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Abstract

ExaHyPE, an Exascale Hyperpolic PDE Engine, offers a game engine like solution
to simulate hyperbolic partial differential equations, while tackling the challenges of
future exascale supercomputers. In this thesis it is shown how to implement the shallow
water equations in ExaHyPE as well as an additional Riemann solver to enable the
wetting and drying of cells. It shows how much ExaHyPEs performance increases
when using shared memory and distributed memory parallelisation and at which
circumstances the best performance is achieved. The implementation of the solvers,
especially the implementation of the additional Riemann solver, is then tested with two
benchmarks. The results show that the implemented Riemann solver generates rather
accurate results, but in the case of demanding problems it comes to its limits.
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1 Introduction

Many physical processes can be described by partial differential equations (PDEs). They
are used for simulations of, for instance, earthquakes and tsunamis. These simulations
need a lot of computational resources, which is why they are run on large computer
systems with a high number of cpus, i.e. supercomputers. The computing capability of
these supercomputers have been increasing exponentially over the last years [13]. The
fastest supercomputer as of the Top500 list of June 2018 achieved over 122 petaflops
(1015 operations per second) as maximal LINPACK performance [15]. The next large
step is a supercomputer, which can achieve one exaflop (1018 operations per second).
This yields a lot of challenges for software to use this computing power efficiently.
Some of these challenges are system power consumption, massive parallelism and less
memory per core than in current systems [13]. ExaHyPE, an Exascale Hyperpolic PDE
Engine, tackles these challenges by providing a game engine like solution to solve PDEs
written in first order form. It uses explicit ADER-DG and finite volume schemes [14].
ADER-DG schemes make it possible to increase the accuracy of the simulation while
staying within the same power budget [2]. To generate, refine and traverse grids, it
uses the Peano space-filling curve, which has low memory footprint capabilities for the
generated mesh. [16].

In this thesis I used the ExaHyPE engine and the shallow water equations (SWE),
which are hyperbolic non-linear PDEs, to simulate waves. To increase the accuracy of
the simulation I used the ADER-DG solver of ExaHyPE as well as the dynamic adaptive
mesh refinement feature. Since the integrated solver of ExaHyPE does not support the
wetting and drying of cells, I implemented an additional Riemann solver within a finite
volume solver of ExaHyPE. ExaHyPE is thought to run on highly parallel systems, so
I tested its performance improvements when using shared memory and distributed
memory parallelisation.

The second chapter will briefly explain the SWE as well as some concepts of ExaHyPE.
In the third chapter I will describe how I implemented the shallow water equations
in ExaHyPE, especially how the Riemann solver for the wetting and drying of cells
looks like, and how I initially tested the solvers. The performance tests are shown in
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1 Introduction

chapter 4, and chapter 5 is dedicated to benchmarks of the correctness of a limited
solver, which uses the ADER-DG solver from ExaHyPE in assistance of a finite volume
solver with the Riemann solver I implemented. The last chapter concludes this thesis
and speaks about further possibilities what can be done with the resulting solver.
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2 Theoretical Background

To simulate hyperbolic PDEs with initial conditions, like the SWE that are described in
the next section, we need a numerical solver. ExaHyPE offers the spatial discretization
and the numerical solvers in form of finite volume and ADER-DG solvers to do so. In
this chapter I will describe the SWE and how ExaHyPE works.

2.1 Shallow Water Equations

As LeVeque [8] writes, the shallow water equations are non-linear PDEs, which he
derives when considering a fluid in a channel of unit width and assuming that the
vertical velocity is negligible and the horizontal velocity is roughly constant throughout
any cross section of the channel. In order for these equations to be correct, the waves
have to be small relative to the height of the water. The one-dimensional shallow water
equations he derives are [

h
hu

]
t
+

[
hu

hu2 + 1
2 gh2

]
x
= 0 (2.1)

where h is the height of a unit of water and u the already mentioned horizontal
velocity. The first term [h, hu]Tt describes the height and momentum of the unit at time
t and the second term describes the flow in x-direction. The corresponding eigenvalues
for the Jacobian-matrix of the flux are

λ1 = u−
√

gh, λ2 = u +
√

gh (2.2)

In two dimensions, like it is the case in ExaHyPE, LeVeque defines the SWE as follows h
hu
hv


t

+

 hu
hu2 + 1

2 gh2

huv


x

+

 hv
huv

hv2 + 1
2 gh2


y

= 0 (2.3)
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2 Theoretical Background

where hu and hv are the momentum of the wave in the respective direction. And the
corresponding eigenvalues are

λx1 = u−
√

gh, λx2 = u, λx3 = u +
√

gh (2.4)

λy1 = v−
√

gh, λy2 = v, λy3 = v +
√

gh (2.5)

Finally we have to add a non-conservative product to be able to use bathymetry as
mentioned in [10] and get h

hu
hv


t

+

 hu
hu2 + 1

2 gh2

huv


x

+

 hv
huv

hv2 + 1
2 gh2


y

+

 0
ghbx

ghby

 = 0 (2.6)

where bx and by are the derivations of b in the respective direction.

2.2 ExaHyPE

ExaHyPE offers an engine for solving hyperbolic PDEs, like our SWE, and plotting the
solutions. To do so a configuration file has to be written and the toolkit of the engine
will generate the necessary code and code framework, so that the PDEs can be easily
implemented. ExaHyPE solves equations of the form of

P︸︷︷︸
materialmatrix

∂

∂t
Q +∇ · F︸︷︷︸

fluxes

(Q) +
d

∑
i=1

Bi(Q)
∂Q
∂xi︸ ︷︷ ︸

ncp

= S(Q)︸ ︷︷ ︸
sources

+ ∑ δ︸︷︷︸
pointsources

(2.7)

like it is mentioned in [14]. For our SWE we need ∂
∂t Q, the fluxes and for the

bathymetry we also need the non-conservative product (ncp). From formula 2.6 we get

∂

∂t
Q =

 h
hu
hv


t

, F(Q) =

 hu
hu2 + 1

2 gh2

huv


x

+

 hv
huv

hv2 + 1
2 gh2


y

, B(Q) =

 0
ghbx

ghby

 (2.8)

To calculate the solutions for such PDEs we need a numerical solver. ExaHyPE offers
two different kinds of solvers, finite volume solvers and ADER-DG solvers. In chapter 3
I will discuss the solvers I used within ExaHyPE and one solver I extended by a special
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2 Theoretical Background

Riemann solver to enable wetting and drying. It is also possible to use a limited solver
in ExaHyPE, which uses an ADER-DG solver and for cells, that are marked as troubled,
a finite volume solver. I used this feature to be able to combine the finite volume solver
I implemented myself with the ADER-DG solver from ExaHyPE, so that the advantages
of the ADER-DG solver can be used with wetting and drying.

From the SWE we can see that the state vector Q is (h, hu, hv)T, but to be able to
model sea floor topographies we need to consider bathymetry in our state vector. In
ExaHyPE there are two possibilities to add the bathymetry, it can be added to either the
variables or the parameters. For the implementation that basically makes no difference,
except that ExaHyPE ensures that the parameters do not change. Since implementing it
as parameter did not work at the beginning of this theses, I added it as variable. In
further references Q is the vector (h, hu, hv, b)T and the bathymetry is also part of the
PDE and considered as constant in time.

2.2.1 ADER-DG solver

ExaHyPE uses the method for the ADER-DG solver which is described in [4]. The
numerical solution up of the vector of conserved quantities is represented by piecewise
polynomials of degree N, which are spanned by orthogonal basis functions Φl , inside an
element T(m) as a sum of degrees of freedom (dof) û(m)

p and the space-only dependent
basis functions of degree N as follows

u(m)
p (~ξ, tn) = û(m)

pl (tn)Φl(~ξ) (2.9)

where ~ξ = (ξ, η, ζ) are the spatial coordinates in a reference coordinate system. Then
a PN PM reconstruction operator is applied to generate piecewise polynomials of degree
M ≥ N, which are spanned by hierarchical orthogonal basis functions Ψl . After that
they use a new local continuous space-time Galerkin method to evolve the polynomial
data of degree M in time locally inside each element. To derive a fully discrete form
of the PN PM schemes they multiply the conservation law with a test function Φk and
integrate over the space-time element T(m) × [tn; tn + ∆t]

∫ tn+∆t

tn

∫
T(m)

Φk
∂

∂t
updVdt +

∫ tn+∆t

tn

∫
∂T(m)

Φk~Fp ·~ndSdt−
∫ tn+∆t

tn

∫
T(m)

∂Φk
∂~x

~FpdVdt =
∫ tn+∆t

tn

∫
T(m)

ΦkSpdVdt (2.10)

where they propose to use the solution of the local space-time Galerkin scheme with
polynomial degree M to compute the fluxes and source terms. The last step is to update
the degrees of freedom ûlp from time level n to time level n + 1.
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2 Theoretical Background

2.2.2 Limiting

As I mentioned ExaHyPE offers a limited solver, where the accuracy of the ADER-DG
solver is combined with the robustness of the finite volume solver for troubled cells.
As described in [5] the limiter works by running the ADER-DG solver at time tn for
one time step to produce a so-called candidate solution at time tn+1. The discrete
representation of the solution within a general simplex element Ti, i.e. a cell, is denoted
by uh(x, tn) at the beginning of a time step and the candidate solution at tn+1 by
u∗h(x, tn+1). Then troubled cells are detected a posteriori.

As mentioned in [14] ExaHyPE uses two criteria to detect troubled cells. The first
one is the discrete maximum principle (DMP) which is defined in [5] by

min
y∈Vi

(uh (y, tn))− δ ≤ u∗h
(

x, tn+1
)
≤ max

y∈Vi
(uh (y, tn)) + δ ∀x ∈ Ti (2.11)

The set Vi contains the current cell Ti and the cells that share at least a common
node with Ti. Equation 2.11 shows that the candidate solution u∗h

(
x, tn+1) must remain

between the minimum and maximum values of the cell and its neighbours at the
previous time step. δ is used as a parameter to relax the discrete maximum principle
and is in [5] defined by

δ = max
(

ε0, ε

(
max
y∈Vi

(uh (y, tn))−min
y∈Vi

(uh (y, tn))

))
(2.12)

where usually ε = 10−3 and ε0 = 10−4. In ExaHyPE these two parameters can be set
by the dmp-difference-scaling (ε) and the dmp-relaxation-parameter (ε0) options. right as-

signment
right as-
signmentThe second criteria is the Physical Admissibility Detection criteria (PAD), which

checks if u∗h
(
x, tn+1) verifies some physical admissibility constraints for the cell Ti. This

constraint can be set within a limited solver by defining the, from ExaHyPE generated,
method isPhysicallyAdmissible in the ADER-DG solver cpp-file.

If a cell is marked as troubled by one of these criteria the candidate solution of these
cells is disregarded and recomputed with the finite volume solver. Therefore the DG
polynomial uh of order N of the cell is divided into Ns = 2N + 1 sub-cells, on which
the finite volume solver is used on. The solution of the finite volume solver at time tn+1

is then gathered back into a valid cell-centered DG polynomial of degree N.
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2 Theoretical Background

2.2.3 Adaptive Mesh Refinement

In most cases there are areas within the computational domain, that are more relevant
for the correctness of the solution than other areas, e.g. in the scenario of section 5.1
the area where the run up takes place is the most important like I explained in 5.1.3. To
reduce the computational effort and still be able to process such areas with a higher
resolution, ExaHyPE offers adaptive mesh refinement (AMR). To use this feature the
maximum-mesh-depth option in the configuration file has to be set greater than zero.
ExaHyPE then creates a method, where a refinement criterion can be specified. This
can be a static criterion to refine cells with special coordinates or a dynamic criterion
to refine or coarse cells with special conditions, e.g. if they have a certain height or a
certain gradient. In section 3.3.2 I used the water height to refine the mesh. Another
possibility to use adaptive mesh refinement is to use a limited solver. There every cell
which is marked as troubled will be refined to the finest mesh level.

Like it is described in [11] ExaHyPE uses a stack&stream approach to avoid random
memory access. For the parallelisation of this approach it uses Peano Space-Filling
Curves, which provides an algorithm for grid generation, refinement and traversal. [16]
It’s AMR functionality works on a cell level. A cell may be marked for refinement or
coarsening, either through the refinement criterion or the limited solver. Then the grid
is traversed and refined or coarsened with the corresponding interpolation operations.
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3 Implementation

In this chapter I will talk about the implementation of the SWE in ExaHyPE as well as
the implementation of a Riemann solver which was not part of the ExaHyPE engine.
First I will describe my solution for the boundary conditions of the computational
domain, then I will give a short overview of the different kind of solvers I used for the
tests in chapter 4 and chapter 5. After that I will show the mathematical formulation of
the wetting and drying solver I implemented and what initial conditions I used to test
the solvers initially.

3.1 Boundary Conditions

To define the behaviour of the simulation at the boundary of the domain, we have to
specify the boundary conditions of our solver. There are a few possibilities to choose
from. For the simulations of this thesis wall boundaries are sufficient. This means that
the cells at the boundary are set in a way, that they act like a wall.

To implement the wall boundary conditions for the finite volume solvers, we just
need to copy the values of the state of the cells at the boundary within the domain to
the cells outside of the domain and set the momentum of the cells outside in opposition
to the cells inside respective to the direction. This means we simulate cells that have the
same water height and move with the same speed against each other. In the following
code excerpt the direction is given by the variable normalNonZero, which is 0 for the
x-direction and 1 for the y-direction. This means, with 1 + normalNonZero, we either set
hu or hv.

std::copy_n(stateIn, NumberOfVariables, stateOut);
stateOut[1+normalNonZero] = -stateOut[1+normalNonZero];

For the ADER-DG solver this is not sufficient. There we also have to set the fluxes of
the boundary cells. Therefore we use the flux function of our solver and set the flux of
the outer cells to the flux of the respective direction.

double _F[2][NumberOfVariables]={0.0};

8



3 Implementation

double* F[2] = {_F[0], _F[1]};
flux(stateOut,F);
std::copy_n(F[normalNonZero], NumberOfVariables, fluxOut);

3.2 Solvers

As mentioned in 2.2 ExaHyPE offers finite volume solvers as well as ADER-DG solvers.
For the first verification a Godunov solver was used.

In the next step, I implemented an non-linear ADER-DG solver with Gauss-Legendre
integration points. This worked exactly the same as with the Godunov solver, ex-
cept that I had to change the boundary conditions like I mentioned in section 3.1.
Performance tests for this solver are presented in chapter 4.

Since these solvers both do not support wetting and drying cells, I implemented
another Riemann solver in the Godunov type finite volume solver, which I describe in
the next section. ExaHyPE allows to implement custom Riemann solvers by overloading
the default implementation. This solver was used for the tests in chapter 5. With every
further reference of wetting and drying solver or finite volume solver this solver is
meant.

The last solver I implemented was a limited solver, which used the non-linear ADER-
DG solver with Gauss-Legendre integration points and the finite volume solver for
wetting and drying cells. With this solver the accuracy of the solution can be improved
while we still have wetting and drying.

3.3 Wetting and Drying

Since with equation 2.6 and the solvers of the engine no wetting and drying is possible
I used the solver from [3] to implement a new Riemann solver. Here I will describe explain

why
solver is
not work-
ing

explain
why
solver is
not work-
ing

the Riemann solver as it is implemented with the interaction of two cells. For the
calculation, the initial state of the two interacting cells is needed, which looks like this

QL =


hL

(hu)L

(hv)L

bL

 , QR =


hR

(hu)R

(hv)R

bR

 (3.1)

9



3 Implementation

To distinguish between the two directions, we need the vector ~nd where the d stands
for the respective direction, i.e. x- or y-direction.

~nd =


0

δdx
δdy
0

 (3.2)

where d is either x or y and δi,j is the Kronecker delta.

δi,j =

{
0 if i 6= j

1 if i = j
(3.3)

To get the wetting and drying to work we need uLnd
and uRnd

, which are also
dependent on the direction, but also on the selected value for ε.

uLnd
=


0

(hu)L

(hv)L

0

 ·~nT
d · hL ·

√
2/
√

h4
L + (max(hL, ε))4 (3.4)

uRnd
=


0

(hu)R

(hv)R

0

 ·~nT
d · hR ·

√
2/
√

h4
R + (max(hR, ε))4 (3.5)

The fluxes for the left and the right cell in dependency of the direction are displayed
in 3.6.

FLd =


hL

hL · uLnx

hL · uLny

0

 ·



0
uLnx

uLny

0

 ·~nT
d

 , FRd =


hR

hR · uRnx

hR · uRny

0

 ·



0
uRnx

uRny

0

 ·~nT
d

 (3.6)

Then our lambdas are calculated the same as in section 2.1 with respect to the left or
right cell.

λ1Ld
= unLd

+
√

g · hL, λ2Ld
= unLd

−
√

g · hL, λ3Ld
= unLd

(3.7)
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λ1Rd
= unRd

+
√

g · hR, λ2Rd
= unRd

−
√

g · hR, λ3Rd
= unRd

(3.8)

Now we need the the maximum of all lambdas for the right and the left cell respective
to the direction.

smaxd = max(λijd
) : i ∈ [1, 3] : j ∈ {L, R} (3.9)

At last δ is calculated as follows

δ = max(hR + bR −max(bL, bR), 0.0)−max(hL + bL −max(bL, bR), 0.0) (3.10)

Now we can calculate the flows for both cells. We have the fluxes from equation 3.6,
a further term for the fluxes and the non-conservative product.

fLd = 0.5 ·

(FLd + FRd

)
− smaxd ·


δ

(hu)R − (hu)L

(hv)R − (hv)L

0

+


0

g · 0.5 · (hL + hR) · δ
g · 0.5 · (hL + hR) · δ

0

 ·~nd


(3.11)

fRd = 0.5 ·

(FLd + FRd

)
− smaxd ·


δ

(hu)R − (hu)L

(hv)R − (hv)L

0

−


0
g · 0.5 · (hL + hR) · δ
g · 0.5 · (hL + hR) · δ

0

 ·~nd


(3.12)

Additionally I had to set u or v to zero, if the height of the cell was smaller than ε. I
realised this be configuring the adjustSolution method in ExaHyPE as in equation 3.13.
This method is run after every time step for every cell and is also used to set the initial
conditions.

hu =

{
hu if h ≥ ε

0 if h < ε
hv =

{
hv if h ≥ ε

0 if h < ε
(3.13)
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3.3.1 Example

QL QR

h=1
b=2

hu=2
hu=0 h=0

b=4

Figure 3.1: Representation of the initial state of the left and the right cell of the example
for the Riemann solver

To demonstrate the result of the solver I used the scenario shown in Fig. 3.1. The initial
states of the left and the right cell are

QL =


1
2
0
2

 , QR =


0
0
0
4

 (3.14)

Note that the selected ε does not influence this example as long as ε ≤ 1. In the
scenario the water of the left cell moves against the higher bathymetry of the right
cell and we would expect the water to get reflected from the right cell. In this case we
calculate the movement in x-direction. For fLx as well as fRx we have to calculate FRx

and FRx .

FLx =


hL · uLnx

hL · uLnx
· uLnx

hL · uLny
· uLnx

0

 =


2
4
0
0

 , FRx =


hR · uRnx

hR · uRnx
· uRnx

hR · uRny
· uRnx

0

 =


0
0
0
0

 (3.15)

with
uLnx

= 2, uLny
= 0, uRnx

= 0, uRny
= 0 (3.16)

The eigenvalues are calculated with equation 3.7 and 3.8.

λ1Lx
= 2 +

√
9.81, λ2Lx

= 2−
√

9.81, λ3Lx
= 2 (3.17)
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λ1Rx
= 0, λ2Rx

= 0, λ3Rx
= 0 (3.18)

This results in

smaxx = 2 +
√

9.81 (3.19)

It can be seen that δ = 0. With this we can finally calculate the resulting flows for
both cells.

fLx = 0.5 ·




2
4
0
0

+


0
0
0
0

− (2 +
√

9.81) ·


0
−2
0
0

+


0
0
0
0


 =


1

4 +
√

9.81
0
0

 (3.20)

Since the only difference between fLx and fRx is the addition or respectively the
subtraction of the ncp, which is 0 in this case, fRx looks exactly like fLx .

To see how these flows influence the state of the cells the Godunov solver has to be
considered. There the flows get multiplied by timestep

cellsize and fLx gets subtracted from the
left cell whereas fRx gets added to the right cells. So for the left cell we have a reflection,
like we assumed, and the right cell gets wet. correct?correct?

3.3.2 Initial Tests

To test the implementation of the solvers as well as AMR I used some basic initial
conditions.

As basic test I used simple shock-shock and rare-rare problems. In these tests the
computational domain has a width of 10 by 10 and I defined the initial state as follows

QS =


4

hu(x, 0)S
0
0

 QR =


4

hu(x, 0)R

0
0

 (3.21)

where QS is the initial state of the shock-shock problem, QR is the initial state of the
rare-rare problem and hu is dependent on the x-coordinate.

hu(x, 0)S =

{
2 if x < 5

−2 if x ≥ 5
hu(x, 0)R =

{
−2 if x < 5

2 if x ≥ 5
(3.22)
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3 Implementation

As it can be seen in equation 3.21 we actually have a 1-dimensional problem. But
since in ExaHyPE we work on a 2-dimensional domain, we have to set a width for
the y-direction. Notice that the width in y-direction can be set to any value without
changing the solution, since there is no water flow in y-direction and the cells with the
same x-coordinate have the same state at each time step. The only difference is, that
a smaller width of the y-direction would lead to smaller computational domain and
therefore to less computational effort.

The next test uses a Gauss function as initial water height in a domain of 10 by 10,
where the initial state Q is defined as follows

Q =


e−(x−5)2

+ 1
0
0
0

 (3.23)

Plus 1 is added to the Gauss function, since the ADER-DG solver does not support
wetting and drying and the water height should not be zero at any point of the function.
In this scenario the width of the y-dimension can be set to any value because of the
same reasons as in the rare-rare and shock-shock tests. This initial condition was used
for the performance tests in chapter 4.

I used this initial condition to test dynamic AMR. Therefore I used the ADER-DG
solver and set the refinement criterion. As I mentioned in section 2.2.3 there are different
ways to set the criterion, in my test I set it accordingly to the water height. Therefore
I calculated the maximum height hmax of the dof in the cell and set the refinement
criterion accordingly as follows

Re f inement level =


CML + 2, if 1.5 < hmax

CML + 1, if 1.2 < hmax < 1.5

CML, if hmax < 1.2

(3.24)

CML stands for coarsest mesh level and is the level which is normally used without
AMR. In Fig. 3.2 the result of this test can be seen. It shows a part of the computational
domain, where the domain is not fully shown in y direction, since as I mentioned the
state of the cells does not change in y-direction. It shows the domain at t = 0 and
with the refinement criterion as in equation 3.24. The water height is the highest in
the middle of the domain and the water height gets smaller in both directions. The
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3 Implementation

different refinement levels can clearly be seen and are moving with the height of the
water as it is simulated over time.

Figure 3.2: Part of the Gauss scenario at t = 0 with AMR and the refinement criterion
as in equation 3.24. The curve is at height = 2 in the middle and gets smaller
to the end of the domain in x-direction, therefore the refinement gets smaller
accordingly.
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4 Performance

Since the ExaHyPE engine is designed to run on future supercomputers it is necessary
that its performance scales with the resources available. To use more than one core
ExaHyPE offers to use shared memory parallelisation, distributed memory parallelisa-
tion or both together. As shared memory parallelisation options ExaHyPE supports
TBB and OpenMP, from which I used just TBB for my performance tests, because the
development of the TBB variant is typically one step ahead of the OpenMP support
[14]. For the distributed memory parallelisation ExaHyPE uses MPI.

4.1 Test Setup

4.1.1 Hardware

Tests were run on the MAC-Cluster of the Leibniz Supercomputing Centre. This
cluster is designated for research in development of parallel software [9]. To test the
performance of my SWE Application I used the "snb" nodes of this cluster, which
feature a dual socket with two Intel SandyBridge-EP Xeon E5-2670 and 128GB of RAM.
Each of these Xeon E5-2670 have 8 cores with a base frequency of 2.60 GHz and a max
turbo Frequency of 3.30 GHz and 16 Threads.

4.1.2 Configuration

Tests were executed with the ADER-DG solver I mentioned in section 3.2. As initial
condition I used the Gauss-Scenario, as described in section 3.3.2, in both cases, i.e.
with TBB and MPI. In the case of TBB I first set the maximum-mesh-size to 0.15, which
leads to 6561 cells, and, to test a bigger resolution, for the second test to 0.05, which
leads to 59049 cells. In the case of MPI I just ran tests with a maximum-mesh-size of
0.15, i.e. 6561 cells.
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4.2 TBB

shared-memory
identifier = dummy
configure = {background-tasks:1}
cores = 1
properties-file = sharedmemory.properties

end shared-memory

The code example above shows the configuration I used for TBB performance tests.
Identifier is set to dummy, which uses default values. The background-tasks option
does not influence the result since in the optimization options spawn-predictor-as-
background-thread is turned off. The cores option was always set according to the
respective amount of cores for a test run.

The option cores defines the number of used TBB threads. So in the case of this
cluster setting the option to 32 corresponds to 16 physically cores with 2 hyper-threads
each.

As mentioned above, I used two different resolutions for the tests. Additionally I
used different orders for the test with 6561 cells to increase the computational effort
of the program. Since the runtime for using only one core would have exceeded the
clusters time limit, I set the base of our measurements at 4 cores and increased the
amount of cores used to 8, 16 and 32.
4.2.1 Speedup

To be able to calculate the speedup I used the formula [6]

Sp =
T1

Tp
(4.1)

where p is the amount of processors. Sp is the speedup. T1 is the time the program
needs to finish on one processor and Tp is the time a program needs to finish on p
processors. In this case one processor corresponds to one core.

To get T1 I assumed that the speedup for 4 cores was linear and calculated T1 as
follows: T1 = T4

4 .
Like it is shown in Fig. 4.1, more cells lead to a higher speedup. The same is true for

a higher order, where the speedup is increasing even more. The first doubling of the
cores from 4 to 8 has a higher speedup than the doubling from 8 to 16 cores, e.g. the
speedup with 6561 cells and an order of 7 has the factor 1,9 when doubling from 4 to 8
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cores and the factor 1,8 when doubling from 8 to 16 cores. The doubling from 16 to 32
cores has almost no effect or even decreases the performance in the case of 59049 cells,
which shows that hyper-threading has no influence.
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Figure 4.1: TBB shared memory speedup plot with the Gauss scenario from 3.3.2

4.2.2 Degrees of Freedom

The next aspect I considered was the dof per second. The degrees of freedom are
calculated as follows

NumberO f Cells · (Order + 1)2 (4.2)

As it can be seen in Fig. 4.2 the most dof per second are achieved with 6561 cells and
order 3. I assumed that the dof per second would increase as we increase the amount of
cells or the order, since more degrees of freedom means more possible parallelisation,
but as we increase the number of cells or the order, less dof per second are calculated.
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Figure 4.2: TBB shared memory dof plot with the Gauss scenario from 3.3.2

4.3 MPI

distributed-memory
identifier = static_load_balancing
configure = {greedy-naive,FCFS}
buffer-size = 64
timeout = 120

end distributed-memory

The code example above shows the configuration I used for the MPI performance
tests. The identifier is set to static_load_balancing, since this is currently the only
supported option. The option configure has the two arguments greedy-naive and
FCFS, where greedy-naive guides the load balancing and is the recommended option
according to [14] and FCFS controls the decision which ranks to use next. The buffer-
size option specifies the amount of messages Peano shall internally bundle into one
MPI message and the timeout parameter specifies the time after which a node triggers
a time out if no message has arrived.
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As I mentioned before, I tested the MPI performance with only 6561 cells. But as
with TBB I used different orders to increase the computation effort.

To test the MPI performance I set the -n option of the mpirun command, which sets
the number of processes, to 1, 2, 4, 8, 10, 16, 24, 32, 48, 64, and 80. Since one node has
16 physically cores, I ran the tests with the -n option set to 16 and less on one node.
In the other cases I evenly distributed the number of processes on the minimum of
nodes, so that on no node more than 16 processes were started and thus did not test
any hyper-threading.
4.3.1 Speedup

For the speedup tests the same formula (4.1) was used as in the TBB tests.
The results of this tests can be seen in Fig. 4.3. The speedup from 1 to 4 processes is

almost zero, while the speedup from 4 to 10 processes is more than 4. After increasing
to 10 processes this pattern repeats. Until 64 processes we almost get no speedup and
from 64 to 80 the speedup is 4 in the case of order=3 or in the case of order=7 it is
even more than 14. This shows that the size of the problem influences the speedup
performance of the program. The reason that the highest speedup increases are by 10
and 80 processes is the partitioning of the grid and that one rank is reserved for load
balancing and administration [14]. The grid is three-partitioned in each dimension,
which means in our case that the grid is firstly partitioned in 3 by 3 and if we use more
processes every subgrid is again partitioned in 3 by 3, which means the whole grid
is partitioned in 9 by 9. That means the optimal speedup should lie by 10 processes
((3 · 3) + 1) and 82 processes ((9 · 9) + 1), which the tests proof.

4.3.2 Degrees of Freedom

To calculate the number of dof the same formula (4.2) was used as in the TBB tests.
In Fig. 4.4 we get the same result as with TBB. The higher the order and consequently

the dof, the less dof per second are calculated. But as the amount of processes increases
the ratio between the dof per second of a higher order and the dof per second of a
smaller order decreases, which means that with enough processes the dof per second
of the different orders could be aligned.

If the TBB results from Fig. 4.2 and the MPI results from Fig. 4.4 are compared, then
it can be seen that with a smaller amount of cores, i.e. with one node, TBB is more
efficient than MPI.
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Figure 4.3: MPI distributed memory speedup plot with the Gauss scenario from 3.3.2
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5 Wetting and drying benchmarks

To test the physical correctness of the wetting and drying solver I mentioned in section
3.2. I ran two benchmarks. The first one tests the result of the wetting and drying
solver with empirical data, gathered with a wave tank, and the second one tests it with
a periodically moving water droplet. I used the finite volume solver for the initial tests
and in the case of the first benchmark I used the limited solver to improve the results.
In this chapter I will describe the structure of the computational domains for each
benchmark, how I implemented and tested them and what the results were. For every
tests g, i.e. the gravitation, was set to 9.81.

5.1 Solitary Wave on a Simple Beach

5.1.1 Benchmark Description

This benchmark uses the results of experiments, which where executed at the California
Institute of Technology, and are described in [1]. In [7] González et al. used this
benchmark to validate the software GeoClaw. The computational domain for the
benchmark, which simulates the wave tank of the experiments, looks like in Fig. 5.1.
The water has the overall height d and the initial wave is located at x = x0 + L, which
has the height H. The wave is moving towards the ramp, which displays a simple beach,
where the wave is running up.

In the problem description the x-axis lies on the height d, therefore d actually stands
for depth. Since in our solver the water cannot have a negative height, I moved the
x-axis down to the bottom of the domain. The z-axis stays the same. The computational
domain starts at x = −10 and ends at x = 60. At first I got these values for the size of
the computational domain from [7]. While trying out different values for the tests of
the benchmark, the initial wave started always within the domain and never got to the
end of the domain while running up, so I kept them. Therefore in the settings of the
configuration file the width for the x-axis is set to 70 and the offset to -10. Since we
are working on a 2-dimensional computational domain, we have to set a width for the
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5 Wetting and drying benchmarks

y-axis as well. Because the wave only moves in x-direction we should set the width of
the y-axis to a small value to decrease the overall computational domain. In my tests I
set the width to 1 and the offset to 0.

d

H

x

z

L X0

β

60 10

Figure 5.1: Sketch of computational domain

As in the problem description [1] is stated, the slope of the ramp is 1:19.85 which
means we can calculate β as follows

cotβ = 19.85 ⇐⇒ 1
tanβ

= 19.85 ⇐⇒ β = atan
(

1
19.85

)
(5.1)

γ is the same as in the problem description.

γ =

√
3H
4d

(5.2)

To be able to simulate the ramp, we have to calculate x0. Since their is no standard
cotanges function in C++ I used cos(β)

sin(β)
.

x0 = d · cot(β) ⇐⇒ x0 = d · cos(β)

sin(β)
(5.3)

L is calculated like in the problem description, except that I used cosh−1(a) =

log
(

a +
√

a2 − 1
)

.

L =
d · log

(√
20 +

√
20− 1

)
γ

(5.4)
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For the formula of the initial condition η(x, 0) of the wave I used sech(x) = 1
cosh(x) .

Note that this would be the initial condition for our water height just if our x-axis
would be at the same height as in the problem description. Since our x-Axis is at the
bottom of the computational domain, we have to adjust the water height accordingly,
which I show in equation 5.6 and 5.7.

η = H ·

 1

cosh
(

γ(x−(x0+L))
d

)
2

(5.5)

With these equations we can set the initial condition within our solver. To do that we
differentiate the three areas x < 0, 0 ≤ x ≤ x0 and x0 < x. The height of the water is
then calculated as follows

h(x, 0) =


0, if x < 0

x · sin(β)
cos(β)

, if 0 ≤ x ≤ x0

η + d, if x0 < x

(5.6)

The bathymetry is set to imitate the ramp and has the value 0 at the rest of the
domain.

b(x, 0) =


−x · sin(β)

cos(β)
+ d, if x < 0

d− h, if 0 ≤ x ≤ x0

0, if x0 < x

(5.7)

To set the momentum of the wave in x-direction, we calculate u with the velocity
scale U =

√
gd like in the problem description and multiply it with h.

hu(x, 0) = −η ·
√

g
d
· h (5.8)

At last I set the momentum of the wave in y-direction to 0, since the wave only moves
in x-direction.

To get accurate results, the time, where we need to extract the current state of our

simulation, needs to be calculated. Therefore we use the time scale T =
√

d
g and can

calculate the time t for our simulation by

t = tb · T (5.9)

where tb is the time of the lab data.
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5.1.2 Finite Volume Solver Tests

At first I used the finite volume solver to test the wetting and drying solver. I set
the maximum-mesh-size to 0.02, which leads to 616734 cells, and ε to 1e− 7. To get
numerical results that can be compared with the lab data, the only requirement is to
set the ratio H

d to the same value as in the respective lab test. Two different tests were
made in the lab, one with H

d = 0.0185 and the second one with H
d = 0.3.

For the first test with H
d = 0.0185 I set d to 0.3, since the depth in the experiments

was ≈ 30cm, even though every other value would be suitable as well. The calculated
times (t) for our simulation in respect to the time of the lab data (tb) can be seen in
table 5.1. Since the time steps of our simulation are dependent on the wave speed and
are not continuous, I set the repeat value of the plotter in the configuration file to a
very small value, so it would plot every time step of our simulation within the area of
the calculated time. Then I used the time step which was the nearest at t. This time
step can be seen in table 5.1 in the column ts.

tb t ts

30 5.2462 5.24661
40 6.955 6.95501
50 8.7437 8.74371
60 10.4925 10.4925
70 12.2412 12.2414

Table 5.1: time values for H/d = 0.0185 with the FV solver

The results are shown in Fig. 5.2. Because the depth can be chosen freely, the lab data
is given relative to d. So in Fig. 5.2 the graphs show the coordinates of the x-direction
in relation to d on the x-axis and on the y-axis the wave height η in relation to d. As it
can be seen our numeric solution is very close to the lab data points.

In the second test with H
d = 0.3 I oriented d again near to the actual depth of the

experiments and set it to 0.15m. The time values can be seen in table 5.2 and the results
in Fig. 5.3. For the times t = 15 and t = 20 the results do not match the lab data as well
as the rest of our results do.
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Figure 5.2: Comparison of numeric solution of the finite volume solver to lab data (red
dots are the lab data) in the case of H

d = 0.0185
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tb t ts

15 1.8548 1.85488
20 2.4731 2.47273
25 3.0914 3.09143
30 3.7096 3.70957

Table 5.2: time values for H/d = 0.3 with the FV solver
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Figure 5.3: Comparison of numeric solution of the finite volume solver to lab data (red
dots are the lab data) in the case of H

d = 0.3

5.1.3 Limited Solver Test with AMR

To improve the results I used the limited solver and ran the first test with H
d = 0.0185

again. To reduce the computational effort I also used AMR. Since in our test the run
up is the point where it is most important to calculate correctly, there needs to be the
refinement. In the limited solver every cell, which is troubled and therefore calculated
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with the finite volume solver, has the maximum refinement level. The cells near the
run up should be marked as troubled, since the water height is very small. To mark
cells as troubled, I calculated the minimum and maximum height of the dof in the cells.
With these two values I marked every cell as troubled which was smaller than 20 · ε.
With that criterion a big area of the ramp, where the water height is zero, because there
is no water, is also marked as troubled and therefore also refined to the finest mesh
level. This is a problem, because we need a lot of computational effort to calculate these
areas, where nothing happens. For this reason I marked all cells with a minimum and
maximum height of zero as not troubled, so that just the area around the run up was
marked as troubled and therefore refined.

Since I set ε = 1e− 7 for the test in Fig. 5.4, just a very small area around the run
up is calculated with the finite volume solver and therefore refined. So we have to
increase the refined area by setting a refinement criterion. For the test in Fig. 5.4 I set it
as follows.

Re f inement level =


CML + 3, if hmin < 0.025

CML + 2, if 0.025 ≤ hmin < 0.05

CML + 1, if 0.05 ≤ hmin < 0.08

CML, if 0.08 ≤ hmin

(5.10)

CML and hmin are described in section 3.3.2.
For the test I set the maximum-mesh-size to 0.5 and the maximum-mesh-depth to

3. This lead to 13388 cells, which is far less that the 616734 cells in our test without
AMR, but the run up area has the same resolution. To get the closest time step of
our simulation to the time of the lab data, I did the same as in the test with the finite
volume solver.

The result for the run with t = 30 is displayed in Fig. 5.4. There the effect of AMR
can be clearly seen as in right side of the graph the numerical solution has a stair-like
structure and becomes smoother at the left side of the graph, where the water height
gets smaller and the resolution is therefore higher. As the graph shows the numerical
solution is close to the lab data points, although most of the domain has a lower
resolution than before. The graph is just a small part of the whole domain, since it
goes from x = 0 to approximately x = 6. This means we could increase the area where
the refinement is at the maximum, which would mean a bigger part of the numerical
solution of the graph would be smoother, and still have less overall cells than with the
finite volume solver. Therefore we would need to adjust the refinement criterion in our
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solver.
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Figure 5.4: Comparison of numeric solution of the limited solver with AMR to lab data
(red dots are the lab data) in the case of H

d = 0.0185

5.2 Oscillating Lake

5.2.1 Benchmark Description

In this benchmark a water droplet or lake is simulated within an elliptical paraboloid.
The droplet is in its initial state at t = 0 central to the x-axis, but on right right side of
the y-axis. In this initial state the droplet has a momentum parallel to the y-axis. The
droplet will move periodically in the form of a circle through the paraboloid, so that
after one rotation it will end in the same place as where it started. For our test I ran our
simulation for approximately one rotation, since our time steps are not continuous and
we have to get the closest time step to exactly one rotation, and evaluated that result
with respect to the analytic solution. I tested this with different resolutions and values
for ε.
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For the implementation we use the formulas from [12]. With ω =
√

0.2g we get

h(x, y, t) = max (0, 0.05 · (2 · x · cos (ωt) + 2 · y · sin (ωt)) + 0.075− b (x, y)) (5.11)

hu(x, y, t) = 0.5 ·ω · sin (ωt) · h (5.12)

hv(x, y, t) = 0.5 ·ω · cos (ωt) · h (5.13)

b(x, y) = 0.1 ·
(
x2 + y2) (5.14)

To get the initial state we set t = 0.

5.2.2 Finite Volume Solver Test

To get the error of one cell εcell of our numeric solution I added one variable to the
plotter and let the plotter write out the difference between the value of the current time
step t and the analytic solution at exactly that time, like it is shown in equation 5.15,
for every cell. Then I took the closest time step to the time of one rotation, which is at
2π
ω as it can be seen in equations 5.11 - 5.14, and calculated the relative error of the sum

of the errors of all cells and the number of cells which are plotted by ExaHyPE, like it
is displayed in equation 5.16. X and Y are the sets of coordinates of all cells our plotter
outputs.

εcell(x, y, t) = |hnumeric(x, y, t)− h(x, y, t)| (5.15)

RelativeError(t) =

(
∑

x∈X,y∈Y
εcell(x, y, t)

)
/#numberO f Cellsoutput (5.16)

With these formulas I calculated the relative error for three different resolutions,
729, 6561 and 59049 cells, and for each I set ε to 1e− 1, 1e− 2, 1e− 3. Note that the
amount of cells are the number of cells ExaHyPE works with. Since we are working
with order = 3, the number of outputted cells, i.e. the number we used in equation 5.16,
is actually the number of cells multiplied by 9. Furthermore the RelativeError value for
729 cells with ε = 1e− 3 is missing, since the time step got very small and ExaHyPE
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stops the simulation if the time step is too small. The same is true for smaller values
than 1e− 3 for epsilon at all resolutions.

As it can be seen it Fig. 5.5 the relative error is the highest at ε = 1e− 2. We would
expect the error to get smaller when ε gets smaller as well as when the resolution gets
higher. This is partly true for ε = 1e− 1 and ε = 1e− 3, but ε = 1e− 2 has a significant
larger RelativeError than both of them. In Fig. 5.6 the left upper picture shows the
initial condition of the oscillating lake, which is also the correct solution at t = 2π

ω . In
the right upper picture the result of the simulation with ε = 1e− 1 at t = 2π

ω is shown
and it can be seen that the result is rather accurate. The solution of the simulation with
ε = 1e− 3 looks similar. At the bottom of Fig. 5.6 the left picture shows the result of
the simulation with ε = 1e− 2 at t = 2π

ω . It can clearly be seen that the result with
ε = 1e− 2 is worse than the result with ε = 1e− 1. The picture on the bottom right
shows the solution for ε = 1e− 4 at t = 0.7. Some waves are building up at the right
side of the lake, whose momentum are increasing, which leads to a smaller time step
until the simulation is stopped shortly after.

●

●

●

●

●

●

●

●

0.002

0.004

0.1 0.01 0.001

epsilon

R
el

at
iv

e 
E

rr
or Number of Cells

●

●

●

729

6561

59049

Figure 5.5: Comparison of relative errors in the oscillating lake benchmark with differ-
ent resolutions and different ε
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Figure 5.6: The two upper pictures together show what cells are in between 1e− 3 and
1e− 4. The picture on the bottom left shows the lake at t = 2.7 with 1e− 3
and the picture on the bottom right with 1e− 4.
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6 Conclusion

In this thesis I described the implementation of the SWE in ExaHyPE and how I
implemented a new Riemann solver to enable the wetting and drying of cells. I
tested the performance of the solvers with shared memory and distributed memory
parallelisation as well as the accuracy of a limited solver, which used the ADER-DG
solver of ExaHyPE combined with a finite volume solver and the new Riemann solver
for wetting and drying.

Chapter 3 described the mathematical structure of the new implement Riemann
solver, how the boundary conditions were set for all tests and the initial tests for the
different solvers I used. The performance tests in chapter 4 show that ExaHyPEs
performance with shared memory parallelisation, i.e. TBB, scales, as expected, better
when using a higher order or a higher resolution. When using distributed memory
parallelisation, i.e. MPI, we need to use 9x + 1 processes to get the best results and here
the same as for TBB was true when it comes to a higher order or a higher resolution. In
both cases using a higher order led to less dof per second, which we did not expect. The
"solitary wave on a simple beach" benchmark shows that our implemented Riemann
solver produces rather accurate solutions and matches with the measured results of the
laboratory experiment. We also showed that we can reduce the computational effort
by using AMR without decreasing the quality of the result. The second benchmark
showed that in a very demanding scenario our solver produces some unintentional
waves which are reduced by increasing ε.

In further research the oscillating lake benchmark could be tested with the limited
solver and AMR as well as the solvers could be tested with real tsunami events by
using recorded data, for example of the tsunami events of Tohoku and Sumatra like it
is done in [12].
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