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Abstract— For advanced simulation of electric vehicle total 

energy consumption various parameters need to be considered. 

Mapping secondary data by time and location can help to reduce 

measurement efforts and enrich existing data. The methodology 

presented for ambient temperature mapping yields a mean 

difference of only 1.5 °C when compared to sensor acquired 

onboard data. Using TUB-FVB’s total vehicle energy simulation 

for a small commercial vehicle this leads to a mean deviation in 

consumption of only 0.17 kWh/h or 2.6% respectively. 
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I. INTRODUCTION 

Range anxiety and high (battery) costs are most important 
issues to be considered for mass market initiation of electric 
vehicles [1].TU Berlin has developed a total vehicle energy 
simulation that calculates optimal battery sizes for individual 
driver behavior [2] [3]. In order to obtain reliable results various 
input parameters (i.e. speed, slope, temperatures, humidity, solar 
conditions) are needed for energetic simulation. This is due to 
different traction and auxiliary components that in an electric 
vehicle (EV) draw their energy demand from the propulsion 
battery. Usually, these parameters are measured onboard during 
vehicle usage. If a vehicle lacks of built- in sensors or they 
cannot be read, for example because CAN-bus data is not 
available or cannot be decoded, additional sensors have to be 
installed for data acquisition purposes. From an economic 
perspective, especially in large scale observations, it is thus not 
always feasible to directly collect all needed data. Also large 
parts of existing data sets miss out on some of these parameters 
[4], [5], [6]. 

Temperature is a critical factor to estimate energy 
consumption in an electric car. Especially conditioning of 
battery and the passenger cabin on cold winter days can make 
up more than 50% of a vehicle’s total energy demand [7]. For 
accurate energy demand estimation in individual cases, it is 
important to not only rely on statistical climatic conditions (i.e. 
average or min/max temperatures), but to make actual time and 

location specific temperatures available. Among other weather 
data, temperature can be obtained from (secondary) sources 
independent from vehicle operations. An example is the climate 
data center of Germany´s National Meteorological Service 
(DWD) [8]. 

In 2017 the project EN-WIN [9] was started with the goal to 
compare the usage and usability of light and heavy commercial 
vehicles in detail when driven by conventional and electric 
propulsion systems, respectively. To thoroughly understand 
energy demand and range-affecting factors a very diverse set of 
data from within and around the vehicle is to be assessed. In this 
context, TU Berlin’s chair for naturalistic driving observation 
(TUB-FVB) has developed a methodology that uses secondary 
data to reduce measuring costs and enrich available data for 
advanced energetic analysis. 

II. DATA BASE FOR TOTAL ENERGY SIMULATION FOR 

ELECTRIC VEHICLES 

Compared to conventional vehicles the energetic demand of 
an EV can be simulated more accurately due to lower powertrain 
complexity. Most important parameters for energy demand are 
operational time, speed, slope, ambient and inner air temperature 
and humidity, solar conditions and actual vehicle mass. To 
obtain large data sets logging equipment needs to be simple, cost 
efficient and non-disturbing for drivers and passengers. Logging 
of vehicle speed, location and inner air conditions can be 
executed with standard GPS-loggers and simple interior climate 
sensors. If the vehicle’s built in sensors cannot be used (i.e. 
because of CAN message encryption) measurement of data 
outside the vehicle tends to be more complex, pricy, subject to 
errors, and can cause deficits in passenger comfort due to wiring 
and outside sensors. Monitoring of outside temperature or 
humidity implies paying attention to solar conditions and 
shading, measurement of geographic altitude is often inaccurate 
or not available using standard GPS-devices. Generally, these 
outside data are not dependent on the vehicle but rather on the 
environmental conditions and can thus also be acquired through 
other measurement setups. 



III. SECONDARY DATA ENRICHMENT METHODOLOGY 

To minimize measuring cost for individual vehicles other 
data sources can be used to augment primary time- and location- 
(GPS-) based data. These data are referred to as secondary data 
in the study. This paper focuses on ambient temperature 
conditions to outline the underlying methodologies and present 
examples to the reader. Other relevant secondary data that can 
be used for enrichment are for instance additional weather 
parameters (precipitation, wind speed, solar radiation, humidity, 
etc.) or geographic topology. 

Firstly, suitable data sources are to be identified. Weather 
stations throughout Germany can be analyzed to obtain climatic 
information. Most relevant is regional and temporal resolution 
as values are not available for every location and at any time. 
For weather data in Germany DWD’s “climate data center” [8] 
provides hourly1 temperature data (2m above ground) from more 
than 500 weather stations throughout Germany free of charge. 
Fig. 1 provides an overview on station distribution in the 
country. 

The next question to be resolved is how to map the secondary 
data to time and location of the relevant vehicle and what 
accuracy can be expected. This problem is very common in 
meteorology [10] and this paper compares two basic 
methodologies to address the task in the vehicle data context: 
next neighbor (NN) and inverse distance weighting (IDW). 
More complex methods have not shown significantly better 
results [11] and are therefore not assessed in this context mainly 
due to higher costs and longer calculation times. 

 

Fig. 1. DWD's station network for ambient temperature (own representation 
of [12]) 

                                                           
1As of late the data resolution provided has been improved to intervals of 10 

minutes by DWD which has not been considered so far in the example 

presented but is supposed to enhance the data quality in general. 

The next neighbor method is the simplest method and finds 
the weather station with the lowest direct air distance for every 
route coordinate and uses the corresponding weather data to 
enrich the vehicle data. The main advantage is the very short 
computing time. 

In order to efficiently apply the inverse distance weighting 
method a pre-selection of weather stations nearest to the vehicle 
is applied. These nearest stations are defined as those located in 
an area of right angular shape spanned by the route edge 
coordinates. This area is then iteratively enlarged so that it 
includes at least four weather stations. IDW then calculates a 
weighted average with respect to the distance between station 
and vehicle as displayed in equation (1). The term 𝑧𝑥,𝑦,𝑡,𝑞 

represents the estimated value at a (vehicle) location with 
coordinates 𝑥, 𝑦 at time 𝑡. Its value is calculated of the weighted 

average over all selected 𝑛 stations with 𝑧𝑖,𝑡 being the measured 

data from the ith station at time t, 𝑑𝑖,𝑥,𝑦  the distance between the 

location 𝑥, 𝑦 and ith station, and the weighting factor  𝑞 that has 
to be defined individually to the respective case [13]. 

To evaluate the general accuracy of the data mapping, the 
average absolute difference 𝑧𝑞̅ between estimated (𝑧𝑥,𝑦,𝑡,𝑞  ) and 

measured values at the location of the vehicle (𝑟𝑥,𝑦,𝑡) for all m 

available data points of a test data sample is calculated (2). The 
optimal value for q is found by minimizing the average 
difference 𝑧𝑞̅ over a range of q values (3). Hourly measuring 

values from DWD are linearly interpolated for relevant stations 
at the corresponding time intervals. 

𝑧𝑥,𝑦,𝑡,𝑞 =
∑ 𝑧𝑖,𝑡𝑑𝑖,𝑥,𝑦

−𝑞𝑛
𝑖=1

∑ 𝑑𝑖,𝑥,𝑦
−𝑞𝑛

𝑖=1

 

𝑧𝑞̅ =
∑ |𝑧𝑥,𝑦,𝑡,𝑞 − 𝑟𝑥,𝑦,𝑡|𝑚

𝑗=1

𝑚
 

𝑞𝑜𝑝𝑡: 𝑚𝑖𝑛
𝑞 ∈[0.2…5]

𝑧𝑞̅ 

Due to varying station density and parameter type also the 
accuracy of mapped secondary data values is varying. Assessing 
ambient temperature exemplarily, the following analysis is to 
show that sufficient data accuracy can be reached by mapping 
secondary data using the proposed method. 

IV. VALIDATION 

The presented method is validated in three steps: Firstly, next 
neighbor and inverse distance weighting methods are compared 
regarding general accuracy in order to decide what method is to 
be preferred further on. To avoid measuring issues regarding 
mobile measuring equipment and to make use of a wide data 

 



range, the DWD temperature data itself is used for this step. Data 
from one station at a time are erased from the database. Then the 
remaining stations are used to map weather data to the location 
of the erased station. The results are compared to the actual data 
from that particular station. Secondly the method that proved 
more reliable is used to map weather data to actual vehicle 
tracks. The mapped values are compared to data acquired 
onboard. Finally, TUB-FVB’s total energy simulation is used to 
demonstrate the resulting difference in energy consumption 
using mapped data instead of real data. 

For the stationary assessment the data from six weather 
stations have been selected in order to cover a range of different 
local characteristics like rural/urban, topography, station 
density, position in middle / at the edge of the station network. 
This is done in order to identify correlation between station 
characteristics and accuracy of mapped temperature values. In 
this way areas of potentially high accuracy can be separated 
from those with lower expected accuracy. TABLE I gives a 
summary of the stations assessed and their characteristics. 

A. Evaluation of proposed methods 

At first the optimal exponent q is identified to be 1.6 for the 
invers distance weighting method. Thus equation (1) can be 
simplified to equation (4) 

𝑧𝑥,𝑦,𝑡 =
∑ 𝑧𝑖𝑑𝑖,𝑥,𝑦

−1.6𝑛
𝑡=1

∑ 𝑑𝑖,𝑥,𝑦
−1.6𝑛

𝑖=1

 

Fig. 2 displays a comparison of the results obtained by NN 
and IDW method respectively. The boxplots show the most 
relevant statistical parameters that describe the underlying 
distribution of differences. Both methods yield satisfying 
results. In average the deviation is 0°C, the absolute deviation is 
less than 1°C. Only very few outliers (about 1% of the regarded 
>50.000 data points) deviate more than ±5°C. In direct 
comparison shown in first two lines in TABLE II the inverse 
distance weighting method yields slightly better results, 
especially reducing the outliers. Thus, only the inverse distance 
weighting method is to be used further on in this study. 

 

Fig. 2. Box plot of next neighbor (NN) and inverse distance weighting (IDW) 
methods’ results in comparison. 

TABLE I  WEATHER STATIONS FOR TEMPERATURE ASSESSMENT 

Station name State Characteristics 

Tempelhof Berlin urban area, high station density 

Goldberg 
Mecklenburg-

Vorpommern 
low station density 

Kleve 
North Rhine-
Westphalia 

edge of the station network 
(border area) 

Hohenpeissenberg Bavaria 
complex topography (alpine 

foothill region) 

Itzehoe 
Schleswig-
Holstein 

coastal region 

Alfhausen Lower Saxony average station density 

B. Results using inverse distance weighting method 

Fig. 3 displays the results for the inverse distance weighting 
method for the six stations presented in TABLE I individually. 
The station “Hohenpeissenberg” (985m above sea level) shows 
the widest spread in deviations and proves to be responsible for 
practically all deviations below -5°C. The reason is the complex 
alpine foothill topography in the proximity and varying altitudes 
in this area. A possible explanation for high negative outliers 
(real temperature is higher than calculated temperature) is the 
appearance of inverse weather conditions. 

The “Kleve” station is in the bordering area to the 
Netherlands and thus at the edge of the network. That explains 
the slightly larger deviations. The smallest deviations are 
observed in Berlin-Tempelhof. As there are multiple other 
stations in the direct proximity, this is not surprising. 

In total this analysis shows that the method yields generally 
good approximations, only in complex (mountainous) 
topography sporadic deviations of more than ±5°C have to be 
expected. In all other regions deviations of more than ±2°C are 
very scarce. 

C. Improvement potentials 

In order to further improve reliability for stations in 
mountainous areas the impact of geographic altitude has been 
tested. Heyer [14] provides temperature gradients for 
mountainous areas that can be used to fit temperatures to 
geographic height of the targeted location. In average, the 
absolute mean deviation at Hohenpeissenberg station is 
improved from 2°C to 1.8°C. Regarding all six stations the 
absolute mean deviation is improved by only 0.04°C. This is due 
to very small altitude differences in the regions of all regarded 
stations except Hohenpeissenberg. As this study focuses on 
northern Germany, geographic height is neglected. In a different 
context it is strongly advised to take geographic altitude into 
account. 

Another potential to improve reliability is the inclusion of 
other station networks to improve station density within 
Germany or to enlarge the area of application or to reduce edge 
effects respectively. As mentioned above the Kleve station 
yields slightly larger deviations than other northern German 
stations. The inclusion of additional station networks was 
rejected since it was (1) too cost-intensive, (2) too time-
consuming due to additional data processing complexity and – 
most important – (3) the project EN-WIN focus is on tours 
within Germany, so that edge data would not need to be applied 
here. Again, in another context this improvement is to be 
considered. 

 



 

Fig. 3. Box plot of inverse distance weighting: results for six assessed stations 

individually. 

TABLE II  TEMPERATURE DEVIATION MEASURED VS SECONDARY DATA 

Method 

station 

 

Mean 

diff. 𝑧𝑞̅ 

°C 

Standard 

dev. 

°C 

Mean 

abs. diff 

°C 

25% 

quantile 

°C 

75% 

quantile 

°C 

Diff. 

±2°C 

% 

Diff. 

±5°C 

% 

NN 

all 
-0.01 1.44 0.94 -0.53 0.70 89.2 98.8 

IDW 
all 

0,05 1.30 0.84 -0.41 0.65 91.2 98.9 

IDW 

Alfhausen 
0.44 0.59 0.60 0.05 0.73 96.1 100.0 

IDW 

Tempelhof 
-0.52 0.54 0.57 -0.76 -0.16 97.2 100.0 

IDW 

Goldberg 
0.14 0.49 0.54 -0.26 0.53 98.3 100.0 

IDW Hohen-

peissenberg 
0.01 1.62 2.03 -1.07 1.79 63.5 93.45 

IDW 

Itzehoe 
0.17 0.49 0.50 -0.23 0.50 98.3 100.0 

IDW 

Kleve 
0.04 0.68 0.81 -0.62 0.64 93.8 99.9 

D. Mapping temperature to real vehicle trips 

This section gives an example how secondary data mapping 
is coupled to real driving profiles. For each route point the 
corresponding ambient temperature is calculated using the 
described IDW method and compared to the temperature 
acquired using the vehicle’s intake air temperature sensor. Fig. 
4 illustrates the temperature deviation over the course of a real 
driving profile in Berlin. 

As electric heating is the main reason for increased energy 
consumption, ten winter days with high electric heating demand 
are selected to illustrate energetic impact of using secondary data 

mapping. TABLE III shows the results for all of the ten assessed 
trips in terms of daily mean values for actual and calculated 
temperature and the difference in energy demand using the two 
temperature values to feed the simulation. The energy demand 
is calculated using TUB-FVB’s total vehicle energy model for a 
small commercial vehicle [3]. For the assessed cold days, the 
differences in energy demand vary by 0.17 kWh per hour or 
2.6% of total vehicle energy demand on average. The last 
column illustrates that about 0.11 kWh additionally is needed 
per hour for every decrease of ambient temperature by 1K. The 
results show that small temperature deviations have minor 
impact on vehicle energy demand. 

The generally higher differences between measured and 
mapped temperature values when compared to the stationary 
assessment allow for different interpretations. In all cases the 
measured temperatures are higher than the mapped. The largest 
differences appear in the first seconds of driving after a longer 
stop. This could be due to the vehicle sensor being influenced by 
local heat sources (i.e. waste heat from vehicle, warm road, 
buildings). More study would be necessary to assess whether 
any regularity can be derived to explain these differences. 

 

Fig. 4. Exemplary route profile in downtown Berlin illustrating difference 

between measured and calculated ambient temperature. 

TABLE III  COMPARISON OF ACTUAL  AND SECONDARY TEMPERATURE 

DATA IN REAL DRIVING PROFILES ON SELECTED COLD DAYS (DAILY VALUES) 

ID 

 
 

Date 

 
 

mm/dd 

Distance 

driven 
 

km 

Temp. 

sensor 

𝑟𝑥,𝑦,𝑡 

°C (mean) 

Temp. 

mapped

𝑧𝑥,𝑦,𝑡 

°C (mean) 

Vehicle energy demand 

difference (simulated) 
 

   kWh/h % kWh/(hK) 

1 11/26 51.1 2.9 -0.5 0.37 6.0 0.11 

2 12/17 51.2 3.9 3.0 0.09 1.6 0.10 

3 11/19 32.8 4.9 3.9 0.10 2.0 0.10 

4 12/31 26.8 3.3 2.3 0.12 1.7 0.11 

5 01/19 59.0 2.2 -0.4 0.31 4,6 0.12 

6 12/12 113.6 3.2 2.5 0.07 0.8 0.10 

7 02/04 62.0 0.8 -1.0 0.21 3.1 0.12 

8 02/07 73.1 2.7 1.3 0.15 2.4 0.11 

9 02/13 114.4 3.1 1.7 0.12 1.4 0.08 

10 02/16 73.0 2.1 0.7 0.15 2.5 0.11 

Avg - 65.7 2.9 1.3 0.17 2.6 0.11 

 

 



V. CONCLUSIONS 

This study assesses the practicability of using secondary 
weather data in the context of driving profile data to reduce the 
need of onboard data acquisition or to enrich existing data that 
lack on data on ambient conditions, respectively. For the 
discussed purpose of vehicle energy demand simulation, the 
presented method yields good accuracy for ambient temperature 
data. In cases that do not allow reading built-in sensors or require 
additional sensors, secondary data might thus be used instead. 
Depending on intended application the potential of the presented 
mapping method for other secondary weather conditions like 
solar radiation, precipitation, or wind speed or topologic 
information like altitude has to be assessed. 

Accurate weather data mapping is challenged by certain 
conditions: This is shown for ambient temperature in regions 
with complex (i.e. mountainous) topography. Further 
optimization as shown by taking into account altitude and 
temperature gradients can improve accuracy in these cases. 
Adding more weather stations, especially in areas with low 
station density or in neighboring countries can improve 
accuracy. Deployment of international or multiple national 
station networks could make the method applicable to border 
regions in Germany and also to other regions than Germany as 
well. 

The mapped secondary temperature data is fed into TUB-
FVB’s electric vehicle energy simulation model for small 
commercial vehicles [3] to simulate total vehicle energy 
demand. The results are compared to the simulation of total 
energy demand using real onboard acquired data. The resulting 
mean difference in vehicle energy consumption is shown to be 
only 0.17 kWh/h or 2.6% respectively. Depending on vehicle 
type, battery size, and usage profile, this leads to a limited 
difference in terms of electric driving range. For the energetic 
simulation applied at TUB-FVB the use of secondary ambient 
temperatures has proven very useful, especially in cases where 
no ambient temperatures are available in data sets to be 
analyzed. 
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