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Abstract— Object detection algorithms are essential compo-
nents for perceiving the environment in safety-critical systems
like automated driving. However, current state-of-the-art algo-
rithms based on deep neural networks can give high confidence
values to falsely detected objects and it is therefore important
to model uncertainty for these predictions.

In this paper, we propose two aleatoric uncertainty estima-
tion algorithms for state-of-the-art deep learning based object
detectors. Established algorithms for estimating uncertainty can
either not be directly applied to object detection networks or
result in high inference times. Instead, we adapt an existing
method for aleatoric uncertainty estimation and propose an-
other simple and efficient algorithm which is directly based on
the multi-box detections. We show that these methods are able
to assign high uncertainty values to false positives and visualize
these in uncertainty maps. The uncertainty estimation methods
are applied to a neural object detector and are compared with
respect to their accuracy and inference time.

I. INTRODUCTION

Safety-critical systems utilizing camera-based object de-
tection require reliable predictions. This means not only a
high confidence accuracy but also the ability to produce
a measure of confidence in these predictions, which can
then be used to improve decision-making further down the
line. Object detection algorithms have to overcome several
difficulties which can cause false predictions, like lighting
changes, object variations, smaller objects in the distance
and occlusions.

In recent years, object detection algorithms have moved
away from classical approaches—like HOG features [1]
combined with Support Vector Machines or deformable
part based models [2]—towards neural networks, where
algorithms like Faster RCNN [3], SSD [4] or YOLO [5]
have far surpassed classical methods in detection accuracy.
Earlier stages of these models learn powerful representations
by transforming the input space so that later layers are
capable of effectively regressing several bounding boxes and
classifying object categories for each instance. The multiple
predictions for detected objects are then discarded by a well-
known algorithm called non-maximum suppression (NMS)
[8]. Even though their accuracy is greater compared to
classical methods, these networks still make mistakes in
the form of non-detected, wrongly classified or incorrectly
detected objects. Furthermore, neural networks come with a
disadvantage which is inherent to their training and structure:
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Fig. 1: Images quantitatively showing the results of the
uncertainty estimation methods. From top to bottom the
content of the images are: (i) Detections from a loss at-
tenuated SSD in which false positives are marked in red,
(ii) confidence uncertainties from loss attenuation and (iii)
confidence uncertainties calculated using the redundancy
method.

Because their predictions are produced by the nonlinear
combination of millions of parameters, they are difficult to
assess and their mispredictions are challenging to identify
and eliminate.

A neural network object detector produces a bounding
box prediction, combined with a classification score that is
often mistakenly believed to be a confidence probability.
However, it is actually a normalized network output —
usually a softmax activation. The networks tend to yield
overconfident predictions which can lead to false positives
with very high scores [6]. Current state-of-the-art object
detectors cannot determine whether a prediction is a true or
false positive. This is undesirable for safety-critical systems
like autonomous driving in which a wrong detection can
have fatal consequences. Therefore, it is not sufficient to
rely on the classification score alone. In order to address
this problem, the network can be extended to estimate an
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additional value in the form of an uncertainty, which can then
be used to supplement the normalized classification score and
the regressed bounding box.

Uncertainty can be decomposed into two types, namely
epistemic and aleatoric uncertainty. Kendall and Gal [7]
argue that the latter is more important to model because
epistemic uncertainty can be reduced with more training data.
Epistemic uncertainty captures the ignorance of a predictive
model itself and should therefore be large if a sample
occurs that has not been seen by the model during the
training process. It is therefore also called model uncertainty.
Aleatoric uncertainty, on the other hand, describes the uncer-
tainty in the world (for example caused by sensor noise or
pixel discretization of the cameras). This type of uncertainty
cannot be reduced with more data.

In this paper, we implement and compare two aleatoric
uncertainty estimation methods for a safety critical
application applied to the Multi-Box Single-Shot Detector.
The first method is an adaptation of an existing algorithm
for regression and classification, whereas the second method
utilizes the multi-box proposals of current deep neural object
detectors. We show that NMS can be utilized concurrently
with multiple boxes to estimate aleatoric uncertainty. In
this case, we use the KITTI dataset [9] to evaluate the
uncertainty methods against the vanilla implementation of
SSD.

II. RELATED WORK

Although deep neural networks have gained more and
more attention in the last decades, there has been little active
research in the area of uncertainty estimation for these mod-
els. There are two general methods on how uncertainty can be
calculated: sampling-based and sampling-free calculations.
Sampling-based calculations make several predictions for a
single input (i.e. the same image), whereas sampling-free
based methods are able to calculate the uncertainty with
a single forward pass. The latter needs less computational
resources but has not been well-studied and is mainly used
for aleatoric uncertainties.

A. Sampling-Based Methods

Estimating uncertainty for neural networks was studied
in the 90’s, primarily by using Bayesian Neural Networks
(BNNs) [10], [11]. BNNs estimate epistemic uncertainty
by placing a prior distribution over the weights of a neural
network. This prior distribution is applied as additional
parameters in form of a variance over the weights which are
jointly optimized with the regular weight and biases in the
training process. Recent research on optimizing the weight
distributions has been focused on variational inference
methods which use the ELBO (expected lower bound) of
the Kullback-Leibler divergence as minimization objective.
This is also called the variational free energy [12], [13].
Sampling weights from these distributions can intuitively
be seen as sampling several instances of a network with the
same neural architecture. Accordingly, epistemic uncertainty

can be estimated from these models by forward-passing an
input multiple times through the network and drawing a set
of weights from the trained distribution for each pass. This
results in several sample predictions for a single input, from
which the variance can be computed.
Gal and Ghahramani [6] use dropout layers as an
approximation to a Gaussian process to model epistemic
uncertainty. Dropout is a technique which stochastically
omits neurons in a layer, usually to avoid overfitting during
the training process, and is normally turned off for inference
[14]. However, for epistemic uncertainty estimation dropout
is not deactivated during inference time but is used to re-run
an input through the network, generating several predictions
by randomly dropping neurons in the dropout layers for
each forward pass. Just like in BNNs, several networks
can be sampled and the epistemic uncertainty is calculated
through the variance of the predictions made from the drawn
weights. The inference time can be reduced by passing an
input just once until it reaches the dropout layer, where it
is then evaluated on the activated neurons. This technique
is referred to as Monte-Carlo dropout (MC-dropout) since
the posterior distribution is estimated through Monte-Carlo
integration using dropout layers. Dropout is often used for
fully-connected layers in a network and is usually not used
in convolutional layers. In a follow-up work, MC-dropout
was implemented for convolutional layers and showed
improved results [15].
In contrast to the methods described up to this point, which
are based on Bayes theory, Lakshminarayanan, Pritzel, and
Blundell [16] propose a non-Bayesian method using an
ensemble of neural networks. They utilize deep ensembles
to calculate the variance by averaging the predictions of an
input which has been passed through multiple networks.
The networks of the ensemble are trained independently
from each other on the whole dataset utilizing adversarial
training produced by the fast gradient sign method [17].

All sampling-based uncertainty estimation methods suffer
from the fact that an input needs to be reevaluated several
times to get a good estimation of the uncertainty. This is
unwanted because object detection networks already have
high inference times. Furthermore, ensembles of networks
need not only to rerun a single input but also need to store
several sets of weights for each network.

B. Sampling-Free Methods

One sampling-free method to estimate the aleatoric uncer-
tainty is to add an additional variance output for each model
output and changing the loss function according to

L (Θ) =
||y− f (x)||2

2σ(x)2 +
1
2

log(σ(x)2). (1)

This modified objective function can be seen as loss
attenuation and is mainly used for regression tasks. This loss
was adapted for classification tasks and combined with BNNs
to prove that both aleatoric and epistemic uncertainty can be
calculated concurrently in a single network [7].
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Another sampling-free method was proposed recently by
Choi, Lee, Lim, and Oh [18]. They estimate aleatoric and
epistemic uncertainty by putting a Gaussian Mixture model
on the output of the network to predict a single input. These
networks are called Gaussian Density Models [19]. By using
the predictions of each Gaussian mixture components instead
of single class scores this method is able to calculate both
epistemic and aleatoric uncertainty. This method was used
for training a shallow feed-forward neural network to learn
the heading of a vehicle from a small input space. In contrast,
neural network object detectors are normally applied to raw
image data and have large output space which, based on our
experiments, leads to non-convergence of the model.

III. UNCERTAINTY ESTIMATION FOR DEEP NEURAL
OBJECT DETECTORS

Current state-of-the-art object detection algorithms utiliz-
ing neural networks only provide a single output value for
the bounding box and the class confidence. In most cases
this is not desirable as networks i) tend to be overconfident,
providing high confidence values to false positives, or ii)
output a displaced bounding box. For this reason, either
a calibrated class confidence for the classification or an
uncertainty measure is needed as an indicator for assessment.
This section will describe two aleatoric uncertainty estima-
tion methods for deep learning based object detectors. The
methods will exemplarily be implemented on the Single Shot
Detector (SSD) [4], but can also be used on any other default-
box/anchor-based deep learning object detection architecture.

A. Single Shot Detector

SSD is an object detection meta-architecture that uses
anchors as starting point for the detections [20]. Faster-
RCNN also belongs to these types of architectures. Each
of these detectors use base networks like VGG-16 [21],
Inception [22]–[24] or ResNet [25], to extract features for
regressing bounding boxes and classifying object categories.
SSD puts several convolutional layers on top of these to
generate smaller feature maps. At the very end of these
feature maps class confidences are estimated and bounding
box offsets are regressed with respect to the anchor positions.
The anchors are predefined for each pixel in the feature maps
and vary within size and aspect ratio. The different sizes of
the feature maps and the anchors allow SSD to detect objects
in different scales. Earlier layers are responsible for detecting
smaller objects and later layers for larger objects.

B. Loss Attenuation for Object Detection

Aleatoric uncertainty captures observation noise and is
represented as a Gaussian likelihood. For object detection,
the method is implemented by appending additional output
vectors to each anchor. Specifically, each network output y is
augmented by a second output σla, resulting in an additional
(nc+4)∗na convolution filter operations in the last stages of
the SSD detector. nc denotes the number of classes and na
denotes the total number of anchors. For the four bounding
box offsets uncertainties Eq. (1) is used and rephrased to

L (Θ) =
1
na

∑
a∈A

1
2

Φ(ŷ, febox(X,a))e−sa +
1
2

esa , (2)

where sa := log(σ2
la,box), ŷ is an encoded groundtruth

box, µenc,a = febox(X,a) is the predicted encoded box with
respect to image X and anchor box a. Φ(b1,b2) is a distance
measure, in our case a smooth L1 function, between an
encoded box b1 and an encoded box b2.
In Eq. (2), we estimate the logarithm of the variance to
increase numerical stability and, contrary to the standard for-
mulation, add an additional exponential function to the sec-
ond term. To decode the bounding boxes together with their
estimated variance we draw samples from N (µenc,a,σla,box)
and decode these with respect to their anchors resulting in
several decoded box samples from which the estimates can
be calculated via mean and variance.

For the classification task, the uncertainty is estimated with
a Monte Carlo integration by sampling the network outputs
through the softmax function. Note that fcon f (X) are logits
before the softmax normalization function. This results in
the following stochastic loss:

f̂i(X,σla,con f ) = fcon f (X)+ εiσla,con f , (3)

L (Θ) =
1
N

i=N

∑
i=0

so f tmax( f̂con fi(X,σla,con f )), (4)

where εi are samples drawn from a standard normal
distribution N (0,1) and N is the number of samples. In
the original formulation, the sampling was passed through a
rephrased softmax function which we found to be unneces-
sary.
By combining loss attenuation for bounding box offset
regression and object classification it is now possible to
estimate aleatoric uncertainty for the whole network output.

C. Aleatoric Uncertainty Estimation via Redundancy

Even though aleatoric uncertainty estimation can be cal-
culated via loss attenuation it still needs more parameters
than the standard detector. In this section, we will describe
a simple but efficient method to calculate the aleatoric
uncertainty without any sampling.

Current state-of-the-art object detectors already produce a
set of object observations Ok

1,O
k
2, . . .O

k
Bk

for the classification
and their bounding boxes in which B are the number of
observations for a particular object and k ∈K are the number
object proposals of an object detector before the NMS step.
The vector Oi consists of the confidence measurements for
all classes and four values for the bounding box offsets.
Assuming the observations to be independent and identically
distributed the sampling mean E[Ôi] = µ̂re and the sampling
variance Var[Ôi] = σre of this distribution for a particular
object are computed as in Eq. (5):

µ̂re =
1
B

i=B

∑
i=0

Oi, σre =Var[Ôi] =
Var[O]

B
. (5)
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With this prior knowledge, the aleatoric uncertainty can be
calculated by iterating all detection proposals of the anchors.
For each proposal, the Jaccard overlap will be computed
against all other proposals. Only the observations Ok

i with a
Jaccard overlap bigger than a certain threshold θ are counted
as a match. After this matching, step there are a total of Bk
boxes for the proposal k which are then used to estimate the
uncertainty.
This method can be run concurrently with NMS so that the
overall additional computational costs are minimized. We
also point out that sampling is not needed here because
current state-of-the-art object detectors themselves produce
a set of observations by detecting objects for each anchor
box.

IV. EVALUATION

In this section, we present the results of the uncertainty
estimation. The two methods were evaluated using the
KITTI dataset which contains over 7000 images of labeled
traffic participants including cars, pedestrians, trams, vans,
trucks and cyclists. The detectors used were a standard
SSD, on which we performed the redundancy method, and
an enhanced SSD with additional variance output for loss
attenuation. Both detectors are implemented and trained on
the tensorflow object detection API [20]. We show that using
the uncertainties and simple thresholding can reduce the
number of false positives.

A. Training

For training the SSD network to estimate aleatoric uncer-
tainty we used an Inception V2 as a base network from which
we extracted mixed2 and mixed7 layers to build the SSD
architecture. The Inception V2 was pretrained on the COCO
dataset [26]. We used the standard parameters for the SSD
network which are described in their respective paper with a
batch size of 16. We used the rmsprop optimizer [27] with an
initial learning rate of 0.001 and a decaying factor of 0.95.
We also apply gradient clipping with a value of 1 so that the
classification attenuated loss does not result in high values
in earlier stages of the training. The attenuated classification
loss was calculated with 100 samples which were sufficient
for the network to be optimized well according to the log
variance output.

B. Visualized Uncertainty Results

For visualizing the class uncertainties each prediction
(including backgrounds) is taken into account. We start with
an empty uncertainty image filled with zeros. Afterwards,
for each prediction, the corresponding class variance is
compared to the values inside the uncertainty image bounded
by the predicted box. If there are pixels which are smaller
than the variance value, these values will be substituted by
the variance of the current prediction. The image is then
smoothed with a Gaussian filter.

The visualization results can be seen in Fig. 1. The top im-
age shows predicted objects—several cars and a pedestrian—
with their confidence scores. The uncertainties calculated by

TABLE I: False and true positives from the KITTI validation
dataset. For each method, we listed the true and false
positives before (top rows) and after (middle rows) the cut-
off. To get better indications on the performance the inverse
ratio between these numbers was calculated.

Classes Car Van Truck Pedestrian Cyclist Tram

Redundancy

tp
1703 185 48 194 84 28
1524 168 46 181 78 28
0.90 0.90 0.96 0.93 0.93 1.00

fp
64 23 4 28 13 1
58 20 3 28 13 0
0.91 0.87 0.75 1.00 1.00 0.00

Attenuated

tp
1708 222 51 196 96 29
1687 213 51 195 92 29
0.99 0.96 1.00 0.99 0.96 1.0

fp
84 26 3 71 28 2
78 22 3 60 23 1
0.93 0.856 1.00 0.85 0.82 0.5

the loss attenuation and the redundancy method are depicted
in the middle and bottom image respectively. In this case,
the redundancy method was applied to the loss attenuated
trained network so that both methods can be compared to
each other.

The highest uncertainty values are located on the leftmost
object in the image. This car is a false positive with a high
score (0.98) whose real label is a van. Furthermore, it can be
seen that the redundancy method is dependent on the number
of boxes. If there are no overlapping boxes uncertainty values
cannot be estimated which is the case for very small objects
(the small cars in the center of the image). On the other
hand, the loss attenuated learned uncertainty is able to output
a value for each of the objects but is significantly slower
(see IV-D). To further assess the ability of these methods for
assigning false positively detected objects high uncertainty
values we propose a statistical analysis in the next section.

C. Uncertainty Estimation Results

We validated the performance of the detectors on the first
748 images from the KITTI dataset on which we performed
a cut-off for detections with a high uncertainty. Table I shows
the performance with respect to the true and false positives.
The ratio between the number of false/true positives after
and before the thresholding can be seen in the gray rows.
Relatively, both methods are able to eliminate more false pos-
itives than true positives, except for cars in the redundancy
method. The redundancy method performs not as well as the
attenuated method because it loses more true positives while
retaining more false positives. This fact can also be seen
in Table II, which shows the mean uncertainty values for
false and true positives. For the loss attenuation method, the
average difference in uncertainty for false positives is four
times higher than for true positives compared to the three
times difference of the redundancy method. The effect of
this difference can be especially seen in the car-category in
the first table. Loss attenuation is able to retain almost all
true positives and still reduce the number of false positives.
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TABLE II: Mean uncertainty values for false and true posi-
tives of the KITTI validation dataset.

Method Redundancy Loss Attenuation

False Positives 0.061 0.125
True Positives 0.026 0.033

D. Inference Time Comparison

Fig. 2 shows the inference time for each method.
Although the loss attenuated trained network performs best
with respect to the mAP it has by far the highest inference
time with a median of 50.15ms and with outliers up to
over 150ms. The cause for the high inference time are the
additional parameters needed in the network for estimating
the uncertainty which depends on the number of anchors.
Due to the fact that the redundancy method is applied to the
post-processing step of the detection pipeline the inference
times of the detectors are almost equal. On the other hand,
the median NMS inference time of the redundancy method
(1.41ms) is more than double the value of the standard
method (0.62ms) with outliers reaching to over 6ms. This
is because the NMS-step is enhanced by calculating the
uncertainties and is therefore depending on the number of
detected objects.

V. DISCUSSION

We showed that both methods are able to assign large
uncertainty values for false positives. By thresholding the
detections with respect to their estimated uncertainties it is
possible to eliminate more false positives than true positives.
By varying the threshold, we can trade-off mAP for false
positives. Although not discussed in this paper, bounding
box uncertainties are concurrently estimated with the classi-
fication uncertainty in both methods which can be used for
further processing in a perception pipeline.

Uncertainty estimated through redundancy depends on
multiple predictions per object. For few or no overlaps, the
variance estimation becomes inaccurate or even results in
zero if no other box overlaps. This applies to very large
or small objects in the image. It is known that these can
be optimized by setting appropriate anchors defined by the
aspect ratios and sizes [4]. The anchors can then be tuned
for a specific task so that the network can regress multiple
boxes for one object. We will leave this task open for future
work.

In contrast, loss attenuation provides uncertainty measures
for all predicted boxes but needs to be trained with the
network itself. In our experiments, we have seen that training
can be unstable because of the classification loss. To circum-
vent this we have clipped the gradient value.
Using loss attenuation also improves the mAP of the detector
but results in triple the inference time and double the amount
of weights in the output layers.

(a) Detector Inference Times

(b) NMS Inference Times

Fig. 2: Violin plots showing the inference times [ms] of
the detector (a) and the NMS post-processing step (b).
Three methods are depicted: Standard for the vanilla SSD
network, redundancy for the redundancy method applied on
the standard method and attenuated for the loss attenuation.
The black dots represent the median of the distributions and
the whiskers the outliers.

VI. CONCLUSION

In this paper, we presented uncertainty estimation methods
for deep neural object detectors which are able to estimate
the variance of the classification score and the bounding
boxes. We evaluated the methods on the basis of mean
average precision and the changes in true positives and false
positives. It has been shown, that, on average, both methods
are able to assign higher uncertainty values to false positives
compared to true positives. The loss attenuation method
produces uncertainties for every box prediction but requires
additional weights and more inference time. In contrast,
the redundancy method, while significantly faster, cannot
produce uncertainties for very small or very large objects.

We believe the two methods proposed herein can form
a useful part of the object detection arsenal, particularly in
safety-critical applications such as automated driving.
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