-

sented below is general-purpose computa-

tion on graphics processing units (GPGPU).

It supports massive parallelization on com-

pact and cheap hardware as well as a very

high data throughput.

Part II, the implementation, introduces a fast,

but flexible SIR framework. It tries to meet

the requirements of a scientific environment,

where research not only takes place on recon-

struction methods but also on CT applications.

Therefore, it tries to combine generality with

ease of use and flexibility with speed. The

compute-intensive parts can be reduced to

several common core components, which are

the same for most algorithms. A fast GPGPU

framework is introduced holding the most im-

portant core components (chapter 6). Those

are the tomographic forward (FP) and back

projector (BP) and a general local regularizer.

Subsequently, a generic SIR framework is

presented with its modular structure, usabil-

ity concept and an overview of investigated

methods (chapter 7). The implementation

part closes with an integral optimization of the

whole implementation with respect to maxi-

mum performance which is especially impor-

tant for big data sets (chapter 8).

The thesis closes with part III, the results from

the suggested methods. It demonstrates that

the benefits of SIR were made accessible for

full-size micro-CT data sets. Further, the real-

time performance of the presented implemen-

tation is proven for a data set with a volume

size of (2048)3 voxels (2k-cubed) (chapter 9).

Real-time iterative reconstruction for x-ray computed tomography 11

Part I

Theory

The first part provides the physical and mathematical background required for the methods pre-

sented later. First, there is an introduction to x-ray computed tomography (chapter 3) explaining

the basics of tomographic data acquisition with x-rays and two very common approaches for

tomographic reconstruction. Second, there is an introduction to projective geometry (chap-

ter 4) that deals with the mathematics of projecting a 3-D setting into a plain with a given

camera geometry. It is shown, how it can be used for computed tomography and some special

use cases. Third and last, there is an introduction to heterogeneous computing (chapter 5).

After some short thoughts about computing on multiple architectures and parallel computing,

the GPU architecture and ways to use it for general-purpose computations (GPGPU) are

investigated.

3. X-ray computed tomography

X-ray computed tomography is an imaging

modality for non-destructive 3-D investigation.

It is very common in medical applications

and becomes increasingly popular for non-

destructive testing in industry and science.

The most common alternatives for non-

destructive examination are x-ray radio-

graphs, light microscopy, ultrasound imaging

and magnetic resonance imaging (MRI). In

contrast to x-ray CT, the last three do not

carry the risk of radiation damage. For radio-

graphs that risk is reduced by a lot. Moreover,

light microscopy, ultrasound and radiographic

imaging are much cheaper. The great asset

of x-ray CT is its by far most accurate spatial

information. Especially the three cheap meth-

ods allow only very limited 3-D investigation.

Compared to MRI, x-ray CT is a lot faster,

cheaper and more accurate.

Picture: A sketch drawn by Sir Godfrey N. Hounsfield. c

3.1. Data acquisition and
challenges from the real
world

X-ray computed tomography allows to create

a 3-D map of coefficients that describe how

strongly the x-rays interact with the material.

This map allows to distiguish different materi-

als or mass densities. The working principle

of CT consists of two basic steps. The first is

data acquisition in which the desired quantity

can be measured only indirectly. The second

is reconstruction on a computer where the

3-D map of coefficients is retrieved from the

measurement. Gray-scale images represent-

ing 2-D planes through the volumetric data

are the most common way to assess this map

for humans.

The basic setup for a tomographic scan con-

sists of an x-ray source placed on one side

of a specimen, a 2-D detector placed at the

opposite side and a mechanical mechanism

that either rotates the specimen in the mid-

dle perpendicularly to the x-ray beam or, vice

versa, the two devices around the specimen.

Detailed information about x-ray sources, the

interaction of x-rays with matter, and the dif-

ferent acquisition techniques described can

be found in literature. [22, for example]

3.1.1. The x-ray source

There are several ways to generate x-rays.

They differ in complexity and brilliance. The

brilliance is defined as the number of emitted

photons per time divided by the source spot

size, the solid angle of the emitted photons

and the bandwidth of their spectrum. Another

common measure is the flux, which is the

number of photons per time and unit area.

The simplest way to generate x-rays is to

shoot electrons onto a metal target. X-rays

then either come from the negative accelera-

tion of electrons that are stopped inside the

material or they come from bound electrons

filling up vacant places of the inner atomic

shell, where an electron was kicked out be-

fore. The radiation coming from the first pro-

cess has a broad energy spectrum and is

called Bremsstrahlung. The radiation coming

from the second process is called character-

istic radiation. Its sharp energy peaks are

characteristic to the target material, because

they are determined by the energy levels of

the atomic electron shell.

The most common implementation of that

idea is the x-ray tube. Thermal electrons are

accelerated and focused onto a rotating metal

target inside a vacuum closure. The spectrum

and flux can be varied by the acceleration volt-

age and the electron current. Preventing the

target from melting requires external cooling.

Usually a rotating anode is used to help dis-

tributing the heat. Its advantages made that

source the preferred choice for most applica-

tions. It is comparatively small, easy to oper-

ate and cheap. Disadvantages are, however,

the broad energy spectrum, the big source

spot size and the limited flux due to the heat

it produces.

In CT applications, the broad spectrum can

lead to so-called beam-hardening artifacts as

discussed later. The extend of the source

spot which is necessary to avoid heat dam-

ages on the anode causes blurring. A variant

of that type of source invented to circumvent

that problem is the micro-focus tube. It has

a smaller spot size that comes with the cost

of a reduced flux. In turn, it requires longer

exposure times in order to obtain equivalently

high photon statistics and low image noise.

Another advancement is the liquid metal jet

tube [23]. It uses a stream of liquid metal as

anode and thus tries to bypass the problem

18 Real-time iterative reconstruction for x-ray computed tomography

of anode damage. Ideally, the flux can thus

be improved by about an order of magnitude.

Sources with a higher brilliance can only

be found in larger scientific facilities. Syn-

chrotron sources can have more then ten or-

ders of magnitude higher brilliance than a

tube. X-rays are generated from accelerating

very fast electrons in different kind of magnets.

Free electron lasers promise rather twenty or-

ders of magnitude. The expensive and limited

resources are of course reserved for special

applications. An overview of the available

brilliance over time is given in figure 4.

A promising, neither table-top, nor facility-

filling new lab-based source is the compact

light source [24, 25]. It takes advantage of

inverse Compton scattering by colliding an

electron beam with a laser beam and exceeds

conventional sources by one or two orders of

magnitude in brilliance.

3.1.2. X-rays and their interaction
with matter

X-rays are electro-magnetic radiation with

a wavelength in the Ångström range (∼
10−10 m). Similar to visible light they can be

described as photon particles or waves. The

interaction with matter can take place in sev-

eral ways.

Elastic (or coherent) scattering is an interac-

tion of an x-ray photon with a charged particle.

It can happen with single particles or whole

structures, for example a crystal. The energy

of the scattered x-ray remains constant but

its direction changes.

An inelastic (or incoherent) scatter event, also

called Compton scattering, describes the col-

lision of a photon with another particle. In

contrast to elastic scattering, energy is trans-

ferred from the photon to the other particle.

The difference of the wavelength of the in-

[s
−

1
m

ra
d
−

2
m

m
−

2
(0

.1
%

ba
nd

w
id

th
)−

1]
B

ril
lia

nc
e

1010

1015

1020

1025

1030

2nd generation

1st generation

Year
1900 1950 2000

Free electron laser

3rd generation

RotatingFixed tube
anode

Figure 4 The development of x-ray sources over time.
Als-Nielsen et al. illustrate the maximum available brilliance
of x-ray sources since x-rays were discovered. The graph
was taken from their book [22, fig. 1.1, p. 2]. © by John Wiley
and Sons.

and outgoing photon can be expressed as

λ′ − λ = λC (1− cos ψ),

with λC =
h

mec
,

where λC is the Compton wavelength and ψ

the scatter angle.

X-rays can also be absorbed by an atom. Its

energy is transferred to an electron which is

then able to overcome its binding and leave

the atom. This process is known as photo-

electric effect.

An overview over the cross sections of these

effects and some additional higher-energy in-

teractions is given in figure 5. Furthermore,

x-rays can be refracted and reflected. In con-

trast to visible light, the real part of the refrac-

tive index is smaller than one.

3.1.3. Generating image contrast

Computed tomography always considers the

transmission of x-rays through a sample.

Real-time iterative reconstruction for x-ray computed tomography 19

κn
κe

σtot, experiment

σcoh

σincoh

σph
τ

Photon energy

C
ro

ss
se

ct
io

n
[b

ar
ns

/
at

om
]

1 Mb

1 kb

1 b

1 keV 1 MeV 1 GeV

Figure 5 Interaction cross section over the energy.
The graph shows measurement points of the total photon
cross section in carbon σtot over the photon energy. The
cross sections of the underlying interactions are: the atomic
photo effect τ, coherent scattering σcoh and incoherent
(Compton) scattering σincoh, nuclear photo absorption σph.n.,
and nuclear- and electron-field pair production κn, κe. The
underlying plot was taken from from Hubbell et al. [26, fig. 1,
p. 1024]. The region relevant for most x-ray tomography
applications is highlighted with the blue frame. © by AIP
Publishing.

There are several possibilities to gain image

contrast from the different ways of interaction,

but also some obstacles.

The most common acquisition mode takes

advantage of the attenuation. Its strength

is described by the attenuation coefficient µ

which is dependent on the atomic number of

the material the x-rays penetrate. Lambert

and Beer described the outgoing intensity I
of a ray along a direction z relative to its in-

coming intensity I0 as it goes through matter:

I = I0 exp
(
−
∫

µ (z) dz
)

The line integrals p which are required for to-

mographic imaging can be retrieved by com-

puting

p =
∫

µ (z) dz = − log
(

I
I0

)
after measuring the transmitted intensity I

through a sample and a reference intensity I0

without sample.

The map of intensity values I (u, v) of a whole

region described by the spatial coordinates

u and v is called intensity image throughout

this work, the corresponding reference inten-

sity map I0 (u, v) is called flatfield and the

corresponding map of line integrals is called

a projection p (u, v) or tomographic view.

The attenuation of x-rays regards the photons

as particles. But also the wave-optical prop-

erties can be exploited. One very successful

way to get complementary information to the

bare attenuation is grating interferometry. A

grating is placed into the beam generating an

interference pattern which is then sampled by

a second grating [27]. Three different images

can be extracted from the measurement. The

first matches the attenuation image described

above. The second is a differential projection

containing the total phase shift of the wave

through the sample and thus describing the

sum of the local refractive index values. The

third image, called darkfield, contains infor-

mation about small-angle scattering inside

the sample which causes incoherence of the

beam. It is only sensitive to scattering per-

pendicular to the orientation of the gratings

and therefore allows to visualize the direction

of substructures far below the image reso-

lution by rotating the sample relative to the

gratings. All three signals are very commonly

used for tomographic imaging. Adding a third

grating close to the source makes this tech-

nique even possible with conventional x-ray

tubes [28].

Tomographic reconstruction is also common

for propagation-based acquisition techniques.

The intensity of the propagated wavefront

behind the sample is recorded either in the

nearfield or farfield. Phase-retrieval algo-

rithms can then extract the projection images

20 Real-time iterative reconstruction for x-ray computed tomography

for attenuation contrast and phase contrast.

The way x-rays interact with matter results

not only in opportunities, but also in some

obstacles for generating image contrast. The

first is scattering. Most tomographic models

assume rays to be straight lines through the

image. If rays are scattered by a small angle

or multiple times within the sample, they are

likely detected at an unexpected spot and

appear as noise or blur on the projections

images.

A second is beam-hardening. It occurs only

for polychromatic x-ray spectra like it is emit-

ted from an x-ray tube. As the x-ray attenu-

ation coefficient µ usually becomes smaller

with the x-ray energy, lower-energy photons

are absorbed more than higher-energy pho-

tons. This effect causes the effective spec-

trum to be changed while the beam traverses

the sample. The hardened effective spectrum

then causes less photons to be absorbed

than in the original spectrum. The law of

Lambert-Beer does not account for this ef-

fect.

The third obstacle is quantum noise. As x-

rays are photons, they follow the Poisson

statistics. If only a few photons penetrate

the sample at all, these quantum fluctuations

generate significant noise in the images.

3.1.4. Detecting x-rays

Similar to visible light, x-rays can be detected

either via analog or digital approaches. Ana-

log x-ray films, which are still very popular

in radiography, are not suited well for tomog-

raphy which depends on digital reconstruc-

tion. Detailed information about x-ray detec-

tors can be found in literature. [29, 30, for

example]

On the digital side, x-rays are either first con-

verted to visible light pulses in a scintillator

which can then be detected for example by a

charge-coupled device (CCD) camera or to

electron hole pairs in a semiconductor with

some read-out electronics.

There are two fundamental principles for

counting the x-rays. Integrating detectors

sum up the total electric charge in each pixel

over time and are read out after a certain

frame time. The more recent photon-counting

detectors are able to convert every single pho-

ton into an electronic pulse. Each pixel has

a separate electronic circuit with an integer

counter deciding which events to consider.

Photon-counting detectors have many advan-

tages for computed tomography. The most

prominent one is that they do not suffer from

electronic noise. Through their working prin-

ciple, they directly reflect the Poisson pho-

ton statistics, which can be modeled in ad-

vanced reconstruction approaches. Another

advantage comes from the individual pulses

which are proportional to the x-ray energy.

Thresholds in the discriminator thus allow to

make the detector sensitive for different en-

ergy ranges without additional effort. There

are very promising results for spectral imag-

ing with those devices [31]. The limiting factor

for a wide application are the limited count

rates and the high costs.

3.2. Analytical reconstruction

The idea behind computed tomography, as

already stated in the introduction, is creating

a 3-D map of local attenuation coefficients

from a set of transmission views through a

sample. For simplicity, but without loss of

generality, the reconstruction part uses the

terminology of attenuation contrast imaging.

More detailed information about analytical to-

mographic reconstruction can be found in lit-

erature. [32, 33, for example]

Real-time iterative reconstruction for x-ray computed tomography 21

3.2.1. The tomographic problem

Analytical reconstruction tries to find an ana-

lytically exact inversion formula of the tomo-

graphic problem. In 1917, more than half a

century before the first CT reconstruction, Jo-

hann K. A. Radon already found the required

mathematical framework as a theoretical re-

sult [34]. It describes the Radon transform,

which is the relationship between a 2-D func-

tion µ (x, z) and a defined set of line integrals

p (ϕ, r) =
∫

ϕ
µ (x, z)dl

=
+∞x

−∞

µ (x, z) δ (x cos ϕ+

z sin ϕ− r) dx dz

over this function, the so-called sinogram or

Radon space. It is parameterized with the

angle ϕ under which the line integral was

taken and the offset r. A visual example of

the Radon transform is shown in figure 6.

The Radon transform holds exactly for a slice

in y of a 3-D image volume µ (x, y, z) in CT

and the corresponding set of projection im-

ages p (ϕ, u, v), where u = r and v = y. The

choice of the coordinates u and v describes

a parallel-beam geometry. That means that

there is no geometrical magnification and all

rays from the source traverse the sample on

parallel paths hitting the projection plane per-

pendicularly. More possible geometries will

be described in chapter 4 about projective

geometry.

3.2.2. The filtered backprojection
(FBP)

There is an exact inversion formula for the

Radon transform holding for a discrete num-

ber of projections that are equally spaced in

ϕ. The so-called filtered backprojection (FBP)

is the most common way to formulate it. It

Algorithm 1 The filtered backprojection
(FBP) [32, 33]
A Fourier filter step

pf (ϕ, r) =
(
F−1

r (|ω| Fr p)
)
(ϕ, r)

is followed by a backprojection

µ (x, z) =
∫ 180°

0°
pf (ϕ, r) dϕ

with r = x cos ϕ + z sin ϕ.

allows a very efficient implementation on a

computer.

The FBP goes back to the Fourier slice the-

orem that relates the sinogram p (ϕ, r) with

the image µ (x, z) like this:

(Fr p) (ϕ, r) = (Fx,z µ) (−r sin ϕ, r cos ϕ)

It states that the 1-D Fourier transform of the

sinogram along r equals the 2-D Fourier trans-

form of the image in polar coordinates. The

problem with implementing a direct Fourier

inversion method is that the Fourier slice the-

orem is defined on a polar grid, but standard

implementations of the Fourier transform re-

quire data on a rectangular grid.

It can be shown, that the Fourier slice theo-

rem can be solved for µ (x, z) by changing to

polar integration variables for the 2-D Fourier

transform. The result can be written as shown

in algorithm 1.

The first step describes a filter in Fourier do-

main. Because the weight |ω| is the abso-

lute frequency in Fourier space, this filter is

usually referred to as ramp filter. Another

name is Ram-Lak filter. The second step

can be thought of smearing each column of

the filtered sinogram pf (ϕ, r) over the image

µ (x, z) under its corresponding angle ϕ. The

symmetry of the full sinogram described in

figure 6 makes it possible to omit its second

22 Real-time iterative reconstruction for x-ray computed tomography

x→

z
→

ϕ→ 180°

BA

0.0 1.0

←
r

Figure 6 A simple image (A) and its sinogram (B).
The left image (A) represents a simple function µ (x, z) in gray values. The smaller rectangle has a constant value of 1.0
(white), the bigger one of 0.5 and the background of 0.0 (black) as the gray-scale bar below indicates. The right image (B) is
the representation of its Radon transform p (ϕ, r).
The left-most column of the sinogram (ϕ = 0°) shows the result for integrating µ (x, z) along the z axis. The further integration
angles ϕ then continue counter-clockwise around the image. After the first quarter (ϕ = 90°), the sinogram shows the result
for integrating along negative x and in the center (ϕ = 180°) for integrating along negative z. The last column (ϕ→ 360°) is
close towards integrating along positive z again.
A closer look at the sinogram reveals its symmetry. The second half [180°, 360°[equals the first half [0°, 180°[with flipped
dimension r.

−0.5 1.5

BA

−0.25 0.25

Figure 7 FBP with noise (A) and undersampling (B).
The two images are both FBP reconstructions of the sinogram shown in figure 6B. The perfect reconstruction is expected to
look like the phantom in figure 6A. The window of values shown in the images is displayed in the gray-scale bar below each
image.
The left image (A) is the reconstruction from the original sinogram with additional 6 % Gaussian noise with respect to the
maximum sinogram value. The standard deviation of the smaller rectangle in the reconstruction is around 35 %. This is an
example of how the analytically exact FBP amplifies noise.
The right image (B) is the FBP from the four-fold undersampled data set. That means that only every fourth column in the
sinogram was considered. The result are high-frequency streak artifacts in extension of sharp edges that become worse
towards the border of the image.

Real-time iterative reconstruction for x-ray computed tomography 23

half. In practical measurements taking the

projections only in the range ϕ = [0°, 180°[

is called a half scan. For a full scan the sym-

metry implies that opposing views hold the

same information. For discrete, uniform angu-

lar sampling it is therefore reasonable to take

an odd total number of views.

The form of the filter function induces a great

disadvantage of the FBP. As the mathemat-

ically exact solution demands that high fre-

quencies have to be amplified most, the re-

construction results of real measurements

often suffer from high-frequency noise. An

example is shown in figure 7A. There is a

set of common heuristic modifications of the

ramp filter weighting high frequencies less

than the exact solution suggests, but their im-

provements in noise reduction always come

with the cost of an overall reduced sharpness.

Implementing the FBP on a computer re-

quires transforming all the integrals into dis-

crete sums. The 2-D or 3-D functions become

maps of discrete pixels. Details can be found

in chapter II about the implementation. Kak

and Slaney showed that the number of dis-

crete projections #ϕ and the number of pixels

#r have to fulfill the following relationship be-

cause of the Nyquist sampling criterion [32]:

#ϕ ≥ π

2
#r.

If there are fewer projections, undersampling

artifacts occur in the outer part of the recon-

struction, where the given relationship is not

satisfied. This effect can be seen in figure 7B.

Even worse than sparse sampling artifacts

are limited angle artifacts. They occur if the

projections are not distributed equally in an-

gular space, but a whole wedge is missing.

3.2.3. The method of Feldkamp,
Davis, and Kress (FDK)

For medical or laboratory setups the parallel-

beam assumption does not hold anymore.

The rays emitted from the source point and

going to the either flat or curved 2-D detector

rather illuminate a cone-shaped area inside

the sample. This is why this type of geometry

is also called cone-beam. Tuy states that in

this case exact reconstruction is only possible

if all planes intersecting the object also inter-

sect the trajectory of the source [35]. This is

for example given for a helical trajectory, but

not for a circular one.

Feldkamp, Davis, and Kress (FDK) developed

a popular heuristic approximation for circular

trajectories correcting most of the errors intro-

duced by the cone-beam geometry [33, 36].

It can be seen as an extension to the FBP

and is only exact in the one slice of the recon-

struction that lies in the same plane as the

source trajectory. Algorithm 2 shows its def-

inition and figure 8 the relevant geometrical

measures.

First, the filter step is modified. Thereby,

p (ϕ, u, v) is p (ϕ, r) from the FBP (algo-

rithm 1) trivially extended by the second di-

mension v of a flat detector parallel to the

axis of rotation. The notation of the projection

weights wF assumes that the origin of the de-

tector coordinates u and v is at the central ray,

namely the only one hitting the detector per-

pendicularly. Parameter dSD is the distance

from the source to the detector. The weight

considers the slope of each ray through the

volume. This slope can also be expressed by

the cosine of the angle κ between the actual

ray and the central ray. Most descriptions in

literature [36, 32, 33, 37, for example] use

u and v as coordinates in the plane parallel

to the detector going through the center of

rotation and not in the detector plane itself,

24 Real-time iterative reconstruction for x-ray computed tomography

Algorithm 2 The method of Feldkamp-Davis-Kress (FDK) [36, 32, 33]
The FBP filter step and backprojection get modified

pf
FDK (ϕ, u, v) = wF (u, v)

(
F−1

u (|ω|Fu)
)

p (ϕ, u, v)

µFDK (x, y, z) =
1
2

∫ 360°

0°
wBP (ϕ, x, z) pf

FDK (ϕ, u, v) dϕ

with the weights

wF (u, v) =
dSD√

d2
SD + u2 + v2

= cos κ

wBP (ϕ, x, z) =
(

dSC

dSX′

)2

=

(
dSC

dSC + x cos ϕ− z sin ϕ

)2

.

The detector coordinates u and v can be computed from the image coordinates x, y and z as
described later in chapter 4 about projective geometry.

S
C

3-D image

dSC

dSD

X′

dSX′

X 2 γmax
2 γmax

2-
D

de
te

ct
or

Figure 8 Geometry required for the FDK
reconstruction.
The sketch shows the relative positions of the x-ray
source S, the 3-D image volume and the 2-D detector in
the source plane of a cone-beam geometry. Further
important points are the center of rotation C and X′, the
orthogonal projection of a point X onto the central ray.
All measures depending on X are highlighted in orange.
The distances dSC, dSX′ and dSD are required to
compute the Feldkamp weights. The circular source
trajectory (blue) is indicated by the dashed line. A
circular arrow and its enclosed area in gray label the
segment of 180° plus twice the maximum fan angle γmax
needed for a short scan with Parker weights.

like in this thesis. Therefore, they use dSC,

the distance from the source to the center of

rotation, instead of dSD.

Second, the back projection is also modi-

fied. Of course also the image volume µ (x, z)
from the original formulation in algorithm 1

has to be extended by the third dimension.

For consistency with the later definitions, the

axis y is the one parallel to the axis of rotation.

The weight wBP is proportional to the density

of rays in the diverging cone at a certain point

(x, y, z) of the volume. Therefore, it relates

the distance between the source and the cen-

ter of rotation dSC to the distance dSX′ from

the source to the projection of the actual point

X onto the central ray.

Because of the divergent rays in the u di-

rection, the FDK is only consistent for a

whole 360° scan. There is, however, another

modification allowing to reduce the scan to

180° + 2 γmax by introducing the so-called

Parker weights [38]. The additionally required

angular wedge, compared to an FBP half

scan, equals the opening angle of the cone

in u direction and is twice the maximum fan

angle γmax.

3.3. Iterative reconstruction

Iterative reconstruction (IR) is an alternative

way to solve the tomographic problem. It does

not aim for a direct inversion formula but im-

proves the result by iterative updates, starting

from a first guess. The updates are com-

Real-time iterative reconstruction for x-ray computed tomography 25

puted from comparing how well the current

image estimate fits the projection data. IR

is generally more robust to imperfections in

the measurements, especially noise or under-

sampling. Recent techniques also can con-

sider different kind of prior knowledge. Details

can be found in literature [17, 39, for exam-

ple].

There are different types of iterative recon-

struction methods and also different ways to

motivate them. Simple iterative approaches

like the algebraic reconstruction technique

(ART) were already investigated in the early

years of CT [13, 14]. The focus of these stud-

ies will be on a more recent and general tech-

nique called statistical iterative reconstruction

(SIR).

3.3.1. Statistical Iterative
Reconstruction (SIR)

SIR is a model-based approach. It allows

to model physical properties directly into the

reconstruction. One of its most powerful as-

sets is an underlying noise model. In con-

trast to analytical approaches, it considers

that measured projection data is never the

perfect Radon transform of a 3-D function

because of noise. Strictly spoken, analyti-

cal approaches do not hold in the presence

of noise, because the measured projections

do not form a consistent Radon space in a

mathematical sense. SIR, in contrast, allows

deviations within a certain noise range.

A simple, but very common example is noted

in algorithm 3. The vector µ holds all dis-

cretized voxel values of the attenuation map

µ (x, y, z) that is reconstructed and the vector

p the discretized projection pixel values for

all views p (ϕ, u, v). A is a matrix perform-

ing a discrete Radon transform. It holds the

weights by which each voxel element from the

Algorithm 3 Statistical iterative reconstruc-
tion (SIR) with a Gaussian noise model [17,
39]
The cost function

LG (µ) =
1
2
‖A · µ− p‖2

w + λ R (µ)

is minimized by a numerical solver

µopt = arg min
µ

L (µ) .

The notation ‖ � ‖2
w denotes an element-wise

weighted quadratic norm.

image vector µ contributes to a given pixel el-

ement of the projection vector p.

The first addend of the cost function is the

data fidelity term, short data term. It is the

weighted squared difference of the virtual pro-

jections A · µ, generated from the current

guess µ, and the given projections p. The

weights w hold the statistical reliability of

each data point p. The data term is derived

from a statistical noise distribution as shown

below. It allows solutions with different noise

realizations according to the underlying noise

model. In the example Gaussian noise was

assumed.

3.3.2. Regularization

The second addend in the cost function is

the regularization term R (µ). It allows to add

prior knowledge to the reconstruction in order

to receive the most realistic attenuation map

possible.

CT reconstruction is mathematically an ill-

posed problem. Therefore, many different

attenuation maps lead to a good agreement

with the measured data in the presence of

noise. Prior knowledge can help to select a

physically plausible solution. As many solu-

tions are very noisy and real objects are usu-

ally partly homogeneous, typical regulariza-

26 Real-time iterative reconstruction for x-ray computed tomography

tion terms are smoothness constraints. The

more sophisticated terms additionally try to

detect and exclude sharp edges from the

smoothness assumption.

The parameter λ defines the weight of data

term and regularization. Estimated too high,

the result becomes patchy or blurry. Esti-

mated too low, the result becomes noisy or

contains artifacts. This unknown parameter

is one of the greatest obstacles for iterative

reconstruction.

The Huber regularization is one of the most

common choices. It belongs to the class

of Gibbs neighborhood priors that apply a

penalty function Ψ (t) on the value differ-

ence, more exactly on the gradient, between

each voxel i and all its spacial neighbors Ni

weighted by their inverse spacial distance

∆i,n. Algorithm 4 shows how it is defined.

Small differences are considered as noise

and thus punished with a quadratic func-

tion, great differences as edges which are

punished with a linear function. The whole

penalty is plotted in figure 9.

3.3.3. Derivation of the data term

As stated above, SIR is built on a model for

the noise statistics. Different statistics result

in different data terms. Electronic noise as

well as photon quantum noise in the limit of

many photons both follow a Gaussian distribu-

tion. It has been shown that in that case the

Gaussian distribution can also be assumed

for the line integrals p after applying the in-

verse law of Lambert-Beer in the measured

intensities. [40]

Let P be a set of Gaussian random variables

distributed around the mean values p̄ with

standard deviations σ. Given a set of virtual

projections p̄ (µ) = A · µ from a current im-

age estimate µ, the probability of observing a

Algorithm 4 A popular regularization term
The Gibbs neighborhood prior

RG (µ) =
1
2 ∑

i∈[µ]
∑

n∈Ni

1
∆i,n

Ψ
(

µi − µn

∆i,n

)
with a Huber penalty

Ψγ
H (t) =

{
1/2 γ−1 t2 for |t| < γ

|t| − γ/2 else.

γ−γ 0

linear
regime
“edge"

linear
regime
“edge"

quadratic
regime
“noise"

(t→)

Ψγ
H (t)

Figure 9 The Huber penalty function.
Small differences t between neighboring voxels are
considered to be noise and result in a quadratic penalty.
Large differences fall into the linear regime in order to
preserve real edges. The parameter γ defines the transition
between both regimes.

certain noise realization p can be written as

P (P = p |µ) =

∏
j∈[p]

P
(
Pj = pj |µ

)
=

∏
j∈[p]

1√
2πσ2

j

exp

(
−
(

pj − p̄j (µ)
)2

2σ2
j

)
.

This term is also called the likelihood L (µ |p)
for µ to be the right parameters that lead to

the measured result p.

Maximizing this likelihood results in µML, one

of the solutions from the set of different at-

tenuation maps that maximize the probability

P (P = p |µ). For noisy data p and without

regularization this can be a very noisy and

Real-time iterative reconstruction for x-ray computed tomography 27

thus unrealistic solution.

In practice, it is more common to minimize

the negative log-likelihood in order to get rid

of the exponential function. It reads

l (µ |p) = − log L (µ |p)

= − ∑
j∈[p]

log
(√

2πσ2
j

)
+

∑
j∈[p]

1
2σ2

j

(
pj − {A · µ}j

)2

in the Gaussian case. Neglecting the first

term, which is independent from µ, the whole

problem can be simplified to

µML = arg min
µ

l (µ |p)

= arg min
µ

(
1
2
‖A · µ− p‖2

w

)

with wj = σ−2
j . This is exactly the data term

of the SIR cost function in algorithm 3.

The other common noise model in CT is

derived from Poisson statistics. It is more

compute-intensive, but very valuable for low-

statistics measurements where the Photon

quantum noise dominates. The according

cost function reads

LP (µ) = ∑
j∈[I]

Ij log
(

Īj (µ)
)
− Īj (µ)

with

Ī (µ) = I0 exp [−A · µ] + Ib

and can be derived from the Poisson distribu-

tion

P (P = I |µ) = ∏
j∈[I]

e− Īj(µ)
(

Īj (µ)
)Ij

Ij!
,

in the same way as shown for the Gaussian

case.

The Poisson data model is only valid directly

on the vector I of the discretized x-ray in-

tensities I (ϕ, u, v), not on the vector of line

integrals p. Therefore, the Lambert-Beer law

can be found included into the forward model

Ī (µ). The additional intensity Ib is the mean

number of background events coming for ex-

ample from photon scattering.

3.3.4. Solvers

A solver is an iterative algorithm that can

find the minimum of a given cost function.

It starts with an initial guess µ(0) and con-

verges step by step towards a final solution

µopt. In iteration n, the next step µ(n) is most

generally computed from the function L (µ)
and its derivatives, evaluated at the current

guess µ(n−1), and information from previous

steps. Common functions required by differ-

ent solvers are given in appendix A.

A very good general-purpose solver for CT is

the non-linear conjugate gradient algorithm

(NLCG) [41]. Depending on the exact imple-

mentation, it requires the gradient and some-

times the denominator of the cost function.

There are also specialized solvers for the SIR

cost function. Probably the most popular one

is the ordered-subset separable paraboloidal

surrogates (OS-SPS) algorithm [42, 43] and

its variants. It requires only the curvature and

the gradient. The expensive curvature can be

precomputed.

Ordered subsets can improve its conver-

gence. They enable iterations on only a sub-

set of projections pm for subset m instead of

considering the whole vector p which saves

compute time. Ideally, the contribution of such

a (sub-)iteration is equal to an iteration that

considers the full data set. Therefore, the

term iteration always means subset iteration

in this thesis. In literature, this term some-

times refers to a full cycle of iterations until

28 Real-time iterative reconstruction for x-ray computed tomography

Algorithm 5 Bit-reversal sorting [42, 43] im-
plemented in Python.

def _rev_bits(n):

reverse the bit order of an integer

return int('{:032b}'.format(n)[::-1], 2)

def sorted_bit_rev(a_):

as_ = [_rev_bits(n) for n in a_]

as_ = sorted(as_)

as_ = [_rev_bits(n) for n in as_]

return as_

sorted_bit_rev([0, 1, 2, 3, 4, 5, 6, 7])

Output: [0, 4, 2, 6, 1, 5, 3, 7]

all projections were considered once. The

optimum number of views in a subset is quasi

independent from the total number of views.

Mathematically, conversion is only guaran-

teed if at least the last iteration operates on

the full data set. The best order in which the

views are stored before being destributed to

subsets is the bit-reversal order [42, 43]. It

is sketched in algorithm 5. This order guar-

anties that neighbor views are at maximum

angular distance and, for helical geometry, an

equal distribution of the views within a subset

over all turns, which is important for the turns

to be updated simultaniously. A final itera-

tion using all views can be used to guarantee

convergence.

Recently, momentum support was added to

the OS-SPS solver (OS-MOM) which takes

into account information from the previous

steps for computing the updates [44]. The

technique was able to gain about an order of

magnitude in the speed of convergence. It

also prefers larger subsets, i. e. few hundred

instead of a few dozens, which is good for

parallelization. The most recent variant is

the OS-OGM [45], which is proven to include

the fastest linear combination of momentums

possible. Later, algorithm 9 on page 80 will

show a simple implementation.

Closure

Computed tomography is able to provide

great insights into almost any sample with-

out destroying it. This chapter summarized

the basic x-ray physics and computer algo-

rithms for understanding the working principle

of CT and related challenges.

The available ways for generating x-ray pro-

jections leave many choices. Tube sources,

in contrast to a synchrotron, are fast, small

and cheap but generate beam hardening due

to their polychromatic spectrum. The size of

their focal spot decides further between either

a high spatial resolution or a high flux and

fast acquisitions. Absorption contrast mea-

surements are simple to implement, but the

phase or darkfield signal adds much more

valuable information. Integrating detectors

are cheap and can handle high count rates,

but photon-counting detectors do not suffer

from electronic noise and can intrinsically sep-

arate energy ranges.

There are two classes of reconstruction algo-

rithms. The first are analytical approaches

like the FBP and FDK. They provide fast and

accurate results, but have high requirements

on the quality of the acquisition that often

cannot be met. Each imperfection like noise,

missing data or beam hardening generates

sometimes severe image artifacts.

The second class are the iterative techniques.

They have the option to model the physical

effects correctly, can additionally include prior

information and perform task-based recon-

structions. The costs for these advantages

are an increased computational effort and an

additional regularization parameter which is

hard to tune.

Real-time iterative reconstruction for x-ray computed tomography 29

4. Projective geometry

Projective geometry is a powerful mathemati-

cal tool to describe and compute on perspec-

tive images in computer vision. August F.

Möbius, long before computers even existed,

laid the foundation of this kind of mathemat-

ics [46]. Today it plays a big role in learning

computers how to “see” with a camera.

The great asset for CT comes with its generic

and straight forward way of describing arbi-

trary cone-, fan- or parallel-beam geometries.

All required computations can be expressed

with vectors and matrices which can be eval-

uated very quickly on a computer.

Picture: A perspective view of the parabolic slides inside the

TUM university building. © mediaTUM

4.1. Mathematical background

Projective geometry is an extension to Eu-

clidean geometry. It was introduced, because

Euclidean coordinates do not allow to repre-

sent points at infinity. Everything described in

this section can in detail be found in the book

Multiple View Geometry [47].

As an illustration of the problem, one can

imagine a photograph of the two rails along

a straight railroad track on a plain terrain as

shown in figure 10. The two parallel rails in-

tersect at the horizon. This is because their

common point of infinity is part of the pho-

tograph. It is commonly said that parallels

intersect at infinity, but Euclidean geometry

offers no way to describe it.

4.1.1. Homogeneous coordinates

Projective geometry introduces a new way

to write the coordinates of a point in space.

Those coordinates x̃ are called homogeneous

coordinates and map to their Euclidean coun-

terpart x by the relation

x̃ = k

(
x
1

)
⇔ x for k 6= 0.

In 2-D space, for example, the Euclidean co-

ordinate x = (u, v)ᵀ can be expressed in ho-

mogeneous coordinates with x̃ = (u, v, 1)ᵀ

by adding an additional element 1. In pro-

jective geometry, the coordinates (ũ, ṽ, 1)ᵀ

and (k ũ, k ṽ, k)ᵀ represent the same point.

Therefore, mapping a homogeneous coordi-

nate x̃ = (ũ, ṽ, w̃)ᵀ back to the Euclidean

means extracting the first two divided by the

last one x = (ũ/w̃, ṽ/w̃)ᵀ. It becomes obvi-

ous, that the the latter conversion only works

for w̃ 6= 0. This is where the points at infinity

come into play. They are exactly all points in

homogeneous coordinates with w̃ = 0. The

first three entries describe the direction of

x∞

Figure 10 Two straight rails touch at infinity.
The perspective photograph shows how two straight parallel
lines intersect at the point of infinity x∞. This point cannot be
described by Euclidean coordinates. c

that point in space, the last one represents its

infinite distance from the origin. The homo-

geneous coordinates of a point are never all

zero.

A very useful illustration explaining how the

2-D projective space P2 relates to the 2-D

Euclidean space R2 by illustrating it in the 3-

D Euclidean space R3 is shown in figure 11.

4.1.2. Camera projection

Taking a photograph, for example with a CCD

camera, can be seen as a perspective projec-

tion of the 3-D world into a 2-D plane, which

is the sensor. Homogeneous coordinates al-

low a very simple description of that process.

Coordinates in R3, which are usually used to

represent points in the 3-D world, can easily

be extended to coordinates in P3. The latter

includes additionally all points at infinity. A

so-called projective transformation can then

be applied to map the 3-D to a 2-D projective

space P3 → P2. In contrast to an affine trans-

formation, which could as well be described

in Euclidean space, this transformation can

map points at infinity to any other point. This

way it is able to map points at infinity into

the 2-D projection as required for perspective

32 Real-time iterative reconstruction for x-ray computed tomography

u

wx

l

0

v

R2

a point
at infinity

R3

P2

Figure 11 The 2-D projective and Euclidean space.
Hartley et al. suggest this illustration of the relationship
between the 2-D projective space P2 and the 2-D Euclidean
space R2 [47, fig. 2.1, p. 29]. The projective space can be
seen as the pencil of rays and all planes through the origin 0
in R3, the Euclidean space as the plane w = 1. Every point
x in R2 corresponds exactly to one ray of P2 and every line l
to one plane, respectively.
The plane w = 0 represents the line at infinity holding all
points at infinity. Those can only be represented in P2, but
not in R2. © by the Cambridge University Press.

photographs like the one shown in figure 10.

The transformation of a point X̃ ∈ P3 to the

corresponding point x̃ ∈ P2 can be written

with help of a 3× 4 projection matrix P̃:

x̃ = P̃ · X̃

This matrix holds all the geometric camera

properties, its position and orientation within

the 3-D world.

4.2. Projection matrices in CT

Same as for cameras, also the projections of

a cone-beam CT can be described by pro-

jection matrices [48]. This section explains

our way of constructing such a matrix and

introduces some useful operations with it.

Each single projection of a scan has to be

described with one corresponding matrix P̃

consisting of the following components. The

relevant coordinate systems and measures

of a tomographic setup are introduced in fig-

ure 12. The coordinate system (x, y, z)ᵀ of

the image volume equals the array indices

of the discrete voxel representation in a com-

puter. Its origin is in the center of the voxel

with index [0, 0, 0]ᵀ. Assuming cuboid vox-

els, the units are normalized to the voxel di-

mensions ∆x, ∆y, ∆z. The coordinate system

(u, v)ᵀ of the virtual detector is build in the

same way using units of the usually rectangu-

lar detector pixels ∆u, ∆v.

4.2.1. The intrinsic parameters

A 3× 3 camera calibration matrix K̃ is able to

describe the intrinsic geometry of a camera or

a tomographic setup, respectively. Mapping a

point X̃ = (x, y, z, 1)ᵀ inside a sample to the

point x̃ = (u, v, 1)T on the x-ray detector can

be written as

 ũ
ṽ
w̃

 = K̃ ·
(
1

3 0
)
·


x
y
z
1


with K̃ =

αu s pu

αv pv

1


where 13 is the 3-D identity matrix.

The scaling parameters are given by

αu =
dSD

∆u
and αv =

dSD

∆v

containing dSD, the analogue to the focal

length of a camera, and the detector pixel

dimensions. As αu and αv are dimensionless,

the measures required to compute it can be

given in arbitrary but matching units.

The offset p = (pu, pv)
ᵀ describes the po-

sition of the principal point in detector coor-

dinates. If it is the center of the detector, it

follows from the total number of detector pix-

Real-time iterative reconstruction for x-ray computed tomography 33

3-D image volume

p

x

u

P

dSC

dSD

P

C

S

v

y

z

∆x
∆y

∆z

∆v
∆u

ϕ
X

x

2-D projection /
virtual detector

S

Figure 12 A schematic of the CT geometry with all relevant measures.
The perspective projection of a voxel at position X within the 3-D image volume to the corresponding pixel x on the 2-D virtual
detector can be described with a P3 → P2 projective transformation P using homogeneous coordinates. This schematic
shows the coordinate systems, points and measures relevant to describe the whole CT geometry.
The 3-D image coordinate system (x, y, and z) with corresponding vectors is printed in blue and the one on the 2-D projections
(u and v), in green. The first one uses units of image voxels, which are ∆x, ∆y and ∆z, the second one units of detector pixels
∆u and ∆v.
The distance between the x-ray source S and the center of rotation C of the CT setup is called dSC and dSD is the distance
between the source S and the detector. The principal point P is defined as the intersection of the central ray with the detector
plane. It is the foot of a perpendicular of S on the detector. The 3-D angular rotation of that ray with respect to the z-axis of the
image coordinate system is described by the Euler angles ϕ. A possible choice is given in appendix B.

els #u and #v:(
pu

pv

)
central

=
1
2

(
#u− 1
#v− 1

)
.

The−1 is caused by the fact, that the position

of a pixel is measured at its center.

If the skew parameter s is not 0, the detector

becomes trapezoidal. This can be benefi-

cial for reconstructing parallel resorted pro-

jections [32, subsec. 3.4.3, pp. 92-93] from a

fan-beam helical scan.

4.2.2. The extrinsic parameters

The extrinsic parameters describe the posi-

tion and orientation of the source relative to

the image coordinate system. It does not play

a role if the source and the detector indeed

rotate around the sample, or if, for practical

reasons, the sample is rotated within a sta-

tionary setup. For simplicity, the origin of the

image coordinate system is for a moment as-

sumed at the center of rotation C and its units

arbitrary units. It is then called the world co-

ordinate system. The error will be corrected

afterwards.

The rotation matrix RW describes the rotation

of the source with respect to the world coordi-

nates and the source translation vector SW its

position. The unrotated source is then given

by tW = −RW · SW , where −RW = R−1
W . It

reads (0, 0, dSC)
ᵀ for a CT setup, where C

lies on the line between S and P.

Together with the intrinsic parameters, the

whole projection transformation reads

x̃ = K̃ ·
(

RW tW

)
· X̃W.

The 3× 4 projection matrix for world coordi-

34 Real-time iterative reconstruction for x-ray computed tomography

Algorithm 6 Useful operations with projection matrices
The detector coordinates of a point in the
image under the view described by P̃ result
in

x̃ = P̃ · X̃

given its homogeneous coordinates X̃ =
(x, y, z, 1)ᵀ.

The position of the source in image coordi-
nates can be obtained from

P̃ · S̃ !
= 0

⇒


S̃x
S̃y
S̃z
S̃ω

 =


det(p̃y p̃z p̃ω)

−det(p̃x p̃z p̃ω)

det(p̃x p̃y p̃ω)

−det(p̃x p̃y p̃z)


where p̃n denotes the column n of P̃.

The main propagation direction is

ν = arg max
n∈{x,y,z}

|{mw}n|

with the central ray mw which is also called
principle axis vector. It is the last row of M̃ ,
the left 3× 3 submatrix of P̃.

A ray through the image according to
Joseph’s method [49] starting at the detec-
tor coordinates x̃ = (u, v, 1)ᵀ reads

X (ξ) = X0 + ξ U0 with ξ ∈ R.

It requires a reference point given by the
pseudo inverse and a direction vector:

X̃0 = P̃+ · x̃,

U = X0 − S.

U0 = U/{U}ν

The latter is normalized to its component ν.
Adding U0 to any point on the ray (i. e. incre-
menting ξ by one) thus steps into the next
slice of voxels perpendicular to ν.

Entry and exit point of the ray, i. e. the first
and last voxel position in ν, follow from

{X (ξ)}ν = {X0}ν + ξmin {U0}ν
!
= 0

⇒ ξmin = −{X0}ν as {U0}ν
def
= 1

ξmax = ξmin + #ν− 1

where #ν is the number of voxels along ν.

nates is accordingly defined as

P̃W = K̃ ·
(

RW tW

)
.

The principle described in the next section

(4.3) allows to easily carry out the transfor-

mation from world to image voxel coordinates

[37]:

P̃ = P̃W · T̃W

with

T̃W =


∆x−1 −Px ∆x

∆y−1 −Py ∆y
∆z−1 −Pz ∆z

1


The inverse image voxel dimensions scale

the arbitrary units of the world coordinate sys-

tem to image voxel units. They have to be

given in the same units as the entries of tW

above. The rescaled negative vector P, given

in image coordinates, causes the right shift of

the origin.

Summarizing, the projection matrix P̃ directly

allows to take image voxel coordinates and re-

turns detector pixel coordinates. By construct-

ing it in the presented way, the distance dSD

and the detector pixel shape can be given in

arbitrary but matching units. The same holds

for dSC and the image voxel shape.

4.2.3. Operations

The whole geometry of a CT setup can be

described with a set of projection matrices. It

is therefore convenient to deduce all the re-

quired operations from those matrices. Algo-

rithm 6 gives an overview of useful standard

Real-time iterative reconstruction for x-ray computed tomography 35

operations. Chapter 6 shows how they can

be used to carry out tomographic forward and

back projections.

4.2.4. Parallel-beam geometry

Parallel-beam geometry can also be repre-

sented by projection matrices [47, pp. 166–

174]. The concepts described for affine cam-

eras can directly be transferred to parallel-

beam CT.

The affine projection matrix assumes the

source S is at infinity. It writes

P̃W,∞ = K̃∞ ·

{RW}x tW,x

{RW}y tW,y

0ᵀ 1


where {RW}m denotes the m-th row of the ro-

tation matrix and tW,m the m-th component of

the source translation vector t. That means

that RW and tW lack their last row. This can

be found by investigating the limit dSC → ∞.

The corresponding intrinsic camera calibra-

tion matrix is

K̃∞ =

αu,∞ s
αv,∞

1


with

αu,∞ = ∆u−1 and αv,∞ = ∆v−1

lacking the principal point p and the distance

dSD between source and detector.

Checking if mw = 0 allows to identify an

affine projection matrix. Modifications of P̃W,∞

like T̃W and the ones described in the subse-

quent section work just the same as for any

other projection matrix.

However, some of the operations described

in algorithm 6 differ for an affine geometry.

As a reminder, in a parallel-beam geometry

all rays have the same direction and hit the

detector perpendicularly. Instead of using the

principal axis vector mw, which is 0 here, this

common direction of all rays can be found by

solving

M2×3 · D
!
= 0

for D where M2×3 is the upper left 2× 3 sub-

matrix of P̃∞. Appendix C shows a solution

for D and its derivation. The position of the

source is the point at infinity under the same

direction, namely S̃∞ = (D, 0)ᵀ. The main

propagation direction is accordingly

ν∞ = arg max
n∈{x,y,z}

|{D}n|

and the direction vector needed to follow a

ray through the volume U∞ = D.

4.3. Some special use cases

A projection matrix can be multiplied with any

other matrix and stays a valid projection ma-

trix as long as the left-hand 3 × 3 subma-

trix does not become singular [47, following

from the result on p. 157]. In this section we

show how this property adds a lot of power to

the projection matrices in CT for various use

cases.

4.3.1. Sample rectification

Modifying the projection matrices allows to

directly reconstruct into a rotated or shifted

image volume. This can be very beneficial if

the reconstructed object would be off-center

or slanted with respect to the image voxel

grid.

36 Real-time iterative reconstruction for x-ray computed tomography

z
→

z
→

y→ y→

x
→

x
→

A B

y→ y→

C D

1.2 cm−1 7.5 cm−1

Figure 13 A fully-automated rectified reconstruction.
Two different reconstructions of the same micro-CT measurement show the benefit of aligning the sample to the voxel grid. The
sample is an electronic chip, which was obviously mounted into the sample holder with a slight slant. The upper row shows
coronal slices (A, B, blue frame) that are marked in the sagittal slices below (C, D, orange frame) by a blue line and vice versa.
On the left is the result without alignment. The conducting path shown in the coronal slice (A) is mixed with the bonds to
another layer in the right half of the image and with air in the left half. The reason is that the layers of the micro chip are not
aligned with the voxel grid as shown in the sagittal slice (C).
On the right is the automatically rectified counterpart. The projection matrices used for reconstruction intrinsically included the
required volume transformation without any extra interpolation. The coronal slice (B) contains clearly only the thin conducting
path of interest, which is also visible in the sagittal slice (D). Different layers of the micro chip can easily be investigated by
moving through the slices perpendicular to z. The parameters required for rectification, as defined in algorithm 7, resulted in
Ibg = 0.950, ϕmax sl = 77.7°, θsl = 1.096°, and ϕmin th = −0.417°.

The modified projection matrix

P̃shift,rot = P̃ · T̃shift,rot

with T̃shift,rot =

(
−R −∆P
0ᵀ 1

)

allows to rotate the volume by the rotation

matrix R and shift it by the vector ∆P without

any additional interpolation or computational

effort directly within a tomographic reconstruc-

tion.

An example using this modification is algo-

rithm 7. It explains a transformation that can

be used to rectify a sample within the 3-D grid

of voxels. Moreover, it suggests how to guess

the required parameters fully-automated from

the acquired transmission views. All the ex-

emplary plots are results from rectifying the

sample shown in figure 13. The great benefit

of this estimation is that no prior tomographic

reconstruction is involved. That makes it fast

and practicable for large data sizes. Further-

more, it allows to know the required volume

size before reconstruction. That allows to re-

construct only a subvolume and save a lot of

compute time.

The assumptions of this algorithm are equidis-

tant transmission views with a value range of

[0, 1] and moderate noise taken in an angular

range of either [0°, 180°[or [0°, 360°[. The

sample must not exceed the u range of the

detector in any view.

For the sample in figure 13, the parameters

given in the caption indicate that already very

small slant angles result in a bad slicing. With

a sample height of #y = 1850 vx, the accu-

Real-time iterative reconstruction for x-ray computed tomography 37

Algorithm 7 Fully automated sample rectification
Adjusting a sample within a 3-D grid of vox-
els can be achieved by modifying P̃ with the
following rotation matrix:

R = Rϕmin th · R−ϕmax sl · Rθsl · Rϕmax sl

From right to left, it performs the following
steps:

1. Rotate the volume by ϕmax sl around y
so that the orientation of the sample
with maximum slant is along z.

2. Rotate around z by the slant θsl so that
the sample is upright.

3. Rotate back by −ϕmax sl around y.

4. Rotate the sample by ϕmin th around
y so that the dimension of its thinnest
extent is along z.

The required angles can be found by investi-
gating the set of transmission views:

I. Generate a mask

M (ϕ, u, v) =

{
1 for I (ϕ, u, v) > Ibg

0 else

that is 1 where the sample is and 0 in the
background. An according threshold Ibg can
be guessed from the histogram:

0.0 1.0
IbgGaussian fitpeak

Hist p (ϕ, u, v0)

II. Create an angle-dependent broad-
ness profile curve

bv0 (ϕ) =
∫

M (ϕ, u, v0) du

by summing up the mask within any slice of
interest v0. The mean over several slices
gives a more robust result.

III. The minimum ϕmin b of that profile cor-
responds to the narrowest view of an elon-
gated sample. The view along the minimum
thickness is therefore

ϕmin th = ϕmin b − 90°.

The minimum and the maximum values of the
profile give also a hint for the optimum crop
size in u, z and x, respectively:

bv0 (ϕ)

ϕmin b ϕmax b

360°ϕ→
fit

180°

IV. The angle of maximum slant can be
found by computing the difference between
the masks in an upper and in a lower region
of the sample

∆bvup,vlo (ϕ) =∫ ∣∣M (
ϕ, u, vup

)
−M (ϕ, u, vlo)

∣∣ du

and finding its maximum ϕmax sl:

∆bvup,vlo (ϕ)

smoothened ϕmax sl

360°ϕ→
fit

180°

V. Finding the slant angle θsl can be
done by a linear fit on the edges of the sam-
ple in the transmission view closest to ϕmax sl.
To compensate for perspective distortions,
the edge on both sides can be investigated.
The slant follows from the average of the two
slopes:

10
linear edge fit fit region

v→

(u
→

)

38 Real-time iterative reconstruction for x-ray computed tomography

racy of the slant angle has to be

∆θsl = tan−1 #z
#y

= tan−1 1 vx
1850 vx

= 0.031°

so that the reconstructed slices in z do not

mix.

4.3.2. Correcting degenerated
cone-beam geometries

There are some tomographic applications that

differ a lot from the classical cone-beam CT

geometry, where a source rotates around a

sample on an either circular or helical trajec-

tory. One on of them is tensor tomography

[50]. It requires the views to cover most of

the Euler space around the sample. Projec-

tion matrices are perfect to describe the ge-

ometry in such a situation. But, for a highly

performance-optimized implementation like it

is presented in part II, it is very useful if some

general constraints on the geometry can be

assumed.

The first beneficial assumption is that the

main propagation direction ν is only either

x or z. A view with main direction y can easily

be converted into one with main direction z by

changing the corresponding columns in the

projection matrix

P̃x↔z = P̃ · T̃x↔z,

with T̃x↔z =


1

1
1

1

 .

To compensate the error, the image volume

can be resorted if necassary, so that y and z
are swapped back. It would even be possible

to restrict the main propagation direction to

only one single dimension this way. But, as

resorting is expensive, it would substantially

slow down the reconstruction for standard

geometries.

The second useful assumption is that the im-

age coordinate y and the detector coordinate

v have the same sign. That means, that the

detector is not defined upside-down. There is

an easy test if that is the case by projecting

the unit vector ẽy = (0, 1, 0, 0)ᵀ and checking

if

sign {x̃}u = sign {P̃ · ẽy}u = sign pu,y

is negative. In other words, the sign of the

element u, y in the projection matrix tells the

detector orientation.

It is obvious that an upside-down detector

can be corrected with a 180° rotation of the

affected view. The necessary modification of

the projection matrix in order to compensate

that operation

P̃rot180 = T̃rot180 · P̃,

with T̃rot180 =

−1 #u− 1
−1 #v− 1

1


contains not only the rotation, but addition-

ally has to apply an overall shift. The rea-

son is that 2-D pixel arrays in a computer

are always indexed with positive integer num-

bers. A rotation therefore changes the origin

of the detector coordinate system. The pixel

with index (0, 0)ᵀ, for example, has the in-

dex (#u− 1, #v− 1)ᵀ in the rotated array if

#u and #v are the total number of pixels in u
and v.

Third, some setups define the orientation of

the detector vice versa so that its surface nor-

mal does not look along the ray but towards it.

The result is that the u axis is mirrored result-

ing in very strange cone-beam artifacts if de-

fined wrong in a tomographic reconstruction.

Real-time iterative reconstruction for x-ray computed tomography 39

Similar to the transformation T̃rot180 above,

the corresponding correction reads

P̃flip u = T̃flip u · P̃,

with T̃flip u =

−1 #u− 1
1 0

1

 .

An interesting property of all three transfor-

mations T̃x↔z, T̃rot180 and T̃flip u is that both

are their own inverse. That helps to transform

the pseudo inverse of the projection matrix

required to follow a ray through the image:

P̃+
x↔z =

(
P̃ · T̃x↔z

)+
= T̃x↔z · P̃+

P̃+
rot180 =

(
T̃rot180 · P̃

)+
= P̃+ · T̃rot180

P̃+
flip u =

(
T̃flip u · P̃

)+
= P̃+ · T̃flip u

4.3.3. Corrections for rebinned data

In order to improve statistics or for recon-

structing a coarser-sampled overview, sev-

eral pixels or voxels are sometimes summed

up in one big pixel or voxel. This technique

is called rebinning. The factor by which a

data set is scaled down (or up) is usually an

integer so that interpolation is avoided.

If the image volume was binned down by the

factors K = (kx, ky, kz)
ᵀ for the different di-

mensions, the corresponding projection ma-

trix can be deduced from the original by ap-

plying

P̃bin K = P̃ · T̃bin K,

with T̃bin K =

(
diag (K) Π

0ᵀ 1

)

and Π =
1
2

K − 1
2

.

As the voxel size changes, the center of the

voxels defining the position grid, including the

origin, change, too. This fact is compensated

by the shift Π.

If the set of projections was binned down by

the factors k = (ku, kv)
ᵀ, the corresponding

correction reads quite similar:

P̃bin k = T̃bin k · P̃,

with T̃bin k =

(
diag

(
k−1

)
π

0ᵀ 1

)

and π =
1
2

k−1 − 1
2

.

Rebinning both volumes involves both trans-

formations. Simple relations describe the in-

verse transformations

T̃−1
bin K = T̃bin K−1

T̃−1
bin k = T̃bin k−1 ,

which correspond to rebinning with inverse

factors.

4.3.4. Computing the Feldkamp
weights

In order to make a CT reconstruction frame-

work as versatile as possible, it preferably is

able to reconstruct from arbitrary projection

matrices and requires no further information

about the geometry. The assumptions made

by the FDK algorithm must of course still be

fulfilled. They include in particular equidistant

views and a circular trajectory. Unfortunately,

we found that deducing the Feldkamp weights

only from the matrices does not work in gen-

eral. The reason is that the projection matri-

ces do not change if the whole geometry is

stretched along one axis (including the pixel

and voxel sizes), but the Feldkamp weights

do. That issue can be solved by additionally

providing the absolute pixel dimensions ∆u,

∆v and voxel dimensions ∆x, ∆y, ∆z.

The two Feldkamp weighting factors were in-

troduced in algorithm 2 on page 25. The first

40 Real-time iterative reconstruction for x-ray computed tomography

one can be written as

wF (xW) =
dSD√

d2
SD + ‖xW‖2

where xW describes a position on the detec-

tor in orthogonal detector coordinates with

a real-world aspect ratio measured from the

principal point. These coordinates can be

obtained from the detector array indices x by

xW = Tpx · (x− p)

with Tpx =

(
∆u −s

∆v

)
.

The required coordinates of the principal point

p can again be computed from p̃ = M̃ ·mw

[47, pp. 160f].

Unfortunately, the distance from the source

to the detector dSD is still unknown. It can be

retrieved by investigating the following alter-

native definition of the first Feldkamp weight.

Considering the fact that the weight is the ab-

solute steepness of a ray UW relative to the

central ray mw+
W , it can also be written as

wF (x) = cos κ = cos�
(
UW, mw+

W

)
with the cosine of the angle between two vec-

tors

cos� (A, B) =
A · B
‖A‖‖B‖ .

Both vectors, UW and mw+
W , describe the di-

rection of a ray through the image volume

and must have coordinates with a real-world

aspect ratio in order to obtain the correct an-

gle. They can be computed from the corre-

sponding vectors U and mw+ in image voxel

coordinates by applying the transformation

Tvx = diag (∆x, ∆y, ∆z)ᵀ .

The vector

mw+ = sign (det M) mw

denotes the direction of the principal ray with

positive orientation [47, p. 162] pointing from

the source to the detector. U is the direction

of the ray of interest and can be computed

from x as shown before in algorithm 6 on

page 35.

Comparing the two different definitions or, al-

ternatively, a simple geometrical considera-

tion yields

dSD =
‖xW‖
tan κ

=
‖xW‖√

cos�
(
UW, mw+

W

)−2 − 1

using tan κ =
√
(cos κ)−2 − 1. Inserting any

detector point x 6= p by deriving xW and U
from it allows now to obtain dSD.

The second part of the Feldkamp weights

wBP (X) =

(
dSC

dSX′

)2

is the inverse ray density at a certain point

X of the image volume. The distance dSX′

is measured from the source to the projec-

tion of that image point to the principal axis.

Therefore, it can alternatively be written as

dSX′ = UW ·
mw+

W

‖mw+
W ‖

projecting the direction of the ray UW onto

the positive principal axis mw+
W . Both have

to be given in coordinates of real-world as-

pect ratios as above. The direction of the ray

passing through X can be computed from

U = X − S, where S is the position of the

source.

Computing the distance dSC from the source

to the center of rotation is also possible from

Real-time iterative reconstruction for x-ray computed tomography 41

the projection matrices. Assuming a circu-

lar trajectory as required for FDK, the center

of rotation can be obtained by intersecting

one or more principal rays. Writing two corre-

sponding rays g and h leaving from the princi-

pal point as

g: Xg
(
ξg
)
= X0,g + ξg Ug

h: Xh (ξh) = X0,h + ξh Uh

with ξg, ξh ∈ R, similar to the ray in algo-

rithm 6 on page 35, the parameters ξ ′g and

ξ ′h for the points where the rays intersect (or

come closest) can be computed as ξ ′g
ξ ′h
ξ ′n

 =
(

Ug −Uh Ug ×Uh

)−1

·
(
X0,h − X0,g

)
.

The third component ξ ′n is not of interest. In-

serting one of the two parameters into its ray

equation yields the desired center of rotation

C = Xg

(
ξ ′g

)
and its distance to the source

dSC = ‖SW − CW‖2

after transforming the coordinates again to

the real-world aspect ratio.

If the image voxels are cubic, the detector

pixels are square and the absolute value of

dSC is not of interest, the real-world transfor-

mations can be simplified to

Tvx,sq = 1
3

Tpx,sq =
∆x
∆u

1
2

because only the relative coordinate ratios

matter for the Feldkamp weights. This sim-

plification allows to normalize the projection

matrices such that ‖m̂w‖ = d−1
SC [51] and

det M̂ > 0. The second Feldkamp weight

then reduces to

wBP,sq (X) = (U · m̂w)−2 .

Closure

Projective geometry is a great asset for CT

reconstruction. The projection matrices pro-

vide a simple and direct linear mapping from

voxel to pixel indices including all the required

geometric properties in an unambiguous way.

All linear operations necessary for CT recon-

struction are expressed by linear algebra and

therefore promise a fast implementation on a

computer. (An example for a non-linear op-

eration is the reconstruction from a curved

detector, which would have to be applied sep-

arately.)

The nature of the projection matrices allows

to combine them with any coordinate trans-

formation in matrix form. This feature was

demonstrated at the example of an intrinsic

sample rectification.

A shortcoming is that it is sometimes hard

to mix projective geometry with the conven-

tional understanding of geometry including

distances and angles. There is also a ge-

ometric property that is not encoded in the

projection matrices, namely the real-world as-

pect ratio of the coordinates for non-uniform

voxels and pixels. Until now, we saw only the

Feldkamp weights suffering from these two

problems, but showed that it is still possible

to compute them by adding the correct voxel

and pixel dimensions.

42 Real-time iterative reconstruction for x-ray computed tomography

5. Heterogeneous computing

One major challenge for CT reconstruction is

that complex algorithms have to be applied to

huge amounts of data, especially for iterative

techniques. This chapter introduces concepts

to get the maximum computing performance

from modern computer systems. There are

usually different types of processors available,

namely the central processing unit (CPU) and

the graphics processing unit (GPU), allow-

ing a task-based hardware choice. After dis-

cussing the basic concepts of heterogeneous

computing and parallelization, the GPU archi-

tecture is discussed in more detail. A special

focus is put on General-purpose computa-

tion on GPUs (GPGPU). It allows to use the

GPU as a general-purpose device for highly-

parallel computations not only restricted to

graphic applications.

Picture: The inner part of a modern GPU device. c

5.1. Basic concepts

For a proper understanding of heterogeneous

computing it is useful to have a look on the

development of the computing power over the

last years as depicted in figures 14 and 15. At

the time when the clock frequency could not

be pushed anymore, multi-core CPUs started

to be developed. Parallel computing became

a necessity to exploit their full performance.

At the same time, the gaming industry pushed

the development of highly-parallel GPU de-

vices that are able to cover the high demands

of their graphics engines.

5.1.1. Parallel computing

Parallelization means writing a computer pro-

gram in a way that a task is split into sev-

eral subtasks that can be executed simulta-

neously. Modern processors like CPUs and

GPUs allow several different ways to realize

that concept. One independent work unit is

called a thread.

The degree to which a program can be paral-

lelized depends on the task. If a subtask de-

pends on the result of another subtask, they

necessarily have to run in sequence. Further-

more, two threads are not allowed to modify

the data at the same position in memory at

the same time. This would cause a so-called

data race, which means that it is not defined

which, if any, of the two modifications is ap-

plied. For a fixed data size, the maximum

speedup of a program is given by Amdahl’s

law

S =
1

1− p + p/s

where p is the fraction of parallelizable code

measured by its runtime before paralleliza-

tion and s is the degree of parallelization the

code allows [54, 55]. The speedup therefore

not simply scales with the number of parallel

1970 1980 1990 2000 2010
Year

100

107

106

105

104

103

101

Logical cores

Transistors [103]

Frequency [MHz]
Typical power [W]

thread perform.
[103 SPECint]

Figure 14 Microprocessor evolution over the last 45
years.
Rupp [52] collected several characteristic performance
parameters of microprocessors over the last decades. The
trend shows that at the time the clock frequency stopped
increasing, multi-core processors became popular. The
single-thread performance was measured in terms of the
SPECint standard [53]. c

work units, but depends on the non-parallel

overhead of the program. Its ultimate limit is

(1− p)−1 given by the serial parts. In image

processing, p is usually very close to 1 be-

cause the operations can often by applied to

each pixel or voxel independently.

A parallel program is in general not strictly

deterministic. Because of the limited floating-

point accuracy, the numerical result after sev-

eral operations on a floating-point variable de-

pends on their order. But, the order in which

threads are executed is usually not defined.

Often it is not even defined, which threads

run in parallel and which in sequence. Fortu-

nately, these errors are usually small enough

to be neglected, especially if the accuracy is

sufficient for a serial version of the program.

46 Real-time iterative reconstruction for x-ray computed tomography

2008 2010 2012 2014 2016

[G
FL

O
P

/
s]

102

104

X
5482

X
5492

W
5590

X
5680

X
5690

E
5-2690

E
5-2697

v2
E

5-2699
v3

E
5-2699

v4

Titan
X

H
D

7970

G
H

z
E

d.

G
TX

Titan

Tesla
K

40

G
TX

Titan
X

FireP
ro

W
9100

FireP
ro

S
9150

7290
(K

N
L)7120

(K
N

C
)

H
D8970

H
D3870

G
TX

280

G
TX

285

G
TX

580

G
TX

680

H
D

6970

H
D

5870

H
D

48708800
G

TS

NVIDIA GPUs AMD GPUs

Intel Xeon CPUs Intel Xeon Phis

End of year

Figure 15 Theoretical CPU and GPU single-precision
peak performance over the last decade.
Rupp [56] also provides an overview of the number of
single-precision floating-point operations per second
(FLOP/s) that could be performed by CPU and GPU
processors during the last years. All data points are labeled
with the corresponding device name. The GPU is roughly
always an order of magnitude ahead. c

5.1.2. Types of parallelism

CPUs and GPUs offer different types of par-

allelism suitable for different kind of tasks.

There are various frameworks to make use of

them.

The most high-level type is computing in a

cluster or in a grid. Thereby, the workload

is distributed over several independent com-

puters connected via network or the Internet.

This type is therefore highly scalable, but the

communication between the different com-

pute nodes is slow compared to other types.

Common frameworks to use this kind of par-

allelism are the Open Message Parsing Inter-

face [57] (Open MPI) or specialized grid com-

puting solutions like the Berkeley Open Infras-

tructure for Network Computing (BOINC) [58].

The next type, multi-threading, is probably

the most wide-spread one. Several threads

are assigned to the different cores of a CPU

allowing to simultaneously compute on com-

pletely independent tasks. On top, server

mainboards usually allow to install two to four

CPUs to increase the number of available

cores. The Hyperthreading technology by

Intel additionally allows to share a core be-

tween two threads increasing the speedup

for threads that do not fully occupy the core

all the time. The different threads share the

same memory space and can thus commu-

nicate very quickly, but the amount of par-

allelization is very limited. Common frame-

works allowing to use multi-threading are

• Open Multi-Processing (OpenMP) [59], an

application programming interface (API)

supported by many C, C++ and Fortran

compilers,

• POSIX threads (pthreads) [60],

• OpenMPI, and

• the Open Computing Language (OpenCL)

[61], a powerful API to make use of many

different heterogeneous computing sys-

tems.

The streaming multiprocessor of a modern

GPU also allows executing multiple threads.

Compared to a CPU processor, the number

of threads is roughly two orders of magni-

tude higher reaching several thousands, but

the threads are not entirely independent from

another. If two threads within a so-called

wavefront, i. e. a set of usually 32 threads,

fall into different code paths, each code path

has to be evaluated sequentially. This effect

is called branching or wavefront divergence.

There are also restrictions on the access pat-

terns for the different types of memory in or-

der to keep them simultaneous. Details will

be explained in the next section. The most

common frameworks to use the GPU for com-

puting are CUDA [62], an API which is limited

to Nvidia devices, and OpenCL. Current main

Real-time iterative reconstruction for x-ray computed tomography 47

boards allow up to four GPU devices within

one compute server. Parallelization over mul-

tiple GPU devices is called multi-GPU com-

puting.

The last type of parallelization is usually of-

fered by all modern CPUs. They provide in-

structions for vector parallelization which al-

low Single Instruction, Multiple Data (SIMD)

execution. A whole vector of memory ele-

ments is modified at once by the same op-

eration. One recent set of vector instruc-

tions are the Advanced Vector Extensions 2

(AVX 2) [63] supporting 256 bit operations,

which are, for example, eight float32 num-

bers at once. A disadvantage is that proper

vectorization can hardly be reached without

a lot of extra programming effort, which of-

ten makes the code even dependent on a

certain compiler or hardware. Modern com-

pilers already provide very limited support for

automatic vectorization.

5.1.3. Multiple abstraction layers

Code for high-performance computing (HPC)

often needs to be written in a low-level,

machine-oriented compute language like C

or C++ in order to reach the desired perfor-

mance or take advantage of the APIs dis-

cussed above. In contrast, low-level lan-

guages, like Python, R or Matlab, provide

great usability, are easy to read and write and

are equipped with many tools for fast data

analysis.

Fortunately, problems often can be divided

into an algorithmic part and some generic

operations that require a lot of computing

power. That allows to keep the algorithmic

part simple, user friendly and easy to mod-

ify by using a high-level language and move

the performance-critical, static parts into fast

C/C++ modules. A wrapper function cares for

the interaction. Two possible APIs to combine,

for example, Python with C are the ctypes

Python module [64] extending Python with

the functionality to use C/C++ libraries or the

Python/C API [65] allowing to add a Python

interface in the C/C++ code.

5.1.4. Data types

Different hardware used for heterogeneous

computing supports different sets of data

types. Recent CPU processors usually have

native support for float32, float64, which are

also called single and double floating-point

precision, and various integer types. GPUs

have good support for integer types, float32

and float16, which is called half precision.

Double precision is often available, but usu-

ally significantly slower.

The precision required for a certain task de-

pends on its numerical error. It is caused

by rounding the result of each operation to

the next floating-point or integer number that

can be represented. For CT reconstruction,

many of the demanding operations are big

sums of values in the same order of magni-

tude. Algorithm 8 provides a C snippet which

increments a floating-point variable by 1 until

the representation of the incremented num-

ber equals its predecessor. It turns out that

the result is

nmax elem = 2M+1

where M is the floating-point significand.

This makes perfect sense, because numbers

higher than this value require an exponent

that is greater than one and thus have a spac-

ing greater one. More results are displayed

in table 1. The numbers suggest that neither

half- nor single-precision are suited to sum

up whole tomographic data sets without extra

effort as they usually have several hundred to

thousand voxels cubed. But, they are suited

48 Real-time iterative reconstruction for x-ray computed tomography

Algorithm 8 Assessing the maximum num-
ber of float32 terms in a sum. (C code)

#include <stdio.h>

int main() {

float s = 0.;

while (s++ != s);

printf("element: %d\n", (int)s);

return 0;

}

Output: element: 16777216

Precision Max. # of elements Equivalent

half 211 = 2048 ≈ 12.73

single 224 = 16777216 = 2563

double 253 = 9007199254740992 ≈ 2080643

Table 1 Estimate of the maximum number of elements in a
floating-point sum depending on the precision with a volume
equivalent.

to sum over one single dimension.

5.1.5. Choosing the right hardware

The variety of available HPC modalities raises

the question for the best choice. Tomographic

reconstruction is a very demanding computa-

tional operation, especially for high-resolution

data sets. For example, the micro-CT data

set of the electronic chip that was shown in

figure 13 on page 37, has 3999 views of

(2048 px)2 occupying 62.5 GiB of memory in

float32 representation. The reconstruction

result is a volume of (2048 vx)3 consuming

32.0 GiB. In other words it is a linear sys-

tem with [p] = 1.7 × 1010 equations and

[µ] = 8.6× 109 unknowns. Automatic crop-

ping as introduced in algorithm 7 on page 38

can reduce the sizes to 41.8 GiB for p and

4.2 GiB for µ in this case, but the computa-

tional effort stays very demanding.

Cluster or grid computing involves expensive

devices and a big infrastructure. Cloud com-

puting is another possible solution, but ad-

ditionally requires transferring the data to a

remote service via the Internet and is thus

very limited by the available bandwidth. That

is why those options can usually be ruled

out for CT reconstruction, especially as the

required data still fits into the memory of a

single-server system.

In a single-server system there are typically

two options: Multi-threading on CPUs, possi-

bly with SIMD operations, or multi-GPU com-

puting. Figure 15 illustrated that the number

of single-precision floating-point operations

per second (FLOP/s) possible on GPUs has

constantly been kept about an order of mag-

nitude over the available high-performance

server CPUs during the last years. Because

of their wide distribution in the consumer mar-

ket, GPU devices are furthermore under rapid

development and available at low costs. This

is why the GPU should definitely be consid-

ered for CT. Exploiting its high performance is

however restricted to highly-parallel applica-

tions and limited by some special architecture

properties described in the next section.

5.2. GPGPU computing

GPGPU stands for general-purpose compu-

tation on GPU devices. The nomenclature

used to describe the different concepts in this

section corresponds to the Open Compute

Language (OpenCL) [61]. It introduces only

the basic ideas. More details about how to

use those GPU devices in practice can be

found in literature [66, 67, 68, 69, 70, for ex-

ample] or, concerning CT, in part II of this

thesis.

5.2.1. Architecture and
parallelization

The streaming multiprocessor of a GPU has

the ability to process up to several thousand

threads executing basically the same oper-

Real-time iterative reconstruction for x-ray computed tomography 49

ations on different data. Each thread pro-

cesses one work item at a time.

The work items are further organized in work-

groups of user-defined size. All work items in

a workgroup are guaranteed to run in parallel

at the same time. Depending on the size of

the multiprocessor, several workgroups can

also run in parallel. The optimum workgroup

size is thus a multiple of the wavefront size

and a divider of the total number of threads

available, which, itself, is commonly a multiple

of 512.

A kernel function defines the work for each

work item depending on its unique integer

identifier.

5.2.2. Memory and data transfer

The various types of memory available on a

GPU device offer different options to optimize

the data flow depending on the application.

As thousands of threads run in parallel, fast

data flow is probability the most critical issue

for GPU programming. Figure 16 holds an

overview of the available memory types, their

scope, size and speed.

Each type of memory has special properties.

Global memory accounts for almost the whole

memory available, is visible from all work

items and persistent between two kernel exe-

cutions. However, it has a latency of several

hundred cycles for cache misses and is best

accessed only coalesced by many work items

in succession. Latency and transfer time can

be hidden by computations in some applica-

tions.

The very limited constant memory is read-

only for the GPU, but has a very good caching

behavior. It is especially fast if all work items

access the same value at once.

Images can be seen as one-, two-, or three-

dimensional arrays within global memory. A

kernel

work group

work item

compute device

device memory

host / PCIe

Local memory

L2 cache
(image, constant, buffer)

Global
mem.

Constant
mem.

336.5 GiB/s

15.4 GiB/s

48 kiB

64 kiB

Private
mem.

3.0 MiB

12 GiB 64 kiB

Figure 16 The GPU memory layout.
Each solid rectangle stands for a physical device and each
framed rectangle for a memory scope in the OpenCL
programming scheme. The exemplary sizes shown are the
theoretical values for a Nvidia GeForce GTX Titan X
graphics board [71] connected via PCIe 3.0 16x.
Each work item has a set of registers available (i. e. private
memory) which are only persistent during its runtime. All
work items within a work group have access to the same
local memory and all work items within a kernel call or
subsequent kernel calls to the same global, image (i. e.
texture) and constant memory. The latter three are located
off-chip in the device memory and connected via the on-chip
L2 cache. Data can be exchanged with the host memory via
PCIe.
Off-chip memory access is several hundred times slower [70,
72] than on-chip memory access. The communication with
the host is more than a magnitude slower than access to the
device memory.

special data arrangement allows to cache val-

ues that are spatially close to the previous

access. Images furthermore support floating-

point indices with optional hardware interpola-

tion and indices that are out-of-range offering

various ways to treat the borders.

The very fast but limited local and private

memory spaces are only visible during the

runtime of a work item. Local memory is

shared within a whole work group.

50 Real-time iterative reconstruction for x-ray computed tomography

Transferring data from or to host memory is

by far the slowest process in the chain. It

is limited by the throughput of the Periph-

eral Component Interconnect Express (PCIe)

bus. That is the reason why small compu-

tations are usually faster on a CPU than on

a GPU device. Modern devices offer ways

to pull or push data while still computing on

other data. That way, the transfer times for

compute-intensive problems that can be split

into several chunks of data, can be hidden

almost entirely. This technique plays a major

role in the implementation presented later.

A last way to store data on a GPU can be ex-

ploited for variables that do not change during

the whole program execution. As the GPU

kernels are compiled during the runtime of

the program, it is possible to pass variables

as macros to the compiler. This way they

consume neither extra memory nor transfer

time during the kernel run. In some cases it is

even possible that the optimization algorithms

of the compiler can save operations or reduce

the size of the program by knowing the values

at compile time. This is especially the case

if those macro variables control branches. If

a kernel is called many times with a limited

set of different macro variables, it is possible

to store a compiled kernel for each macro set

and reuse it.

5.2.3. Profiling

Profiling allows to analyze and optimize the

performance of a computer program by mea-

suring some parameters during its runtime.

Those parameters can for example be the re-

quired memory or the transfer- and runtimes

of individual subtasks or components in the

program. The analysis reveals for example

parts with a bad performance, a bottleneck

in the data transfer or waiting times for par-

allel processes. Depending on their impact

on the overall performance, those slow parts

can then pointedly be optimized.

Closure

Since the upper limit of the clock frequency

in processing units has remained constant for

many years, parallel computing became a ne-

cessity for compute-intensive tasks. Hetero-

geneous computing is the idea to choose dif-

ferent hardware depending on the task. Com-

paring the advantages and disadvantages of

the available types of parallelization, it turns

out that multi-threading and GPU computing

are very good choices for CT reconstruction.

The GPU architecture offers many different

features to maximize the data flow.

Real-time iterative reconstruction for x-ray computed tomography 51

Part II

Implementation

In history, iterative reconstruction had not played a role in practical applications for a long time

because of its high computational demand. The rapid hardware developments of the recent

years gave it a new revival. This part about the implementation of a high-performance CT

reconstruction framework puts the concepts from the previous part into practice and explains

the various details required to make SIR convenient even for large data sets. First, the core

components are introduced, which can be seen as the building blocks of the framework

including, among others, the GPU implementation of the tomographic forward and back

projector (chapter 6). Second, an overview of the whole reconstruction model is given,

especially how it is possible to keep it both, flexible and fast (chapter 7). Third, an integral

optimization of the whole framework performed to fine-tune it for maximum performance

(chapter 8).

6. The building blocks

The core components investigated in this

chapter are the basic building blocks for our

CT framework. It holds all the computation-

ally demanding operations and shows how

to implement them best on heterogeneous

hardware. The performance of these basic el-

ements determine in the end the performance

and therefore the convenience of iterative re-

construction.

Some preliminary considerations at the begin-

ning explain how to identify those core compo-

nents and how data is organized best. Next,

the beating heart of the implementation is in-

vestigated in detail, namely the GPU kernel

functions and, subsequently, the way quasi

nonstop computation can be guaranteed de-

spite the limited memory resources of GPU

devices. The chapter closes with some prac-

tical remarks on the OpenCL framework and

a systematic optimization of the kernel and

transfer parameters.

Picture: LEGO x-ray machine.

© by the Boise State University

6.1. Preliminary
considerations

The idea to identify some compute-intensive

static core components and connect them

by a flexible and user-friendly high-level al-

gorithmic part was already presented in sub-

section 5.1.3 on page 48. This thesis con-

centrates mainly on statistical iterative recon-

struction (SIR), which is considered the most

general and powerful approach, as well as

the two analytical approaches, the FBP for

parallel-beam and the FDK for cone-beam

geometries. Other methods like SART, for

example, can be implemented likewise.

Identifying the core components

Having a look into appendix A on page 110

on the functions different solvers require for

SIR, the following common building blocks

can be identified (with abbreviations):

FP the product of the system matrix A with

a vector,

BP the product of Aᵀ with a vector, and

REG the different voxel-wise operations for

the Gibbs neighborhood prior with ex-

changeable potential function and option-

ally a sum over all voxel elements.

The first two operations are also known as

forward (FP) and back projection (BP) switch-

ing from image to projection space and vice

versa. They must be able to work on a sub-

set of the projections for the ordered-subset

solvers described above. Since projecting a

subset is the same operation as projecting

a smaller complete CT data set, this require-

ment is usually fulfilled for any implementa-

tion.

Analytical reconstruction requires the same

back projection for parallel-beam geometry

(FBP) optionally extended with the Feldkamp

weights wBP for cone-beam geometry (FDK)

as seen in section 3.2 on page 21. In addition,

there is

FF the Fourier filter step

optionally with the according Feldkamp

weights wF.

Choosing the right hardware

As seen in subsection 5.1.5 on page 49, the

most suitable hardware setup for CT recon-

struction is a single-server system holding

CPUs and GPUs. There are two deciding

questions for each of the four core compo-

nents above. The first is which hardware

offers the best performance independent of

the other components. This first question de-

pends on whether the degree of parallelism

is high enough to benefit from GPU acceler-

ation and if the computational effort justifies

the expensive data transfer to the GPU de-

vices. The second point can also mean if the

computation takes long enough to hide the

transfers sufficiently. The second deciding

question is if there are core components that

can run in parallel on different devices. If that

is the case, it might be more beneficial to take

the less-performant hardware before leaving

it idle.

Concerning the first question, the GPU turned

out to be perfectly suited for FP and BP as

many previous implementations proved [73,

74, 75] over the last decade. Only very re-

cently a SIMD CPU approach was able to

reach comparable performance [76], which

was not shown for big data sets. The REG op-

erates voxel-wise and is thus also expected

to allow a degree of parallelism that is high

enough to benefit from GPU acceleration. But

it has a small computational effort compared

to the amount of data involved. For each

voxel, a function is evaluated on each of its

58 Real-time iterative reconstruction for x-ray computed tomography

neighbors. If using GPUs is beneficial at all,

the data transfers are very likely to dominate

the run time. The FF depends mostly on a

fast implementation of the Fourier transform

and its inverse. Also here, the GPU offers

a better performance, especially for big data

sizes [77, 78].

Concerning the second question, many pos-

sibilities can be excluded in advance. Every-

where FP and BP occur together, one de-

pends on the result of the other. An example

is the gradient of the data term where the

BP takes the result of the FP. The FF and

BP for analytical approaches also need to be

applied in sequence. The only operation left

is REG, computing the regularization term

and its derivations. It could possibly run par-

allel to the according evaluation of the data

term. Reasonably, operations with higher ef-

fort have greater priority in the choice of hard-

ware. In this case, this is clearly FP and BP.

In conclusion, the hardware for the FF, FP

and BP can be chosen independently. The

best-suited choice for all three of them is a

multi-GPU implementation. For the REG it is

not yet clear, which option is better, neither for

a stand-alone operation, nor for its operation

together with the data term, where it might be

beneficial to run it parallel on the idle CPUs.

Therefore, both have to be implemented, a

multi-GPU version and a multi-threading, pos-

sibly vector–accelerated CPU version.

The platform used for development was a

Linux 64-bit system, all the C/C++ source

code is however equipped with platform-

independent CMake files. CMake is an

open-source cross-platform tool to build soft-

ware [79].

Data representation

The functions µ (x, y, z) and p (ϕ, u, v) have

to be discretized in two ways in order to use

them in a computer. First concerning the un-

derlying 3-D grid of coordinates and second

concerning the values. The discrete versions

will be denoted with square brackets.

We decided to store µ [x, y, z], i. e. the vec-

tor µ, and p [ϕ, u, v], i. e. the vector p, in 3-D

Python Numpy arrays. This choice enables

a much more intuitive access to the data as

suggested by the one-dimensional vector no-

tation commonly used to describe iterative

reconstruction (like in section 3.3). Neverthe-

less, the underlying data array is enforced

to be linear with C-contiguous order. This re-

striction enables direct access from our C/C++

modules without expensive resorting. In con-

crete terms, that means for µ that z is the

slowest axis (first index) followed by y and x,

which is the fastest (last index). The corre-

sponding order for p is ϕ, v, and u from slow-

est to fastest. Array alignment to multiples of

at least 16 Bytes is usually guaranteed from

the compiler for any modern build in order to

take advantage of vectorization.

For simplicity and the means of maximum

performance, we decided for cuboid image

voxels and (optionally slanted) rectangular

detector pixels. That means that the discrete

functions represented by the data arrays are

piecewise constant and have discontinuous

jumps at the voxel or pixel borders. Integer

positions on the underlying 3-D grid are al-

ways identified with the center of a voxel or

pixel. The sampling is given by the detector in

measurements or has to be defined manually

in simulations.

The data type for storing the values has to be

chosen with care. It has a great impact on the

performance of the implementation. Integer

Real-time iterative reconstruction for x-ray computed tomography 59

data types would be well-suited to represent

the output of many detectors but can be ruled

out with a look on the functions that have to be

applied inside the reconstruction. Their lack

of decimal places does not work well with

the continuous value range of the weights

inside the system matrix A, for example, or

the exponential function and the logarithm in

Lambert-Beer’s law and its inverse.

The remaining options are floating-point num-

bers with different accuracy. Higher accuracy

results in less numerical errors, but lower

accuracy saves memory and, in particular,

expensive data transfer times. We will see

later that the last point is very deciding for the

performance of all operations, including the

core operations defined as the most compute-

intensive ones. Therefore, the accuracy is

best chosen as low as possible to still cover

the data range, but also match the required

accuracy of the operations in order to avoid

expensive type conversions.

Most detectors have an accuracy of only

12 Bit. The limiting factor is thus the numer-

ical error in the long sums as shown in sub-

section 5.1.4 on page 48. It suggests float32

to be on the save side for sums over single

dimensions of typical tomographic volumes,

like in the four core components. Float16 is

exactly on the brink of the required accuracy.

The value ranges would have to be normal-

ized carefully in order to avoid the inaccurate

boarders of the floating-point range. It is how-

ever questionable whether the error from the

multitude of subsequent operations in SIR

would stay small enough to converge and re-

turn quantitative results. Moreover, only the

GPUs have native float16 support. CPUs re-

quire extra type conversion.

Summarizing, we decided for float32 with op-

tional (experimental) support for float16. The

few really big sums that go over whole vol-

umes are implemented in float64 with type

conversion. De facto, they only play a role

for computing the value LG (µ) of the cost

function or its denominator denom LG (µ).

The popular OS-OGM solver introduced in

subsection 3.3.4 on page 28 requires neither.

Geometry representation

The choice of the axes in the image volume

and projections volume was shown in fig-

ure 12 on page 34 in the section explaining

the projection matrices for CT. It does not

play a role for the performance of any core

part, except for the FF requiring u to be the

fastest dimension in order to carry out the

Fourier transform on the detector rows. For

some techniques that will be presented in sec-

tion 6.3 on page 64, it would be inconvenient

if y was the fastest axis. Therefore, the choice

was such that in the unrotated case the orien-

tations of the last two dimensions, x, y and u,

v, respectively are the same. The central ray

from the source to the detector then traverses

parallel to z, which is a common notation in

x-ray physics.

The whole geometry is organized in a Python

class holding hierarchically arranged objects

for all the quantities required to compute

the projection matrices P̃. Each higher-level

quantity can either be set manually, tries to

compute its value from lower-level quantities

or falls back to a reasonable default value.

For example, this structure allows to either

specify custom rotation matrices R, or the Eu-

ler angles ϕ from which the rotation matrices

Rϕ are automatically computed. Similar for

the principal point p that can either be given

or automatically be computed as the center

of the detector. Figure 17 sketches the whole

hierarchy. Parallel-beam support is triggered

by setting dSC to infinity. The class is created

to return the whole set of projection matrices

60 Real-time iterative reconstruction for x-ray computed tomography

T̃W

(αu, αv)
ᵀ

center

ψ = 0

center

{tW}u = 0

{tW}v = 0

θ = 0

1

1

1

∞

P̃

P̃W

tW

P (#x, #y, #z)ᵀ

(∆x, ∆y, ∆z)ᵀ

dSC

RW (ϕ, θ, ψ)ᵀ ϕ

dCP

(∆u, ∆v)ᵀ

(#u, #v)ᵀp

K̃

Figure 17 The hierarchy inside the Geometry class.
Each quantity (blue) is a property of the class and can either
be set manually or computed from lower-level quantities,
which are shown in the hierarchy from left to right. All
variable names were defined in section 4.2.
The most high-level quantity is the projection matrix P̃. The
most low-level ones are the minimum parameters required
for parallel-beam geometry and, in gray, corresponding
default values. Asymmetric connectors indicate that the
quantity at the thicker end is able to hold more information if
set directly than if computed from the quantity on the thinner
end. The assumptions for the simplification made are
indicated above or below. Grayed out quantities, besides the
default values, are intermediate results that are not separate
properties of the class.

for all views at once. Each parameter can be

set per view or once for the whole set.

6.2. The kernels

The kernel is the function defining the com-

putation on a GPU. This section describes

the main kernels of the four core components

defined in the previous section. All of are de-

liberately based on simple concepts to reach

the maximum performance. As API we de-

cided for OpenCL because it has no general

restriction to certain hardware.

6.2.1. The back projector (BP)

The discrete function to be implemented in

the BP can be derived from algorithm 2 on

page 25 keeping in mind not only its definition

in the FBP or FDK but also as the operation

Aᵀ · p in SIR:

µ [x, y, z] =
#ϕ−1

∑
ϕ=0

wBP (ϕ, x, z) p [ϕ, u, v]

=

{
∑

j∈[p]
aij pj

}
i

where j is the linear index of the vector p
pointing to element p [ϕ, u, v] and i the lin-

ear index of µ pointing to µ [x, y, z]. The

two definitions suggest two different views

on the BP. The first is to collect and sum up

all values p [ϕ, u, v] that can be found on the

intersection of the ray from the source with

the detector going through the image point

(x, y, z)ᵀ and optionally applying the weighs

wBP (ϕ, x, z). The second view is to carry out

a huge matrix product, where the weights aij

relate every element in µ to every element

in p. The matrix A has a size of [µ] × [p].
This would be 500 EiB of float32 data for the

example presented in figure 13 on page 37.

Therefore, this definition would only be suited

for very small problems, but still be inefficient

on a computer, because A is very sparse.

The first definition leaves two options that are

depicted in figure 18. First, there is the voxel-

driven approach. For each voxel, the corre-

sponding position on each view is computed

for example by x̃ = P̃ · X̃. The corresponding

values are collected and summed up. Sec-

ond, there is the ray-driven approach. It starts

a ray X (ξ) from each pixel position x in each

view and dumps its value at each voxel along

the ray path inside the volume. On a GPU,

the most natural choice is to assign a thread

to each voxel for the first and to each pixel for

the second technique. In that case, the great

advantage of the first technique is that data

races are inherently prevented. Each posi-

tion in the image volume is uniquely assigned

Real-time iterative reconstruction for x-ray computed tomography 61

source

image pr
oj

ec
tio

n

voxel-drivenA

source

image pr
oj

ec
tio

n

ray-drivenB
(x)- or (y)-(z) plane (x)- or (y)-(z) plane

Figure 18 Two basic types of tomographic projectors.
The schematic shows two different implementations of the discrete sum that has to be computed inside a forward or back
projector. Starting from a voxel in the image and laying its footprint over the pixels of the projections is called the voxel-driven
approach (A). Starting from a pixel on the projection and following its footprint along a ray through the image is called the
ray-driven approach (B). There are different models for the shape of the footprints defining the relative contribution of the
involved pixels or voxels. The simplest model is linear interpolation. Different shades of blue indicate the corresponding
weights in the drawing.

to a single thread. A ray-driven approach

would have to guarantee that two threads do

not write to the same voxel at the same time.

That is the reason why our implementation

uses a voxel-driven BP.

One deciding question still remaining is how

to move from the integral over a continuous

function to a discrete sum over square pixels.

Different advanced models were suggested

to solve that problem [80, 81, 82, 83, for ex-

ample]. We decided for the still simplest and

fastest solution, namely bilinear interpolation

by the texture hardware. Unfortunately, it is

known for several limitations [84]. The most

prominent one is the limited sampling. For ex-

ample, reconstructing with a large cone angle

or from a fine pixel grid into a coarse voxel

volume gives wrong results. The extend of

the voxel footprint on the detector is not con-

sidered. It can cover several pixels in those

two cases. But, for the moderate cone angles

common in most lab-based or industrial ap-

plications, it still delivers reasonable results

and impresses with its performance. If nec-

essary, that part of the kernel can easily be

exchanged with a more accurate model.

Summarizing, the BP kernel works on one

voxel with position X. It loops over all

views computing the position x̃ = P̃ · X̃ and

summing up the corresponding interpolated

values. The views p [ϕ, u, v] are held as

OpenCL images to take advantage of the in-

trinsic bilinear hardware interpolation feature,

the volume µ [x, y, z] is held in global memory,

which can be accessed linearly as required

and the matrices p̃ are held in constant mem-

ory. Support for Feldkamp weights can be

added as shown in subsection 4.3.4.

6.2.2. The forward projector (FP)

The forward projector is required in iterative

reconstruction or for simulations. It was de-

scribed by the operation A · µ. As the FP

is the transposed operation to the BP, the

simplest implementation would take the BP

and replace all image writing by reading op-

erations and all projection reading by writing

operations. However, this simple approach

would result in lots of data races on a par-

allel computing device, like the GPU. This

problem can be circumvented by taking the

ray-driven approach for the forward projector

where each pixel can uniquely be assigned

to a single thread.

Again, we decided for the simplest approach,

namely Joseph’s method [49]. It applies a bi-

linear interpolation within each slice of voxels

62 Real-time iterative reconstruction for x-ray computed tomography

perpendicular to the main direction ν along

the ray path. On the one hand, the simplic-

ity of this approach, like before, guarantees

the highest performance possible. On the

other hand, there is a drawback. The FP is

not matched with the BP. That means, that

through the different way data is interpolated

the weights in the FP and the BP differ im-

plying that the one is not the exact transpose

of the other. This can lead to worse conver-

gence for some iterative approaches. But,

again, this part of the kernel can easily be

replaced with a more accurate model if nec-

essary.

Following algorithm 6 on page 35, the kernel

first computes the reference point X0, second

the direction vector U0 normalized to its com-

ponent along the main direction ν, and third,

the initial ray parameter ξmin. The required

position of the source S and main direction ν

are precomputed once for each view and pro-

vided together with the projection matrices P̃

and their pseudo-inverse P̃+. Collecting the

values then starts at Xmin = X0 + ξmin U0,

the intersection of the ray with the first slice

of voxels. The kernel continues stepping

through all the #ν slices by adding U0 to the

current ray position in each loop iteration. The

total sum is normalized by the intersection

length of the ray with a layer of voxels, which

is just the length of U0.

An image object is used for the volume

µ [x, y, z] in order to take advantage from

the fast hardware interpolation and cache.

The views p [ϕ, u, v] is held in global mem-

ory. Aligned access can be guaranteed by a

corresponding thread order. The projection

matrices and all precomputed quantities are

held in constant memory. A compiler macro

flag optionally modifies the kernel for parallel-

beam support according to subsection 4.2.4

on page 36.

6.2.3. The regularization (REG)

The Gibbs neighborhood regularization and

its derivations are required for SIR and were

implemented on the GPU and in C for multi-

threading on CPUs. They all have in common

the sum over the neighborhood of a voxel

and a function operating on the gradient of

the that voxel to its neighbors. Some addi-

tionally require a sum over the whole vol-

ume in the end. Both implementations re-

alize that general structure. Compiler macros

then allow to choose the actual derivation, a

penalty function and the floating-point preci-

sion. Shortcuts were implemented for cases

that do not involve the current guess, like

diag Hess RG (µ) for the Huber penalty. For

the CPU, all possible combinations are pre-

compiled in a C library.

The penalty functions implemented are the

Huber penalty Ψγ
H (t) described in algo-

rithm 4 on page 27, a simple quadratic

penalty Ψγ
Q (t) = 1/2 t2 and the total-

variation [85] penalty Ψγ
TV (t) = 1/2 |t|.

We implemented all derivations described in

appendix A. In addition it is convenient to

compute popular combinations of functions

as one operation to save unnecessary data

transfers.

The investigated neighborhood includes all

26 direct and diagonal neighbors. For vox-

els at the boarders, the gradients towards

outside the volume, are always zero. That

equals a clamped edge ensuring that no in-

tensity can leave the image. In contrast, a

free edge turned out to hinder convergence

in some cases. It can be realized by mirror-

ing the values for neighbors lying outside at

the border to the inside. For the GPU, im-

ages automatically provide that feature. The

CPU implementation uses an array to store

the relative positions to the neighbors which

is modified at the borders.

Real-time iterative reconstruction for x-ray computed tomography 63

source

image pr
oj

ec
tio

n

(y) axis

FP

source

pr
oj

ec
tio

n

FP BP

image

(y) axis

ray chunksangular wedgesslice chunksA B C

source

pr
oj

ec
tio

n

image

(y) axis

FP BP REG FF

Figure 19 Data splitting for cone-beam CT computations on GPUs.
We applied three data splitting mechanisms to exceed the limited data capacities of GPU devices. The first one, slice-chunk
splitting (A), is applied for all four core components. It creates chunks perpendicular to the y axis of the volume, or the v axis of
the projection. These chunks are completely independent, but costly for FP and BP. Angular wedges (B) means limiting the
number of views for FP and BP that are processed at once. It involves no overhead and gives extra speedup if sorted by the
main direction ν. Ray chunks (C) additionally provide a way to process only parts of the image volume in the FP which
becomes necessary for large cone angles. The image is split along the main direction of the ray.

Another important feature are manual weights

for the three spatial dimensions. They have

to be set if the voxels are defined non-uniform

and do not have the same spacing in each

direction.

The data required can be described as maxi-

mal two input arrays, µ [x, y, z] and d [x, y, z],
two output arrays, for example the gradient

together with the curvature and one output

scalar like the value or the denominator. On

the GPU, the two input arrays are held in

images to take advantage of the automatic

boarder treatment and the local cache, which

is perfectly suited for operating on the local

neighborhood. The output arrays can be held

in global memory. As one thread operates on

one voxel, aligned access can be realized.

6.2.4. The Fourier filter (FF)

The FF as required for the FBP and FDK con-

sists of a Fast Fourier Transform (FFT), the

filter and the inverse transform. A very de-

tailed description of the implementation can

be found in the master thesis of L. Hehn [51].

We decided to take the open-source clFFT

implementation [86] for the FFT and its in-

verse. It provides a very fast implementation

that matches well with the rest of our OpenCL

framework. As one-dimensional FFTs can

only be carried out along an array axis, an-

alytical reconstruction is only possible if the

v axis of the detector is quasi parallel to the

axis of rotation.

6.3. Handling big data

A major restriction for GPU computing is the

limited memory available on those devices

and the limited transfer rates from the host

memory. Memory is also not shared across

several GPUs. The performance of any GPU

software implementation that has to handle

many gigabyes of data is highly dependent

on good ways to split the work with few over-

head. The performance and scalability of

our implementation is mainly based on the

considerations presented in this section. Fig-

ure 19 shows the three different approaches

we used [75, 87]. The challenge for splitting

a problem is to create independent subtasks

64 Real-time iterative reconstruction for x-ray computed tomography

with ideally no computational or data overlap.

6.3.1. Slice chunks

Slice chunks are probably the most efficient

way to split the CT reconstruction problem

so that each chunk looks like a smaller CT

problem inside the big one. Efficient thereby

means that no data point has to be visited

twice and the fraction of data that has to be

loaded twice can be kept small. It is the

only technique of the three presented that

provides completely independent tasks. As

crosstalk between several GPU devices is

very expensive, it is the one that enables to

distribute the work to multiple GPU devices.

The exact working principle is to split up the

volume on which the thread indices are de-

fined along the y or v axis. For all four core

components this is the output volume, namely

the projections p [ϕ, u, v] for the FP, the fil-

tered projections for the FF, the image volume

µ [x, y, z] for the BP and the volume contain-

ing the computed derivation for REG. The

chunk size is defined as a multiple of the

workgroup size in that direction in order to

leave no thread idle. We use the rectangu-

lar data copy functions provided by OpenCL

to cut the required data from the 3-D arrays.

That explains, why neither y, nor v should be

the fastest axis, because copying continuous

parts is always faster than copying a lot of

single values.

Calculating the required in input data for a

slice chunk is straight forward for the FF and

the REG. The FF works independently on all

stripes in the u direction. Therefore, it is pos-

sible to divide the volume into any number of

chunks without overhead. In principle, those

chunks even would not require full slices in v.

The REG operates in the local neighborhood

of one voxel. A slice chunk therefore requires

one voxel overhead above the chunk volume

and one below for the input. The fraction

of overlapping data is thus small, and gets

smaller with bigger slice chunks.

Retrieving the required input for a slice chunk

in the FP and BP is more complicated. We

suggested an extra single-GPU kernel for that

task [75]. For the BP, it takes the positions

of the eight corners of the chunk volume,

projects them onto each view and finds the

minimum and maximum slice in v by a reduc-

tion algorithm. This process is illustrated in

figure 19A simplified for a single view. The

black dots in the image volume mark the cor-

ners investigated. The blue area on the de-

tector is the region that corresponds to the

blue slice chunk investigated. That way, it

takes only about a millisecond to find the cor-

responding regions for all slice chunks. The

FP uses an equally fast analog mechanism.

Here, the four corners of the slice chunk re-

gion in each view are backprojected into the

volume by computing the corresponding ray.

The minimum and maximum image slice in y
is then determined by computing all entry and

exit points of that rays followed by a reduction

algorithm.

Figure 19A reveals also the limitations of slice-

chunk splitting. First, the region required from

the input volume can be quite large, depend-

ing on the how far the slice chunk is away

from the central ray. Second, one can imag-

ine that these regions can cover up to the

whole projections volume if the y axis of the

image is strongly rotated against the v axis of

the projections or even upside-down. Third,

slice chunks cannot be applied at all if y is the

main direction. The last problem as well as

the upside-down projections can be corrected

as shown in subsection 4.3.2 on page 39.

Strongly rotated projections remain a prob-

lem. However, only very special use cases

require such a geometry.

Real-time iterative reconstruction for x-ray computed tomography 65

The overlap due to the cone beam can be min-

imized by keeping the number of slice chunks

low and prefer other methods for further split-

ting. It is also important to keep in mind that

due to the divergent cone, the different slice

chunks can involve very different amounts of

data. These last two issues can be compen-

sated very well by intelligent scheduling as

discussed later.

In summary, slice chunks are the best way

to obtain entirely independent subtasks, can

substantially increase the possible y and v
extent, but have to be used modestly for FP

and BP, because of their overhead.

6.3.2. Angular wedges

Angular wedges are generated by splitting

up the projection data along the ϕ axis of

the according slice-chunk regions. The re-

sult are artificial angular subsets containing

a preferably continuous set of views. This

kind of splitting is the working horse for limit-

ing the amount of data on each single GPU

and therefore explains why ϕ is preferably

the slowest axis.

The great advantage of angular wedges is

that they produce no copy or compute over-

head. If the current image chunk stays in

memory, many angular wedges can subse-

quently be pushed or pulled from the device.

The restriction that the image chunk has to

remain explains why angular wedges cannot

be used to split data over multiple GPUs.

Another side effect is that the angular wedges

can be chosen such that one wedge only con-

tains views of equal main direction ν. That

prevents additional branching in the kernel

resulting in a speedup of more than two.

Concluding, angular wedges are able to make

the implementation work for an arbitrary num-

ber of views with no additional overhead.

They provide a way to limit the data size of the

projection views independently from the cone-

beam geometry. This is especially helpful for

the BP, where the projection slice chunks can

be very large.

6.3.3. Ray chunks

Ray chunks were introduced for the FP, be-

cause the large image slice chunks occurring

for large cone angles remain unaffected by

the angular-wedge splitting. Thereby the im-

age volume is split along the main propaga-

tion axis ν. Also this techniques comes with

no additional overhead and is restricted to

single GPUs. The ray chunks can dynami-

cally be pushed to the GPU while the current

angular wedge remains in the GPU memory.

As ray chunks are a division in ν, they only

work with sorted angular wedges that do not

contain views of different main propagation

directions.

Summarizing, ray chunks enable arbitrary ex-

tend in x and z for the FP, i. e. the two main

propagation directions allowed. Analog to the

angular wedges, they are independent from

the cone-beam geometry and allow to limit

the large data size of the image slice chunks

in the FP.

Concluding for all three splitting techniques,

the data sizes possible in the FP theoretically

remains only limited in y for very large cone

angles and in u. The BP theoretically remains

limited in v for very large cone angles and in

x, z and u. FF has only a theoretical limit in

x and REG additionally in z. De facto, the

limit for the FF is given by the maximum size

allowed in the clFFT, which is probably huge.

For the other three, they are defined by the

maximum possible size of 3-D image objects,

which are 4096 vx in each direction in current

hardware.

66 Real-time iterative reconstruction for x-ray computed tomography

6.3.4. Automatic chunk scheduling

The dimensions for CT datasets can be very

different in size and ratio. Sizes typically

reach from 128 voxels in x, y and z for small

simulations up to three or four thousand in

high-resolution measurements. Often #y is

reduced to only a few slices in order to quickly

sweep reconstruction parameters, or z is

adapted to the actual sample thickness re-

sulting in unequal aspect ratios. The dimen-

sions along u and v are mostly in the same

range as the corresponding dimensions in

the image. But, the number of views can

vary a lot, reaching from a couple of dozens

for SIR reconstructions with subsets to many

thousands for systems with a continuously ro-

tating gantry or helical trajectory. All of these

options would require different settings for

splitting up the data sets into the different

types of chunks in FP and BP.

In order to reach a good performance with-

out the need for finding the optimum param-

eters in each case, we introduce an auto-

matic scheduler. It reads out the total amount

of global and constant memory so that the

chunk sizes are guaranteed to stay within the

given limits.

Before discussing the actual splitting it is im-

portant to explain how the GPU memory shall

be used in general. The different chunks al-

low the GPU to dynamically push and pull

data while computing. That means that while

the GPU computes on the data of one chunk,

the results of the previous can be fetched and

the data for the next one pushed. Therefore,

the data of two full chunks have to fit onto the

device at once. Those to spaces are used

alternatingly for computing and exchanging

data. The biggest components per chunk

are the corresponding part of the image and

the projections. That makes four big arrays

in total. Most current GPU devices have a

maximum allocation size for arrays or images

in global memory that is one quarter of the

total space. That matches exactly the two

arrays holding the image and two holding the

projection data.

Slice chunks are the only ones that allow com-

pletely distinct tasks for multi-GPU computing

but also the only ones producing overhead in

some cases. There can be bigger and smaller

chunks because the overhead depends on

how far away a chunk is from the central ray.

The scheduler takes care for these facts by

splitting up the output volume into a number

of equal chunks. It works differently for FP

and BP.

In the BP, the size of a slice chunk is always

a multiple of the memory footprint of a work-

group in y, except for the last chunk. The

number of slice chunks is chosen such that

the image chunks do not exceed the maxi-

mum allocation size and that there is at least

one per device. Limiting the projection chunks

to the maximum allowed space is left to the

angular-wedge splitting.

In the FP, the number of slice chunks is at

maximum twice the number of GPU devices.

The devices are then assigned alternatingly

a chunk from the top and the center of the

volume. After a device finished its task it is

assigned a new chunk in the same way. That

procedure ensures first, that most devices

have one chunk with bigger and one with

smaller overhead and second, that chunks

with bigger run in parallel to chunks with

smaller overhead. This second effect is very

important to avoid peaks at the bus of the

main memory.

The number of angular wedges is first es-

timated such that the according projection

data does not exceed the maximum alloca-

tion size in global memory and the data re-

quired for the geometry does not exceed con-

Real-time iterative reconstruction for x-ray computed tomography 67

stant memory. Second and only for the FP,

it is ensured that there are enough angular

wedges so that each wedge can exclusively

be filled with views of the same main direction.

Third, the views are distributed equally and

as subsequently as possible among the avail-

able wedges. The last step assumes that the

views are stored in an angular subsequent

order. If that is not the case, the GPU-internal

automatic image cache works significantly

less efficient.

The number of ray chunks in the FP is chosen

according the maximum memory available.

6.4. Remarks on the OpenCL
framework

This section contains some important tech-

nical remarks on how we used the OpenCL

framework that is required for our GPU com-

ponents.

6.4.1. Providing the kernel sources
at runtime

As GPU kernels are compiled to binary pro-

grams on runtime, the kernel sources have to

be stored in a way the program can access it.

Two possible options are separate OpenCL

source files at a fixed location or hard-coded

string literals inside the C++ library. On the

one hand, it is inconvenient to store hard-

coded absolute paths to source code files in

a shared library, because their final location

must already be known at compile time and

cannot be altered afterwards.

On the other hand, storing the source code as

hard-coded string literals is hard to maintain

by hand. Therefore, a small program was writ-

ten that finds all OpenCL source files at com-

pile time and hard codes them as string liter-

als into a C++ header file that is included into

the library. Furthermore a common header

file is automatically prepended containing all

the common macros and definitions. CMake,

the build tool we use, even allows to fully au-

tomate this process by defining a so-called

generator. This can be any program autogen-

erating code for the actual project.

6.4.2. The environment class

The OpenCL framework defines several struc-

tures that contain information about the com-

puting environment and programs involved.

In our implementation, each GPU device is

assigned to a separate compute context con-

taining each two queues. The first is for data

transfers and the second for kernel execu-

tions so that those operations can run in par-

allel.

All these properties are pooled in a C++ class,

called the environment class. An instance of

that class is stored in a static variable inside

the library. That makes it possible to reuse the

same instance for all GPU operations within

a program. It is initialized automatically the

first time it is required and has to be released

manually after the last GPU operation.

If the library is used in a Python context, this

task can be carried out by the delete handler

of a Python class instance that is generated

at the time, the library is imported. At the

latest when the Python shell is closed, also

the GPU environment is released.

The compiled OpenCL kernel binaries for all

GPU devices are also stored inside that en-

vironment class. If a certain kernel binary is

required, a class method checks if there is al-

ready a compiled version available for the set

of compiler macros given. That mechanism

prevents the code from recompiling the same

binaries for recurring operations as required

for iterative reconstruction.

68 Real-time iterative reconstruction for x-ray computed tomography

6.4.3. Profiling

Profiling is very important for code optimiza-

tion. There is a great tool for the CUDA tech-

nology of Nvidia, namely the Nvidia visual

profiler that allows to see the runtimes of all

operations in a time line, displays the actual

data throughput and identifies the bottlenecks

of the program. Unfortunately, they stopped

support for OpenCL some years ago.

Another option is to set the OpenCL-intrinsic

profiling flag allowing to record the timings

of all the operations in a queue and write

them into a file. A Python program is used

to visualize the results. All GPU profilings

shown in this thesis were generated this way.

Closure

The main building blocks we identified from

the mathematical equotions for analytical and

iterative CT reconstruction, namely FP, BP, FF,

and REG are by far the four most compute-

intensive operations. Fortunately, they occur

excactly in the same form in many of the re-

quired functions. The GPU turned out to be

the most suited hardware for all operations.

Only for REG, also multithreding on CPUs

might be a good alternative. Float32 was

identified as the most suited datatype, apart

from the seldom sums over the whole volume.

We introduced the kernels and three ways for

splitting up the data so that it fits on the lim-

ited memory recources of GPU devices and

multi-GPU computing is possible. The auto-

matic scheduler allows to handle virtually all

possible data sizes and ratios at a good per-

formance. At the end, we showed an efficient

workflow for the OpenCL framework.

Real-time iterative reconstruction for x-ray computed tomography 69

7. The reconstruction framework

Our collaborations with leading manufactur-

ers of industrial and dental CT devices re-

vealed two main obstacles for a broad appli-

cation of iterative reconstruction. The first is

usability, the second reconstruction time. In

this chapter, we introduce a reconstruction

framework to investigate these two problems.

The FDK is considered to be the most power-

ful analytical and SIR the currently most pow-

erful and general iterative approach. Within

our scientific environment, active algorithm

development and application on a daily rou-

tine play equally important roles but some-

times impose requirements that are hard to

reconcile. The first section introduces the

aims and visions of the framework and our

concepts how to meet the given needs. The

second section gives a short overview of the

already implemented methods.

Picture: Engine. c

7.1. Visions and their
realization

The main vision for the framework started in

2010 was to make SIR as easy as FDK but

with all its superior properties. The broad

spectrum of x-ray CT applications investi-

gated at the chair allowed a twofold devel-

opment concept. On the one hand, imple-

menting and developing many different algo-

rithms in a small group of people concentrat-

ing mainly on software, on the other hand,

constant and immediate testing and feedback

of many different application experts.

The main challenges to realize this two-fold

concept were the different requirements of

both groups. This section describes the ways

we tried to keep the framework both, con-

stantly evolving but easy-to-use and versatile

but fast.

A second vision, plug and play, was the goal

that all developments are compatible with the

rest of the framework if that makes physically

sense.

7.1.1. High- and low-level APIs

Chapter 6 showed that a good strategy to

combine high performance with ease of use

and rapid development is to use high-level to-

gether with low-level programming languages.

All performance-critical parts required for CT

reconstruction could be identified as a few

core components and were implemented in

C/C++ and OpenCL.

The remaining parts of the code, for exam-

ple the definitions of the cost functions and

solvers as well as the user API, are writ-

ten in a high-level language. Definitions

do not depend on computing performance

but can change rapidly. Therefore, a more

abstract, high-level language is suited well.

We decided to use Python, a modern, wide-

spread and multi-platform, optionally interac-

tive scripting language that is well-suited for

object-oriented programming and provides a

variety of predefined modules for data pro-

cessing, analysis and visualization. There-

fore, the tomographic reconstruction can be

well integrated into other data processing.

Similar to different languages, a high- and

a low-level API can be combined to provide

good usability for common applications and

allow sophisticated fine-tuning for developers

or experienced users. To meet the low-level

requirements, the Python classes and func-

tions are written as general as possible, but

equipped with default values in order to obtain

good usability for less experienced users.

These default parameters, for example the

choice of the solver for SIR, can vary for

different problems and also change if new

methods were implemented. The greatest

advantage of that dual concept is that any

user can obtain a reasonable reconstruction

for most applications without knowing any-

thing about the underlying technique. Only

very little understanding is enough to reach

further improvements. Another advantage is

that automatically the most state-of-the-art

techniques are in use. If old results have to

be reproduced and the default options have

changed in between, the old default parame-

ters can be looked up in the version history.

7.1.2. Towards automatic parameter
finding

One of the most crucial but challenging pa-

rameters to find is the strength λ of the regu-

larization in SIR. For the cost function defined

in algorithm 3 on page 26 of the theory part,

it can vary over many orders of magnitude

for data sets of different size, value range or

sample structure. A weak regularization re-

72 Real-time iterative reconstruction for x-ray computed tomography

sults in a noisy result, a strong regularization

in smeared edges, lost structures or patchy

clusters.

On the one hand, there can be no absolute

measure defining image quality, because the

required properties depend on the application

and sometimes on the preferences of human

observers. [88] On the other hand, the range

of reasonable parameters is definitely limited.

Also, choosing a certain set of parameters

should result in a similar image impression

for different data sets.

One way to meet these requirements for λ is

a reasonable normalization of the cost func-

tion. We suggest the following modification:

L(FDK)
G (µ) =

D (µ)

D (µFDK)
+ λ(FDK) R (µ)

R (µFDK)

where D (�) denotes the data term and

µFDK = FDK (p). This way, the absolute

value of the cost function can be interpreted

as relative improvement compared to the re-

sult of the FDK. It automatically becomes in-

dependent of the data size, the value range

and, to some degree, also the structure of

the measured object. The same properties

translate likewise to the parameter λ(FDK).

Reasonable values are usually found in the

small range between 0.1 and 1.

Drawbacks are that edge-preserving regular-

ization terms like the Huber penalty are very

sensitive to the streaking artifacts that often

occur in FDK reconstructions. Another draw-

back is that computing µFDK is a rather ex-

pensive operation, but at least a lot less ex-

pensive than finding the correct λ over many

orders of magnitude. Both problems can be

improved by using a very smooth FDK filter

kernel, which is usually also a very good ini-

tial guess µ(0) and thus can be used for both

purposes. Unfortunately, the assumption that

λ(FDK) is independent from the data size and

sample features holds only roughly. Often

parameters are optimized on a subvolume be-

cause of performance reasons and then trans-

ferred to the whole data set. This approach

works well together with the suggested nor-

malization, but for some use cases the pa-

rameter of the full and the reduced data set

do not match exactly.

Another parameter that has to be guessed

is the transition parameter γ for the Huber

regularization. It describes the transition

from the noise level to real features. An

easy way to guess it is by estimating the

noise level σFDK of of a (subvolume) FDK,

e. g. from the histogram. As all Gibbs neigh-

borhood priors work on differences between

voxels, the according parameter results in

γ(FDK) =
√

2 σFDK.

Alternative, more advanced methods esti-

mate the noise level of the intensity views

and propagate it into the image domain to

aim for uniform noise or resolution [89, 90],

apply a control loop to reach a certain noise

level [91] or optimize regularization for a cer-

tain task [92, 93]. These techniques are not

yet implemented but would definitely be a

great benefit for the framework. The chosen

method impresses mainly by its simplicity and

generality.

7.1.3. Modular structure

An important concept to keep code well-

structured and easy to maintain despite of

rapid development is a modular structure. It is

the realization of our second vision, plug and

play. That means that single parts can easily

be exchanged without touching the rest of the

framework. This way, it is possible to improve

or replace individual modules independently

and regard the rest of the framework as black

box. Furthermore, anyone can take advan-

tage of any development by others and all

Real-time iterative reconstruction for x-ray computed tomography 73

developments can be combined.

The FDK is just a straight-forward single

Python function that generates the filter ker-

nel and executes the multi-GPU FF and BP

core components. SIR , in contrast, has a lot

of different options and new methods develop

rapidly. Therefore, we identified several basic

modules that can be implemented indepen-

dently and that cover the various choices:

• the data term,

• the regularization, and

• the solver.

Each module is realized as a set of exchange-

able classes providing several methods. Data

term and regularization classes can com-

pute their contribution to the cost function for

the current guess and all its different deriva-

tions required for various solvers. The solver

classes contain the minimizer and a common

method for displaying the current status and

plotting intermediate results. A possible fu-

ture extension could be a separate module

for the different types of normalizations.

Furthermore, there are two static compo-

nents, namely the cost function, combining

and scheduling an arbitrary number of data

and regularization terms, and the reconstruc-

tor class that brings together all the class in-

stances involved with the various reconstruc-

tion parameters. Furthermore, it provides

methods for common functions like forward

and back projection or profiling. There are

several front ends possible that communicate

with the reconstructor. Currently there is a

Python function similar to the FDK function.

7.2. An overview

One of the greatest advantages of SIR is

its potential to model many aspects of the

physical environment inside the reconstruc-

tion. There are several applications of this

feature that can be implemented into the data

or regularization term.

7.2.1. Data terms

Starting from the very basic Gaussian or Pois-

son noise model introduced in section 3.3,

there are many sophisticated data terms for

various problems. The first common appli-

cation is task-based reconstruction. That

means that tomographic reconstruction is

combined with pre- or post-processing steps

that are required to obtain the final quantity.

Especially data terms that incorporate more

than one signal can add a lot of extra value.

A very simple approach to reconstruct the

contributions of two single materials from a

scan at two distinct energies is by using the

data term

D2 mat. ({ρ}m) =

1
2 ∑

k

∥∥∥∥∥A ·
(

∑
m

µk,m ρm

)
− pk

∥∥∥∥∥
2

wk

where k is the index over the two energies, m
the index over the two materials and µk,m the

absorption coefficient of material m at energy

k.

A very successful multi-signal approach is the

combination of tomographic reconstruction

with the retrieval of the attenuation, phase

and darkfield signal for grating-based phase-

constrast aquisitions. The forward model for

this direct intensity-based approach

ĪIB (µ, ε, δ) =

I0 eA·µ (1 + V0 eA·ε cos (Φ0 + A · δ)
)

can for example be used in a Poisson data

model. It takes into account the three recon-

structions for the attenuation µ, the darkfield

signal ε and the phase δ. V0 is the local visi-

74 Real-time iterative reconstruction for x-ray computed tomography

bility map and Φ0 the local phase offset. The

approach allows to omit the technically chal-

lenging and time-consuming phase stepping

measurement and to directly consider the sta-

tistical properties of the measurement. [94,

95]

The second common application of advanced

data models is artifact reduction. If the physi-

cal reason behind an artifact is understood, it

can be included into the model. All imperfec-

tions that do not impose a general limitation

on tomographic reconstruction, can thus be

eliminated.

One very useful application modeling the poly-

chromatic spectrum of laboratory setups to

eliminate beamhardening artifacts. This can

be done by using the forward model

Īpolychrom. (µ) =

I0 ∑
k

bk exp (−Φk A · φ (µ)−Θk A · θ (µ))

which can also be used in a Poison data

model. It reconstructs a virtually monochro-

matic result µ using the parameters Φk and

Θk to model the relative influence of the photo

and the Compton effect at the given energy k.

The functions φ and θ approximate the frac-

tion of photoelectric effect and Compton scat-

ter in the guess µ. The coefficients bk contain

the fraction of the measured spectrum that

lies within energy bin k. A great advantage of

this model compared to other polychromatic

approaches is that the expensive operation A

has to be evaluated only twice for the whole

forward model. [96, 97]

7.2.2. Regularization terms

The prime task of the regularization term is to

favour realistic noise realizations. Therefore

we implemented several smoothness con-

straints including the Huber regularization, in-

troduced in 4 on page 27. Other penalties for

the Gibbs neighborhood prior are for example

the quadratic penalty ΨQ (t) = 1/2 t2 and the

total variation penalty ΨTV (t) = |t|. Option-

ally, also the gradient between neighboring

voxels which is fed into the penalty function,

can be replaced by the Laplacian [98].

But, the regularization also allows to add

priror knowledge. We introduce the fixed reg-

ularization

RF (µ) =
1
2
‖µ− µF‖

2
WF

for that task. It allows to enforce a fixed guide-

line µF within Gaussian noise deviations. The

local weights WF allow to restrict the oper-

ation to a certain region in the image. This

way, also shape support can be given. Modi-

fications of that regularization compromise a

variable guideline µF := F (µ) where F can

be any function, in particualar any image fil-

ter. This technique was for example used to

try dictionary denoising as regularization [99].

Unfortunately, the cost function changes each

time F is evaluated, which is a problem for

some advanced solvers. Another possible

choice is µF := WF · µ/ ‖WF‖1 where ‖ � ‖1

denotes the sum over all weights. That allows

to favor a uniform region where the weights

are positive.

Closure

Designing a reconstruction framework comes

with several challenges if employed in an envi-

ronment where both, algorithm development

for a broad variety of use cases and routine

application of those algorithms are important.

First, we introduced different levels of com-

plexity, not only in the languages used, but

also in the APIs in order to keep the frame-

work versatile, but still easy to use. Sec-

Real-time iterative reconstruction for x-ray computed tomography 75

ond, we tried to find automatic settings for

all parameters that give reasonable results

for most applications. Of course, manually

tuned settings are still best. Third, the mod-

ular structure not only keeps the code well

organized, but allows to combine many inde-

pendent techniques and makes it easily to

add new features. The modules implemented

by various people trying to solve very specific

and different problems and the broad use of

the software at the various laboratory setups

within the chair show that these three con-

cepts turned out to be good choices.

76 Real-time iterative reconstruction for x-ray computed tomography

8. Integral optimization

After discussing ways to improve the us-

ability in the previous chapter, this chapter

discusses the second main obstacle for a

broader application of SIR: its performance.

We found that major advances in perfor-

mance can only be reached by an integral

optimization of the whole process. In our op-

timization we aim for a certain task, namely

iterative reconstruction for absorption micro-

CT, which was not done before in reason-

able time because of the vast amount of data.

We start with choosing the best-suiting mod-

ules and identifying the basic components

from our choice. The first set of optimizations

deals with the synergy of those components,

the second with the optimization of the com-

ponents itself and the third with optimizing the

solver.

Picture: Detailwork on a circuit board. c

8.1. The right components and
their synergy

The aim of our optimization is to make

the great advantages of iterative reconstruc-

tion available for high-resolution CT. Cur-

rent micro- or nano-CT devices are often

equipped (2 k)2 detectors. A tomographic

data set requries 3217 views according to

the Nyquist criterion as discussed in subsec-

tion 3.2.2 on page 22. The corresponding

tomogram has a size of (2 k)3 voxels. This is

[p] = 50 GiB of measured and [µ] = 32 GiB
of reconstruction data in float32 precision.

The system matrix A in SIR would consume

[p] × [µ] = 402 EiB if computed at once.

These large sizes make iterative reconstruc-

tion very challenging. Our approach is there-

fore taking the fastest components still rea-

sonable.

8.1.1. Cost function and solver

We decided for a very simple cost function

and fast solver in order to keep the computa-

tional effort as low as possible. The simplest

cost function from the ones presented in the

previous chapter is the one with the Gaussian

noise model (algorithm 3 on page 26) and a

regularizer that operates in the local neighbor-

hood. Assuming the measurements are not

in the ultra-low-dose regime, the Gaussian

noise model is well-suited [97, pp. 61-66]. As

regularization, the Huber regularization (algo-

rithm 4 on page 27) turned out to be a conve-

nient choice because of its edge-preserving

properties.

The solver chosen is the OS-OGM, the

fastest-converging choice currently available.

A simple implementation is shown in algo-

rithm 9.

Algorithm 9 The OS-OGM 2 [45, p. 101] im-
plemented in Python.

def _update_t(t, is_last_it):

f = 8. if is_last_it else 4.

return (1. + (1. + f * t**2)**.5) * .5

def os_ogm2(mu_, n_it, n_sub):

initialization

t = 1.

cmom_ = mu_.copy()

curv_ = curv()

for i in range(n_it):

m = i % n_sub

t_old = t

t = _update_t(t, i == n_it - 1)

momentum update

q_ = grad_sub(mu_, m) / curv_

cmom_ -= 2. * t_old * q_

image update

mu_ = (1. - 1. / t) * (mu_ - q_) +

(1. / t) * cmom_

return mu_

Where mu_ holds the image µ, n_it the number of itera-

tions, n_sub the number of subsets M, cmom_ the cumula-

tive momentum z, grad_sub the function grad LG,m (µ) =

M Aᵀm · (Am · µ− pm)|wm
+ λ grad R (µ) operating on sub-

set m and curv the function curv LG for a precomputable

curvature. Tailing underscores indicate arrays.

8.1.2. The Solver-specific basic
operations

A closer look at the definition of OS-OGM al-

lows to identify some more basic operations.

Only once:

A© a FP and
B© a BP for the precomputed curvature,
C© (optionally) computing the line integrals

(FF),
D© (optionally) a FF, and
E© (optionally) a BP for an FDK initial

guess.

For each iteration:

a© the REG gradient,
b© choosing and copying the views that be-

long to the current subset,
c© a FP and

80 Real-time iterative reconstruction for x-ray computed tomography

d© a BP for computing the gradient of the

data term, and
e© updating the reconstruction volume and

the cumulative momentum.

At the beginning, the precomputable curva-

ture is generated (operations A© and B©).

According to the derivations of the costfunc-

tion in appendix A, it depends only on the

scan geometry and array dimensions, but not

on the actual guess µ. It can be computed

during data acquisition or loading. The cur-

vature for the Huber regularizer is constant

and therefore simply added to the curvature

of the data term, which is not an extra step in

the operations defined above.

For absorption tomography, the measured in-

tensities I have to be converted to the line

integrals p by applying the negative logarithm.

This step is carried out with an additional fea-

ture of the FF implementation on multi-GPUs

(operation C©).

A blurry FDK turned out to be a good ini-

tial guess (operations D© and E©). The

blurriness can be generated with a modified

Fourier filter in FF.

Choosing the views pm for the current subset

m in bit-reversal order (operation b©) involves

a copy process, because the data has to be

stored in a contiguous C-order for the FP and

BP.

The difference of the forward model (oper-

ation c©) to the measured data pm in the

(subset) gradient function grad LG,m (µ) can

be computed in-place within the BP (opera-

tion d©), if the weights wm are 1 for simplicity.

In-place functions are important to save mem-

ory.

The update of the current guess µ and the

cumulative momentum z (operation e©) can

also be carried out in-place. Updating the

scalar variable t is not considered as an extra

operation.

8.1.3. Handling the small operations

The two smaller operations, namely copying

views into the right order (operation b©) and

the update (operation e©) are expected to be

limited by the memory transfer independent

of the hardware. The small computational

work requires at most single add or multiply

operations. We preferred CPUs over GPUs

for those tasks.

First, GPU computing always involves some

overhead for compiling kernels and schedul-

ing. Second, the theoretical data throughput

to the four GPU devices is still slower than

the one of the DDR4 RAM bus. The fastest

transfers possible are over Direct memory ac-

cess (DMA), which is a technique allowing to

transfer data directly from RAM over PCIe to

the four GPU devices. Using PCIe 3.0 16x,

the resulting total theoretical throughput is

62 GiB s−1 for all four devices. This transfer

rate is still slower than the theoretical through-

put of the DDR4 RAM bus to the CPUs which

is 68 GiB s−1 over the four available lanes.

The implementation was carried out with a

multi-threaded for loop using OpenMP. Ac-

cording to the gcc C compiler, the loop could

additionally be fully vectorized with SIMD op-

erations (compiler flag -fopt-info).

8.1.4. REG on multi-CPU or -GPU

The last remaining choice is the hardware for

REG (operation a©), which we had to leave

open to the actual application in chapter 6

about the building blocks.

As the gradient of the data term and the reg-

ularization can be computed independently

from each other, the first idea is to use the

idle CPUs for the regularization while the data

term is handled on the GPUs. We showed

that it is even possible to synchronize both

such that they take equally long to exploit the

Real-time iterative reconstruction for x-ray computed tomography 81

300

1 s

3 s

number of views per subset

2 s

4 s

0 s
400 500 600 700 800

GPU2016—CPU

GPU—GPU REG time

GPU—CPU

Figure 20 Mean runtime for the gradient on
heterogeneous hardware.
The figure shows the mean total runtime and the standard
deviation for computing the gradient for several iterations of
SIR over different numbers of views per subset. We
compare three different implementations represented by the
three colors. The time required for the regularization is
indicated by a dashed line in the corresponding color.
The data labels indicate the hardware used for computing
the contribution of the data term (FP and BP) and the
regularization (REG) to the total gradient. If REG runs on
CPUs, it is executed parallel to FP and BP which always run
on GPUs. We compare an older, more data-hungry
implementation of the projectors [87] (orange) with the
recent one (green) and a serial all-GPU solution (blue).
Details about the comparison can be found in the main text.
The high performance of the GPU REG implementation
makes the all-GPU solution the fastest one.

hardware best [87]. However, we saw some

strange behavior that is depicted in figure 20.

The runtime of the regularization became de-

pendent on the number of views per subset

(orange line). While the runtime of the data

term is expected to show roughly a linear de-

pendence of the number of views, the regular-

ization term stays exactly the same operation

with the same computational effort. The de-

pendence on the number of views shows a

mutual dependence of both processes which

was assumed to be caused by the common

memory bus. This assumption was also sup-

ported by the GPU profilings of the projectors.

They showed the usually high transfer rates

alternatingly only for one GPU at a time. In

conclusion, the memory throughput was not

high enough to supply both processes.

An upgrade of the projectors was able to de-

crease the high demand of data by decreas-

ing the number of slice chunks to a minimum

as described in section 6.3 above. The result

is a lower dependence of REG on the num-

ber of views but the big variations in the total

runtime and the slight slant of the REG curve

(green line) still indicate some mutual block-

ing. Furthermore, the total time is dominated

by the regularization term for less than about

700 views per subset, whereas it is expected

to be by far the less demanding operation. In

summary, the idea to run the two parts of the

gradient in parallel on GPUs and CPUs did

not work reasonably. In contrast, the mutu-

ally blocking memory transfers prevented the

speedup usually gained by more subsets in

the orderd-subset solvers.

The sequential all-GPU implementation, in

contrast, shows a significant decrease in run-

time for less views. Comparing the green

(dashed) line and the blue dashed line shows

the difference in performance of REG on

multi-CPUs and GPUs, which is obviously

more beneficial than using both architec-

tures [100].

8.2. Component-wise
optimization

A great benefit a sequential all-GPU solution

is that improving one component directly in-

fluences the whole iterative reconstruction.

Especially for FP and BP choosing the GPU-

intrinsic kernel parameters make a great dif-

ference. Those critical parameters are the

kernel dimensions and the walk parameter k.

Many effects depend on the choice of those

parameters, especially how good the auto-

matic image cache works, coalesced mem-

82 Real-time iterative reconstruction for x-ray computed tomography

ory access and concurrent data exchange

via PCIe. As REG and FF are both already

transfer limited, speeding up the kernel run-

time would not be beneficial. Therefore, we

restrict ourselves to FP and BP only.

A common measure for the performance of

tomographic projectors are GUPS (gigaup-

dates per second) [101]. It is defined as

GUPS =
#x #y #z #ϕ

t
10−9

including the volume measures, the number

of views and the execution time t. We always

evaluate the GPUS per device and thus multi-

ply the runtime with the number of devices.

The hardware used for the tests was a sin-

gle compute server holding four NVIDIA

GeForce GTX Titan X GPU devices. Each

provides 3072 threads with a clock frequency

of 1.0 GHz and holds 12 GiB of graphics

memory. Each test run consisted of one

warmup run and five subsequent runs with

some idle time in between to cool down the

device. The performance displayed is always

the best of those six in order to rule out single

performance drops.

8.2.1. The workgroup shape

The smallest organization unit of threads is

called a workgroup as explained in section 5.2

on page 49. We chose a workgroup size

of 512, which is usually the greatest divider

of the total number of threads available on

different devices. The indices assigned to

the threads can have up to three dimensions

which goes well with the indices of the three-

dimensional volumes in tomographic recon-

struction. Therefore, also the total workgroup

size can be distributed over those three di-

mensions. The kernel shape has a great ef-

fect on the memory access pattern and can

result in good or bad caching.

First, it can make a great difference which

of the three kernel dimensions is assigned

to which dimension in memory. Second,

if the best of the six possible configura-

tions is found, the actual dimensions have

to be found. Unfortunately, there are much

more possibilities. To prevent unnecessary if-

branches in the kernel, the dimensions of the

output volumes on the GPU are extended

to be a multiple of the kernel dimensions.

The third optimization is the number of con-

secutive voxels in the y-direction that is han-

dled per thread. We called it the kernel walk

parameter k. It was first introduced for the

Nvidia Kepler GPU architecture [102].

The fastest order of work group dimensions

turned out to be #U, #V, #A running along

the dimensions u, v,ϕ for the FP and #Y, #Z,

#X running along the dimensions y, z, x for

the BP. Figure 21 shows the performance for

all possible shape settings with the restric-

tion that the total size is 512. The triangular

subplots show the plane

#U #V #A = 512 | log2

log2 (#U) + log2 (#V) + log2 (#A) = 9

for the FP and analog for the BP.

Fortunately, the best settings (marked with

the little star) are mostly very close for differ-

ent data sizes. The best common settings

are

#U-#V-#A = 4-16-8 for the FP

#X-#Y-#Z = 64-2-4 for the BP.

We considered the performance for big data

more important than for small data, where the

runtime is short anyways.

The big differences in performance can be

traced back to several reasons. First, the

memory access patterns are different for dif-

Real-time iterative reconstruction for x-ray computed tomography 83

A B

DC

FE

0 50

1 2 4 8 16 32 64 128 256 512

1

512
256

128
64

32
16

8
4

2

#V

#A #U

1
2

4
8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256 512

1

512
256

128
64

32
16

8
4

2

#V

#A #U

1
2

4
8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256 512

1

512
256

128
64

32
16

8
4

2

#V

#A #U

1
2

4
8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256 512

1

512
256

128
64

32
16

8
4

2

#V

#A #U

1
2

4
8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256 512

1

512
256

128
64

32
16

8
4

2

#V

#A #U

1
2

4
8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256 512

1

512
256

128
64

32
16

8
4

2

#V

#A #U

1
2

4
8

16

32

64

128

256

512

FP-2048 (3217) FP-2048 (161)

FP-1024 (161)FP-1024 (1609)

FP-512 (161)FP-512 (805)

(Figure 21) Performance of FP and BP over the workgroup shape. Full caption on page 86.

84 Real-time iterative reconstruction for x-ray computed tomography

G H

JI

LK

0 110

BP-2048 (3217) BP-2048 (161)

BP-1024 (161)BP-1024 (1609)

BP-512 (161)BP-512 (805)

1 2 4 8 16 32 64 128 256 512

1

512
256

128
64

32
16

8
4

2

#Y

#Z #X

1
2

4
8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256 512

1

512
256

128
64

32
16

8
4

2

#Y

#Z #X

1
2

4
8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256 512

1

512
256

128
64

32
16

8
4

2

#Y

#Z #X

1
2

4
8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256 512

1

512
256

128
64

32
16

8
4

2

#Y

#Z #X

1
2

4
8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256 512

1

512
256

128
64

32
16

8
4

2

#Y

#Z #X

1
2

4
8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256 512

1

512
256

128
64

32
16

8
4

2

#Y

#Z #X

1
2

4
8

16

32

64

128

256

512

(Figure 21) Performance of FP and BP over the workgroup shape. Full caption on the following page.

Real-time iterative reconstruction for x-ray computed tomography 85

J Figure 21 Performance of FP and BP over the
workgroup shape.
The plots on the previous two pages show the performance
of the FP and BP in GPUS. Each data point is the maximum
of six subsequent runs. Six triangular subplots (A–F and
G–L) always show the results for different data sizes, which
are encoded in the label at the upper right of each triangle.
After the type of operation, it shows the side length of the
cubic test volume (#x, #y, #z), which equals the side length
of the quadratic virtual detector (#u, #v). The number of
views involved (#ϕ) is given in round brackets and was
chosen according to the Nyquist criterion (left column; A, C,
E, G, I, K) or a number typical for ordered-subset solvers
(right column; B, D, F, H, J, L). All tests used the same
cone-beam with an opening angle of 19.4°. The walk
parameter in the BP was set to k = 32.
Each data point is represented by a circle. Small numbers
inside show the performance in GUPS per device. The size
of the circles relates the results within a triangle (biggest is
best), the color within all other triangles of the same
operation (colorbar at the bottom). A little star marks the
best setting per triangle. Crossed-out data points mark
positions where the automatic splitting does not succeed
and results in memory overflow. The driver of our GPUs
does not allow workgroup dimension with #A > 64 for the
FP and #X > 64 for the BP.

ferent workgroup shapes, especially the num-

ber of image cache hits. Second, for the BP,

the results are shifted towards smaller #Y be-

cause of the kernel walk parameter k = 32
which multiplies the kernel footprint in mem-

ory along the y dimension. Third, our memory

splitting techniques produce overhead for the

data transfers over the PCIe bus for some

configurations. Appendix D shows the corre-

sponding results if the transfer times are not

considered for computing the performance.

Comparing figure 21 and figure 29 in the ap-

pendix, the maximum performance possible

with and without transfers differs the more the

less data is considered. In the 2048-cubed

case with the full set of views (plots A and G),

it is almost equal. That means, that transfers

are hidden very efficiently for big data sets.

For smaller data sets, it could be more bene-

ficial to split up the data into more chunks to

hide more transfers.

8.2.2. Walk parameter

The other parameter still left for optimization

is the walk parameter k. The performance

for different settings are shown in figure 22.

To rule out that the performance is higher for

a slightly different choice of the workgroup

shape together with a certain k, not only the

best (star markers) choice has been investi-

gated, but also some others that resulted in a

good performance before.

The series over different walk parameters sug-

gests either 32 or 64 as best common choice.

Despite of the slightly smaller performance,

we decided for 32 in order to improve the

slice chunk splitting for smaller data sets in

y. As the slice chunk size is computed as

k #Y = 64, a data set can take advantage of

all four GPUs only if #y ≥ k #Y #d = 256
where #d is the number of devices. For

k = 64 this lower limit would already be 512.

Notably, our k is a lot higher then k = 4 which

was suggested by the time the walk param-

eter was first introduced [102]. The reason

for the difference is very probably the greater

caching capabilities of recent GPUs. This set-

ting was also applied for the workgroup test

above.

8.3. Optimizing the minimizer

Having chosen the optimum components,

their synergy and intrinsic parameters the last

item to tune in the reconstruction chain is

the solver. Apart from the number of itera-

tions, which depends on the data set, there

is another parameter: the number of subsets.

It determines the number of views investi-

gated per iteration. Less views result in less

time per iteration, but too few might result

in a worse convergence rate. The question

treated in this section is how many subsets

86 Real-time iterative reconstruction for x-ray computed tomography

result in the fastest convergence per time.

Two series of measurements are required for

the answer. The first is a series of SIR recon-

structions on the same problem using differ-

ent numbers of subsets. In order to guaranty

convergence, we use full cycles only and ap-

pend one iteration that uses all views. That

choice makes the number of iterations a mul-

tiple of the number of subsets plus one and

thus different for each run. Two quantities

have to be recorded for each setting. The first

is the reconstruction time and the second the

state of convergence.

The second measurement is necessary to re-

late these two quantities to one another. As

the state of convergence does not change

linearly with time, the exact relationship has

to be measured. The measurement was car-

ried out with help of a SIR where the current

guess was recorded after each iteration. We

used a very conservative choice of ten sub-

sets for 3217 views compared the original

paper of the very similar OS-MOM solver sug-

gesting 24 subsets for 2934 views [44] which

are even distributed over several turns of a

helical scan.

The last element missing to carry out the

subset optimization is a scalar measure for

evaluating the state of convergence. We

decided for one sophisticated measure, the

Figure 22 Performance of the BP over the walk
parameter. I
The plot shows the performance (in GUPS) over the walk
parameter k in the BP. It consists of many data series
differing in data size (color) and workgroup shape (marker
shape) which are explained in the legend at the bottom. The
notation for the data sizes is the same as in figure 21. The
three numbers in sequence used to label the workgroup
shape stand for the kernel dimensions #X-#Y-#Z. Similar to
the columns used to visualize the performance over the
workgroup shape, the upper row here shows data sets with a
full angular range (A) and the lower row (B) a set of
corresponding typical subset versions. The best setting for
each series is labeled with the exact performance value
(some overlapping labels were removed). The setting that
was considered as the best overall setting is marked with a
vertical dotted line.

100

20

10

80

60

40

80

70

60

50

40

30

20

1 16 32 64 128

BP-2048 (3217) BP-1024 (1609)

walk parameter k

BP-512 (805) BP-... (161)

64-2-4 32-2-8 16-2-16

4-2-16 8-2-32

A

B

90

70

50

30

pe
rfo

rm
an

ce
[G

U
PS

]
pe

rfo
rm

an
ce

[G
U

PS
]

Real-time iterative reconstruction for x-ray computed tomography 87

80 %

100 %

60 %

0 %
0

iteration

30 60 90 120 150

SSIM relative RMS

2 %

4 % B

A
40 %

Figure 23 A reference for the convergence of SIR.
The state of convergence over the iterations of a reference
SIR is required to evaluate the final convergence of each
SIR from the subset optimization series. Each data point
shows the comparison of the reconstructed tomogram after
the given number of iterations with the final reconstruction
after 200 iterations. The upper plot (A) uses the structural
similarity index (SSIM) as measure, the lower plot (B) uses
the root mean square (RMS) normalized to the value range
of the final reconstruction. A horizontal gray bar in the
background labels the range of values covered by the results
from the subset test series. A vertical bar marks the
corresponding range of reference iterations to which those
values map according to the measured curve.

structural similarity index (SSIM) [103, 104],

and one classic measure, the relative root

mean square (RMS), between the current

guess and the converged state. The recon-

struction was considered as fully converged

after 200 iterations which is justified by the

little changes happening with respect to these

two measures long time before this high num-

ber of iterations is reached.

The data set used for the evaluation is

a micro-CT measurement of a real object,

which will be described in detail in the next

chapter. In order to save compute time, the in-

nermost 64 slices were considered significant

enough to compute the required measures.

Figure 23 shows the resulting state of con-

vergence over the iterations. The data points

were recorded only at the given points. The

last point of measurement taken after the full

200 iterations is not shown, because it was

used as the fully converged reference.

Connecting the data points with piecewise lin-

ear function allows to map the final state of

convergence from each reconstruction in the

subset series to the corresponding number

of iterations the reference SIR would have re-

quired. For example, the final reconstruction

from the test with 17 subsets resulted in a

SSIM of 90.1 %. According to the recorded

curve, this value is equivalent to 17.3 itera-

tions of the reference SIR. Dividing the time

each subset test took by its corresponding

number of reference iterations gives the time

per reference iteration, which is a good mea-

sure for the performance of each setting.

As a reference iteration is not a very intuitive

measure and further depends on the arbitrary

choice of the reference SIR, this performance

measure can be scaled by the number of ref-

erence iterations, the most performant setting

reached. The result is the theoretical time

each subset test would have taken to reach

the same state of convergence as the best

setting. Figure 24 displays this quantity for all

subset tests we carried out.

The decrease in time until the optimum can

be explained by the smaller number of views

that have to be processed for each subset. A

comparison with the high number of subsets

used in the original publication of the OS-

MOM [44] suggests that the increase after-

wards is presumably not due to a decreased

solver convergence for more subsets. Rather,

the runtime for FP and BP decreases slower

as they turn more and more from a compute-

limited regime into a transfer-limited regime.

Apart from a look at the GPU profilings, which

are not shown here, this argumentation is

strengthened by comparing figure 21 B and H

88 Real-time iterative reconstruction for x-ray computed tomography

5
number of subsets

1:15 h

0:00 h
101 15 20 25

1:00 h

0:15 h

0:30 h

0:45 h

SSIM relative RMS

Figure 24 Runtime for different numbers of subsets in
SIR until an equal state of convergence.
A series of SIR test runs carried out with different numbers
of subsets reveals the fastest converging setting for our
implementation. The curve shows the time the different
reconstructions required normalized to the state of
convergence of the fastest setting. Two different measures
were acquired to rate the state of convergence resulting in
slightly different normalizations. Details about the
normalization are shown in figure 23. The clear optimum can
be found at 17 subsets which is highlighted by the dashed
line. It required 16 min for the test. The worst setting (one
subset) took almost five times longer.

with figure 29 B and H in the appendix. The

plots show that the performance of the subset

FP and BP are significantly faster if transfers

are not considered in the performance eval-

uation. This behavior is much less dominant

for the corresponding operations on the full

set of views, which are shown in subfigures A

and G, respectively. The subset configuration

of 161 views, which is shown in the figure,

equals exactly the configuration required for

the 20 subset test here.

Conclusion

This chapter showed that, independent of

the performance of the implementation, the

choice of the right parts and their synergy,

the choice of the GPU-internal parameters

and the choice of the right number of sub-

sets together can make a difference of more

then two orders of magnitude in performance.

Conceptionally, we saw that data and regu-

larization term for the gradient are best com-

puted in sequence, both on GPUs, and that

the best number of subsets depends on the

transfer and compute performance of FP and

BP and thus not only on the implementation,

but also on the hardware.

Real-time iterative reconstruction for x-ray computed tomography 89

Part III

Results

Having spent three chapters on implementation and optimization, it is finally time to see the

fruit of the labor. A real sample investigated in a high-resolution micro-CT is used to evaluate if

our suggested methods are suited to make the benefits of iterative reconstruction available

for high-resolution CT. Deciding questions for its convenience are if it can keep up with the

measurement process, how long it takes until the result is ready and if there is still room for fine

tuning or for more sophisticated models in the future. The last chapter of this thesis (chapter 9)

is dedicated to these questions.

9. Real-time SIR for micro-CT

Many applications on moderate data sizes

have shown the great benefits of SIR for im-

age quality compared to analytical methods.

This fact holds especially for sparse angular

sampling and noisy data. The last chapter of

this thesis evaluates the benefits of SIR for

high-resolution CT in a scientific or industrial

environment. It will turn out that reconstruc-

tion time is a deciding factor. But before we

are able to benchmark the algorithm, some

considerations about the actual task and the

constraints of that environment are neces-

sary. Further, as the runtime goes quasi lin-

early with the number of iterations and the

image quality improves with the number of

iterations until convergence, the actual task

for the benchmark has to be clearly defined.

Picture: An old-school stopwatch. c

9.1. Constraints and potential

The most common environments for micro

and nano CT devices are industry and sci-

ence. Typical fields of application are er-

ror analysis, material research and structure

analysis. Its high investment and mainte-

nance costs in addition to the long acquisition

times of typically several hours per sample of-

ten require those devices to be constantly in

use in order to be profitable. Long acquisition

times also prevent micro CT from their near-

or even in-line application. The profound in-

sights possible with CT would be a great as-

set for inspection, but the state-of-the-art tech-

nique is too slow to be integrated into most

established processes. These circumstances

form the setting for new reconstruction tech-

niques. They impose some constraints, but

also give a lot of room for improvement.

9.1.1. Time

Heading more towards near- or in-line appli-

cation, time is a crucial issue. On the one

hand, a time-critical environment poses a

great constraint on the reconstruction algo-

rithm. It has to work real-time. Using the

following very common definition, that means

“pertaining to the processing of

data by a computer in connection

with another process outside the

computer according to time require-

ments imposed by the outside pro-

cess.” [105]

For CT, the reconstruction algorithm has to

be faster than the acquisition time in order not

to limit the throughput of a device.

On the other hand, we see a great potential

for SIR to make micro CT more profitable and

push it a big step closer to the production line

for several reasons.

First, SIR is less picky on the acquisi-

tion parameters than the state-of-the-art ap-

proaches. Both of the two most deciding fac-

tors for the total acquisition time can be re-

duced: the number of views which determine

the angular sampling [106], and the exposure

time which determines the noise level as will

be shown afterwards.

Second, SIR has the possibility to lay the

emphasis of the reconstruction to a certain

image quality feature. This asset is very valu-

able in the application, because different prob-

lems have different needs. As an example, a

subsequent material segmentation or surface

detection profits rather from a better SNR,

whereas a metrology application measuring

distances or absolute positions would prefer

more well-defined edges. The reconstruction

parameter allows to tune the same measure-

ment for the optimum result regarding the re-

quired quantity. Thus, a fast low-quality mea-

surement reconstructed with SIR may yield

similar or better results for a certain applica-

tion than a high-quality measurement recon-

structed with an analytical approach.

The benchmark section below will measure

the reconstruction time and evaluate the total

speedup that is possible by SIR for a prede-

fined task.

9.1.2. Image quality

There is no general definition of a good or

bad image. The measure for quality always

depends on the application and still there are

different choices of metrics that allow to put

image quality into a number.

For medical CT, several task-based ap-

proaches were suggested to evaluate the

quality of a tomogram [88, e. g.]. However,

what counts in the end, is how certain a radi-

ologist can diagnose diseases from the result.

96 Real-time iterative reconstruction for x-ray computed tomography

This property can hardly be put into a number

or related to a certain image quality metric.

In micro- and nano-CT, the situation is for-

tunately clearer for most applications. The

images are often evaluated by software that

has well-defined requirements or the manual

evaluation concentrates on a few very well-

defined aspects.

Here are some of the most common image

quality metrics:

SSIM the structural similarity index is a mod-

ern measure to compare the similarity of

two images, especially of an image to a ref-

erence image. Common image errors like

noise, distortions or compression artifacts

result in a smaller similarity than changes

considered less serious by human percep-

tion like differences in brightness, shifting

or rescaling. It considers the mean val-

ues, standard deviations and covariances

in local areas of both images. The values

returned are in the range [0, 1], where 1 is

reserved for identical images. [103, 104]

RMS the root-mean-square error can also

be used to compare an image µ to a refer-

ence image µref:

RMS =
1√
N
‖µ− µref‖2

where N = ‖µ‖0 is the number of pixel or

voxel elements in µ. It returns a quantita-

tive measure for the noise level if a noisy

image is compared against a noise-free ref-

erence. Feature mismatches can also be

detected. As the absolute value is usually

not meaningful without knowing the value

range of the two images, we use the rela-

tive RMS in this thesis, which is computed

by normalizing the RMS to the value range

of the reference.

histogram entropy is defined as

SE = − ∑
b∈[0,#b[

Hµ (b) log2

(
Hµ (b)

)
where Hµ (b) is the histogram of µ con-

taining #b bins [107, e. g.]. It is a mea-

sure for the sharpness of the histogram

peaks which becomes worse with increas-

ing noise or unsharpness, for example.

SNR the signal-to-noise ratio can be mea-

sured by selecting two regions in the im-

age. One in the background for measuring

its mean value µ̄BG and one on a homoge-

neous region on the signal for measuring

the signal strength µ̄FG and the standard

deviation σFG. The SNR is then obtained

by

SNR =
µ̄FG − µ̄BG

σFG
.

It is a good measure to access the noise

level.

edge FWHM is the measure we use to char-

acterize edges. First, we select a rectan-

gular area containing only a straight edge.

Second, the direction of the edge is de-

termined by a linear fit. Third, we use a

parallel-beam forward projector to project

the rectangular area along the edge direc-

tion. Fourth, the full-width at half-maximum

(FWHM) of a Gaussian fit on the derivative

of the resulting line profile is taken as width

of the edge. This rather complicated proce-

dure allows to evaluate edges not only at a

very local spot, but also considers whether

an edge is fringed.

None of these measures can be regarded

as the one quality criterion to characterize

an image and still, visual inspection is some-

times the only meaningful method. But these

measures can be very helpful if quality has to

be put in a number, especially for comparing

quality. The amount of improvement possible

depends strongly on the actual application,

Real-time iterative reconstruction for x-ray computed tomography 97

including for example the complexity of the

structure of the measured sample.

SIR is able to outperform conventional meth-

ods either by using the same measurement

and reaching higher image quality or by re-

laxing the high demands on the acquisition

and reaching the equal image quality. A de-

tailed quality investigation will be shown for

the benchmark test sample below.

9.2. Benchmark and profilings

The benchmark test presented in this section

is meant to serve as an exemplary, a prove-

of-principal example of the value added to

micro- or nano-CT by introducing SIR. It was

designed with the pre-defined goal to reduce

the exposure time by a factor of six and thus

make the acquisition faster. The number of

views was intentionally not decreased so that

the reconstruction time depends only of the

choice of algorithms and their implementation,

but not in the amount of data involved.

9.2.1. Sample and setup

As test sample we have chosen a ball pen.

Of course, it is not directly relevant to industry

or science, which is also not important for our

benchmark, but it has several convincing fea-

tures. First, it is a sample composed mainly of

one material containing many clear edges as

many industrial samples do. Several straight

edges make it easy to apply edge quality met-

rics. Small impurities in the material allow to

test the capability of SIR to preserve small

features, which sometimes get lost, if the reg-

ularization is not configured well. Second,

there is no material involved that would re-

quire extra beam-hardening correction, which

is a problem for many applications, but not

meant to be solved in our benchmark. Third,

it fits into the field of view of the detector so

that special local tomography treatment is not

required.

The micro-CT device used is a Zeiss Versa

XRM 500. It was used in the full 2k mode,

meaning that each projection view has a size

of (2048 px)2 and the corresponding recon-

struction volume a size of (2048 vx)3. The

opening angle is 19.4° in fan and cone direc-

tion and the resulting voxel size is (6.83µm)3.

In order to fulfill the Nyquist criterion, 3217

views were taken.

There were two measurements taken. A ref-

erence measurement at 30 s exposure time

per view (29:32 h in total) resulting in a decent

image quality with a usual FDK reconstruc-

tion and the benchmark measurement at 5 s
exposure time per view (6:45 h in total). It is

important to note, that the reference is not

meant to be seen as gold standard, but rather

defining the quality level we want to obtain.

We decided for the simple Gaussian data

term and a Huber regularization as presented

before in chapter 8. The reconstruction com-

puter was equipped with the maximum perfor-

mance available at that time. It holds

• four NVIDIA GeForce GTX Titan X

(Maxwell) GPU devices each providing

3072 threads with a clock frequency of

1.0 GHz and holding 12 GiB of graphics

memory,

• two Intel Xeon E5-2667 v3 CPUs with

a clock frequency of 3.2 GHz supporting

AVX 2 vectorization and 16 threads in total

(Hyperthreading deactivated), and

• 512 GiB DDR4 RAM operating at

2133 MHz organized in four channels and

16 banks.

98 Real-time iterative reconstruction for x-ray computed tomography

9.2.2. Finding the reconstruction
settings

Before the actual benchmark can be per-

formed, the required reconstruction param-

eters and number of iterations have to be de-

termined. They have to result in the fastest re-

construction possible that reaches the same

image quality as the reference measurement.

The transition parameter γ of the Huber regu-

larization has been guessed from the width of

the signal peak in the histogram of the FDK

reconstruction. Its strength λ was determined

empirically by applying the FDK normalization

proposed in chapter 7 and running several

subsequent subvolume reconstructions until

the best setting was reached, evaluated by

visual comparison.

The number of iterations has been chosen

from a look on the behavior of different im-

age quality measures over the number of it-

erations up to 200, which was considered to

be the fully converged state. Figure 25 sug-

gests a value of 17 plus the final iteration on

all views suggested in subsection 3.3.4. No-

tably, it was possible to choose a multiple of

the optimum-performance setting found in the

previous chapter.

All metric plots were oriented such that better

values result in a lower data point. The only

metric which does not improve already for a

small number of iterations is the edge FWHM.

Two reasons speak for such a behavior, both

going back to the edge-preserving Huber

prior. The first is the fact that Huber assumes

a linear penalty for edges which does not

smoothen edges at all, but only with reduced

strength. This claim is supported by the low

error in the Gaussian fit in table 2 indicating

a close to Gaussian smoothed edge. The

second is that a reduced edge smoothening

does not mean a more correct edge. Huber-

smoothened edges often become sharp but

hist. entropy SNR edge FWHM

FDK/5 sec 42 % 0.9 2.28± 0.16
SIR/5 sec 36 % 3.5 3.43± 0.04
FDK/30 sec 37 % 2.5 3.38± 0.22

Table 2 Absolute quality measures reached for the
performance benchmark.
The table shows the quality reached in the FDK (top) and for
the choice of SIR parameters that are used in the
performance benchmark (middle) compared to the
30 sec-exposure high-statistics reference (bottom). SIR
exceeds the edge quality of the reference only by a little, but
its histogram entropy and SNR are quite superior.

straight edges tend to become slightly jagged.

Our way of evaluating the edge quality along

a small straight segment reflects that effect in

the quality plot. Figure 26 C and D show the

areas where the edge quality and the SNR

were measured inside the registered recon-

structions.

The plot also shows that the chosen num-

ber of iterations is not close to the converged

state. Rather it was chosen to reproduce the

quality of the reference. Fortunately the small

region where SNR and histogram entropy are

good enough already and the edge still not

affected too much contains one of the set-

tings for optimum performance making the

final choice easy. Table 2 shows the quality

values reached for the chosen setting.

9.2.3. Visual quality assessment

Optimizing the reconstruction parameters re-

quired some representative metrics that allow

to express quality in single numbers. But still,

we consider the visual quality inspection still

very meaningful for rating whether the quality

of our chosen SIR parameters is high enough

for a valid speed comparison.

Figure 26 shows representative slices of the

different measurements and reconstruction

techniques and discusses their quality. The

low-statistics SIR reconstruction shows the

same level of detail as the high-statistics refer-

ence. It shall be noted that the coarser noise

Real-time iterative reconstruction for x-ray computed tomography 99

30 %

40 %

35 %

FDK

reference

chosen SIR

SIR

1

4.0

5.0

21 41 61 81 101 121 141 161 181 201

FDK
reference

chosen SIR

SIR

3.0

2.0

2.0

0.0
FDK

reference

chosen SIR

SIR

4.0

6.0

Iteration

0 %

2 %

4 %

6 %

8 %

100 %

75 %

50 %

25 %

0 %

ed
ge

FW
H

M
S

N
R

hi
st

og
ra

m
en

tro
py

S
S

IM
re

la
tiv

e
R

M
S

A

B

C

D

E

SIR (vs. converged SIR)

SIR (vs. reference)

FDK resp.

SIR (vs. converged SIR)

SIR (vs. reference)

FDK resp.

1 21 41 61 81 101 121 141

Figure 25 Several quality measures over the iterations.
These global image quality measures were recorded to compare our low-statistics SIR benchmark (in blue) reconstruction to
the high-statistics FDK reference (in green) and choose the minimum number of iterations required to reach equal quality.
Linear interpolation was applied between the actual points of measurement (blue dots). The quality level of the low-statistics
FDK is indicated by a gray line.
The two relative measures (A, B) are each evaluated once compared to the high-statistics FDK (solid line) and once to the fully
converged SIR (at 200 iterations, dashed line). In the absolute measures (C–E) a dotted line indicates the quality level of the
chosen SIR. For the edge FWHM (E), confidence areas are shown instead of line plots. SSIM (A) and SNR (D) are shown with
inverted vertical axis so that better quality results in a lower curve. Notably, the edge quality first decreases with more
iterations due to the Huber regularization. We chose a number of 18 iterations for the benchmark (dotted vertical line). At this
point, the edge quality (E) is quasi the same as in the reference and the noise properties represented by the histogram entropy
(C) and the SNR (D) are well improved.

100 Real-time iterative reconstruction for x-ray computed tomography

→

−0.1 cm−1

to A to B to C

1.0 cm−1 1.0 cm−1−0.1 cm−1 −0.1 cm−1 1.0 cm−1

←
1

m
m

A FDK/5 sec

B SIR/5 sec

C

edge meas.

FDK/30 sec

Figure 26 Benchmark quality reference: A real sample.
The figure shows from top to bottom the results of different
combinations of exposure time and reconstruction algorithm
applied on a ball-pen sample. A low-statistics measurement
with 5 sec exposure time was reconstructed with FDK (A)
and proposed SIR (B). A high-statistics FDK (C)
reconstructed from 30 sec exposure time per view serves as
quality reference for evaluating the benefit of SIR. Each view
is an enlarged area inside coregistered reconstructions. The
whole slice is shown below the caption (D). A blue rectangle
marks the enlarged area. Green rectangles in C and D mark
the regions taken for different image quality measures that
were discussed in figure 25. The bottom row shows the
histograms belonging to figures A–C. Black vertical lines
mark the gray-scale window shown. Scalebars can be found
at the right edge of figure C and D.
The low-statistics FDK shows the noisy appearance typically
resulting from a fast measurement in combination with an
analytic reconstruction. In contrast to SIR, the histogram
does not allow to separate plastic and air. Five green arrows
in B mark impurities in the material, which got lost in the
FDK but can be revealed through SIR. The resulting contrast
is similar to the one in the reference. Comparing SIR to the
reference, the different noise texture makes it hard to
compare their quality. The finer noise of the reference is
more pleasing to the eye, but does not reveal more detail. A
comparison of the histograms even suggests clearly
improved signal separation for SIR.
Concluding, SIR can reconstruct all important details visible
in the reference and separate them very well from the noise.
Its coarser noise pattern is first unfamiliar, but on a second
look does not harm the image quality with respect to
contrast, sharpness or level of detail. Together with the
previously evaluated quality metrics, this result is the basis
for a fair benchmark test below.

→
←

10
m

m

D

enlarged area

SNR meas.

Real-time iterative reconstruction for x-ray computed tomography 101

pattern easily tricks the eye as it generates an

impression of roughness and unsharpness,

which is not reflected in the quantitative noise

and edge measurements above. As a reason,

we assume that the eye is much more efficient

in filtering high-frequency than low-frequency

noise. The reduced but coarser noise of SIR

thus looks quasi as severe as the noise in the

reference and somehow less pleasing. But,

for a machine trying material separation for

example, this subjective impression does not

play a role.

In summary, we assume the quality of SIR at

least as good as the reference. This finding

is the basis for a fair benchmark below. The

quantitative measurements investigated are

all in favor of SIR. The SNR is even 40 %
better. Also small details can successfully

be recovered by SIR as the comparison of

exemplary image slices showed. The higher

SNR helps to overcome the visual impression

of more roughness generated by the coarser

noise texture.

9.2.4. The actual gain of SIR for
micro-CT

The final outcome of the different investiga-

tions carried out in this thesis is illustrated

in figure 27. Three profiling plots show the

performance of SIR in 2k microCT. The whole

reconstruction has finished 23:37 min after

data acquisition is complete and always stays

below the 256 GB memory mark. That means

that it is over 17 times faster than the acqui-

sition and the maximum memory occupied is

only three times the amount of the input and

output volumes. That means that 2k SIR is

definitely feasible in real time on a single work-

station enabling a future four times higher ef-

ficiency of microCT devices. Compared to

currently possible improvements in hardware,

especially a higher source or detector effi-

ciency, this is a vast improvement at very low

cost.

The profiling shows that our implementation

is almost GPU-only. The remaining small

and memory-limited operations on CPU al-

low a very cost-efficient choice of CPU de-

vices. Further, our implementation is able

to benefit from the current intense GPU de-

velopments. By the time of the end of this

thesis, in 2017, the latest hardware available

was already claimed to be up to three times

faster than the hardware used for the bench-

mark [108]. This rapid performance boost

has for sure a great impact on our overall

performance.

A look on the already very good ratio of acqui-

sition and reconstruction time suggests a lot

of room left for further development. Possible

options are

• applying more of the inexpensive subset

iterations, e. g. until full convergence for

higher quality or less optimized and more

general-purpose use of SIR,

• using sparsely sampled data further in-

creasing performance linearly without

overhead,

• including more sophisticated data mod-

els incorporating Poisson noise for low

statistics [17], polychromatic spectra [96]

or source and detector blur [18],

• optimizing the acquisition together with the

reconstruction for a dedicated task or prior

measurement [92] to gain maximum per-

formance in near- or in-line applications.

Closure

The greatest benefits of SIR for microCT can

be found in the vast improvement of either

throughput or image quality and its open de-

102 Real-time iterative reconstruction for x-ray computed tomography

CPU

A

GPU

B
CPU

GPU

2 864 10 12 14 16 18 200 22

0 20 40

m
em

or
y

oc
cu

pa
tio

n

SIR runtime [min]

iteration runtime [s]

0 GB

256 GB

192 GB

128 GB

64 GBA© B© C© E©D©

a© c© d©b© e©

process runtime [h]

C

5 10 15

1© 2© 3© 4©
SIR

acqu.

20 250

preparation reconstruction

forward projector (FP) back projector (BP) regularizer (REG)

slice / update memory occupationlog / Fourier filter (FF)

Figure 27 Profiling SIR. This figure visualizes the required resources of the proposed iterative reconstruction approach over
time and how much benefit can be gained compared to the standard procedure using FDK. The underlying data is a
fully-sampled 2k micoCT dataset.
The horizontal bars in the upper plot (A) show all important processes on CPU and GPU for the whole SIR. A blue line
indicates the memory occupied during these processes. The total time sums up to 23:37 min. It can be divided into a
preparation phase (7:27 min) and a reconstruction phase (16:10 min). Preparation includes computing the curvature (A© and
B©), the line integrals (C©) and the FDK for the first guess (D© and E©). The projection data is loaded in the background

while the data-independent curvature is computed. The reconstruction includes 17 equal iterations on subsets and one final
iteration on all views.
One of the iterations is exemplarily shown enlarged on the lower left (B). The total time is 41.5 s. It includes computing the
gradient of the regularizer (a©) and the data term (b©, c© and d©) as well as the momentum and image update (e©). The
circled labels in subfigures A and B match the nomenclature of the solver-specific basic operations introduced in
subsection 8.1.2 on page 80. A legend for the colors can be found at the bottom of the figure.
Finally, the benefit of SIR over FDK for our showcase is illustrated on the lower right (C). It shows several consecutive
acquisitions of the same type as our test measurement (upper bar) with subsequent interlaced iterative reconstruction (lower
bar). The throughput of measured samples is clearly limited by the acquisition process (6:45 h each) making SIR a real-time
approach. The total width of the plot illustrates the time a single investigation of the same quality takes using conventional FDK
reconstruction (29:32 h). Small circled numbers enumerate the samples that can be measured in that time using SIR. The total
increase of throughput is 4.28.

Real-time iterative reconstruction for x-ray computed tomography 103

sign for including physical models that are

often cause to severe image artifacts. In

our benchmark, we replaced a long 2k high-

resolution measurement and FDK reconstruc-

tion with a shorter measurement and sub-

sequent SIR keeping the image quality as

similar as possible by several different mea-

sures. We were able to gain more than a

factor of four in speedup with a lot of room

still open for further improvement and future

developments.

104 Real-time iterative reconstruction for x-ray computed tomography

Outtake

We consider it fair to not only show the “good”

results in a scientific work but also some im-

pressions of what was considered “bad” or

“false” results. If a scientist passes a nega-

tive verdict on a result, the question for the

reason of the failure has to be answered. Oth-

erwise it would be unclear if our results tell

something about nature or if they are just our

presumptions and expectations reflected in

another form. Apart from that, some of the

images are almost artistic and nice to look at.

The misfits can be found in figure 28.

A

B

C

D

E F

G

Figure 28 Outtake.
(A) Result from a bug in the angle-splitting algorithm.
(B–D) Bugs that occured during the development of the
forwardprojector.
(E, F) The Shepp Logan Phantom reconstructed with a
buggy backprojector.
(G) A plastic phantom reconstructed with a wrong geometry.
All images are shown in the jet colormap.

Appendix

A.

Derivations of the cost function

Most solvers require derivatives of the cost

function as stated in subsection 3.3.4 on

page 28. Algorithm 10 summarizes the most

common ones.

Each derivation is calculated for

• the cost function with a Gaussian data

term as defined in algorithm 3 on page 26,

• the generic Gibbs neighborhood prior as

defined in algorithm 4 on page 27 assum-

ing a symmetric potential Ψ(t) = Ψ(−t),
i. e. Ψ′(t) = −Ψ′(−t),

• the Huber, Quadratic and TV penalty func-

tions, where the Huber penalty was de-

fined first in algorithm 4, and

• the Neighborhood prior on the Laplacian

assuming equally spaced voxels sepa-

rately in each spatial direction (i. e. ∆i,p =

∆i,n).

The gradient

The gradient is required in almost every

solver, because it gives the direction to the

minimum. It is the vector {∂k L}k for k ∈ [µ]

holding the first derivative of the cost function

in every direction µk. The factor 1/2 in the gra-

dient of the Gibbs prior vanishes considering

that each gradient between two neighbors is

computed from either side.

Deriving the Laplacian formulation addition-

ally requires considering the opposite neigh-

bor. In contrast to the gradient-based neigh-

borhood prior, some next neighbors are re-

quired to compute the gradient or the subse-

quent second-order derivatives.

The curvature

The curvature is the second derivative of a

paraboloid surrogate function around the cost

function. It is used by the SPS algorithm

and variants like the OS-SPS or OS-OGM

described in subsection 3.3.4. There are dif-

ferent possible definitions of the curvature

depending on the exactness of the surrogate.

The most popular one is independent from

µ. Therefore, it can be precomputed once for

the whole optimization.

For a very general regularizer R (µ) =

∑r Ψr ([C · µ]r), it writes

curv R = |C|ᵀ ·
(
diag

{
Ψ′′r (0)

}
r

)
· |C| · 1

where |C| denotes the element-wise absolute

of matrix C [44, eq. 7, p. 169].

The Hessian diagonal

The Hessian matrix Hess L = {∂k∂l L}k,l for

k, l ∈ [µ] would be the full second derivative

of the cost function. It is huge for usual to-

mographic problems and cannot be stored in

memory.

One way, to take advantage of it is by com-

puting only is diagonal. This approach is for

example used in some preconditioners. A

preconditioner T is a matrix that can be multi-

plied to an ill-posed linear problem

T · A · µ = T · p

like tomographic reconstruction. It leads to

the same solution as the original problem, but

is supposed to improve the speed of conver-

gence for the solver.

Algorithm 10 Derivatives of the cost function
Common derivatives of the SIR cost function with Gaussian noise model are

LG (µ) =
1
2
‖A · µ− p‖2

w + λ R (µ)

grad LG (µ) = Aᵀ · (A · µ− p)|w + λ grad R (µ)

curv LG = Aᵀ · (A · 1)|w + λ curv R

diag Hess LG (µ) = Aᵀ|2 · 1|w + λ diag Hess R (µ)

Hess d LG (µ) = Aᵀ · (A · d)|w + λ Hess d R (µ)

denom LG (µ) = ‖A · d‖2
w + λ denom R (µ)

with the according derivations of the Gibbs neighborhood prior

RG (µ) =
1
2 ∑

i∈[µ]
∑

n∈Ni

1
∆i,n

Ψ (∂n µi) with ∂n µi =
µi − µn

∆i,n

grad RG (µ) =

{
∑

n∈Nk

1
∆k,n

2 Ψ′ (∂n µk)

}
k

for k ∈ [µ]

curv RG =

{
2 ∑

n∈Nk

1
∆k,n

3 Ψ′′ (0)

}
k

diag Hess RG (µ) =

{
∑

n∈Nk

1
∆k,n

3 Ψ′′ (∂n µk)

}
k

Hess d RG (µ) =

{
∑

n∈Nk

1
∆k,n

3 Ψ′′ (∂n µk) (dk − dn)

}
k

denom RG (µ) = ∑
i∈[µ]

∑
n∈Ni

1
∆i,n

3 Ψ′′ (∂n µk) (di − dn)
2 .

(continued on the next page)

Hessian times vector and the
denominator

The Hessian matrix provides very useful infor-

mation about the minimum of a convex func-

tion. Another way to exploit the Hessian de-

spite of its size, is by directly multiplying it

with a vector. Some solvers use the function

(Hess L) · d computing the Hessian times a

given search direction d. Some others rely

on a scalar called denominator, which is de-

fined as 2 ∂2
α L (µ + αd)

∣∣
α=0. It is for exam-

ple used for computing the step size in some

NLCG variants.

Real-time iterative reconstruction for x-ray computed tomography 111

(Algorithm 10) Derivatives of the cost function (continued from the previous page)
The corresponding derivatives of the neighborhood prior on the Laplacian read

RG (µ) =
1
2 ∑

i∈[µ]
∑

n∈Ni

1
∆i,n

Ψ
(
∂2

n µi
)

with ∂2
n µi =

µp − 2 µi + µn

∆i,n
2

grad RG (µ) =

{
∑

n∈Nk

1
∆k,n

3

(
Ψ′
(
∂2

nn µn
)
−Ψ′

(
∂2

n µk
))}

k

for k ∈ [µ]

curv RG =

{
4 ∑

n∈Nk

1
∆k,n

5 Ψ′′ (0)

}
k

diag Hess RG (µ) =

{
∑

n∈Nk

1
∆k,n

5

(
2 Ψ′′

(
∂2

n µk
)
+ Ψ′′

(
∂2

nn µn
))}

k

Hess d RG (µ) =

{
∑

n∈Nk

1
∆k,n

5

(
2 Ψ′′

(
∂2

n µk
)
(dn − dk) + Ψ′′

(
∂2

nn µn
)
(dk − 2 dn + dnn)

)}
k

denom RG (µ) = ∑
i∈[µ]

∑
n∈Ni

1
∆i,n

5 Ψ′′
(
∂2

n µi
) (

dp − 2 dn + dn
)2

with, for example, either the Huber penalty function

Ψγ
H (t) =

{
1/2 γ−1 t2 for |t| < γ

|t| − γ/2 else

Ψγ
H
′
(t) =

{
γ−1 t for |t| < γ

sign (t) else

Ψγ
H
′′
(t) =

{
γ−1 for |t| < γ

0 else,

the quadratic

Ψγ
Q (t) = 1/2 t2

Ψγ
Q
′
(t) = t

Ψγ
Q
′′
(t) = 1,

or TV penalty

Ψγ
TV (t) = |t|

Ψγ
TV
′
(t) = sign (t)

Ψγ
TV
′′
(t) = 0.

Notation: ‖ � ‖2
w is the weighted square norm, 1 a vector where all entries are 1, � |w a

component-wise weight, � |2 a component-wise square, N � the spatial 3-D neighborhood
of a voxel, and ∆ � , � the spatial distance between two voxels.

Indices: If n (for next) denotes a neighbor in the neighborhood of a voxel, then p (for
previous) is the neighbor opposing n and nn (for next neighbor) the voxel behind n.

112 Real-time iterative reconstruction for x-ray computed tomography

B.

A possible definition of the Euler angles

This appendix shows a possible definition of

the Euler angles required in section 4.2 on

page 33 and how the rotation matrix Rϕ is

derived from them. In the definition below,

the three Euler angles ϕ = (ϕ, θ, ψ)ᵀ suc-

cessively describe the rotation of the detector

plane and the opposing source S around the

axes y, −z′, and y′. Each dash indicates a

previous rotation of the axis itself. The origin

of the coordinate system is assumed in the

center of rotation C shown in figure 12 on

page 34.

The corresponding rotation matrix reads

Rϕ = Rψ · Rθ · Rϕ

=

 cψ sψ

1
−sψ cψ

 ·
 cθ −sθ

sθ cθ

1

 ·
 cϕ sϕ

1
−sϕ cϕ



=

 −sψ sϕ + cθ cψ cϕ −sθ cψ sψ cϕ + cθ cψ sϕ

sθ cϕ cθ sθ sϕ

−cψ sϕ − cθ sψ cϕ sθ sψ cψ cϕ − cθ sψ sϕ


where s � = sin (�) and c � = cos (�).

C.

Computing the parallel-beam direction vector

For a parallel-beam geometry as described in

subsection 4.2.4 on page 36, the projection

direction D can be derived from an affine

projection matrix P̃∞ by solving

M2×3 · D
!
= 0

⇔
(

pu,x pu,y pu,z

pv,x pv,y pv,z

)
·

dx

dy

dz

 !
= 0

where M2×3 is the upper left 2× 3 submatrix

of P̃∞ [47, p. 173].

This is an underdetermined linear system of

two equations and three unknowns. But, as

the vector D only describes a direction, its

length can be variable. We found a solution

by assuming that one component of D is 1
without loss of generality.

Assuming first that this component is dz = 1,

the equations simplify to

pu,x dx + pu,y dy + pu,z = 0

pv,x dx + pv,y dy + pv,z = 0

or

Mxy ·
(

dx

dy

)
=

(
−pu,z

−pv,z

)
where the matrix Mxy holds the columns x
and y of M2×3. The inverse of an arbitrary

2× 2 matrix A is given by

A−1 =

(
a b
c d

)−1

=
1

det A

(
d −b
−c a

)

with

det A = a d− c b.

It follows that(
dx

dy

)
= M−1

xy ·
(
−pu,z

−pv,z

)

=
1

det Mxy

(
pv,y −pu,y

−pv,x pu,x

)
·
(
−pu,z

−pv,z

)

=
1

det Mxy

(
−pv,y pu,z + pu,y pv,z

pv,x pu,z − pu,x pv,z

)

=
1

det Mxy

(
det Myz

−det Mxz

)

where Myz holds the columns y and z of M2×3

and Mxz the columns x and z, respectively.

Similar expressions can be derived if one of

the other components of D is assumed to be

1:(
dy

dz

)
=

1
det Myz

(
−det Mxz

det Mxy

)
for dx = 1(

dx

dz

)
=

1
det Mxz

(
−det Myz

det Mxy

)
for dy = 1

In summary, the whole solution can be com-

puted as

D =


(
δyz,−δxz, δxy

)ᵀ /δxy if δxy 6= 0(
δyz,−δxz, δxy

)ᵀ /δyz if δyz 6= 0(
−δyz, δxz, δxy

)ᵀ /δxz else

with

δxy = det Mxy = pu,x pv,y − pv,x pu,y

δyz = det Myz = pu,y pv,z − pv,y pu,z

δxz = det Mxz = pu,x pv,z − pv,x pu,z.

D.

Optimizing the workgroup size without considering
transfers

Subsection 8.2.1 on page 83 showed how to

optimize the workgroup size of the FP and BP

OpenCL kernel for maximum performance.

Figure 29 displays an analog analysis to fig-

ure 21 on page 84 but without considering

the times required for transfers from the host

memory to the GPU devices. Comparing the

two figures allows to evaluate how much the

transfers limit performance for the different

settings. Details can be found in the refer-

enced subsection.

Figure 29 Performance of over the workgroup shape (FP,
BP without transfers). I
The plots on the next two pages show the performance of FP
and BP over the workgroup size analog to figure 21 on
page 84 but without considering the transfer times. The
arrangement of subfigures, the labels, size and color codes
are all equivalent.
In contrast to figure 21, the performance values differ only
little for the different data sizes (columns of the plot) leading
to the conclusion that transfers can be hidden more
efficiently by bigger data sizes. The GUPS values are
highest around a common maximum at #U-#V-#A = 4-16-8
for the FP. The BP seems to prefer high #X and low #Y.
From the comparison with the results in the main document
we conclude that the transfer overhead influences the
position of the maximum only little.

A B

DC

FE

0 50

FP-2048 (3217) FP-2048 (161)

FP-1024 (161)FP-1024 (1609)

FP-512 (161)FP-512 (805)

1 2 4 8 16 32 64 128 256 512

1

512
256

128
64

32
16

8
4

2

#V

#A #U

1
2

4
8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256 512

1

512
256

128
64

32
16

8
4

2

#V

#A #U

1
2

4
8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256 512

1

512
256

128
64

32
16

8
4

2

#V

#A #U

1
2

4
8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256 512

1

512
256

128
64

32
16

8
4

2

#V

#A #U

1
2

4
8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256 512

1

512
256

128
64

32
16

8
4

2

#V

#A #U

1
2

4
8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256 512

1

512
256

128
64

32
16

8
4

2

#V

#A #U

1
2

4
8

16

32

64

128

256

512

(Figure 29) Performance over the workgroup shape (FP, BP without transfers). Full caption on the previous page.

116 Real-time iterative reconstruction for x-ray computed tomography

G H

JI

LK

0 110

1 2 4 8 16 32 64 128 256 512

1

512
256

128
64

32
16

8
4

2

#Y

#Z #X

1
2

4
8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256 512

1

512
256

128
64

32
16

8
4

2

#Y

#Z #X

1
2

4
8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256 512

1

512
256

128
64

32
16

8
4

2

#Y

#Z #X

1
2

4
8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256 512

1

512
256

128
64

32
16

8
4

2

#Y

#Z #X

1
2

4
8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256 512

1

512
256

128
64

32
16

8
4

2

#Y

#Z #X

1
2

4
8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256 512

1

512
256

128
64

32
16

8
4

2

#Y

#Z #X

1
2

4
8

16

32

64

128

256

512

BP-2048 (3217) BP-2048 (161)

BP-1024 (161)BP-1024 (1609)

BP-512 (161)BP-512 (805)

(Figure 29) Performance over the workgroup shape (FP, BP without transfers). Full caption on page 115.

Real-time iterative reconstruction for x-ray computed tomography 117

Acknowledgments

This thesis was written with the great support of many people. I want to acknowledge, in

particular

• my doctorate supervisor Prof. Dr. Franz Pfeiffer for his scientific and team-leading skills I

was allowed to benefit from and the freedom and opportunities he gave for my research,

• the mates from my office for all the great discussions and friendships, and

• all the others from the tomography teams lead by PD. Dr. Peter Noël and PD. Dr. Tobias

Lasser,

• my colleagues Lorenz Hehn, Sebastian Allner, Korbinian Mechlem and Wolfgang Noichl

and two other friends, Felix Will and Alexandra Göldner, for proofreading,

• Dr. Martin Dierolf and Wolfgang Noichl for a lot of things I was allowed to learn about IT

and the great teamwork,

• Dr. Michael Epple, Dr. Marian Willner and Dr. Astrid Velroyen for putting much effort in

building up our little company during the last two years,

• all the rest of the great team at the chair for a lot of fun and cake,

• Prof. Dr. Pierre Thibault and Dr. Dieter Hahn for the initial codebase,

• my flat mates, the team of the Lighthouse, my church, and the Cambridge Scholar Network,

for great personal support and the fruitful discussions about science and faith,

• my dear mom and dad for all their effort and love, and

• my beloved wife Hanna.

Picture credits

The title image of chapter 1 on page 3 was taken from Pixabay (provided by

PublicDomainPictures ) and is available under the Creative Commons license

CC 0 . cz

Figure 1 on page 4 was kindly provided by the artist Judith Ganter. It is published at Ran-

nenberg & Friends.

The figure shows a subregion of the original illustration after small image enhancements.

Figure 2 on page 5 was taken from Wikipedia (name: Coat of Arms of Oxford

University ) and is available under public domain. p

The title image of chapter 2 on page 9 was taken from Wikimedia Commons (name:

Roentgen2.jpg ) and is available under public domain. p

The original picture was modified with artistic image filters.

Figure 3 on page 10 was taken from Wikipedia (name: X-ray by Wilhelm Röntgen of

Albert von Kölliker's hand - 18960123-02.jpg ) and is available under public do-

main. p

The title image of chapter 3 on page 17 was taken from Wikipedia (name

RIMG0279.JPG ) and is available under the Creative Commons license CC BY-SA

3.0 . csrba

The original picture was modified with artistic image filters.

Figure 4 on page 19 was taken from the book of Als-Nielsen et al. [22, fig. 1.1, p. 2]. The

explicit license of John Wiley and Sons to reproduce the figure in this thesis (electronic and

print) has the number 4000220630663.

Colors and labels were slightly modified.

Figure 5 on page 20 is reproduced from Hubbell et al. [26, fig. 1, p. 1024], with the permis-

sion of AIP Publishing (DOI: 10.1063/1.555629 ).

Small modifications were made to improve the readability and highlight the relevant energy

region.

The title image of chapter 4 on page 31 was taken from mediaTUM with friendly permis-

sion (created by Thorsten Naeser , Technical University of Munich).

The original picture was modified with artistic image filters.

Figure 10 on page 32 has a photograph in the background which was taken from Pixabay

(provided by Fotoworkshop4You ) and is available under the Creative Commons license

CC 0 . cz

Figure 11 on page 33 was taken from the book of Hartley et al. [47, fig. 2.1, p. 29] with

friendly permission of the authors.

Colors and labels were slightly modified.

https://pixabay.com/en/michelangelo-abstract-boy-child-71282
https://creativecommons.org/publicdomain/zero/1.0
https://commons.wikimedia.org/w/index.php%3Fcurid%3D19177579
https://commons.wikimedia.org/w/index.php%3Fcurid%3D19177579
https://commons.wikimedia.org/w/index.php%3Fcurid%3D5985289
https://commons.wikimedia.org/w/index.php%3Fcurid%3D7267529
https://commons.wikimedia.org/w/index.php%3Fcurid%3D7267529
https://en.wikipedia.org/w/index.php%3Fcurid%3D6039938
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
http://dx.doi.org/10.1063/1.555629
https://mediatum.ub.tum.de/655502
https://pixabay.com/en/gleise-old-railroad-tracks-seemed-1555348
https://creativecommons.org/publicdomain/zero/1.0

The title image of chapter 5 on page 45 was taken from Flickr (provided by GBPublic_-

PR ) and is available under the Creative Commons license CC BY 2.0 . csrb

The original picture was modified with artistic image filters.

Figures 14 and 15 on page 47 were taken from the website of Karl Rupp (posts

40 Years of Microprocessor Trend Data  [52] and CPU, GPU and MIC Hardware

Characteristics over Time  [56]) and are available under the Creative Commons

license CC BY 4.0 . csrb

Colors, layout and scaling were adapted for this thesis.

The title image of chapter 6 on page 57 was taken from the website of the Boise State

University with friendly permission (created by the LEGO MSE LAB ).

The original picture was modified with artistic image filters.

The title image of chapter 7 on page 71 was taken from Wikipedia (name A drivebelt

nightmare  by Brian Snelson) and is available under the Creative Commons license CC

BY 2.0 . csrb

The original picture was modified with artistic image filters.

The title image of chapter 8 on page 79 was taken from Wikipedia (name Bending.jpg

by Holotone) and is available under the Creative Commons license CC BY-SA 2.5 .

csrba

The original picture was modified with artistic image filters.

The title image of chapter 9 on page 95 was taken from Wikimedia Commons (name:

Stopwatch A.jpg  by Wouterhagens) and is available under the Creative Commons

license CC BY-SA 3.0 . csrba

The original picture was modified with artistic image filters.

Real-time iterative reconstruction for x-ray computed tomography 121

https://www.flickr.com/photos/gbpublic/8790473353
https://www.flickr.com/photos/gbpublic/8790473353
https://creativecommons.org/licenses/by/2.0
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time
http://creativecommons.org/licenses/by/4.0
http://coen.boisestate.edu/corrosionlab/education/lego-mse-lab
https://commons.wikimedia.org/w/index.php%3Fcurid%3D18184483
https://commons.wikimedia.org/w/index.php%3Fcurid%3D18184483
https://creativecommons.org/licenses/by/2.0
https://creativecommons.org/licenses/by/2.0
https://commons.wikimedia.org/w/index.php%3Fcurid%3D7422651
https://creativecommons.org/licenses/by-sa/2.5
https://commons.wikimedia.org/w/index.php%3Fcurid%3D18298618
https://creativecommons.org/licenses/by-sa/3.0

List of publications

Peer-reviewed articles

Co-authored

1. S. Allner, A. Gustschin, A. Fehringer,

P. B. Noël, and F. Pfeiffer. “Metric-

guided regularization parameter se-

lection for statistical iterative recon-

struction in computed tomography”.

Submitted.

2. L. Birnbacher, M. Viermetz, W. Noichl,

S. Allner, A. Fehringer, M. Marschner,

M. von Teuffenbach, M. Willner, K.

Achterhold, P. B. Noël, T. Koehler, J.

Herzen, and F. Pfeiffer. “Tilted grating

phase-contrast computed tomography

using statistical iterative reconstruc-

tion”. In: Scientific Reports 8.6608

(Apr. 2018).

3. M. Müller, I. de Sena Oliveira, S. All-

ner, S. Ferstl, P. Bidola, K. Mech-

lem, A. Fehringer, L. Hehn, M. Dierolf,

K. Achterhold, B. Gleich, J. U. Ham-

mel, H. Jahn, G. Mayer, and F.

Pfeiffer. “Myoanatomy of the velvet

worm leg revealed by laboratory-

based nanofocus X-ray source tomog-

raphy”. In: PNAS 114.47 (Nov. 2017),

pages 12378–12383.

4. M. von Teuffenbach, T. Koehler, A.

Fehringer, M. Viermetz, B. Brendel,

J. Herzen, R. Proksa, E. J. Rummeny,

F. Pfeiffer, and P. B. Noël. “Grating-

based phase-contrast and dark-field

computed tomography: a single-shot

method”. In: Scientific Reports 7.7476

(Aug. 2017).

5. K. Mei, F. K. Kopp, R. Bippus,

T. Koehler, B. J. Schwaiger, A. S.

Gersing, A. Fehringer, A. Sauter, D.

Münzel, F. Pfeiffer, E. J. Rummeny,

J. S. Kirschke, P. B. Noël, and T. Baum.

“Is multidetector CT-based bone min-

eral density and quantitative bone mi-

crostructure assessment at the spine

still feasible using ultra-low tube cur-

rent and sparse sampling?” In: Euro-

pean Radiology 27.12 (Dec. 2017),

pages 5261–5271.

6. P. Bidola, K. S. Morgan, M. Willner,

A. Fehringer, S. Allner, F. Prade, F.

Pfeiffer, and K. Achterhold. “Applica-

tion of sensitive, high-resolution imag-

ing at a commercial lab-based X-ray

micro-CT system using propagation-

based phase retrieval”. In: Journal

of Microscopy 266.2 (Jan. 2017),

pages 211–220.

7. S. Ehn, T. Sellerer, K. Mechlem, A.

Fehringer, M. Epple, J. Herzen, F.

Pfeiffer, and P. B. Noël. “Basis mate-

rial decomposition in spectral CT us-

ing a semi-empirical, polychromatic

adaption of the Beer-Lambert model”.

In: Physics in Medicine and Biology

62.1 (Dec. 2016), N1.

8. M. Marschner, L. Birnbacher, K.

Mechlem, W. Noichl, A. Fehringer,

M. Willner, K. Scherer, J. Herzen,

P. B. Noël, and F. Pfeiffer. “Two-

shot X-ray dark-field imaging”. In:

Optics Express 24.23 (Nov. 2016),

pages 27032–27045.

9. C. Jud, F. Schaff, I. Zanette, J. Wolf,

A. Fehringer, and F. Pfeiffer. “Dentinal

tubules revealed with X-ray tensor to-

mography”. In: Dental Materials 32.9

(July 2016), pages 1189 –1195.

10. S. Allner, T. Koehler, A. Fehringer,

L. Birnbacher, M. Willner, F. Pfeif-

fer, and P. B. Noël. “Bilateral filtering

using the full noise covariance ma-

trix applied to x-ray phase-contrast

computed tomography”. In: Physics

in Medicine and Biology 61.10 (Apr.

2016), page 3867.

11. M. Marschner, M. Willner, G. Potdevin,

A. Fehringer, P. B. Noël, F. Pfeiffer,

and J. Herzen. “Helical X-ray phase-

contrast computed tomography with-

out phase stepping”. In: Scientific Re-

ports 6.23953 (Apr. 2016).

12. S. Ehn, M. Epple, A. Fehringer, D.

Pennicard, H. Graafsma, P. Noël, and

F. Pfeiffer. “X-ray deconvolution mi-

croscopy”. In: Biomed. Opt. Express

7.4 (Apr. 2016), pages 1227–1239.

13. A. Velroyen, A. Yaroshenko, D. Hahn,

A. Fehringer, A. Tapfer, M. Müller,

P. B. Noël, B. Pauwels, A. Sasov,

A. Ö. Yildirim, O. Eickelberg, K. Hell-

bach, S. D. Auweter, F. G. Meinel,

M. F. Reiser, M. Bech, and F. Pfeiffer.

“Grating-based X-ray Dark-field Com-

puted Tomography of Living Mice”. In:

EBioMedicine (Aug. 2015).

14. J. Vogel, F. Schaff, A. Fehringer, C.

Jud, M. Wieczorek, F. Pfeiffer, and

T. Lasser. “Constrained X-ray ten-

sor tomography reconstruction”. In:

Optics Express 23.12 (June 2015),

pages 15134–15151.

15. D. Hahn, P. Thibault, A. Fehringer,

M. Bech, T. Koehler, F. Pfeiffer, and

P. B. Noël. “Statistical iterative recon-

struction algorithm for X-ray phase-

contrast CT”. In: Scientific reports

5.10452 (June 2015).

16. R. A. Nasirudin, K. Mei, P. Panchev, A.

Fehringer, F. Pfeiffer, E. J. Rummeny,

M. Fiebich, and P. B. Noël. “Reduc-

tion of Metal Artifact in Single Photon-

Counting Computed Tomography by

Spectral-Driven Iterative Reconstruc-

tion Technique”. In: PLoS ONE 10.5

(May 2015), e0124831.

17. M. Stockmar, M. Hubert, M. Dierolf,

B. Enders, R. Clare, S. Allner, A.

Fehringer, I. Zanette, J. Villanova,

J. Laurencin, P. Cloetens, F. Pfeiffer,

and P. Thibault. “X-ray nanotomog-

raphy using near-field ptychography”.

In: Optics Express 23.10 (May 2015),

pages 12720–12731.

18. K. Burger, T. Koehler, M. Chabior, S.

Allner, M. Marschner, A. Fehringer,

M. Willner, F. Pfeiffer, and P. B. Noël.

“Regularized iterative integration com-

bined with non-linear diffusion filtering

for phase-contrast x-ray computed to-

mography”. In: Optics Express 22.26

(Dec. 2014), pages 32107–32118.

Conference proceedings

First-authored

19. A. Fehringer, K. Mechlem, M. Epple,

S. Allner, F. Lorenz Hehn Pfeiffer, and

P. B. Noël. “Ultra-fast cone-beam SIR

on 2k-cubed data”. In: International

Conference on Image Formation in

X-Ray Computed Tomography. Vol-

ume 4. July 2016, pages 129–132.

20. A. Fehringer, B. Brendel, D. Hahn,

P. B. Noël, F. Pfeiffer, and T. Koehler.

“Performance evaluation of OS-SPS

and CG for differential phase-contrast

Real-time iterative reconstruction for x-ray computed tomography 123

X-ray tomography”. In: International

Conference on Image Formation in

X-Ray Computed Tomography. Vol-

ume 3. June 2014, pages 198–202.

21. A. Fehringer, T. Lasser, I. Zanette,

P. B. Noël, and F. Pfeiffer. “A versa-

tile tomographic forward- and backpro-

jection approach on Multi-GPUs”. In:

SPIE Medical Imaging. Volume 9034.

International Society for Optics and

Photonics. Mar. 2014, 90344F–1–

90344F–7.

Co-authored

22. S. Allner, K. Mechlem, N. Gustschin,

A. Fehringer, F. Pfeiffer, and P. B. Noël.

“Virtual equivalent thickness calibra-

tion for X-ray computed tomography”.

In: Workshop on High Performance

Image Reconstruction (Fully 3 D). Vol-

ume 14. June 2017, pages 547–550.

23. B. J. Schwaiger, K. Mei, F. K. Kopp, R.

Bippus, T. Koehler, A. S. Gersing, A.

Fehringer, F. Pfeiffer, E. J. Rummeny,

J. S. Kirschke, P. B. Noël, and T. Baum.

“Dose reduction in MDCT-based bone

mineral density and microstructure as-

sessment: effects of low-dose simula-

tion and sparse sampling”. In: Insights

into Imaging. Volume 8. European So-

ciety of Radiology. Mar. 2017.

24. K. Mei, F. K. Kopp, A. Fehringer,

F. Pfeiffer, E. J. Rummeny, J. S.

Kirschke, P. B. Noël, and T. Baum. “Ef-

fects of Sparse Sampling in combina-

tion with Iterative Reconstruction on

Quantitative Bone Microstructure As-

sessment”. In: SPIE Medical Imaging.

Volume 10132. International Society

for Optics and Photonics. Feb. 2017,

pages 1013244–1013244–4.

25. M. Viermetz, L. Birnbacher, A.

Fehringer, M. Willner, P. B. Noël,

F. Pfeiffer, and J. Herzen. “High

Resolution Laboratory Grating-Based

X-Ray Phase-Contrast CT”. In: SPIE

Medical Imaging. Volume 10132.

International Society for Optics and

Photonics. Feb. 2017, 101325K–

101325K–6.

26. M. von Teuffenbach, B. Brendel, A.

Fehringer, P. B. Noël, F. Pfeiffer, and

T. Koehler. “Iterative Reconstruction

of Sliding Window PCCT”. In: Interna-

tional Workshop on X-ray and Neutron

Phase Imaging with Gratings (XN-

PIG). Volume 3. International Society

for Optics and Photonics. Sept. 2015,

page 58.

27. M. Marschner, L. Birnbacher, M. Will-

ner, A. Fehringer, J. Herzen, P. B.

Noël, and F. Pfeiffer. “Enabling low

dose scans in x-ray phase-contrast

CT”. In: International Workshop on X-

ray and Neutron Phase Imaging with

Gratings (XNPIG). Volume 3. Interna-

tional Society for Optics and Photon-

ics. Sept. 2015, page 57.

28. C. Jud, F. Schaff, I. Zanette, J. Wolf,

A. Fehringer, and F. Pfeiffer. “Denti-

nal tubules revealed with X-ray Tensor

Tomography”. In: International Work-

shop on X-ray and Neutron Phase

Imaging with Gratings (XNPIG). Vol-

ume 3. International Society for Optics

and Photonics. Sept. 2015, page 31.

29. F. K. Kopp, R. A. Nasirudin, K.

Mei, A. Fehringer, F. Pfeiffer, E. J.

Rummeny, and P. B. Noël. “ROI-

Aufbereitung für iterative Rekonstruk-

tionsalgorithmen in der Computer-

tomographie”. In: Jahrestagung der

124 Real-time iterative reconstruction for x-ray computed tomography

Deutschen Gesellschaft für Medizinis-

che Physik (DGMP). Volume 46. Sept.

2015, pages 453–455.

30. S. Allner, A. Fehringer, J. Schock, F.

Pfeiffer, and P. B. Noël. “Dual-band

projection alignment applied to X-ray

microscopy”. In: International Confer-

ence on Image Formation in X-Ray

Computed Tomography. Volume 4.

July 2016, pages 515–518.

31. M. von Teuffenbach, B. Brendel, A.

Fehringer, P. B. Noël, F. Pfeiffer, and T.

Koehler. “Iterative Reconstruction of

Grating-based PCCT Without Phase-

Stepping”. In: International Confer-

ence on Image Formation in X-Ray

Computed Tomography. Volume 4.

July 2016, pages 367–370.

32. M. Marschner, L. Birnbacher, M. Will-

ner, M. Chabior, A. Fehringer, J.

Herzen, P. B. Noël, and F. Pfeiffer. “Re-

defining the lower statistical limit in x-

ray phase-contrast imaging”. In: SPIE

Medical Imaging. Volume 9412. Inter-

national Society for Optics and Pho-

tonics. Mar. 2015, pages 94120M–

94120M–6.

33. B. Brendel, M. von Teuffenbach, A.

Fehringer, P. B. Noël, F. Pfeiffer, and

T. Koehler. “Intensity-Based Iterative

Reconstruction for Differential Phase-

Contrast Imaging with Reconstruction

Parameter Estimation”. In: Workshop

on High Performance Image Recon-

struction (Fully 3 D). Volume 13. June

2015, pages 713–716.

34. K. Mei, A. Valentinitsch, F. K. Kopp, A.

Fehringer, F. Pfeiffer, E. J. Rummeny,

J. S. Bauer, and P. B. Noël. “Iterative

CT Image Reconstruction using 3D

Dictionary Learning”. In: Workshop on

High Performance Image Reconstruc-

tion (Fully 3 D). Volume 13. June 2015,

pages 130–133.

35. S. Allner, A. Fehringer, A. Velroyen,

F. Pfeiffer, and P. B. Noël. “Statistical

iterative reconstruction for ultra high-

resolution x-ray tomography from un-

dersampled data”. In: Workshop on

High Performance Image Reconstruc-

tion (Fully 3 D). Volume 13. June 2015,

pages 614–617.

36. M. Marschner, L. Birnbacher, M. Will-

ner, M. Chabior, A. Fehringer, J.

Herzen, P. B. Noël, and F. Pfeiffer. “Re-

defining the lower statistical limit in

x-ray phase-contrast computed imag-

ing”. In: SPIE Medical Imaging. Vol-

ume 9412. International Society for

Optics and Photonics. Mar. 2015,

pages 94120M–94120M–6.

37. S. Allner, A. Velroyen, A. Fehringer, F.

Pfeiffer, and P. B. Noël. “Statistical iter-

ative reconstruction for multi-contrast

x-ray micro-tomography”. In: SPIE

Medical Imaging. Volume 9412. Inter-

national Society for Optics and Pho-

tonics. Mar. 2015, 94123O–94123O–

6.

38. F. K. Kopp, R. A. Nasirudin, K. Mei, A.

Fehringer, F. Pfeiffer, E. J. Rummeny,

and P. B. Noël. “Region of interest pro-

cessing for iterative reconstruction in

x-ray computed tomography”. In: SPIE

Medical Imaging. Volume 9412. Inter-

national Society for Optics and Pho-

tonics. Mar. 2015, 94122E–94122E–

7.

39. L. Birnbacher, M. Viermetz, M.

Marschner, S. Allner, A. Fehringer,

M. Willner, F. Pfeiffer, and J. Herzen.

“Tilted grating laboratory phase-

Real-time iterative reconstruction for x-ray computed tomography 125

contrast computed tomography using

statistical iterative reconstruction”.

In: International Symposium on

Biomedical Applications of X-Ray

Phase Contrast Imaging (IMXP).

Volume 5. Jan. 2015.

40. S. Allner, T. Koehler, A. Fehringer,

M. Willner, F. Pfeiffer, and P. B. Noël.

“Bilateral filtering for x-ray phase-

contrast imaging”. In: International

Conference on Image Formation in

X-Ray Computed Tomography. Vol-

ume 3. June 2014, pages 388–392.

41. M. Marschner, M. Willner, A.

Fehringer, J. Herzen, P. B. Noël,

and F. Pfeiffer. “Continuous helical

X-ray phase-contrast computed

tomography without phase-stepping”.

In: International Symposium on

Biomedical Applications of X-Ray

Phase Contrast Imaging (IMXP).

Volume 4. Jan. 2014.

42. M. Marschner, D. Hahn, M. Willner, G.

Fior, A. Fehringer, M. Chabior, P. B.

Noël, and F. Pfeiffer. “Towards Lower

Dose - Statistical Iterative Reconstruc-

tion for Phase-Contrast Computed

Tomography”. In: International Work-

shop on X-ray and Neutron Phase

Imaging with Gratings (XNPIG). Vol-

ume 2. Jan. 2014, page 39.

43. D. Hahn, P. Thibault, A. Fehringer, M.

Bech, P. B. Noël, and F. Pfeiffer. “Bone

artifact reduction in differential phase-

contrast CT”. In: Workshop on High

Performance Image Reconstruction

(Fully 3 D). Volume 12. June 2013,

pages 416–419.

44. S. Allner, A. Fehringer, D. Hahn, T.

Lasser, I. Zanette, P. B. Noël, and

F. Pfeiffer. “Improving Ptychographic

Imaging using Iterative Tomographic

Algorithms”. In: International work-

shop on the state and the future of

ptychography. Volume 1. May 2013.

Oral presentations

45. A. Fehringer, K. Mechlem, M. Epple,

S. Allner, P. B. Noël, and F. Pfeiffer.

Gamer graphics boards for science

- how to make iterative tomographic

reconstruction get a move on. At the

IMETUM seminar of the Technical Uni-

versity Munich. Apr. 2016.

46. A. Fehringer, S. Allner, P. B. Noël, and

F. Pfeiffer. pyCT - an introduction to

iterative tomographic reconstruction.

Within the cooperation with Carl Zeiss

X-ray Microscopy at the Technical Uni-

versity Munich. Jan. 2016.

47. A. Fehringer, K. Mechlem, M. Epple,

S. Allner, P. B. Noël, and F. Pfeiffer.

OpenCL and its application in iter-

ative tomographic reconstruction. At

the seminar of the theoretical physics

division of the Werner-Heisenberg-

Institut, Munich. Nov. 2015.

48. A. Fehringer, S. Allner, P. B. Noël, and

F. Pfeiffer. The pyCT reconstruction

framework. At the Development Cen-

ter for X-ray Technology (EZRT) of the

Fraunhofer Institute IIS, Fürth. July

2015.

49. A. Velroyen, A. Fehringer, P. B. Noël,

and F. Pfeiffer. Research and Re-

construction @ Chair for Biomedical

Physics, TUM. Within the coopera-

tion with Planmeca, Helsinki, Finn-

land. May 2015.

126 Real-time iterative reconstruction for x-ray computed tomography

50. A. Fehringer, P. B. Noël, and F. Pfeiffer.

A versatile tomographic forward and

back projection approach on multi-

GPUs. At the TUM Reconstruction

Workshop, Technical University Mu-

nich. June 2014.

51. A. Fehringer, P. B. Noël, and F. Pfeiffer.

A versatile tomographic forward and

back projection approach on multi-

GPUs. At the Interdisciplinary Cluster

Workshop on GPUs, TUM Excellence

Center, Technical University Munich.

Apr. 2014.

Theses

52. A. Fehringer. “Advanced Algorithms

for Ptychographic X-Ray Computed

Tomography”. Diploma thesis. Techni-

cal University Munich, Nov. 2011.

Accompanied

53. L. Hehn. “High-Performance Algo-

rithms for Improved Reconstruction of

X-Ray Computed Tomography”. Mas-

ter thesis. Technical University Mu-

nich, Oct. 2015.

54. J. Schwarz. “Dual-Energy Micro-CT”.

Master thesis. Technical University

Munich, Oct. 2014.

55. S. Allner. “Local tomography align-

ment and bilateral filter postprocess-

ing for phase-contrast imaging”. Mas-

ter thesis. Technical University Mu-

nich, Nov. 2013.

56. M. Reis. “GPU-accelerated Fourier

Filtering for Filtered Backprojection

in Computed Tomography”. Bachelor

thesis. Technical University Munich,

Aug. 2013.

Awards

The idea to spin off parts of this work into a

startup in 2014 and a poster presentation in

2013 were honored with an award. We thank

the responsible committees.

57. A. Velroyen, A. Fehringer, P. B. Noël,

and F. Pfeiffer. TUM IdeaAward 2014.

Presented by the Technical Univer-

sity of Munich together with the

Zeidler-Forschungs-Stiftung and the

UnternehmerTUM. Feb. 2014.

58. S. Allner and A. Fehringer. Best

Poster Award. Presented by the com-

mittee of the international workshop

on the state and the future of ptychog-

raphy. May 2013.

Real-time iterative reconstruction for x-ray computed tomography 127

Bibliography

[1] The Apostle Matthew. “Gospel of

Matthew”. In: The Bible, New Interna-

tional Version, 2011. Chapter 19:21-

26 (cited on page 4).

[2] M. Born. The Born Einstein Letters.

Translated by Irene Born. The con-

text was not religious but a discus-

sion about the non-deterministic ele-

ments in quantum mechanics. Macmil-

lan Press, 1971, page 149 (cited on

page 4).

[3] The Apostle John. “Gospel of John”.

In: The Bible, New International Ver-

sion, 2011. Chapter 3:16 (cited on

page 5).

[4] The Apostle Paul. “Letter to the Eph-

esians”. In: The Bible, New Interna-

tional Version, 2011. Chapter 2:8-9

(cited on page 5).

[5] The Apostle John. “John’s Gospel”. In:

The Bible, New International Version,

2011. Chapter 8:12.31-32 (cited on

page 5).

[6] Bundesministerium für Bildung und

Forschung. “Luther hat ein völlig

neues Bildungsethos geschaffen”. In:

bmbf.de (2017) (cited on page 6).

[7] R. Stark. For the Glory of God: How

Monotheism Led to Reformations, Sci-

ence, Witch-Hunts, and the End of

Slavery. Princeton University Press,

2004 (cited on page 6).

[8] The Apostle John. “John’s Gospel”. In:

The Bible, New International Version,

2011. Chapter 1:14 (cited on page 6).

[9] R. A. Carhart and A. Cenian. “Impli-

cations of proven limits on scientific

knowledge: Gödel’s proof, quantum

uncertainty, chaos theory and speci-

fied complexity of information theory”.

In: Bulletin de la Société des Sciences

et des Lettres de Łódź 59 (2009),

pages 7–18 (cited on page 6).

[10] W. C. Röntgen. “Über eine neue Art

von Strahlen”. In: Annalen der Physik

300.1 (1898), pages 1–11 (cited on

page 9).

[11] G. N. Hounsfield. “Computed Medical

Imaging”. In: Journal of Computer As-

sisted Tomography 4.5 (1979). Nobel

Lecture, Dec 8, 1979, pages 665–674

(cited on page 10).

[12] J. C. Elliott and S. D. Dover. “X-ray

microtomography”. In: Journal of Mi-

croscopy 126.2 (1982), pages 211–

213 (cited on page 10).

[13] R. Gordon, R. Bender, and G. T. Her-

man. “Algebraic Reconstruction Tech-

niques (ART) for three-dimensional

electron microscopy and X-ray pho-

tography”. In: Journal of Theoretical

Biology 29.3 (1970), pages 471–481

(cited on pages 10, 26).

[14] R. A. Brooks and G. Di Chiro. “The-

ory of Image Reconstruction in Com-

puted Tomography”. In: Radiology

117.3 (1975), pages 561–572 (cited

on pages 10, 26).

[15] P. B. Noël, B. Renger, M. Fiebich, D.

Münzel, A. A. Fingerle, E. J. Rum-

meny, and M. Dobritz. “Does Itera-

tive Reconstruction Lower CT Radi-

ation Dose: Evaluation of 15,000 Ex-

aminations”. In: PLoS ONE 8.11 (Nov.

2013), e81141 (cited on page 10).

[16] M. Kachelrieß. CT-Technik. Talk.

Deutsches Krebsforschungszentrum

(DKFZ) Heidelberg, 2014 (cited on

page 10).

[17] J. A. Fessler. “Statistical image recon-

struction methods for transmission to-

mography”. In: Handbook of Medical

Imaging, Volume 2: Medical Image

Processing and Analysis. Edited by M.

Sonka and J. M. Fitzpatrick. Belling-

ham: SPIE, 2000, pages 1–70 (cited

on pages 10, 26, 102).

[18] S. I. Tilley, J. H. Siewerdsen, and

J. W. Stayman. “Model-based itera-

tive reconstruction for flat-panel cone-

beam CT with focal spot blur, detector

blur, and correlated noise”. In: Physics

in Medicine & Biology 61.1 (2016),

page 296 (cited on pages 10, 102).

[19] L. Ritschl, S. Sawall, M. Knaup, A.

Hess, and M. Kachelrieß. “Iterative 4D

cardiac micro-CT image reconstruc-

tion using an adaptive spatio-temporal

sparsity prior”. In: Physics in Medicine

and Biology 57.6 (2012), page 1517

(cited on page 10).

[20] Y. Long and J. A. Fessler. “Multi-

Material Decomposition Using Statis-

tical Image Reconstruction for Spec-

tral CT”. In: IEEE Transactions on

Medical Imaging 33.8 (Aug. 2014),

pages 1614–1626 (cited on page 10).

[21] A. Löve, M. L. Olsson, R. Siemund,

F. Stålhammar, I. M. Björkman-

Burtscher, and M. Söderberg. “Six it-

erative reconstruction algorithms in

brain CT: a phantom study on image

quality at different radiation dose lev-

els”. In: The British Journal of Radiol-

ogy 86.1031 (2013), page 20130388

(cited on page 10).

[22] J. Als-Nielsen and D. McMorrow. Ele-

ments of Modern X-ray Physics. Vol-

ume 2. John Wiley & Sons, Inc., 2011

(cited on pages 18, 19, 120).

[23] O. Hemberg, M. Otendal, and

H. M. Hertz. “Liquid-metal-jet anode

electron-impact x-ray source”. In:

Applied Physics Letters 83.7 (2003),

pages 1483–1485 (cited on page 18).

[24] R. J. Loewen. “A Compact Light

Source: Design and Technical Fea-

sibility Study of a Laser-Electron

Storage Ring X-Ray Source”. SLAC-

Report-632. PhD thesis. Stanford Uni-

versity, Stanford CA, USA, 2003 (cited

on page 19).

[25] E. Eggl, M. Dierolf, K. Achterhold,

C. Jud, B. Günther, E. Braig, B. Gle-

ich, and F. Pfeiffer. “The Munich

Compact Light Source: initial perfor-

mance measures”. In: Journal of Syn-

chrotron Radiation 23.5 (Sept. 2016),

pages 1137–1142 (cited on page 19).

[26] J. H. Hubbell, H. A. Gimm, and

I. Øverbø. “Pair, Triplet, and Total

Atomic Cross Sections (and Mass At-

tenuation Coefficients) for 1 MeV -

100 GeV Photons in Elements Z=1

to 100”. In: Journal of Physical and

Chemical Reference Data 9.4 (1980),

pages 1023–1148 (cited on pages 20,

120).

[27] A. Momose. “Phase-sensitive imaging

and phase tomography using X-ray in-

terferometers”. In: Opt. Express 11.19

(2003), pages 2303–2314 (cited on

page 20).

[28] F. Pfeiffer, T. Weitkamp, O. Bunk, and

C. David. “Phase retrieval and dif-

ferential phase-contrast imaging with

low-brilliance X-ray sources”. In: Na-

130 Real-time iterative reconstruction for x-ray computed tomography

ture physics 2.4 (2006), pages 258–

261 (cited on page 20).

[29] P. Willmott. “An Introduction to Syn-

chrotron Radiation : Techniques and

Applications”. In: John Wiley &

Sons, Inc., 2011. Chapter Detectors,

pages 113–127 (cited on page 21).

[30] S. M. Gruner. “X-ray imaging de-

tectors”. In: Physics Today 65.12

(Dec. 2012), pages 29–34 (cited on

page 21).

[31] E. Roessl and R. Proksa. “K-edge

imaging in x-ray computed tomogra-

phy using multi-bin photon counting

detectors”. In: Physics in Medicine

and Biology 52.15 (July 2007),

page 4679 (cited on page 21).

[32] A. C. Kak and M. Slaney. Principles

of computerized tomographic imag-

ing. Classics in applied mathematics.

IEEE Press, 1988 (cited on pages 21,

22, 24, 25, 34).

[33] H. Turbell. “Cone-Beam Reconstruc-

tion Using Filtered Backprojection”.

PhD thesis. Linköping University, Swe-

den, 2001 (cited on pages 21, 22, 24,

25).

[34] J. K. A. Radon. “Über die Bes-

timmung von Funktionen durch

ihre Integralwerte längs gewisser

Mannigfaltigkeiten”. In: Berichte

über die Verhandlungen der

Königlich-Sächsischen Akademie

der Wissenschaften zu Leipzig,

Mathematisch-Physische Klasse. Vol-

ume 69. Teubner, 1917, pages 262–

277 (cited on page 22).

[35] H. K. Tuy. “An Inversion Formula

for Cone-Beam Reconstruction”. In:

SIAM Journal on Applied Mathemat-

ics 43.3 (1983), pages 546–552 (cited

on page 24).

[36] L. A. Feldkamp, L. C. Davis, and

J. W. Kress. “Practical cone-beam al-

gorithm”. In: J. Opt. Soc. Am. A 1.6

(June 1984), pages 612–619 (cited on

pages 24, 25).

[37] H. Scherl, M. Kowarschik, H. G. Hof-

mann, B. Keck, and J. Hornegger.

“Evaluation of state-of-the-art hard-

ware architectures for fast cone-beam

CT reconstruction”. In: Parallel Com-

puting 38.3 (2012), pages 111 –124

(cited on pages 24, 35).

[38] D. L. Parker. “Optimal short scan con-

volution reconstruction for fan beam

CT”. In: Medical Physics 9.2 (1982),

pages 254–257 (cited on page 25).

[39] B. De Man and J. A. Fessler. “Statis-

tical iterative reconstruction for x-ray

computed tomography”. In: Biomed-

ical Mathematics: Promising Direc-

tions in Imaging, Therapy Planning

and Inverse Problems. Edited by Y.

Censor, M. Jiang, and G. Wang. Madi-

son, WI: Medical Physics Publishing,

2000. Chapter 7 (cited on page 26).

[40] J. Nuyts, B. De Man, J. A. Fessler, W.

Zbijewski, and F. J. Beekman. “Mod-

elling the physics in the iterative recon-

struction for transmission computed

tomography”. In: Physics in Medicine

and Biology 58.12 (2013), R63 (cited

on page 27).

[41] J. R. Shewchuk. An Introduction to

the Conjugate Gradient Method With-

out the Agonizing Pain. Technical

report. Carnegie Mellon University,

Pittsburgh PA, USA, 1994 (cited on

page 28).

Real-time iterative reconstruction for x-ray computed tomography 131

[42] H. Erdoğan. “Statistical Image

Reconstruction Algorithms Using

Paraboloidal Surrogates for PET

Transmission Scans”. PhD thesis.

University of Michigan, Ann Arbor MI,

USA, 1999 (cited on pages 28, 29).

[43] H. Erdoğan and J. A. Fessler. “Or-

dered subsets algorithms for trans-

mission tomography”. In: Physics in

Medicine and Biology 44.11 (1999),

page 2835 (cited on pages 28, 29).

[44] D. Kim, S. Ramani, and J. A. Fessler.

“Combining ordered subsets and mo-

mentum for accelerated X-ray CT im-

age reconstruction”. In: IEEE transac-

tions on medical imaging 34.1 (2015),

pages 167–178 (cited on pages 29,

87, 88, 110).

[45] D. Kim and J. A. Fessler. “Optimized

first-order methods for smooth convex

minimization”. In: Mathematical Pro-

gramming 159.1 (2016), pages 81–

107 (cited on pages 29, 80).

[46] A. F. Möbius. “Ueber die Zusam-

mensetzung gerader Linien und eine

daraus entspringende neue Begrün-

dungsweise des barycentrischen Cal-

culs”. In: Crelle’s Journal 28 (1844),

pages 1–9 (cited on page 31).

[47] R. I. Hartley and A. Zisserman. Mul-

tiple View Geometry in Computer Vi-

sion. Second. Cambridge University

Press, 2004 (cited on pages 32, 33,

36, 41, 114, 120).

[48] R. R. Galigekere, K. Wiesent, and

D. W. Holdsworth. “Cone-beam repro-

jection using projection-matrices”. In:

IEEE Transactions on Medical Imag-

ing 22.10 (2003), pages 1202–1214

(cited on page 33).

[49] P. M. Joseph. “An Improved Algo-

rithm for Reprojecting Rays through

Pixel Images”. In: IEEE Transactions

on Medical Imaging 1.3 (Nov. 1982),

pages 192–196 (cited on pages 35,

62).

[50] A. Malecki, G. Potdevin, T. Biernath, E.

Eggl, K. Willer, T. Lasser, J. Maisen-

bacher, J. Gibmeier, A. Wanner, and F.

Pfeiffer. “X-ray tensor tomography”. In:

EPL 105 (2014), page 38002 (cited

on page 39).

[51] L. Hehn. “High-Performance Algo-

rithms for Improved Reconstruction of

X-Ray Computed Tomography”. Mas-

ter thesis. Technical University Mu-

nich, Oct. 2015 (cited on pages 42,

64).

[52] K. Rupp. 40 Years of Microprocessor

Trend Data. Post on website. June

2015 (cited on pages 46, 121).

[53] S. P. E. C. (SPEC). CINT2006 (Integer

Component of SPEC CPU2006). Aug.

2006 (cited on page 46).

[54] G. M. Amdahl. “Validity of the Sin-

gle Processor Approach to Achieving

Large Scale Computing Capabilities”.

In: Proceedings of the April 18-20,

1967, Spring Joint Computer Confer-

ence. AFIPS ’67 (Spring). New York,

NY, USA: ACM, 1967, pages 483–485

(cited on page 46).

[55] J. L. Gustafson. “Reevaluating Am-

dahl’s Law”. In: Commun. ACM 31.5

(May 1988), pages 532–533 (cited on

page 46).

[56] K. Rupp. CPU, GPU and MIC Hard-

ware Characteristics over Time. Post

on website. Aug. 2016 (cited on

pages 47, 121).

132 Real-time iterative reconstruction for x-ray computed tomography

[57] The Open MPI Team. Open Message

Passing Interface (Open MPI). Open-

source software. Since 2004 (cited on

page 47).

[58] University of California, Berkeley.

Berkeley Open Infrastructure for Net-

work Computing (BOINC). Open-

source software. Since 2002 (cited on

page 47).

[59] The OpenMP Architecture Review

Board. Open Multi-Processing

(OpenMP). Specification. Since 1997

(cited on page 47).

[60] IEEE and The Open Group for Unix.

Portable Operating System Inter-

face (POSIX). Specification. Norm

ISO/IEC/IEEE 9945. Since 1985

(cited on page 47).

[61] The Khronos Group. Open Comput-

ing Language (OpenCL). Specifica-

tion. Since 2008 (cited on pages 47,

49).

[62] Nvidia. CUDA. Free software. Since

2007 (cited on page 47).

[63] M. Buxton. Haswell New Instruction

Descriptions Now Available! Techni-

cal report. Intel, June 2011 (cited on

page 48).

[64] ctypes – A foreign function library for

Python. Python Software Foundation.

Delaware, USA (cited on page 48).

[65] Python/C API Reference Man-

ual. Python Software Foundation.

Delaware, USA (cited on page 48).

[66] The OpenCL Specification, Version

2.0. Rev. 29. The Khronos Group.

Beaverton OR, USA, July 2015 (cited

on page 49).

[67] OpenCL 2.0 Reference Card. Rev.

1115. The Khronos Group. Beaver-

ton OR, USA, July 2015 (cited on

page 49).

[68] AMD APP SDK OpenCL User Guide.

Rev. 1.0. Advanced Micro Devices

(AMD). Sunnyvale CA, USA, Aug.

2015 (cited on page 49).

[69] OpenCL Programming Guide for the

CUDA Architecture. 4.1. Obsolate, but

a good introduction. Nvidia. Santa

Clara CA, USA, Mar. 2012 (cited on

page 49).

[70] CUDA C Programming Guide. 8.0.

Nvidia. Santa Clara CA, USA, Sept.

2016 (cited on pages 49, 50).

[71] Nvidia. GeForce GTX TITAN X. Speci-

fication. Mar. 2015 (cited on page 50).

[72] AMD APP SDK OpenCL Optimiza-

tion Guide. Rev. 1.0. Advanced Micro

Devices (AMD). Sunnyvale CA, USA,

Aug. 2015 (cited on page 50).

[73] B. Cabral, N. Cam, and J. Foran. “Ac-

celerated Volume Rendering and To-

mographic Reconstruction Using Tex-

ture Mapping Hardware”. In: Proceed-

ings of the 1994 Symposium on Vol-

ume Visualization. VVS ’94. Tysons

Corner, Virginia, USA: ACM, 1994,

pages 91–98 (cited on page 58).

[74] F. Xu and K. Mueller. “Accelerating

popular tomographic reconstruction

algorithms on commodity PC graph-

ics hardware”. In: IEEE Transactions

on Nuclear Science 52.3 (June 2005),

pages 654–663 (cited on page 58).

[75] A. Fehringer, T. Lasser, I. Zanette,

P. B. Noël, and F. Pfeiffer. “A

versatile tomographic forward- and

back-projection approach on multi-

GPUs”. In: Proceedings of SPIE 9034

Real-time iterative reconstruction for x-ray computed tomography 133

(2014), 90344F–90344F–7 (cited on

pages 58, 64, 65).

[76] R. Sampson, M. G. McGaffin, T. F.

Wenisch, and J. A. Fessler. “Investi-

gating Multi-threaded SIMD for Helical

CT Reconstruction on a CPU”. In: In-

ternational Conference on Image For-

mation in X-Ray Computed Tomogra-

phy. Volume 4. July 2016, pages 275–

278 (cited on page 58).

[77] C. Cullinan, C. Wyant, and T. Frat-

tesi. Computing Performance Bench-

marks among CPU, GPU, and FPGA.

Technical report. Sponsored by Math-

Works. Worcester Polytech Institute,

2012 (cited on page 59).

[78] M. Reis. “GPU-accelerated Fourier

Filtering for Filtered Backprojection

in Computed Tomography”. Bachelor

thesis. Technical University Munich,

Aug. 2013 (cited on page 59).

[79] T. Lovelace. “CMake: The Cross Plat-

form Build System”. In: Linux Maga-

zine (June 2006) (cited on page 59).

[80] B. De Man and S. Basu. “Distance-

driven projection and backprojection

in three dimensions”. In: Physics in

Medicine and Biology 49.11 (2004),

page 2463 (cited on page 62).

[81] Y. Long, J. A. Fessler, and J. M. Bal-

ter. “3D Forward and Back-Projection

for X-Ray CT Using Separable Foot-

prints”. In: IEEE Transactions on

Medical Imaging 29.11 (Nov. 2010),

pages 1839–1850 (cited on page 62).

[82] R.-D. Bippus, T. Koehler, F. Bergner,

B. Brendel, E. Hansis, and R. Proksa.

“Projector and Backprojector for Iter-

ative CT Reconstruction with Blobs

using CUDA”. In: Workshop on High

Performance Image Reconstruction

(Fully 3 D). Volume 3. July 2011,

pages 68–71 (cited on page 62).

[83] S. Ha, H. Li, and K. Mueller. “Effi-

cient Area-Based Ray Integration Us-

ing Summed Area Tables and Regres-

sion Models”. In: International Confer-

ence on Image Formation in X-Ray

Computed Tomography. Volume 4.

July 2016, pages 507–510 (cited on

page 62).

[84] A. Fehringer. “Advanced Algorithms

for Ptychographic X-Ray Computed

Tomography”. Diploma thesis. Tech-

nical University Munich, Nov. 2011

(cited on page 62).

[85] V. Y. Panin, G. L. Zeng, and G. T. Gull-

berg. “Total variation regulated EM al-

gorithm”. In: IEEE Nuclear Science

Symposium Conference Record. Vol-

ume 3. 1998, pages 1562–1566 (cited

on page 63).

[86] Advanced Micro Devices (AMD).

clFFT. Open-source software. Since

2013 (cited on page 64).

[87] A. Fehringer, K. Mechlem, M. Epple,

S. Allner, L. Hehn, F. Pfeiffer, and

P. B. Noël. “Ultra-fast cone-beam SIR

on 2k-cubed data”. In: International

Conference on Image Formation in

X-Ray Computed Tomography. Vol-

ume 4. July 2016, pages 129–132

(cited on pages 64, 82).

[88] J. Y. Vaishnav, W. C. Jung, L. M.

Popescu, R. Zeng, and K. J. Myers.

“Objective assessment of image qual-

ity and dose reduction in CT iterative

reconstruction”. In: Medical Physics

41.7 (2014) (cited on pages 73, 96).

[89] B. Brendel and T. Koehler. “Penalty

weighting for statistical iterative CT re-

construction”. In: IEEE Nuclear Sci-

134 Real-time iterative reconstruction for x-ray computed tomography

ence Symposuim Medical Imaging

Conference. Volume 17. Oct. 2010,

pages 3475–3478 (cited on page 73).

[90] J. H. Cho and J. A. Fessler. “Regu-

larization Designs for Uniform Spatial

Resolution and Noise Properties in

Statistical Image Reconstruction for

3-D X-ray CT”. In: IEEE Transactions

on Medical Imaging 34.2 (Feb. 2015),

pages 678–689 (cited on page 73).

[91] F. Bergner, B. Brendel, P. Noel,

M. Dobritz, and T. Koehler. “Ro-

bust Automated Regularization Factor

Selection for Statistical Reconstruc-

tions”. In: International Conference

on Image Formation in X-Ray Com-

puted Tomography. Volume 2. 2012,

pages 267–270 (cited on page 73).

[92] H. Dang, J. H. Siewerdsen, and J. W.

Stayman. “Prospective regularization

design in prior-image-based recon-

struction”. In: Physics in medicine and

biology 60.24 (2015), pages 9515–

9536 (cited on pages 73, 102).

[93] H. Dang, J. W. Stayman, J. Xu, A. Sis-

niega, W. Zbijewski, X. Wang, D. H.

Foos, N. Aygun, V. E. Koliatsos, and

J. H. Siewerdsen. “Task-Based Reg-

ularization Design for Detection of In-

tracranial Hemorrhage in Cone-Beam

CT”. In: International Conference on

Image Formation in X-Ray Computed

Tomography. Volume 4. July 2016,

pages 557–560 (cited on page 73).

[94] B. Brendel, M. von Teuffenbach, A.

Fehringer, P. B. Noël, F. Pfeiffer, and

T. Koehler. “Intensity-Based Iterative

Reconstruction for Differential Phase-

Contrast Imaging with Reconstruc-

tion Parameter Estimation”. In: Work-

shop on High Performance Image Re-

construction (Fully 3 D). Volume 13.

June 2015, pages 713–716 (cited on

page 75).

[95] B. Brendel, M. von Teuffenbach, P. B.

Noël, F. Pfeiffer, and T. Koehler. “Pe-

nalized maximum likelihood recon-

struction for x-ray differential phase-

contrast tomography”. In: Medical

Physics 43.1 (2016), pages 188–194

(cited on page 75).

[96] B. De Man, J. Nuyts, P. Dupont, G.

Marchal, and P. Suetens. “An iterative

maximum-likelihood polychromatic al-

gorithm for CT”. In: IEEE Transactions

on Medical Imaging 20.10 (Oct. 2001),

pages 999–1008 (cited on pages 75,

102).

[97] K. Mechlem. “Advanced Statistical It-

erative Reconstruction for X-ray Com-

puted Tomography”. Master thesis.

Technical University Munich, Dec.

2015 (cited on pages 75, 80).

[98] P. Charbonnier, L. Blanc-Feraud, G.

Aubert, and M. Barlaud. “Two deter-

ministic half-quadratic regularization

algorithms for computed imaging”. In:

Proceedings of 1st International Con-

ference on Image Processing. Vol-

ume 2. Nov. 1994, 168–172 vol.2

(cited on page 75).

[99] Q. Xu, H. Yu, X. Mou, L. Zhang, J.

Hsieh, and G. Wang. “Low-Dose X-

ray CT Reconstruction via Dictionary

Learning”. In: IEEE Transactions on

Medical Imaging 31.9 (Sept. 2012),

pages 1682–1697 (cited on page 75).

[100] A. Fehringer, K. Mechlem, M. Ep-

ple, S. Allner, L. Hehn, F. Pfeiffer,

and P. B. Noël. “Real-Time Iterative

Reconstruction on 2k-Cubed X-Ray

Real-time iterative reconstruction for x-ray computed tomography 135

Micro-CT Images”. Submitted (cited

on page 82).

[101] I. Goddard, A. Berman, O. Bocken-

bach, F. Lauginiger, S. Schuberth,

and S. Thieret. “Evolution of com-

puter technology for fast cone beam

backprojection”. In: SPIE Computa-

tional Imaging. Volume 6498. Interna-

tional Society for Optics and Photon-

ics. 2007, 64980R–64980R–8 (cited

on page 83).

[102] T. Zinßer and B. Keck. “Systematic

Performance Optimization of Cone-

Beam Back-Projection on the Ke-

pler Architecture”. In: Proceedings

of the Fully 3 D. Volume 12. 2013,

pages 225–228 (cited on pages 83,

86).

[103] Z. Wang, A. C. Bovik, H. R. Sheikh,

and E. P. Simoncelli. “Image qual-

ity assessment: from error visibil-

ity to structural similarity”. In: IEEE

Transactions on Image Processing

13.4 (2004), pages 600–612 (cited on

pages 88, 97).

[104] Z. Wang and A. C. Bovik. “Mean

squared error: Love it or leave it? A

new look at Signal Fidelity Measures”.

In: IEEE Signal Processing Magazine

26.1 (2009), pages 98–117 (cited on

pages 88, 97).

[105] ISO/IEC 2382:2015: Information

technology – Vocabulary. Standard.

Geneva, CH: International Organiza-

tion for Standardization, May 2015

(cited on page 96).

[106] S. Allner, A. Fehringer, A. Velroyen,

F. Pfeiffer, and P. B. Noël. “Statistical

iterative reconstruction for ultra high-

resolution x-ray tomography from un-

dersampled data”. In: Workshop on

High Performance Image Reconstruc-

tion (Fully 3 D). Volume 13. June 2015,

pages 614–617 (cited on page 96).

[107] W. K. Pratt. “Image Feature Extrac-

tion”. In: Digital Image Processing.

John Wiley & Sons, Inc., 2007. Chap-

ter 16, page 539 (cited on page 97).

[108] Nvidia. NVIDIA TITAN Xp. Prod-

uct website. Apr. 2017 (cited on

page 102).

136 Real-time iterative reconstruction for x-ray computed tomography

	Abstract
	Contents
	List of Figures
	List of Algorithms

	1 Preface
	1.1 What the world is all about
	1.2 Faith and the difference it makes for research

	2 Introduction
	2.1 Motivation
	2.2 Overview

	I Theory
	3 X-ray computed tomography
	3.1 Data acquisition and challenges from the real world
	3.2 Analytical reconstruction
	3.3 Iterative reconstruction

	4 Projective geometry
	4.1 Mathematical background
	4.2 Projection matrices in CT
	4.3 Some special use cases

	5 Heterogeneous computing
	5.1 Basic concepts
	5.2 GPGPU computing

	II Implementation
	6 The building blocks
	6.1 Preliminary considerations
	6.2 The kernels
	6.3 Handling big data
	6.4 Remarks on the OpenCL framework

	7 The reconstruction framework
	7.1 Visions and their realization
	7.2 An overview

	8 Integral optimization
	8.1 The right components and their synergy
	8.2 Component-wise optimization
	8.3 Optimizing the minimizer

	III Results
	9 Real-time SIR for micro-CT
	9.1 Constraints and potential
	9.2 Benchmark and profilings

	Outtake
	Appendix
	A Derivations of the cost function
	B A possible definition of the Euler angles
	C Computing the parallel-beam direction vector
	D Optimizing the workgroup size without considering transfers

	Acknowledgments
	Picture credits
	List of publications
	Bibliography

