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Abstract

Diseases such as myocardial infarction can severely impair cardiac function. The resulting dam-
age to the cardiac muscle is mostly permanent, as the heart’s regenerative abilities are limited.
However, in the surrounding myocardial tissue, infarction triggers many compensatory mecha-
nisms characterized by growth and remodeling (G&R). Long-term prognosis of cardiac function
would be a valuable tool in therapy planning, but a prediction by clinical measurements is cur-
rently not possible. Furthermore, the underlying G&R mechanisms are not fully understood. In
the future, cardiac computer simulations could provide insights into G&R processes and predict
a patient’s response to specific therapies.

In this thesis, cardiac contraction is modeled as a structural elastodynamic initial boundary
value problem formulated with large deformations, nonlinear hyperelastic anisotropic material,
and active stress component. The structural model is monolithically coupled with a lumped-
parameter Windkessel model of blood flow. The coupled model is solved with a high-performance
parallel code using the Finite Element Method. A patient-specific four-chamber heart geometry
is used, which is reconstructed from 3D magnetic resonance imaging (MRI).

The physiologically correct prediction of local stresses is essential for G&R of the heart.
Boundary conditions, which are dictated by the pericardium on the outer surface of the heart,
influence the contraction of the heart significantly. However, there is no consensus about physio-
logically correct and at the same time efficient pericardial boundary conditions. In this work,
the performance of such pericardial boundary conditions is demonstrated and compared to the
commonly used model of a fixed apex.

In a parameter study, the influence of the unknown pericardial stiffness is examined, and an
optimal value is determined. The comparison of simulation results with measurements from
Cine MRI showed that the use of pericardial boundary conditions gave a better prediction of
the movement of the atrioventricular plane, atrial filling, and spatial approximation error. In
contrast to the fixed apex model, when using pericardial boundary conditions, the stresses on the
epicardium were consistent with measurements and evenly distributed.

Predictive cardiac models, such as the monolithically coupled structure-Windkessel model
used in this work, require a large number of structural degrees of freedom. However, high com-
putational demands slow model calibration and thus limit the use of cardiac simulations in clin-
ical practice. Furthermore, for clinical questions, a large number of simulations with different
parameter sets are often required, which is why a single solution is usually insufficient.

In this thesis, a novel approach to model order reduction is developed, which significantly
speeds up the solution of the model. By projection into a low-dimensional subspace, only the
structural dimension of the monolithically coupled structure-Windkessel system is reduced, us-
ing proper orthogonal decomposition. Also, various subspace interpolation methods are com-
pared to integrate changes of the parameter set into the reduced model. The displacement field,
as well as relevant scalar cardiac output quantities, were approximated well, even for varying
parameter sets.

Finally, it is shown how parametric projection-based model order reduction can be easily inte-
grated into gradient-based optimization using finite differences by approximating the gradients
with a reduced order model. The performance of this method is investigated in a multivariate in-
verse analysis scenario. Compared to the standard approach of calculating the gradient with the
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full order model, this approach enabled significantly shorter simulation times while maintaining
approximation accuracy.
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Zusammenfassung

Krankheiten wie beispielsweise Herzinfarkte können die Herzfunktion stark beeinträchtigen. Die
dabei entstehende Schädigung des Herzmuskels ist meist dauerhaft, da die Fähigkeiten des Herz-
muskelgewebes zur Regeneration begrenzt sind. Im umliegenden Herzmuskelgewebe löst der
Myokardinfarkt jedoch eine Reihe von Kompensationsmechanismen aus, die durch Wachstum
und Anpassung (engl. ’growth and remodeling’, G&R) gekennzeichnet sind. Eine langfristige
Prognose der Herzfunktion wäre ein wertvolles Instrument bei der Therapieplanung, jedoch ist
eine Vorhersage durch klinische Messungen derzeit nicht möglich. Weiterhin sind die zugrunde
liegenden G&R-Mechanismen nicht vollständig verstanden. In Zukunft könnten Computersimu-
lationen des Herzens Erkenntnisse über G&R-Prozesse liefern und die Reaktion eines Patienten
auf bestimmte Therapien vorhersagen.

In dieser Arbeit wird die Herzkontraktion als strukturelles elastodynamisches Anfangsrand-
wertproblem modelliert, das mit großen Deformationen, nichtlinearem hyperelastischem an-
isotropen Material und aktiver Spannungskomponente formuliert wird. Das Strukturmodell ist
monolithisch mit einem dimensionsreduzierten Windkessel-Modell des Blutflusses gekoppelt.
Das gekoppelte Modell wird in einem parallelen Hochleistungscode mithilfe der Finiten-Ele-
mente-Methode gelöst. Hierbei wird eine patientenspezifische Vier-Kammer-Herzgeometrie ver-
wendet, die aus 3D-Magnetresonanztomographie (MRT) rekonstruiert wird.

Die physiologisch korrekte Vorhersage lokaler Spannungen ist für G&R des Herzens essen-
tiell. Randbedingungen, die durch das Perikard an der Außenfläche des Herzens vorgegeben
sind, bestimmen die Herzkontraktion maßgeblich. Es besteht jedoch kein Konsens über physio-
logisch korrekte und gleichzeitig effiziente perikardiale Randbedingungen. In dieser Arbeit wird
die Leistungsfähigkeit solcher perikardialen Randbedingung demonstriert und mit dem häufig
verwendeten Modell eines fixierten Apex verglichen.

In einer Parameterstudie wird der Einfluss der unbekannten Perikardsteifigkeit untersucht
und ein optimaler Wert ermittelt. Der Vergleich von Simulationsergebnissen mit Messungen
aus Cine-MRT zeigte, dass die Verwendung von perikardialen Randbedingungen eine bessere
Vorhersage hinsichtlich der Verschiebung der atrioventrikulären Ebene, der Vorhoffüllung und
des räumlichen Approximationsfehlers ergab. Im Gegensatz zu dem Modell mit fixiertem Apex
stimmten bei Verwendung von perikardialen Randbedingungen die auf das Epikard wirkenden
Spannungen mit Messungen überein und waren gleichmäßig verteilt.

Prädiktive Herzmodelle, wie das in dieser Arbeit verwendete monolithisch gekoppelte Struktur-
Windkessel Modell, erfordern eine Vielzahl struktureller Freiheitsgrade. Hohe Rechenanforde-
rungen verlangsamen jedoch die Modellkalibrierung und erschweren daher die Verwendung von
Herzsimulationen in der klinischen Praxis. Für klinische Fragestellungen werden auch häufig
eine Vielzahl von Simulationen mit unterschiedlichen Parametersätzen benötigt, weswegen eine
einzelne Lösung meist nicht ausreichend ist.

In dieser Arbeit wird deswegen ein neuartiger Ansatz zur Modellreduktion entwickelt, der die
Lösung des Modells stark beschleunigt. Mittels Projektion in einen niederdimensionalen Unter-
raum wird nur die strukturelle Dimension des monolitisch gekoppelten Struktur-Windkessel-
Systems durch Verwendung einer orthogonalen Zerlegung reduziert. Zusätzlich werden ver-
schiedene Unterraum-Interpolationsmethoden verglichen, um Änderungen des Parametersatzes
in das reduzierte Modell zu integrieren. Dabei wurden das Verschiebungsfeld sowie entschei-
dende skalare Ausgangsgrößen des Herzens gut angenähert, auch für variiende Parametersätze.
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Abschließend wird gezeigt, wie parametrische projektionsbasierte Modellreduktion einfach in
eine gradientenbasierte Optimierung mit finiten Differenzen integriert werden kann, indem die
Gradienten mit einem dimensionsreduzierten Modell angenähert werden. Die Leistungsfähigkeit
dieser Methode wird in einem multivariaten inversen Analyseszenario untersucht. Im Vergleich
zum Standardansatz, die Gradienten mit dem vollen Modell zu berechnen, ermöglicht dieser
Ansatz deutlich kürzere Simulationszeiten bei unveränderter Ergebnisqualität.
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1 Introduction

From a mechanical engineer’s perspective, the human heart is nothing more than a pump, al-
though a very sophisticated one. Over the lifetime of a 90-year-old human, it beats about three
billion times and moves approximately 300 million liters of blood, ideally without external main-
tenance. If that pump ever fails it immediately threatens life. Computational modeling can be a
valuable tool in predicting the heart’s function to enable personalized therapies.

1.1 Motivation

Cardiovascular diseases are the leading cause of death in developed countries and increasingly so
in developing countries, with more than seven million people each year diagnosed with myocar-
dial infarction (MI), also called heart attack [184]. The heart requires a continuous supply with
nutrients and oxygen, ensured by blood perfusion of the cardiac tissue. A severely perturbed or
even blocked blood perfusion in parts of the cardiac tissue, for example, due to coronary artery
disease, frequently results in MI. MI is visible in magnetic resonance imaging (MRI). By com-
paring a healthy heart to an infarcted heart in Figures 1.1a and 1.1b, respectively, the infarcted
myocardium can be detected as the non-perfused region (dotted area in Figure 1.1b).

MI leads to tissue damage or tissue death, limiting the pumping function of the left ventricle
of the heart and which may result in acute symptoms such as chest pain. The size of the com-
promised tissue depends on the severity of the blockage of the blood perfusion, the location of
the blocked artery, and the time passed between MI and onset of therapy [175]. Initial treatments
after MI is the reperfusion of occluded coronary arteries [164]. Secondary prevention commonly
includes pharmaceutic agents such as aspirin, ACE inhibitors, or β-blockers, which are rou-
tinely administered following MI [154]. Tissue damage is partly permanent due to the limited
regenerative capacity of the human myocardium [113], although the extent of cardiomyocyte
replacement remains controversial [98]. New therapeutic approaches, such as stem cell therapy
or tissue engineering, aim at remuscularizing the heart [112, 191]. Refractory heart failure can
be treated by mechanical assist devices [18] or, as a last resort, heart transplantation [94].

Computer simulations of mechanical systems have been used in classical engineering disci-
plines, for example, car crash simulations, for decades. In this setting, computational models
provide the opportunity to test designs virtually and lower the demand for expensive experi-
ments. Virtual biophysical models of organs provide several opportunities to improve the current
state of medicine. In a simulation of the organ’s current state, clinical quantities of interest could
be measured non-invasively. One example in this domain is obtaining pressure differences in
coronary arteries through image-based modeling of blood flow instead of catheterization [174].
In surgical interventions, physicians only have one chance to choose the best procedure for a
particular patient based on their individual experience. Here, computational simulations can sup-
port surgeons’ decision making by exploring different variants of the surgical procedure without

1



1 Introduction

(a) Healthy heart of a 24-year old. (b) Heart of a 60-year old with myocardial infarction.
The infarcted left-ventricular myocardium is visible
due to a lack of blood perfusion (dotted area).

Figure 1.1: Two hearts at end-systole, taken from four-chamber cine magnetic resonance imag-
ing. Images by C. Rischpler, Department of Nuclear Medicine, TUM.

harming the patient. For example, a catheter ablation strategy to treat atrial fibrillation can be
chosen to maximize cardiac output after treatment [8, 92]. Another example is choosing the
pacing site for cardiac resynchronization therapy (CRT) to optimize long-term cardiac output
[161].

Computational models of cardiac mechanics with a timeframe of weeks or months could en-
able patient-specific therapies by in silico predicting the long-term response to therapies. An
early identification of high-risk patients progressing to chronic heart failure is crucial for an
appropriate treatment to reduce the likelihood of severe adverse cardiovascular events [172].
Clinical quantifiers of the progression of cardiac failure are left-ventricular end-systolic volume
[183], infarct size [130], ejection fraction [58], and sphericity [189]. However, it is currently not
possible to predict if and when an individual patient will progress to heart failure following MI
[26]. As the underlying biological mechanisms following MI are still an open field of research,
their computational modeling poses many challenges.

1.2 Background

Myocardial infarction (MI) triggers a series of compensatory events in myocardial tissue, many
of which fall into the broad category of growth and remodeling (G&R), that is into growth,
atrophy, and reorganization of the cardiac tissue. Cardiac G&R describes an adaptive process
changing ventricular size, shape, constitution, and function as a response to tissue injury, driven
by mechanical, neurohormonal, and genetic factors [149]. The structural changes primarily affect
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the myocytes but also the coronary vasculature [40] and the extracellular matrix, i.e., interstitium,
fibroblasts, and collagen.

Wound healing characterizes the initial response during the first days after MI [43]. The abrupt
loss of contractile tissue, through necrosis and apoptosis of ischemic tissue, instantly decreases
systolic ejection. An immediate consequence is infarct expansion [95]. That is, the myocardium
starts to grow and remodel, which typically results in a regional dilation and thinning of the
infarcted area [173], augmenting left ventricular end-diastolic volume [43]. The magnitude of
dilation is positively correlated with infarct size [33], making timely reperfusion the primary
therapeutic target [184]. The extracellular matrix forms a collagen scar around and inside the
infarcted area, termed reparative fibrosis, after dead myocytes are removed by inflammatory
cells [54]. This healing process is thought to be genetically controlled, whereas the orientation
of newly deposited collagen fibers is related to the local mechanical conditions [43, 53].

Early ventricular G&R is adaptive and to some extent capable of stabilizing cardiac perfor-
mance [39]. It primarily affects the spared, nonischemic myocardium and takes place during the
weeks to months following MI. Eccentric hypertrophy, i.e., myocyte grow in length without an
increase in wall thickness, in viable non-infarcted regions increases end-diastolic volume [173].
The heart can increase its stroke volume via the Frank-Starling mechanism [71], enhancing the
contractility of non-infarcted myocardium and improving hemodynamic performance [130]. The
stimuli for eccentric hypertrophy are however not identified yet [84].

Another early adaption is the remodeling, that is, reorganization, of the local myofiber ar-
chitecture, commonly characterized by its fiber and sheet orientation [88]. The change in mi-
crostructure following MI has previously been assessed ex vivo in studies using diffusion-weigh-
ted magnetic resonance imaging and verified by histology [37, 131, 145, 190]. The findings of
these studies are however conflicting, as they do not agree on how the microstructure changes fol-
lowing MI. In fact, in some studies, no significant fiber reorientation was found at all [180]. One
possible reason for this inconclusiveness is measurement errors [23]. However, another probably
even more critical problem is undoubtedly the cross-sectional design of the studies mentioned
above where the cardiac tissue of different infarcted and non-infarcted animals was compared
rather than the tissue of the same animals before and after infarction. There is a pressing need for
new non-invasive longitudinal studies overcoming this deficiency and finally settling the ques-
tion of fiber reorientation after MI satisfactorily.

In many patients, G&R advance beyond this compensatory stage, eventually progressing to
chronic heart failure [78]. This process has been called adverse or pathological G&R. Laplace’s
law states that circumferential wall stress is proportional to both left ventricular pressure and
radius and inversely proportional to wall thickness [69]. Following dilation and thinning of the
infarct zone [176], systolic and diastolic circumferential wall stress in non-infarcted myocardium
thus increase significantly [142]. Pressure overload and elevated wall stress trigger concentric
hypertrophy, i.e., myocyte widening with an increase in wall thickness [105]. The systolic shape
of the left ventricle changes from elliptical to spherical [40] while increasing its mass [69].
The adaption capabilities of the heart via the Frank-Starling mechanism are exhausted [104].
Hypertrophied infarcted tissue inhibits reactive fibrosis, increasing the concentration of very
rigid collagen fibers [54]. The newly deposited collagen stiffens the myocardium and increases
diastolic pressure. Furthermore, it transforms the cardiac tissue to a mechanically and electrically
heterogeneous compound, promoting arrhythmogenesis [13]. During adverse remodeling, the
heart does not converge to an adapted equilibrium state. Instead, it forms a vicious cycle of
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progressing hypertrophy, increasing wall stress, and interstitial fibrosis [122]. These mechanisms
send the heart into a downwards spiral of progressively increasing ventricular volume and mass
and decreasing contractility, finally resulting in chronic heart failure [78].

Summarizing, MI can be considered a perturbation of the cardiac tissue’s balanced, healthy
state. MI is followed by scarring and fibrosis as immediate emergency repair mechanisms. Sub-
sequently, a mixture of wall dilatation and eccentric and concentric hypertrophy is observed,
increasing both the volume and wall thickness of the left ventricle. While in some instances this
growth process can recover a new equilibrium, in others maladaptation is observed, i.e., a contin-
ued increase of volume and wall thickness. A comprehensive theory that explains under which
conditions G&R after MI becomes unstable and how it could be stabilized remains pending to
date. However, current models of cardiac mechanics lack several key properties to make research
of cardiac G&R accessible.

1.3 Research objective

With post-infarction growth and remodeling (G&R) identified as a major research objective of
computational cardiac models, several key model requirements need to be fulfilled. As outlined
above, G&R crucially depends on the local mechanical stress state within the myocardium. A
cardiac model thus needs to predict not only kinematics but also the internal stress state with
sufficient accuracy. An important prerequisite for that are physiological boundary conditions.
Furthermore, tools for fast approximated model evaluation need to be available during model
development. Finally, an inverse analysis framework is required for personalization of patient-
specific cardiac models. The tools proposed in the following lay the groundwork for future stud-
ies of cardiac G&R.

Parts of this section were submitted for publication in [147, 148].

1.3.1 Model accuracy

Cardiac mechanics simulations consist of solving a nonlinear elastodynamic boundary value
problem [156]. Physiological boundary conditions are essential to achieve predictive results for
any clinical purposes. The boundary conditions on the structure field of the myocardium are
mainly governed by two physiological aspects: Blood flow within the chambers near the in-
side surface of the myocardium (endocardium) and the pericardial sac on the outside surface
(epicardium). There are many applications for simulating heart blood flow [46]. However, for
many relevant questions the exact fluid dynamics of blood within the heart or a resolved fluid-
solid interaction simulation are not needed for simulating the myocardium. Instead, a realistic
pressure-flow relationship stemming from the circulatory system is sufficient, which is com-
monly represented by lumped-parameter fluid models that provide the correct normal pressure
to the endocardial wall [100].

However, there is no consensus on boundary conditions to represent the effects of the peri-
cardial sac. The goal of this work is thus twofold: (a) provide a detailed literature review of
pericardial biomechanics, hence justifying its modeling using a computationally inexpensive
viscoelastic model, and (b) highlight the relevance of such boundary conditions through a de-
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tailed quantitative analysis using a subject-specific cine MRI data set. For that purpose, a four-
chamber cardiac geometry including parts of the great vessels is employed, as it provides several
options to assess the physiological accuracy of the pericardial boundary condition, e.g. through
the interplay between ventricles and atria during ventricular systole. Note that the pericardial
boundary condition is independent of the geometry and is meant to be applied to any kind of
cardiac mechanics simulation that includes the epicardial surface.

1.3.2 Computational efficiency
Predicting patient-specific G&R requires a fine spatial resolution of the cardiac model, as the
cardiac tissue following myocardial infarction is very heterogeneous and G&R describes a local
effect on the cell-scale. However, the needed huge number of degrees of freedom (DOFs) make
the solution of cardiac models computationally expensive and limit the models’ use in clinical
practice. As an example, the high-fidelity four-chamber model proposed in this thesis was run
on a single node of a Linux cluster with two Intel Xeon E5-2680 Haswell processors, equipped
with 12 cores and 64 GB of RAM. A simulation of one heartbeat, which takes about one second
in reality, took about one day to compute. The potential to reduce computation time motivates
the use of reduced order models (ROMs). In this work, we solely consider model order reduction
(MOR) of time-dependent parametric problems. In the following, different strategies in reduced
order modeling are reviewed.

An important category of cardiac ROMs is made up by simplified modeling. For these models,
the same system of differential equations as for the full order model (FOM) is solved, but on a
simplified analytical geometry. The displacements are commonly parameterized by only one
scalar degree of freedom (DOF). These models are thus referred to as 0D models. Examples in
this category include monoventricular cylindrical [5], spherical [29], or prolate spheroid [136] or
biventricular [123] geometries. These models allow extremely fast evaluation, with computation
times well below one second. Their results are, however, only lumped quantities which usually
need an extra correction step in order to predict the solution of a corresponding patient-specific
3D model.

Another approach of model order reduction (MOR) in biomechanics is the use of coarsely
discretized geometries, see e.g. [17, 83]. Coarsely discretized models are easy to implement,
since the computational framework is identical to the one of the FOM. The disadvantage of
using coarsely discretized geometries is that there is no exact control over the approximation
quality and important features of the FOM might not be preserved by the ROM.

A third category of cardiac ROMs makes a model computationally less expensive by reducing
the dimension of the problem, starting from the FOM. These ROMs make a model computa-
tionally less expensive by reducing the dimension of the problem, starting from the FOM. For
example in cardiac electrophysiology, approximated Lax pairs for propagating wave fronts were
proposed in [63, 64]. A local reduced basis method for parameterized cardiac electrophysiol-
ogy was recently introduced in [143]. Reduced basis methods were proposed for general large
deformation, material nonlinear finite element simulations [108, 132]. A framework for linear
coupled multiphysics problems was introduced in [159].

Using the group’s code [181], for a large-scale cardiac finite element simulation, about 90 %
of the time is spent iteratively solving linear systems of equations. This proportion motivates the
use of MOR by projection, where the full linear system is projected onto a much smaller dimen-
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sional subspace while preserving the model’s most relevant features. The solution of the FOM is
then approximated by a solution in the reduced space with a ROM. A popular method to generate
such subspaces is proper orthogonal decomposition (POD), which is purely observation-based
and independent of the underlying physics of the model. The snapshots are here transient obser-
vations of displacements. They can be obtained from a FOM simulation of one heartbeat.

There are only few examples where POD has been applied to cardiac problems. A quasi-
static cardiac model was reduced using POD and combined with hyper-reduction techniques
in [21]. However, analysis was only carried out using an idealized ellipsoidal left ventricular
geometry with few DOFs. While this is very instructive, results for speedup and accuracy of
the ROM are not conclusive for real-world cardiac problems. The reduction of a patient-specific
biventricular cardiac model using POD is described in [31]. Here, a general approach is presented
and analysed mathematically, before being applied to the example of a patient-specific beating
heart model. Parameter estimation is performed based on medical images. A ROM of blood
dynamics in coronary arteries is used in [12].

Cardiac models rely on a large set of patient-specific parameters, describing constitutive be-
havior, hemodynamics, boundary conditions, or local fiber orientation. In order not to rely on a
FOM simulation for each new ROM simulation, which would render the ROM simulation use-
less, the reduced subspace must be able to adapt to a changing parameter set. This adaption re-
quires parametric model order reduction (pMOR) of the time-dependent problem. Among many
global and local pMOR techniques, various subspace interpolation methods have been proposed
in the past [14]. Specifically, a popular method using a Grassmann manifold was proposed in
[4] and illustrated with a large coupled aeroelastic model of a fighter jet. The method proposed
in [31] uses a so-called ”multi-POD” approach. A parameter-weighted variant of this approach
is also used in this work and described in Section 4.2.2 as weighted concatenation of snapshots
method. Furthermore, a global pMOR approach using a global basis over the whole parameter
range is employed in [21].

The performance of POD in realistic coupled simulations of cardiac contraction is yet un-
known. In this thesis, the performance of POD is demonstrated and applied to a patient-specific
cardiac geometry with about 850′000 structural DOFs. POD for large nonlinear models has only
been applied to single fields, e.g. structural mechanics or fluid dynamics, separately [51]. In this
work, the case of a POD-reduced 3D structural model that is monolithically coupled to a 0D
Windkessel model is considered. Only the structural dimension of the problem is reduced. Ad-
ditionally, several subspace interpolation methods are reviewed for cardiac problems. In these
parametric simulations, the contractility parameter controlling maximum active tension of the
myofibers is varied in the cardiac model, as it has been shown to be the most influential param-
eter for cardiac function and commonly calibrated to experiments.

1.3.3 Model personalization
Many of the cardiac model parameters depend on a patient’s physiology and are a priori un-
known, as invasive experiments cannot be carried out on living human subjects. A predictive
patient-specific cardiac model is thus subject to an iterative process termed inverse analysis.
In this context, the simulation of one heartbeat with given parameters can be regarded as the
forward problem. The reverted task of matching the parameters to given observations from the
patient-specific heartbeat is then the inverse problem. Common clinical measurements of car-
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diac kinematics are displacement data extracted from cine or tagged magnetic resonance imag-
ing (MRI), representing an Eulerian and Lagrangian description of motion, respectively. Other
measurements include blood pressure or electrocardiograms. As cardiac mechanics simulations
pose an expensive forward problem, repeated evaluation during inverse analysis has incredible
computational demands. Furthermore, algorithms for inverse analysis commonly scale linearly
with the number of parameters. Using reduced order modeling during inverse analysis might
thus lead to significant time savings.

During gradient-based optimization, the adjoint method offers computationally inexpensive
gradient calculation when combining it with advanced methods such as automatic differentiation
and checkpointing [74]. For example in [160], regional contractility was estimated from short
axis cine MRI. Using the adjoint method, ischemic regions in cardiac electrophysiology were
identified in [36]. Most recently in [52], passive material parameters and active fiber shortening
was estimated for a biventricular geometry from ventricular volume and regional strain.

Gradient-free inverse analysis for cardiac problems was demonstrated in [30], where regional
cardiac contractility was estimated from cine MRI using the unscented Kalman filter (UKF). The
reduced order UKF was further applied in [15, 133] to estimate boundary condition parameters
of the aorta for a fluid-structure-interaction problem. Other examples of gradient-free inverse
analysis include [9], where left-ventricular active and passive material parameters were estimated
from 3D tagged MRI using a parameter sweep.

A good overview of using pMOR for inverse analysis is given in [14] and [146]. One exam-
ple is to optimize over the ROM within a regularly updated trust region around the FOM, see
e.g. [193]. There are some examples where reduced order modeling has been combined with in-
verse analysis in biomechanics. For arterial hemodynamic fluid-structure-interaction problems,
an inverse analysis with uncertainty quantification was performed in [115] using a reduced basis
method. There are however few references for cardiac solid models. In [31], the reduced or-
der UKF was applied to estimate cardiac contractility in a healthy and an infarcted region. The
forward simulations were carried out using POD, thus converging to a different solution than
using the FOM only. In [83] a multifidelity approach was proposed to calibrate hemodynam-
ical and structural parameters of a cardiac model to ventricular pressure measurements. Here,
a Levenberg-Marquardt-based optimization uses evaluations switching between a 3D FOM, a
coarsly discretized version of the 3D FOM, and a 2D surrogate model. Another multifidelity
approach was used in [135] between a 3D FOM and a 0D surrogate model. An evolutionary
algorithm was used in [22] using a ROM with a pre-computed POD-basis from a single FOM
to identify four parameters of an electrophysiological cardiac model from a synthetic electrocar-
diogram. As in [31], a reduced order UKF was used in [41] to estimate parameters of a one-way
coupled electromechanical cardiac model from synthetic data. Here, as well, a POD basis was
constructed a priori from, in this case, four pre-computed parameter sample sets.

Using coarsely discretized or surrogate models does however not guarantee that the most im-
portant features of the FOM are preserved. These surrogate models further lack the ability of
pMOR to inherently learn from evaluations of the FOM to become more precise throughout the
optimization. Instead, they require an additional mapping between FOM and surrogate model
solutions. Most importantly, using 2D or 0D surrogate models during inverse analysis, the heart
can only be tuned to scalar measurements. However, a calibration to spatial measurements from
cine or tagged MRI might be desired in many applications, e.g. when detecting infarcted regions
[30]. Furthermore, an a priori generation of the ROM might not be suitable for non-convex ap-
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proximation problems with several parameters as it is computationally expensive and the param-
eter range might not be known a priori. In this thesis, a novel method of how an automatically
updated ROM can be integrated into any optimization-based inverse analysis is proposed. This
methods leads to considerable savings in computation time and its performance is demonstrated
in a real-world multivariate inverse analysis scenario.

1.4 Contributions of this work

With important requirements to study cardiac G&R outlined above, the contributions of this
thesis are summarized in the following.

• Physiological and efficient pericardial boundary conditions
Physiological boundary conditions are essential for the predictive capabilities of any car-
diac model. On the heart’s inside, blood pressure is acting on the myocardium. The heart
itself is contained within an enclosing sac, the pericardium. Except for the work of [56],
there are no studies of pericardial-myocardial interaction. However, the pericardium in
[56] was modeled by a contact-interaction problem, rendering the imposition of pericar-
dial boundary conditions computationally expensive. This thesis demonstrates the good
performance of a simplified pericardial model through a comprehensive quantitative com-
parison of simulation results from a patient-specific four-chamber cardiac model to cine
magnetic resonance data.

• Coupled nonlinear model order reduction
Cardiac contraction is commonly simulated with parametric, highly dimensional, large de-
formation, nonlinear models. These models are computationally expensive, limiting their
use in clinical practice and slowing model personalization. Several approaches for cardiac
model order reduction have been proposed. However, past studies are either not appli-
cable to real-world patient-specific models, do not feature a performance comparison of
reduction methods, or consider purely structural models. This thesis proposes to reduce
the structural model of a monolithically coupled structure-Windkessel cardiac model us-
ing projection-based model order reduction with proper orthogonal decomposition. The
reduced order model is solved in a parallel high performance computing framework. This
approach offers considerable computational speedup while maintaining approximation ac-
curacy. Furthermore, several subspace interpolation methods are reviewed for parametric
solutions of the cardiac model.

• Speedup of gradient-based inverse analysis
Inverse analysis is crucial for cardiac modeling to personalize model parameters to given
experimental data. Gradient-based methods are commonly used to solve the arising opti-
mization problem. Gradients are commonly calculated using finite differences. However,
this strategy is computationally expensive, scaling with the number of parameters. In this
thesis, a simple method is proposed to use parametric reduced order models to calculate
gradients, based on knowledge of prior optimization iterations. It is shown that approxi-
mation quality is comparable to a standard gradient-based optimization while significantly
reducing simulation time.
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1.5 Outline
The tools for predictive patient-specific cardiac modeling are organized in the following, self-
contained chapters, each demonstrated by individual numerical examples. The remainder of this
thesis is structured as follows.

Chapter 2 describes all components of a computational cardiac solid mechanics model. The
general set of governing partial differential equations is introduced, using a large-deformation
nonlinear continuum mechanics framework. The solution using the finite element method is
briefly outlined in the following. Specifically for cardiac problems, the geometries, materials,
and circulatory system are explained, leading, finally, to the monolithically coupled structure-
Windkessel model used throughout this thesis.

Diving into biological details of the heart’s interaction with its surrounding organs, Chapter 3
offers a thorough analysis of pericardial boundary conditions. Following analysis of the anatom-
ical and physiological background, current pericardial boundary conditions are reviewed. Using
a four-chamber patient-specific geometry, different models of pericardial-myocardial interaction
are quantitatively compared to multi-view patient-specific cine MRI and their implication on the
contractile motion of the heart is analyzed.

With computation time identified as a major inconvenience of high-fidelity cardiac simula-
tions, a model order reduction strategy is proposed in Chapter 4 for the monolithically coupled
structure-Windkessel model, based on proper orthogonal decomposition. To enable parametric
dependence in reduced order models, several subspace interpolation methods are reviewed. The
performance of model order reduction is demonstrated in a real-world setting, for both constant
and variable parameter sets.

The use of the reduced order model from Chapter 4 in an inverse-analysis scenario is briefly
outlined in Chapter 5. Here, a simple but effective method is proposed how parametric reduced
order modeling can be incorporated into gradient-based inverse analysis using finite differences.
The performance of the method is demonstrated using synthetic data.

The conclusion in Chapter 6 summarizes the methods proposed in this thesis for cardiac
modeling. Furthermore, objectives for future research towards cardiac growth and remodeling
are given.
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2 Cardiac mechanics
This chapter is concerned with the derivation of a mathematical and computational cardiac model
used throughout this thesis. Section 2.1 introduces the set of differential equations needed to de-
scribe the cardiac motion as an elastodynamic problem in a material nonlinear framework capa-
ble of large deformations. These equations are numerically solved by the finite element method
briefly outlined in Section 2.2. Moving from a general framework to cardiac-specific models,
two cardiac geometries are introduced in Section 2.3, along with cardiac material definitions in
Section 2.4. Ventricular pressures within the heart caused by blood flow are approximated by a
lumped-parameter model of the circulatory system described in Section 2.5. Finally, the coupled
system is presented in Section 2.6.

2.1 Continuum mechanics
This section contains a summary of the governing equations of continuum mechanics relevant
for this work. For more details, refer to [19, 87]. Let B0 ∈ R3 denote the material or reference
configuration of a continuous body with particle positions X at time t = 0. The deformation
of the body is expressed by the mapping function ϕ in Lagrangean description. It maps the
material position X in reference configuration to the spatial position x within the spatial or
current configuration Bt for all times t ∈ R+,

ϕ(X, t) =

{
B0 → Bt ,
X 7→ x(X, t) .

(2.1)

The finite displacement field

u(X, t) = x(X, t)−X (2.2)

links both configurations. The first and second time derivatives of the displacement vector are
the velocities u̇(X, t) and accelerations ü(X, t) defined as

u̇(X, t) =
∂u(X, t)

∂t

∣∣∣∣
X

=
du(X, t)

dt
, (2.3)

ü(X, t) =
∂2u(X, t)

∂2t

∣∣∣∣
X

=
du̇(X, t)

dt
=

d2u(X, t)

d2t
. (2.4)

2.1.1 Nonlinear kinematics
The deformation gradient F is the material gradient of the deformation mapping

F (X, t) = ∇X ϕ(X, t) =
dx(X, t)

dX
. (2.5)
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For simplicity of notation, in the following, the dependence of kinematic quantities on time t is
dropped. The deformation gradient allows to map between basis vectors in reference and current
configuration. It is a mixed tensor as its first and second basis vector are from the tangential
spaces of the current and reference configuration, respectively. An infinitesimal line segment
dX ∈ B0 in reference configuration is mapped to a line segment dx ∈ Bt in material configura-
tion using the deformation gradient

dx = F · dX, (2.6)

termed push-forward operation. The inverse pull-back operation is

dX = F−1 · dx. (2.7)

The determinant J of the deformation gradient,

J = detF > 0, (2.8)

is always positive and is a measure for the change of infinitesimal volume elements

dv = J dV, (2.9)

where dv and dV are the infinitesimal volume element in current and reference configuration, re-
spectively. The deformation gradient can be multiplicatively decomposed in an isotropic, shape-
preserving part Fvol, and an isochoric, volume-preserving part F̄ , as follows

F = Fvol · F̄ , with Fvol = J
1
3I and F̄ = J−

1
3F , (2.10)

with identity matrix I . The relationship between infinitesimal area elements da and dA in cur-
rent and reference configuration, respectively, is Nanson’s formula

da = JF−T · dA. (2.11)

Using the polar decomposition theorem, the deformation gradient can be uniquely right or left
decomposed as

F = R ·U = v ·R, (2.12)

with rigid body rotation tensor R and the symmetric and positive definite stretch tensors U and
v in reference and current configuration, respectively. Due to the mixed-basis nature and the lack
of rotational invariance of the deformation gradient, the right Cauchy-Green deformation tensor
C is widely used instead:

C = F T · F = UT ·RT ·R ·U = UT ·U , (2.13)

where the orthogonality of the rotation tensor has been used. The right Cauchy-Green tensor is
defined in reference configuration and invariant with respect to rigid body motion. A common
strain measure defined in reference configuration is the Green-Lagrange strain tensor

E =
1

2

(
F T · F − I

)
=

1

2
(C − I) , (2.14)

which, in contrast to the right Cauchy-Green tensor, is zero in the absence of deformation. The
rate of the Green-Lagrange strain tensor is

Ė =
1

2

(
Ḟ T · F + F T · Ḟ

)
. (2.15)
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2.1.2 Stresses and constitutive behavior

The current surface traction t is defined as the resulting force ∆f on a vanishing surface area
∆a in current configuration

t = lim
∆a→0

∆f

∆a
. (2.16)

Using the surface traction t and the current outward unit normal n, the Cauchy stress tensor σ
can be derived, for which holds

t = σ · n. (2.17)

The Cauchy stress tensor is defined with respect to the current basis vectors. The first Piola-
Kirchhoff stress tensor P is obtained from the Cauchy stress tensor by a pull-back operation of
the second basis vector

P = Jσ · F−T. (2.18)

The second Piola-Kirchhoff stress tensor S is obtained by an additional pull-back of the first
basis vector

S = F−1 · P = JF−1 · σ · F−T. (2.19)

The surface traction T in reference configuration is then calculated as

T = S ·N , (2.20)

with outward unit reference normal N . Hyperelastic materials can be modeled with a strain
energy density function ψ, also called hyperelastic potential. Material behavior depends only on
the current deformation and not on deformation history. The strain energy density function is
invariant to rigid body rotations R of the deformation gradient and depends on the deformation
gradient F or any derived quantities, e.g. stretch tensor U , right Cauchy-Green tensor C, or
Green-Lagrange strains E. The second Piola-Kirchhoff stress can be directly calculated from
the potential ψ as

S = 2
∂ψ

∂C
=
∂ψ

∂E
. (2.21)

Analog to the hyperelastic potential ψ in (2.21), a viscous pseudo-potential ψvisco is defined to
calculate the viscous stress

Svisco =
∂ψvisco

∂Ė
(2.22)

depending on the rate of the Green-Lagrange strain tensor Ė. Note that this is not a physical
principle but rather a computational convenience, since no potential can be given for dissipation
processes. Specific constitutive models for cardiac tissue are given in Section 2.4.
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2.1.3 Balance equations

Conservation of mass In classical elastodynamics, i.e., without growth or remodeling, the
mass of the body is conserved. This yields in reference configuration

dm

dt
=

d

dt

∫
B0
ρ0 dV =

∫
B0
ρ̇0 dV = 0, (2.23)

and thus in local form ρ̇0 = 0. Using Reynold’s transport theorem, the conservation of mass can
equivalently be formulated in current configuration, refer to [19, 87].

Balance of linear momentum The balance of linear momentum states that the change in
linear momentum must equal all external forces acting on the body

d

dt

∫
B0
ρ0u̇ dV =

∫
B0
b̂0 dV +

∫
∂B0
t̂0 dA, (2.24)

with external surface traction t̂0 acting on the reference boundary ∂B0. This expression can be
simplified to ∫

B0
ρ0ü dV =

∫
B0

(
Div P + b̂0

)
dV, (2.25)

with volume forces b̂0 per reference unit volume. The local form of the balance of linear mo-
mentum in reference configuration yields

ρ0ü = Div P + b̂0. (2.26)

This expression is also known as Cauchy’s first law of motion.

Balance of angular momentum The balance of angular momentum states that the change
in angular momentum must equal all external moments acting on the body and yields in reference
configuration

d

dt

∫
B0

(ρ0x× u̇) dV =

∫
B0

(x× b̂0) dV +

∫
∂B0

(x× t̂0) dA. (2.27)

Analog to the balance of linear momentum, theses formulations can be simplified by applying
the Gauss-Green divergence theorem to the boundary integrals. It can be shown that the balance
of angular momentum in current and reference configuration lead to the requirement that the
Cauchy stress σ and the second Piola-Kirchhoff stress S must be symmetric:

σT = σ, ST = S. (2.28)

This expression is also known as Cauchy’s second law of motion.
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2.1.4 Initial boundary value problem
The Dirichlet and Neumann boundaries in reference configuration Γu and Γσ, respectively, are
disjunct sets and together form the boundary ∂Ω of the domain in reference configuration Ω:

Ω = B0, ∂Ω = Γu ∪ Γσ, Γu ∩ Γσ = ∅ (2.29)

Using the balance of linear momentum (2.26) together with prescribed displacements û on the
Dirichlet boundary Γu and prescribed tractions t̂0 on the Neumann boundary Γσ yields

Div P + b̂0 = ρ0ü in Ω × [0, T ], (2.30)
u = û on Γu × [0, T ], (2.31)

P ·N = t̂0 on Γσ × [0, T ], (2.32)
u(X, 0) = û0(X) in Ω, (2.33)

u̇(X, 0) = ˆ̇u0(X) in Ω, (2.34)

which is the strong formulation of the initial boundary value problem (IBVP) since the equation
holds for every material point X in reference configuration. The IBVP is solved for all times t
between the initial time 0 and the final time T . Initial conditions (2.33) and (2.34) are prescribed
at t = 0 with initial displacements û0 and initial velocities ˆ̇u0.

2.2 Finite element method
The set of nonlinear partial differential equations forming the IBVP given in Section 2.1.4 is
solved using the finite element method. All derivations in this section will be given with respect
to the geometry in reference configuration Ω, as it corresponds to the implementation used in
this work. However, all derivations could equally be carried out in current configuration. Again,
this section only contains relevant equations used in this thesis. For a comprehensive discussion,
see for example [19].

2.2.1 Weak formulation
The balance of momentum (2.30) and Neumann boundary conditions (2.32) of the strong for-
mulation of the IBVP yield the weighted integral formulation by multiplying with a weighting
or test function δu and integrating over the respective domains∫

Ω

(
ρ0ü− DivP − b̂0

)
· δu dV +

∫
Γσ

(
P ·N − t̂0

)
· δu dA = 0. (2.35)

The weighting function δu can be interpreted as virtual displacements. In contrast to the point-
wise enforcement of the governing equations in the strong formulation, the weighted integral
formulation now is enforced in an integral sense. Applying the Gauss-Green divergence theorem
yields the virtual work δW in reference configuration,

δW :=

∫
Ω

ρ0ü · δu dV︸ ︷︷ ︸
−δWkin

+

∫
Ω

S : δE dV︸ ︷︷ ︸
−δWint

−
∫
Ω

b̂0 · δu dV −
∫
Γσ

t̂0 · δu dA︸ ︷︷ ︸
−δWext

= 0.
(2.36)
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2 Cardiac mechanics

Compared to the strong and weighted integral formulation, (2.36) now possesses weaker deriv-
ability requirements since one spatial derivative of the primary variable u has been shifted to the
test function δu within the variation δE. The Dirichlet boundary conditions (2.31) are enforced
by

u = û on Γu ∀u ∈ S, (2.37)
δu = 0 on Γu ∀δu ∈ T , (2.38)

where the test function vanishes on the Dirichlet boundary and the solution and weighting func-
tion spaces S and T , respectively, are sufficiently smooth. The weak formulation of the IBVP
then is

find u ∈ S such that δW = 0 ∀ δu ∈ T . (2.39)

2.2.2 Discretization in space
The weak formulation (2.39) is solved discretely at nodes connected through nele disjunct finite
elements

Ω ≈
nele⋃
e=1

Ω(e), (2.40)

where the superscript (e) denotes element quantities. The continuous quantities u and δu in the
weak formulation (2.39) are approximated in an element-wise manner on an element (e) by u(e)

h

and δu(e)
h , respectively,

u(e)(X, t) ≈ u
(e)
h (X, t), (2.41)

δu(e)(X) ≈ δu
(e)
h (X), (2.42)

where subscript h denotes spatially approximated quantities using basis functions Nk, often
called shape functions. Typically, Ω(e) is mapped to a parameter space ξ. Displacements and
their variation are then approximated using the basis functions

u
(e)
h (ξ, t) =

n
(e)
nod∑
k=1

Nk(ξ) dk(t), in Ω(e) ∀(e), (2.43)

δu
(e)
h (ξ) =

n
(e)
nod∑
k=1

Nk(ξ) δdk, in Ω(e) ∀(e). (2.44)

Here, the same shape functions Nk are used for displacements u(e)
h and virtual displacements

δu
(e)
h . This approach is termed Bubnov Galerkin or just Galerkin method, whereas in a Petrov

Galerkin method solution and weighting basis functions are chosen independently. The spaces S
and T are restricted to the finite dimensional solution and weighting function subspaces Sh ⊂ S
and Th ⊂ T , respectively. The former continuous displacement field is now characterized by
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2.2 Finite element method

discrete nodal displacements dk, where n(e)
nod is the number of nodes of a given element. The

geometry in reference and current configuration is then approximated in an element-wise manner
as

x
(e)
h (ξ, t) =

n
(e)
nod∑
k=1

Nk(ξ) xk(t), in Ω(e) ∀(e), (2.45)

X
(e)
h (ξ) =

n
(e)
nod∑
k=1

Nk(ξ) Xk, in Ω(e) ∀(e), (2.46)

with discrete nodal positions Xk and xk in reference and current configuration, respectively.
Using the isoparametric concept, the geometry in current configuration x(e)

h and reference con-
figuration X(e)

h is approximated using the same shape functions Nk as for the displacements in
an element-wise manner. In this thesis, exclusively ten-node tetrahedral elements with quadratic
Lagrange polynomials as basis functions are used. The displacement error ed of the Galerkin
approximation

ed = u− uh (2.47)

is orthogonal to the discrete weighting basis function space Th. This property can be interpreted
that the space of weighting basis functions in Th cannot detect the deviation of uh from u.

The weak form (2.39) is evaluated in an element-wise manner using Gaussian quadrature and
sorted in global vectors using the assembly operator

∫
Ω

(•) dV ≈
nele

A
e=1

∫
Ω

(e)
h

(•) dV. (2.48)

Inserting the discretized solution (2.43) into the principle of virtual work (2.36) yields the fol-
lowing spatially semi-discrete version in vector-matrix notation

δdT
[
Md̈ + F(d, ḋ)

]
= 0, (2.49)

with global mass matrix M and force vector F, containing the sum of internal and external forces.
The global vectors δd, d, ḋ and d̈ contain virtual displacements and discrete displacements,
velocities, and accelerations, respectively. These vectors are of dimension 3 ·nnod, corresponding
to the total number of structural degrees of freedom (DOFs), i.e., the structural unknowns in the
system. Since (2.49) must hold for any choice of virtual displacements δd it can be equivalently
reformulated as

RS
semi := Md̈ + F(d, ḋ) = 0, (2.50)

which is the spatially semi-discrete form of the IBVP with the semi-discrete residual RS
semi.
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2 Cardiac mechanics

2.2.3 Discretization in time
The discrete displacements a = d̈ and velocities v = ḋ in the IBVP are discretized in time with
Newmark’s method [139]

vn+1 =
γ

β∆t
(dn+1 − dn)− γ − β

β
vn −

γ − 2β

2β
∆t an, (2.51)

an+1 =
1

β∆t2
(dn+1 − dn)− 1

β∆t
vn −

1− 2β

2β
an, (2.52)

with parameters γ ∈ [0, 1] and β ∈ [0, 0.5], and time step size ∆t = tn+1 − tn. Additionally, the
generalized-α method [38] is applied, yielding quantities at a generalized time step n+ 1− αi

(•)n+1−αi = (1− αi)(•)n+1 + αi(•)n, αi ∈ [0, 1], i ∈ {f,m} (2.53)

depending on the weights αf and αm for force vector and mass matrix respectively. Finally, the
time and space discrete structural residual is obtained as

RS
n+1 := Man+1−αm + Fn+1−αf

= 0. (2.54)

Note that this time integration scheme is not energy conserving, for which other methods avail-
able.

2.3 Geometrical models
Two geometrical models are used in this work. The high-fidelity patient-specific four-chamber
geometry in Section 2.3.1 is obtained from magnetic resonance imaging (MRI), which is useful
for model validation but is computationally expensive. The simplified ellipsoid model in Sec-
tion 2.3.2 on the other hand is fast to evaluate and can be used in proof-of-concept simulations.

2.3.1 Patient-specific four-chamber geometry
A comprehensive in vivo MRI data set was obtained from a 33 year old healthy female volunteer.
The imaging data was acquired at King’s College London, UK using a Philips Achieva 1.5T MRI
scanner. As several minutes might have passed between different imaging sequences, the subject
may have moved, leading to a spatial misalignment. Thus, all images used in this work are rigidly
registered onto another. In a first step, short axis cine MRI is registered to 3D MRI. In a second
step, two-chamber, three-chamber, and four-chamber cine MRI is registered to short-axis cine
MRI.

A four chamber geometry was obtained from a dual-phase whole-heart 3D b-SSFP sequence
[179], acquisition matrix 212 × 209 × 200, acquired voxel size 2 × 2 × 2 mm, repetition time
4.5 ms, echo time 2.2 ms, echo train length 26 and flip angle 90◦. The diastolic rest period (dias-
tasis) was used to generate the computational mesh. The geometry was meshed using Gmsh [66]
with a resolution of 2 mm, yielding 282 288 nodes and 167 232 quadratic tetrahedral elements,
totaling a 846 864 structural degrees of freedom. Additionally, the geometry contains triangular
surface elements with no additional degrees of freedom to track the movement of the planes
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2.3 Geometrical models

(a) Computational mesh with 2 mm
characteristic element size.

(b) Partial volumes colored by material definition.

Figure 2.1: Four chamber patient-specific cardiac geometry.

of cardiac valves, allowing to monitor the volumes of all four cardiac cavities. The meshed ge-
ometry is shown in Figure 2.1a. All four cardiac cavities are closed with surface elements with
no additional degrees of freedom at the valve planes depicted in red in Figure 2.1b at the left
and right atrioventricular plane, respectively. The atria are additionally closed at their respective
connections to the vasculature. The volumes of all four cardiac cavities can thus be monitored
and the movement of cardiac valve planes tracked. The different materials are depicted in Fig-
ure 2.1b.

Remark Whole-heart 3D-imaging differs from cine MRI data, since both imagining tech-
niques provide slightly different grey-values for the same tissues. More importantly, the patient
might have moved between both image sequences, leading to a spatial misalignment even af-
ter registration. However, in many applications the simulation results are compared to cine MRI
data, for example during model validation or inverse analysis. It has thus to be accepted that even
in reference configuration, the heart does not perfectly align with cine MRI data. The alternative
of using short-axis cine MRI during diastasis to obtain the reference configuration, however, is
even less desirable. The present MRI data set’s cine MRI has a slice thickness of 8 mm, leading
to strong artifacts in the segmented geometry.
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2 Cardiac mechanics

Figure 2.2: Simplified prolate spheroid geometry for the left ventricle of the four-chamber ge-
ometry in Section 2.3.1.

2.3.2 Generic prolate spheroid geometry
A common tool in computational cardiac modeling are simplified geometries, which reduce
computational demand and geometrical complexity while resembling one part of the heart. A
common example of such a model is the prolate spheroid geometry, mimicking the shape of
the left ventricle [20, 48, 65]. The geometry shown in Figure 2.2 is shaped so that volume and
dimensions resemble closely the ones of the left ventricle of the four-chamber geometry intro-
duced in the previous section. It is discretized with ten-node quadratic tetrahedral elements and
has 44’475 structural degrees of freedom.

2.4 Modeling cardiac tissue
This section introduces several material models used in computational cardiac modeling. Mate-
rial can be classified in a passive and active behavior. There is an ongoing debate on whether
to use an active stress or an active strain approach to model cardiac contraction, see e.g. [3]. In
the present work, an active stress model is used, as the cardiac muscle can exert an active stress
without deformation. The total stress is thus additively decomposed in an active part Sact and a
passive part Spass,

S = Spass + Sact. (2.55)

The material components of different tissues are specifically defined in Chapters 3 and 4. Passive
behavior, detailed in Section 2.4.2, describes the tissues resistance with respect to deformation,
as in any classical mechanical engineering problem. Active behavior, detailed in Section 2.4.3,
describes the capability of the heart’s muscle cells, the myocytes, to contract and impose a stress
component on the tissue. Both passive and active component may depend on a complex three-
dimensional architecture of the myofibers, which is described in Section 2.4.1. In patient-specific
biomechanical problems, the reference configuration of the simulation obtained from medical
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2.4 Modeling cardiac tissue

(a) ±50◦ (b) ±60◦ (c) ±70◦

Figure 2.3: Different ventricular fiber orientations.

imaging is usually not stress-free. The prestress method in Section 2.4.4 yields a reference con-
figuration which is in balance with external loads present during imaging.

2.4.1 Local anisotropy

It is widely accepted that passive cardiac tissue behavior is non-linear, anisotropic (orthotropic),
viscoelastic and history-dependent [27, 166]. This is mainly due to the extracellular collagen net-
work structure [99]. The strain-stress relationship of myocardial tissue is classically represented
using anisotropic hyperelastic potentials [88], which require the local fiber and sheet orientation
as well as the stiffness in each of these directions. Furthermore, active stress is applied according
to local cardiac muscle orientation.

The knowledge of patient-specific and regionally varying constitutive properties of myocardial
tissue is crucial for an accurate representation of the cardiac contraction in a numerical simula-
tion [88]. The ventricular myocardium has a complex three-dimensional architecture [68]. In
particular, the myocardium is a composite of layers (or sheets) of parallel myocytes, which are
the predominant fiber types, occupying 70% of the volume. The remaining 30% consists of var-
ious interstitial components, of which only 2–5% are occupied by collagen arranged in a spatial
network that forms lateral connections between adjacent fibers. The muscle fiber direction and
the sheet orientations change through the thickness of the myocardium [55].

It is well known that the fiber orientation has a strong impact on active cardiac mechanics [9,
49, 67, 140, 178, 188]. Patient-specific fibers can be obtained from diffusion tensor MRI [138].
Three commonly used fiber architectures for ventricular myocardium, namely ±50◦, ±60◦, and
±70◦, are shown in Figure 2.3. Here, the angles represent the constant fiber angle at epi- and
endocardium, respectively. The transverse angle is zero throughout the myocardium. The sheet
normal vector n0 is perpendicular to the epi- and endocardial surfaces. The sheet vector s0 is
then obtained from s0 = n0 × f0.

In this work, the local angles of cardiac myofibers are prescribed at epi- and endocardium
of the ventricles. Using harmonic lifting, the fiber vectors f0 are interpolated to the interior of
the domain by solving a Laplace problem [137]. The solution of the Laplace problem yields ap-
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2 Cardiac mechanics

Figure 2.4: Transmural fiber angles for a ±60◦ fiber orientation.
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2.4 Modeling cardiac tissue

Figure 2.5: Atrial fiber orientation. Fiber angles are with respect to the ventricular long axis.

proximately a linear interpolation of the fiber vector components throughout the thickness of the
myocardial wall. This transmural fiber-interpolation is visualized in Figure 2.4 for a cut through
the ventricular myocardium, based on a ±60◦ fiber orientation. As the atrial fiber architecture
is more complex, it is obtained using a semi-automatic registration method based on the fiber
definition in atlas atria [90, 92] and visualized in Figure 2.5.

Remark Different methods exist to incorporate local anisotropy in the form of local coordi-
nate system (f0, s0,n0) into computational models. In the most simple case, the local coordinate
system is constant per element. However, as the myocardium exhibits a strong transmural varia-
tion in local orientations, see Figure 2.4, a constant per element coordinate system in combina-
tion with a coarse discretization can lead to a deterioration in spatial convergence. Alternatively,
the local coordinate system can be defined on a nodal basis and its vector components interpo-
lated to the integration points using the elements’ shape functions.

To illustrate the effects of different definitions of local coordinate systems, four simulations
are compared in Figure 2.6. It shows an end-systolic configuration of a cardiac contraction sim-
ulation, using the four chamber geometry from Section 2.3.1. Compared are two coordinate
system interpolations, constant per element and interpolated on integration points, and two char-
acteristic element sizes, 2 mm and 1 mm. The configuration with constant per element coordinate
systems and 2 mm discretization size (black) visibly differs from the other three configurations,
especially at the interventricular septum. On the other hand, the configurations using a local co-
ordinate system interpolated to the integration points coincide well for the 2 mm (red) and 1 mm
(orange) discretization size. These configurations also coincide well with constant per element
coordinate systems and 1 mm discretization size (blue). These results suggest that using coor-
dinate systems interpolated at the integration points improve spatial convergence and should be
used in all cardiac simulations.
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2 Cardiac mechanics

Figure 2.6: End-systolic configuration of cardiac contraction simulation using the four-chamber
geometry from Section 2.3.1. The geometry is cut in four-chamber view for different
coordinate system interpolations and characteristic discretization sizes: constant per
element 2 mm (black) and 1 mm (blue), interpolated on integration points 2 mm (red)
and 1 mm (orange).
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2.4 Modeling cardiac tissue

2.4.2 Passive behavior

The passive stress contribution Spass is in the most general case additively composed of different
elastic materials i with strain energy density function ψi and a viscous material with pseudo-
potential ψvisco,

Spass =
∑
i

∂ψi
∂E

+
∂ψvisco

∂Ė
. (2.56)

Based in the volumetric-isochoric split of the deformation gradient in (2.10), the isochoric right
Cauchy-Green tensor becomes

C̄ = F̄ T · F̄ = J−2/3C. (2.57)

Depending on the isochoric deformation, the following modified invariants Īi are defined:

Ī1 = tr
(
C̄
)
, Ī2 =

1

2

[
tr2
(
C̄
)
− tr

(
C̄2
)]
. (2.58)

For the treatment of anisotropic tissues, pseudo-invariants are defined

I4,f = f0 ·Cf0, I4,s = s0 ·Cs0, I8,fs = f0 ·Cs0, (2.59)

based on fiber orientation f0 and sheet orientation s0. Together with the sheet normal orientation
n0, the orthonormal local coordinate system s0 = n0 × f0 is formed. Throughout this work,
different hyperelastic potentials are utilized for different biological tissues within the heart.

Neo-Hooke The isotropic Neo-Hooke material is

ψNH =
µ

2
(Ī1 − 3), (2.60)

with stiffness parameter µ. It is used in this thesis for biological materials where no specific
material definition is available, e.g. for adipose tissue.

Anisotropic exponential The mechanical properties of healthy myocardial tissue have been
determined in biaxial extension testing with asymmetric loading [44, 192] and triaxial shear
testing [45]. However, information from both extension and shear testing is necessary to fully
characterize the orthotropic behavior of myocardial tissue [88]. Combined extension and shear
testing of human specimens was recently carried out in [166] for the first time, further investi-
gating the viscoelastic and history-dependent material behavior. From this comprehensive data
set, constitutive parameters were fitted in [75]. In biaxial extension testing, a thin (1-2 mm) sheet
(40 × 40 mm2 [192], 25 × 25 mm2 [166]) of myocardium was sliced tangentially from the left
ventricular free wall. The slices were cut assuming a uniform fiber direction aligned to the sheet
edges, as judged by eye. In triaxial shear testing, a small cube (3×3×3 mm3 [45], 4×4×4 mm3

[166]) is cut from the myocardium, again assuming a uniform fiber distribution aligning with the
edges of the specimen.
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2 Cardiac mechanics

Based in these experimental observations, an exponential orthotropic solid ψexp material model
was formulated [88]. It describes the interplay between extracellular matrix, myofibers, and lam-
inar sheets as

ψexp =
a

2b

(
eb(Ī1−3) − 1

)
+

afs
2bfs

(
ebfsI

2
8,fs − 1

)
+
∑
i∈{f,s}

ai
2bi

(
ebi(I4,i−3) − 1

)
, (2.61)

with material parameters ai and bi with indices f, s, fs, denoting fiber orientation, sheet orienta-
tion, and their interaction, respectively. The orientation of the local coordinate system is detailed
in Section 2.4.1. This material is widely used in cardiac biomechanics, see e.g. [10, 11, 106],
and parameters were fitted for this model in [88] and [75] to extension tests and shear test. Note,
however, that different parameter sets were obtained for each of the tests. There exists no unique
data set that matches the experimental observations of both extension tests and shear tests at
the same time. It should also be noted that the choice of reference configuration, in which the
tissue’s behavior is exactly orthotropic, is open to debate.

Mooney-Rivlin Due to its simplified definition with only two material parameters, the isotropic
Mooney-Rivlin material is also used to describe the passive behavior of myocardial tissue [30,
156]. Its strain-energy density function is

ψMR = C1(Ī1 − 3) + C2(Ī2 − 3), (2.62)

with stiffness parameters C1, and C2.

Volumetric penalty Furthermore, two different formulations of a volumetric penalty func-
tion [185] are used in this work,

ψvol,a = κ

(
J +

1

J
− 2

)
, (2.63)

ψvol,b =
κ

2
(1− J)2 , (2.64)

with penalty parameter κ. Both penalize J 6= 1 to enforce quasi-incompressibility, i.e., J → 1
for κ → ∞. In practice, κ is chosen so that the change in volume throughout the simulation is
sufficiently small.

Viscous A viscous material component is modeled with a viscous pseudo-potential ψvisco

ψvisco =
η

2
tr
(
Ė2
)
, (2.65)

with viscosity η. This material is frequently used to model myocardial viscosity in a simplified
manner [30, 32]. Note that there is an ongoing research for more advanced cardiac viscous
models [75, 166].
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(a) Prescribed indicator functions f(t) for atria (blue) and ventricles (red).
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(b) Active stress τ(t) for atria (blue) and ventricles (red) with maximum values σa and σv, respectively.

Figure 2.7: Active stress.

2.4.3 Active behavior
As the focus of this thesis is the mechanical function of the heart, the propagation of the electrical
signal within the myocardial tissue is not accounted for. Instead, all myocardial tissue contracts
simultaneously in all simulations presented in this thesis. This approach ignores regional devia-
tions in the onset of systole and diastole. Assuming a simultaneous activation and deactivation of
the whole heart might thus predict unrealistic timing between atrial and ventricular contraction.
Due to the large size of the ventricles, simultaneous activation might also lead to slightly dif-
ferent contractile behavior than regionally resolved activation times. However, it is not expected
that the findings of this thesis are strongly influenced by cardiac electrophysiology. For detailed
information on simulating the electrical conduction system of the heart, the reader is referred to
[89–92].

As a result of the electrochemical processes inside the myocytes, in particular due to calcium
dynamics, an active force is generated inside the myocyte sarcomeres mainly along the fiber
direction. A first model of myocyte contraction was introduced in [16]. A more sophisticated
model for cardiac contraction on the myocyte level exists [32], including the Frank-Starling
mechanism. This model depends on various cell-level parameters which were calibrated for ex-
ample in [29]. In this thesis, a much simplified model is used with only three parameters. Hence,
the active stress tensor

Sact = τ(t) f0 ⊗ f0 (2.66)

results from prescribing the unidirectional active stress τ in fiber direction f0. The orientation
of the local fiber direction f0 is detailed in Section 2.4.1. The active stress is obtained from an
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evolution equation

τ̇(t) = −|u(t)| τ(t) + σ0 |u(t)|+, τ(0) = 0, (2.67)

with active stress τ ∈ [0, σ0[ and the function |u(t)|+ = max(u(t); 0). The contractility σ0

controls the upper limit of the active stress component. The prescribed activation function u(t)
is

u(t) = αmax · f(t) + αmin · [1− f(t)], (2.68)

with actin-myosin binding and unbinding rates αmax and αmin, respectively. The smooth indicator
function f ∈ ]0, 1[ indicates ventricular systole

f(t) = S+(t− tsys) · S−(t− tdias), (2.69)

depending on the descending and ascending sigmoid functions S+ and S−, respectively.The
sigmoid functions are modeled using the hyperbolic tangent function

S±(∆t) =
1

2

[
1± tanh

(
∆t

γ

)]
, (2.70)

with steepness γ. An exemplary indicator function is visualized in Figure 2.7a for atrial and
ventricular myocardium. The resulting active stress curve is displayed in Figure 2.7b. Note that
the actual maximum value max(τ) depends on the activation function u and may be significantly
lower than the asymptotic active stress σ0. Thus, for clarity, the maximum values σv and σa,
denoting maximum ventricular and atrial active stress, respectively, are stated instead of σ0,
refer to Figure 2.7b. The times tsys and tdias model the onset of systole and diastole, respectively.

2.4.4 Prestress

For the reference configuration a patient-specific geometry is used, segmented from static 3D
MRI at diastolic rest period (diastasis), see Section 2.3. Diastasis is very suitable for the ref-
erence configuration, since both ventricular and atrial myofibers are relaxed, the heart is not
accelerated, and blood pressures are minimal and constant. This simplifies the task of obtaining
the stress state of the reference configuration, which in this case is determined by the static blood
pressures within the cardiac cavities. The geometry is always prestressed, if non-zero, with the
initial ventricular and atrial pressures. In this work, the Modified Updated Lagrangian Formula-
tion is used as proposed in [59, 60]. This method incrementally calculates a deformation gradient
with respect to an unknown stress-free reference configuration. From this deformation gradient,
a stress field is calculated so that the segmented geometry of the heart is in balance with the pre-
stressed pressure state. Additionally, any springs present in boundary conditions are prestressed
as well. Note that while this technique allows to model prestress, the residual stresses inherent in
myocardial tissue [97] are not accounted for. Although the resulting configuration is in balance
with all prescribed external loads, it does not take into account the preferred homeostatic state
of cardiac tissue.
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2.5 Modeling the circulatory system

Remark 1 Prestress has a major influence on passive material behavior and thus on cardiac
mechanics. Furthermore, prestress is also important for models accounting for the Frank-Starling
mechanism as prestress determines here the initial stretching of the sarcomeres. This influence is
visualized by a small numerical experiment with the patient-specific four-chamber geometry in-
troduced in Section 2.3.1 using the isotropic Mooney-Rivlin material from (2.62) for ventricular
and atrial myocardium. The model is purely structural and contains the pericardial boundary con-
dition later examined in Chapter 3. In this prestress study, four simulations of cardiac contraction
are compared. Each simulation features a different combination of left and right ventricular pres-
sure, whereas atrial pressures are assumed to be zero throughout the simulation. The geometry
is first prestressed to the given ventricular pressures using MULF. During cardiac contraction,
ventricular pressures are kept constant to their prestressed value.

The results are compared at end-systole in four-chamber view in Figure 2.8 for four combi-
nations of ventricular pressures (left/right [mmHg]): 0/0 (red), 10/10 (orange), 10/0 (green), and
0/10 (black). Please note that the left ventricle is on the right side of the image. The influence
of ventricular prestress becomes evident by observing the displacements at the interventricular
septum. There are only minor differences between the symmetrically prestressed configurations
0/0 (red) and 10/10 (orange). However, the strong influence of ventricular prestress pressures be-
comes evident when comparing the asymmetrically prestressed configurations 10/0 (green) and
0/10 (black). The interventricular septum buckles to the side of the higher prestress pressure.

Remark 2 Prestressing requires solving the cardiac model as a static problem, i.e., (2.50)
with ḋ = d̈ = 0. The quasi-incompressibility, enforced by a pentalty potential (2.63) or (2.64),
leads to an ill-conditioned system, posing challenges for the solver of the linearized system.
Instead of a standard Newton algorithm to solve the nonlinear system (2.50), the method of
pseudo-transient continuation (PTC) [61] is used in this work for prestressing. PTC adds an
identity matrix to the tangential stiffness matrix, improving its conditioning. The identity matrix
is scaled by a constant, the inverse of a pseudo-time step, which decreases to zero as the problem
converges towards the solution.

2.5 Modeling the circulatory system
Hemodynamics describe the flow of blood within the circulatory system. There exist different
approaches to incorporate blood flow into the computational model. Three-dimensional fluid-
structure-interaction is resolved for example in [111, 141]. As the exact fluid dynamics are not
needed for the structural cardiac model, they are represented in this thesis with lumped-parameter
Windkessel models. A comprehensive review of different Windkessel models is given in [163].
In this work, a four element Windkessel model is used based on the ideas in [182] and [100]. The
schematic of the Windkessel model is given in Figure 2.9a using resistances R, compliances C,
and an inertance Lp. Pressures at different parts of the model are denoted by p. It is distinguished
here between a proximal (index p) and a distal part (index d) of the outlets, i.e., lung and aorta
for the right and left ventricle, respectively. The atrial pressure pat is prescribed to simulate atrial
systole, see Figure 2.9b. The reference pressure pref is kept constant.

For the four-chamber geometry from Section 2.3.1, the same Windkessel model is used for
each ventricle with different parameters. For simplicity of notation, in this section all Windkessel
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2 Cardiac mechanics

Figure 2.8: End-systolic configuration of cardiac contraction simulation using the four-chamber
geometry from Section 2.3.1. The geometry is cut in four-chamber view for different
ventricular prestress pressures (left/right [mmHg]): 0/0 (red), 10/10 (orange), 10/0
(green), and 0/10 (black). Note that the left ventricle is on the right of the image.
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2.6 Coupled structure-Windkessel system

parameters and variables are valid for both left and right ventricle. Note that this cardiovascular
model does not represent a closed-loop system, as introduced e.g. in [83], since the total blood
volume is not conserved, i.e., blood exiting the right ventricle into the lungs does not enter the
left atrium. However, using a Windkessel model for each ventricle provides us with a reasonable
approximation of ventricular pressures.

The atrioventricular and semilunar valves are modeled with a smooth diode-like behavior by
non-linear resistances Rav := R(pv − pat) and Rsl := R(pp − pv), respectively,

R(∆p) = Rmin + (Rmax −Rmin) · S+(∆p) (2.71)

depending on the sigmoid function S+ from (2.70) with steepness kp and the minimal and max-
imal valve resistance Rmin → 0 and Rmax → ∞, respectively. This yields the set of differential
equations

pv − pat
Rav

+
pv − pp
Rsl

+ V̇ (u) = 0,

qp −
pv − pp
Rsl

+ Cpṗp = 0,

qp +
pd − pp
Rp

+
Lp

Rp
q̇p = 0,

pd − pref
Rd

− qp + Cdṗd = 0.

(2.72)

The vector of primary variables for a single Windkessel yields p = [pv, pp, pd, qp]
T, including the

flux qp through the inertance Lp. The set of Windkessel equations (2.72) is discretized in time
with the one-step-θ scheme

˙(•)n+1 =
(•)n+1 − (•)n

∆t
,

(•)n+θ = θ(•)n+1 + (1− θ)(•)n, θ ∈ [0, 1].
(2.73)

This yields the discrete Windkessel residual RW evaluated at time step n + θ. The parameters
of the cardiovascular model are constant throughout this thesis and summarized in table A.2.
Windkessel parameters are motivated by values from literature and adapted to yield physiological
pressures as well as approximately a periodic state of the Windkessel systems.

The 0D Windkessel model is strongly coupled to the 3D structural model. The 0D model
depends on the structural displacements of the 3D model via the change in ventricular volume
V̇ . On the other hand, the 3D model depends on left (and right) ventricular pressure from the 0D
model. The coupling between both models is described in the following section.

2.6 Coupled structure-Windkessel system

The discretized structural model introduced in Section 2.2 is coupled to a zero-dimensional
model of the circulatory system, further specified in Section 2.5. This reduced order model of
hemodynamics is commonly termed Windkessel model. For the coupled problem, time and space
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2 Cardiac mechanics
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(a) Schematic of the Windkessel model using symbols borrowed from
electrical schematics.
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(b) Prescribed left (blue) and right (red) atrial pressure pat(t).

Figure 2.9: Details of the Windkessel model used in this thesis.

discrete structural residual RS and Windkessel residual RW generally depend on the discrete
displacements d and discrete Windkessel DOFs p, thus

RS
n+1 := RS(dn+1,pn+1), RW

n+1 := RW(dn+1,pn+1). (2.74)

The monolithically coupled structural-Windkessel is solved at time step n+ 1 with the Newton-
Raphson method [

KS KSW

KWS KW

]i
n+1

·
[

∆d

∆p

]i+1

n+1

= −
[
RS

RW

]i
n+1

(2.75)

for increments in displacements and Windkessel variables ∆dn+1 and ∆pn+1, respectively, at
iteration i+ 1 until convergence. The linearizations are

KS =
∂RS

∂d
, KSW =

∂RS

∂p
, KWS =

∂RW

∂d
, KW =

∂RW

∂p
. (2.76)

The solution is converged if ∥∥RS
∥∥
∞ < tolSres and (2.77)

‖∆d‖∞ < tolSinc and (2.78)∥∥RW
∥∥

2
< tol0D

res and (2.79)

‖∆p‖2 < tol0Dinc, (2.80)
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2.6 Coupled structure-Windkessel system

with the structural and Windkessel residual and increment tolerances tolSres, tol
S
res, tol

0D
inc , and

tol0Dinc , respectively. For details on monolithically coupled structure-Windkessel cardiac prob-
lems, see [56, 83, 156].
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3 Pericardial boundary conditions

This chapter studies in detail the interaction between the heart and its enclosing, the pericardium.
Section 3.1 gives an overview of the anatomy and physiology of the pericardium and reviews per-
icadial boundary conditions currently used in cardiac mechanics simulations. In Section 3.2, a
simplified model is derived to represent the influence of the pericardium by parallel springs and
dashpots acting in normal direction to the epicardium. Different boundary condition cases are
defined in Section 3.3, based on boundary conditions currently used in cardiac mechanics. To
justify the simplifications made in Section 3.2, numerical experiments are carried out in Sec-
tion 3.4. The influence of the pericardial boundary condition is demonstrated in Section 3.5
through a detailed quantitative comparison of simulation results to cine MRI. Ventricular vol-
ume, atrioventricular-plane-displacement, and atrioventricular interaction are evaluated and a
quantitative error measurement is introduced by calculating a distance error at endo- and epicar-
dial surfaces between simulation results and cine MRI. This chapter is closed with a discussion
of the results, the limitations of the study, future perspectives, and some conclusions in Sec-
tion 3.6.

Parts of this chapter were published in [148].

3.1 The pericardium

In the following, the anatomy of the pericardium and its physiology are reviewed, where the
focus is on the mechanical interaction between the pericardium and the heart. Based on this
review, variants of pericardial boundary conditions are evaluated and a model for pericardial-
myocardial interaction is proposed.

3.1.1 Anatomy

As visualized in Figure 3.1a, the pericardium is a sac-like structure with a combined thickness
of 1-2 mm, containing the heart and parts of the great vessels [86]. Figures 3.1b and 3.1c show
a cross-sectional view of the myocardium and the layers of the pericardiuml, which are detailed
in the following.

The fibrous pericardium consists of a fibrous layer that forms a flask-like sac with a wavy col-
lagenous structure of three interwoven main layers that are oriented 120◦ to each other [169]. It
has a higher tensile stiffness than the myocardium and is dominated by the viscoelastic behavior
of extracellular collagen matrix and elastin fibers [116]. The fibrous pericardium is fixed in space
by a three point cardiac seat belt via the pericardial ligaments to the sternum. Furthermore, it is
thoroughly attached to the central tendon of the thoracic diaphragm and additionally supported
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3 Pericardial boundary conditions

(a) Dissected mediastinum with cut pericardium and heart surface. Image by
G. M. Gruber, Medical University of Vienna, Austria.
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Pericardium

Fibrous
Pericardium

(b) Location of the heart with respect to serous
and fibrous pericardium. Inspired by [96].
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(c) Cross-sectional view of transmural layers of
heart and pericardium. Inspired by [96].

Figure 3.1: Heart and pericardium.
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3.1 The pericardium

(a) Coronal plane (b) Transverse plane (c) Sagittal plane

Figure 3.2: Position of the pericardium indicated in 3D MRI taken during diastasis. The neigh-
boring tissue is color-coded: lungs (red), diaphragm (orange), sternum and ribs
(light blue), aorta (dark blue), esophagus (purple), other (yellow). MRI courtesy of
R. Chabiniok, J. Harmer, E. Sammut, King’s College London, UK.

by the coats of the great vessels [168]. The various tissues, the fibrous pericardium is in contact
with, can be seen in Figure 3.2.

The fibrous pericardium contains a serous membrane, the serous pericardium, forming a
closed sac. The serous pericardium is connected to the myocardium (visceral pericardium)
and the fibrous pericardium (parietal pericardium). The composite of fibrous and parietal peri-
cardium is commonly referred to as pericardium, whereas the visceral pericardium in contact
with the myocardium is referred to as epicardium [168]. The space between the visceral and
parietal pericardium is the pericardial cavity, which is filled by a thin film of fluid with an aver-
age volume of 20-25 ml [86]. Between the visceral pericardium and the myocardium the heart is
covered by a layer of adipose tissue, accumulated especially in the interventricular and atrioven-
tricular grooves and around the coronary vessels, constituting about 20% of the heart weight
[151]. A common analogy for the layers of the pericardium in contact with the heart in Fig-
ure 3.1b is that of a fist pushed into an inflated balloon [128]. The fist represents the heart and
the two layers of the balloon represent the visceral and parietal pericardium.

3.1.2 Mechanical physiology

The pericardium serves multiple purposes [167] that can be grouped in: (a) membranous, where
it serves as a barrier against the spread of infection [169] and (b) mechanical, where it secures
cardiac stability via its attachments within the thorax [162], as will be explained in the following.
The mechanical properties of the pericardium itself can be found in [155].

There is clear empirical evidence that the pericardium has a direct mechanical impact on the
acute and chronic biomechanics of the heart. For example, in [70] it was discovered that the cor-
relation of left and right ventricular pressure is higher with intact pericardium than after its com-
plete removal. Maximal cardiac output during exercise can be increased acutely by the complete
removal of the pericardium (pericardiectomy) through utilizing the Frank-Starling mechanism
[79]. However, removing the pericardial restraint chronically promotes eccentric hypertrophy,
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3 Pericardial boundary conditions

i.e., an increase in dimension and mass of the heart and a change in shape from elliptical to
spherical. The pericardium thus acts as a diastolic constraint for the heart by exercising a radial
compression stress. This was confirmed in [97] where it was observed that the opening angle
of the myocardium with intact visceral pericardium is much higher than after its removal. The
visceral pericardium is thus important for residual stress and passive stiffness.

It is widely accepted that the mechanism of the myocardium-pericardium interaction is through
the pericardial fluid. In [85] it was found that while increasing the volume of fluid within the
pericardial cavity, the pericardial liquid pressure remains constant until it suddenly rises sharply.
The observation led to the conclusion that most of the fluid is contained in pericardial sinuses
and groves. This mostly empty space forms the so-called pericardial reserve volume, acting as a
buffer against increasing pericardial liquid pressure. Only a small portion of the pericardial fluid
remains as a thin film on the interface between parietal and visceral pericardium. In [157], a dye
was injected into the pericardial cavity near the apex. Fifteen minutes after injection the dye was
almost exclusively found in the interventricular and atrioventricular grooves. This suggests that
there is no significant fluid movement on the large surface areas of the ventricular free walls,
leaving just a very thin film of fluid with an estimated thickness of less than 0.5 mm.

The mechanical constraint of the pericardium on diastolic cardiac function can be quantified
by pericardial pressure. Here it is important to distinguish between liquid pressure and contact
pressure [165, 177]. Liquid pressure describes the hydrostatic pressure inside the pericardial
fluid and is measured by an open-ended catheter. However, liquid pressure does not describe
the constraining effect of the pericardium on the myocardium. The constraint is assessed by
contact pressure, which can be measured by a thin, flat, air-filled balloon catheter. In [165] it
was found that liquid pressure is substantially below contact pressure unless the pericardium
contains a significant amount of pericardial fluid, which happens e.g. due to pericardial effusion.
Furthermore, contact stress and thus ventricular restraint was maintained even though pericardial
fluid was completely removed and liquid pressure at the epicardial surface was zero. Pericardial
fluid therefore acts as lubrication rather than a load balancing mechanism, providing low-friction
sliding between pericardium and epicardium [82].

There is less information available on the influence of the pericardium during systole. A peri-
cardial restraining effect during systole would require a tension force to be transmitted by the
myocardial-pericardial interface. The restraining effect of the pericardium during systole can be
well observed in fish, where the parietal pericardium is almost rigid [86]. It was observed in
[170] that pericardial liquid pressure in smooth dogfish is always negative and decreases further
during cardiac contraction. In man, [171] found that pericardial liquid pressure also drops during
ventricular systole but remains positive throughout the cardiac cycle. However, to the best of the
authors’ knowledge there is no study on the change of contact pressure during systole. It can
be observed from mammal cine MRI that surrounding tissue moves toward the heart during sys-
tole, indicating attachment of pericardium and epicardium. It is hypothesized that during systole,
through the effect of adhesion, the pericardium remains in contact with the epicardium. This is
analogous to the simple experiment of “gluing” two glass plates together with a drop of water.
The glass plates can hardly be separated in normal direction but can be easily moved relatively
to each other in tangential direction.
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3.2 Modeling the pericardium

3.1.3 Current pericardial boundary conditions

For biventricular geometries, the constraining effect of the pericardium in diastole is accounted
for in [30, 125, 126], where a no penetration condition is enforced on the epicardium by a uni-
directional penalty contact with a rigid pericardial reference surface. However, this neglects any
constraining effect in systole by not allowing the pericardial-myocardial interface to transmit
any tension forces. Recently, [158] proposed to completely prohibit movement normal to the
epicardial surface, neglecting any elastic effects. The bi-directional elastic constraining effect
of the pericardium is accounted for in spring-type boundary conditions, where a spring-dashpot
boundary condition is enforced either on the base [156] or on apex and valve annuli [161] with
homogeneous-zero Neumann conditions applied to the rest of the epicardium. These boundary
conditions are analogous to the external tissue support of the aorta in [133, 134] . However, they
do not cover the whole epicardial surface thus representing pericardial-myocardial interaction
only partially.

Fewer references exist for four chamber geometries. A common combination of boundary
conditions for four chamber geometries are homogeneous-zero Dirichlet conditions on vessel
cut-offs and a soft material connected to the apex [10, 30], or springs on the outside of great
vessels [114]. In those cases, however, homogeneous-zero Neumann conditions are applied on
the remaining epicardial surface, neglecting any influence of the pericardium as in the biventric-
ular case. In [11] omni-directional springs acting in all directions are applied to the epicardium,
artificially constraining any sliding movement along the pericardial-epicardial interface. To the
authors’ best knowledge, the most detailed and physiologically correct representation of the peri-
cardium so far is implemented in [56]. The pericardial-myocardial interaction is here modeled
by a frictionless sliding, bi-directional penalty contact interaction in normal direction between
the epicardium and a solid pericardial reference body. However, this condition is computation-
ally very expensive as it requires solving an adhesial contact interaction problem. It also re-
quires an additional solid body to be created, representing the surrounding tissue. Furthermore,
no boundary conditions can be enforced at the great vessels since they are not included in the
geometry. Thus, a fixation of the apex was necessary. All models based on four chamber ge-
ometries reviewed here lack a quantitative validation through comparison of simulation results
to measurements, e.g. medical images like magnetic resonance imaging (MRI).

3.2 Modeling the pericardium

The aim in this work is to propose and justify a pericardial boundary condition that is both re-
alistic and computationally inexpensive. The pericardial model proposed is based on [152] and
is sketched in Figure 3.3. Using BACI [181], it was also already applied to a two-chamber ge-
ometry in [83]. It consists of a spring and a dashpot in parallel, acting in normal direction to the
epicardial surface. Within the tangential, plane frictionless sliding is allowed to account for the
lubricating effect of the pericardial fluid. A spring stiffness k and dashpot viscosity c contain the
combined effects of serous pericardium, fibrous pericardium, and neighboring tissue. Generaliz-
ing the effect on the ventricles, spring compression models the pericadium’s constraining effect
during passive ventricular filling, whereas spring expansion models the pericadium’s support
during ventricular systole.
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myocardium

k c

neighboring tissue
attachment pericardial constraint

+
neighboring tissue

Figure 3.3: Serous pericardium, fibrous pericardium, and neighbouring tissue modeled by a
spring (stiffness k) and a dashpot (viscosity c) in parallel. Spring and dashpot act
in normal direction on the epicardial surface.

(a) Adhesial contact interaction
from [56] between myocardium
and fixed surrounding tissue
(blue).
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(c) Reference normal spring from
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Figure 3.4: Different formulations of interaction between myocardium (red) and pericardium.

Note that only in the limit case of k → ∞, would yield a boundary condition that penalizes
and therefore prohibits any movement in normal direction to the epicardium, as it was recently
proposed in [158]. However, the pericardial boundary condition is meant to be used with finite
values for k and c, more realistically representing the visco-elastic support of the pericardium
and its surrounding tissue and permitting movement normal to the epicardial surface.

In the following, a simple mathematical formulation for the pericardial boundary condition
depicted in Figure 3.3 is derived. This derivation is carried out in two steps, where different
assumptions are introduced in each step. Only the spring component is considered during the
derivation. However, all conclusions hold equivalently for the dashpot component.

The goal is to preserve the features of the detailed pericardial boundary condition in [56] but
arrive at a much simpler and cheaper formulation. As reviewed in Section 3.1.3, pericardial-myo-
cardial interaction is modeled in [56] by adhesial contact between the epicardium and an elastic
reference body that is fixed in space and representing the surrounding tissue, see Figure 3.4a.

Projection-based spring-dashpot In the first step, the elastic body representing the sur-
rounding tissue in [56] is replaced with springs acting in normal direction to the epicardium.
Here, it is assumed that the elasticity of the surrounding tissue is linear with respect to the small
movements of the epicardium in its normal direction. Note that the boundary conditions is en-
forced on the epicardial side of the myocardial-pericardial interface, as this does not require a
representation of the actual pericardial surface. Therefore, the pericardium itself is not modeled
but the forces acting on the myocardium because of its presence. The elastic potential of a linear
spring distributed on the epicardial surface Γ epi

0 in current configuration surface is

W =
1

2

∫
Γ epi
0

kg2da (3.1)
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3.3 Boundary condition cases

with spring stiffness k, gap g, and surface integral in current configuration da. The calculation
of the gap is illustrated in Figure 3.4b. A point x ∈ Γ epi on the current epicardial surface is
projected onto the point Xproj ∈ Γ epi

0 on the reference epicardial surface. The distance between
both points projected in the direction of the current outward normal vector n yields the gap
function

g = (x−Xproj) · n. (3.2)

Though reducing algorithmic and computational demands compared to contact interaction, this
boundary condition still requires updates of the normal vector and its linearization with respect
to the displacements as well as a projection of each evaluation point onto Γ epi

0 in each Newton
iteration at each time step.

Reference normal spring-dashpot In a second step, two further simplifications are intro-
duced. Instead of calculating the spring deformation from a projection, the spatial displacements
u are used directly. Furthermore, the epicardial normal vector in reference configuration (i.e.N
instead of n) is used, neglecting any change in normal direction throughout the simulation. The
formulation of the gap in (3.2) is then simplified to

g = u ·N (3.3)

The calculation of the gap is illustrated in Figure 3.4c. The simplifications leading to (3.3) are
valid for small rotations of the epicardium, an assumption that is not valid for all parts of the
epicardium. However, the performance of both formulations (3.2) and (3.3) is reviewed in Sec-
tion 3.4.

The final expression for the pericardial boundary traction tepi acting on the epicardial surface
then is

tepi = N (kpu ·N + cpu̇ ·N ) . (3.4)

For the sake of simplicity, constant boundary condition parameters kp and cp are used here on
the whole epicardial surface. As it will be shown in the numerical examples, this simple ap-
proach already leads do greatly improved results. But of course, a regional distribution based on
neighboring organs as visualized in Figure 3.2 is also possible.

3.3 Boundary condition cases
This section contains an overview of the pericardial boundary conditions studied in this work.
They are characterized by the potential they add to the cardiac model’s total energy δΠ, yielding
a different weak form for the initial boundary value problems (IBVPs) in each case. For a detailed
description of the relevant elastodynamic equations and their discretization, see Sections 2.1 and
2.2, respectively.

Case free The complete absence of boundary conditions on the epicardial surface is modeled
by case free, where the boundary-value problem is given in its most simple form

0 = δΠ, (3.5)

adding no additional energy to the IBVP. This boundary condition is frequently used on mono-
and biventricular geometries.
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3 Pericardial boundary conditions

Case apex Case apex yields the boundary-vale problem

0 = δΠ +

∫
Γ apex

[kau+ cau̇] · δu dA (3.6)

adding the energy for omni-directional spring dashpots to the energy, where Γ apex is the apical
surface. The apical surface is defined as the epicardial surface within 10 mm of the apex. It
resembles homogeneous-zero Neumann boundary conditions on Γ epi

0 \Γ apex
0 , i.e., the absence of

any pericardial boundary conditions as frequently found in literature [10, 30, 161].

Case pseudo-contact Case pseudo-contact uses the projection-based evaluation of the gap
function from (3.2), acting on the whole epicardial reference surface Γ epi

0 . Due to the projection
of epicardial integration points onto the epicardial reference surface, no potential can be given for
the boundary condition. The projection algorithm itself is not outlined in this work. For further
details, see the work of [150] and [50].

Case pericardium Case pericardium uses the simplified evaluation of the gap function from
(3.3), acting on the whole epicardial reference surface Γ epi

0 . This yields the IBVP

0 = δΠ +

∫
Γ epi
0

N [kpu ·N + cpu̇ ·N ] · δu dA. (3.7)

3.4 Numerical results with a prolate spheroid geometry
In Section 3.2 it was shown how the pericardial boundary condition in case pericardium can
be derived from adhesive sliding contact by introducing several simplifications. To justify the
simplifications made by the pericardial boundary condition, the very simple geometry intro-
duced in Section 2.3.2 of a half prolate spheroid, which roughly represents the shape of the left
ventricle, is used with±60◦ fibers. The reference configuration is shown in Figure 3.5a. The pro-
late spheroid is able to show the consequences of each boundary condition while being simple
enough to isolate the effects of the boundary condition.

3.4.1 Model definition
The total energy of the IBVP is

δΠ =

∫
Ω0

ρ0 ü · δu dV +

∫
Ω0

S : δE dV

+

∫
Γ endo
0

pv F
−T ·N · δu dA+

∫
Γ base
0

[kbu+ cbu̇] · δu dA,
(3.8)

with left ventricular pressure pv and inside surface Γ endo
0 . The surface Γ base

0 describes where the
cardiac base would be for a real cardiac geometry, i.e., the cut-off surface of the prolate spheroid.
The stiffness kb and viscosity cb of springs and dashpots connected to the base, respectively,
represent the attachment to the atria. The model is solely composed of myocardial tissue, using
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3.4 Numerical results with a prolate spheroid geometry

(a) Prolate spheroid model in ref-
erence configuration with cross-
section (yellow).

(b) Frontal view of epi- and
endocardial cross-section at
end-systole.

(c) Top-down view of epicardial
contour of cross-section at
end-systole.

Figure 3.5: Prolate spheroid model in reference configuration (black) with cases free (green),
pericardium (blue), and pseudo-contact (orange).

Mooney-Rivlin material ψMR from (2.62), volumetric penalty ψvol,a from (2.63), viscous material
ψvisco from (2.65), and active stress Sact from (2.66),

S =
∂

∂E
(ψMR + ψvol,a) +

∂

∂Ė
ψvisco + Sact. (3.9)

The parameters of the prolate spheroid model are given in Table A.1. All three boundary condi-
tion cases use the same contractility parameter.

3.4.2 End-systolic results

The results of the contraction simulation are shown in Figures 3.5b and 3.5c at end-systole. Dis-
played is the reference configuration and all three boundary condition cases for a cross-section
of the ellipsoid. Figure 3.5b shows in a frontal view the shortening of the ellipsoid with visi-
ble epi- and endocardial contours. While the cases pericardium and pseudo-contact appear very
similar with little differences only in radial direction, case free exhibits much less longitudinal
shortening. Instead, there is a translational movement of the whole geometry instead.

Figure 3.5b shows the epicardial contour of the ellipsoid in a top-down view to observe
the twisting motion of the ellipsoid. All three boundary condition cases are very similar. This
confirms that the normal springs in cases pericardium and pseudo-contact in fact allow tan-
gential sliding and do not prohibit any rotational movement, as they are very similar to case
free. Furthermore, the similarity of cases pericardium and pseudo-contact shows that the sim-
plified spring formulation (3.3) in case pericardium is sufficient to represent the effects of the
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(a) Case apex with omni-
directional spring-dashpots on
Γ apex
0 (green).

(b) Case pericardium with normal spring-
dashpots on Γ epi

0 (red).

Figure 3.6: Surface definitions for boundary conditions with omni-directional spring-dashpots
on Γ vess

0 (blue) and homogeneous-zero Neumann boundary conditions (white).

pericardium compared to the more detailed formulation (3.2) in case pseudo-contact. The case
pseudo-contact is thus not considered in all further evaluations in this chapter.

Remark As mentioned in Section 3.2, the projection-based evaluation of the gap function in
case pseudo-contact is computationally more expensive as the projection and its linearization has
to be evaluated in every step of the nonlinear solver. Additionally, it is numerically less robust
since the projection can fail or be non-unique for geometries more complex than the prolate
spheroid.

3.5 Numerical results with a patient-specific
four-chamber geometry

To illustrate the effects of pericardial boundary conditions, the four chamber geometry intro-
duced in Section 2.3.1 obtained in vivo from a 33 year old healthy female volunteer is employed
here. This section is structured as follows. After proposing the cardiac model in Section 3.5.1,
an overview of all methods used in this chapter to quantify the difference between simulation
and MRI is given in Section 3.5.2. Next, the model parameters are calibrated for both cases
in Section 3.5.3. In the following sections, various outputs of both simulation cases apex and
pericardium are validated with measurements from cine MRI in Section 3.5.5.
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3.5 Numerical results with a patient-specific four-chamber geometry

3.5.1 Model definition

The total energy of the IBVP is

δΠ =

∫
Ω0

ρ0 ü · δu dV +

∫
Ω0

S : δE dV

+
∑
ν∈{l,r}

∫
Γ endo,ν
0

pνv F
−T ·N · δu dA+

∫
Γ vess
0

[kvu+ cvu̇] · δu dA,
(3.10)

with left and right ventricular pressures plv and prv, respectively, vessel attachment stiffness kv and
viscosity cv. The surface Γ vess

0 is shown in Figure 3.6. The surfaces Γ endo,l
0 and Γ endo,r

0 denote
left and right ventricular endocardium, respectively. Different materials from Section 2.4 with
volumes as in Figure 2.1 are defined for adipose tissue from (3.11), aorta and pulmonary artery
from (3.12), as well as ventricular and atrial myocardium from (3.13):

S =
∂

∂E
(ψNH + ψvol,b) +

∂

∂Ė
ψvisco, (3.11)

S =
∂

∂E
(ψMR + ψvol,b) +

∂

∂Ė
ψvisco, (3.12)

S =
∂

∂E
(ψexp + ψvol,b) +

∂

∂Ė
ψvisco + Sact, (3.13)

with isotropic Neo-Hooke material ψNH from (2.60), isotropic Mooney-Rivlin material ψMR from
(2.62), anisotropic exponential material ψexp from (2.61), volumetric penalty from ψvol,b (2.64),
viscous material from ψvisco (2.65), and active stress Sact from (2.66). Each material is com-
posed of a hyperelastic and a viscous contribution. Only the myocardial tissue in (3.13) has an
additional active stress component Sact. The material parameters and initial conditions of the
patient-specific four-chamber model are given in Tables A.5 and A.6, respectively.

The local angles of cardiac myofibers are prescribed at epi- and endocardium of the ventricles.
Using harmonic lifting, the fiber vectors f0 are interpolated to the interior of the domain by
solving a Laplace problem [137]. It is well known that the fiber orientation has a strong impact
on passive and active cardiac mechanics [9, 49, 67, 140, 178, 188]. In order to make a more
clear statement about the pericardial boundary conditions independently of the fiber orientation
and to show the interplay between boundary conditions and fiber orientations, three different
fiber distributions are compared in this work: ±50◦, ±60◦, and ±70◦. The first and second angle
describe the fiber helix angle at the endo- and epicardial surface, respectively, with respect to the
local circumferential axis.

3.5.2 Assessment of cardiac function

In this section, the various methods used throughout this chapter to quantify cardiac function of
different simulations are briefly described.

Cine MRI Cine MRI is used with a temporal resolution of ∼30 ms in four- (Figure 3.7a),
three-, and two-chamber views and short axis planes with a slice distance of 8 mm (Figures 3.7b,
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3 Pericardial boundary conditions

(a) Four chamber view. (b) Short axis slice 9. (c) Short axis slice 6. (d) Short axis endocar-
dial contours used for
error calculation.

Figure 3.7: Post processing planes for simulations and cine MRI.

3.7c, 3.7d). All cine MRI data used in this work is rigidly registered to the static 3D image taken
during diastasis and used for geometry creation to account for any movement of the subject
during image acquisition.

It is important to note that the reference configuration of the simulation is obtained from
static 3D imaging with a fine isotropic resolution and acquired in free-breathing, as explained
in Section 2.3. For the comparison of simulation results to cine MRI however, one has to rely
on sparsely distributed images acquired in expiration breath-hold. The used image types rely
on different MRI acquisition parameters and pulse sequences. Therefore, it is impossible for
the simulation to match the cine MRI data perfectly, even in reference configuration. This error
however is usually smaller than the approximation error of the cardiac model.

Left ventricular volume A reference for left ventricular volume is obtained by manually
segmenting the left endocardial surface obtained from the short axis cine MRI stack at all time
steps. The sum of areas is added in each short axis slice multiplied by the slice thickness. The
volume is cut at the top and bottom according to the limits of the left ventricle at each time step,
as observed in two chamber and four chamber views.

In order to be fair and not to introduce a bias towards the more realistic pericardial model, for
each simulation, the contractility σ0 is calibrated. It is a key parameter describing cardiac elas-
todynamics, resembling the asymptotic active fiber stress introduced in Section 2.4.3. It controls
maximum deformation during systole. In order to make simulations comparable, σ0 is adapted
for each combination of boundary condition and fiber orientation to match the left ventricular
volume at end-systole as segmented from cine MRI of Vmin = 57 ml. The heart thus yields a
stroke volume of 75 ml and an ejection fraction (EF) of 57%.

Atrioventricular plane displacement (AVPD) The movement of the left or right plane
of the valve separating atrium and ventricle in long axis direction during the cardiac cycle is
described by AVPD. For left and right ventricle those valves are termed mitral and tricuspital
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3.5 Numerical results with a patient-specific four-chamber geometry

valve, respectively. As a scalar parameter, AVPD at end-systole is an important clinical parameter
to describe and predict cardiac vitality [28, 186].

AVPD is evaluated in this work as it gives a quantitative measurement of the displacements in
long axis direction. The displacements of the left and right atrioventricular plane are extracted
semi-automatically from two, three, and four chamber cine MRI using the freely available soft-
ware Segment version 2.0 R5585 [80]. In the simulations, the displacements are averaged over
all nodes on the valve plane (see the red planes in Figure 2.1b) and project them onto the long
axis direction. A positive sign indicates a movement of the base towards the apex.

Spatial error Displacements are validated in long axis direction using AVPD as measure-
ment. To validate radial displacement, the movements of cardiac surfaces in simulations are
compared to the ones from short axis cine MRI. For comparison, the left and right endocardium
are selected, as it shows how pericardial boundary conditions, prescribed on the epicardium, act
on the interior of the domain.

For each MRI time step (temporal resolution ∼30 ms) the closest simulation time step is
selected (temporal resolution 1 ms). Spatially, the simulations’ displacement results are extracted
at the same positions where the cine MRI slices were acquired. This is possible since the MRI
scanner’s global coordinate system is used for all images and the simulation. This method can
be thought of as taking a virtual cine MRI of the simulation. This yields an Eulerian description
of motion, as the observer is fixed in space. The difference of simulated displacements to cine
MRI data was used previously, e.g. in [30] to estimate local tissue contractility. Note that this
technique does not allow to track rotations of the left ventricle due to its rotational symmetry.

The contours of left and right endocardium are manually segmented from short axis cine MRI
for slices 5 to 9 at all MRI time steps, see Figure 3.7d. These slices are selected because the
myocardium is recognizable for all MRI time steps and not disturbed by either apex or AVP. The
function A converts both MRI and simulated endocardial contours dsMRI and ds, respectively,
to binary images with a resolution of 1 × 1 mm2 for every slice s. The Dice metric is used to
compare both binary images via

ε = 1− 1

5

9∑
s=5

2 |A (dsMRI) ∩ A (ds)|
|A (dsMRI)|+ |A (ds)| ∈ [0, 1] (3.14)

where | • | denotes the area of the binary image. As mentioned above, due to the geometry and
displacements being from two different MRI sequences, they don’t match in reference config-
uration. The error ε(t = 0) ≈ 0.08 at thus contains a combined error of image acquisition and
image segmentation.

Ventricular-atrial interaction Utilizing a four chamber geometry allows us to investigate
the interaction between ventricles and atria. Specifically, the influence of ventricular contraction
on atrial filling should be studied. Therefore, atrial volumes are analyzed over time. Further-
more, left and right atrial volumes were segmented at ventricular diastasis and end-systole from
isotropic 3D MRI.

Pericardial contact stress The stresses transmitted between the epicardial boundary condi-
tions and the myocardium are evaluated for both cases apex and pericardium. Different averaged
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3 Pericardial boundary conditions

stresses are used for both cases to quantify the constraining effect of each boundary condition.
In case apex the stresses are concentrated on the small apical area and acting in any direction.
Thus, the stress vectors of the apical boundary condition are integrated over the apical surface
and normalize by the apical area to obtain the mean apical stress vector

t̄apex(t) =

∫
Γ

apex
0
tapex dA∫

Γ
apex
0

1 dA
, tapex = kau+ cau̇. (3.15)

In case pericardium the boundary stresses are distributed over the whole epicardial surface and
acting only in normal direction. Therefore, the (signed) normal component tepi is extracted and
integrated over the epicardial surface to obtain the mean scalar pericardial stress

t̄epi(t) =

∫
Γ epi
0
tepi dA∫

Γ epi
0

1 dA
, tepi = kpu ·N + cpu̇ ·N , (3.16)

normalized by the epicardial area.

3.5.3 Selection of pericardial parameters

Since in case apex the purpose of the apical boundary condition is fixing the apex throughout
cardiac contraction, a high spring stiffness is chosen, permitting only little motion. For case
pericardium, the parameters kp and cp describing pericardial stiffness and viscosity, respectively,
need to be calibrated. The chosen value for pericardial viscosity has on its own, i.e., without
parallel spring, only little influence on cardiac dynamics. However, in combination with the
spring, it prevents unphysiological oscillations of the heart. Pericardial stiffness controls the
amount of displacement perpendicular to the epicardial surface and thus the radial motion of the
myocardium.

In the following, the influence of the parameter kp on the contraction of the heart is investi-
gated. For this study, only the±60◦ fiber distribution is chosen, as it is commonly used in cardiac
simulations, see e.g. [30, 83, 119]. The following parameter values are tested:

kp ∈ {0.1, 0.2, . . . , 1.0, 1.5, . . . , 5.0}
[

kPa
mm

]
(3.17)

For each choice of kp, active stress is calibrated to yield the same end-systolic volume as mea-
sured from MRI. All parameters except kp are kept constant throughout this study. Specifically,
the timing of ventricular systole is not adjusted to match the volume curve from MRI. How-
ever, since all simulations reach the end-systolic state, it is used in this section for quantitative
comparisons.

The results of the calibration are shown in Figure 3.8, where maximum active stress is plot-
ted against pericardial stiffness. For comparison, the result for case apex with ±60◦ fibers is
included. Active stress, required to yield identical end-systolic volume, rises strongly with in-
creasing pericardial stiffness. The temporal maximum of pericardial contact stress averaged over
the epicardium also increases strongly with kp, as shown in Figure 3.9. For high kp, contact stress
has the same order of magnitude as active stress and exceeds maximum left ventricular pressure.
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Figure 3.8: Maximum ventricular active stress σv calibrated to yield identical end-systolic vol-
ume. Shown for case pericardium with varying pericardial stiffness compared to case
apex, both with ±60◦ fiber distributions.
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Figure 3.9: Maximum of mean pericardial contact stress t̄epi for case pericardium with varying
pericardial stiffness and ±60◦ fiber distributions.
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Figure 3.10: Volume change for case pericardium with varying pericardial stiffness compared to
case apex, both with ±60◦ fiber distributions.
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(a) Four chamber view (b) Short axis view slice 9 (c) Short axis view slice 6

Figure 3.11: Cine MRI at end-systole for case pericardium with ±60◦ fiber distribution from
kp = 0.1 (blue) to kp = 5.0 (red). Views as defined in Figure 3.7. MRI courtesy of
R. Chabiniok, J. Harmer, E. Sammut, King’s College London, UK.

For small kp, it has the same order of magnitude as atrial pressure, which experimentally shown
to be a good predictor for pericardial contact stress [177].

Figure 3.10 shows the volume within the pericardial cavity, calculated as the combined vol-
ume of all tissue inside the pericardium and the volume within the four cardiac cavities. Case
pericardium yields a lower volume change than case apex and decreases further with increasing
kp.

The end-systolic state of the simulations is shown in Figure 3.11 compared to MRI. The
images contain all simulated variants for kp, where the color changes continuously from k =
0.1 kPa/mm (blue) to k = 5.0 kPa/mm (red). All MRI views in Figure 3.11 show clearly that
pericardial stiffness controls radial displacement of the epicardium. High stiffness values result
in less radial inward motion during ventricular systole than visible in cine MRI and vice versa.
This is also well observable in Figure 3.11a for the atria in four-chamber view. The short axis
views in Figures 3.11b and 3.11c additionally show that the interventricular septum is stretched
and rotated as compared to MRI for high kp.

The spatial error at left and right ventricular endocardium is shown in Figures 3.12a and 3.12b,
respectively. The increasing mismatch between simulations and MRI for increasing kp as visible
in Figures 3.11b and 3.11c is quantified as increasing spatial error.

Left and right AVPD is displayed in Figures 3.12c and 3.12d, respectively. In the left ventricle,
i.e., at the mitral valve, AVPD is not very sensitive to the choice of kp. However, it is higher than
in case apex but much lower than in MRI. For the right ventricle, i.e., at the tricuspid valve,
AVPD is greatly enhanced by increasing kp towards the value measured in MRI. An identical
trend is observable for left and right atrial volume in Figures 3.12e and 3.12f, respectively.

To conclude the parametric study for pericardial stiffness, the value kp = 0.2 kPa/mm is
chosen for all following simulations. It offers a low spatial error at the ventricles but has higher
atrial volume and AVPD than the simulation with k = 0.1 kPa/mm.
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(a) Left ventricular endocardial error.
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(b) Right ventricular endocardial error.
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(c) Left atrioventricular plane displacement.
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(d) Right atrioventricular plane displacement.
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(e) Left atrial volume.
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(f) Right atrial volume.

pericardium ±60◦ apex ±60◦ MRI

Figure 3.12: Kinematic scalar cardiac quantities at end-systole for case pericardium with varying
pericardial stiffness kp ∈ [0.1, 5.0] compared to case apex, both with ±60◦ fiber
distributions and MRI.
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3 Pericardial boundary conditions

Figure 3.13: End-systolic results for case free with different fiber orientations, cut in four
chamber-view: Reference configuration (white), ±50◦ (red), ±60◦ (green), and
±70◦ (blue).

Remark The results for a cardiac contraction using boundary condition case free is shown in
Figure 3.13 for three fiber directions together with the reference configuration. There is a large,
unrealistic bending deformation associated with contraction. Case free is thus excluded from
further evaluation and not recommended as a boundary condition for cardiac simulations.

3.5.4 Model personalization

In order to investigate the influence of pericardial boundary conditions, simulations with differ-
ent pericardial boundary condition on the epicardial surface Γ epi

0 are compared. The simulations
will be denoted by apex and pericardium in the following, visualized in Figure 3.6a and Fig-
ure 3.6b, respectively. See Table 3.1a for an overview of the used parameters.

All simulations are carried out using three different fiber distributions, i.e., ±50◦, ±60◦, and
±70◦. The results for the calibration of σ0 are shown in Table 3.1b. Note that here the maximum
value σv of active stress is shown instead of σ0.

It can be observed that σv is larger in case pericardium than in case apex. Furthermore, σv
increases from ±50◦ to ±70◦ fibers for more vertical fiber distributions.
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Γ apex
0 Γ epi

0

ka
[

kPa
mm

]
ca

[
kPa·s
mm

]
kp

[
kPa
mm

]
cp

[
kPa·s
mm

]
apex 1.0 · 103 1.0 · 10−2 0 0

pericardium 0 0 0.2 5.0 · 10−3

(a) Spring stiffness and dashpot viscosity on apical and
epicardial surface.

σv [kPa] tsys [ms]

±50◦ ±60◦ ±70◦ ±50◦ ±60◦ ±70◦

apex 63.5 72.4 91.0 143 155 172

pericardium 79.4 90.7 129 161 170 193

(b) Maximal myocardial active stress σv and ventricular acti-
vation time tsys.

Table 3.1: Calibrated parameters for simulation cases apex and pericardium and different fiber
orientations.

The parameters tsys, tdias, αmax, αin defining cardiac contraction via the active stress component
from Section 2.4.3 are personalized. The onset of systole and diastole, tsys and tdias, as well as
the myofiber activation and deactivation rates, αmax and αin, are adapted to the left ventricular
volume curve for ventricles and atria. Here, parameters for the atria are fitted from the interval
t ∈ [0, 0.2 s] and t ∈ [0.2 s, 0.9 s] for the ventricles. The material parameter η controlling the
viscosity of the tissue within the pseudo-potential ψvisco from (2.65) is fitted during ventricular
diastole, i.e., t ∈ [0.5 s, 0.9 s]. Since active stress is zero during this interval, viscosity controls the
relaxation speed of the model. A summary of all calibrated model-specific material parameters
is given in Table 3.1. For parameters identical in all models see Table A.5.

3.5.5 Validation with cine MRI

Results for both boundary cases apex and pericardium are extensively compared to cine MRI in
this section. Firstly, scalar Windkessel outputs are evaluated and simulated volume curves are
compared to MRI in Section 3.5.5.1. A qualitative evaluation of displacement results is given
in Section 3.5.5.2 by comparing end-systolic simulation results to cine MRI frames at multi-
ple views. The differences in pumping motion for simulation cases apex and pericardium is
quantified by comparing the displacements of the left and right atrioventricular plane to MRI
in Section 3.5.5.3. The interplay between ventricles and atria with and without the presence of
pericardial boundary conditions is investigated in Section 3.5.5.4. In Section 3.5.5.5 a spatial er-
ror is calculated for the left and right endocardium to quantify the overall approximation quality.
Finally, the contact stress of the pericardial boundary condition of case pericardium is evaluated
in Section 3.5.5.6.

3.5.5.1 Scalar Windkessel results

Firstly, in Figure 3.14 the scalar outputs volume (left) and pressure (right) of the left ventricle of
the Windkessel model are compared. As explained in Section 3.5.3, the contractility σ0 was cal-
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(a) Case apex: LV volume
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(b) Case apex: LV pressure
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(c) Case pericardium: LV volume
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(d) Case pericardium: LV pressure

±50◦ ±60◦ ±70◦ MRI

Figure 3.14: Simulation results for volume (left) and pressure (right) of the left ventricle (LV)
for boundary condition cases apex (top) and pericardium (bottom). Volume results
are compared to cine MRI.

ibrated in all simulations to match end-systolic volume as segmented from cine MRI. Therefore,
in Figures 3.14a and 3.14c the volumes of MRI and all simulations match at t = 0.51 s. Further-
more, although they result from simulations with very different boundary conditions and fiber
orientations the volume curves are very similar. The maximum volume due to atrial contraction
and the prescribed atrial pressure in Figure 2.9b is similar in both cases but lower than in MRI.
As for the volume curves, the pressure curves in Figures 3.14b and 3.14d are remarkably simi-
lar despite the different simulation settings. Because case pericardium exhibits a faster decay in
volume during systole than in case apex, the pressure peak during systole is more pronounced.

3.5.5.2 Displacements at end-systole

As demonstrated in Section 3.5.5.1, the results of the scalar output parameters left ventricular
volume and pressure are mostly invariant to changes in boundary conditions or fiber orienta-
tion. Validating the elastodynamical model of cardiac contraction thus requires a comparison of
displacement results to spatially distributed MRI observations, see Figure 3.15. The reference
configuration (diastasis) of the simulation is shown in Figures 3.15a, 3.15b, 3.15c. The MRI
frames at end-systole are compared to the simulation results using the four chamber view, see
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3.5 Numerical results with a patient-specific four-chamber geometry

Figures 3.15d and 3.15g, and two different short axis views, see Figures 3.15e, 3.15h, 3.15f,
3.15i. The location of the view planes is visualized in Figures 3.7a, 3.7b, 3.7c.

For case apex, there is a radial inward movement of the myocardial wall. In Figure 3.15d,
this is especially visible at the right atrial free wall and at the left and right epicardial free wall.
There is a large mismatch between simulation and MRI at the interatrial septum. Due to the
radial contraction motion, atrioventricular plane displacement (AVPD) is lower than in MRI. The
fixation of the apex in case apex causes a mismatch between simulations and MRI at the apex, as
the apex slightly moves during cardiac contraction. The interventricular septum’s matches well
with MRI in Figures 3.15e and 3.15f. However, the mismatch of epicardial contours is clearly
visible and sensitive to fiber orientation.

Comparing Figures 3.15d and 3.15g, the influence of the pericardial boundary condition be-
comes clearly visible. For case pericardium in Figure 3.15g, it can be observed that the epicardial
contour matches the MRI much closer than case apex in Figure 3.15d for any fiber orientation.
The movements of the left and right atrioventricular plane also match well with MRI, for both
orientation and displacement in normal direction. The displacements at the apical region are also
predicted more accurately than in case apex. Comparing the shape of the right ventricle in Fig-
ures 3.15d and 3.15g, one can observe that the pumping motion of the right ventricle in case
apex is the result of radial inward movement, whereas in case pericardium it is the result of a
downward movement of the atrioventricular plane. The same observation holds for a less visible
degree for the left ventricle. Through the constraining effect of the pericardium, the atria are vis-
ibly more stretched than in case apex. There is also an influence of the fiber orientation in case
pericardium, although it is more bound to the endocardial surfaces. The more vertical the fiber
orientation, i.e., from±50◦ (red) to±70◦ (blue), the larger the displacements of the atrioventric-
ular planes and the smaller the displacement of the apex in anterior direction. There are some
mismatches between simulation and MRI at the interatrial and interventricular septum but less
pronounced than in case apex. The deviation at the interventricular septum can be observed for
short axis slice 9 in Figure 3.15h. For short axis slice 6 in Figure 3.15i there is a good agreement
with simulation and MRI at all regions of the left and right myocardium.

3.5.5.3 Atrioventricular plane displacement

The AVPDs in simulations and MRI are compared in Figure 3.16. The left and right AVPD from
MRI (black) is zero at the beginning and at the end of the cardiac cycle. During atrial systole, the
left and right atriovencular planes (AVP) move away from the apex and reach both their minimal
value at atrial end-systole at t = 0.17s. Followed by ventricular systole, the AVPs move towards
the apex and both reach their maximal value at ventricular end-systole at t = 0.51s.

During atrial systole for t ∈ [0, 0.25s], negative AVPD, i.e., movement of the AVP towards
the atria, is less pronounced and delayed in both cases as compared to MRI. However, extremal
AVPD at atrial end-systole is slightly higher in case pericardium than in case apex.

Comparing the AVPDs for cases apex and pericardium in Figures 3.16a, 3.16c, 3.16b, 3.16d,
one can observe that in both cases the maximum AVPD depends on fiber orientation: The max-
imum AVPD increases from horizontal ±50◦ fibers (red) to vertical ±70◦ fibers (blue). The
dependence on fiber orientation is more pronounced in case apex than in case pericardium. In
general, AVPD is slightly higher in case pericardium than in case apex but still underestimates
measurements from MRI.
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(a) Reference configuration (dias-
tasis) four chamber view

(b) Reference configuration (dias-
tasis) short axis view slice 9

(c) Reference configuration (diasta-
sis) short axis view slice 6

(d) Case apex four chamber view (e) Case apex short axis view slice
9

(f) Case apex short axis view slice
6

(g) Case pericardium four cham-
ber view

(h) Case pericardium short axis
view slice 9

(i) Case pericardium short axis
view slice 6

±50◦ ±60◦ ±70◦

Figure 3.15: Reference configuration (diastasis) as well as simulation results and cine MRI at
end-systole in four chamber view and short axis views as defined in Figure 3.7.
MRI courtesy of R. Chabiniok, J. Harmer, E. Sammut, King’s College London, UK
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(a) Case apex: left AVPD
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(b) Case apex: right AVPD
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(c) Case pericardium: left AVPD
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(d) Case pericardium: right AVPD

±50◦ ±60◦ ±70◦ MRI

Figure 3.16: Simulated atrioventricular plane displacement for left and right ventricle compared
to cine MRI.
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(a) Case apex: Left atrium
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(b) Case apex: Right atrium
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(c) Case pericardium: Left atrium
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(d) Case pericardium: Right atrium

±50◦ ±60◦ ±70◦ MRI

Figure 3.17: Simulated volume curves for left and right atrium compared to 3D MRI at ventric-
ular diastasis and end-diastole.

3.5.5.4 Ventricular-atrial interaction

Atrial systole is visible by the drop in atrial volume in both cases. Passive atrial filling is non-
existent in case apex, as the volumes in Figures 3.17a and 3.17b stay constant during ventricular
systole. This is also visible at the end-systolic four-chamber view in Figure 3.15d. For ±70◦

fibers, the right atrium is even slightly emptied during ventricular systole, as observed in Fig-
ure 3.17b. Atrial filling can be observed for case pericardium in Figures 3.17c and 3.17d. Both
atria are visibly filled during ventricular systole, although the maximum atrial volume remains
smaller than in MRI.

3.5.5.5 Spatial error

For case apex in Figures 3.18a and 3.18b the error decreases in both ventricular endocardia dur-
ing contraction towards end-systole at t = 0.51 and rises during ventricular contraction and
relaxation. This observation suggests that the end-systolic state is approximated well, but mis-
matches between contraction and relaxation velocity cause an error increase. Errors at the end
of the simulation higher than the ones at t = 0 suggest that the state at the end of the simulation
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3.5 Numerical results with a patient-specific four-chamber geometry

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

Time [s]

L
ef

ts
pa

tia
le

rr
or

[-
]

(a) Case apex: left endocardium spatial error
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(b) Case apex: right endocardium spatial error
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(c) Case pericardium: left endocardium spatial error
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(d) Case pericardium: right endocardium spatial error

±50◦ ±60◦ ±70◦

Figure 3.18: Relative spatial error of simulation results and cine MRI at left and right endo-
cardium.

differs from the reference configuration. The overall error is much lower in case pericardium
than in case apex.

3.5.5.6 Boundary stresses

Both scalar boundary stresses t̄apex = ‖t̄apex‖2 and t̄epi are visualized in Figure 3.19 over time
for all fiber orientations. It can be observed that apical stress in case apex is orders of magni-
tude higher than pericardial stress in case pericardium and more dependent on fiber orientation.
In case pericardium, positive values of t̄epi indicate predominant tensile stresses between epi-
cardium and pericardium. It can be seen that the mean pericardial stress in Figure 3.19b is a
compressive stress for most of the cardiac cycle, except at the end of systole and onset of dias-
tole.

Boundary stresses are visualized in Figure 3.20. For case apex, the mean stress vectors t̄apex
for all three fiber distributions are shown in Figure 3.20a at t = 0.45 and scaled according to
their magnitude. Fiber orientation has not only a strong influence on the magnitude but also on
the direction of the mean apical stress.

The local distribution of pericardial contact stress with ±60◦ fibers at end-systole is shown in
Figure 3.20b in reference configuration. At end-systole, compressive as well as tensile stresses
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(a) Mean apical contact stress t̄apex for case apex.
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(b) Mean pericardial contact stress t̄epi for case peri-
cardium.

±50◦ ±60◦ ±70◦

Figure 3.19: Stresses on the epicardial surface caused by boundary conditions.

occur. Stresses are centered around a tensile stress of 20 mmHg. Areas of high compressive
stresses are at the left atrium, the anterior and posterior right ventricle, the posterior left ventricle,
and the anterior left ventricular apex. Areas of high tensile stresses are the right ventricle close to
the anterior part of the right ventricular outflow tract and the left and right ventricular free wall.
Overall, pericardial contact stress is evenly distributed around the epicardial surface.

3.6 Discussion

Based on the physiology of the pericardium, the objective in this chapter is to analyze the effects
of the pericardial boundary condition proposed in Section 3.2, by comparing the simulation cases
pericardium and apex. First, a parametric study was performed to explore the influence of peri-
cardial stiffness. Each simulation case was personalized and evaluated for the fiber orientations
±50◦, ±60◦, and ±70◦. The scalar left ventricular pressure and volume were then compared.
The displacements at end-systole were qualitatively compared to multi-view cine MRI. Addi-
tionally, the differences of both simulation cases are compared to MRI by atrioventricular plane
displacement (AVPD), passive atrial filling, and spatial approximation error at the left and right
ventricular endocardium.

Pericardial stiffness

The parametric study for pericardial stiffness in case pericardium in Section 3.5.3 revealed that
the ventricles are well approximated by the lowest tested stiffness values, e.g. kp = 0.1 kPa/mm.
Here, the error at left and right ventricular endocardium was minimized and much lower than in
case apex.

In contrast, right AVPD and right atrial passive filling matched well with measurements from
MRI for high stiffness values, e.g. kp = 3.0 kPa/mm. Choosing this value globally for pericardial
stiffness lead however to some undesirable consequences, namely unphysiologically high my-
ocardial contractility and pericardial stress as well as bad approximation of the interventricular
septum.
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3.6 Discussion

(a) Case apex mean apical stress vectors t̄apex (scaled by
magnitude) for ±50◦ (red), ±60◦ (green), and ±70◦

(blue) fiber orientations at t = 0.45.

(b) Case pericardium pericardial contact stress tepi on epicardial surface with ±60◦ fibers at
end-systole t = 0.51.

Figure 3.20: Visualization of boundary stresses.
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3 Pericardial boundary conditions

In future studies, it might thus be reasonable to select spatially varying pericardial parameters.
This hypothesis is supported by the fact that the pericardial tissue is in contact with various
organs of different material properties as outlined in Section 3.1.2. A starting point could be the
estimation of regional pericardial parameters based on the surface definitions in Figure 3.2 with
the objective to match MRI measurements in Section 3.5.3.

In case of a biventricular geometry, no atria are present. Thus AVPD is not controlled by the
interaction of atria and pericardium. Furthermore, atrial filling is not taken into account. It is thus
expected that a global value of kp = 0.1 kPa/mm for pericardial stiffness yields good results for
a biventricular geometry with ±60◦ fibers. This value was also used in [83], although it was not
really analyzed there, e.g. with respect to MRI.

Pumping mechanism

Cardiac contractility was calibrated in all simulations in Section 3.5.3 to yield the same end-
systolic volume. It was shown that in case pericardium, higher contractilities are required than
in case apex. Therefore, for a given contractility, a heart constrained with the pericardial bound-
ary condition yields less output. This result is in agreement with the experimental observation
that cardiac output is greatly increased after the removal of the pericardium [79]. The result fur-
ther agrees with the numerical experiments performed in [56]. For identical active stress, left
ventricular ejection fraction decreased from 71 % to 63 % when including the pericardium.

The main pumping mechanism of the heart is shortening in long axis direction, which is
quantified by AVPD [6, 7]. In [124], the pumping function of the heart was compared to a piston
unit with the AVP as a piston. This mechanism could be observed in Section 3.5.5.3 for case
pericardium, where left and right AVPD is higher than in case apex but still lower than in MRI.

The upper part of the left atrium is fixed by pulmonary veins. Ventricular contraction forces the
mitral ring towards the apex and promotes the filling of the left atrium from the pulmonary veins
[57]. In Section 3.5.5.4, atrial filling was compared during ventricular systole with and without
pericardium. It was observed that the simulations of case pericardium which promoted higher
AVPD in Section 3.5.5.3 contribute more to atrial filling during ventricular systole. Case peri-
cardium predicts maximal atrial volume at ventricular end-systole as segmented from isotropic
3D MRI better than case apex. The simulated values are, however, still lower than in MRI for
the chosen pericardial parameters.

It was shown that the pumping mechanism of the heart is very different for cases apex and
pericardium, although their pressure and volume curves were similar in Section 3.5.5.1. A com-
parison of four-chamber and short axis slices of the left and right ventricle from simulation
results to cine MRI in Section 3.5.5.2 revealed an unphysiological radial pumping motion with-
out pericardial boundary conditions in case apex. In [47], it was revealed that the outer diameter
of the left ventricle shortens only about 2 mm during systole. Furthermore, the total volume en-
closed by the pericardium changes only by about 5-8 % during the cardiac cycle [7, 24]. It was
found that for the ±60◦ fiber orientation the total change in pericardial volume is 24 % and 21 %
for cases pericardium and apex, respectively. This mismatch is mainly due to the unphysiological
change in atrial volume during ventricular contraction.

As demonstrated in the parametric study in Section 3.5.3, AVPD and atrial filling could be
increased to the values measured in MRI by increasing the global pericardial stiffness. However,
this was shown to lead to a worse approximation of the interventricular septum. This, again,
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3.6 Discussion

motivates the use of a regionally distributed pericardial stiffness. Another reason for underesti-
mating AVPD and atrial filling might be a too stiff atrial material model, which is in this case is
identical to the ventricular one.

Fiber orientation

In this work, three fiber orientations were compared within the myocardium, namely ±50◦,
±60◦, and ±70◦. The influence of fiber direction for both boundary condition cases apex and
pericardium was studied. It was shown that fiber orientation has a strong influence on the dis-
placements. In Section 3.5.5.3 ±70◦ fiber orientations exhibited larger AVPD for both boundary
condition cases. This can be attributed to the fact that the fiber orientation is more vertical, i.e.,
more aligned with the long axis, than±60◦ and±50◦ fiber orientations. Since myofiber contrac-
tion is prescribed in fiber direction, more vertical fiber orientations inherently apply a greater
force pushing apex and AVP together, thus yielding higher AVPD. Since the AVP is attached
to the atria, AVPD is also linked to atrial filling. In Section 3.5.5.4 it was shown that the more
vertical ±70◦ fiber orientation also yielded the highest atrial filling during ventricular systole.
Comparing results to short axis cine MRI slices, it was shown that a more horizontal ±50◦ fiber
orientation leads to a more radial contraction of the heart. The maximum pericardial stress at end-
systole was highest for ±50◦ fibers. This can be explained by the observation in Figure 3.15h
where ±50◦ fibers (red) exhibited the most radial inward movement during systole. Since the
myocardial-pericardial interface can only transmit forces in normal direction, a more radial con-
traction exerts a higher pericardial tensile stress. The overall spatial approximation error was
also shown to be dependent on fiber direction. However, the dependence was more pronounced
in case apex than in case pericardium.

Pericardial contact stress

In [165], end-diastolic pericardial contact pressure was measured with a flat balloon catheter at
the left ventricular anterolateral epicardial surface with around 15 mmHg. In vivo experiments
on humans in [177] showed pericardial pressures on the left lateral surface of the heart between
0 and 15 mmHg. The prestressing procedure in the model does not only include the myocardium
but also the pericardial boundary condition in case pericardium. Here, a contact pressure of
20 mmHg was measured at diastasis on the left ventricular epicardial surface, agreeing well with
experimental observations.

The stresses exerted by the boundary conditions on the epicardial surface of the heart were
found to be more than one order of magnitude higher in case apex than in case pericardium.
The exact stress values in case apex depend on the choice of apical spring stiffness, which was
not calibrated in this study. It is nevertheless evident, that unphysiologically high stresses are
concentrated in a very small area of the heart. In case pericardium, all boundary stresses are
evenly distributed on the epicardial surface.

The similar maximum values of mean pericardial contact stress for all fiber directions in case
pericardium suggest that pericardial constraint is displacement-controlled. Pericardial constraint
is determined by the deviation of the heart throughout the cardiac cycle from its end-diastolic
state. However, as outlined in Section 3.1.2, to the best of the authors’ knowledge there are no
measurements of pericadial contact pressure during the cardiac cycle to validate the stresses
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experienced in the computational study. Pericardial contact stress is thus an output of the com-
putational model which is not yet available in clinical practice. Given that the model was solely
calibrated to kinematic data, the pericardial contact stresses predicted by the model should be
considered as qualitative results.

Numerical performance

All simulations were run on two nodes of a Linux cluster. One node features 64 GB of RAM
and two Intel Xeon E5-2680 ”Haswell” processors, each equipped with 12 cores operating at a
frequency of 2.5 GHz. The computation times of cases apex and pericardium were almost iden-
tical, which was about 18 hours for each of the simulations performed in this work, including
prestressing. The pericardial boundary condition requires little effort to evaluate, since the peri-
cardial boundary condition only requires the displacement field, which is computed anyway, and
the reference surface normals, which are computed once at the initialization of the simulation.
Some differences in numerical performance arise since the calculated displacement fields of both
cases are different. Taking the±60◦ fiber distribution, case apex had an average of 7.8 Newton it-
erations per time step and 28 linear solver iterations per Newton iteration. For case pericardium,
these values were 8.3 and 25, respectively.

Limitations and future perspectives

As mentioned earlier, in this work, the propagation of the electrical signal sent from the sinus
node was not accounted for. Rather, all myocardial tissues in the simulations were activated
simultaneously. Recently, the ability to couple the structural model to an electrophysiological
model was demonstrated in [89], which can be included in further studies. However, since the
data came from a healthy volunteer, it is not expected to yield relevant variations.

Ex-vivo experiments on myocardial tissue in [45, 166, 192] showed anisotropic tissue char-
acteristics, depending on myocardial fiber and sheet orientation. In the model, the anisotropic
material model proposed in [88] was used for myocardial tissue. Due to the lack of sufficient
experimental data, identical material properties were used for left and right myocardium, as well
as the atria. However, no studies have been carried out how material parameters obtained from
experiments on ex vivo tissue correlate to in vivo material behavior. Furthermore, it should be
noted that vastly different material parameters have been estimated in [88] and [75] when being
fitted to measurements from either biaxial tensile tests or shear tests.

The structural model was coupled to a lumped-parameter Windkessel model of hemodynamics
of the systemic and pulmonary circulation with prescribed atrial pressures as in Figure 2.9b. The
interaction between atria and ventricles should be investigated in further studies using a volume-
preserving closed-loop model, including both pulmonary and systemic circulation. Furthermore,
none of the cardiac simulations behave perfectly periodic, i.e., the values at the end of the cardiac
cycle are not equal to the initial conditions. In future studies, achieving a periodic state should
be incorporated into parameter estimation.

In this work the local helix fiber directions were interpolated at the integration points from
three different prescribed constant-per-surface fiber orientations. Results showed that fiber ori-
entation has a large influence on AVPD. However, there is no knowledge of patient-specific fiber
orientation and equal distributions in left and right ventricle is assumed. Patient-specific cardiac
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fiber orientations can be estimated from diffusion tensor MRI [138] (DTMRI). However, while
applicable to in vivo DTMRI (as shown in [138]), to the best of the author’s knowledge, fiber es-
timation has not been tested and validated with in vivo DTMRI yet. Further quantitative studies
of cardiac dynamics require a fine resolution of patient-specific fibers.

Furthermore, constant stiffness and viscosity parameters of the pericardial boundary condi-
tion over the epicardial surface were assumed. Given reliable material parameters for the my-
ocardium, constant pericardial stiffness and viscosity could be estimated from measured AVPD.
The choice of constant parameters might however be oversimplified, as the pericardium is in
contact with various tissues of different mechanical behaviors, as illustrated in Figure 3.2. For
example, the movement of the apex in anterior direction in case pericardium as observed in Fig-
ure 3.15g suggests a higher pericardial stiffness to model the influence of the sternum and the
diaphragm. This will however introduce more parameters to the model, which will need to be
calibrated to measurements from e.g. cine or 3D tagged MRI. For this study the number of pa-
rameters was kept small in order to make the general effect of the pericardial boundary condition
even by using a simplified modeling approach evident.

From a machine learning perspective, the limited available data from cine MRI was split into
a training set and a test set. The training set data is used during model personalization. The
rest of the data can then be used in the test set to check how well the model actually predicts
data that was not used during personalization. In the present case, left ventricular volume and
ventricular epicardial contours were used as training set to tune timing, (de-) activation rates,
and contractility for atria and ventricles and global material viscosity and pericardial stiffness.
AVPD, atrial volume, and ventricular endocardial contours, each left and right, were then used as
test set to quantify the simulations’ approximation error. Many more parameters of the cardiac
model could be personalized for this patient-specific study. However, using the metrics in the
test set for model calibration would disqualify using them to test model accuracy and limit the
abilities to test the model.

Simulation results were solely validated with cine MRI data. Cine MRI can be interpreted as
an Eulerian description of cardiac movement, as the imaging planes stay fixed in space through-
out the cardiac cycle. This observation, however, cannot detect any rotational movement with
respect to the long axis, as the left ventricle is almost rotationally symmetric. To properly val-
idate any rotational movement of the myocardium, a comparison to data from 3D tagged MRI
is necessary, which can be interpreted as a Lagrangian observation of cardiac motion. Further-
more, pressure measurements from within ventricles and atria are required. Pressure values at
end-diastole are the initial values for the stress state of the myocardium, which cannot be as-
sessed from imaging alone. Pressure curves over the cardiac cycle would yield a ground truth to
validate the outputs of the Windkessel model. Figure 3.17 demonstrates that the model, while us-
ing the pericardial constraint, does accurately predict the atrial volume at ventricular end-systole.
However, no data was obtainable at atrial end-systole. In future studies, if detailed cine data of
atria are available (e.g. cine stack in transverse orientation with respect to the body, and using
thin slices of 5mm), a more detailed analysis of atrial contraction will be considered.
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3.7 Conclusion
In this chapter, an overview of the anatomy and mechanical function of the pericardium was
given, and it was motivated to model its influence on the myocardium as springs and dashpots
acting parallel on the epicardial surface. After a review of pericardial boundary conditions cur-
rently used in mechanical simulations of the heart, it was proposed to compare two simulation
cases, one with and one without pericardial boundary conditions. Following calibration to stroke
volume as measured from short axis cine MRI, several physiological key outputs of the model
were compared and validated using multi-view cine MRI. Although exhibiting similar volume
and pressure curves, the displacement results of both simulation cases were radically different.
The simulations with pericardial boundary conditions matched MRI measurements much closer
than without, especially with respect to atrioventricular plane displacement and atrial filling dur-
ing ventricular systole, both quantities which were not included in the calibration of the model.
By establishing an overall spatial approximation error at the left and right endocardium, it was
shown that the introduction of only two global parameters for the pericardial boundary condition
already yields a big gain in model accuracy. The ultimate goal is to obtain more comprehensive
data sets, adding 3D tagged MRI and pressure measurements, to further validate the model of
pericardial-myocardial interaction. Measurements of pericardial contact stress at different loca-
tions on the epicardium throughout the cardiac cycle would help to test the qualitative predictions
of pericardial contact stresses by the present model and will probably lead to further model im-
provements.
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4 Model order reduction
The interaction between myocardium and pericardium was studied in Chapter 3 using a patient-
specific four-chamber geometry. As this is a high-fidelity model, it results in high computational
demands. This chapter thus focuses on model order reduction techniques for monolithically cou-
pled cardiac structure-Windkessel models. The remainder of this chapter is structured as follows.
A reduced formulation is derived in Section 4.1 for the monolithically coupled system introduced
in Section 2.6. Furthermore, several subspace interpolation methods are reviewed in Section 4.2.
In numerical experiments in Section 4.3, the accuracy and speedup of the reduced order model
(ROM) are demonstrated, and its response to parametric variations is shown. This chapter is
closed with a conclusion and future perspectives in section 4.4.

Parts of this chapter were submitted for publication in [147].

4.1 Nonlinear parametric model order reduction by
projection

The 3D-0D cardiovascular model described in Section 2.6 represents a large-scale, nonlinear,
parametrized, and monolithically coupled model. It features multiple sources of nonlinear sys-
tem behavior and depends on several model parameters. Firstly, the structural model contains
geometric nonlinearities due to the use of the Green-Lagrange strain tensor E(u). Secondly,
the utilized material laws for myocardial tissue induce material nonlinearity. The third and last
source of nonlinearity is given by the nonlinear coupling between the structural and the hemo-
dynamical model due to the Neumann Windkessel boundary condition, acting in direction of the
current normal vector of the endocardium. Furthermore, the model depends on many parame-
ters µ =

[
µ1, . . . , µnp

]T ∈ Ω ⊂ Rnp , classified in different categories. For instance, there exist
parameters describing the constitutive behavior of the used materials (stiffness, viscosity, and
incompressibility parameters), the additive active stress component Sact (e.g. the contractility
σ0, (un)binding rates αmax and αmin, timings tsys and tdias), the hemodynamics (e.g. resistances
R, compliances C, inertance Lp), as well as the boundary conditions for the outside of the great
vessels and the epicardium (spring stiffnesses kv, ke and dashpot viscosities cv, ce). Thus, the
discrete nonlinear parametrized full order model (FOM) with residual R reads

R(d,p,µ) =

[
RS(d,p,µ)

RW(d,p,µ)

]
!

= 0, (4.1)

with structural residual RS, Windkessel residual RW and corresponding unknowns d and p, re-
spectively. The use of a 0D lumped-parameter Windkessel model, instead of e.g. a 3D fluid dy-
namics model of the heart chambers and arteries, already simplifies the computational complex-
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ity of the coupled system. However, the numerical analysis of the present model still demands
a high computational effort due to the large number of structural degrees of freedom (DOFs).
While this is no problem for a few standard forward simulations, it is extremely challenging - and
might even prohibit - fast model calibration, inverse analysis, and clinical applications. There-
fore, the aim is to employ projection-based model order reduction to obtain a cardiovascular
reduced order model (ROM) that accurately approximates the original model with substantially
less DOFs and, consequently, less numerical effort. To this end, in Section 4.1.2 a classical
projection-based model order reduction framework is applied to the structural component of the
cardiovascular problem. A suitable strategy to compute the required projection matrix V for a
fixed parameter set is explained in Section 4.1.3. In order to compute a parametric reduced or-
der model (pROM) for any new parameter set, different subspace interpolation techniques are
presented in Section 4.2. Finally, some implementation details are given in Section 4.3.2.

4.1.1 Subspace projection

A matrix P ∈ Rn×n is a projector if the repeated application to an n-dimensional vector x ∈ Rn

always yields the same projection xP ∈ Rn:

xP = Px = P(Px) = P2x. (4.2)

The property P = P2 thus must hold for a matrix to be a projector. In the following, the projec-
tion matrix P will be derived for projecting x onto the q-dimensional subspace V ⊂ Rn in the
direction of the q-dimensional subspaceW ⊂ Rn. The q orthogonal basis vectors vi ∈ Rn are
contained in the columns of the matrix V = [v1, . . . ,vq] ∈ Rn×q, spanning the subspace V:

V = span(V) =

{
q∑
i=1

λivi

∣∣∣∣∣ vi ∈ V, λi ∈ R

}
. (4.3)

The projection xP of a vector x onto V can be expressed as the matrix-vector multiplication

xP = Vc, (4.4)

where c ∈ Rq is a yet to be determined coefficient vector containing the amplitudes of the basis
vectors vi. The component x⊥ of x is orthogonal to the projecting subspaceW spanned by the
q orthogonal basis vectors wi ∈ Rn, contained in the matrix W = [w1, . . . ,wq] ∈ Rn×q,

x⊥ = x− xP = x− Vc. (4.5)

The orthogonality of x⊥ and W can be expressed by requiring

WTx⊥ = 0. (4.6)

The component x⊥ is thus perpendicular to all basis vectorswi of the subspaceW . Inserting the
expression for the orthogonal component in (4.5) into the orthogonality condition (4.6) yields

WT (x− Vc) = WTx−WTVc = 0, (4.7)
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which can be solved for the coefficient vector

c =
(
WTV

)−1
WTx, (4.8)

if the inverse WTV ∈ Rq×q of the square matrix exists. Inserting the coefficient vector (4.8) into
(4.4) yields

xP = V
(
WTV

)−1
WTx = Px (4.9)

and thus the definition of the projector

P = V
(
WTV

)−1
WT ∈ Rn×n. (4.10)

The special case of V = W results in orthogonal projection, whereas the general case V 6= W
yields an oblique projection.

The spatially semi-discrete version of the coupled structural-Windkessel model proposed in
Section 2.6 is

RS
semi(d, ḋ, d̈,p,µ) = Md̈ + F(d, ḋ,p,µ) = 0. (4.11)

Besides the model state characterized by p, d, and time derivatives thereof, the FOM depends
on the model parameter set µ. The dimension of the discrete nodal displacements d ∈ Rn

is commonly high for cardiac problems and scales computation time and memory consumption.
However, during the solution of a cardiac cycle, not all possible n configurations within the space
Rn are taken. Usually, the configurations can be contained in the much smaller q-dimensional
subspace V , with q � n. The displacements are therefore approximated by displacements dr,

d ≈ Vdr, (4.12)

where dr contains the amplitudes of the basis vectors vi in V. The approximation (4.12) can be
inserted in the structural residual RS

semi

RS
semi(Vdr,Vḋr,Vd̈r,p,µ) = e, (4.13)

introducing the error e. In general, not all n equations in (4.13) can be satisfied by the q un-
knowns in dr. The error e is zero only in two special cases. Firstly, for q = n the projection
turns into a basis transformation and the matrix V has rank n. Secondly, when all admissible
displacements d actually span the subspace V , e.g. prescribed through boundary conditions, re-
peated projection onto V does not change the system of equations (4.11) due to property (4.2).
Both cases are however not relevant for cardiac or other real-world problems.

In order to obtain a square system of equations, the equation for the reduced residual (4.13) is
projected onto the subspace V using the projector P as derived in (4.9):

V
(
WTV

)−1
WTRS

semi(Vdr,Vḋr,Vd̈r,p,µ) = V
(
WTV

)−1
WTeP. (4.14)

The approximation error eP is set to be orthogonal to the projection spaceW and thus

WTeP = 0. (4.15)

Given that V contains orthogonal basis vectors the matrix is of full rank and can thus be dropped
from both sides of equation (4.14). Additionally, multiplying by WTV yields

WTRS
semi(Vdr,Vḋr,Vd̈r,p,µ) = 0, (4.16)

which is the Galerkin projection of the FOM.
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4 Model order reduction

Remark The general case W 6= V is an oblique Petrov-Galerkin projection. Setting both pro-
jection matrices equal, i.e. W = V, yields an orthogonal Bubnov-Galerkin projection. Despite
the naming convention, there is another analogy to the Galerkin method applied to Finite Ele-
ments in Section 2.2.2. For the Finite Element Method, the approximation error ed in (2.47) made
by restricting the infinite solution and weighting function spaces to finite-dimensional subspaces
is orthogonal to the discrete weighting basis function space Th. For projection-based model or-
der reduction, the approximation error eP made by projecting the high-dimensional solution to a
lower-dimensional space is orthogonal to the projecting spaceW .

4.1.2 Cardiovascular reduced order model
Inserting the Bubnov-Galerkin projection into the coupled cardiac problem yields the space and
time discrete coupled reduced residual

Rr :=

[
WTRS(Vdr,p,µ)

RW(Vdr,p,µ)

]
n+1

, (4.17)

at time step n+ 1. Linearizing the residual yields[
KS

r KSW
r

KWS
r KW

r

]i
n+1

·
[

∆dr

∆p

]i+1

n+1

= −
[
RS

r

RW

]i
n+1

(4.18)

which is solved for the increments ∆dr and ∆p of reduced displacements and Windkessel un-
knowns, respectively, using the linearizations

KS
r =

∂RS
r

∂dr
=

∂

∂dr

[
WTRS (Vdr,p,µ)

]
= WT∂R

S(d,p,µ)

∂d

∣∣∣∣
d=Vdr

· ∂Vdr

∂dr
= WTKSV,

(4.19)

KSW
r =

∂RS
r

∂p
=

∂

∂p

[
WT RS (Vdr,p,µ)

]
= WT∂R

S(d,p,µ)

∂p

∣∣∣∣
d=Vdr

= WTKSW,

(4.20)

KWS
r =

∂RW

∂dr
=

∂

∂dr

[
RW(Vdr,p,µ)

]
=

∂RW(d,p,µ)

∂d

∣∣∣∣
d=Vdr

· ∂Vdr

∂dr
= KWSV,

(4.21)

KW
r =

∂RW

∂p
=

∂

∂p

[
RW(Vdr,p,µ)

]
=

∂RW(d,p,µ)

∂p

∣∣∣∣
d=Vdr

= KW.

(4.22)

Since only the structural dimension of the problem is reduced, the (2, 2)-block remains un-
changed, i.e. KW

r = KW. Using the Bubnov-Galerkin projection with W = V yields the lin-
earized coupled system[

VTKSV VTKSW

KWSV KW

]i
n+1

·
[

∆dr

∆p

]i+1

n+1

= −
[
RS

r

RW

]i
n+1

, (4.23)
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4.1 Nonlinear parametric model order reduction by projection

making use of the full-dimensional linearizations. The original (2.75) and reduced (4.23) block-
Jacobians are visualized in Figure 4.1. Note that in each Newton-Raphson iteration i, the reduced
displacements dr must be extrapolated to the full dimension using (4.12) to evaluate the residuals
RS

r and RW as well as their linearizations. It is only after their full evaluation and assembly that
their dimensions are reduced by projection. The update step thus becomes[

d
p

]i+1

n+1

=

[
d
p

]i
n+1

+

[
V∆dr

∆p

]i+1

n+1

. (4.24)

Since the solution of the reduced system is within the projection space V , convergence can only
be achieved in that space. The convergence check is thus carried out with the reduced residual
and reduced displacement increment∥∥RS

r

∥∥
∞ < tolSres,r, ‖∆dr‖∞ < tolSinc,r. (4.25)

The process of reducing the FOM within the computational framework is outlined in Algo-
rithm 1.

Algorithm 1 Projection-based model order reduction.
1: generate projection matrix V offline with methods from Sections 4.1.3 (constant) or 4.2

(parametric)
2: for time step j = 0, . . . , ns do
3: Newton iteration i = 0
4: while convergence criterion from (4.25) not fulfilled do
5: evaluate and assemble full Jacobian and residual (4.18)
6: reduce structural dimensions in Jacobian and residual (4.23)
7: solve reduced linear system (4.23)
8: approximate full displacements (4.12)
9: update solution (4.24)

10: i← i+ 1

11: end while
12: return solution dj and pj
13: end for

The convergence criteria for 0D Windkessel model remain unchanged. Likewise to the cou-
pled full order model (2.75) in Section 2.6, the coupled ROM in (4.23) is valid for any full order
structural and Windkessel residual RS and RW, respectively.

4.1.3 Subspace computation via POD

In this work, the method of Proper Orthogonal Decomposition (POD) is used to compute the
reduced basis V required for the projection-based reduction of the full problem. POD [34, 109]
is a straightforward and well-known nonlinear model reduction approach, which relies on so-
called snapshots, i.e. discrete-time observations of the solution of the FOM for a fixed parameter
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Figure 4.1: Visualization of the Jacobian for projection-based model order reduction of the block
matrix system’s structural dimension in (2.75) to (4.23). The diagonal structural and
Windkessel blocks are colored yellow and green, respectively. Off-diagonal coupling
blocks are shaded. Note that the dimension of the diagonal Windkessel block remains
unchanged.

set µ, to construct the basis V. Given ns snapshots di gained from a numerical simulation of the
FOM sample point, the snapshot matrix then states

D = [d1, . . . ,dns ] ∈ Rn×ns . (4.26)

Typically, the number of snapshots ns corresponds to the number of time steps in the FOM
simulation. The goal of POD is to construct a basis for an optimal approximation of the solution
manifold spanned by the snapshot matrix. In other words, the aim is to generate a basis that
optimally approximates the information gathered in the snapshots. Therefore, a singular value
decomposition (SVD) of the snapshot matrix is performed

D = UΣTT (4.27)

with the orthogonal matrices U ∈ Rn×n and T ∈ Rns×ns containing the left and right singular
vectors, respectively, stored column-wise. The diagonal matrix

Σ = diag(σ1, . . . , σns) ∈ Rn×ns , where σ1 ≥ · · · ≥ σns ≥ 0, (4.28)

features all ns singular values σi sorted in descending order on its main diagonal. Now, the first
q singular vectors ui are selected from the columns of the left singular matrix U corresponding
to the q largest singular values σi in Σ to obtain the basis vectors

vi = ui, ∀i ∈ {1, . . . , q} (4.29)

of the projection matrix V. The singular values σi are frequently used to define the relative
information content (RIC)

RIC(q) =

∑q
i=1 σ

2
i∑ns

i=1 σ
2
i

∈ [0, 1] . (4.30)
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4.2 Interpolation of subspaces

This measure allows to select an appropriate basis dimension q such that RIC(q) ≥ 1 − εPOD

for a given small tolerance εPOD.[20] The approximation error made by selecting q < ns basis
vectors can be quantified by the sum of the squared truncated singular values

e(q) =
ns∑

i=q+1

σ2
i . (4.31)

Note that this technique provides an optimal basis for the approximation of the snapshot matrix in
a least-squares sense [102, 110, 121]. Thus, the efficiency of POD and the basis quality crucially
depends on the selection of snapshots, which is required to represent the model’s dynamical
behavior sufficiently. Furthermore, POD requires the expensive simulation of the full forward
model. In general, this requires the solution of many parameter sets to collect representative
snapshots. Nevertheless, this data-driven approach is very well applicable for the reduction of
any nonlinear system.

4.2 Interpolation of subspaces

The cardiac model described in Section 2.6 relies on many patient-specific parameters, describ-
ing e.g. constitutive behavior, hemodynamics, boundary conditions, or local fiber orientation.
Consequently, a repeated model evaluation for many different parameter sets is indispensable to
personalize the model. The aim of parametric model order reduction (pMOR) is to find a reduced
cardiovascular model that preserves the parameter-dependency, thus allowing a variation of any
of the parameters directly in the reduced model without having to repeat the whole reduction
process each time. The parametric reduced model can then be used e.g. for patient-specific pa-
rameter estimation or uncertainty quantification purposes. Note that a parametric solution of the
ROM still follows the process as outlined in Algorithm 1, since pMOR subspace interpolation
only influences the (offline) generation of the projection matrix.

To efficiently reduce the parametric cardiovascular model, the pMOR procedure is decom-
posed into an offline and online stage. In the offline phase, the parametrized full order model
with np parameters µ =

[
µ1, . . . , µnp

]T ∈ Rnp is first simulated for several parameter sample
points µk, k = 1, . . . , K. Afterwards, the corresponding local projection bases V(µk) are com-
puted via POD from the obtained data. In the online phase, the projection matrix V(µ∗) is gen-
erated for a new parameter value µ∗ by interpolating between the precomputed subspaces. Note
that the selection of suitable parameter samples is highly problem-specific, depending mainly on
desired accuracy and the parameter set, and can be challenging especially for high dimensional
parameter spaces.

In this thesis, different subspace interpolation techniques are examined and explained in the
following.It is supposed that local basis matrices V1 = V(µ1), . . . ,VK = V(µK) ∈ Rn×q have
been computed in the offline phase from the snapshot matrices D(µ1), . . . ,D(µK) ∈ Rn×ns at
the sample pointsµ1, . . . ,µK . Each basis matrix V(µk) is composed of the vectors {vi(µk)}qi=1.
For the interpolation, appropriate weighting functions wk(µ∗) should be selected to compute the
interpolated basis V(µ∗) in the online phase. Basically, any multivariate interpolation method
could be used for this purpose. Examples are polynomial interpolation (Lagrange polynomials),
piecewise polynomial interpolation (splines), radial basis functions (RBF), Kriging interpolation
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(Gaussian regression), inverse distance weighting (IDW) based on nearest-neighbor interpolation
or even sparse grid interpolation [14]. For simplicity, in this thesis the special case of piece-
wise linear interpolation is considered. In this work, four interpolation methods are compared:
weighted concatenation of bases (CoB), weighted concatenation of snapshots (CoS), adjusted
direct basis interpolation, and basis interpolation on a Grassman manifold. These methods were
chosen as they already have been used previously in similar interpolation settings, see [4] (Grass-
mann manifold) and [31] (CoS). The other methods, CoB and adjusted direct basis interpolation,
can be seen as straight-forward adaptions thereof.

4.2.1 Weighted concatenation of bases
A common and straightforward approach to obtain a global basis matrix V from the precom-
puted local bases V(µ1), . . . ,V(µK) is given by the method concatenation of bases (CoB). With
this technique, the local bases are at first concatenated side-by-side, followed by a SVD of the
resulting matrix to compute the global basis V. This technique can be extended by introducing
the weighting functions wk(µ∗) in the concatenation of bases, in order to compute a parameter-
dependent interpolated basis V(µ∗) which takes the distance of the new query point µ∗ with
respect to the sample points µ1, . . . ,µK into account. The matrices V(µ1), . . . ,V(µK) are first
weighted with weights wk(µ∗) and concatenated afterwards. Then, the SVD of the concatenated
matrix

Ṽ(µ∗) = [w1(µ∗)V(µ1), . . . , wK(µ∗)V(µK)] = Ũ(µ∗)Σ̃(µ∗)T̃(µ∗)T ∈ Rn×K·q (4.32)

is performed. The interpolated basis V(µ∗) is finally constructed by considering the first q left
singular vectors {ũi(µ∗)}qi=1 that best represent the weighted and concatenated matrix

V(µ∗) = [ũ1(µ∗), . . . , ũq(µ
∗)] ∈ Rn×q. (4.33)

Please note that the described weighting procedure is purely optional. The advantage of the
weighted approach is that subspaces near the interpolation pointµ∗ are favored and stronger con-
sidered than subspaces describing the dynamics of far-distant sample points. However, this ex-
tended technique requires more computational effort than the classical concatenation approach,
since a SVD has to be performed for every new µ∗ to compute the parameter-dependent inter-
polated basis V(µ∗).

4.2.2 Weighted concatenation of snapshots
The concatenation of bases approach explained in the previous section provides a basis V(µ∗)
comprising the most important directions among the (weighted) basis vectors from all local
bases. The bases V(µk) = U(µk)(:, 1 : q) for k = 1, . . . , K are however calculated in present
case by means of the SVD-based technique of POD and essentially approximate the snapshot
matrices

D(µk) = U(µk)Σ(µk)T(µk)
T. (4.34)

Since finding a basis that optimally approximates the system dynamics over a range of param-
eters is of major interest, the POD-case motivates construction of an interpolated basis V(µ∗)
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4.2 Interpolation of subspaces

from a (weighted) concatenation of snapshots rather than from a (weighted) concatenation of
bases. With the former technique, the matrix V(µ∗) is constructed by considering the first q left
singular vectors of the (weighted and) concatenated snapshot matrix

D̃(µ∗) = [w1(µ∗) D(µ1), . . . , wK(µ∗) D(µK)] = ŨD̃(µ∗)Σ̃D̃(µ∗)T̃D̃(µ∗)T ∈ Rn×K·ns .
(4.35)

Remark: Connection between the concatenation methods It can be shown that the
described (weighted) concatenation of snapshots approach corresponds to a modified (weighted)
concatenation of bases, where each vector vi(µk) is weighted with the corresponding singular
value σi(µk) for all non-zero singular values. Thus, the first q left singular vectors of the modified
matrix

Ṽ(µ∗) = [w1(µ∗)V(µ1) Σq(µ1), . . . , wK(µ∗)V(µK) Σq(µK)] = Ũ(µ∗)Σ̃(µ∗)T̃(µ∗)T,
(4.36)

where Σq(µk)=Σ(µk)(1 : q, 1 : q) ∈ Rq×q, span the same interpolated subspace V(µ∗) as the q
leading vectors in ŨD̃(µ∗).

4.2.3 Adjusted direct basis interpolation
It is well-known that a straightforward interpolation of the basis vectors comprised in the local
projection matrices V(µ1), . . . ,V(µK) does generally not yield a meaningful basis. The basis
vectors {vi(µk)}qi=1 of different sample points span diverse subspaces, which have a distinct
physical interpretation and might possibly point in opposite directions in space. Therefore, the
basis vectors should be first arranged to point in similar directions to span similar subspaces,
before their entries are interpolated. This adjustment is performed using the Modal Assurance
Criterion (MAC) [1, 2]

MAC(vi,vj) =
|vT
i · vj|2

‖vi‖2
2 · ‖vj‖2

2

∈ [0, 1], (4.37)

which provides a measure of similarity or linear dependence between the vectors vi and vj .
Using the symmetry of the MAC, (4.37) needs to be evaluated q(q + 1)/2 times. The maximal
value of the MAC is 1, which corresponds to linear dependent vectors, whereas orthogonal vec-
tors take the minimal value 0. Hence, the idea is to only interpolate vectors which are strongly
correlated to each other and maximize the MAC. To do so, first a reference subspace has to
be selected with respect to which the adjustment of the bases should be performed. The ref-
erence subspace, spanned by the columns of RV ∈ Rn×q, should ideally comprise the most
important dynamics among all parameter sample points and be representative for all local bases.
The simplest way to select RV is to take one particularly important local basis RV = Vk0

with k0 ∈ {1, . . . , K}. Another possibility is to construct the reference subspace similarly as
described in Section 4.2.1, i.e. using the (weighted) concatenation of bases approach, yielding
RV = Ũ(:, 1 : q) or RV(µ∗) = Ũ(µ∗)(:, 1 : q). Once the reference subspace has been selected,
the vectors vi∗(j,k)(µk) that fulfill

i∗(j, k) = argmax
i

MAC
(
vi(µk),RV(:, j)

)
for j = 1, . . . , q and k = 1, . . . , K (4.38)
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are taken for interpolation. Furthermore, the orientation of the vectors vi∗(j,k)(µk) and RV(:, j)
is equalized by adapting the sign, in order to avoid that an interpolation between (almost) anti-
parallel vectors results in a mutual cancellation. Finally, the interpolation of the vectors is given
by

v̄j(µ
∗) =

K∑
k=1

wk(µ
∗) ·

[
±vi∗(j,k)(µk)

]
with

K∑
k=1

wk(µ
∗) = 1. (4.39)

The interpolation of orthonormal vectors does not necessarily yield a set of orthonormal vectors.
Therefore, the interpolated vectors {v̄j(µ∗)}qj=1 are subsequently orthonormalized by employing
the SVD of V̄(µ∗)

V̄(µ∗) = [v̄1(µ∗), . . . , v̄q(µ
∗)] = Ū(µ∗)Σ̄(µ∗)T̄(µ∗)T (4.40)

and considering the first q left singular vectors {ūj(µ∗)}qj=1 for the interpolated basis V(µ∗) ∈
Rn×q.

Special case of two precomputed bases and one parameter In order to make the
afore explained method clearer, the special case of two precomputed bases (K = 2) and one
single parameter (np = 1) is now briefly presented. Let us assume that bases V(µ1) and V(µ2)
have been computed at the parameter sample points µ1 and µ2, and that the new parameter
value µ∗ lies between these two samples. Suppose that the reference basis is chosen e.g. as
RV = V(µ2). Then, the vectors vi∗(j)(µ1) that fulfill

i∗(j) = argmax
i

MAC
(
vi(µ1),vj(µ2)

)
for j = 1, . . . , q (4.41)

are selected to be combined with the vectors vj(µ2). The interpolation reads

v̄j(µ
∗) = w(µ∗) ·

[
±vi∗(j)(µ1)

]
+
(
1− w(µ∗)

)
· vj(µ2) (4.42)

with the weight

w(µ∗) =
µ∗ − µ2

µ1 − µ2

∈ [0, 1] for µ∗ ∈ [µ1, µ2] , (4.43)

providing that a linear interpolation is employed.

4.2.4 Basis interpolation on a Grassmannian manifold

As discussed before, a direct interpolation of the local bases is not meaningful, since they span
different subspaces. In addition to the afore-explained adjustment of the bases before interpola-
tion, one may also interpolate the underlying subspaces on a tangent space of a manifold. The
method proposed by Amsallem and Farhat [4] constructs a basis matrix V(µ∗) for a new pa-
rameter point µ∗ by interpolating the subspaces corresponding to the bases {V(µk)}Kk=1 on the
tangent space to the Grassmannian manifold Gq(Rn).
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The first step of the approach consists in choosing a local basis matrix Vk0 for the reference
point Vk0 ∈ Gq(Rn), at which the tangent space TVk0 to the manifold Gq(Rn) is constructed.
Afterwards, all subspaces V(µk) spanned by the local bases V(µk) are mapped onto this tangent
space by the so-called logarithmic mapping: span(Γk) = LogVk0 (Vk) ∈ TVk0 . This is done
basically by computing K thin SVDs(

I− Vk0V
T
k0

)
V(µk)

(
VT
k0
V(µk)

)−1
= U(µk) Σ(µk) T(µk)

T for k = 1, . . . , K (4.44)

and then calculating

Γ(µk) = U(µk) arctan
(
Σ(µk)

)
T(µk)

T. (4.45)

In order to compute the orthonormal basis V(µ∗) for a new parameter point µ∗, the matrices
{Γ(µk)}Kk=1 are first interpolated using the weights wk(µ∗) to obtain

Γ∗ = Γ(µ∗) =
K∑
k=1

wk(µ
∗) Γ(µk). (4.46)

The interpolated subspace span(Γ∗) ∈ TVk0 is then mapped back to the original manifold
Gq(Rn) by the so-called exponential mapping: V(µ∗) = ExpVk0

(
span(Γ∗)

)
∈ Gq(Rn). The

back-mapping step is numerically achieved by computing a thin SVD

Γ(µ∗) = U(µ∗) Σ(µ∗) T(µ∗)T, (4.47)

followed by

V(µ∗) = Vk0T(µ∗) cos
(
Σ(µ∗)

)
+ U(µ∗) sin

(
Σ(µ∗)

)
. (4.48)

The special case of two precomputed bases (K= 2) and one single parameter (np = 1) is exten-
sively described in [4].

4.3 Numerical results and discussion

In this section, results are presented for the approximation of the FOM simulation with ROM
simulations. It is distinguished between model order reduction and parametric model order re-
duction. For a fixed parameter set, using the contractility σ0 = 280 kPa, the approximation
qualities of POD are explored in Section 4.3.3. Afterwards, the approximation quality is ana-
lyzed with respect to a changing contractility in Section 4.3.4. As snapshots, all time steps of the
simulation of a single heartbeat are used with ns = 874.

4.3.1 Model definition

The discretized patient-specific four-chamber cardiac geometry from Section 3.5 with n =
846 864 structural degrees of freedom is displayed in Figure 4.2. The weak form of the initial
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boundary value problem (IBVP) is

0 =

∫
Ω0

ρ0 ü · δu dV +

∫
Ω0

S : δE dV +

∫
Γ endo,l
0

pv F
−T ·N · δu dA

+

∫
Γ vess

[kvu+ cvu̇] · δu dA.+

∫
Γ epi

N [kpu ·N + cpu̇ ·N ] · δu dA,

(4.49)

with structure-Windkessel coupling on the left ventricular endocardium Γ endo,l
0 , left ventricular

pressure pv, omni-directional spring-dashpots on the outsides of the great vessels Γ vess, and peri-
cardial boundary conditions on the epicardial surface Γ epi. Spring stiffnesses kv, kp and dashpot
viscosities cv, cp model the attachments of the great vessels and the pericardium, respectively.
The different colors in Figure 4.2 relate to different materials for adipose tissue (4.50), aorta,
pulmonary artery, and atrial myocardium (4.51), and ventricular myocardium (4.52):

S =
∂

∂E
(ψNH + ψvol,a) +

∂

∂Ė
ψvisco, (4.50)

S =
∂

∂E
(ψMR + ψvol,a) +

∂

∂Ė
ψvisco, (4.51)

S =
∂

∂E
(ψMR + ψvol,a) +

∂

∂Ė
ψvisco + Sact, (4.52)

with isotropic Neo-Hooke material ψNH (2.60), isotropic Mooney-Rivlin material ψMR (2.62),
volumetric penalty ψvol,a (2.63), viscous material ψvisco (2.65), and active stress Sact (2.66) from
Section 2.4. Each material is composed of a hyperelastic and a viscous contribution. Only the
ventricular myocardial tissue in (3.13) has an additional active stress component Sact, using a
±60◦ fiber distribution. The model’s parameters are given in Table A.7.

4.3.2 Implementation details

The coupled FOM and ROM in (2.75) and (4.23), respectively, are solved using the in-house par-
allel high-performance finite element software package BACI [181]. The code is implemented
in C++ making use of the Trilinos library [81]. To the solve FOM’s large linear system in (2.75)
a parallel iterative GMRES solver is used with 2 × 2 block SIMPLE-like preconditioning. For
the ROM’s small linear system in (4.23) a serial direct solver is used. All preliminary calcula-
tions, i.e. singular value decompositions and the interpolation of subspaces, are performed in
MATLAB (Release 2017b, The MathWorks, Inc., Natick, MA, USA).

Remark As later outlined in Section 4.3.3.3, the matrix-matrix and vector-matrix multipli-
cations required to reduce the FOM consume much more time than the actual solution of the
reduced model itself. The computational efficiency of these multiplications is thus crucial for
the speedup of the ROM. Thus, use is made of readily available C++ multiplication func-
tions provided by the Epetra package within the Trilinos library. The projection matrix V is
dense with one dimension much smaller than the other due to q � n and thus stored in an
Epetra MultiVector.
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(a) Posterior view. (b) Anterior view.

Figure 4.2: Computational mesh with quadratic tetrahedral elements cut in four-chamber view,
colored by different materials: adipose tissue (cyan), atrial myocardium (yellow),
ventricular myocardium (red), aorta and pulmonary artery (green), valve planes
(blue).
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4.3.3 Model order reduction

In this section, the reducibility of the coupled hemodynamical-structural simulation model of a
cardiac cycle is demonstrated and computational costs are compared. Following analysis of the
heart’s eigenmodes in Section 4.3.3.1, the approximation quality of POD is investigated using
a varying number of modes q ∈ {10, 50, 100, 200, 300, 400, 500} in Section 4.3.3.2. The model
ROM10 was the model with the smallest mode number, where the cardiac simulation converged
to a result in all time steps. The highest mode number for ROM500 was chosen, since there is
a plateau around q = 500 in the decay of singular values in Figure 4.4a. The computational
speedup achieved by using POD is further demonstrated in Section 4.3.3.3 using again varying
mode numbers.

4.3.3.1 POD-modes of the heart

To study the reducibility of the cardiac model, the decay of the singular values compared to
the first one is analyzed. This gives a measure of relative importance of the modes selected by
POD. In Figure 4.4a the normalized singular value σi/σ1 of mode i is shown. For modes i < 50
there is a fast decay in relative importance, indicating good reducibility. There is a plateau for
250 < i < 700, indicating that not much new information is gained by including those modes in
the ROM.

The first modes of the heart are visualized in Figure 4.3, where the heart is cut in four-chamber-
view. The simulation in reference configuration and at end-systole are shown in Figures 4.3a and
4.3b, respectively. Mode i = 1 in Figure 4.3c exhibits great similarity to the solution at end-
systole and is characterized by a movement of the atrioventricular plane towards the apex with
negligible change in outer shape of the heart. Mode i = 2 in Figure 4.3d consists of a more radial
displacement of the outer walls of the ventricles and a pendulum motion of the intraventricular
septum. Mode i = 3 in Figure 4.3e displays a rotating motion of the ventricles together with a
large left-to-right movement of the intraventricular septum.

4.3.3.2 Approximation quality

To quantify the overall approximation quality of ROM simulations of a full heartbeat, a spatial
error compared to the FOM solution is calculated. Here, the spatial ε∞,∞-error is defined

ε∞,∞ = max
tj

[
max
k

∥∥dkROM(tj)− dkFOM(tj)
∥∥] (4.53)

with dkROM(tj) and dkFOM(tj) as nodal displacements at node k at time step tj of ROM and FOM
respectively. The spatial ε∞,∞-error thus gives the highest displacement error at any node at any
time step and is an upper bound for all spatial approximation errors. The ε∞,∞-error is shown in
Figure 4.4b depending on the number of reduced modes q. It is clearly evident that the approxi-
mation error strongly decreases, when more modes are used for the approximation. Remarkably,
even for the very low number of 10 modes a solution is obtained whose largest approximation
error at any node at any time step is below 1 mm, which is the order of magnitude of the MRI
resolution from which the geometry was obtained. Furthermore, using ROM simulations with
a reduced order of q > 300 does not yield significant improvements in terms of accuracy. This
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(a) Reference configuration. (b) End-systole. (c) Mode i = 1.

(d) Mode i = 2. (e) Mode i = 3.

Figure 4.3: Visualized displacements in four-chamber-view. Displacements increase from blue
to red regions.
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(b) Spatial ε∞,∞-error compared to FOM depending on reduced order q.

Figure 4.4: Accuracy of ROM.

is in agreement with the decay of the normalized singular values in Figure 4.4a, where modes
q > 300 contain little more information than the preceding ones.

For many medical applications, it is not necessary to calculate an accurate spatial displacement
field. Rather, there are a couple of scalar quantities which are used in clinical practice as a cardiac
performance indicator or for the prediction of disease progression for instance. Such a quantity
is the ejection fraction

EF =
maxt V (t)−mint V (t)

maxt V (t)
, (4.54)

which is calculated from left or right ventricular volume. To evaluate the approximation of the
EF by a ROM simulation, in Figure 4.5a the left ventricular (LV) volume curves of the FOM
simulation is compared to ROM simulations of various reduced orders q. It shows that minimum
and maximum volume are approximated well and the time curves are almost indistinguishable.
Left ventricular pressure over time is further compared for all simulations in Figure 4.5b. Again,
key features such as maximum pressure are approximated well. Minor oscillations occur for
ROM10 and ROM50 after the closure of the mitral valve at t ≈ 0.2. Furthermore, the closure of
the aortic valve at t ≈ 0.5 is delayed slightly for simulation ROM10.

4.3.3.3 Speedup

For performance measurements, all FOM and ROM simulations are run on a single node of
our Linux cluster. One node features 64 GB of RAM and two Intel Xeon E5-2680 ”Haswell”
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Figure 4.5: Scalar outputs of FOM and various ROMs over time.
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(b) Number of linear solver iterations per Newton itera-
tion.

Figure 4.6: Solver performance of FOM in each time step.

processors, each equipped with 12 cores operating at a frequency of 2.5 GHz. In Figure 4.6 a
brief overview of the numerical performance of the FOM simulation is given. In Figure 4.6a the
number of Newton iterations is shown in each time step. The number of Newton iterations is
between three and nine. It is elevated to five during ventricular systole and rises to nine at end-
systole, where the aortic valve closes. The number of linear solver iterations of each Newton
iteration at a given time step is shown in Figure 4.6b. The number of linear iterations is between
20 and 60 and shows similar trends as the number of Newton iterations. This performance is
reasonable and assures a good basis to which ROM simulations can be compared to. In the
following, simulation time is compared exclusively, excluding time for creating the projection
matrix V. The projection matrix is calculated once in a preliminary step using the same hardware
and requires only about one minute. Due to the repeated evaluation of the MAC, the direct
interpolation method is in this example about three times as expensive as the other interpolation
methods, which perform equally.

The computation time of ROM simulations with various reduced orders q is compared to the
total FOM simulation time in Figure 4.7. Firstly, the speedup factor α of ROM over FOM sim-
ulations is shown in Figure 4.7a. The effect of POD is evident for ROM simulations between
q = 500 and q = 10, where a speedup of α ≈ 5 and α ≈ 13 over the FOM simulation, respec-
tively, is achieved. Note that while achieving high speedups hardware demands are not lowered.
The RAM consumption has actually increased slightly for ROM simulations, since the projec-
tion matrix V needs to be stored additionally. Hyper-reduction might be used in future studies to
lower RAM consumption as here the residual and Jacobian are only assembled partially.

In Figure 4.7b it is distinguished between three components of total computation time. Com-
ponent Linear system includes the time required for the multiplications of the projection matrix V
with the blocks of the Jacobian matrix in (4.23) as well as the time to solve the reduced linear
system. This component strongly depends on the reduced order q as it scales with the complex-
ity of the matrix-matrix multiplications, which is the main time contributor. The solution time of
the reduced linear system itself is negligible. Component Evaluate elements contains time spent
during element evaluation to assemble the block Jacobian matrix and the right-hand side. As
expected, this component is independent of q, since the full system is still built before project-
ing it to the q-dimensional subspace. Component Other sums up all other time spent during the
simulation, e.g. file input and output or general overhead, and is also independent of q.
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Figure 4.7: Simulation times of FOM and ROM.

In Figure 4.7c the relative distribution of simulation time for FOM, ROM500, and ROM10
is shown. For the 21 hours spent during a FOM simulation, 92% of simulation time are spent
solving the linear system. This large proportion shows the potential for savings using MOR with
POD and is in part a consequence of the efficient parallelization of the group’s finite element code
[181]. Reducing and solving the linear system in ROM10 only makes up 4% of the simulation
time. However, the new bottleneck is now the element evaluation at 63% of the simulation time.
This motivates the use of hyper-reduction methods, such as the discrete empirical interpolation
method (DEIM) [35] for ROMs with very few degrees of freedom.

4.3.4 Parametric model order reduction

In this section a quantitative comparison of several subspace interpolation methods introduced
in Section 4.2 is provided for parametric model order reduction (pMOR) to demonstrate the
ability to evaluate the ROM simulations at parameter sets without prior FOM knowledge. The
contractility σ0 in (2.67) is varied, controlling the upper limit of the myocardium’s active stress
in fiber direction. It is a key parameter of cardiac contraction and has a major influence on elas-
todynamics as well as on several scalar cardiac measures. It is commonly calibrated to match
the end-systolic volume of the left ventricle as measured in cine MRI. In this work, the contrac-
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(a) Four chamber view (b) Short axis view slice 9 (c) Short axis view slice 6

Figure 4.8: Simulation results of the FOM at end-systole for σ0 = 280 kPa (blue) and σ0 =
430 kPa (red). Views as defined in Figure 3.7.

tility σ0 ∈ [280 kPa, 430 kPa] is varied, as this range produces FOM simulation results that are
in agreement with cine MRI. The displacement results at the limits of the parameter range are
shown for the FOM in Figure 4.8. The dimension q = 300 is used for all ROM simulations in
this section, since it was shown in Figure 4.4b that no further improvements are made in approx-
imation quality for q > 300. In Section 4.3.4.1 the approximation quality is demonstrated with
respect to the spatial displacement field. However, in many clinical applications a full solution of
the displacements is not needed. Therefore, the approximation quality of pMOR is shown with
respect to scalar cardiac quantities of clinical significance in Section 4.3.4.2.

4.3.4.1 Approximation of displacements

In Figure 4.9 the spatial ε∞,∞-error is compared for a varying contractility. pMOR simulations
using snapshots of FOM simulations are compared from one, two, and four σ0-sample points
in figures 4.9a, 4.9b, and 4.9c, respectively. For comparison, we additionally compute a non-
parametric ROM, denoted as direct ROM simulations in the following. Here, for every σ0 we
evaluate the FOM to generate the corresponding projection matrix V(σ0). This information is
however not used in the pMOR solutions displayed and would not be available in a typical MOR
scenario, rendering MOR useless. The direct ROM approximation error is mostly independent
of the choice of parameter σ0.

In Figure 4.9a the MOR approximation is shown with varying σ0 and a constant projection
matrix V(σ0,1) which was obtained from a single FOM simulation with sample point σ0,1 =
355 kPa. Technically, this would not be considered in pMOR, since the projection matrix is not
adapted to the parameter set. It can be observed that MOR simulations with σ0 6= σ0,1 provide
reasonable results with a spatial error below 1 mm using V(σ0,1). However, with an increasing
range of the parameter interval, the additional effort of subspace interpolation becomes advan-
tageous. The approximation error of MOR simulations using two and four sample points are
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(a) One sample point σ0,1 = 355 kPa, increment ∆σ = 15 kPa.
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(b) Two sample points σ0,k = {280, 430} [kPa], increment ∆σ = 15 kPa.
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(c) Four sample points σ0,k = {280, 330, 380, 430} [kPa], increment ∆σ0 = 5 kPa.
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Figure 4.9: Spatial ε∞,∞-error for direct ROM300, constant ROM300, and pROM300 with dif-
ferent interpolation techniques for a varying number of sample points.
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displayed in Figures 4.9b and 4.9c, respectively. Both studies show similar results. The error is
highest between sample points and approaches the error of the direct ROM simulations close to
the sample points. The pMOR approximation errors are reduced when using a finer resolution
of sample points. The subspace interpolation with the largest spatial error is obtained by the
Grassmannian manifold and concatenation of bases (CoB) methods, coinciding in the middle
between two sample points. An error of one order of magnitude smaller is achieved by using
the concatenation of snapshots (CoS) and the adjusted direct interpolation methods, staying well
below a spatial ε∞,∞-error of 1 mm.

The adjusted direct interpolation method performs reasonably well in this example due to the
POD of both snapshot matrices of the left and right sample point yielding modes that allow for
a distinctive pairing according to the MAC. However, the same subspace can be spanned by two
sets of orthogonal basis vectors which are not necessarily linearly dependent. If the information
of a mode related to the left sample point is scattered among various modes corresponding to the
right sample point, the direct interpolation method will most probably yield considerably worse
results.

The CoS method is in the present case far superior to the CoB method. As outlined in Sec-
tion 4.2, the CoS method allows for a direct usage of the snapshots at the sample points, while
the CoB method uses the projection matrices computed at the sample points. The projection ma-
trices, as compared to the snapshots, contain no information about the relative importance of the
modes. The snapshots thus contain more information about the dynamics of the system, enabling
the CoS method to select a more suitably interpolated subspace than the CoB method. Note that
the CoS method can only be applied when using it in combination with an observation-based
reduction technique like POD.

4.3.4.2 Approximation of scalar cardiac quantities

In Figure 4.10 scalar output quantities of the cardiac model are shown, evaluated for the same
MOR simulations as in Figure 4.9 using one, two, and four sample points in figures 4.10a,
4.10b, and 4.10c, respectively. For each study ejection fraction (EF), maximum left ventricular
pressure (LVP), and maximum left atrioventricular plane displacement (LAVPD) are evaluated
and compared to the the FOM results. All three output quantities are important determinants
of cardiac viability. They are also chosen because they allow the study of the approximation
of different outputs of the coupled 3D-0D elasto-hemodynamical model with pMOR. EF, as
defined in (4.54), is an integral value of the spatial displacement field. LVP is an output of
the 0D Windkessel model and LAVPD is the average of a small subset of nodal directional
displacements.

For one sample point, the FOM solution in Figure 4.10a is again compared to the solution
of a ROM using a constant projection matrix. The parameter dependence of the three cardiac
quantities on σ0 is reproduced well by the constant ROM simulations. As expected, the deviations
from the FOM solution are largest at evaluations furthest away from the sample point. However,
the accuracy might still be sufficient for many applications. The cardiac quantities using two
and four sample points are shown in Figures 4.10b and 4.10c, respectively. For clarity, only
the results of the subspace interpolation methods which performed best and worst in Figure 4.9
are shown here, which are the CoS and Grassmann method, respectively. The outputs oscillate
visibly between sample points when using the Grassmann interpolation method, improving as the
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Figure 4.10: Scalar cardiac quantities ejection fraction (top), maximal left ventricular pressure
(middle), and maximal left atrioventricular plane displacement (bottom) for varying
contractility σ0 in FOM and ROM300.
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resolution of sample points is refined. As in Figure 4.9, the CoS method performs well, leading
to a good approximation of the scalar cardiac quantities between sample points. Furthermore,
comparing Figures 4.10b and 4.10c to Figure 4.10a, it is visible that using pROM with CoS
interpolation yields not only a good approximation of the function values but also improves the
tangent with respect to the contractility, compared to using constant ROM with a single sample
point.

4.4 Conclusion
In this chapter, a new projection-based reduced order model for coupled structure-Windkessel
cardiac models was proposed, where only the large structural dimension was reduced. Specif-
ically, a nonlinear large deformation cardiac Finite Element model was used with pericardial
boundary conditions. For subspace generation, proper orthogonal decomposition (POD) was
applied to displacement snapshots of the full order model (FOM). The accuracy and speedup
of the reduced order model (ROM) was demonstrated for a range of reduced dimensions q ∈
{10, . . . , 500}. In that range, the approximation error was found to lie between 2 · 10−1 mm and
1 · 10−4 mm, which is well below the resolution of state of the art cardiac imaging employed in
current clinical practice. For these simulations, speedups between 13 and 5 times over the FOM
were achieved. For highly reduced models, it was shown that the new bottleneck in simulation
time is element evaluation. This motivates the inclusion of hyper-reduction methods, such as the
discrete empirical interpolation method (DEIM) [35] or the energy conserving mesh sampling
and weighting method (ECSW) [51], in future research. Due to the nonlinear structural finite
element nature, ECSW is expected to perform better than DEIM for the cardiac problem. As
the kinematics of a patient-specific heart can already be observed in motion MRI, it might be
conceivable to incorporate this displacement information in the reduced space.

There exist many potential applications of MOR in cardiac many-query settings. One example
is the task of obtaining a physiological periodic state, i.e. matching left and right ventricular
output per cardiac cycle. In these scenarios, a cardiac simulation with constant parameters is
run for multiple cycles, until the change from one cycle to the next is below a given tolerance.
In [83] it was reported that in some cases more than ten cycles were necessary until converge
to a periodic state. After simulating one FOM cycle and calculating the projection matrix, all
preceding cycles could be run using a ROM since the shape of the cardiac contraction will be
similar to the first cycle. In this use case, MOR can lead to drastic time savings, especially as the
individual cardiac cycles cannot be run in parallel.

Four different methods of parametric model order reduction (pMOR) were further compared
to allow ROM evaluations at parameter sets without prior FOM knowledge. The pMOR meth-
ods were evaluated by varying cardiac contractility, an important determinant of cardiac per-
formance. The weighted concatenation of snapshots method was found to approximate the dis-
placements of the FOM best for this example. Additionally, it was shown that the clinically
important scalar cardiac quantities ejection fraction, maximum left ventricular pressure, and left
atrioventricular plane displacement are also well approximated using pMOR. Next to model cal-
ibration and design exploration, a possible application of cardiac pMOR could be multi-fidelity
uncertainty quantification [17].
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5 Inverse analysis

Models of cardiac elasto-hemodynamics commonly depend on a large set of parameters, which
need to be calibrated to patient-specific measurements using inverse analysis. This procedure
is, however, computationally very expensive, as it requires many evaluations of the full or-
der coupled structure-Windkessel model (2.75), which will be denoted forward model in the
following. In this chapter, a novel approach for gradient-based inverse analysis is proposed,
utilizing the parametric reduced order model (pROM) developed in Section 4.3.4. The full or-
der model (FOM) forward evaluations typically required to obtain the gradient via finite differ-
ences is replaced by pROM forward evaluations (4.23). This method is illustrated using a simple
Levenberg-Marquardt (LM) algorithm [120, 127] in Section 5.1. In Section 5.2, the proposed
method’s performance is demonstrated on a typical inverse analysis scenario using the cardiac
forward problem introduced in Section 2.6. Concluding remarks are given in Section 5.3.

Parts of this chapter were submitted for publication in [147].

5.1 Parameter identification based on reduced models
Given m normalized model outputs f(µ) ∈ Rm of a FOM depending on np normalized parame-
ters µ ∈ Rnp and m ≥ np normalized measurements y the aim is to minimize the squared sum
S of residuals r

µ̂ = argmin
µ

S(µ),

with S(µ) =
1

2
‖r(µ)‖2

2 , r(µ) = y − FOM f(µ), J(µ) =
∂r(µ)

∂µ

(5.1)

to obtain the optimal set of parameters µ̂. The Jacobian of the residual vector with respect to the
parameter vector is J ∈ Rm×np . At the optimum µ̂, the gradient ∇S = JTr = 0 vanishes and
the Hessian∇2S > 0 is positive definite. Using the LM algorithm, yields the iterative procedure

update µi+1 = µi + ∆µi+1 (5.2)

with
[
JTJ + λ diag

(
JTJ

)]i ·∆µi+1 = −
[
JTr
]i
, (5.3)

λi = λi−1 ·
∥∥∥[JTr

]i∥∥∥
2
/
∥∥∥[JTr

]i−1
∥∥∥

2
(5.4)

until
∥∥∥[JTr

]i∥∥∥
2
< tolµgrad and

∥∥∆µi+1
∥∥

2
< tolµinc, (5.5)

at iteration i + 1 with damping parameter λ. The LM algorithm approximates the Hessian as
∇2S ≈ JTJ. The damping parameter λ should tend to zero as the parameter set µ approaches
the optimal solution µ̂. For λ → ∞ the steepest descent method is approached, for λ = 0 the
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Gauss-Newton method. In general, for a nonlinear model the analytical derivatives of the model
evaluations f with respect to the parameters µ required for the Jacobian matrix are not easily
available. The np columns Jip of the Jacobian matrix Ji are thus typically approximated by finite
differences

Jip ≈ ±
pROM f(µi∆p)− pROM f(µi)

εp
, with µi∆p = µi ± εpep, ∀p ∈ [1, . . . , np] (5.6)

The gradient evaluation vector µi∆p is built from the p-th component εp of a finite distance vector
ε ∈ Rp and the p-th unit vector ep ∈ Rp in the direction of each parameter. The sign in (5.6) is
chosen for each parameter p so that the evaluation with parameter set µi∆p is within the range of
all previously evaluated parameter sets.

Calculating the approximated Jacobian matrix requires np+1 evaluations of the forward model
which is computationally expensive in case of a large number of parameters np. The pROM
introduced in Section 4.3.4 is very accurate for parameters in the proximity of the sampled
parameter sets, as was shown in Section 4.3.4.1 for the cardiac contractility parameter σ0. As
demonstrated in Section 4.3.4.2, using pMOR with two FOM sample points greatly improves
the approximation of the tangent with respect to a changing contractility over using a single
sample point. Therefore, it is proposed to use pROM evaluations of f in (5.6) instead of FOM
evaluations. The iterative procedure for the inverse analysis is sketched in Algorithm 2. Note that
while using this approach, the algorithm still finds a local minimum of the objective function S
in (5.1) with respect to the FOM.

Algorithm 2 Inverse analysis with pROM-gradient
1: initialize µ0, λ0

2: i = 0
3: while convergence criterion from (5.5) not fulfilled do
4: evaluate FOM f(µi) and calculate residual ri from (5.1)
5: store snapshots D(µi)
6: for p = 0, . . . , np do
7: build reduced basis V(µi∆p) from (5.7)
8: evaluate pROM f(µi∆p)

9: end for
10: calculate Jacobian Ji from (5.6)
11: update parameter vector µi+1 from (5.3)
12: i← i+ 1

13: end while
14: return µ̂ = µi

Further note that the strategy introduced in Algorithm 2 requires in each iteration of the op-
timization that the FOM simulation is evaluated before the np gradients can be evaluated in
parallel using the pROM simulations. Thus, considering a scenario of infinite available comput-
ing resources, this strategy would actually slightly increase computation time over the standard
approach of using the FOM for all evaluations. Here, all np + 1 model evaluations can be run
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in parallel. However, considering the more likely scenario where computing resources are just
sufficient to calculate one or few FOM simulations at a time, the strategy outline in Algorithm 2
leads to considerable time savings especially for a large number of parameters np.

Algorithm 2 can be combined with any subspace interpolation method in step 7. The weighted
concatenation of snapshots method (CoS) introduced in Section 4.2.2 is used here, as it per-
formed best in the experiments in Section 4.3.4 and is easily applicable to multidimensional
parameter sets. For the weights of the snapshot matrix for gradient evaluation p, a simple inverse
distance weighting between two evaluation points is used

D̃(µi∆p) =
[
w1 D(µi), w2 D(µk)

]
, w1 =

1/d1

1/d1 + 1/d2

, w2 = 1− w1,

d1 =
∥∥µi∆p − µi∥∥2

, d2 =
∥∥µi∆p − µk∥∥2

, k = argmin
j∈[0,...,i−1[

∥∥µi∆p − µj∥∥2
,

(5.7)

with normalized distances d1, d2 and weights w1, w2 for the current evaluation i and the next
closest evaluation k, respectively. Since at the beginning of the iteration εp � |µip − µkp|, the
weight w1 of the current snapshot matrix D(µi) is always close to one, whereas the weight w2

is close to zero. This can be interpreted as ”enriching” the snapshots of the current iteration with
snapshots from a previous iteration to represent parametric dependence. As the optimization
converges and the changes in parameters are close to the step size of the finite differences, the
weights w1 and w2 equalize. For the first iteration of the optimization the algorithm relies on
standard MOR evaluations using the constant projection matrix from the first FOM evaluation.

In the following, an equation is given for the speedup of gradient-based inverse analysis
achieved by using pROM evaluations for the calculation of the Jacobian with respect to CPU
time. Note that actual computation time depends on the parallelization of model evaluations.
CPU time required to achieve convergence after ni iterations is compared for a model with
gradients calculated from pROM and FOM forward model evaluations, denoted by superscript
pROM and FOM, respectively. The time spent during subspace generation is not included, as it
is negligibly small compared to pROM and FOM evaluation time. The total CPU times T are

T FOM = nFOM
i (np + 1)T FOM, (5.8)

T pROM = npROM
i

[
T FOM + (np + 1)T pROM

]
, (5.9)

where t is the time required for a single forward evaluation. It can be observed from (5.9) that the
number of parameters only scales the pROM evaluation time but not the FOM evaluation time.
Using the speedup α of a single pROM evaluation over a FOM evaluation, the total speedup β
for the inverse problem with respect to CPU time is obtained as

β =
T FOM

T pROM
=

nFOM
i

npROM
i︸ ︷︷ ︸
≈1

· 1
1
α

+ 1
1+np︸ ︷︷ ︸

→α for np→∞

, with α =
T FOM

T pROM
. (5.10)

As will be shown in Section 5.2, the first factor is close to one as the number of iterations is
comparable for both approaches when using a reasonably large number of reduced modes q.
The second factor approaches α in the case of many parameters. Note that in practice there
is a trade-off between the two factors. Choosing a very low-dimensional reduced model with
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5 Inverse analysis

σ0 [kPa] αmax
[
1
s

]
αmin

[
1
s

]
tsys [s] tdias [s]

Initial 200 15 -15 0.35 0.60

Ground truth 280 10 -30 0.25 0.50

Table 5.1: Initial values and ground truth of estimated parameters during inverse analysis with
np = 5.

few degrees of freedom q results in a high single call speedup α but may increase the number of
iterations for the inverse analysis, as the tangents are now approximated worse than with a higher
q. Further note that, after their respective number of iterations, both approximations achieve the
same convergence criterion, which is always evaluated using the FOM.

Other variants of Algorithm 2 are feasible, e.g. replacing all FOM evaluations by pROM ap-
proximations as the inverse analysis algorithm converges closer to the optimum. Such algorithms
however require more advanced strategies to switch between both model evaluations. The algo-
rithm presented here demonstrates the most simple and straightforward approach of including a
pROM within a finite difference gradient-based inverse analysis.

Remark Due to differences in the magnitude of the parameters’ influence on cardiac dynam-
ics, the distance-weighted interpolation proposed in (5.7) might not be the most robust choice.
Here, as all parameters are treated equally, a very old iteration might be chosen for subspace
interpolation. However, if the inverse analysis converges, the solutions of most recent iterations
will always be closer to the current one. A more robust technique would thus be to simply use,
for example, the last two iterations for subspace interpolation.

5.2 Numerical results and discussion

The ability of the inverse analysis method proposed in Section 5.1 to accurately and efficiently
estimate parameters is demonstrated for a real-world cardiac estimation problem. Considered is
the case of a cardiac simulation which is calibrated to a given volume curve, i.e. measurements of
left ventricular volume over time during one cardiac cycle. The definition of the cardiac model is
given in Section 4.3.1. No prior solutions of the FOM are available. Thus, the projection matrices
need to be built from scratch starting at the first iteration of Algorithm 2.

The solution displayed in Figure 4.5a of a forward FOM simulation is chosen as the ground
truth. As parameters, contractility σ0 from (2.67) and myofiber activation rate αmax, myofiber
deactivation rate αmin, onset of ventricular systole tsys, and onset ventricular diastole tdias from
Section 2.4.3 are chosen. Thus, all parameters necessary to determine the shape of the input func-
tion of the model are estimated, i.e. the active stress over time τ(t). The parameters σ0, αmax, and
αmin control cardiac output. However, due to their large variation they are commonly calibrated
to a given patient [30]. These parameters are interconnected with the timing parameters tsys and
tdias. The non-normalized parameters at the start of the inverse analysis and of the ground truth
are listed in table 5.1. The damping parameter is initialized as λ0 = 0.1. The number of reduced
modes is further chosen as q = 300, as it offers a good trade-off between accuracy and speedup.
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Figure 5.1: Convergence behavior during gradient-based inverse analysis with finite differences
for gradient calculation. Shown are objective function and gradient for each iteration,
comparing the use of FOM and pROM for gradient calculation.

In Figure 5.1 the performance of the pROM inverse analysis using Algorithm 2 is displayed,
compared to the standard approach, where the gradients are evaluated using the FOM only.
Figure 5.1a shows the decay of the objective function S from (5.1). As convergence criterion
Si/S0 < 10−5 is defined, which is achieved at nFOM

i = npROM
i = 7. In Figure 5.1b the de-

velopment of the gradient of the objective function with respect to the parameters is compared.
As a synthetic case in the absence of noise is considered, both objective function and gradient
should approach zero as i→∞. The fact that both measures are decreasing non-monotonically
indicates a non-smooth optimization problem. However, the pROM300-gradient optimization is
in excellent agreement with the FOM-gradient optimization.

The start, ground truth, and the converged solutions of both methods after seven iterations are
shown in Figure 5.2. Here, the activation function, i.e. the input of the model, and the volume,
i.e. the output of the model, are shown in figures 5.2a and 5.2b, respectively. It can be observed
that both optimization methods match well with ground truth data for the given convergence
criterion. The convergence of the five parameters relative to their initial values is shown in Fig-
ure 5.3 for both methods. Additionally, the iteration where the convergence criterion is achieved
is indicated. Both methods show a similar trend towards the optimal parameters. With a single
evaluation speedup of α ≈ 7.1, an overall speedup in CPU time of the pROM300 method over
the FOM method of β ≈ 3.3 is achieved, since nFOM

i /nROM
i = 1 and np = 5 in the present

case.simulations to evaluate the gradients reduces CPU time by 69% while achieving similar
accuracy.

5.3 Conclusion

A novel method to include pROM into a finite difference gradient-based inverse analysis was
introduced in this chapter. Using the Levenberg-Marquardt algorithm as an example, the use of
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Figure 5.2: Initial state, converged solution, and ground truth of inverse analysis for model input
(active stress) and model output (volume) over time.

the FOM for all objective function evaluations and pROM for all gradient evaluations was pro-
posed, based on snapshots from the current and previous iterations. Using synthetic data in a
real-world inverse analysis scenario, it was demonstrated that pROM-gradient-based optimiza-
tion shows similar convergence properties as FOM-gradient-based optimization while achieving
considerable CPU time savings. This method can be incorporated easily into existing optimiza-
tion frameworks and could even be combined with commercial solvers for the structural problem.
Using the inverse analysis approach proposed here, has the advantage that a full displacement
field is still calculated in each evaluation of the forward model. Any spatial quantity can thus be
evaluated, which is not possible when using 2D, 1D, or 0D surrogate models for the 3D structural
model. In future research, this will allow to compute a spatial approximation error with respect
to cine or tagged MRI to estimate patient-specific parameters from clinical observations. To the
best of the author’s knowledge, there is only one previous report about the application of para-
metric POD in the context of inverse problems in cardiac biomechanics. In [31], the parameter
space was sampled with four parametric FOM solutions. These snapshots were concatenated to
form a global POD basis. These modes were used to build a ROM of a cardiac binventricular
model, where two contractility values were estimated using a Kalman filter approach. As the au-
thors state themselves, the main issue with such an approach is that the number of (offline) FOM
evaluations grows exponentially with the number of parameters. Although these evaluations can
be run in parallel, this still might cause problems in practice since in real world problems the
FOMs are already very large, i.e. one FOM already uses a large part of the available computa-
tional resources. Moreover, it is assumed that the parameter to be estimated is within the sampled
parameter space.
It is the author’s believe that the presented approach has the following advantages: (1) the number
of FOM evaluations does not depend directly on the number of parameters but on the number of
iterations in the optimization, which is usually independent on the number of parameters, and (2)
there is no need to constrain the parameter space. It is noteworthy that at each optimization step
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5 Inverse analysis

higher oder information of the least-squares functional (e.g. the Hessian) can be approximated
using the POD modes at the same parameter, as it was done for the gradient. This should reduce
the number of FOM evaluations to achieve a minimum. Furthermore, it is conceivable to replace
some of the FOM evaluations of the objective function with pROM evaluations, depending on
an error measure depicting the current quality of the pROM approximation.
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6 Summary and Outlook

In this thesis, a computational mechanical model of the human heart was developed with the
background to study post-infarction cardiac growth and remodeling (G&R) in the future. A
patient-specific four-chamber geometry from high-resolution static 3D magnetic resonance imag-
ing (MRI) was created, including ventricles, atria, adipose tissue, and great vessels. The cardiac
model was formulated within a large displacement, constitutive nonlinear framework with non-
linear boundary conditions. It featured high-resolution quadratic tetrahedral finite elements for
structural dynamics with implicit time integration. Blood pressure was incorporated through
monolithic coupling of left and right ventricle to Windkessel models which include each the
atrioventricular and semilunar valves. The reference configuration was prestressed in all four
cardiac chambers. The passive myocardial material was composed of state of the art orthotropic
exponential material law proposed in [88]. Myofiber contraction in atria and ventricles was mod-
eled with an active stress approach. Passive and active material behavior were based on local fiber
orientations.

Three objectives were addressed to improve the current state of cardiac mechanics modeling.
Realistic and computationally cheap pericardial conditions were evaluated in a comprehensive
study using patient-specific cine MRI data. A projection-based reduced order model of the mono-
lithically coupled structural-Windkessel model was proposed as a general tool for speeding up
model calibration, reducing the structural model using proper orthogonal decomposition. A strat-
egy was suggested to use the reduced order model during gradient-based inverse analysis. The
following sections provide an overview of the accomplishments of this thesis and of possible
future directions of research.

Pericardial boundary conditions

The human heart is enclosed in the pericardial cavity. The pericardium consists of a layered
thin sac and is separated from the myocardium by a thin film of fluid. It provides a fixture in
space and frictionless sliding of the myocardium. Cardiac mechanics are formulated as an initial
boundary value problem. A correct prediction of the kinematics of cardiac contraction as well as
the internal stress state thus crucially depend on the boundary conditions. Accurate local stresses
are essential, as they are an important trigger of cardiac G&R. Therefore, the influence of the
pericardium is essential for predictive mechanical simulations of the heart. However, so far there
is no consensus on physiologically exact but computationally tractable pericardial boundary con-
ditions.

Following a comprehensive review of the biological details of the pericardium, a mechanical
model is proposed for myocardial-pericardial interaction. A simplified boundary condition was
derived leading to the formulation of a parallel spring and dashpot acting in normal direction on
the epicardium. Using a four-chamber geometry, a model with pericardial boundary conditions
was compared to a model with a fixed apex, a boundary condition commonly used in literature.
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6 Summary and Outlook

The influence on pericardial stiffness on cardiac contraction was studied in a parametric study.
Ventricular dynamics were well approximated for low stiffness values, whereas ventricular-atrial
interaction was best approximated for higher stiffness values.

In a second numerical study, simulation results for both boundary conditions were compared
to measurements from cine magnetic resonance imaging. To incorporate the influence of fiber
orientation in cardiac contraction, three different orientations,±50◦,±60◦, and±70◦, were stud-
ied. For each combination of boundary condition and fiber orientation, cardiac contractility and
onset of systole were calibrated to the left ventricular volume curve obtained from cine MRI.
Simulations were compared with respect to left ventricular volume and pressure, atrioventric-
ular plane displacement, ventricular endocardial spatial error, passive atrial filling, and pericar-
dial contact-stress. Using pericardial boundary conditions yielded a better approximation with
respect to atrioventricular plane displacement, atrial filling, and overall spatial approximation
error. In general, more vertical fiber orientations yielded higher atrioventricular plane displace-
ment, whereas more horizontal fiber orientations yield a more radial contraction of the ventricles.
Most importantly, the stresses acting on the pericardium were unphyiologically high in case of
a fixed apex. For pericardial boundary conditions, stresses were distributed evenly over the epi-
cardial surface and on average within the range ±20 mmHg.

In general, this thesis demonstrated that a simple model of pericardial-myocardial interaction
can correctly predict the pumping mechanisms of the heart as previously assessed in clinical
studies. To make a fair judgment of pericardial boundary conditions, they were compared to a
cardiac model with a fixed apex, representing the state of the art of simplified epicardial boundary
conditions. The cardiac model with pericardial boundary conditions predicted cardiac motion in
better agreement with cine MRI of tested characteristics of cardiac contraction. It further yielded
physiologically more correct contact stresses, which were highly elevated when using bound-
ary conditions with a fixed apex. Especially the second finding is important for future studies
of cardiac G&R. In the future, utilizing a pericardial model can not only provide much more
realistic cardiac mechanics simulations but also allows new insights into pericardial-myocardial
interaction which cannot be assessed in clinical measurements yet.

A major improvement of pericardial boundary conditions is given by spatially varying peri-
cardial stiffness parameters. A finding in this thesis was that different regions of the heart are
well approximated for different stiffness parameters. This suggests that the model might benefit
from a regional variation of pericardial stiffness. This hypothesis is supported by the fact that
the pericardial tissue is in contact with various organs of different material properties. As the
pericardium transmits forces between the heart and its surrounding organs, the organs’ stiffness
is expected to influence cardiac contraction.

The simulation results in this thesis were solely compared to cine MRI data. Cine MRI is an
Eulerian observation of cardiac movement, as imaging is fixed in space throughout the cardiac
cycle. This observation, however, cannot detect any rotational movement with respect to the long
axis, as the left ventricle is almost rotationally symmetric. To properly validate any rotational
movement of the myocardium, a comparison to data from 3D tagged MRI is necessary, which is
a Lagrangian observation of cardiac motion.

To validate the stresses acting on the epicardium during cardiac contraction predicted by the
pericardial boundary condition, experiments are necessary. Pericardial contact stress can be mea-
sured by a flat balloon catheter. However, previous clinical studies did either only consider end-
diastolic stresses [165, 177] or measured pericardial liquid pressure instead of contact pressure
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[85]. For a comprehensive analysis, in vivo measurements of pericardial contract stress must be
performed at different regions of the epicardial surface throughout the whole cardiac cycle.

Model order reduction

Predictive high-fidelity finite element simulations of human cardiac mechanics commonly re-
quire a large number of structural degrees of freedom. Additionally, these models are often
coupled with lumped-parameter models of hemodynamics. High computational demands, how-
ever, slow down model calibration and therefore limit the use of cardiac simulations in clinical
practice. As cardiac models rely on several patient-specific parameters, just one solution corre-
sponding to one specific parameter set does not at all meet clinical demands. Moreover, while
solving the nonlinear problem, 90% of the computation time is spent solving linear systems of
equations. This motivates the use of projection-based model order reduction.

In this thesis, a novel approach was derived to reduce only the structural model of the monoli-
thically coupled structure-Windkessel system by projection onto a lower-dimensional subspace.
The Windkessel model remains unchanged during the reduction. Proper orthogonal decompo-
sition was used to obtain a projection matrix, based on a solution of one cardiac cycle of the
full order model. Several methods were reviewed for subspace interpolation to incorporate para-
metric variations into the reduced order model and enable its solution of parametric simulations
without prior knowledge of the full order solution.

The performance of all proposed methods was demonstrated using a high-fidelity patient-
specific four-chamber cardiac model with about 850’000 degrees of freedom. In the most ex-
treme case, a reduced order model with only ten degrees of freedom yielded an approximation
accuracy below 0.2 mm while achieving a speedup of a factor of 13 over the full order model.
Cardiac contractility was varied and simulations were compared to test different subspace in-
terpolation methods for different resolutions of full order model sample points. Although re-
duced order model approximation accuracy decreases significantly in between sample points,
the subspace interpolation methods successfully incorporated parametric changes, obtaining a
good approximation of the displacement field as well as of key scalar cardiac outputs.

It was found for reduced order models with very few degrees of freedom that element eval-
uation dominates total simulation time. In the future, these reduced order models could thus be
further sped up by introducing hyper-reduction. Such methods have already been proposed, see,
e.g. the discrete empirical interpolation method (DEIM) [35] or the energy conserving mesh
sampling and weighting method (ECSW) [51]. However, the stability of those methods within
the monolithically coupled structure-Windkessel model is yet unknown.

Projection-based reduced order modeling has some interesting applications in cardiac me-
chanics, especially in a many-query setting, were many model outputs are required. It was re-
ported in [83] that more than ten cycles can be necessary until a closed-loop cardiovascular
model converges to a periodic state. In multifidelity uncertainty quantification, repeated model
evaluations are required while switching between models of varying fidelity [17]. Furthermore,
repeated cycling over an extended period of time might be necessary to trigger laws of cardiac
G&R. In all scenarios, some of the cardiac cycles could potentially be replaced by reduced order
models in the future.
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6 Summary and Outlook

Inverse analysis

It was shown that projection-based model order reduction can be easily integrated into a gradient-
based optimization when using finite differences to calculate the gradient. The method proposed
in this thesis uses the full order model to evaluate the objective function and reduced order mod-
els to evaluate gradients, based on solutions of the full order model in the current and prior
iterations of the optimization. This simple approach can be easily integrated in existing opti-
mization frameworks and could even be compatible with commercial solvers for the forward
model.

The performance was demonstrated in a real-world multivariate inverse analysis scenario with
the Levenberg-Marquardt method, using a volume curve as model output and the active stress
curve as model input. Using the presented projection-based model order reduction approach
yielded convergence properties competitive with the standard approach. Using a reduced order
model with 300 degrees of freedom and a speedup of a factor of 7.1 compared to the full order
model yielded an optimization speedup of a factor of 3.3.

The proposed method could be further improved by embedding it within a tailored optimiza-
tion method, benefiting from cheap gradient evaluations. With a suitable algorithm to estimate
the required accuracy of an iteration of the optimization, even some of the objective function
evaluations could be sped up by reduced order models. The accuracy of the reduced order mod-
els, in this case easily adapted by the number of reduced degrees of freedom, could be chosen
dynamically, depending on the purpose of the model evaluation, i.e. objective function, gradient,
or second derivative.

The scenario where parameters are estimated for a cardiac model from 3D tagged MRI is a
special case in model order reduction, since the optimal displacements of the model are known
a priori. It might thus be conceivable to extract displacement modes from the MRI observation.
The subspaces used within the optimization algorithm could then be enriched by the ones from
MRI. As the optimization converges towards the optimal parameter set, the modes obtained from
MRI assure a good approximation of the reduced order model close to the optimum.

Modeling of cardiac growth and remodeling

It was hypothesized at the beginning of this thesis that adverse cardiac G&R following my-
ocardial infarction (MI) results from an imbalance of several competing adaption mechanisms,
namely hypertrophy, extracellular matrix remodeling, and myofiber reorientation. To test this hy-
pothesis, knowledge of the evolution of the mechanical state of the myocardium, i.e., local stress,
stiffness, and microstructure, needs to be obtained at multiple points in time during healing from
MI.

The mechanical state of the myocardium cannot be assessed in vivo by routine clinical ex-
amination. Nevertheless, it can be estimated using an advanced cardiac computational model
as developed in this thesis. All cardiac models crucially rely on active and passive constitutive
properties of the myocardium, as well as local tissue anisotropy resulting from myocardial mi-
crostructure. Cardiac material parameters have been estimated in the past from motion MRI or
ultrasound through inverse analysis [30, 52, 77, 129, 135, 144]. However, none of the findings
obtained from computational modeling was compared to ex vivo mechanical testing for valida-
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tion. Furthermore, it is expected that the regional constitutive properties of myocardial tissue
following remodeling are significantly altered compared to the healthy state [76].

There have been attempts to quantify in vivo mechanical changes in cardiac tissue undergo-
ing G&R. Based on the theory of kinematic growth [153], models for eccentric (strain-driven)
and concentric (stress-driven) hypertrophy have been proposed [72, 107, 187]. The kinematic
growth theory is, however, unable to differentiate between constituents of myocardial tissue,
i.e., myocytes, collagen fibers, and ground matrix, which all might have different G&R mech-
anisms and triggers. Furthermore, kinematic growth models often grow unboundedly unless
they are restrained a priori. These models are thus not suitable for predicting the stability of
a heart’s adaption processes. Constrained mixture models of G&R model the continuous de-
position and degradation of different constituents of biological tissue, taking into account their
individual preferred homeostatic stress state [93]. Recently, a homogenized constrained mixture
theory was developed and applied to aneurysms, combining the microstructural detail of con-
strained mixture models with computational efficiency [25, 42]. Although past computational
studies of cardiac G&R were able to confirm trends observed in previous ex vivo experiments
[62, 73, 101, 103, 117, 118], the quantitative results of these studies are limited.

The central aspect of future research of cardiac G&R should therefore be a longitudinal ex-
perimental and computational study of cardiac regeneration. Animals induced with MI could
be monitored using a comprehensive in vivo measuring protocol, including 3D static MRI, cine
MRI, 3D tagged MRI, diffusion tensor MRI, and catheter pressure measurements at multiple
points in time throughout the adaption process. Inverse finite element simulations of the con-
tracting heart could be employed to obtain in vivo spatially distributed constitutive parameters.
The changes in fiber architecture could be quantified through a reconstruction from in vivo dif-
fusion tensor MRI. This study protocol would allow to completely characterize the change in
mechanical properties of healing myocardial tissue over time. At the end point of the longitu-
dinal in vivo study, the hearts could be excised and undergo ex vivo triaxial shear and biaxial
tensile testing. Mechanical testing would enable the comparison of constitutive parameters ob-
tained from inverse finite element simulations of the contracting heart with parameters from ex
vivo measurements. Based on these accurate models of the hearts’ mechanical state at several
points in time, homogenized constrained mixture models could be calibrated to identify triggers
of cardiac G&R.

A physiological patient-specific predictive computational model of cardiac G&R will be ex-
tremely beneficial for patients in many scenarios, e.g., to determine a priori whether a patient is
likely to respond to a specific therapy and for optimizing treatments on a patient-specific basis to
maximize post-MI recovery. For example, the optimal pacing site in cardiac resynchronization
therapy could be selected as predicted by a computational model to maximize long-term car-
diac rehabilitation, rather than maximizing short-term response according to currently available
clinical predictors.
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A Simulation parameters

All parameters for all simulations in this work are summarized in this appendix.

A.1 Pericardial boundary conditions: Prolate spheroid
geometry

These parameters are used in Section 3.4 for the prolate spheroid geometry from Section 2.3.2.

Name Parameter Value Unit

Tissue density ρ0 103
[

kg
m3

]
Viscosity η 10.0 [Pa · s]

Volumetric penalty κ 104 [kPa]

Ventricular contractility σv 185 [kPa]

Mooney-Rivlin C1 10.0 [kPa]

C2 40.0 [Pa]

Spring stiffness base kb 1.0
[ kPa

mm

]
Dashpot viscosity base cb 0.0

[ kPa·s
mm

]
Pericardial spring stiffness

Case free kp 0.0
[ kPa

mm

]
Case pericardium kp 20.0

[ kPa
mm

]
Case pseudo-contact kp 20.0

[ kPa
mm

]
All cases cp 0.0

[ kPa·s
mm

]

Table A.1: Parameters of the elastodynamical model.
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A Simulation parameters

Name Parameter Value Unit

Proximal inertance Lp 1.3 · 105
[

kg
m4

]
Proximal capacity Cp 7.7 · 10−9

[
m4·s2

kg

]
Distal capacity Cd 8.7 · 10−9

[
m4·s2

kg

]
Proximal resistance Rp 7.3 · 106

[
kg

m4·s

]
Distal resistance Rd 1.0 · 108

[
kg

m4·s

]
Reference pressure pref 0 [Pa]

Closed valve resistance Rmax 1.0 · 1013
[

kg
m4·s

]
Open valve resistance Rmin 1.0 · 106

[
kg

m4·s

]
Valve steepness kp 1.0 · 10−3 [Pa]

Table A.2: Parameters of the cardiovascular Windkessel model.

Name Parameter Value Unit

Atrial pressure pat(0) 0.0 [mmHg]

Ventricular pressure pv(0) 0.0 [mmHg]

Proximal pressure pp(0) 80.0 [mmHg]

Distal pressure pd(0) 72.3 [mmHg]

Proximal flow qp(0) 97.4
[

cm3

s

]

Table A.3: Initial conditions of the reduced order cardiovascular model.

Parameter Value

Generalized-α

γ, αf , αm 0.5

β 0.25

One-step-θ

θ 1.0

Table A.4: Numerical time integration parameters.
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A.2 Pericardial boundary conditions: Patient-specific four-chamber geometry

A.2 Pericardial boundary conditions: Patient-specific
four-chamber geometry

These parameters are used in Section 3.5 for the patient-specific four-chamber geometry from
Section 2.3.1. The parameters for the left and right ventricular Windkessel model are identical
to the ones in Table A.2. The numerical time integration parameters are identical to the ones in
A.4.

Name Parameter Value Unit

All tissues

Tissue density ρ0 103
[

kg
m3

]
Viscosity η 0.1 [kPa · s]

Volumetric penalty κ 103 [kPa]

Active myocardial tissue

Atrial contractility σa 9.72 kPa

Ventricular contractility σv see Table 3.1b

Activation rate αmax +5
[
1
s

]
Deactivation rate αmin −30

[
1
s

]
Atrial systole tsys 70 [ms]

Atrial diastole tdias 140 [ms]

Ventricular systole tsys see Table 3.1b

Ventricular diastole tdias 484 [ms]

Passive myocardial tissue ([88] table 1, shear, figure 7)

Matrix a 0.059 [kPa]

b 8.023 [−]

Fiber af 18.472 [kPa]

bf 16.026 [−]

Sheet as 2.481 [kPa]

bs 11.120 [−]

Fiber-sheet afs 0.216 [kPa]

bfs 11.436 [−]
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A Simulation parameters

Table A.5 – Continued from previous page

Name Parameter Value Unit

Great vessels

Mooney-Rivlin C1 5.0 [kPa]

C2 0.04 [kPa]

Spring stiffness kv 2.0 · 103
[ kPa

mm

]
Dashpot viscosity cv 1.0 · 10−2

[ kPa·s
mm

]
Adipose tissue

Neo-Hooke µ 1.0 [kPa]

Pericardial boundary condition: see Table 3.1a

Table A.5: Parameters of the elastodynamical model.

Name Parameter Value Unit
Left Right

Atrial pressure pat(0) 6.0 4.0 [mmHg]

Ventricular pressure pv(0) 8.0 6.0 [mmHg]

Proximal pressure pp(0) 61.8 24.0 [mmHg]

Distal pressure pd(0) 59.7 23.2 [mmHg]

Proximal flow qp(0) 38.3 14.9
[

cm3

s

]

Table A.6: Initial conditions of the reduced order cardiovascular model.

A.3 Model order reduction: Patient-specific
four-chamber geometry

These parameters are used in Chapters 4 and 5 for the patient-specific four-chamber geometry
from Section 2.3.1. The parameters for the left and right ventricular Windkessel model are iden-
tical to the ones in Table A.2. The numerical time integration parameters are identical to the ones
in A.4.
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A.3 Model order reduction: Patient-specific four-chamber geometry

Name Parameter Value Unit

All tissues

Tissue density ρ0 103
[

kg
m3

]
Viscosity η 5.0 [kPa · s]

Volumetric penalty κ 104 [kPa]

Active myocardial tissue

Ventricular contractility σ0 [280,. . . ,430] kPa

Activation rate αmax +10
[
1
s

]
Deactivation rate αmin −30

[
1
s

]
Ventricular systole tsys 246 [ms]

Ventricular diastole tdias 502 [ms]

Passive myocardial tissue and great vessels

Mooney-Rivlin C1 10.0 [kPa]

C2 40.0 [Pa]

Spring stiffness kv 2.0 · 103
[ kPa

mm

]
Dashpot viscosity cv 1.0 · 10−2

[ kPa·s
mm

]
Adipose tissue

Neo-Hooke µ 1.0 [kPa]

Pericardial boundary condition: see Table 3.1a

Table A.7: Parameters of the elastodynamical model.
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