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Chapter 1

Introduction

The dependency of modern aircraft on complex systems is critical to their safe opera-
tion. The responsibility to ensure that the design of these systems satisfies in effect the
level of safety expected by passengers and other commercial users rests with aircraft
design, production, maintenance and operation organizations. Among other control
mechanisms, it is enforced by public aviation safety agencies through obligatory de-
sign certification. During aircraft and systems design, collecting evidence for confor-
mance to a cascade of functional and technical requirements associated with the safe
operation is — in some parts — repetitive and thus suitable for automation.

The utilization of software support for the purely bureaucratic portion of safety
assessment has become commonplace in the aircraft industry and is not discussed in
this work. The decision whether a system’s plausible malfunction is sufficiently im-
probable as determined by the gravity of the malfunction’s effects is at the heart of
safety assessment. This decision is made through a series of (usually iterative) steps,
formalized under the term fault tree analysis:

1. Ensure that the malfunction (called failure condition in this context) does not ensue
from normal operation of the system

2. Identify which component faults or external effects can cause the malfunction
under consideration, alone or in combination

3. Determine the probability that these causes occur, e.g. through reliability studies

4. Calculate the probability of the system malfunction as a function of the probabil-
ities of its causes

The challenge lies in identifying plausible causes for a failure condition in the first two
steps. Because normal operation by definition only consists of a number of well-known
scenarios, the second step is more difficult: The combinatorial diversity of each plau-
sible event interacting with each other set of events within and without the system
makes bottom-up analysis intractable, so heuristics on system behavior need to be em-
ployed to narrow the search space of critical scenarios. In order to apply them, system
behavior must be described formally.
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1.1 Motivation

For different reasons, executable mathematical models of system behavior have be-
come popular for system design. Extending them for the purpose of automating cause-
consequence analysis as a part of safety assessment promises synergy between the two
fields, and is the context of this work and its contributions.

1.1 Motivation

Cause-consequence analysis in complex technical systems is challenging, not only be-
cause it commonly requires the combined effort of multiple experts in the domains of
the components of the system, but also because it requires strong abstraction of system
behavior. In the theoretical essence, knowledge about system behavior is translated
into logical conditions for the occurrence of the failure condition under consideration.
In practice, this is also an organizational interface between experts on safety assess-
ment and experts on system architecture and design. Supporting these experts in their
work would help them design even safer aircraft and systems, save them time for the
portions of their work that cannot be automated, and eventually contributes to faster,
safer innovation in the aerospace industry.

1.2 State of the art

At the heart of model-based safety assessment in the question which properties mod-
els need to have in order to be useful in practice, for both system designers and safety
engineers. Joshi and Heimdahl [1] derive a list of requirements towards a behavioral
fault modeling language, or, in the terms of this work, operational semantics for fail-
ure simulation in general. They also highlight a problem of great practical relevance
when trying to model failure behavior with dataflow languages: Faults can alter the
direction in which cause propagates to consequence throughout the modeled system
architecture. Taking this into account in directional modeling languages requires the
addition of feedback loops, is error-prone, tedious and leads to models with low intel-
ligibility and maintainability. This, in turn, is prohibitive in iterative safety engineering
and system design of safety-critical systems.

Differential-Algebraic Equation System (DAE)-based modeling languages, also re-
ferred to as physical or equation-based modeling languages, do not require explicit
fault propagation path modeling. Mosterman and Biswas [2] propose a DAE-based
modeling language, modeling framework and simulator called HyBrSim. Albeit ful-
filling all the above requirements, there are two issues preventing it from practical
application in model-based safety assessment:

• HyBrSim allows specifying transition conditions for hybrid mode change on the
continuous system state after discrete reconfiguration, which requires calculating
continuous system state after discrete reconfiguration at each time step, for each
such transition, and thus renders the simulation of large models computationally
prohibitively expensive.
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Chapter 1: Introduction

• HyBrSim does not offer the powerful user interface, integration, and extensibility
of commercial modeling environments, which are pivotal in their economically
efficient use in industrial practice.

In the Modelica-community, Schallert [3] has presented a framework for model-based
safety assessment called DMP1. As a behavioral fault modeling language, it has several
drawbacks:

• Only one fault per model node is allowed, and only one model node per real
system component is allowed, which limits the number of faults per real system
component to one.

• Fault behavior is limited to parameter changes of the underlying DAE. Replacing
equations related to the failed component is not allowed.

Schellhorn et al. [4] contributed a formal definition of safety assessment through
fault trees which explains how deterministic cause-consequence analysis is the pre-
requisite of the probabilistic calculation of top-event probability. This has narrowed
down the problem of model-based safety assessment to cause-consequence analysis in
the underlying model, by clarifying its interface to top-event probability calculation. It
also justifies rigorous alignment of model-based safety assessment to the well-defined
safety assessment process in the aviation industry.

During the writing of this thesis, MathWorks released MATLAB 2017b (see [5])
which allows the user to model and simulate hybrid behavior with the Simscape pack-
age. This implementation does not suffer from the drawbacks of HyBrSim. Yet, it
does not fulfill the requirements towards a behavioral fault modeling language: Nom-
inal and failure behavior are not semantically distinguished, because hybrid modes do
not carry such an annotation. Consequently, there is no aspect separation in models
between nominal and failure behavior, which in turn promotes modeling errors. Fur-
thermore, hybrid modes and transitions are defined via textual definition of transition
conditions only. In the rare case of complex failure behavior transition logic, this is
another risk for modeling errors because it may lack clarity.

Hybrid systems with DAE-models as their continuous portion have benign proper-
ties for modeling and simulation purposes in the context of behavioral failure model-
ing. But the expressiveness of hybrid systems comes at the cost of intractability of their
verification even for simple properties and slightly more complex models [6]. This fun-
damental contribution of outlining where tractability and decidability end has made it
clear that abstractions are indispensable for verifying hybrid systems with DAEs and
more general requirements.

With their modeling language AltaRica, Arnold et al. [7] have limited dataflow-
based languages exactly to what is tractable in formal verification. AltaRica is lim-
ited to language features which produce formally verifiable models, and has been
successfully integrated into commercial products such as Safety Designer by Dassault
Systèmes (a recast of Cecilia OCAS; now unavailable), and, in its newest version 3.0,
SIMfia by Apsys [8].

1Only the acronym is given in the paper.
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1.2 State of the art

Qualitative abstractions of failure behavior have proven flexible and fruitful in
practical application, even though the creation of the abstraction is manual for general
DAE-based modeling languages. Qualitative Deviation Models [9] abstract system be-
havior to discrete models through a concept inspired by state space model linearization
in control systems. At the time of writing of this work, the QSafe research group with
participation of the Institute of Flight System Dynamics at the TU München investi-
gated methods for automatically abstracting more dynamically expressive modeling
languages into qualitative deviation abstractions.

Hierarchically Performed Hazard Origin & Propagation Studies (HiP-HOPS) is an
evolution of Failure Propagation and Transformation Notation (FPTN) and abstracts
nominal and failure behavior as a directional propagation and transformation of tags
for faulty behavior throughout the topology of a behavioral model.

Uniting the strengths of the above approaches, smartIflow by Hönig [10] allows Fi-
nite State Machines (FSMs) for component behavior specification, and employs formal
verification against safety requirements in Computational Tree Logic (CTL) for cause-
consequence analysis. This work nevertheless concentrates on quantitative models
due to their popularity in control systems design.

Quantitative abstractions are more problem-specific than their qualitative counter-
parts, but once found, allow tradeoffs between the computational effort of verification
and the amount of pessimism they impose on the verification problem. The continuiza-
tion of a specific class of hybrid systems has been demonstrated by Althoff [11] to allow
pessimistic verification of systems whose transitions only involve linear state reconfig-
uration functions, or such that can be replaced by a linear hull of sufficient precision
for the requirement under verification. Transitions from nominal to failure behavior,
in general, do not have that property.

Testing, in the sense of systematically simulating the model and comparing results
to requirements, can also provide valuable insights into system behavior, even though
simulation results cannot be generalized to statements on system safety. Fainekos et
al. [12] have presented S-TaLiRo for test-based verification of control systems. It proves
the value of testing, regardless of whether formal verification is available. Because it
only supports dataflow-based modeling languages, it depends on dedicated failure
simulation models.

Given that no complete set of abstractions for a sufficiently general class of hybrid
systems (with DAE-based continuous models and sufficiently general transitions) for
formal verification exists, a reduction of the search space for eligible component faults
in cause-consequence analysis is of interest. Because, in the worst case, each fault
alone can trigger the failure condition under analysis, importance metrics from the
probabilistic domain of fault tree analysis allow focusing analysis attention on faults
with great probability contribution. Kuo and Zho [13] give an overview of available
importance metrics. While some cover scenarios where multiple faults are active, none
are directly linked to a fault tree generation or validation process that would allow it
to guide the analysis.
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Chapter 1: Introduction

1.3 Objective

The objective of this doctorate has been to advance model-based safety assessment in
two ways:

1. Physical simulation of nominal and failure behavior based on an efficient model-
ing process that produces maintainable models

2. Formalization of the problem of fault tree generation and validation in a way that
allows a divide-and-conquer-approach to formal verification of safety properties
of complex, safety-critical systems

1.4 Contributions

The contributions of this work are in three related areas of model-based safety assess-
ment, hybrid failure simulation, fault tree validation and fault tree generation from
qualitative fault propagation and transformation annotation. Separately, they are of
value to the field of model-based safety assessment, but their synergy is essential for
their effectiveness in reference to the previously stated objectives of this work. This
section first explains their separate value and, in the end, explains their common ap-
plication in fault tree generation and validation.

1.4.1 Realistic physical failure simulation

The presented operational semantics for hybrid failure simulation is based on that of
Mosterman and Biswas [2]. Instead of limiting continuous behavior to energy bond
graph models, the presented framework allows the more general model class of DAEs.
In contrast to their semantics, it does not allow post-conditions. Post-conditions for
transition allow correctly capturing transition times in fixed time step simulation. Its
drawback is that it renders the simulation of models in discrete states where many
hybrid components are in modes with post-conditions prohibitively expensive. By
employing a variable time step solver for the continuous portion of hybrid simulation,
post-conditions are obsolete in the presented semantics. The presented operational se-
mantics for hybrid simulation has been implemented in the MathWorks tool chain [5],
and allows seamless integration of nominal and failure behavior specification. It thus
is the first semantics and implementation that suffices all requirements for a behav-
ioral failure modeling language and modeling/simulation framework as defined by
Joshi and Heimdahl [1].

1.4.2 Curbing combinatorial explosion

The method for fault tree validation proposed in this work complements robustness
metrics-driven testing concepts as implemented in S-TaLiRo by Fainekos et al. [12] by
using the probabilistic portion of fault tree analysis for determining when the deter-
ministic portion of cause-consequence analysis can be stopped. It also directly applies
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1.4 Contributions

to fault tree validation in review processes by guiding the analysis through the as-
pects of safety design encoded by the given fault tree in descending order of their
contribution to top-level event probability. The underlying concept of fault tree pes-
simism, which states that the most pessimistic fault tree possible for any failure is that
in which each component fault individually triggers the top event, is developed into
a process of iterative fault tree refinement during fault tree generation. The method
simplifies automation of fault tree generation by breaking down the necessary veri-
fication work into individually treatable tasks. It employs probability truncation for
curbing combinatorial explosion already during fault tree generation. Additionally,
it produces standard-conformant, human-readable fault trees when combined with
structural models of the system under analysis. In these properties, it is superior to
current concepts for fault tree generation, which fail to produce standard-conformant
fault trees and suffer from combinatorial explosion.

1.4.3 Omnidirectional fault propagation and transformation

The last contribution is a method for fault tree generation that analyzes the model
structure of DAE-based (omnidirectional) and dataflow-based models of nominal and
failure behavior. Additional modeling semantics for fault propagation and transfor-
mation are introduced and exploited in automated fault tree generation. They require
designers to directly capture safety design intent (such as failure propagation barri-
ers or redundancies) in their model. This effort is repaid by using that information in
automated fault tree generation.

1.4.4 Conceptual overview

In Figure 1.1, two applications of Chapter 4 are illustrated: The center lane with the
right lane describes fault tree validation, and the center lane with the left lane describes
fault tree generation.

In order to produce a complete fault tree (during generation) or assess completeness
(during validation), both methods rely on a step where the fault tree and ‘reality’ are
compared. It is assumed that real system behavior is not computationally accessible for
all failure conditions, so an adequate model of it called reference behavior is assumed to
be available. Evaluating it means that ‘true’ system behavior under given circumstances
is determined. In this work, it is used to determine if some other, simpler model (such
as a fault tree) is adequate for its limited purpose. Safety assessment allows simpler
models to predict that the system would fail when in reality it does not. In such a
case,the simpler model is called pessimistically wrong and the circumstance in which the
error is relevant is called the false positive. The contrary case, when the simpler model
predicts the system not to fail when in reality it does, is called optimistically wrong, and
false negative, respectively. In fault tree generation and validation, the simpler model is
the fault tree.

In fault tree generation, the combinations of faults in which the failure condition
under analysis is predicted to occur by the fault tree are of interest. Such combina-
tions of faults are called positive scenarios. If the ‘reality check’ for a particular positive

6



Chapter 1: Introduction

Specific to
fault tree generation Common process steps Specific to

fault tree validation

Derive pessimistic
fault tree template

Iterate over
positive scenarios

Iterate over
negative scenarios

Evaluate
reference behavior
in current scenario

System
architecture

Fault tree under
validation

Fault tree
template

Trim
fault tree

Reference
behavior

Does top
event occur?

Yes: invalid
fault tree

Does top
event occur?

Sufficient probability
in evaluated scenarios
or all scenarios evaluated?

No: Fault tree
too pessimistic

Yes No

No No
Yes: Generation /
validation is
complete

Figure 1.1: Concepts for the application of fault tree pessimism (see Chapter 4) for fault
tree generation or validation
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1.4 Contributions

scenario of evaluating reference behavior for it yields that the fault tree’s prediction is
pessimistically wrong, the fault tree can be corrected or trimmed for it and make it less
pessimistic. The loop of evaluation and, if possible, trimming is called fault tree tem-
plate refinement and is continued until the fault tree’s predicted probability for the top
event to occur is below some threshold (e.g. the certification limit), or until all positive
scenarios have been evaluated. This is illustrated in Figure 4.4 in Chapter 4.

In fault tree validation, negative scenarios, in which the fault tree predicts the failure
condition not to occur, are of relevance. When a negative scenario is found to be a
false negative, validation can be aborted and the result is that the fault tree is invalid,
because it is optimistically wrong. When all negative scenarios have been evaluated or
when the total probability of scenarios that have not yet been evaluated is below some
threshold, the fault tree is valid.

Evaluating reference behavior is much more costly in manual labor or computa-
tional power than Boolean reasoning and probability calculations on the fault tree, so
the core concept is to minimize the number of times that reference behavior needs to be
evaluated, and make each evaluation as simple as possible. The simplicity of evalua-
tions is promoted by how the space of the combinations of faults about which the fault
tree reasons is partitioned. The number of evaluations is minimized through probabil-
ity truncation of the iteration over the scenarios, i.e. iteration is aborted once sufficient
probability has been accumulated.

In conventional safety assessment, the entirety of the processes of fault tree genera-
tion and validation is manual. In contrast to this, the processes illustrated in Figure 1.1
directly allows automation of all process steps except for the evaluation of reference
behavior. The manual labor required for this step depends on which of the following
types of behavioral description is employed for reference behavior:

1. Informal model: A set of documents that textually describe real system behavior
for evaluation using engineering judgment only

2. Executable model: An executable model of system behavior that encompasses
nominal and failure behavior (see Chapter 3)

3. Verifiable model: An abstraction of system behavior that is suitable for purely
computational comparison to failure behavior as defined in the fault tree

Informal models require less manual labor without imposing greater manual effort
for model preparation because no mathematical model of reference behavior is built.
However, this renders automation impossible. Executable models allow simulating
reference behavior, but require modeling effort to be spent beforehand. When simula-
tion results can be evaluated in a way that they can be related to the Boolean logic of
the fault tree, they can become validation rationale during fault tree validation. This
variant combines the results of the Chapters 4 and 3. The third variant assumes that,
through manual or automatic abstraction, reference behavior can be compared directly
to what the fault tree expresses about a particular scenario. Chapter 5 introduces a
manual abstraction method for this purpose.
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Chapter 1: Introduction

1.5 Outline

The next chapter gives a brief introduction into the mathematical fields whose concepts
are relevant for this work. The Chapters 3, 4 and 5 explain this work’s contributions. In
Chapter 3, an operational semantics for behavioral failure models is discussed, along
with an implementation of a modeling framework and a simulator. Chapter 4 explains
the algorithm for efficiently extracting failure scenarios with high probability contribu-
tion from fault trees. In Chapter 5, a concept for formally linking logical failure behav-
ior as specified in fault trees and physical system behavior as specified in DAE-models
is introduced, and the provided implementations of two applications of that concept in
modeling and translation engines (from behavioral model to fault tree) are examined.
The last chapter summarizes the results and proposes future research directions and
next steps towards application in real aircraft programs.
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Chapter 2

Context and Background

In this chapter, the mathematical preliminaries and legal context of this work are in-
troduced briefly and with references to comprehensive sources on each subject. Its
background in industrial practice is highlighted, as defined in standards and scientific
contributions of outstanding significance. It serves as a dictionary for notations, terms,
and definitions, and supplies the theoretical justifications for choices made in the main
contributions of this work.

2.1 Mathematical preliminaries

This section explains the underlying mathematical concepts of this work. It assumes
familiarity with the mathematical canon taught at TU München’s mechanical engineer-
ing courses of study. Because this work lies at the interface of mechanical and software
engineering, the relevant concepts of software engineering make up the major portion
of the section.

2.1.1 Modern probability theory

Probability theory reasons about future events based on statistical data. This section
introduces the concepts and notation of stochastic and statistic mathematics used in
this work.

The fundamental element of probability theory is the stochastic experiment. It is
defined by its repeatable procedure that results in a measurable outcome, denoted ω.
Generally, multiple outcomes are possible and the procedure can be described as a
random choice among the set of possible outcomes, called sample space, denoted Ω.
One repetition or performance of the experiment is called a trial. Subsets of the sample
space Ω are called a events. The natural case, where an event reflects a single outcome, is
called an elementary or atomic event. Note that elementary events are always pairwise
disjoint.

By applying (ideally complete) statistical data, any event can be attributed a proba-
bility measure, describing the fraction of trials in which an event will be observed for
an infinite number of trials, denoted P. This imposes bounds on the probability mea-
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2.1 Mathematical preliminaries

sure, 1 for the event occurring in every trial (Kolmogorov’s second axiom) and 0 for
occurring in no trial (Kolmogorov’s first axiom). Thus, P(Ω) = 1 and P(∅) = 0.

Events can be combined with the set-theoretic operators union A ∪ B, intersection
A ∩ B and complement A. Useful for shorter notations is the relative complement which
is equivalent to intersection with the complement A\B = A ∩ B. Their probability is
defined via the countable additivity property of measures: When the events A1, A2, . . .
are pairwise disjoint, e.g. (∀i 6= j) Ai ∩Aj = ∅, the probability of their union is the sum
of their probabilities.

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai) (2.1)

With eqn. 2.1, the probabilities of unions of events that are not disjoint can be cal-
culated as well, as long as their intersections is known, through disjoint partition. Be-
cause of this, the probability of the intersection of events is used to classify their rela-
tionship. For disjoint or mutually exclusive events, which cannot occur together in one
trial, the probability of their intersection is zero.

P

(
n⋂

i=1

Ai

)
= 0 (2.2)

When the probability of the intersection is the product of the individual probabilities,
the events are called (mutually1) independent.

P

(
n⋂

i=1

Ai

)
=

n∏
i=1

Ai (2.3)

Computing the union of mutually independent events is more difficult than simply
adding event probability. Such an approach would measure their intersection multiple
times. To compensate for that, higher-order terms need to be corrected in an alternating
pattern called the inclusion-exclusion principle:

P (
⋃n

i=1Ai) =
∑

1≤i≤n P(Ai)
−
∑

1≤i≤j≤n P(Ai) · P(Aj)

+
∑

1≤i≤j≤k≤n P(Ai) · P(Aj) · P(Ak)

− . . .
+(−1)n−1 ·

∏
1≤i≤n P(Ai)

(2.4)

The above algorithm has exponential complexity. However, ignoring higher order
terms may produce an insignificant error when only low event probabilities are in-
volved, which is why this is called the rare event approximation:

P

(
n⋃

i=1

Ai

)
≤
∑

1≤i≤n

P(Ai) (2.5)

1Note that events can be pairwise (or of higher order) independent without being mutually indepen-
dent.
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Chapter 2: Context and Background

A sample space may be discrete or continuous. Continuous sample spaces have
a infinite number of outcomes. The assignment of probabilities to their elementary
events is not useful, as the probability for a random experiment to result in precisely
one outcome in a dense sample space is generally2 infinitely small. Instead the density
of probability is defined as a function that maps from the continuous sample space to
positive reals called Probability Density Function (PDF) and denoted f .

f(ω) := Ω→ R+
0 (2.6)

The probability of non-elementary events can be obtained by integrating over the de-
sired subset of the sample space. The integral from one bound of the sample space to
a specific elementary outcome is called the Cumulative Distribution Function (CDF). For
a continuous sample space with the bounds {ωmin, ωmax}, it is denoted F .

F (ω) := Ω→ R+
0 ≤ 1 =

∫ ω≤ωmax

ωmin

f(z)dz (2.7)

Only such functions are valid PDFs which obey
∫

Ω
f(ω)dω = 1, Kolmogorov’s second

axiom. Because elementary events are by definition disjoint, eqn. 2.1 applies and can
be used to compute the probability of arbitrary events ⊆ Ω.

In safety assessment and reliability analysis, the stochastic experiment is the pro-
cedure of, beginning with a nominal system under study, measuring the survival time
τ ∈ Ω,Ω = R+

0 for which it operates before it fails in a specified way. The PDF in such
an example gives the probability density of failure over operation time. The probabil-
ity to have failed after a given time specified by the CDF. Its complementary event,
having reached a specified survival time, is denoted R.

R(τ) := Ω→ R+
0 ≤ 1 = 1− F (τ) (2.8)

Of great practical relevance is the failure rate, denoted λ which specifies the conditional
probability to fail at a specified time given the system under study has not failed before.

λ(t) = P (τ = t|τ ≥ t) =
f(t)

R(t)
(2.9)

This assumes a system that never returns from failed to nominal. For cases where
maintenance or self-repair is to be taken into account, availability (in normal mode)
depends not only on failure rate. It also depends on the time required for restoration to
the nominal state. However, such aspects are irrelevant for Fault Tree Analysis (FTA):
It enforces the pessimistic assumption that no maintenance or self-repair is conducted.

2.1.2 Boolean reasoning

Boolean reasoning is a useful formalization when manipulating fault trees. This work
adopts the notation of [14], which is briefly summarized hereafter.

2With the Dirac delta distribution, a continuous sample space can be created in which all probability
is lumped on finitely many outcomes, but such hybrid discrete-continuous distributions are not taken
into account in this work.
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2.1 Mathematical preliminaries

Boolean reasoning is based on Boolean algebras. For the purpose of this thesis, only
binary Boolean algebras are relevant. They are algebras that can be described with a
quintuple (B,+, ·, 0, 1) and satisfy the following properties:

1. B = {0, 1} is a set, and + and · are binary operations on B.

2. Both + and · commutate and both + distributes over · and · over +.

3. 0 is the neutral operand for + and 1 is the neutral operand for ·.

4. ′ is the unary complement operator. There is a complementary element a′ to every
element in a ∈ B, such that a+ a′ = 1 and a · a′ = 0.

Other binary Boolean algebras could rename the elements of the quintuple, e.g. many
programming languages call the 0-value false, 1 true, + OR, · AND and B bool. Without
limitation to generality, this work uses only the former proposed quintuple.

This work introduces an additional rule for the sake of clarity: · is given priority in
evaluation before +, which makes brackets around ·-terms obsolete. Finally, writing
two variables without an operator is a shorthand notation for the · operator: ab = a · b.

A formula is anything one can write down. A well-formed, Boolean formula is a non-
empty composition of the operators +, · and ′ with variables and the constant values 0
and 1, that — when all variables are replaced by a constant value — can be evaluated to
either 1 or 0. They are denoted with capital letters and are followed by a list of variables
in round brackets. An example is F (x1, x2, x3) := x1 + x2 · x3. This work considers only
well-formed, Boolean formulas. A formula containing a relational operator (=, 6=,≤), is
called a predicate. It yields a scalar result in B. An example is x1 + x2 · x3 = 1. The greek
letter µ is reserved for predicates in this work. Predicates form the bridge between
formal logic and Boolean reasoning, allowing true/false-statements to be expressed in
a Boolean algebra3.

Assigning variables of formulas a specific value, i.e. replacing each occurrence of
one or more variable with either 0 or 1, can be denoted in two ways:

1. By a Boolean product term that contains the variables to be replaced by 1, and
the complement of the variables to be replaced by 0

2. If an order of variables is defined, by a Boolean product term that has 1 in the
position of each variable to be replaced with 1, and 0 respectively — or the addi-
tional symbol d for variables not to be replaced at all

As an example, consider any Boolean formula with three variables a, b, c. Replacing
all occurrences of a with 1, b with 0 and keeping c as it is, with the order of variables
a, b, c, is denoted as follows in the two notations:

1. ab′

2. 10d

3See [14] for a more formal differentiation between the predicate calculus of formal logics and Boolean
reasoning.
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Chapter 2: Context and Background

In this work, the first notation is used because of its clarity. The software components
employed for Binary Decision Diagram (BDD) calculation in Chapter 4 use the second
notation. With an assignment x ∈ Bn, the cardinality of an assignment is the number
of variables that is to be replaced, and is denoted |x| ≤ n.

An assignment’s cardinality, denoted |x| for an assignment denoted x, is the num-
ber of variables that are to be replaced by a constant value. In the first notation of
the previous paragraph, this is equal to the number of symbols of the product term.
In the second notation, it is the total number of variables minus the number of ‘don’t
care’-assigned variables. As an example for both notations, consider |ac| = 2 = |0d1|.

Some forms of formulas have special designations because of their importance in
various algorithms. Most notably, when it is a disjunction of conjunctions, it is said to
be in Sum of Products (SOP) form. Similarly, when it is a conjunction of disjunctions,
it is said to be in Product of Sums (POS) form. While the SOP form makes it easy to
identify if a given assignment to the Boolean formula would simplify it to 1, the POS
form does the same for the result 0.

Formulas are only considered equivalent when they contain identical sequences of
symbols. Functions are more diverse: They can be expressed with any formula, as long
as it evaluates to the same value for all possible assignments. This also means that two
functions are considered equivalent when they evaluate to the same result for every
possible assignment. Predicates can be interpreted as single-valued functions of the
expression of the predicate simplifying to 0 or 1, thus predicates are equivalent to scalar
functions. Just as formulas, we denote them with capital letters. In functions, not all
symbols contribute to the result. Through absorption, some of them may be omitted.
Because of this, formulas describing the same function can be of vastly differing length.

An important relation between Boolean functions is inclusion, denoted by the sym-
bol ≤. A function P is included in a function Q when Q returns 1 when P does, and P
returns 0 when Q does. This can be written concisely as

P (x) ≤ Q(x) := (∀x ∈ Bn) P (x) ·Q′(x) = 0 (2.10)

The inclusion property can also be applied to assignments: When an assignment
y ∈ Bn includes an assignment x ∈ Bn, the latter can not be 1 for assignments where
the former evaluates to 0:

x ≤ y := xy′ = 0|x,y ∈ Bn (2.11)

This can be employed to define the monotonicity property.

F is monotone⇔ x ≤ y =⇒ F (x) ≤ F (y)|x,y ∈ Bn (2.12)

A most influential theorem in Boolean algebra is the expansion theorem, also called
Shannon decomposition in information science.

F (x) = x′i · F (x1, x2, . . . , xi−1, 0, xi+1, . . . , xn−1, xn)
+xi · F (x1, x2, . . . , xi−1, 1, xi+1, . . . , xn−1, xn)

(2.13)

Every Boolean function can be replaced by a disjunction: Each of the terms is itself
a conjunction of one of the variables xi and the function itself, but the variable in ques-
tion replaced by a constant value. The term with the variable replaced with 0 in the
function, contains the complement of the variable x′i.
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2.1 Mathematical preliminaries

Before algorithmic symbolic manipulation took the place of manual calculation of
Boolean functions, another identity was employed in the same applications where
Boole’s expansion theorem is employed today: The consensus theorem. For the sake
of clarity, · is omitted in the following equation.

ab+ a′c+ bc = ab+ a′c (2.14)

The term bc is called the consensus or the resolvent of the others. Note that the right
hand side is the expanded form of the function on the left hand side on the variable:

F (a, b, c) = ab+ a′c+ bc
= a · (1 · b+ 0 · c+ bc) +a′ · (0 · b+ 1 · c+ bc)
= a · (b+ bc) +a′ · (c+ bc)
= ab +a′c �

(2.15)

An assignment which causes a function to evaluate to 1 is called an implicant of
the function. The assignment does not need to cover all variables: The number of
variables that are assigned a value is called the order of the implicant. An implicant not
included in any other one (of lower order) is called a prime implicant, denoted π. The
set of all prime implicants of a function is denoted PI, thus PI := {π |F (π) = 1} and
x /∈ PI ⇒ F (x) = 0. For Boolean formulas without complemented variables (′.), the
following special terms are used:

• Assignments consisting only of 1-assignments for which the expression simplifies
to 1 are called cut sets, and Minimal Cut Sets (MCSs) when they are not included
in any other of lower order.

• Assignments consisting only of 0-assignments for which the expression simplifies
to 0 are called path sets, and minimal path sets when they are not included in any
other of lower order.

The notation of implicants can happen in two ways: One is by giving a Boolean
formula that has the given implicant as a prime implicant, e.g. a · b or ab, for stating
that both a and b need to be 1 for some function to return 1, or ab′ for stating that a
needs to be 1 and b 04. Another is by introducing a third value d (as in ‘don’t care’)
specifying that the variable with the same index is not part of an implicant and giving
its corresponding explicit partial assignment. In this second way, 0, 1 or d needs to
be given for each variable, e.g. for a Boolean function with three variables, the prime
implicant ab′ could also be identified by its corresponding partial assignment 10d. In
this work, we use the first notation unless specified otherwise.

Any function can be written as a disjunction of prime implicants. When each one
is given exactly once, this form is called the Blake Canonical Form (BCF). Under the
assumption that the variables of the function can be ordered, and that this order is ex-
tended to all possible combinations of variables, the variables in each prime implicant
and the prime implicants in the disjunction can be ordered accordingly, which yields

4An implicant assigning all variables in this way in this notation is called a minterm, but that definition
is not used in this work.
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Chapter 2: Context and Background

a canonic expression. Even though there may be shorter forms of a function, the BCF
has the advantage that evaluating an assignment can be done by testing inclusion with
each prime implicant, and that the ordering of variables and prime implicants makes
finding relevant implicants fast. Another application is in forming partitions of the
input domain, which are particularly useful in probability theory.

2.1.3 Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) is a finite set of variables and a finite set of
constraints defined as equalities and inequalities. When each variable is assigned a
value satisfying each constraint, it is called a solution for the CSP. In this work, their
generality is employed as a means for linking models of physical system behavior and
their logical abstraction in fault trees. The basics of defining and solving CSPs are
discussed in [15]. A concept that is pivotal in this context is constraint reification:
A given constraint needs to be fulfilled by a solution only when a specific Boolean
variable is set to 1, and is ignored otherwise.

2.2 Concepts of model-based system engineering

This section outlines the dependencies between system design, verification and the
core topic of this thesis, model-based safety assessment. It also introduces the concepts
and notation of hybrid systems and describes the inherent difficulties of their formal
verification.

2.2.1 Terms and definitions

The purpose of engineering, in general, is creating entities (e.g. machines, software
or microorganisms) that exhibit a desired behavior, by the composition of entities that,
each on its own and in interaction, exhibit their natural behavior. It is the carefully
engineered composition that gives the created entity usefulness. The composition pro-
cess is called system design. The composite entities are referred to as components, the
created entity as system. The abstract description of desired and component behavior
is called a behavioral model. Other kinds of models are not taken into account in this
work, such as technical drawings or models that group information about components
without describing their behavior.

The level of detail of the model needs to be sufficiently fine to capture all relevant
aspects, but no finer: Engineering effort increases not just with desired behavior being
less similar to natural behavior (e.g. automobile vs. aircraft), but also with the (tem-
poral or spatial) scales of detail required to interact harmoniously to produce desired
system behavior (e.g. water mill vs. fusion reactor or mining using pick-axes vs. ex-
plosives). Hybrid systems are models that allow introducing a varying level of detail
over time within a component’s behavior description, depending on and affecting its
interaction with other components.
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Producing proof that composite component behavior produces desired system be-
havior is called verification. Deviations from desired system behavior are referred to as
failures and can have various causes: Engineering errors, environmental influence or
changes in component behavior. Deviations in component behavior are called faults
and can cause failures. When failures can harm humans, verification before the intro-
duction of the system into service ensures their safety and, in aerospace engineering,
is called safety assessment.

2.2.2 Safety assessment and hybrid systems

Traditionally, safety assessment is carried out primarily by applying engineering judg-
ment: Qualitative justification for the system to be sufficiently safe is derived from the
engineer’s experience. This is due to the organizational interaction between design and
verification: The former traditionally builds models for nominal system behavior, e.g.
in the absence of component faults. The latter cannot ignore the influence of plausible
component faults. Extending models with failure behavior without separating the con-
cerns of design and verification is an undue increase of model complexity [16]. With
no solution to this issue, model-based safety assessment is not helpful: The additional
time spent on model extension and by designers on continuing their activities on the
more complex, extended model negate the benefit of abstract and automatable identi-
fication of the possible causes of failures. A safety engineer in practice simply spends
more time with manual safety assessment, likewise increasing the quality of safety as-
sessment results. A second problem hinders model-based safety assessment: The level
of detail required to capture all significant behavioral traits of component faults can be
higher than that for nominal behavior. This requires models with a varying level of
detail among components, so that the component under fault can be described in ad-
equate detail without exchanging the behavioral descriptions of all other components.
Both of these two issues are addressed by hybrid systems. For that reason, they are the
centerpiece for the realization of model-based safety assessment.

2.2.3 Hybrid systems in model-based engineering

Hybrid systems achieve model flexibility by separating behavior into time intervals
of continuous state evolution, joined by discrete reconfiguration steps that can make
the state jump to a new value and alter continuous evolution afterward. They differ
mainly by the allowed space of functions for defining continuous behavior and the
rules of discrete reconfiguration.

This section will introduce a notation to explain the fundamental concepts of hybrid
systems. For the sake of clear comparability with related works, we use a notation
similar to the one of Alur et al. [17].

It builds upon the definition of hybrid traces. A hybrid trace τ is a set of constituent
functions τi defined over a (finite or infinite) partition of time defined as a sequence of
intervals I0I1I2 . . ., where Ii is the input domain of τi. By convention, they are naturally
ordered.
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t
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Figure 2.1: Example for a piecewise-smooth hybrid trace

When comparing hybrid systems to initial value problems, the function space of all
possible traces is the solution space of the initial value problem.

Hybrid runs φ are traces conforming to a set of rules which characterize the system
under study. In the terms of initial value problems, runs are the equivalent of solutions.
The declaration of these rules can be denoted as a quintuple (ΣD, Q, µ1, µ2, µ3), again
following Alur et al. [17].

1. The output of constituent functions τi(t) is a vector of continuous variables called
a data state. ΣD denotes the domain of data states, e.g. the co-domain of the con-
stituent functions, and is invariant over the intervals of time Ii.

2. Q is a finite set of locations. The variable `i ∈ Q holds the active location5 during a
given interval Ii. During an interval, the active location does not change. See the
next points for a definition of ‘active’.

3. µ1 assigns each ` a set of activities. An activity is a C∞-function, defines con-
tinuous system behavior at the given location and does not depend on global
time [18].

4. µ2 assigns each ` a set of exceptions. The active location must change before the
continuous system state τi(t) reaches any exception.6 The complement ΣD\µ2(`)
is called the invariant of (the system at) `.

5. µ3 assigns locations and states a successor tuple. A state σ′ ∈ ΣD at location `′ ∈ Q
is the successor of a state σ ∈ ΣD at location ` ∈ Q if and only if (`′, σ′) = µ3(`, σ).

In the terms of initial value problems, (ΣD, Q, µ1, µ2, µ3) takes the place of the dif-
ferential equation (with the set of its variables).

Initial conditions can be expressed by specifying system state and location at the be-
ginning of the first interval σ0 ∈ ΣD and `0 ∈ Q, or as a predicate µ0 on the continuous

5Note that traces do not contain the evolution of the active location over time, only that of the
continuous states.

6µ2 allows imposition of additional limitations on ΣD. In safety assessment, exceptions would be
states in which analysis is irrelevant, e.g. corresponding to different failure conditions than the one under
analysis. Defining them is optional, because they can already be taken into account when defining ΣD.
But separating exclusions for different reasons into different semantic parts of the model definition can
encourage model reuse.
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Figure 2.2: The quintuple of a hybrid system producing a run: The first trace starts at
σ0, and the activity selector µ1 selects the activity for the first location `0 that produces
the trace piece τa. After some evolution, the successor selector µ3 enforces a transition
to σ′, where the activity selector µ1 selects an activity that produces τb. The exception
defined by the exception selector µ2 is identical for both locations and never triggered.
All constituent functions τ range over the state space ΣD.

state and discrete location at t = 0. While the former is useful for simulation, where ex-
actly one run is to be identified by specifying the hybrid system and an initial state, the
latter is more useful for verification, where all possible runs that pass a given acceptance
condition are determined.

For verification purposes, runs also conforming to µ0 are compared to acceptance
conditions µ4. Acceptance conditions are predicates on runs in an appropriate temporal
logic.

Table 2.1 summarizes the notation of hybrid systems used in later sections of this
work.

Simulating a hybrid system is equivalent to finding a run φ ∈ S that conforms to a
given initial condition µ0.

Verifying a hybrid system is equivalent to determining whether any runs exist that
fulfill a given acceptance condition. In safety assessment, the acceptance condition
would be the failure condition7.

2.2.4 Formal verification

Formal verification is the process of determining whether a mathematical model (of a
system) has a given property, called the requirement. It can be done by a number of
methods, of which not all are relevant for this work:

1. formally documented engineering judgment — not relevant because, by defini-
tion, it cannot be automated

2. testing — not relevant because it cannot prove the absence of errors when the
system has an infinite number of states (e.g. due to a real-valued system state)

7One may speculate that the creators of the term ‘failure condition’ were aware of this coincidence in
terminology between automata theory and safety assessment.
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Table 2.1: Overview on the notation of hybrid systems
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3. theorem proving — not relevant because of its strong dependency of the em-
ployed techniques on properties of the mathematical model under analysis

4. model checking

In model checking, the property to be assessed is given in the form of a set of states,
a sequence of states, or combinations of both. Furthermore, an initial condition to the
system state is given. The states the system can reach and/or their sequence is com-
pared to the property. Determining the reachable states and their sequence is carried
out iteratively: Initial states are reached by definition, and the model (e.g. the specifi-
cation of the system under analysis) is used to determine reachable states over time.

For systems with a finite, tractable number of states that reach a steady state8 or
infinite loops of states, the set of reachable states can be determined through exhaus-
tive state space exploration: At every iteration, immediately reachable states are added
to the set of all reachable states until no new states can be reached. Without loss of
generality, computational effort and problem size can be balanced by imposing the
Markov-property on the model. However, applying this concept to physical systems
is difficult: In order to model a finite, tractable number of states, abstraction from real-
valued physical variables is required. For aerospace systems, this abstraction can be as
difficult as manual safety assessment. Additionally, abstractions often are specific for
a certain failure.

Nevertheless, if a valid abstraction is found and formal verification is carried out,
its results do not suffer from analysis defects that may be introduced in purely manual
engineering judgment. A number of tools exist that specialize in the application of
model checking for safety assessment:

1. The Safety Analysis and Modeling Language (SAML) [19] is an extension of the
PRISM language [20] and also the name of a supporting toolchain. Depending
on the type of properties to verify, the model is translated into input languages
for an appropriate model checker. This makes SAML the most versatile base for
model checking in the context of safety assessment.

2. AltaRica [7] is a modeling language that has been commercially distributed and
scientifically studied in great detail, e.g. in [21, 22]. It also inspired a number
of methods that are more powerful (see next paragraph) or efficient in practical
application ([23, 24]) or that target design optimization rather than safety assess-
ment ([25]).

Alur [6] has developed techniques from symbolic model checking for application
in hybrid systems verification as an alternative to model abstraction. Instead of storing
reachable states as explicit sets of states and modifying them as the search for further
reachable states is conducted, symbolic reachability analysis stores symbolic expressions
that could be used to generate the explicit set of reachable states, even if its cardinality

8This work focuses on safety requirements, which typically (but not generally) express that the system
shall not enter a set of states.
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is infinite, in the form of predicates9. After starting with an initial state (or multiple
allowed initial states) specified as a predicate, model behavior is applied to the predi-
cate iteratively, until the state space stops expanding or a decision is made on whether
the model suffices the property or not. This method itself imposes requirements on
models and properties under analysis:

1. Model behavior needs to be specified as operations on predicates over states

2. Properties need to be specified as predicates over predicates over states

For efficient computation, simple predicates with linear boundaries are chosen for
both the initial state and the property. By over- or under-approximation of the exact
predicates, proving a property to be satisfied or not can be carried out more efficiently.
Such approaches have been pursued e.g. by Althoff et al. [11] and Girard et al. [26].

2.2.5 Hybrid systems verification problem

In publications that discuss the decision problem of hybrid system verification from a
logical perspective, the term decidability is used in place of tractability, with the same
meaning: When there is no method for determining whether the state space will inter-
sect the property’s subspace or when all methods are at least of exponential complexity,
the combination of model and property is called undecidable. For the sake of compara-
bility of problems, operators in the property other than equality and inequality com-
parison of continuous state variables are, by convention, encoded in the model. Any
expression in a predicate that can be expressed as a smooth function can be replaced by
an additional, ‘dependent’ continuous variable. The expression is added to the model
as a location-invariant activity, i.e. it stays the same at all locations. Predicates that do
not present the required smoothness are out of the scope of this work.

Hybrid systems by definition impose smoothness on activities, i.e. µ1(`) ∈ C∞ ∀ ` ∈
Q. Transitions are not limited besides being deterministic.[27] have proven that this
makes verification generally undecidable, and given a few simple models for which it
is decidable.[11] has shown how abstraction of special cases of more complex models
into decidable models is possible. In summary, the intuitive assumption holds that the
limitations on decidability, e.g. as for stability or boundedness proofs in control system
theory, are not lifted by additionally allowing discrete changes to otherwise smooth
system state evolution.

2.3 Safety assessment

Collecting evidence that an aircraft or system complies with functional safety require-
ments of its governing certification specification is structured by a process framework

9The difference between symbolic reachability analysis and theorem proving is that theorem proving
reasons about traces (sequences of states), whereas symbolic reachability analysis does not consider the
information of the sequence of states — only that they were visited at all.

23



2.3 Safety assessment

titled safety assessment10, which is specified in [28]. This section introduces the legal
obligations and relevant standards for safety assessment, as well as the mathematical
concepts of its core analysis technique.

2.3.1 Legal framework and standards

Federal law in Germany mandates that every manned aircraft, commercial pilot, air-
field, air navigation services provider etc. is subject to certification (unless an exception
applies, e.g. for military manned aircraft) [29, 30]. Certification is relayed to the Euro-
pean level and, there, allocated to the European Aviation Safety Agency (EASA) [31].
This is similar to the practice in the United States, where the Federal Aviation Admin-
istration (FAA) fulfills the same function under a similar mandate.

The annexes of [31] and related European Commission regulations define a binding
framework for technical requirements. Detailed technical requirements that need to be
fulfilled to achieve certification are set forth — in concord with that precept — in non-
binding agency rules. ‘Non-binding’ in this context means that these rules are binding
to the certification applicant, but not to the certification authority: They may be altered
by the certification authority for a specific certification application as a purely executive
act. This way novel technologies and technical solutions unforeseen by the technical
certification requirements are supported on a case-by-case basis, without a need for
intervention by the legislative power. However, any technology or technical solution
must be proven to provide at a safety level at least equivalent to that provided by
conventional certification.

For aircraft and their onboard equipment, technical requirements are expressed in
certification specification documents. For normal, utility, aerobatic, commuter and
large aircraft, § 1309 in [32] 11 and [33] addresses functional safety, i.e. the aircraft or
system responding to plausible environmental conditions, input and hardware failure
in a way that poses no unacceptable risk to aircrew, occupants and third parties in other
aircraft or on the ground. Regulation under FAA-sovereignty has the same structure,
and — for § 1309 — identical technical content.

Proving compliance with these technical requirements is structured by AMCs. They
are specified by the certification authorities and, in turn, refer to industry standards for
best practice and defining the state of the art. Differing approaches to proving com-
pliance with certification specification are theoretically acceptable, but substantiation
that such an individual solution is at least of equivalent significance as agency-defined
AMCs is required to obtain certification credit.

Specifically for very elaborate AMCs such as [34] for the aforementioned functional
safety paragraph 1309, the effort required for such a comparison in significance for

10This definition is weaker than the one given in Section 2.2.1. Engineering judgment cannot provide
proof but only evidence. On the other hand, it may have greater significance because of not being limited
to the model’s domain and detail.

11During the final phase of writing, citeCS23 has received a major update and paragraph numbers have
been reissued. In the new numbering schema, the core content of the former § 1309 is now expressed
in § 2510. Because US Federal Aviation Regulations (FAR) and CS25-requirements still use the “old”
numbering schema, the text of this work is left unchanged. Acceptable Means of Compliance (AMCs)
are unchanged.
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largely different approaches would be prohibitively high for single certification ap-
plicants. This forces methodological and process-related advances in such areas to
either progress ‘organically’, or rely on effort pooling with competitors in standardiza-
tion bodies, such as Radio-Technical Commission for Aeronautics (RTCA) or Society
of Automotive Engineers (SAE).

The aforementioned AMC [34] by the FAA12 is of particular relevance to this work:
It addresses proving compliance with [32], § 1309 and refers to [35] for design and [28]
for safety assessment. Therefore, model-based means of automation of safety assess-
ment need to adhere to their precepts on process and method in order to be eligible for
transfer into industrial practice in the short and medium term.

2.3.2 Safety assessment process

The safety assessment process is organized by the reports that need to be handed in for
certification. Its first deliverable is the collection of the feared top-level events, which
are called Failure Conditions (FCs), classification of their severity and derivation of high-
level safety requirements in the Functional Hazard Analysis (FHA). In the following de-
liverable, called Preliminary Aircraft Safety Assessment (PASA) on aircraft-level or Prelim-
inary System Safety Assessment (PSSA) on system level, a search for root causes for these
events is conducted, usually in the form of one Fault Tree Analysis (FTA) per FC. Once
aircraft or system design is frozen, the qualitative assumptions made during FTA are
validated and their sufficiency to prove compliance to higher-level safety requirements
is reviewed in the Aircraft Safety Assessment (ASA) or System Safety Assessment (SSA).
Additionally, the independence of identified root causes is verified during Common
Cause Analysis (CCA), which greatly simplifies probability computations, strengthens
the significance of FTA results and covers additional top-level events, or such events
that are intrinsically difficult to handle with the hierarchical, deductive approach of
FHA, PSSA, and SSA. The assessment of independence of root causes happens in the
Common Modes Analysis (CMA) and covers physical and functional separation.

During fault tree generation and before design freeze, the probabilities or failure
rates of basic events are estimated pessimistically on the basis of experience and avail-
able data on similar aircraft or systems. This is called probability or failure rate budget-
ing. Once specific components have been selected, their budget is replaced with sub-
stantiated evidence specific to the employed component designs. They are retrieved
from reliability handbooks, in-service experience and reliability tests in Failure Modes
and Effects Analysis (FMEA).

A detailed description of FTA is given in [36, 37]. Two steps of the method are
defined: Generation and solution. During fault tree generation, the search for root
causes for the top event is conducted in a deductive manner by system and safety
engineers. The key benefit of FTA is that the deductive argument leading to the root
causes is captured along with them and presented in a graphical notation, enabling
validation of the conducting experts’ reasoning. During fault tree solution, Minimal
Cut Sets (MCSs), top-event probability and other safety-relevant metrics are calculated

12Note that some AMCs are accepted by both EASA and FAA.
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from the generated fault tree and the probabilities of the identified root causes (see also
Section 2.3.3).

With a skilled fault tree generation team, the resulting arguments take a divide-
and-conquer form that relies on functional decomposition of the top-level behavior. De-
composition principles require independence of its composites, e.g. each component
function contributing on one and only one level in the decomposition. This is seldom
true for root causes in complex aircraft systems for two reasons: First, resource func-
tions commonly supply many levels of functional decomposition, e.g. electric energy
being supplied to both a flight control computer and its connected sensors or electric
actuators drives complexity of failure behavior prediction in case of faults in the elec-
tric energy supply. Secondly, functional integration creates implicit contributors, e.g.
when a display is used both for displaying aircraft status and warnings, erroneous pre-
sentations of status may mask warnings about other, more critical failures, leading to
inadequate flight crew actions for their mitigation.

Both resource sharing (e.g. in integrated modular avionics or all-electric aircraft),
as well as functional integration (e.g. thrust vectoring integrating aircraft stabilization
with propulsion control, or autopilot integration into flight control systems), have a
potential to significantly increase efficiency in existing aircraft concepts or enable en-
tirely new ones. Examples for the latter are small Unmanned Aerial Vehicles (UAVs),
where both concepts are key to reaching adequate payload or range for some appli-
cations. By contradicting strict functional decomposition, fault tree generation and
thereby safety assessment feels the same increase in complexity as system design. This
is not a drawback of FTA specifically. All deductive reasoning cannot circumvent its
subject’s complexity, but only its size, through a divide-and-conquer approach.

The intrinsic difficulty of fault tree generation of complex systems and the growing
urgency of the practical problem motivate this work to curb the growth in effort of
safety assessment.

2.3.3 Fault tree solution theory

Once a fault tree has been generated, it can measure susceptibility to its top event
both qualitatively and quantitatively. Methods for this purpose are described in [28],
but they assume that the fault tree has been converted into a Boolean formula and
its prime implicants have been determined. Obtaining the prime implicants of the
Boolean function encoded in a given fault tree is called fault tree solution.

Before tools for Boolean expression manipulation can be employed, a fault tree
needs to be converted into an equivalent Boolean expression F . Its underlying function
returns 1 when the top event13 occurs and 0 otherwise. It depends on the occurrence
of the basic events of the fault tree. This gives functions encoding fault trees the sig-
nature F := Bn → B. Each basic event’s occurrence is encoded as the value taken by a
Boolean variable. This defines the input vector x. The logic implemented by the gates

13According to [37], the root node is displayed at the top of a fault tree, and its child nodes recursively
below it. This is different in some German standards, which display fault trees left-to-right (instead of
top-to-bottom). This work follows the internationally common top-to-bottom orientation in illustrations
and verbal descriptions.

26



Chapter 2: Context and Background

Table 2.2: Fault tree gates and their equivalent Boolean expressions

Fault Tree Gate Equivalent Boolean Expression

AND-Gate x1 · x2

Priority AND-Gate ROF · x1 · x2

Inhibit ROF · x1

OR-Gate x1 + x2

Exclusive OR-Gate (x1 + x2) · (x′1 + x′2)
Combination Gate With 2-out-of-3: x1x2 + x2x3 + x3x1

of the fault tree is translated into the operators +, · and ′. See Table 2.2 for how specific
gates are translated into formulas. Gates requiring events to happen in a specific order
are handled with an ROF event (as in ‘required order factor’). They occur only when
the related basic events occur in the specified order. Their associated probability is the
fraction of the number of permutations of event order allowed over the total number
of permutations possible.

Fault trees created in conformance with [28] code their logic through gates that can
be expressed with the Boolean operators + and ·, with one exception: The XOR-gate14.
It relies on the complement operator ′ for excluding the intersection/-s of its subordi-
nate events. A fault tree containing one or more XOR-gates is called non-coherent15. Its
corresponding Boolean function is non-monotonic. It can be approximated by an OR-
gate, which introduces only a second order error on probability computations when
operand probabilities are low. Fault tree solution of non-coherent fault trees requires
substantially greater effort as it cannot rely on monotonicity of the underlying Boolean
function. An implicant of a coherent fault tree is called a cut set in [28], and the equiv-
alent of a prime implicant is called a Minimal Cut Set (MCS) (see Section 2.1.2).

Once a fault tree has been translated into a Boolean formula, it can be brought into
BCF, e.g. its prime implicants can be retrieved, using methods based on the following
principles (see Brown [14], Section 2.1.2):

1. Exhaustion of implicants: Testing all possible assignments and identifying prime
implicants through absorption

2. Iterated consensus: Repeated application of the consensus theorem and subse-
quent absorption, which requires the formula to be in SOP form

3. Iterated expansion: Repeated application of Boole’s expansion theorem

As the number of possible assignments grows exponentially over the number of vari-
ables, exhaustion of implicants has prohibitive computational complexity for solving
large fault trees. Methods based on iterated consensus are only slightly more efficient:
Bringing a Boolean formula into Sum of Products (SOP) form is computationally less

14Exclusive OR-Gates are not mentioned in [28], but in the documents referred to for detailed descrip-
tions of the FTA method [36, 37].

15The origin of this term becomes apparent when examining the Venn diagram of the XOR-operator
on sets.
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Figure 2.3: BDD example, encoding x1 + x2 · x3

costly than exhaustion of implicants, but once SOP form is reached, the actual method
only begins with reaching Blake Canonical Form (BCF) from SOP form. The third class
of methods does not require such conditioning and is employed in today’s most effi-
cient fault tree solvers ([38, 39, 40]). It yields a disjoint partition of the solution space
in SOP form, which is particularly efficient in probability calculations.

An instructive visualization of Boole’s expansion theorem and the inspiration that
has led to highly-efficient data structures today’s fault tree solvers are based on are Bi-
nary Decision Diagrams (BDDs). They are tree graphs, consisting of vertices, also called
nodes, and acyclic, directed edges. A node can be either a variable node, commonly de-
noted by a circle, or terminal node, commonly denoted by a square. Exactly one variable
node has no inbound edge. It is called the root node. Other variable nodes have one
inbound and two outbound edges each. Terminal nodes have one inbound and no
outbound edges.

A BDD can be interpreted as a visual form of iterative application of Boole’s expan-
sion theorem to a Boolean formula. This way, the characteristic function of a fault tree
can be encoded in the computationally efficient data structure of a BDD. Each node
represents the expansion of the Boolean function resulting from its inbound edge for
the variable denoted in it. As an example, consider Figure 2.3. Applying Boolean
expansion on x1 on the characteristic function F = x1 + x2 · x3 of a fault tree yields
F = x1 · (F (x1 = 1, x2, x3)) + x′1 · (x1 = 0, x2, x3) = x1 · 1 + x′1 · (x2 · x3). The terms in
the brackets are the sub-trees behind the edges of the root node that correspond to the
preceding variable’s value. Thus, the solid 1-edge, which corresponds to x1, leads to 1,
and the dotted 0-edge, which corresponds to x′1, leads a the BDD obtained from further
applying Boolean expansion to x2 · x3. The transformation from a Boolean function F
to a BDD is denoted bdd(F ). BDDs also have the benefit of being canonical for a given
order of variables during expansion: When variables are expanded in that same order,
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Figure 2.4: BDD reduction: Identical subtree merging and obsolete node removal of the
BDD encoding x1 · x3 + x2 · x3

the resulting BDD of every Boolean function with the same truth table will be the same.
For more complex BDDs, the benefits of BDD-based data structures become ap-

parent. When two sub-trees of a BDD are identical, e.g. two intermediate functions
obtained through expanding for different values are identical, the subtree only needs
to be created once. All edges to any identical subtree can point to the one such sub-
tree. This operation is called identical subtree merging. The second operation that
reduces both the size of a BDD and the effort required for their construction is obsolete
node removal: When the outcome of expanding a specific node is identical for both
edges, the node can be skipped by the edge leading to it. Both operations can also
be applied to the leaves of the BDD, to further conserve storage space. They are il-
lustrated in Figure 2.4. This particular example also illustrates how variable ordering
is crucial to BDD size: The ordering (x3, x1, x2) would have produced a smaller BDD.
Unfortunately, finding the optimal variable ordering is of exponential computational
complexity and thus only allows to tweak algorithm computational effort versus stor-
age space. Note that reduced BDDs are no longer trees, because no node of a tree may
have more than one parent node, but the benefits of lower memory consumption and
intermediate result re-usage greatly outweigh the greater costs for some elementary
operations on general undirected graphs.

All set operations can be applied to BDDs as they are applied to Boolean functions.
Special in the context of this work is the relative complement, denoted \ or nand. For two
BDDs bdd(F1) and bdd(F2), the relative complement is defined as:

bdd(F1) \ bdd(F2) := bdd(F1 · F ′2) (2.16)

This operation is can be used to test for Boolean inclusion: If F1 ≤ F2, the result is a
BDD consisting only of the 0-leaf. It is special because Boolean inclusion can be argued
to test for cause-consequence relationships.

Reasoning on the logic displayed in a BDD can be formalized in paths between
nodes. Such paths are sets containing nodes and edges in between them. Because no

29



2.3 Safety assessment

x2

0

x3

1

1
cube(x ) =1

Figure 2.5: BDD path cube: In a BDD with the variables (x1, x2, x3) (in that order),
cube(x1) = x2 + x3). Also, cube(x1) = cube(x′1).

pair of nodes is directly connected by more than one edge after obsolete node removal,
paths can be specified by giving a complete list of traversed edges only. E.g. the 0-node
of Figure 2.4 is connected to the root node via x′1x′2 and by x1x

′
3. This notation correctly

suggests that such paths can be interpreted as Boolean formulas or BDDs, which yields
a closed theory on Boolean formula manipulation solely expressed in BDDs and oper-
ations on them. Nodes are partially ordered by the number of inbound edges that need
to be traversed to reach the root node, called the node index. The number of 1-edges on
the path from a 1-leaf to the root node is called its (cut set) order (see Figure 2.3).

The cube of a path is a BDD where all variables not present in the path (i.e. all
variables with higher node index) are ORed. This is illustrated in Figure 2.5. The cube
of a path that reaches the highest node index is 0, because there are no variables left
below it. Additionally, the cube of the empty path is all variables ORed.

Once a BDD for a given Boolean formula has been constructed, a disjoint partition
of the subspace of its input space that maps to 1 can be directly read from the BDD: It
is specified by the set of paths from the root to the 1-leaf. E.g. in Figure 2.4, these paths
are x′1x2x3 and x1x3. With a disjoint partition, the fault tree’s top event probability
can be obtained without the inclusion-exclusion principle, when each path’s edges are
replaced by the probabilities of the related basic events of the fault tree for 1-edges, or
their complement for 0-edges, respectively.

Prime implicants can also be obtained by examining paths from the root to 1-leaves.
In contrast to the subspaces for disjoint partition, not all edges covered by the path are
necessary. This can be illustrated with Figure 2.3: For the path x′1x2x3 the edge x′1
can be omitted, because x1 is an implicant as well. This problem can be addressed by
incremental computation of prime implicants from 1-leaves upwards towards the root
node. During this traverse, implicants of both sub-trees of a node are not expanded;
Only such implicants occurring in only one subtree are expanded by adding either
the variable (for the 1-edge) or its complement (for the 0-edge) to list of implicants of
currently handled tree.

The incremental pattern for finding prime implicants ensures that the retrieved im-
plicants are prime, but cannot ensure that all of them are essential, e.g. that they are
not covered by disjunctions of other prime implicants. Even though obtaining the set
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of essential prime implicants would make further processing even easier, as it exploits
symmetries in the underlying Boolean formula, their complete calculation is of expo-
nential complexity. Because of this, their practical use is limited, despite their potential
for simplifying further analysis. For coherent fault trees, prime implicants (e.g. MCS)
are always essential, which makes the differentiation irrelevant for safety assessment
as per [28].
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Chapter 3

Operational Semantics for Hybrid
Failure Behavior

Hybrid systems, as introduced in Section 2.2.3, provide a means for abstracting physi-
cal behavior at smaller temporal (or spatial) scales than what the model generally cov-
ers. This is useful in both nominal and failure behavior: All behavioral models have
their ‘normal’ timescale, at which most of the effects play out. The effects that hap-
pen over longer timescales are usually modeled by setting specific initial conditions
that stay constant over course of the simulation, or by model variants for different
such circumstances. Faster timescales could theoretically be modeled by increasing
the overall model granularity so that all effects are modeled precisely enough for the
fastest timescale effect, but the required modeling and simulation effort only pays off
when and where the fastest timescale effect happens. In nominal behavior, this may
not be the case during the vast majority of simulation time and most components of
the model. As an example, consider physical contact or collision in mechanical simu-
lation, which only requires high temporal resolution and modeling granularity during
brief moments, while most of the time, the simulated bodies move freely at slower
timescales and can be described by much simpler physical laws than during contact.
Hybrid simulation allows the separation of sub-models of different modeling granular-
ity (and thus simulation timescales) over simulation time, triggers granularity changes
through rules on the simulation’s state and ensures sub-model compatibility.

In safety assessment, where failure behavior is the subject of analysis, this is of
great benefit. The process of failing often happens at very fast temporal scale compared
to nominal behavior, such as the contact closure when short-circuiting electric circuits,
or pipe rupture in hydraulic systems. When the failure will happen may not be known
a priori but depend on the simulation’s state, and the process of failing often takes
very little of the simulation’s total time. Even without timescale variation, hybrid sim-
ulation is useful in failure simulation: Failure behavior, i.e. being failed, often involves
different physical effects or completely replaces those of nominal behavior, e.g. when a
stuck clutch ceases its dampening mechanical behavior regardless of the applied con-
tact pressure and becomes a stiff connection instead. Both aspects can be described
elegantly in hybrid systems. Additionally, they allow separating nominal and failure
behavior in an aspect-oriented way that contributes to model maintainability.
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The proposed operational semantics for hybrid failure behavior is the first such
semantics that is ready for practical application. This is supported by the fulfillment
of the requirements for such application that have been derived by Joshi and Heim-
dahl [1].

3.1 Formal definition of a hybrid system for failure

simulation

This section details the definition for hybrid systems given in Section 2.2.3 and pro-
vides an interpretation for its specifics that naturally applies to behavioral system mod-
eling for aerospace systems under consideration of both nominal and failure behavior.

3.1.1 Continuous activity specification

Hybrid systems as defined by Alur et al. [41, 18] require that activities µ1(i) are smooth
functions. We relax this requirement to be compatible with MATLAB’s [5] behavioral
modeling environments Simulink and SimScape: There, traces are computed numeri-
cally discretized in line with IEEE 754 [42] and possible lack of smoothness is compen-
sated by a variable time step solver. SimScape allows arbitrary specification of both
explicit and implicit algebraic and ordinary differential equations (with time deriva-
tives) to define system state evolution for the continuous portion of the hybrid system.
This work does not require verifiability of hybrid models of the presented operational
semantics, so the modeler can choose freely among the features for continuous behav-
ior specification.

There is a fundamental difference between Simulink and SimScape: While Simulink
models specify directional signal propagation and transformation, SimScape models
specify state variables and their interrelation through (omnidirectional) Differential-
Algebraic Equation Systems (DAEs). Thus SimScape models do not limit the direc-
tion of flow of energy, mass or information. This is essential for describing failure
behavior in the same model as nominal behavior: Because failure behavior does not
necessarily obey the propagation direction of nominal behavior in physical systems,
direction-neutral models save modeling effort and prevent subtle modeling flaws that
inhibit comprehensive failure modeling in directional models (see also Joshi and Heim-
dahl [1]).

3.1.2 Structural aspects

By extending Simulink and SimScape, three structural aspects of their modeling lan-
guages present themselves for employment in this method.

• Component-orientedness: All elements of the hybrid system are organized in com-
ponents. Continuous state variables are the energy, mass or information storages
of each physical component of the system (at the desired level of detail). This
is sufficient for comprehensive physical behavior specification as per Karnopp et
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al. [43]. Additionally, auxiliary variables can be introduced which depend on the
continuous state variables and are carried along for convenience in initial state,
exception, transition or acceptance condition definition.

• Hierarchicality: Components can be grouped into subsystems. Subsystems can be
grouped into subsystems as well, which allows for multiple layers of hierarchy
and a divide-and-conquer-philosophy in system structure and behavior specifi-
cation.1

• Aspect-orientedness: Nominal and failure behavior specification of each compo-
nent are mutually exclusive: Only one behavior specification for each component
can be active at any time (see also Subsection 3.1.3). All of them are defined in
a similar way, so users understanding one domain of component behavior can
explore and contribute to behavior definition of the other.

• Object-orientedness: Components can be instantiated from libraries of components
into models or new libraries, allowing parametrization but forbidding funda-
mental behavioral changes. Components can also be derived from ancestor com-
ponents, allowing parametrization and extension of behavior, e.g. with failure
behavior or with more detailed nominal behavior.2

From component-orientedness, the elements of hybrid systems in the notation intro-
duced in Section 2.2.3 are annotated with an index for the corresponding component,
and the entire model results from joining component-specific sub-models:

• The finite set of component indices B ⊂ N and the specific component index b,
which identifies the component addressed by the sub-model

• The component-specific domain of data states ΣD,b

• The set of modes of the component Qb with the active mode `i,b during interval
Ii, see Subsection 3.1.3

• The activity assignments to each mode µ1,b : Qb → f`b , where f`b is a DAE de-
scribing component behavior in mode `b ∈ Qb, see also Subsection 3.1.1

• The exceptions µ2,b : Qb,ΣD,b → {0, 1}, see also Subsection 3.1.4

• The transition relations µ3,b : Qb,ΣD,b → Qb,ΣD,b, see Subsection 3.1.3

• The explicit initial state specification (σ0,b ∈ ΣD,b, `0,b ∈ Qb), see also Subsec-
tion 3.1.4

In SimScape, model assembly from the component sub-models happens automatically.

1Unfortunately, only structure and behavior specification profits from hierarchicality. Simulation and
analysis of system behavior require full, flat models because DAEs have no such notion of hierarchical
abstraction.

2Simulink allows no deeper ancestry than one ancestor, so changes to one component can only affect
components directly linked through ancestry. SimScape does not have this limitation.
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3.1.3 Discrete switching logic specification

Transition relations µ3,b are specified for each component as a Finite State Machine
(FSM). Due to the component-oriented notation, a component-specific location `b is
introduced, called the component’s mode. Modes for one component are mutually ex-
clusive: A component can only either operate normally or be failed in exactly one way.
The modes of the component are represented by the states of the FSM.

A subset of the system’s continuous state is the input of the FSM: Only such ele-
ments of the continuous state of the system need to be handed over to the FSM which
directly affect the component. This subset can be determined from a comparison of the
component’s activity to Bond Graph components in Lagrangian mechanics. In Sim-
Scape, the “through”- and “across”-sensors determine the equivalent of local “flow”
and “effort” in Bond Graphs [43]. When components of linear, macroscopic physics
are used, relevant states can only be the flow through the component and the effort
dissipated or produced over the component. Components taking higher order effects
into account may be treated similarly, but the final choice which elements of the com-
ponent’s state are relevant rests with the modeling engineer. In component-oriented
hybrid system notation, it is proposed to select all data state variables of the relevant
component as input to the FSM, regardless of whether all of them are used in transition
conditions.

The transitions of the FSM represent changes in behavior from nominal to failure
behavior. Their execution is controlled by transition conditions3 specified with each
transition, which are predicates on the input of the FSM.

Transitions in the proposed hybrid systems model are deterministic: For any given
mode and continuous state input, at most one transition can be defined. If only in-
equalities on continuous system state are used as predicates, this ensures that for each
mode, the continuous state space can be thought of as being partitioned into a sub-
space for which no transition is defined to happen, and one or more sub-spaces for
each transition departing from that mode.

Additionally, when the transition condition is fulfilled, the transition is executed
at the same simulation time step. In safety assessment, deterministic variance in ag-
ing effects, manufacturing imperfections, and random fault occurrence are handled by
probabilistic failure models. This can be taken into account by defining such faults
as modes with no transition condition based on continuous system state, but instead
based on a discrete fault trigger that can be scheduled by the modeler. Modes reach-
able via both one or more transition based on continuous state and via a fault trigger
are allowed as well, in order to cover faults that can be triggered by both probabilistic
and deterministic effects.

Because the physical effects of a fault do not depend on how it was caused, fault
tree models should use modes as basic events, not transitions. In the safety assessment
process, this correlates to the Failure Modes and Effects Summary (FMES) process step
at the interface between component reliability analysis and fault tree analysis, see also
Section 3.1.6.

The output of the FSM is also specified with its transitions, making it a Mealy ma-

3Transition conditions are also called guards in publications with a focus on discrete behavior.
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chine. They report the target mode and explicit functions for re-configuring the con-
tinuous state. The following cases can occur:

• Buffer state alteration: When mode changes abstract component behavior in a
much smaller time scale than normal system behavior, the state of the affected
continuous system states is altered so that they instantly contain the value after
the ‘fast’ behavior.

• Buffer merging or splitting or splitting: When mode changes reconfigure the physi-
cal behavior of a component in such a way that the number of independent vari-
ables of the model changes, the energy, mass or information stored in the system
needs to be redistributed. In such cases, the continuous state reconfiguration ex-
pression specifies the rules of redistribution.

Mosterman and Biswas [44, 2] require continuous state re-configurations to honor con-
servation of energy and mass. This work proposes to drop these restrictions in favor
of allowing energy and mass dissipation. This is justified by the fact that physical
models of real systems usually do not cover all domains of physics, and conservation
generally applies only when all forms of mass and energy are taken into account. E.g.
when an electric film capacitor is broken by overloading, not all electric energy it had
stored at the point of avalanche breakdown is released as electric energy. Instead, the
breakdown process chemically re-configures the dielectric material to become a high-
resistance conductor in a violent reaction. Energy conservation in the electric domain
would over-estimate the electric energy released into the circuit, as all energy in real-
ity released as heat, spent on the chemical reaction etc. would have to be modeled in
the electric domain. However, it is often undesirable to model all physical domains
that are involved in each failure mode because model fidelity without some of them
is still sufficiently high for the model’s purpose. Dropping the requirement of energy
conservation allows for simplified modeling of such phenomena.

The author argues that only dissipation should be allowed. Although it is theo-
retically feasible that physical domains outside the model’s scope contribute enough
energy (or mass) to over-compensate energy (or mass) dissipation from the modeled
domains, this extreme case warrants deeper study and model extension. The model-
ing engineer should be motivated to include the physical domain that dominates fault
behavior from the energy and mass conservation perspective, because the underlying
physical phenomenon likely drives the safety design of the corresponding system por-
tion.

3.1.4 Initial state, exceptions and inputs

Initial states σ0,b are always specified explicitly, in the form of initial assignments to
the continuous state variables and a choice of an initial mode for each component. By
default, nominal behavior is the initial mode for each component. This ensures that,
when system engineers with no knowledge of the annotated failure behavior execute
simulations, they are presented results for the expected, nominal behavior specification
of each component — unless their simulation triggered any transition of a component
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into a mode representing failure behavior. Thus, the hybrid simulation model becomes
a digital prototype of the real system with the capability to “break”.

Exceptions µ2 can be specified using Assertion blocks from the ‘Model Verification’
Simulink library.4. They can be used for ensuring that modeling assumptions on the
range of continuous states are met, e.g. limiting speeds to sub-sonic gas dynamics or
electric peak power consumption of an electro-mechanic assembly to the linear oper-
ating region of the power supply.

The concepts of input-output-models of directional behavioral specification such as
Simulink models can be translated into the semantics of non-directional, hybrid sys-
tems. For hybrid systems, outputs are measurements of continuous state and location.
As with system behavior, continuous and discrete inputs are handled separately. Con-
tinuous inputs can be entered by adding dedicated system input components, which
constrain specific continuous states to explicit trajectories. Discrete inputs are mode
changes to specific components at pre-defined points in simulation time, i.e. dynamic
injection of component faults.

3.1.5 Intermittent faults

Safety-critical embedded systems can be capable to recover from faults through con-
tinuous, built-in tests and automated recovery mechanisms such as self-resetting or
-rebooting. This leads to certain faults only being active for a very short period until
the built-in test detects it, followed by a period of unavailability during the execution
of the recovery mechanism and, subsequently, fault-free operation. In safety assess-
ment, such faults are called repairable faults. Such faults can be modelled by mode
transitions that depend on continuous state and (relative or cyclical) simulation time
or absolute simulation time (i.e. fault schedules, see 3.1.7).

3.1.6 Modeling considerations

Through the modeling semantics presented in this work, operational restrictions and
probabilistic faults of components translate directly to the FSM specification for hy-
brid failure simulation. Component modes and transitions carry meaning and, in a
fully model-based safety assessment process, are artifacts of safety assessment. As a
consequence, changing FSM states representing faults is only allowed when changes
are motivated in both points of view: FMES for safety assessment and finite state ma-
chine optimization for efficient hybrid behavior simulation. An intermediate FMES
step between hybrid failure simulation and fault tree analysis is required to decouple
FSM states representing behavioral modes in the model and basic events in the tree.

This is justified by transitions between hybrid modes being used both for abstract-
ing microscopic nominal behavior and for abstracting the process of a component of
failing.

For nominal behavior, there is no reason why nominal behavior of a component
should not be represented by multiple states of the FSM. Consider the bouncing ball
example that is often employed in illustrating hybrid systems: Mechanical contact with

4It is conceptually irrelevant whether exceptions are defined in component sub-models or globally.
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the floor is no ‘fault’ by any definition, but a discrete physical property in macroscopic
physics. It could be modeled as a nominal operation mode during contact, or as a
transition that simply reverses the direction of bouncing ball’s impulse.

But treating nominal and failure behavior differently in this respect seems arbitrary:
By allowing multiple nominal FSM states for the nominal behavioral mode, but only
one FSM state for each fault, the direct coupling between basic events in fault trees
and hybrid modes in the behavioral model would impose undue limitations on the
modeler.

Therefore, the role of FMES in traditional safety assessment needs to be expanded.
In traditional safety assessment, it groups physically distinct faults with identical ef-
fects on component behavior [28] and faults on sub-components. Physically distinct
faults with identical effects need to be identified before hybrid mode definition, so that
the hybrid mode is modeled only once. Faults on sub-components equally need to
treated as a group and modeled as a single hybrid mode as well. Both these modeling
steps relate to model granularity choices that are relevant for nominal behavior mod-
eling as well. Thus, it is suggested to carry them out as a common task for design and
safety engineers.

3.1.7 Transitions and fault simulation schedules

Transition conditions based on continuous system state allow modelers to capture fault
propagation as a physical effect on the modeled components. As such, it is irrelevant
whether it was caused by external events (e.g. lightning strike) or fault propagation
(e.g. short circuit in other system portions). This has several beneficial effects:

• Fault propagation can be simulated as realistic as the continuous model portion
is modeled.

• Fault propagation is context-independent because it is specified only on compo-
nents, not models.

• The interaction of external events and internal faults can be simulated without
additional modeling effort.

3.1.8 Requirements towards behavioral failure modeling lan-
guages

Joshi and Heimdahl [1] have stated requirements towards behavioral failure modeling
languages, which ensure their applicability in industrial practice. This subsection ex-
plains how the presented operational semantics for hybrid failure simulation fulfills
them.

1. “Component Fault Behavior: The notation must enable the engineer to specify compo-
nent fault behaviors for both internal faults and vulnerabilities to external faults.”
Internal and vulnerabilities to external faults are specified as hybrid modes.
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2. “Explicit Associations: Since the system fault model is defined separate from the nom-
inal model, the notation must enable specifying explicit associations between the relevant
fault behaviors and the nominal components.”
Hybrid modes (representing faults or nominal behavior) are defined on model
components. One nominal behavior mode is the default mode.

3. “Multiple Associations: Since a component can fail in more ways than one, the nota-
tion must enable associations of more than one fault behavior to a particular component.”
Each model component has at least one hybrid mode representing nominal be-
havior. It can have an arbitrary number of faults.

4. “Conflict Resolution: A conflict may occur between the multiple fault behaviors (multi-
ple internal fault behaviors or vulnerabilities) associated with a single component. These
conflicts must be resolved by defining some form of priorities or user-defined strategies.”
Model components can only have one active mode. Transition conditions are
required to be disjoint, thus conflicts are prevented at modeling time.

5. “Nominal Component Types: For flexible associations, a notion of component types
must be supported. The user can specify component types to group together nominal
components that have similar nominal or fault behaviors for the purpose of easy associa-
tions.”
Model components derive from library components that are parametrized at in-
sertion into the model. The information from which library component a model
component derives is persisted.

6. “Trigger and Persistence/Duration: The language shall support the trigger and persis-
tence specification for both internal and external faults. It shall also support the specifica-
tion of conditional fault activation, where the trigger and the persistence will be controlled
by the condition.”
Manually fault triggers can be scheduled. Fault transition conditions can be de-
fined on continuous system state, so the duration an automatically triggered fault
is active depends on continuous simulation.

7. “Error Propagation Rules: For identifying and activating the external faults, in addi-
tion to specifying the vulnerability behaviors, the notation shall also support specification
of error propagation rules [. . . ].”
Because transition conditions can be defined on the continuous system state,
faults propagate through the system as any behavior does, which makes explicit
fault propagation rules obsolete.

8. “Fault Model Hierarchies: For more flexibility, the engineer must be able to succes-
sively specialize fault behavior definitions as the design of the system and fault model
progresses.”
Model components’ links to their library counterparts can be disabled or broken,
enabling the possibility to refine fault behavior specification without affecting
library components.
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3.2 Implementation aspects

In the course of this work, a prototypical implementation for a hybrid modeling and
simulation engine for the presented operational semantics has been developed under
the name HSim. It consists of the following components:

• Base modeling engine for physical simulation (DAE-based)

• Hybrid component modeling framework

• Simulation engine for discrete transition detection and execution

A MATLAB-based [5] software stack was employed with custom components extend-
ing it as needed:

• Simulink and Simscape as a base modeling engine

• Stateflow and Simscape as a hybrid component modeling framework

• MATLAB and custom Simulink-components for discrete transition detection and
execution

• A simple Graphical User Interface (GUI)

The custom components of HSim are grouped by their layer name in the Model-View-
Controller software architecture pattern. CoreController contains the transition detec-
tion and execution, CoreView the Graphical User Interface (GUI) and CoreModel con-
tains shared data model classes for all components of the package and resources for
hybrid component modeling. CoreLibrary supplies a set of hybrid components pack-
aged into a Simulink library, as a proof of concept that the library block parametriza-
tion principle of Simulink can be applied to hybrid components as well. A set of sample
models is also provided with this work in the TestModels-folder5.

Subsection 3.1.3 explains that transition conditions need to be disjoint, so that only
one transition is set to be carried out for each individual component mode and contin-
uous state. The implemented hybrid component modeling framework does not test
for this and cannot warn the user during model design. During simulation, however,
a warning is issued when such a situation occurs. Even if individual components do
not trigger multiple transitions at the same time step, multiple components may do so.
As an example, consider a similar redundancy (e.g. for reliability improvement). A
failure that propagates to both similar components at the same time step may trigger
hybrid mode transitions for both of them. Their transition relations µ3,b may set states
in- or outside of the respective component. There is no general way to test for compat-
ibility of the transition relations, so for the sake of greater experimental freedom, the
transition detection engine issues only a warning. Thus, when multiple transitions for
identical time steps are triggered, only warnings are issued, regardless of whether they
originated from an individual component, multiple components or a mixture of both6

5Samples for the other chapters of this work are given in the same folder.
6E.g. when two transitions are triggered for one component, and another transition for another

component, all at the same time step.
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Figure 3.1: hybridFCS model structure

The same Subsection 3.1.3 also recommends avoiding energy or mass input into
the system over transitions. No warning is issued if this is not followed, neither at
modeling nor at simulation time.

All source code written in the course of this work has been commented extensively.

3.3 Case study: Simulating a hybrid flight control

system’s failure behavior

Hybrid, electro-mechanical Flight Control System (FCS) have a mechanical portion for
direct pilot commands and an Automatic Flight Control System (AFCS) for auto-flight
and flight control functionality with an electro-mechanical actuator. The outputs of
both portions are superimposed at the attached flight control surfaces. Safety assess-
ment of such a system typically concentrates on the effects of faults of the autopilot,
which is the only non-conventional portion of the system. As a measure of failure
propagation limitation against erroneous autopilot output, an overload clutch discon-
nects the autopilot’s actuator from the mechanical portion. This architecture has been
modeled by Lauffs [45], and has been simplified for showcasing hybrid simulation of
failures on a practically relevant example. In Chapter 5, the same model is used for a
case study on fault tree generation.

The model created for this purpose has been named ‘hybridFCS’. Figure 3.1 shows a
block diagram of its top-level model structure7. Custom behavior blocks used for sim-
ulating failure behavior of the AFCS, such as loss and erroneous output, are provided
in a block library called ‘hybridFCSlib’.

Hybrid failure behavior of blocks in the model are given in Table 3.1. In order to be

7The ‘Safety Assessment Data’-block is relevant only for tests of the implementation of Chapter 4,
which use the same model.

42



Chapter 3: Operational Semantics for Hybrid Failure Behavior

Table 3.1: hybridFCS blocks and failure behaviors

Block Behavior Description

AFCS Loss No output (always 0)
AFCS Erroneous Random output in steps of 1 second

OverloadClutch StuckOpen No contribution of the AFCS to the hinge
OverloadClutch StuckClosed Full contribution regardless of torque/speed

Hinge JammedUp/Down Fixed hinge position at mechanical limit

able to showcase failure propagation, the hinge’s failure behaviors JammedUp/Down
are triggered when the hinge crashes into its mechanical limits with a force beyond a
given threshold.

In nominal behavior, the hinge motion displayed in Figure 3.2 as a solid line is
simulated. It shows manual pilot commands in the interval [1 s, 6 s] superimposed with
autopilot output in the interval [3 s, 8 s]. No hybrid mode change is reported in nominal
simulation.

Simulating an erroneous AFCS triggers the overload clutch to open, protecting the
hinge from jamming. This is shown in Figure 3.2 as a dashed line. In this experiment,
the erroneous AFCS behavior starts at 1 s and (randomly) has no effect until 3 s. Then,
it starts to move downward but the overload clutch disconnects the actuator before
higher speeds are reached. Hinge movement hits its rotational limits, but soft enough
for it not to jam. Only the mode change for the fault of the AFCS is reported during
simulation.

When both the AFCS shows erroneous behavior and the overload clutch is stuck
closed, the failure can propagate to the hinge. Figure 3.2 shows such a scenario as a
dotted line, where an erroneous AFCS command causes the hinge to jam in the upper
position. The loss of torque limitation from the autopilot from the overload clutch
leads to faster hinge movement with sharper speed changes. A (random) downward
burst around 6 s jams the hinge in its maximum downward position8. The simulation
engine reports the two scheduled faults as well as the triggered jamming of the hinge.

In practice, the safety engineer would execute a series of randomized experiments
with active faults. Thus simulation performance is a relevant measure of the matu-
rity of the implementation. On a consumer-grade computer, the hybrid simulation
overhead results in a five-fold increase in computational effort over standard Simulink
simulation (49 s vs. 9 s).

The simulation experiment makes the driver of safety design, the dependency of
AFCS torque output and maximum overload clutch torque transmission from stick
force and maximum torque at the hinge’s limits, apparent. The implementation’s mod-
eling principles promote the co-design of nominal behavior-related and safety-related
functionality while keeping the aspect-specific results of this process separate.

8The downward movement beyond movement limits around 9 s is due to a simplification in the model
of the AFCS.
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Figure 3.2: Simulation results for hinge movement: nominal behavior (solid line), erro-
neous AFCS behavior (dashed line) and erroneous AFCS with the overload clutch stuck
closed (dotted line)
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Chapter 4

Completeness of Fault Trees

The second contribution of this thesis consists of a formalization of the completeness
of a fault tree as a predicate on Boolean functions abstracting failure behavior, and a
method for its efficient exploitation in fault tree generation and validation. It has been
published separately (see [46]).

Both generation and validation of fault trees are time-consuming and error-prone,
due to the same property of a fault tree that makes it expressive yet intuitive: Only
events that contribute to the top event are displayed. In fault tree generation, this re-
quires the author to keep in mind all implicit exclusions of non-contributing events
he has made, along with their rationale, in order to ensure consistency. Especially in
the analysis of highly severe top events, in which safety features of system architec-
ture commonly are diverse (as per dissimilarity requirements) and numerous (as per
the single fault robustness requirement for catastrophic Failure Conditions (FCs)), this
adds to the inherent challenge of the task. When validating fault tree completeness, the
same implicit exclusions and their corresponding rationale would need to be retraced
from the finished fault tree and its accompanying documentation. A complete fault
tree must not make any implicit exclusions without justified rationale — and a simple
fault tree would exclude as much probability as required to undercut the certification
limit and any single fault robustness requirement with as little distinct rationale as
possible.

In this section, this problem is formalized, the proposed solution is first character-
ized and then described, and its usefulness is showcased with the well-known Wheel
Brake System example from ARP 4761 [28].

The formalization of completeness is similar to that of Schellhorn et al. [4] but al-
lows for a computationally more efficient solution algorithm. It uses the concepts of
efficient manipulation of Boolean formulae employed for fault tree solution based on
Binary Decision Diagrams (BDDs) proposed by Bryant [47], applied and proven by
Coudert and Madre [38] and improved by Rauzy and Jung et al. [48, 40]. The proposed
algorithm allows highly efficient iteration of the leaves of a probability-weighted Bi-
nary Decision Diagram (BDD) in the order of their probability. It is employed for fault
tree validation with a minimal effort given the fault tree and the order of variables in
the BDD.

The original contribution of this thesis lies in
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• its mathematically strict formalization of fault tree completeness, and

• its algorithm for iterating over disjoint sub-spaces of the solution space in order
of their associated probability.

The algorithm essentially applies fault tree completeness in order to enable efficient
fault tree generation and validation. These results have already been published by the
author (see [46]).

4.1 Relation to the safety assessment process

As per ARP 4761 [28], fault trees are used to break down high-level safety requirements
from aircraft- to system- and from system- to item-level1 in a deductive manner. ARP
4754A [35] requires that safety requirements are validated.

For the validation of high- and low-level safety requirements, a catalog of correct-
ness and completeness criteria is specified in ARP 4754 [35]. Among the completeness
criteria, the first is that it should be “apparent from the traceability and supporting ra-
tionale that the requirement/-s will satisfy the parent requirement.” Thus determining
whether the union of all analysis errors (for completeness i.e. omitted critical combina-
tions of events) violates higher level safety requirements is the formal goal of validation
activities. Conversely, validating the fault tree is finished once large enough a portion
of the fault tree has been validated so that the remaining part, even if it is completely
wrong in an optimistic way, cannot jeopardize fulfillment of the higher-level safety
requirement.

For fault tree generation, achieving apparency is the second concern that results
from the above completeness criteria. A fault tree that needs extensive supporting ra-
tionale is thus to be regarded as inferior to one that confines itself to few but important
items of rationale, and pessimistically simplifies the rest. Identifying which safety fea-
tures of a system make up such a minimal set would ideally be the core of fault tree
generation. These safety features are the same rationale that would be checked first
during validation. Fault tree validation could be considered the dual problem of fault
tree generation.

4.2 Functions of static failure logic

Boolean logic makes automated reasoning simple, but require that all variable domains
are confined to {0, 1}, and that time is abstracted away. Boolean functions encoding
failure behavior are thus called functions of static failure logic in this work. The Boolean
function encoded by a fault tree is called its characteristic function, so static failure logic
are a natural form for discussing abstraction in the context of Fault Tree Analysis (FTA).

Before implementation of the system under study is completed, system failure be-
havior is modeled either descriptively (e.g. SysML [49]) or in analytic, executable mod-
els (e.g. see Chapter 3 of this work)2. They necessarily have common properties:

1For particularly complex systems, e.g. flight controls and engines, an additional subsystem-level may
be introduced to facilitate inter-organizational communication.

46



Chapter 4: Completeness of Fault Trees

1. They reflect inherent system complexity.

2. Their model class is more expressive than Boolean functions Bn → B.

3. They are supposed to describe system failure behavior adequately, just as well as
nominal system behavior.

Because of this, their abstraction into a Boolean function is intrinsically difficult. The
rest of this thesis assumes that analytic, executable models are not accessible to for-
mal verification and costly to evaluate in comparison to the fault tree’s characteristic
function.

4.3 Pessimism and fault tree completeness

In qualitative FTA, only single fault robustness requirements can be handled, while
probability requirements necessitate quantitative FTA. For each of these two require-
ment types, a formalization is given in this section. The last class of safety require-
ments, Function Development Assurance Level (FDAL) and Item Development As-
surance Level (IDAL) assignments, are not covered by this work.

Single fault robustness requirements can be formalized as predicates on Minimal
Cut Set (MCS) cardinality, or — in the terminology of boolean reasoning — prime
implicant cardinality. Bringing together

• the characteristic function of the fault tree under consideration F (x) := Bm → B,

• the set of F ’s prime implicants PI ⊂ Bn,PI := {π |F (π) = 1},

• a prime implicant π’s cardinality |π|,
the predicate of single fault robustness µSFR can be written as

µSFR := (∀π) |π| > 1 (4.1)

Probability limit requirements formalization is straightforward: With the probabil-
ity obtained through fault tree solution P (F (x) = 1) and the probability limit Pcert, a
probability limit requirement µProb can be written as

µProb := P

(⋃
PI

π

)
≤ Pcert (4.2)

In conventional safety assessment, higher-level safety requirements are fulfilled
when the aforementioned requirements in eqns. 4.2 and 4.1 derived from it are ful-
filled. However, both types of requirements assume that the fault tree identifies all
relevant contributing item faults and environmental or operational conditions x ∈ Bm.
If the domain of the characteristic function covers all such contributors and it fulfills
the above completeness criteria, the fault tree is complete. Note that this allows for
the fault tree to indicate the top event to occur when, in ‘reality’3, it does not. Infor-

2Descriptive models focus on system structure; Behavior is only one property among others. Analytic
models make future system behavior “playable” and not necessarily describe logical or physical system
structure. Discussion of the underlying design paradigms is out of the scope of this work.

3‘Reality’ as formalized as reference behavior, see section 1.4.4 of this work.
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mally, this defines fault tree pessimism: When the fault tree predicts the system to fail, it
may or may not fail in reality — the fault tree is a pessimistic approximation of failure
behavior.

The formal definition of fault tree completeness is based on the comparison of ref-
erence and fault tree-encoded failure behavior. A fault tree’s characteristic function
is readily defined as a Boolean function. For the reference behavior, a Boolean func-
tion G(y) is defined. It is not pessimistic: Only when a combination of item faults,
environmental events (e.g. lightning strike) and operational conditions (e.g. wet or icy
runway) causes the real system to fail, its static failure logic G(y) returns 1. It could be
used for fault tree verification, but because it is assumed to be impossible to abstract
and costly to evaluate, minimizing the need for its evaluation is a relevant contribu-
tion to bridging the abstraction gap between reference behavior and static failure logic
encoded in fault trees.

The input domain of G(y) in general is not the input domain of the fault tree’s
characteristic function F (x), but a superset of it: y ∈ Bn ⊇ Bm 3 x: It may take
into account item faults, environmental events or operational conditions the fault tree
ignores. In order to reason about such cases, the difference between the two domains
is defined to be d := y\x, and a compatible version of F is defined as F̂ that ‘does not
care’ about the variables d.

With G(y) and F̂ (y) defined formally, it is clear that a fault tree can be incomplete
for two distinct reasons:

• The input domain of F is too small: It can fail to take relevant basic events into
account, i.e. x misses events that are part of a MCS of G(y).

• The logic of F is optimistically wrong: It can take all relevant basic events into
account, but not return 1 for an assignment corresponding to a case in which the
real system fails.

In both cases, the effect is a false negative approximation in the fault tree: It does not
predict failure when, in reality, the system fails.

Finally, fault tree completeness can be expressed as a predicate of Boolean inclusion
of true system behavior in static failure logic in the fault tree’s characteristic function:

µCompleteness := (∀y)G(y) ≤ F̂ (y) (4.3)

The next section describes the properties of the proposed method for exploiting
eqn. 4.3, and the one after describes how the proposed method works.

4.4 Properties of the proposed method

The most naı̈ve algorithm for evaluating eqn. 4.3 would be to evaluate every possi-
ble assignment y ∈ Bn. This is impractical due to combinatorial explosion. However,
the search for assignments violating eqn. 4.3 can be reduced in such a way that com-
binatorial explosion is no longer an issue. This corresponds to the results that curb
combinatorial explosion in fault tree solution by Rauzy and Dutuit [48] and Jung et
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Figure 4.1: Partitioning strategies: Two-dimensional illustration of the high-dimensional
input domain, mapping to B, partitioned using BCFs (non-disjoint), explicit assignments
to all variables (many elements) or disjoint SOP terms

al. [40]. It exceeds similar efforts by Schellhorn et al. [4] by not only regarding fault
trees as graphical forms of Boolean functions, but also taking their probabilistic na-
ture and their role in the safety assessment process into account through probability
truncation of the search for violating assignments.

Combinatorial explosion is not the only concern when evaluating eqn. 4.3. Due
to the effort required to evaluate G, i.e. to abstract reference behavior into a Boolean
function of static failure logic, minimization of the number of evaluations of G is
paramount. The following subsections explain the measures applied to reduce the
number of required evaluations.

Evaluating only negative scenarios

Only assignments y ∈ Bn for which F̂ (y) = 0 can render eqn. 4.3 false. In safety
assessment, this is equivalent to stating that only scenarios where the top event is not
expressed to occur by the fault tree can render it incomplete. We call such assignments
a negative scenario and denote the set of all negative scenarios Y0 ⊆ Bn:

Y0 =
{

y | F̂ (y) = 0
}

(4.4)

In Figure 4.1, this is illustrated: The portion of the input domain mapping to 1 is not
taken into account in further processing.
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Disjoint Sum of Products (SOP)-formulas for denoting negative scenarios

Solution strategies for Boolean equations (for finding G(y) = 0) depend on the de-
sired description format of the result. Before proposing a solution strategy, the desired
description format is thus characterized.

For computational efficiency, a format that describes the solution space (or here, its
complement) by as few, disjoint sub-spaces as possible would be most beneficial. This
is due to the fact that each sub-space y0 ∈ Y0 will, in practical application, be associated
with a justification or proof that, for all assignments in that sub-space, F̂ (y) = 0. Such
pieces of justification or proof are called rationale in the context of fault tree validation.
Few pieces of powerful rationale4 are preferable over many weak pieces because they
yield the same result — a validated fault tree — with less effort. Disjointness ensures
that no piece of rationale overlaps with that of another sub-space, so they can be vali-
dated separately and cannot contradict each other. This is illustrated in Figure 4.1.

The two common formats for describing the solution space of a Boolean equation
do not have both of these properties:

• Explicitly listing every assignment to all variables that satisfies the equation en-
sures sub-space disjointness but yields the maximum number of sub-spaces with-
out repetition.

• The Blake Canonical Form (BCF) yields the minimum number of sub-spaces but
they are not disjoint.

Thus neither of them is suitable for the purpose of this work. A suitable description
format would be some sort of SOP-formula. They can be evaluated quickly by consid-
ering terms only until the first term evaluates to 1. Fortunately, paths from a BDD’s
root node to its 1 (or 0) node yield disjoint product terms describing sub-spaces of the
solution space (or its complement) that can be arranged trivially in a SOP-formula by
ORing them, as described in the following section. BDD reduction ensures that the
resulting number of sub-spaces is also comparably small.

Boole’s expansion theorem and BDDs for obtaining disjoint negative scenarios

Applying Boole’s expansion theorem to F̂ for each of its variables yi ∈ y yields its BDD
(see [47]), whose paths are disjoint product terms by construction. Each path from the
root node to a 0-node describes a negative scenario. This can be visualized in BDDs as
described in section 2.3.3. Each path from the root node to a terminal node correlates
to an assignment that, when evaluating the underlying Boolean function for it, yields
the result given by the path’s terminal node. Graphically, the assignment can be read
from the path by ANDing each node assignment on the path. The number of negative
scenarios is thus the number of paths from the root node to the 0-node, and depends
on the variable ordering.

Because such a path can be formalized as a BDD itself, BDDs provide a closed arith-
metic for the purpose of this work. For an example, re-consider Figure 2.3: The paths

4Powerful in that the rationale is applicable to a sub-space of large probability.
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Figure 4.2: Probability-weighted BDD with basic event probability associated with 1 and
complementary basic event probability associated with 0 edges.

to its 0 nodes fully describe the complement of its solution space, and can be ‘read’
from the BDD as x′1x′2 + x′1x2x

′
3.

The availability and size of the BDD of F̂ is, in practice, not a problem. BDD size
problems can be curbed easily: Even though the maximum number of nodes of a BDD
encoding a Boolean function with n variables is 2n and depends on variable ordering,
the maximum is seldom reached. Even when a size near the maximum is obtained
from natural variable order, reordering variables in such a way that variables are or-
dered by their corresponding basic event’s distance to the top event (and randomly
where distance is equal) mitigates the problem (see [39])5. Availability is also not prob-
lematic: The characteristic function’s BDD is used for fault tree solution anyway, and
the BDD of F̂ is the same as that of F . Thus, there is no need to take BDD creation into
consideration for determining the computational efficiency of the presented algorithm.

Using edge weights to convey stochastic information into the BDD

By weighting the edges6 with basic event probability (for the 1 edge) or its complement
(for the 0 edge, respectively), the stochastic information of the corresponding fault tree
is captured directly in the BDD, as illustrated in Figure 4.2. This allows obtaining the
probability P of a scenario y — if all its basic events are independent — by multiplying
the probabilities associated with the edges of its corresponding path in the BDD:

P (y) =
i=n∏
i=1

P (yi ∈ y) (4.5)

5Rauzy gives no proof for the fitness of this heuristic, and the selected BDD computing component in
this work simply reorders variables randomly when storage space grows above a certain threshold.

6Weighted BDDs were originally proposed by Ossowski and Baier [50].
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disjoint SOP

= 1 – P
Cert

= Evaluated

= Truncated

Figure 4.3: Probability truncation: Two-dimensional illustration of high-dimensional in-
put domain, mapping to 0, partitioned using disjoint SOP terms. Once enough scenarios
have been evaluated for the complement of the certification limit to be passed, evaluation
can stop.

The underlying assumption of eqn. 4.5 that all basic events in a path are indepen-
dent is pessimistic: Common Cause Analysis (CCA) ensures that they are not related
in a stronger way than independence, i.e. they can be independent or even antagonis-
tic to the point of being disjoint. Examples of less strongly related basic events than
independent are faults of the same item (disjoint), basic events describing flight phases
(disjoint), or specific redundancy concepts. This topic is not discussed further in this
work and proposed for future investigation in the last chapter.

Note that all outgoing edges starting at the same index and of the same kind (1 or
0-edges) have the same weight. This is also true for edges spanning multiple indices,
as obtained by BDDs reduction. This needs to be taken into account during imple-
mentation to avoid associating memory storage costs of one edge weight per edge. A
prudent implementation needs to store only two edge weights per index.

Determining fault tree completeness only to the degree of certainty required
by the corresponding quantitative safety requirement

With stochastic information from the fault tree available to the analysis of fault tree
completeness, another pessimistic simplification is introduced: It is not required to
evaluate G for the entire sub-space Y0 of negative scenarios. The exact probability of
all negative scenarios of P (Y0) is not relevant for fault tree completeness. It only needs
to be less than the complement of the certification limit Pcert. Once enough scenarios
have been evaluated for passing that threshold, the process can be stopped because the
fault tree is proven to be sufficiently complete. The sub-space of Y0 evaluated so far is
denoted Y0,∂ This can be formalized as a predicate:

µTracingComplete := P

⋃
Y0,∂

y

 ≥ 1− Pcert (4.6)
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Figure 4.4: Concepts of fault tree pessimism: Preferring high-probability negative scenar-
ios allows verification with minimal effort. Similarly in fault tree generation, excluding
high-probability negative scenarios first allows generating a complete fault tree of minimal
size for the given FC and system under consideration.

The process of stopping evaluation when this predicate returns 1 is called probability
truncation. Figure 4.3 illustrates the concept.

Evaluating negative scenarios in order of their probability

Probability truncation in the context of fault tree verification is illustrated on the left
of Figure 4.4. Negative scenarios are evaluated one after another. Nominal behavior,
when no faults occur, can be skipped: It can be assumed to be the negative scenario
of the highest probability, because failure probability usually is much lower than .5.
Beyond that, the number of required evaluations of G to prove completeness is min-
imal when the individual probability of the evaluated negative scenarios is maximal.
In other words, few negative scenarios of high probability for reaching the certification
limit are preferable over many negative scenarios of low probability.

In BDDs, tracing paths of high probability is achieved by keeping a sorted list of
the weights of all untraced edges during tracing, and following edge by edge in de-
scending order of their probability (see 4.5). Thus the BDD under consideration is
only traced as far as required to evaluate the negative scenarios that have the high-
est probability. Especially for large BDDs, this is beneficial for the overall method’s
computational efficiency.

Two factors influence the number of negative scenarios required for proving com-
pleteness: The order in which they are evaluated (preferably large scenarios first) and
— because BDDs are used to construct the negative scenarios — BDD size and thus
the ordering of the variables in the underlying BDD. In Figure 4.3, this can be graphi-
cally interpreted as different ways of partitioning the solution space that have the same
properties (disjoint SOP formulas). This means that, with n variables, there are n! pos-
sible orders of variables, and thus n! ways to partition the solution space. Finding the
weighted BDD that yields the most efficient partitioning for the purpose of this work is

53



4.4 Properties of the proposed method

an extension of the problem of finding the smallest BDD for a given Boolean function,
and has consequently not been examined further.

Expanding to full assignments before evaluation

Negative scenarios obtained by tracing paths in a BDD by construction omit variables
that have no effect on the corresponding Boolean function’s outcome. We call assign-
ments that replace every variable with a value full assignments, denoted ŷ0. Comple-
mentarily, we call those that replace only a part of the set of variables partial. Because
full assignments vary widely in probability (the most probable being the nominal case)
and can also be traced in order of probability, there are situations where applying
Boolean expansion after tracing to the relevant negative scenarios is useful.

In the next step of fault tree validation, the result of the proposed method would be
used in formal validation or simulation to gather a piece of rationale for each evaluated
assignment to be a true negative. If the actual technique of gathering pieces of rationale
has to consider a definitive state of each variable, it is efficient to continue Boolean
expansion on the negative scenario with the omitted variables: Few full assignments
gained from a negative scenario with unassigned variables usually contain the vast
majority of its probability, and Boolean expansion is computationally cheaper than
gathering many pieces rationale.

In order to gain a full assignment from a partial assignment represented by a path
y0, a variable to be expanded must first be selected. The variable not in the path al-
ready, whose probability is farthest from 0.5, leads to the highest probability full as-
signment, so it is selected for the next step7: With the selected variable denoted xe, the
original partial path is replaced with two paths y0 · xe and y0 · x′e. The result can be a
path for full or a longer partial assignment. This is repeated on the partial assignment
with the highest probability in the set of all partial assignments until enough proba-
bility has been gathered in full assignments so that the probability of their union is
equal to or greater than the complement of probability limit of certification. This can
be formalized as a predicate:

µExpansionComplete := P

(⋃
Y0,∂

ŷ

)
≥ 1− Pcert (4.7)

Note the similarity to the probability truncation predicate in eqn. 4.6. Here, only full
assignments are taken into account.

When G is not evaluated but reference behavior is analyzed manually or through
formal verification (when applicable to the system under study), it is unnecessary to
provide different justification for two assignments when they are found to lie in the
same minimal path set. This fact is used by Schellhorn et al. [4] in their approach
that is based on formal verification, but as it does not take probability truncation into
account, it is not only limited by the preconditions to formal verifiability but also by
combinatorial explosion in large fault trees.

7When P (xe) < 0.5, P (y0 · x′e) is greater; When P (xe) > 0.5, P (y0 · xe) is greater. If all basic events’
probabilities are < 0.5, the variable representing the basic event with the highest probability can be
selected.
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4.5 Description of the proposed method

The proposed method can be separated into two consequent parts: Evaluation of the
BDD or tracing, and — if full assignments are preferred, e.g. for simulation as per Chap-
ter 3 — expansion of negative scenarios obtained by tracing. Both parts store interme-
diate data on three lists of (partial) paths:

• The tracing backlog stores partial paths that are possible next edges to evaluate for
the algorithm. I.e. it stores “where the algorithm could trace next”.

• The results backlog contains paths that have not yet been added to the results list
because it has not yet been ensured that its path of the highest probability has a
higher probability than any path the algorithm can still find. I.e. it stores “what
paths the algorithm has seen but not yet returned as a result”.

• The results list contains the BDD’s (probability-truncated list of) paths in order of
their probability. I.e. it stores “the result of the algorithm”.

Both the entries tracing and in the results backlog are stored in descending order of
(partial) path probability. The entries in the results list are by construction ordered in
this way by the presented algorithm.

Tracing is illustrated in Figure 4.5. It begins with the root node of the reduced BDD
and initializes by storing its edges in the tracing backlog.

Then, the ‘tracing’ loop begins. Each time, the partial path from the tracing backlog
with the highest probability is evaluated and removed from the tracing backlog. As
during initialization, if the 0-node is reached, it is added to the results backlog. If the
1-node is reached, the path is discarded. If no terminal node is reached, the partial path
is added to the tracing backlog. Before the tracing loop continues with the next edge,
the inner ‘checking’ loop is executed.

During the checking loop, the paths in the results backlog are compared to the
partial path in the tracing backlog with the highest probability in descending order of
probability: If the ‘best’ path’s probability is higher than the partial path’s, it is moved
to the result list. If the result list’s probability is higher than that of the complementary
certification limit on probability, tracing is complete. The checking loop is quit when a
path is of lower probability than the partial path of with the highest probability.

Expanding the paths obtained by tracing works similarly to tracing and is illus-
trated in Figure 4.6. The tracing backlog is filled with the negative scenarios obtained
by tracing. As in tracing, the expansion loop works on the most probable path in the
tracing backlog. In contrast to tracing, it begins with expanding the current path on the
variable not in the path that has its probability farthest from 0.5. For moving the ex-
panded paths to the results backlog, they need to represent full assignments, i.e. they
have to assign a value to every variable. If they do not, they are added to the trac-
ing backlog. In every other respect, the expansion process is the same as the tracing
process.

55



4.5 Description of the proposed method

Tracing Loop

Checking Loop

T.:
EXIT
LOOP FALSE

Initialize Tracing:
TraceBacklog += root, root’

TRUE: NEXT FALSE
F(maxPartPath) = 1

LOOP:
curPartPath = selectPmax(TraceBacklog)
TraceBacklog �= curPartPath

TRUE FALSE
F(maxPartPath) = 0

ResultsBacklog +=
curPartPath

TraceBacklog +=
curPartPath · nextVar,
curPartPath · nextVar’

LOOP:
hiPath = selectPmax(ResultsBacklog)
hiPartPath = selectPmax(TraceBacklog) 

P(hiPath) <
P(hiPartPath)

ResultsList += hiPath
ResultsBacklog �= hiPath

T.:
EXIT

F.:
NEXT

P(ResultsList) �
1 - Pcert

Figure 4.5: Nassi-Shneiderman diagram for the probability-guided evaluation process of
a BDD
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Expansion Loop

Checking Loop

TRUE:
EXIT LOOP FALSE

Initialize Expansion:
TraceBacklog = ResultsList from Tracing

LOOP:
curPath = selectPmax(TraceBacklog)
TraceBacklog �= curPath
curVar = selectPbestVar(curPath)
curExpPath1 = curPath · curVar
curExpPath0 = curPath · curVar’

FALSE TRUE
isFull(curExpPath1)

TraceBacklog +=
curExpPath1,
curExpPath0

ResultsBacklog += curExpPath1, curExpPath0

LOOP:
hiFullPath = selectPmax(ResultsBacklog)
hiExpPath = selectPmax(TraceBacklog) 

P(hiFullPath) � P(hiExpPath)

ResultsList += hiFullPath
ResultsBacklog �= hiFullPath

TRUE: EXIT FALSE: NEXT

P(ResultsList) �
1 - Pcert

Figure 4.6: Nassi-Shneiderman diagram for the probability-guided path expansion process
of the paths of a BDD
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Figure 4.7: Reduced, probability-weighted BDD for ab+ a′c

4.6 Example

As an example, consider a fault tree with the characteristic function F (a, b, c) = ab +
a′c. In reference behavior, another basic event d is defined (but not captured in the
fault tree). Thus the extended characteristic function is F̂ (a, b, c, d) = ab + a′c. The
probabilities of the basic events are P (a) = 0.1, P (b) = 0.2, P (c) = 0.3, and P (d) = 0.4.
Figure 4.7 shows the associated reduced, probability-weighted BDD.

A certification limit of Pcert = 0.4 is assumed. The probability of the top event
to occur is P (ab + a′c) = 0.29. The proposed method is applied to find the minimal
number of full assignments that need to be verified in order to validate the fault tree,
in order of their probability, and using the given variable order a, b, c, d.

Table 4.1 displays the state of the tracing and results backlogs and executed actions
per step during tracing. Table 4.2 gives the same information for the expansion part of
the process.

4.7 Case study: Validation of the ARP 4761 wheel

brake system example

In order to practically substantiate the claims of effectiveness of the presented algo-
rithm made earlier in this chapter, it has been implemented. It has been applied to two
examples for fault tree analysis given in ARP 4761 [28]. Results of measurements of its
performance characteristics are discussed in this section, while the method’s fitness for
introduction into industrial practice is discussed in the last chapter of this work.

The implementation of the algorithm is written in Java [51]. It uses the JavaBDD
package [52] with the pure Java BDD solver8. It extends the BDD iterator provided by

8The recommended, native C BDD solver BuDDy [53] was not used because of a bug with non-
coherent, symmetric BDDs: Calculating all implicants of x1x

′
2 + x2x

′
3 + x3x

′
1 throws an exception.
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Table 4.1: Fault Tree Pessimism Example: Part I — Tracing

Step Action Tracing/Results Backlog

Initialization -/- Tracing:
a′ (P = 0.9)
a (P = 0.1)
Results: ∅

1. Tracing Partial path to trace: a′

Subtree: F (a′) = c
Next variable in subtree: c

Tracing:
a′c′ (P = 0.63)
a′c (P = 0.27)
a (P = 0.1)
Results: ∅

1.1 Checking Results backlog is empty
2. Tracing Partial path to trace: a′c′

Subtree: F (a′c′) = 0
→ Path found

Tracing:
a′c (P = 0.27)
a (P = 0.1)
Results:
a′c′ (P = 0.63)

2.1 Checking P (a′c′) = 0.63 ≥ P (a′c) = 0.27
→ a′c′ is the next result
P (a′c′) = 0.63 ≥ 1− Pcert = 0.6
→ Tracing is finished!

Tracing:
a′c (P = 0.27)
a (P = 0.1)
Results: ∅
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Table 4.2: Fault Tree Pessimism Example: Part II — Expansion

Step Action Tracing/Results Backlog

Initialization -/- Tracing:
a′c′ (P = 0.63)
Results: ∅

1. Expansion Path to expand: a′c′

Variable to expand: b
a′bc′ is not a full assignment

Tracing:
a′b′c′ (P = 0.504)
a′bc′ (P = 0.126)
Results: ∅

1.1 Checking Results backlog is empty
2. Expansion Path to expand: a′b′c′

Variable to expand: d
→ Results found

Tracing:
a′bc′ (P = 0.126)
Results:
a′b′c′d′ (P = 0.3024)
a′b′c′d (P = 0.2016)

2.1 Checking P (a′b′c′d′) ≥ P (a′bc′)
→ a′b′c′d′ is the next result
P (a′b′c′d′) = 0.3024 < 1− Pcert

→ Continue

Tracing:
a′bc′ (P = 0.126)
Results:
a′b′c′d (P = 0.2016)

2.2 Checking P (a′b′c′d) ≥ P (a′bc′)
→ a′b′c′d is the next result
P (a′b′c′d′) + P (a′b′c′d) =

0.504 < 1− Pcert

→ Continue

Tracing:
a′bc′ (P = 0.126)
Results: ∅

3. Expansion Path to expand: a′bc′

Variable to expand: d
→ Results found

Tracing: ∅
Results:
a′bc′d′ (P = 0.0756)
a′bc′d (P = 0.0504)

3.1 Checking Tracing backlog is empty
→ a′bc′d′ is the next result
P (a′b′c′d′) + P (a′b′c′d) +
P (a′bc′d′) = 0.5796
< 1− Pcert

→ Continue

Tracing: ∅
Results:
a′bc′d (P = 0.0504)

3.2 Checking Tracing backlog is empty
→ a′bc′d is the next result
Both backlogs are empty
→ Expansion is finished!

Tracing: ∅
Results: ∅
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Table 4.3: Case study results

Metric
Value for

BSCUINADV
Value for

LOSSALLWB

Total no. of nodes 33 29
No. of basic events 17 14
No. of house events 4 2
Proba. margin / top-event proba. 3.06 0.56

No. of neg. scenarios (no trunc.) 6160 1155
Trunc. no. of neg. scenarios 63 28
After doubling no. of basic events 363 58

Computation time for all scenarios 190 ms 145 ms
Computation time with truncation ca. 8 ms ¡ 2 ms

JavaBDD to accept edge weights9, representing the probabilities (and complementary
probabilities) of each basic event. It encompasses all optimizations proposed in the
previous section. Export of iteration results to MATLAB [5] for analysis and figures
production has been carried out using JMatIO [54].

[28] gives a series of examples for fault tree analysis. Two of them have been
chosen for benchmarking: The largest one, BSCU Commands Braking in Absence of Brake
Input and Causes Inadvertent Braking, abbreviated BSCUINADV, and a second one, Loss
of All Wheel Braking, abbreviated LOSSALLWB.The former is the largest tree by node
count, and the latter has the smallest probability margin of the examples given in the
standard.

The size of both fault trees makes them too large for evaluation of every possible
assignment, but still small enough so that the list of assignments to evaluate can be
generated in a reasonable amount of time. The size of real fault trees can, nevertheless,
reach far beyond theirs.

But even for those two trees, the number of negative scenarios is in the order of
thousands of scenarios10. Applying probability truncation on a probability-sorted iter-
ation of negative scenario reduced the number of scenarios required to fit remaining
scenarios into the probability margin to dozens of scenarios. The extreme effect of
probability truncation on the number of iterated scenarios is displayed in Figure 4.8.
As predicted, negative scenarios of high probability are few. Even for very low proba-
bility margins, the number of scenarios drops sharply with increasing probability mar-
gin. Similarly, calculation times drop to a small fraction, although not as sharply as sce-
nario count. Only for the larger of the two fault trees can the calculation time be mea-
sured readily in the Java Virtual Machine for Windows. Measurements of the smaller
one seem to be dominated by the computational effort for the execution overhead.

Considering only the basic events used by the fault tree, however, is an unjustified
simplification. To determine the effect of adding basic events that should not trigger

9It enforces the restriction of only two different edge weights per index, thus it is not a general
implementation of edge-weighted BDDs.

10The exact number depends on variable ordering.
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Figure 4.8: Effect of probability truncation: Minimal probability margins result in the
truncation of the vast majority of negative scenarios; • for BSCUINADV (6160 full neg-
ative assignments in total), ◦ for LOSSALLWB (1155 negative assignments in total)

the top event, such events at random probabilities have been added. Their probability
has been distributed lognormally around 10−6 and censored to fall between 10−12 and 1
per flight hour. The experiment of adding such random basic events has been repeated
80 times for each number of basic events added, to ensure statistical robustness. The
number of required negative scenarios was averaged over the set of outcomes for each
number of events added. Figure 4.9 shows the results. While the number of possible,
full assignments grows exponentially with base 2, the number of scenarios required for
assessing fault tree completeness grows much slower. In the BSCUINADV-example,
doubling the number of basic events introduces not 63 · (217 − 1) but only ca. 300 new
negative scenarios that need to be considered. Combinatorial explosion is effectively
curbed.
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Figure 4.9: Effect of added events: Additional unconsidered basic events do not lead
to combinatorial explosion, as both series are far below 2|ŷ0|; • for BSCUINADV, ◦ for
LOSSALLWB
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Chapter 5

Fault Tree Generation

In system architecture design, fault tree generation and the design of the system under
study are refined in an iterative process: The fault trees for all Failure Conditions (FCs)
of the system for the current state of its architecture is generated, safety design intent is
derived and the system architecture is refined, beginning the next iteration. This pro-
cess continues until the system architecture fulfills top-level safety requirements. For
the applicable standards in aerospace engineering, see [35, 28]. This section proposes
a method for

1. covering system architecture by building logic-neutral fault tree templates from
component-based, hierarchical, Differential-Algebraic Equation System (DAE)-
based models,

2. covering safety design intent by manual annotation to data flow graph or DAE-
based models, and

3. deriving static failure logic from safety design intent and applying it to fault tree
templates, thereby transforming templates into fault trees.

The result is a fault tree that reflects system architecture and safety design intent in
reference to the underlying failure condition as annotated in the model.

This method for model-based, automated fault tree generation is the first to pro-
duce a fault tree that suffices the requirements towards fault tree structure stated in
ARP 4761 [28]. The annotation of behavioral model from which the logic of the fault
tree is derived is a generalization of the work of Fenelon and McDermid [55, 56] and
Papadopoulos [57] to omnidirectional models such as DAE-based models.

5.1 Capturing safety design intent

In Chapter 3, operational semantics for hybrid failure simulation are introduced. They
are capable of describing failure behavior, in the same level of detail as nominal behav-
ior, as DAE-based, component-oriented models. During system architecture design,
the desired behavior of the system under component fault(̇-s) is described in a more
abstract way:
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5.1 Capturing safety design intent

• fail-safe or fail-passive designs prevent specific safety-relevant repercussions1

without preserving related nominal behavior

• fail-ops designs prevent specific safety-relevant repercussions and at the same
time preserve nominal behavior

Fenelon and McDermid [55] have shown that both concepts, in a component-oriented
approach, relate to limiting failure propagation and transforming severe failures to
negligible ones. Safety design intent is the definition of the desired, component-level
behavior abstracted to rules for fault propagation and transformation. This section
describes how safety design intent can be annotated into DAE-based models and how
the logic to be encoded in a fault tree can be derived from it. This bypasses the hybrid
systems verification problem (see Section 2.2.5) by manual annotation.

5.1.1 Concept

Assuming the designed functionality of the system under study is safe, there needs to
be some reason or cause for it to become unsafe. These causes may be outside of the
system, when environmental conditions (in the broadest sense) exceed what the sys-
tem was designed for, or inside of it, when components of the system fail. Component
faults themselves cannot be safety-critical, as only harm to humans, the environment
of the system or the property of third parties is by definition a relevant repercussion in
safety assessment. Safety design targets the interrelation between cause (component
fault) and effect (repercussion): It requires the behavioral change to the system (i.e. the
failure) to be transformed or blocked from propagating to the system portion where
the actual harm is done. Shielding portions of a system from faults that occurred else-
where is achieved through components that only allow omnidirectional flow of energy,
mass or information, such as fuses, clutches, diodes, relief valves etc. Failures can be
transformed intentionally by introducing redundancy or monitoring components that
passivate system portions upon detecting their failure.

For directional behavioral models, Failure Propagation and Transformation Nota-
tion (FPTN) [55, 56] and, more powerful, Hierarchically Performed Hazard Origin &
Propagation Studies (HiP-HOPS) [57] have proposed methods for specifying safety de-
sign intent. However, it is in the nature of a failure not to necessarily propagate in the
direction of energy, mass or information flow during nominal system behavior, but in
any way allowed by the physical principles of behavior of the real components of the
system. The method proposed in this work builds upon FPTN and HiP-HOPS and can
be interpreted as a generalization of HiP-HOPS to DAE-based models. This allows for
simpler, more reusable, extended models of nominal and failure behavior that include
safety design intent.

Conceptually, the proposed method propagates and transforms qualitative failure
tags across directional graphs of component-oriented, hierarchical model topology. The

1In practice, prevention of repercussions usually is probabilistic, not definitive, e.g. an aircraft’s tail-
hook for emergency landing may fail to drop or catch the arresting wires, thus its prevention of runway
overshoot is probabilistic.

66



Chapter 5: Fault Tree Generation

nodes of these graphs represent component interfaces, called ports. Their edges repre-
sent both component-internal failure propagation and transformation as well as inter-
component failure propagation. So conceptually, failures only propagate between com-
ponents — Transformation only happens in the intra-component edges. The graphs
are directional but can encode omnidirectional edges by having two edges between
two nodes, one in each direction. In this work, they are called topological graphs. The
topological graphs are built from directional, dataflow-based models in Simulink and
omnidirectional, DAE-based models in Simscape, or mixtures of the two. The formal
definition this transformation is given in Subsection 5.1.2.

Three tags are defined:

1. Neutral behavior — N: No function is provided by this node. This is the default
tag and conceptually represents the loss of the function in safety assessment.

2. Nominal (specification-conformant) behavior — C: The function is provided in con-
formance to the desired behavior of this node. This represents nominal behavior.

3. Terminating behavior — T: Erroneous / inadvertent execution of behavioral speci-
fication is provided by this node.

Nodes can have unconstrained tag assignment or be assigned a fixed tag. Tag propa-
gation on inter-component edges follows an ordinal relation, called tag precedence:

T = {T,C,N} (5.1)

T > C > N (5.2)

The destination of an inter-component edge cannot have a lesser tag than its origin, un-
less the destination has a fixed tag assignment. The relation between intra-component
tag assignments follows a custom rule for each component. The nominal behavior and
the faults of a component each are encoded as a rule for tag assignment.

A tag assignment solution for each node in a given graph is one that satisfies all
constraints from the inter-component propagation rule, intra-component assignment
rules and fixed tag assignments.

FCs are translated into predicates on solutions. When a solution fulfills the predi-
cate, the FC occurs. By applying the intra-component assignment rules corresponding
to the active faults of a given scenario (see Section 1.4.4), positive scenarios can be
evaluated with reference behavior modelled according to this concept.

5.1.2 Formal definitions

Model topology of Simulink and Simscape models enforces identity of state on con-
nected ports, and component behavior specifies transformation, or more generally,
interrelation between variables. Hierarchicality is captured by implicitly requiring
identity for the purpose of simulation between each subsystem’s lower-level, ‘inter-
nal’ ports and its higher-level, ‘external’ ports. Table 5.1 defines annotation features
for such elements of Simulink and Simscape models for safety design intent.
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Table 5.1: Notation of safety design intent annotation

Feature Symbol & Definition

Adjacency matrix of model
with n ports

A ∈ Bn

Assigned tag of port p in block b σb,p ∈ T
Allowed tag assignments of block b
with k ports

µ1,b : Tk → B

Allowed tag assignments for
propagation from port p in block b
to port q in block c

µ3,b,p,c,q =

{
σb,p = σc,q ifAp,q = 1

unconstrained otherwise

Failure Condition f triggered by
m tag assignments

µ4,f : Tm → B

The transformation from flat, global models to topology graphs is formalized in
the adjacency matrix: When there is a connection from port p to another port q in the
model, then there also is an edge from node p to node q in the graph, and the entry in
row p in column q in the adjacency matrix Ap,p is 1 — otherwise, it is 0. Port type (in-
bound, outbound, omnidirectional) and thus connection direction can be ignored here,
thus the adjacency matrix is symmetric. Per convention, the diagonal is 0n. Because tag
transformation across intra-component edges is constrained by custom rules anyway,
the adjacency matrix entries there are irrelevant for the solution. For simplification in
later Constraint Satisfaction Problem (CSP) creation, these edges are assigned 0.

In order to relieve the user from having to enter tag transformation rules µ1,b for
nominal behavior, a default tag transformation rule for intra-component edges is de-
fined: Each inbound and each omnidirectional port inside the component are con-
nected to each outbound and each omnidirectional port by the following tag assign-
ment rule: Tag assignment to each outbound or omnidirectional port is the highest tag
(as per eqn. 5.1) of all connected inbound or omnidirectional ports.

Tag assignment can be fixed, i.e. the assigned variable has a value chosen by the
modeler, irrespectively of the assignment of tags to connected ports. This has two
applications: Usually, logical signal sources such as sensors in nominal behavior have
a fixed assignment of C, which is then propagated to other components. Conversely
in the failure case, fixed assignments of N or T have to be made.

In this abstraction of failure behavior, propagation, and transformation, FCs are
formalized as predicates µ4 on tag assignments on a subset of the ports in the model,
i.e. in Table 5.1, n >= m.

Note that safety design intent is static: No time domain is involved. This is a strong
abstraction of real system behavior, yet less abstract than that in FPTN [55, 56] and
HiP-HOPS [57], because it does not impose static directionality on the exchange of
tags.
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Figure 5.1: Example for a simple, flat fault tree

5.2 Fault tree template generation and logic supple-

mentation

Safety design intent contains the logic of the fault tree to be created, while model hi-
erarchy encodes fault tree structure. These two aspects can be handled with a certain
degree of independence because fault trees can express equivalent logic in different
ways, just as Boolean expressions can encode the same function in different ways. The
mathematical concepts this idea is founded upon is introduced in this section, and it
is applied for refining (or ‘trimming’) fault tree templates in a fault tree generation
process according to Section 1.4.4.

5.2.1 Structural classification of fault trees

For automated fault tree generation, structural properties of fault trees are of great
interest. They can be used to describe what makes an automatically generated fault
tree intelligible and useful2 and help to structure the process of fault tree generation
that is the subject of automation in this chapter.

In the context of this work, three structural types of fault trees are relevant:

• Flat fault trees have an OR-gate as their root node, and arrange all Minimal Cut
Sets (MCSs) directly below it (see Figure 5.1). First order MCSs are arranged
directly below the root node, while higher-order MCSs are each grouped by an
AND-gate directly below the root node. This corresponds to the Disjunctive Nor-
mal Form (DNF) of symbolic Boolean expressions. Flat fault trees carry no infor-
mation on model hierarchy or fault propagation.

• Deep fault trees contain additional gates in comparison to flat fault trees. They
can carry additional information (beyond the MCSs) on the system under study.

2In the aviation industry, the standard and guidance material for safety assessment [28, 37] require
specific types of fault tree structure, introduced later in this section as the ‘hierarchically-ordered’ type.
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Figure 5.2: Example for a simple, fault propagation depth-ordered fault tree, assuming
the subsystems’ order in the functional chain is III→ II→ I, and the faults in subsystem
II are on sequential components

Flatness and deepness are mutually exclusive. Sub-trees of deep fault trees can
be further classified as follows:

– Fault propagation depth-ordered fault trees encode failure propagation in their
additional gates (see Figure 5.2). The root node represents the component
where the FC manifests. A sequence of OR-gates stretches from the root
node, where each level indicates that the faults directly below it are one com-
ponent farther away from the component where the FC manifests. Maintain-
ing this structure can be difficult for elaborate safety architectures, where
the components providing a redundancy may be distributed across differ-
ent parts of the system. Furthermore, this approach makes re-using sub-
trees between FCs in fault tree generation difficult because fault propaga-
tion paths can differ from FC to FC. Lastly, this also means that divide-and-
conquer concepts depending on model hierarchicality do not apply directly
to such trees. HiP-HOPS creates fault trees of this type, even though the
method takes model hierarchicality into account during model annotation.

– Model hierarchy-ordered fault trees have a scaffolding of OR-gates which por-
tray the composite hierarchy of the model (see Figure 5.3). For hierarchi-
cal DAE-based and dataflow-based models such as Simulink and Simscape
models, this is the same hierarchy as that of system architecture. Faults are
arranged below their governing system portion, and MCS spanning multi-
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Figure 5.3: Example for a simple, model hierarchy-ordered fault tree

ple such portions are arranged directly below their deepest common ances-
tor. Minimal cut set can be read easily from such a fault tree, and the fitness
for reuse of a subtree only depends on the failure behavior context of its top
node. The divide-and-conquer principle for fault tree analysis enabled by
such a structure is especially helpful when multiple design and safety engi-
neers collaborate in one fault tree, because responsibility for system portions
maps to responsibility for sub-trees.

Manually-built fault trees tend to be a mixture of both forms of deep fault trees. The
deductive nature of fault tree analysis applies more gracefully to model hierarchy-
ordered fault trees. Most importantly, the standard and guidance material for fault
tree generation in the aviation industry (see [28] and [37]), where fault tree analysis
has been routinely and successfully applied for safety assessment of large, complex
systems for decades, requires system hierarchy-ordered fault trees. This work assumes
that model hierarchy is identical to system hierarchy, which makes the fault trees pro-
duced by the presented method standard-conformant in the aviation industry.

5.2.2 Fault tree templates and structure-neutral modification

Fault tree templates encode model structure that should be conserved in the final fault
tree. Thus, all information required for fault tree generation other than (FC-specific)
system behavior is already captured in the template, and the following steps of the
analysis then code abstractions of system behavior into the template. This section de-
scribes fault tree templates for encoding model structure, methods for encoding any
logic into them without changing the part of the fault tree that describes model struc-
ture. This section does not cover how to determine the logic that is to be encoded, but
instead leave that topic for later sections of this chapter.
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Figure 5.4: Example for a model hierarchy fault tree template

Figure 5.5: Example for a pessimistic fault tree template

The scaffolding of OR-gates of model hierarchy-ordered fault trees corresponding
to model components is the same for all fault trees of that model. Thus it can be created
once, and then reused in the fault tree generation for each FC. It is called the model
hierarchy fault tree template and an example is given in Figure 5.4. Also shared by all
fault trees of a given model is the domain of faults of each component and relevant
external conditions. The most pessimistic fault tree possible for that model is the one
in which each of these faults triggers the top event individually, i.e. there are no AND-
gates in the tree and all faults are ORed. When each component’s faults are ORed
under the component’s OR-gate in the model hierarchy fault tree template, the tree
is called the pessimistic fault tree template for that model. An example is given in
Figure 5.5.

The former template type contains no basic events and, thus, no logic. Positive
scenarios need to be inserted into it. The latter specifies that all but nominal behavior
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triggers the top event. Negative scenarios need to be removed from its logic. The
following subsections describe the methods for their refinement into a FC-specific fault
tree in detail. Specifically, section 5.2.2 gives a method for adding individual MCS to
a fault tree template in a way that there is a formal relationship between the MCS
and its position in the tree, which yields canonical fault trees. Section 5.2.2 transfers
the concept for fault tree validation from Chapter 4 to fault tree generation, which
corresponds to the left side of Figure 1.1 and uses the former method only for fault tree
modification.

Supplementing MCSs for model hierarchy fault tree templates

This method requires that MCSs have been created from a set of positive scenarios
which are either true positives or false positives (pessimistic approximation).

MCSs are encoded as AND-gates with each of its faults as children, and each MCS
is inserted into the tree by adding the AND-gate below the deepest common ancestor
OR-gate.

As an example, consider the fault tree template in Figure 5.4, and assume that the
characteristic function of the fault tree that is to be created is F = AC + BD, then
the steps of this method would be to first add AC and then BD. Both MCS have to
be added below the gate for Subsystem I, because the deepest common ancestor of A
and C as well as B and D is Subsystem I. This is illustrated in Figure 5.6, where the
intermediate fault tree with the MCS AC and the final fault tree with both MCSs are
shown.

Before all of the MCSs have been inserted into the fault tree, it is not ensured to be
pessimistic, because an MCS containing a true positive may still be missing. Therefore,
only the final fault tree built with this method is valid.

Redundancy integration for pessimistic fault tree templates

Negative scenarios, i.e. conjunctions of basic events that do not trigger the top event
of the fault tree, are iteratively removed from the logic of the fault tree. This method
does not require MCSs to be determined before beginning modification of the fault
tree, and intermediate results are pessimistic approximations. Binary Decision Dia-
grams (BDDs) can be employed for the required logical computations and, based on
section 5.2.2, the characteristic function represented by the fault tree and by the BDD
can be kept equivalent at each iteration.

Each MCS in a fault tree corresponds to a path to the 1-node in the BDD. When a
particular 1-node is found to be a false positive, i.e. the corresponding MCS is revealed
not to cause the top event, it can be removed from the BDD and the fault tree. At the
same time, there may be higher-order cut sets that include the tested MCS which do
cause the top event. Whenever evaluation cannot rule that out, the higher-order cut
sets are added to the fault tree at this step. The process of removing low-order MCSs
corresponding to false-positives and adding higher-order MCSs that include their orig-
inal low-order MCS is called ‘fault tree trimming’ (see also Figure 1.1).

Formally, fault tree trimming of a scenario with the path y is carried out by applying
the following operations on the BDD and the fault tree:
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Figure 5.6: Example for the steps of supplementing MCSs
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1. Evaluate the path y to the 1 node in the BDD against reference behavior.

• Positive evaluation result: The path truly triggers the top event, skip all
following steps because no changes to the fault tree or the BDD are required.

• Negative evaluation result: The path does not trigger the top event, and
adding more basic events to it will not change that. Replace the final edge
of the path with an edge to the 0-node. In BDD operations, this is achieved
by computing the relative complement of the BDD and the path.

• Indeterminate result: The path does not trigger the top event, but some of
the paths in its sub-tree do and some do not. Replace the final edge of the
path with its cube, because it is the pessimistic approximation of the true
logic of its sub-tree3.

2. Remove the MCSs whose corresponding paths to the 1-node no longer exist from
the fault tree.

3. Add a new MCSs to the fault tree for each new path to the 1-node in the BDD.

Steps 2 and 3 build on a formal relation between 1-nodes of the BDD and the AND-
gates and basic events of the fault tree. Because of the recursive nature of the method,
both steps have to use the same relation. Both BDDs and fault trees are directed, acyclic
graphs, so nodes are unambiguously identified by their path to the root node. The
paths to 1-nodes in the BDD are MCSs4. For the relation between MCSs and fault tree
nodes, additional definitions are needed. We define that each basic event has a natural
path, which is the path of its corresponding component in the model hierarchy fault
tree template. The set intersection of the natural paths of each basic event in a MCS
describes the node representing their deepest common ancestor component in model
hierarchy. For first-order MCS, the basic event’s natural path is its representation in the
fault tree. For higher-order MCSs, and AND-gate is added between all basic events’
deepest common ancestor’s node, which always is an OR-gate in the model hierarchy
fault tree template, and each basic event. This is the same relation between an MCS’
basic events and their representation in the fault tree as the one imposed generatively
in section 5.2.2.

During the intermediate iterations of fault tree trimming, BDD identical subtree
merging keeps the size of the BDD within reasonable bounds. The relation between
paths to the 1-node and MCSs can be used to keep coherent fault trees small as well:
Absorption can be carried out in the BDD by applying the method for discovering
prime implicants in BDDs proposed by Coudert and Madre [38] or refined versions of
their method. Nevertheless, in practice it is advisable to do logical calculations on the
BDD only and, once the final set of MCSs has been determined, carry out the steps for
fault tree modification only on the final BDD. It is also advisable to limit cut set order

3This is only correct for coherent fault trees. For non-coherent fault trees, replace the 1-node at y
with a subtree of a single level with both nodes 1, or with 0 when there is no higher node index. In this
case, the fault tree is only updated whenever a positive or negative evaluation result occurs.

4In coherent fault trees, the 0-edges can be omitted from each MCS’ path, because they correspond
to complemented basic events.
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by replacing paths that would exceed the limit with 0. Similarly to the method for fault
tree validation in Chapter 4, probability truncation can be applied here as well: Once
the probability of the probability-weighted BDD falls below the certification limit, the
intermediate fault tree is a valid fault tree from the perspective of fault tree pessimism.
The final fault tree’s MCSs will be included in the MCSs of the intermediate one, and
the probability of the intermediate fault tree will be greater than or equal to that of the
final fault tree.

5.3 Constraint Satisfaction Problem formulation and

solution aspects

The previous section covered how static failure logic can be encoded into fault tree
templates as introduced in Subsection 5.2 to create fault trees. This section explains
how Constraint Satisfaction Problem (CSP) solution theory can be employed in the
evaluation step in Figure 1.1, for determining whether a combination of active basic
events causes the FC under analysis, given the annotated safety design intent.

5.3.1 Constraint Satisfaction Problem assembly

The formalization of safety design intent annotation from Subsection 5.1.2 lends itself
to being encoded as a CSP, with each variable representing a tag assignment of a port
σb,p ∈ {T = (N,C,T). The ‘input’ to the CSP is the choice of active intra-component
tag transformation rules representing nominal behavior and faults for each block, and
its ‘output’ is whether the FC under analysis is met.

The CSP is built from model topology and tag transformation rules for each of its
blocks. The following steps are carried out during CSP assembly:

1. Model topology is copied to allow simplifications without affecting the original
model.

2. The copy of model topology is flattened, i.e. hierarchical ordering of blocks in
subsystems is reduced to a flat network of connected ports.

3. Ports of blocks that do not specify any behavior are removed (e.g. signal termi-
nators, Simscape solver configuration blocks).

4. The adjacency matrix of inter-component edges A is translated into pairwise
equality constraints on connected ports.

5. At least one intra-component tag transformation rule µ3 per block is applied as a
table constraint on the variables representing the block’s ports.

6. A boolean reification variable is created for the FC(s) and associated with its trig-
gering tag assignment µ4.
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7. For performance, a boolean reification variable is created for each tag transfor-
mation rule and reified with its fulfillment. A constraint that requires at least one
of these variables to be 1 for each block is created, so that at least one tag transfor-
mation rule is fulfilled. When a set of tag transformation rules for block behavior
is to be evaluated, the corresponding reification variables for these rules are con-
strained to be 1 with equality constraints. Only failure behavior is enforced this
way, so that failure propagation is not hindered artificially. See also section 5.3.2.

5.3.2 Contradiction-free, efficient problem formulation

For practical model sizes, it is imperative that the created CSP covers all possible com-
binations of active basic events. If a CSP were to be created for a single combination,
combinatorial explosion would strike: The complete computational effort for creating
an appropriate CSP for the current combination of active basic events would need to
be spent at each iteration of fault tree refinement. Instead, the alternative component
behavior rules for each block µ1,b are all encoded into one CSP, but only the desired
component behavior rule for the current combination of active basic events is required
to be fulfilled by the solution by reification. The inactive behavior rules are ‘switched
off’. As an additional safeguard, the prototypical implementation provided with this
work contains an additional constraint on the switching variables that enforces at least
one of them5 to be active6.

In practical models, not all variables have only one valid tag assignment due to
information loss over components. This issue is specific to omnidirectional tag prop-
agation or transformation models, because cause and consequence is determined by
signal flow. In such methods, such as FPTN and HiP-HOPS, the cause of one fault
can overrule another component’s nominal behavior by being ‘downstream’ in signal
flow. Omnidirectional models do not have the semantical element of signal flow di-
rection, so the ambiguity of tag assignments irrelevant to the evaluation result of the
FC needs to be resolved in some way. As an example, consider the overload clutch
and the superposition gear in the case study. In nominal behavior, assignments of N
to ports between these components would have no effect on the tag assignment at the
hinge. The most plausible tag assignment however is C to both these ports. Failure,
such as loss of function (N) or erroneous function (T), needs a reason to occur. This is
built into the solution process by choosing the solution for which the least assignments
of N and T need to be made. However, this is debatable, because modelling errors
resulting in under-constrained portions of the model do not become apparent in the
final tag assignment, which makes debugging modelling errors more difficult.

5More than one behavior can be active because physically different faults may correlate to the same
port assignments.

6The same technique can be applied to the analysis of multiple FCs using one CSP, but because FCs
usually are few and their combinations are not subject to analysis, this has little impact on computational
effort.

77



5.4 Implementation aspects

5.3.3 Binary Decision Diagrams and fault tree refinement

The process of fault tree refinement begins with the pessimistic fault tree template and
its corresponding BDD. Positive scenario after positive scenario is evaluated as a CSP.
If a positive scenario is revealed to be a false positive, it is trimmed from the BDD. If
the scenario is indeterminate, the scenario’s node in the BDD is expanded. Trimming
a scenario from a fault tree and its corresponding BDD is described in section 5.2.2.

As an example, the refinement steps for producing the fault tree in the case study
in section 5.5 are as follows. With the basic events ‘AFCS erroneous’ abbreviated as A,
‘overload clutch stuck closed’ B and ‘hinge jammed’ C, ordered A,B,C, and the com-
mon assumption that a coherent fault tree is to be built, Table 5.2 shows the executed
steps. To illustrate indeterminate evaluation results, a Venn-diagram shows assign-
ments where the top event is triggered in reference behavior hatched, and where the
current BDD evaluates to 1 in gray. As proposed in section 5.2.2, the fault tree update
steps are only executed once the BDD is final. Once all paths have been evaluated, the
MCSs can be read or ‘collected’ from the BDD and the fault tree template modification
steps can be executed in bulk.

5.4 Implementation aspects

The proposed method has been implemented a pipeline of open source and commer-
cial tools:

• Modeling environment: Simscape and Simulink with custom extension: The ex-
tension was implemented in MATLAB [5] under the name SafetyLink and uses
various components from the Java [51] package org.willea.ftms 7,8,9, which has
been created by the author of this thesis as well.

• Topological Simulink/Simscape model analysis: TopologicalAnalysis: AC custom
package written in MATLAB10

7In order to use Java 8 components in MATLAB 2017a, which natively only supports Java 7, the path
to the Java Runtime Environment needs to be specified in the MATLAB JAVA environment variable. This
has side effects: The desktop configuration cannot be persisted due to a deprecated version of Saxon
being used by MATLAB (see also [58]) and license re-validation ceases to work due to an exploit of a
Java 7 security leak by MATLAB that has been fixed in Java 8 (see also [59], problem 5). These issues
have been reported to Dr. Kluge by The MathWorks at the European MATLAB Advisory Board 2016
and the MATLAB Service Team in an improvement suggestion. Migration to a newer Java version than
7 (i.e. 8 or 9) is planned for a near MATLAB release [60].

8In order to debug Java components called from MATLAB, MATLAB needs to be started with the
-jdb flag [61] and the MATLAB session needs to be shared, i.e. allow an external debugger to browse
symbols, memory content and debug output, as described in [62].

9For using a package such is the one provided with this work, the JAR-archive needs to be added to
the Java class path. See [63] for a step-by-step manual.

10There is a known issue with the TopologicalAnalysis package: It skips blocks that are not connected
to any other blocks. The ExploreBlock function follows connections instead of model hierarchy. It is
arguable whether disconnected blocks are relevant for behavioral analysis at all, thus this issue was left
open.
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Table 5.2: Example for fault tree refinement

Path Action BDD Venn-diagram

— Initialization: cube(∅)

A

B

C

1

1

0 1

A B

C

A
Evaluate: Indeterminate.
Replace with cube(A).

A

B

C 1

10

A B

C

A′B
Evaluate: Indeterminate.
Replace with cube(A′B).

A

B

C

10

B

1

A B

C

All remaining
paths

Evaluate: Positive.
No change.

— —

—
Collect MCSs:
AB,C

A

B

C

10

B

1

—
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• Fault tree generation: FaultTreeFactory, a custom component written in Java [51]
in org.willea.ftms

• CSP-engine: Choco [64]

• BDD-engine: JavaBDD [52]

• Communication from Java components to MATLAB: matlabcontrol11 [65] as wrapped
by MatConsoleCtl [66]

• Fault tree renderer: FaultTreeView, a custom component written in Java [51] in
org.willea.ftms.gui

This pipeline is maximizes synergy with the two implementations for the other meth-
ods of this work (see Chapters 3 and 4).

The modeling environment consists of a set of Graphical User Interfaces (GUIs)
for specifying user input for the proposed automation. Access to them is provided
through the mask of the Safety Assessment Data’ block in the SafetyLink Simulink
block library. It stores the wrapper methods in MATLAB for calling the custom Java-
based GUI which also manage persistence of the information with the Simulink or
Simscape model or block libraries12. Therefore, the Simulink library link of ‘Safety
Assessment Data’ block needs to be disabled, so model-specific settings can be stored13.
The Java GUI components are all located in org.willea.ftms.gui and each serve a
specific purpose:

• Failure conditions can be specified in the MATLAB-component guiFailureCondi-
tions.m in the SafetyLink package, which calls and the Java-component Fail-
ureConditionBrowser for providing its frontend.

• Library and model block safety design intent can be specified in a GUI provided by
guiBlockBehaviors.m in MATLAB. It calls the Java-component BehaviorMana-
gement for drawing its frontend and passing events back to it. The GUI does not
support the specification of tag transformation rules. Transformation rules need
to be specified textually, as in the case study in section 5.5.

As of now, the graphical modeling environment only supports tag propagation speci-
fication. The fault tree generation engine, however, can operate in two modes14:

11matlabcontrol uses the unofficial MATLAB JMI interface. The MATLAB API for Java would be the
choice supported by MathWorks, but requires greater effort in GUI development.

12The chosen storage concept is debatable. The implementation centralizes safety assessment data
storage in one block for the entire model. If the model changes, references break. It has been chosen
because it simplifies experimentation with the method proposed in this chapter, but for productive use,
a more localized storage concept would be preferable. The design principle of Simulink would be to use
Model Verification blocks from the Simulink Design Optimizer library for failure conditions, and store
block behavior locally with each block.

13A warning is automatically issued when this recommendation is violated.
14I.e. the fault tree generation engine is functionality not yet supported by the graphical modeling

environment.
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• Pure tag propagation-based cut set search, without the dependency to choco and sup-
ported by the GUI, in the class PropagationCutSetTester and its dependencies

• CSP-based cut set search, limited to a scripting interface, in the class Constraints-
CutSetTester and its dependencies, implementing the full algorithm described
in Section 5.3.

An example for the scripting interface of the CSP-based cut set search engine is pro-
vided in org.willea.ftms.ConstraintTest.m in the additional tests package.

Because tag propagation-based cut set search does not allow specification of fault
transformations, it is purely experimental and not recommended for practical use. It
is based on finding connections between target ports and tag sources. If any T-port is
connected to the target port, the final tag assignment can directly be assumed to be T.
Otherwise, search for a connected C-port is conducted, and, if found, C is assigned. If
neither are connected, N is assigned. Without the added complexity of tag transfor-
mation, this algorithm is especially useful for understanding the interaction between
the classes involved in fault tree generation, and how topology graphs are handled
programmatically.

All source code written in the course of this work was commented extensively.

5.5 Case study: Fault tree generation for a hybrid

flight control system

In order to showcase fault tree generation in a practically relevant example, the model
of Chapter 3 by Lauffs [45] is being re-used in this chapter’s context. Refer to Figure 3.1
in in Chapter 3 for model structure. In this case study, a fault tree for control surface
hardover (usually classified as catastrophic according to [34]) is generated from safety
design intent specification and model structure. It can be formalized pessimistically as
the tag T being propagated to the hinge. Two possible sets of root causes are of interest:
Erroneous Automatic Flight Control System (AFCS) output alone and in combination
with the overload clutch being stuck closed.

While tag propagation rules are straightforward for most components in the model,
the following components have specific behavior:

• The overload clutch acts as a bi-directional filter for load spikes. In terms of safety
design intent, it decouples the assignments across its ports: All combinations
are plausible. Minimization of the final tag assignment ensures that excessively
pessimistic assignments are discarded.

• When stuck closed, the overload clutch propagates tags without filtering or trans-
formation.

• The superposition gear’s carrier receives the highest tag assignment from its sun
and planet gears15.

15In the model given by Lauffs [45], the AFCS portion is self-locking, so the port connected to the
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• The hinge can jam. In terms of safety design intent, it becomes a source of T.

• The FC is observed at the Hinge’s position scope.

Because no tag transformation is performed, even the simplistic tag propagation
semantics would suffice for determining possible tag assignments at the hinge. For the
sake of showcasing the full tag propagation and transformation semantics, this simpli-
fication is not exploited in this case study. The full tag propagation and transformation
rules are given in Table 5.3.

All behavior below the model’s top level is abstracted away by top level component
specification. Not all behaviors modelled in the case study of Chapter 3 are taken
into account in this case study, because only faults that can cause the selected FC are
modelled in this case study. Additionally, the following of components are simplified
for the sake of clarity:

• the input ‘APMech ref’ of the ‘AFCS’ block at which the angle deviation is mea-
sured is ignored because it does not take part in failure propagation

• the output ‘StkSpeed’ of the ‘Stk’-block is ignored because its signal is discarded
anyway

• the block ‘PilotCmds’ is ignored — instead, the blocks ‘Stk’ and ‘AFCS’ are mod-
elled with fixed tag assignments, which is equivalent to them being modelled as
tag propagation sources

Figure 5.7 shows the fault tree produced automatically from the specified safety
design intent. As expected, the overload clutch in nominal behavior provides a fail-
safe against erroneous AFCS output.

overload clutch never receives T from the superposition gear, but this is irrelevant in this case study and
has not been modelled for the sake of clarity.
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Table 5.3: Case study — Tag propagation and transformation rules of a hybrid flight
control system; Behavior tables are behaviors × ports and ports are in the order of low
to high port indices and left to right, e.g. L1 L2 R1 R2.

Block Behavior Tag assignments

AFCS nominal

C N C
C C C
C T C


AFCS erroneous

T N T
T C T
T T T


Hinge nominal

N N
C C
T T


Hinge jammed

[
T T

]

Overload clutch nominal



N N
N C
N T
C N
C C
C T
T N
T C
T T


Overload clutch stuck closed

N N
C C
T T


Stk nominal

[
C C

]
Transmission nominal

N N
C C
T T


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OverloadClutch:

stuck_closed

AFCS:

erroneous

Hinge:

jammed

Redundancy of

AFCS with

OverloadClutch

Control Surface

Hardover

Figure 5.7: Automatically generated fault tree for control surface hardover16
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Chapter 6

Conclusion

This chapter summarizes the obtained results for each contribution chapter and to-
wards the objective of the thesis as a whole. It also gives directions for continuing
towards open issues of the objective, and research opportunities stemming from the
obtained results.

6.1 Hybrid failure simulation

The operational semantics for hybrid failure simulation presented in this work fulfills
the requirements towards behavioral failure modelling languages as stated by Joshi
and Heimdahl [1]. Conceptually, it should be ready for industrial application because
it is capable of producing maintainable models in an efficient way. This claim should
be evaluated in future research, proving that fulfillment of the above requirements
yields the expected results in practical application. Additionally, the currently pro-
totypical implementation could be extended, tested independently of the author of
this work, and its performance optimized. Because the underlying technology stack
is proprietary, a hand-over to its owner MathWorks could be prepared to stimulate
development of the commercial software in a direction that is compatible with behav-
ioral failure modelling and simulation. Such a hand-over would ideally contain the
following items:

• Overview on theoretical background on hybrid simulation

• Requirements towards behavioral failure modelling languages

• Software design of the implementation

• Source code and known issues of the implementation

• Sample/demonstration models and tests

The performance of the implementation for hybrid failure simulation presented
in Chapter 3 mainly depends on the computational costs for discrete transitions and
the ensuing reconfiguration of continuous system state. Execution is slow due to the
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overhead of the interfaces to Simulink and Simscape that are used in the process of
executing transitions.

After the completion of the presented implementation, a deeper interface for imple-
mentation became available [67]. This motivates revisiting the topic and determining
whether an equivalent implementation of the same operational semantics is possible
on these new interfaces, and whether the reduced overhead of the new interface man-
ifests in faster execution. Furthermore, it is evidence for the practical relevance of
hybrid simulation not only for failure simulation, but also for nominal behavior simu-
lation.

The omission of post-conditions for hybrid mode transitions makes variable time-
step solvers the preferable choice for simulation. Fixed time-step solvers would, in the
worst case, detect a mode change at the end of one time step in the calculation of the
next time step. This effect can be limited by setting short time-steps. In variable time-
step solvers, this is not necessary: They are capable of resolving the time of discrete
mode changes and are thus more robust against problems that arise from similar time
step scale and physical effect time scale (or even larger time steps). However, this issue
is not specific to hybrid models and affects all models made for simulation. In practice,
fixed time-step solvers are preferred in the context of embedded systems because they
make fulfillment of real-time requirements easier. For safety assessment, this becomes
relevant when software components are part of the system under analysis. In such
cases, the fixed time-step width of the embedded software component and the vari-
able time-step simulation of the hybrid system portion need to be made compatible1.
Two solutions can be envisioned: Either, the fixed time-step intervals could be added
as mandatory time steps to variable time step choice and the real-time embedded com-
ponent outputs are only allowed to change at those time-steps, or hybrid simulation
needs to be executed in sufficiently short, fixed time-steps. Exploring these options
might enable the usage of the proposed method in the safety assessment of real-time
embedded systems.

6.2 Fault tree pessimism

A computational method for iterating over the leaves of binary decision diagrams rep-
resenting fault trees, called scenarios, is given, with the following properties:

1. Selective: Only 0-leaves (negative scenarios) are returned2.

2. Disjoint: Intersections of scenarios are empty, i.e. no scenario or portion thereof
is returned twice.

3. Ordered by probability: Scenarios are returned in descending order of their prob-
ability.

1I thank Prof. Dr. Julien Provost for pointing that out to me.
2An iterator with the same other properties but returning 1-leaves for application in fault tree gener-

ation is achieved by operating on the complementary Binary Decision Diagram (BDD).
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4. Truncatable: At a given probability, e.g. the complement of the certification limit,
iteration can be cancelled, so no more scenarios than operationally necessary are
returned.

If can also be configured to return full assignments instead of leaves, i.e. expanding
leaves until a value for each variable of the BDD is given. This set of properties en-
ables two applications: Guiding fault tree validation or generation, as explained in
Section 1.4.4.

Its application to fault tree validation is ready for introduction into industrial ap-
plication. Therefore, the next step would be to present it to design organizations and
aviation safety authorities for evaluation and support its application through software
integration into existing frameworks for fault tree analysis.

The presented method enables a simplification in the safety assessment process.
In the traditional method, probability limits for certification are set for each Failure
Condition (FC). Conceptually, this is counter-intuitive: The passenger of a commercial
aircraft would expect probability limits to be set against him being harmed. Probabil-
ity limits against FCs are an incentive for design organizations to define their FCs at a
fine level of granularity, so that many, low-probability FCs pass certification require-
ments on probability. In practice, this is prohibited by limiting the number of FCs in
an Aircraft Safety Assessment (ASA) to about 100. Historically, this was a necessary
workaround for not being able to do fault tree analysis and validation on large fault
trees. With the advent of efficient fault tree analysis through BDDs and the proposed
method for validation, that compromise becomes obsolete. Instead of treating individ-
ual fault trees, fault tree forests of ORed fault trees could be analyzed. Fault tree forest
evaluation would make the somewhat arbitrary process of FC definition irrelevant for
the safety proof. Highly-integrated systems such as modern flight control and guid-
ance systems would benefit the most from such an approach: They tend to have fewer
but more probable FCs because they have fewer system boundaries than conventional
flight control system architectures. In the light of the current trends towards greater
automation and integration, fault tree forests could aid in rapid innovation without
compromising safety if they were accepted by certification authorities as a (superior)
alternative to probability evaluation of individual fault trees.

The application of the presented method to fault tree generation is of value when
applying formal verification to fault tree generation. It allows dividing a probabilistic
safety property corresponding to the certification limit to top event probability into a
set of deterministic safety properties that address disjoint combinations of active and
inactive fault. In formal verification, this would make it possible to spend computa-
tional effort in proportion to the associated probability of the properties under verifica-
tion. If a method for formal verification of safety properties of general hybrid systems
was available but computationally costly, this would help to keep required computa-
tional effort within manageable bounds.
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6.3 Fault tree generation

A useful abstractions of quantitative failure behavior into unidirectional fault propa-
gation and transformation has been proposed. It allows directly capturing safety ar-
chitecture design intent by specifying barriers to fault propagation and redundancies
and produce standard-conformant fault trees for the aviation industry. These features
are specified declaratively — They are not derived from quantitative behavior specifi-
cation. The generation of the fault propagation and transformation abstraction is the
only manual element in this framework for model-based safety assessment.

The method has similarities with Hierarchically Performed Hazard Origin & Prop-
agation Studies (HiP-HOPS) [57], but does not depend on the annotated model being
directional, i.e. being specified in a dataflow-based modelling language. Because of the
practical relevance of Differential-Algebraic Equation System (DAE)-based modelling
languages, this difference is essential to widespread practical application. The under-
lying semantics of the abstraction are transformed into a Constraint Satisfaction Prob-
lem (CSP), which in turn makes specification less intuitive: Transformation of faults
in directed models is specified as a local input-output-model, while the undirected
approach indicates that transformations always act in both directions.

The method shares the same limitations as any model-based method for fault tree
generation: Only specification in the model can be taken into account during fault tree
generation. While this covers most of the work of conventional fault tree generation,
physical separation that only becomes relevant in case of failure cannot be part of a be-
havioral model based on nominal behavior. As an example, consider rechargeable bat-
teries with malfunctioning chargers which cause them to overheat and explode, which
may in turn damage and disable fire containment equipment. Because nominal be-
havior models would not explicitly contain measures of physical separation of failing
equipment and the equipment for containing the failure, such interaction would not be
taken into account in fault tree generation. In safety assessment as per ARP 4761 [28],
Common Modes Analysis (CMA) reveals such issues. When fault tree generation is
automated with the help of behavioral models, the importance of analyses of the non-
behavioral aspects of the real system in CMA increases.

6.4 Review of the research objective and future re-

search directions

With the contribution from Chapter 3, the first objective of enabling physical simula-
tion of nominal and failure behavior has been fulfilled, and the requirements towards
maintainable models and an efficient modelling process stated by Joshi and Heimdahl
(see [1]) are met.

The second objective is fulfilled through the contribution of Chapter 4. The conse-
quent problem of efficiently defining reference behavior in a way that can be evaluated
automatically is solved by the contribution of Chapter 5.

A definitive follow-up research question is finding a suitable formalization schema
of safety requirements into a formally verifiable format. It could be established from
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practical experience with the proposed operational semantics for failure behavior sim-
ulation and the proposed method for fault tree generation. Comprehensive applica-
tion of model-based system development — with models encompassing the complete
environment of the system and capable of simulating ‘missions’ (or use cases of sys-
tem application, in a broader sense than aircraft development) in nominal and emer-
gency circumstances — makes a breakthrough on this research question within reach.
The proposed operational semantics for hybrid (failure) simulation provides a missing
piece in modeling and simulation technology for this goal.

A solution to fully automated fault tree generation without safety design intent as
an intermediate layer of abstraction may be the concept of over-approximation of state
space evolutions into linear convex hulls (see Althoff et al. [11]) or similar verification-
friendly abstractions on model-level. There is a synergy between this approach and the
contribution of Chapter 4: Over-approximation strategies require a computationally
cheap method for allocating level of detail of the approximation to ‘interesting’ sub-
spaces of the solution space under analysis. Chapter 4 offers the associated probability
of the scenario under analysis, which would be ideal in safety assessment.

The method proposed in Chapter 5 invites skepticism as to whether newly created
effort for manual annotation is lower than the effort previously spent on the now au-
tomated process steps. Additional case studies could assess the method’s practical
feasibility.

Hybrid simulation as proposed in Chapter 3 can be used in conjunction with the
method for fault tree generation proposed in Chapter 5 for verification of the effective-
ness of the implemented design to fulfill safety design intent through testing. Which
aspects of safety design are probabilistically most relevant can be derived using the
contribution in Chapter 4. While the method proposed in Chapter 5 addresses Pre-
liminary System Safety Assessment (PSSA), such a workflow for verifying fault trees
obtained automatically would support System Safety Assessment (SSA) in a purely
model-based workflow. However, this would not relieve the safety engineer from man-
ually specifying safety design intent.

Whether closing the link between DAE-based component behavior definition as
proposed in Chapter 3 and safety design intent specification on component level as
proposed in Chapter 5 can be automated, is the eminent research question that arises
from this work. It would clear the last manual process step in model-based safety
assessment besides physical modelling.

There may be a component-oriented solution to the problem of automatic formu-
lation of safety design intent in a practically relevant subclass of hybrid systems. It is
motivated by the abstraction of Lagrangian mechanics in bond graphs (see Karnopp et
al. [43]). DAE-based systems of classical mechanics interpret the macroscopic, physi-
cal processes as the exchange of two states, flow and effort, and thereby localize causes
and effects when defining the order of computation of each component’s DAEs. When
eligible causes could be shown to be separated from where the effect under analysis
would manifest, this may allow fully automated detection of the necessity of barri-
ers to fault propagation or fault transformation. The issue in choosing between fault
propagation barriers and fault transformation is that the reasons for which the safety
engineer makes his decision usually are not in the behavioral model.
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Appendix A

Software Architecture of Custom
Components

This appendix contains Unified Modelling Language (UML) [68] class and activity di-
agrams as a detailed software architecture description of the custom components writ-
ten in the course of this work.

A.1 Hybrid Failure Simulation

Hybrid simulation is written in MATLAB. It is mixed between object-oriented and pro-
cedural programming. Functions and scripts are greyed out in the class diagram in
Figure A.1. Utility classes and functions (such as Graphical User Interface (GUI) com-
ponents) and block libraries are not displayed for the sake of clarity.

CoreController contains the logic for executing hybrid simulation. Following the
concept of MATLAB that classes are only introduced when object-oriented information
storage is required, all members of the package are functions. CoreModel contains the
classes for extending the information associated with models and blocks. Because nav-
igating Stateflow diagrams is very slow its Application programming interface (API),
lean wrapper classes (Mode and Transition) have been created. They are used for un-

CoreController

HybridSim
(Function)

HybridSimLogging
(Level-2 S-Function 
+ Callback Script)

HybridSimMonitoring
(Level-2 S-Function)

HybridSimSetup
(Level-2 S-Function)

CoreModel

ExtendedBlock

Mode Transition

ExtendedModel

Figure A.1: Class diagram for the implementation of Chapter 3, hybrid failure simulation
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A.2 Fault Tree Pessimism

coupling the Stateflow diagram’s structure of each extended block from hybrid simu-
lation during the simulation’s initialization phase.

HybridSim is the function that controls hybrid simulation. Figure A.2 illustrates its
interaction with the other components during simulation. The other three functions,
HybridSimLogging, Monitoring, and Setup are Level-2 MATLAB S-Functions that de-
fine the behavior of the blocks in the hsimctrl lib Simulink library (not displayed in
Figure A.1) at simulation-time. HybridSimMonitoring-blocks listen for transitions in
the Stateflow diagrams, which in turn specify the discrete portion of hybrid behavior.
The HybridSimSetup-block collects all transitions reported by HybridSimMonitoring-
blocks and executes transitions as specified in the target block’s Stateflow diagram.
Because each extended block has its own HybridSimMonitoring- and -Logging-block,
transition detection, and continuous state logging are localized at simulation time. This
ensures context-free hybrid behavior modeling and simulation. The single HybridSim-
Setup-block per model contains data for failure scheduling (i.e. triggering transitions
at specific times).

The GUI for scheduling forced transitions during simulation (from the CoreView-
package) can be accessed through the block mask of the HybridSimSetup-block. There
is also a callback that initializes hybrid simulation there1. During simulation, the Level-
2 S-Function of the HybridSimMonitoring-block injects scheduled transitions.

The HybridSimLogging-block allows viewing the retrieved run through its callback
function. The trace pieces of each simulation interval are concatenated2.

A.2 Fault Tree Pessimism

The probability-sorted, probability-truncated iterator of 0-leaves of fault trees has been
implemented in Java, along with a test harness for executing the provided case study.
The components it shares with the implementation of the third contribution of this the-
sis are in the org.willea.ftms package. Its specific components are in the org.willea.
ftms.fta package. Figure A.3 shows the class diagram of both packages. Components
solely relevant for the GUI are omitted for the sake of clarity.

During execution, the test harness FaultTreePessimismTest retrieves a Fault Tree’s
BDD from the FaultTreeLibrary and hands it over to the ProbabilisticLeafIterator, along
with the fault tree’s basic event probabilities. The ProbabilisticLeafIterator is the core
component for probability-sorted, probability-truncated iteration of 0-leaves3. Because

1Simulink’s green ‘run’-button triggers default Simulink simulation, so the presented implementation
of hybrid simulation can be added to existing Simulink/Simscape models without interfering with their
default simulation behavior. Only the hybrid simulation button from the HybridSimSetup-block mask
triggers hybrid simulation.

2In the current implementation, location changes are not stored along with the continuous state
evolution. This limits the visualization of the retrieved run: Ideally, one would want each continuous
trace piece to be visually differentiated, e.g. by being color-coded, with a legend reporting the active
modes of the component. Currently, jumps are visualized by a linear interpolation of nearly infinite
gradient between σ and σ′ and the location of each trace piece is only reported in the textual log during
simulation.

3The implementation is agnostic to whether the supplied BDD encodes the characteristic function of
a fault tree. Any BDD can be treated.
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Chapter A: Software Architecture of Custom Components

Figure A.2: Activity diagram for the implementation of Chapter 3, hybrid failure simu-
lation
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A.2 Fault Tree Pessimism

org.willea.ftms

net.sf.javabdd.BDD

FaultTreeLibrary

org.willea.ftms.fta

FaultTreePessimismTest

<<enum>>

FaultTreeNodeTypes
FaultTreeNode

FaultTreePath

FaultTree

parentPath

lastPathComponent

root

type

provideFault-

TreeAsBdd

net.sf.javabdd.BDDFactory

BDDFactoryProvider BDDMetaProduct

<<interface>>

MetaProduct
MetaProductSet

…

<<abstract>>

PrimesCalculator

PrimeImplicants-

Calculator_IP1

ProbabilisticLeaf-

Iterator

net.sf.javabdd.BDD.BDDIterator

factory

…

0..*

Figure A.3: Class diagram for the implementation of Chapter 4, the probability-sorted,
probability-truncated iterator of 0-leaves of fault trees
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Chapter A: Software Architecture of Custom Components

it inherits from BDDIterator, it takes a BDD as input and returns the paths to its leaves
as BDDs.

As a by-product of the presented implementation, the prime implicants calculation
algorithms proposed by Coudert and Madre [38] have been implemented. Only one is
shown in the diagram. The other two (IP2 and positive prime implicants calculation)
have been abbreviated by the three dots next to the inheritance connector in the dia-
gram. Likewise, alternate implementations of Minimal Cut Sets (MCSs) as BDDs in the
form of meta-products have been created (with bit sets and with boolean arrays) and
abbreviated in the diagram. They are of no relevance to the proposed method. During
the development, the implementations of PrimesCalculator where used for debugging
the probabilistic leaf iterator, and the implementations of MetaProduct for benchmark-
ing various libraries for BDD storage and manipulation.

The BDDFactoryProvider is a workaround for a bug 4 in the chosen library for BDD
storage and manipulation and maintains a singleton BDDFactory instance.

A.3 Fault Tree Generation

The implementation of fault tree generation based on model topology and fault prop-
agation and transformation annotation has two main components: One for translating
Simulink and Simscape model topology into a directional graph, and one for creating
a fault tree template, inferring MCSs from model topology and annotation, and trans-
forming the fault tree template according to the derived MCSs. MATLAB components
are annotated with ‘M:’ in the class diagram illustrating this software architecture in
Figure A.4.

The MATLAB TopologyAnalysis package not only contains a function for building
a MATLAB digraph-object from model topology, but also to convert it into a format
that can be marshaled to the Java portion of the implementation, or plot it for debug-
ging purposes.

The architecture of the implementation is designed with adaptability to other mod-
eling environments and extensibility with new algorithms in mind. The interface to
the modeling environment is grouped in the ‘org.willea.ftms.matlabinterface’ package.
This reduces the effort for adding support for an additional modeling environment,
e.g. a Modelica-based one, because the portions of the implementation that would need
to be instantiated and re-engineered are clearly identified.

Extensibility for new algorithms is even simpler: The FaultTreeFactory class has
interfaces for exchanging all its model data classes and algorithms. Some are cus-
tom, such as TopologyDigraph or CutSetsFinder.CutSetTester, while others are Java-
inherent default interfaces, such as the ones used for the block behavior applicator, the
cut sets finder the default behavior provider or the fault tree beautifier.

4It can be argued that the performance of the chosen library relies on assumptions about the usage of
BDDFactory instances. When two instances share the memory of a Java virtual machine, performance-
boosting simplifications in garbage collection produce crashes and incorrect behavior. The performance
benefit of the library in the context of this work outweighs the overhead for maintaining a singleton
instance and the limitations from employing singletons are irrelevant here.
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org.willea.ftmsorg.willea.ftms.modeltopology

M: TopologyAnalysis

M: Function 
ConvertTopology-

DigraphToDirected-
TopologySubgraph

M: Function
PlotTopologyDigraph

M: Function
BuildTopologyDigraph

M: Class
digraph

<<interface>>
TopologyDigraph

<<enum>>
PortBehaviors

org.willea.ftms.matlabinterface

SimulinkPortSimulinkPath MatlabCallUtility

BlockBehavior Instantiated-
BlockBehavior

CutSetsFinder<<interface>>
CutSetsFinder.
CutSetTester

Propagation-
TopologyDigraph

Propagation-
CutSetTester

Propagation-
BlockBehavior-

Applicator

Propagation-
DefaultBehavior-

Provider

FaultTreeFactory

0..*

…

…

Default-
FaultTreeBeautifier

Default-
CutSetApplicator

Figure A.4: Class diagram for the implementation of Chapter 5, fault tree generation
from fault propagation and transformation annotation
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The model data classes are BlockBehavior and InstantiatedBlockBehavior. They
contain the relation between Simulink blocks and their ports and abstracted port be-
haviors. While BlockBehavior addresses library block behavior specification, Instanti-
atedBlockBehavior is the pendant for model-specific, modified block behavior.

The Javadoc of each of these classes explains their role in the fault tree generation
process. An overview of the entire process is given in the activity diagram in Fig-
ure A.5.

Each fault tree is based upon a fault tree template, which is system architecture-
specific, but component behavior-agnostic. Once the template is built, the topology
graph is annotated with all possible component behaviors as specified for each block
of the model. The FaultTreeFactory controls the process of determining MCSs, apply-
ing them to the fault tree and beautifying it. Each step of that process is executed by a
dedicated class and their interaction is abstracted through interfaces. The CutSetFinder
decides which cut set candidates to try in PropagationBlockBehaviorApplicator creates
a topology graph with the selected behavior for each model block, and Propagation-
CutSetTester checks whether the resulting system behavior triggers the failure condi-
tion. Once all MCSs have been identified, they are applied to the fault tree template.
At last, the fault tree beautifier prunes obsolete nodes.
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A.3 Fault Tree Generation

Figure A.5: Activity diagram for the implementation of Chapter 5, fault tree generation
from fault propagation and transformation annotation
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Appendix B

HSim Modeling Guide

This appendix describes how each element of the operational semantics for failure sim-
ulation defined in Chapter 3 are modeled in Simulink and Simscape, using the proto-
typical implementation HSim that provides switching logics definition, execution and
monitoring. Its purpose is to help new users employ this prototype software for eval-
uation and document the design compromises made in building HSim in MATLAB
because MATLAB components cannot be altered by the author.

B.1 Hybrid log and setup-blocks

Extended blocks are blocks with hybrid failure behavior semantics attached. During reg-
ular Simulink or Simscape simulation, hybrid failure behavior definition is ignored.
Only during hybrid simulation is the definition for hybrid failure behavior taken into
account. The simulation results of hybrid simulation are only provided in the Hybrid
Log-blocks, which are the equivalent to Scope-blocks in hybrid simulation. The Hybrid
Simulation Setup-blocks provide the functionality for defining custom failure sched-
ules (corresponding to `0,b in hybrid failure simulation semantics) and starting hybrid
simulation.

Because failure schedules are stored locally in the Hybrid Simulation Setup-block’s
data, its library link needs to be disabled.

B.2 Hybrid failure behavior specification

Each extended block is a subsystem in which one or more blocks defining its continu-
ous behavior is embedded. The continuous behavior definition block inside it is called
the implementation of the extended block and corresponds to µ1,b in hybrid failure sim-
ulation semantics. During nominal behavior, the original block takes the role of the
implementation by default. Additionally, a handle to the currently active implemen-
tation block is stored in a hidden mask parameter called ‘hsimActiveMode’, which
corresponds to `i,b1, and whose value is never saved with the model (because it is only
relevant during hybrid simulation runtime).

1‘hsimActiveMode’ may only be available at hybrid simulation runtime.
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B.2 Hybrid failure behavior specification

The physical states of each component are measured by sensors and fed into a State-
flow chart (i.e. a graphically-modeled Finite State Machine (FSM)). Each mode in that
chart represents a mode of failure behavior. By convention, the default mode is nom-
inal behavior. The transition conditions of each mode correspond to the transition
relations in hybrid failure simulation semantics µ3,b. The implementation of the hybrid
failure behavior simulator implicitly assumes that physical states are left unchanged
over hybrid transitions, but the user can specify state change code as text in the transi-
tion action to override defaults.

Note that every mode needs to be reachable from the default mode. When a mode
is modeled that cannot be activated by physical effects within the model’s scope (e.g.
melting clutch in a purely mechanical model), a transition from nominal to that mode
with a transition condition that is always false needs to be added to incorporate it in
the model anyway.

In Stateflow’s object model, each mode is an element in the model hierarchy below
the chart. For each such mode, a data object with the title ‘Implementation’ contains
the path to its corresponding library block. Additionally, all parameters of the block
are stored as data objects. When the implementation is changed, the parameters from
the library block are applied with it, so they model-specific parameter values are con-
served through the data object, and automatically re-applied to the new implementa-
tion after mode change2. The reference between the Stateflow object for the parameter
and the property of the ‘Implementation’ block is created by its technical name. The
technical names of parameters can be obtained by searching the list of object parame-
ters of a block, with get param(gcb, ’ObjectParameters’). The usage of these param-
eters by HSim is not recognized by Simulink, which therefore throws warnings during
Simulation. These warnings (for the ‘Implementation’ and parameter data objects) can
safely be ignored.

Because parameters are stored locally in each extended block, their library links
need to be disabled.

For the Stateflow chart and the hybrid simulation engine to exchange information
on the currently active mode, each chart has an output that reports the currently active
mode to an HSim monitoring block with the title ‘Execute Mode Changes’. The data
exchanged between these two is encoded in a custom enumeration data type for each
extended block. When multiple extended blocks from the same library blocks are to be
used in one model, Stateflow’s object model prefers these two enumeration data types
to have different names and will throw a warning if they do not. This can be done in
the Model Explorer page of the chart, in the input field ”Enum name”3.

Because MATLAB’s table control does not support differing choices in drop-down
menus for each row, a workaround has been employed that has the downside of re-
quiring the user to select drop-down menus twice for them to open when opening the
drop-down menu and selecting a new table row in one click.

2This could be automated further so that only parameter changes or values for new parameters would
need to be specified by the user.

3Because this data type name is not accessible programmatically, this can currently not be automated.
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Appendix C

Java Environment Configuration

The tests and use cases for the Chapters 4 and 5 require a properly-configured Java en-
vironment for MATLAB. This appendix provides step-by-step instructions for setting
it up.

1. Download and install the current Java 8 Software Development Kit (SDK).
During installation, choose to install the corresponding Java Runtime Environ-
ment. When installing to the default path, this creates a Java 8 SDK installation
at a location similar to
C:\Program Files\Java\jdk1.8.<minor-version> <update-id>

with version numbers replaced with those of the installed version. For the rest
of this walk-through, this path is referenced as JDK path. A Java Runtime In-
stallation is created at JDK path\jre. This path is henceforth referenced as JRE
path.

2. Set the MATLAB JAVA environment variable to JRE path.
This makes MATLAB use the Java Runtime Environment of the Java SDK as it’s
internal Java environment and ensures that compiling and execution environ-
ment are the same.

3. Copy startup.m provided with this thesis to your MATLAB-directory (e.g. C:\
Users\<user-name>\Documents\MATLAB) or — if you already have a startup.m-
file at that location — merge it with the existing one.
This script is executed with the startup of MATLAB and will automatically reg-
ister the previously installed Java SDK with MATLAB, so that MATLAB uses it
for compiling and debugging. It also enables the use of external Java debuggers
for convenient debugging from the Integrated Development Environment (IDE)
of your choice when MATLAB is started with the ‘-jdb’ flag.

4. Add the provided JAR-files for the org.willea.ftms package to your Java class
path.
If you plan to make changes to the provided implementations, use the dynamic
Java path (with the javaaddpath-command in MATLAB). If you do not need to
make any changes or restarting MATLAB after each change is acceptable, use the
static class path. This is done creating a file named javaclasspath.txt in your
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MATLAB preferences folder that contains the appropriate paths to the provided
JAR-files.
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