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Abstract—In this paper, a novel approach for improving
battery lifetime is proposed. To reach this goal, electric vehicle
internal data is analysed, the battery health influence of driving
and charging parameters is estimated and recommendations for
battery health optimal charging are generated. The presented
system collects data from the electric vehicle using the controller
area network bus and stores it on a central server. The data
is then transformed and analysed to determine the health influ-
ence of certain charging characteristics. Using this knowledge,
recommendations can be generated and provided to the electric
vehicle owner. This process of generating recommendations can
be performed continuously. The proposed approach provides
several benefits in electro mobility. First, the acquisition of
electric vehicle data is performed in a non-intrusive way. Solely an
on-board diagnostics interface is required to read out the vehicle
internal data. Thereby any electric vehicle can be equipped with
the system presented in this paper. Second, the recommendations
guide the vehicle user in specific behaviour without affecting
availability and range for the next trips.

I. INTRODUCTION

Currently, there is a worldwide interest on environmentally
friendly transportation and energy sources. Especially with
the ongoing improvement of battery-powered Electric Vehicle
(EV) technology, present requirements of the conventional
transportation need to be met or overpassed. This challenging
task leads to more sophisticated investigations and develop-
ments as for example the driving range is heavily influenced
by the EV battery performance. Therefore, battery capacity has
been increased in the past years but also the research on battery
health has advanced in order to preserve battery performance
and remaining useful lifetime (as summarized in [1]).

In EVs, Lithium-Ion batteries are used due to their com-
parable high energy density and low price. However, batteries
degrade inevitably due to different causes. A metric to describe
the battery health is the State of Health (SoH) of the battery.
This SoH and its influence factors are widely discussed in
literature while its definition is not identical with all authors.
In an abstract sense, the battery SoH can be defined by
the comparison of the state of the battery at the beginning
of operational life and the current state [2]. This difference
is usually given relatively to the initial state in percentage,
e.g. 98% of the initial health state. The SoH determination
in general is influenced by either battery internal changes
due to chemical reactions or external effects indicated by
battery performance changes. This relationship is discussed
in detail in the related work section of this paper. Accurately
measuring the internal chemistry ageing is quite complex [3]
and hardly usable in EVs, therefore the focus of this work lies
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on the external effects. The detailed SoH calculation method
of different EV manufacturer is not publicly known, thus
no more details about the interpretation of the SoH values,
derived from EV battery health management as used in this
paper, can be given. Additionally, the SoH is a parameter to
determine battery health at a specific point of time although
certain battery usage behaviours influence battery health over
longer periods of time. Although related work describes only
a battery SoH degradation, in this paper, the SoH value could
also improve as it is a measured value by the manufacturer
and the measurement conditions were not constant (usage of
the car in real world and not in a laboratory).

In this paper, we propose a system to generate EV usage
recommendations for prolonging EV battery lifetime, looking
at the battery as black-box system. Therefore, an analysis of
an EV’s historical performance data is used to formulate EVs
battery usage (driving and charging) recommendations. Espe-
cially the request for fast charging the EVs at any environment
condition was an important focus on the design of the first
recommendation.

The paper is structured as follows: A summary of the
main influences for battery degradation with the focus on
EVs is provided in Section II in order to extract possible
countermeasures against battery ageing. Then, a recommen-
dation on fast charging is presented in Section III which
can be followed by Electric Vehicle Owners (EVOs) without
impairing their daily use significantly. The data acquisition,
extraction, pre-processing, health influence estimation and
generation of recommendations are presented in Sections IV-A
to IV-C, respectively. Additionally, the system is applied on
historical data of a fast charging experiment in Section V in
order to analyse its performance. The results of this analysis
are explained in Section VI and discussed in Section VII.

II. RELATED WORK

The SoH of batteries is basically determined by battery
capacity fade [4] and battery power fade [5] in literature.
Capacity fade can be described as loss of usable energy storage
capability, whereas power fade means the loss of instantaneous
power, that the battery can deliver. Power fade is also highly
related to the internal battery impedance rise [5]. According
to [6], power fade mainly occurs on charge power, whereas the
discharge power only has very slight loss over time. Another
factor, which needs to be considered concerning the battery
SoH is the field of application. For some battery-powered
application the determination of the SoH will probably focus



more on capacity fade (induces shorter operation duration)
than power fade.

Battery degradation can be categorized in different ways.
One classification, used by some authors [2] [7], is to dif-
ferentiate between calendrical and cyclic ageing. Calendrical
ageing concerns the battery ageing effects due to storage
without usage. Here especially the storage condition, like
temperature and the storage State of Charge (SoC), is the main
ageing factor [7] [8]. Cyclic ageing is induced by all effects,
which occur due to the active usage of the battery in multiple
discharge-charge cycles in addition to calendrical ageing. This
primarily includes charging rates, temperature influences and
the Depth of Discharge (DoD) [8]. Here, we focus on the
cyclic ageing influence factors, as an EV is usually used quite
often.

In the context of e-mobility, the most critical stress factors
on batteries according to [9] and [10] are:

o (Ambient) temperature

o Current flow including discharging as well as charging
(fast charging)

o Depth of Discharge (DoD)

o Time intervals between full charge cycles

As we are especially interested in the effect of fast charging at
any environmental condition, we only focus on the temperature
and current flow stress factors here.

Temperature can influence the battery in positive and in
negative ways. High temperature, for example, promotes the
kinetics of inserting and removing lithium ions to/from the
electrodes, thus reduces the internal impedance of the battery.
Small internal battery impedance favours higher charging and
discharging rates up to a certain level. However abnormal
temperatures are known to promote battery life degradation
[11] (see Fig. 1). This is due to chemical reactions, which
react slightly different at certain temperature ranges. As result,
chemical side products could lead to irreversible morphol-
ogy changes within the battery and thus accelerate battery
ageing [12] [13]. The specific temperature effects on battery
ageing depend on the used materials within the battery [14].
Concerning EV batteries, mechanisms like active cooling and
heating systems try to regulate the batteries temperature in
order to minimise ageing effects. This, however, can only be
done in a limited range. Nevertheless, extreme environmental
temperature will have an impact on battery life.

With higher discharging and charging rates, increased bat-
tery ageing can be observed. This means, the higher the
charging/discharging current is, the more battery degradation
in form of capacity fade as well as impedance rise increase
occurs [15] [16] [17]. The effect of the charging rate (measured
as C-rate') and at different temperatures on the battery cycle
life performance is shown in Fig. 1. In addition, high dis-
charging/charging rates lead to elevated internal temperature
and its corresponding side effects. Especially with EVs, a high

'A charging rate of 1C is defined by one time the rated capacity of the
battery per hour, e.g. for a 2.4 Ah battery, 1C is 2.4 A and 2C is 4.8 A
charging/discharging current.
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Fig. 1. Tllustration of Lithium-Ion battery cycle life vs. temperature and
charging rate (see [10])

charging rate (commonly known as fast charging) is desired
to reduce the refuel time.

Battery degradation due to very high voltage (overcharging)
is neglected in this paper, as the Battery Management System
(BMS) usually prevents this kind of stressful battery operation.
In addition, most of the papers in literature focus on extraction
of different battery ageing factors and possibilities to reduce
them. However, a lot of these experiments have in common
that they were carried out in laboratory environment with a
lot of different fixed parameters and open-circuit as well as
half-cell battery measurements. The analysis in this paper is
based on real driving performance data of EVs using, among
others, the battery SoH value gathered directly from the EV.
The goal is to provide a system that is applicable to almost
all EVs, even retrospectively.

III. RECOMMENDATIONS

In this paper, a battery health monitoring system is es-
tablished, which is used to prolong the EV battery lifetime.
The system monitors the SoH value, which is provided by
the EV BMS. We observed from driving data, obtained from
the EV Controller Area Network (CAN) bus in the past, that
this SoH value does not only degrade but can also increase
slightly over time. This observation is probably due to the
changing measurement conditions in real world use of the
EV. Nevertheless, the influences leading to an SoH decrease
and increase are analysed by the health monitoring system
as well as recommendations are provided by the system so
that users can actively contribute to SoH development. This
paper focuses on the influences of charged energy and ambient
temperature during fast charging.

The battery health monitoring system generates recommen-
dations at specific points in time if possible. It does so by
taking EV performance data, analysing the data and finally
deciding if certain user actions can help to reduce the regular
battery degradation. This condition leads to the proposal of a
respective recommendation to the EV user.

The recommendations can be divided in two classes. On the
one hand, there are recommendations regarding the driving
behaviour of an EV user. These can cover different driving
aspects, such as the route properties or also the driving
style. On the other hand, recommendations about the charging



behaviour of an EV user can be considered. These can contain
suggestions for a certain SoC difference to be charged or also
about a slow or fast charging mode, which should be used.
The aspects which can be covered by the recommendations,
of course, depend highly on the available data, which can
be gathered and analysed. A recommendation is provided in
textual form to the EV user, to be displayed by a driver
assistant system in the EV. This could be a tablet mounted
in the vehicle or the user’s mobile devices.

For the analysis of available data, a mathematical decision
making process, which identifies negative influences on the
battery SoH value, is established (see Sections IV-B and
IV-C). These influences are parameter ranges which cause the
SoH to decrease, derived from EV data. Also, the decision
making process is based on the suggestions of related work.
Its algorithms automatically generate recommendations for
the battery owner to reduce the impact of the SoH negative
influences.

IV. ARCHITECTURE

In order to derive recommendations for prolonged battery
life, based on long-term and current physical circumstances,
a detailed description of the data acquisition and processing
procedures is given in this Section. As a requirement, data
needs to be collected from the EV. In the case of this research,
driving data from the CAN bus of the EV is available.
The process for obtaining this kind of data is explained in
Section I'V-A. Transformation and analysis of the acquired data
is then described in Sections IV-B and I'V-C respectively. These
data processing steps are implemented in a prototype, in order
to test the system in the context of an experiment using real
driving data.

A. Data Acquisition

The driving data of the EV is collected using an On-board
Diagnostics (OBD) module which provides data from the CAN
bus in a numerical format. However, this module needs to be
configured at each vehicle startup in order to convert data
packages of certain parameters. This configuration is derived
from a previous re-engineering process of the EV’s CAN bus.
Configuration of the OBD module is done using an Android
tablet mounted in the EV, which connects to the module via
Bluetooth and programs it for the configuration including all
known parameters. During driving, the converted data is sent
from the OBD module to the tablet, using the same Bluetooth
connection, as shown in Fig. 2. Finally, the tablet is sending
the data to a central server via an encrypted mobile internet
connection.

The data, which is collected in this process, contains CAN
values such as the SoC, SoH, ambient temperature and vehicle
speed in different resolution. The obtained SoH is computed
by the BMS in the vehicle. Additionally, Global Positioning
System (GPS) coordinates can be obtained using the tablet’s
built in receiver. In general, the CAN bus derived data is
collected in an interval of one second during a trip. However,
as the OBD module is listening passively on the CAN bus,
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Fig. 2. Data connection from the EV CAN bus to the central database

data is received only once the electronic control units are
transmitting new values if these are updated. Active requests
are not performed as these could lead to potential risk for
the driver, due to unwanted changes in the vehicle dynamics.
Thus, some parameter values as the SoC are updated only after
multiple seconds or minutes, depending on the rate of change.

B. Data Preprocessing

In this section, the pre-processing steps of the accumulated
driving data are described. Fig. 3 provides a rough structure
of the data processing flow.
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Data Extraction
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Fig. 3. Computation steps in the data preprocessing component

In order to convert the raw data stored in the database into
statistical measures which are used by the health influence
analysis as well as the proposal of recommendations, the
following processing steps are required to be taken. At first,
data needs to be extracted from the database. Then, invalid
values are filtered to prevent further analysis to be influenced
by these. Lastly, the driving data is bundled into periods of
hours or days, depending on the application of the resulting
data. Usually, the SoH changes slowly over time due to long
lasting influence factors, therefore the period could be scaled
as multiple days, for example.



For the extraction of data from the central database, the
following frame conditions have to be considered. First, data
can be queried for a certain EV by using an identifier, as the
EVs are registered in the database with a unique identification
number. Secondly, driving parameters need to be chosen in
order to be taken into account for extraction. A third condition
is the interval for fetching the data, i.e. the time window to
be extracted from the historical data. In order to analyse long-
term driving data of an EV, the time interval should be chosen
in a range between multiple months or years. The parameters
to be extracted depend on the specific health influences which
should be analysed (e.g. SoC parameter in the case of the DoD
influence).

These EV identifier, data parameters and time interval are
currently included as parameters for a data extraction script.
It queries the database for the chosen parameters and returns
a collection of driving data representing the EV performance
for the specific time window. This collection contains rows
of data, each starting with a timestamp and followed by the
floating point parameter (e.g. ambient temperature) values.

Under certain circumstances, parameters take on values of
invalid ranges, which leads to the necessity of a data filtering
process. This effect is observed at startup of a Nissan Leaf
model 2012, where for example the SoC is significantly higher
than the specified nominal battery capacity. In this case, values
of 40.9kWh were read although the battery is specified to
24 kWh. It is assumed that the Electronic Control Unit (ECU)
sending these values did not perform a successful measurement
prior to sending this value. Therefore, these values cannot be
used for further data processing and have to be filtered out.
Table I provides an overview for valid parameter ranges and
resolution for EVs of type Nissan Leaf, model 2012. The limits
for the ambient temperature ¥,,,, were chosen to include
temperature ranges usually observed in Europe.

TABLE I
PARAMETER LIMITS FOR FILTERING
Parameter | Unit | Lower limit | Upper limit | Resolution
SoH % 0 100 1
SoC Wh 0 24,000 1
Gamb °C —25 50 0.5

It is assumed that certain actions such as a fast charging
processes do not have an immediate effect on battery health.
The SoH could rather be changed by a collection of actions. As
an example, this could be due to fast charging during multiple
consecutive hot days in the summer. Thus, the data bundling
component iterates over the filtered data and gathers data rows
in bundles of a certain amount of days (bundle length). This
is illustrated in Fig. 4, where d; represents a single data row.
The quantity of days can be specified as parameter for the
component. Then, a single bundle is created, which contains
lists for each parameter. For example, in the case of = data
rows with the entries (1) timestamp, (2) SoH, (3) SoC, (4)
Pamp, a bundle of four lists with the respective number of x
entries is created.
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Fig. 4. Bundling process of the data pre-processing

Recommendations on battery-friendly EV charging should
be derived from the driving data and this requires information
on previously performed charging processes. Therefore, the
process of detecting charging operations is explained in this
paragraph. Since the driving data, available in this paper,
is only acquired during tours, a charging process cannot be
directly determined. However, the SoC can be analysed to
indirectly derive charging processes based on the following
principle: If the SoC rises more than 5% of the maximum
battery SoC (SoC,,4,) between two data points, a charging
process was performed. The difference of 5% SoC,,q, was
chosen as it is assumed to be higher than recharging by EV
recuperation and small enough for even slight charging at a
charging station. For the Nissan Leaf, this SoC differnce is
1.2 kWh. In Alg. 1, the proposed condition is used in order
to derive the difference of SoC values ASoC and average
ambient temperature Dams from before and after charging. If
no charging process is detected between two timestamps, SoC
and ¥, values are removed from the lists.

Alg. 1 Charging process conversion

1: procedure CONVERTCHARGINGS(bundles, SOCmax)

2 for bundle in bundles do

3 for row = 0; row < length(bundle) - 1; row ++ do

4 if SoCrow > S0Crow+1 - 0.05 * SoChyaq then

S: > No charging process detected
6: remove(SoChrow)

7 remove(drow)

8 else

9: > Determine ASoC
10: S0Crow = S0Crow+1 - S0Crow B

11: > Determine ¥g.mp
12: Brow = 0.05 * (Yrow + Frow+1)

13: end if

14: end for

15: end for
16: end procedure

To simplify the data in the bundles, averages are generated
over the parameter lists for SoH, ASoC and ¥, as shown
in Fig. 5. Due to charging process detection, there are O .. k
timestamp and SoH values and 0 .. n ASoC and Dams values.
For the timestamps, the first one in the bundle is chosen for a
simplified bundle representation.

Then, differences of the averaged SoH values SoH between
the bundles are created. This allows to derive the SoH change
between bundles.
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Fig. 5. Averaging process for each bundle with datasets O .. k and 0 .. 1

C. Health Influence Estimation and Recommendations

In this Section, the functionality of the health influence
estimation as well as the recommendation generation is de-
scribed. Both of these steps depend on the data extraction
and pre-processing modules. The health influence estimation
is executed once for an EV, providing an estimation about the
influence of the average charged energy or average charging
temperature on the SoH. This estimation can be reused for the
recommendation generation, to be considered in a classifica-
tion step. The bundling period used for the data pre-processing
module is within the range of multiple days for the battery
health influence estimation, whereas the recommendations
are based on bundles within few hours in order to provide
suggestions based on data of the current day or trip.

The battery health influence estimation performs a classifi-
cation of input parameter ranges which are causing the SoH to
change. These ranges are later used to derive recommendations
from current driving data. Therefore, the data extraction and
pre-processing module are executed repeatedly, while the
bundle length is iteratively changed. For example, this could
be an iteration from 7 to 30 days. This is done in order to
determine the highest correlation between bundle parameters
and SoH change. The overall time window for data extraction
should be considerably larger than the bundle period so that
a sufficient amount of bundles is generated. After this, the
bundles are sorted depending on the following SoH change,
which could be either a SoH decrease or increase. On the one
hand, bundles which keep the SoH to stay at the same value
are omitted. On the other, parameter ranges which lead to an
SoH decrease are used for the generation of recommendations.

Recommendations for battery friendly EV usage are gen-
erated automatically and periodically using current driving
data. The data is again transformed by the data extraction and
pre-processing modules in order to derive statistical measures
of a small time interval. In this step, the data extraction is
called with a time frame of a few hours in order to get
a representation of the last trips and charging processes.
This allows to determine current EV internal and external
circumstances. The bundle length for data pre-processing is
chosen with the same value as the time window for data
extraction. This way, a single bundle with statistics of the last
hours is generated.

For generating recommendations, the pre-processed driving
data is compared to the parameter ranges which cause the
SoH to decrease. Thus, the generated statistical measures of
driving enable a comparison with SoH reducing ranges. If the

current driving data values correspond to an SoH decrease, the
recommendation is formulated.

V. EXPERIMENTAL TEST

For an experimental test of the proposed system, historical
data of an EV is analysed and processed. The EV, used in
this test, is a Nissan Leaf model 2012. It is equipped with
the data acquisition system in order to build up a data basis
for later analysis. The Leaf is consequently charged in a fast
way using the CHAdeMO standard, where the used charging
stations provide a power of 20 to 50 kW. Additionally, the EV
is frequently used by two commuters to drive to work and
switched between them every week. This should homogenize
the influence of EV usage so that specific trips will not have
significant influence on the SoH development.

Additional EVs have not been included in this experimental
test as the age, mileage and SoH of the available EVs differ
from the EV in this test. It is also known that battery health
degradation is non-linear [18] and hence, the EVs cannot be
compared in the test. Thus, driving data from only one EV is
analysed.

Although this fast charging experiment is planned for a
whole year starting on 18/05/2017, a first analysis of the results
obtained during the last seven months is provided. Here, the
analysis is performed until the date of 13/12/2017, containing
30 weeks of driving data.

VI. RESULTS

In the progress of the first half year, the SoH is changing
as shown in Fig. 6. For this graphs, the SoH and ambient
temperature ¥, are averaged for periods of 14 days from
the raw data of 584,246 data rows. This allows to see the
rough change while omitting short time development. In the
upper graph, it can be seen that the SoH is at 88.5% on
average at the start of the experiment followed by an increase
of half a percent. As the EV was equipped with the data
acquisition system at the start of the experimental phase, no
data is available for the time prior to this SoH rise. Thus, no
evaluation on the specific value can be provided.

After the experiment start, the SoH trend shows a correlation
with the ambient temperature. Comparing both parameters, it
can be seen that the SoH drops once the average temperature
rises to almost 25°C on average. This trend is observed for
the SoH as long as the temperature is above 20 °C. Here, the
Pearson correlation coefficient for the ambient temperature is
r91 = —0.17. From the fourteenth week on, the SoH rises
again as the temperature falls below 20 °C after approximately
13.5 weeks (ry,2 = —0.85).

Thus it is assumed, that an ambient temperature above
20°C is decreasing the SoH whereas temperatures below are
increasing it. It should also be noted that the battery internal
temperature is estimated to be higher than the ambient temper-
ature during charging. Additionally, one should be aware of
extremely low temperatures, such as below the freezing point.
These temperatures are currently not included in this test so
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Fig. 6. Development of SoH and ambient temperature during the experiment

far (as shown in Fig. 6). From the related work though, it is
known that these ranges are critical for battery health [1].

The data pre-processing component is used on the driving
data of the fast charged Nissan Leaf. It is called repetitively
with bundle lengths of a range of 1 to 30 days. Here, it is
observed that the highest correlation between charged energy
and ambient temperature with the SoH is present with a bundle
length of 22 days. The Pearson correlation coefficients for all
of the bundles are 7As,c = 0.27 and 79 = —0.61. This rough
correlation is shown in Fig. 7, where the resulting nine bundles
are illustrated. Therefore, the results presented in the following
paragraphs are based on bundles of the period length of 22
days.

In Fig. 7 it can be seen that the correlations between charg-
ing energy and SoH as well as temperature while charging
and the SoH change could be linear. This is because the
linear fit with the order of one (solid line) shows a slight
pattern in the scattered data points. Also, the experiment halves
are shown with distinctive markers and colours in order to
illustrate a clustering of the temperature ranges ([16.88, oo]
°C in red and [—oo, 16.88[ °C in blue). Here, filled circles
(in red colours) depict the first experiment half until the
end of August, when the ambient temperature is high (above
the average temperature of 16.88 °C). Blue circles represent
the second experiment half during low ambient temperature
observation. In short, during the first three months, the ambient
temperature was above 16.88 °C and the charged energy was
less than 10.72kWh, shown by the dotted lines respectively,
in Fig. 7.

Interpreting the scatter plot in Fig. 7, a general beneficial
health change can be derived. If the ambient temperature is low
(less than 16.88 °C) and the energy to be charged is high (more
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Fig. 7. Charging process parameters and their average influence on the SoH
(Solid line illustrates the linear fit and the dashed one is the average of charged
energy or ambient temperature)

than 10.72 kWh), fast charging processes should be preferred.
This differs from literature, since fast charging is considered
harmful for battery health [9], [10]. It is assumed, that the
influence of low ambient temperature may contribute to the
finding proposed in this paper. In addition, no evaluation can
be given on the effects of high charged energy on hot periods
as well as on low charged energy during cold days. This is
because the available data doesn’t include these cases. It was
also observed by the colleagues driving the EV that the range
during winter days was highly influenced by increased usage
of cabin heating. Thus, energy demand during colder days
was higher. Therefore, only one recommendation regarding
charging behaviour of users can be derived for now:

Fast charging should be used at cold temperatures (0 to
16.88 °C) if a high SoC difference (> 10.72 kWh) is going to
be charged.

Although an SoH increase is observed in some cases within
the ranges defined in the recommendations, they are used
nevertheless. Similar to the recommendation, Hannan et al.
[1] recommend a battery temperature range of 15 to 50 °C for
charging (as illustrated in Fig. 1). However, the recommenda-
tion used in this test is based on the available driving data and
hence, the ambient temperature.

In the following, the generation of recommendations is
tested using the experimental data. For this, the bundling
period in the data pre-processing step is set to one hour. This
value is chosen for a first analysis. Other values need to be
evaluated considering validity and practicality in further work.
Starting from there, the input parameter values for SoC and
ambient temperature are averaged and the results for the SoC
are subtracted from a static value of 24.0 kWh. This is required
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to calculate the average distance to the maximum capacity
of the Nissan Leaf and to estimate the possible charge if
a battery SoC of 100 % is desired after charging. Then, the
recommendations are generated by iterating through all of the
one hour bundles of driving data during the trial period.

The cumulative probability of generating the charging rec-
ommendation is shown in Fig. 8. It can be seen, that the
recommendations are generated primarily in the first exper-
iment half, when the ambient temperature is roughly above
20°C. At around 12 weeks, the system stops to provide
the recommendation, which correlates with the temperature
decrease shown between weeks 10 and 15 in Fig. 6. However,
a slight increase in the number of provided recommendations
is observed in weeks 15 and 18 respectively. This relates to
an intermediate temperature rise shown between weeks 16 and
20 in Fig. 6.

VII. DISCUSSION

The health monitoring and recommendation system was
used on historical data accumulated during an experiment,
where a Nissan Leaf was consequently fast charged. It is
observed that the highest correlation between charged energy
and ambient temperature correlates strongest with the SoH if
bundled as averages in 22 day periods.

For generating the recommendation defined in Section III,
an energy gap of less than 10.72kWh to the maximum battery
capacity as well as an ambient temperature outside the range
between 0 and 16.88°C is selected as precondition. While
testing the recommendation generation on the experimental
data, it is observed that this recommendation is provided
primarily during the first half of the experiment, which was
performed during summer season.

This shows, that the chosen value ranges are followed
for providing the recommendation and therefore, the system
performs correctly. Further, the selected hard value ranges
for generating a recommendation could be exchanged by a
weighted recommendation. For example, a recommendation
could be weighted in a range of 0 to 1, where a value of 0
means no recommendation and a value of 1.0 means a very

important recommendation as the chance for improvement is
higher.

VIII. CONCLUSION

In this paper, a system to estimate the BMS derived SoH
influence of charging parameters such as the charged energy
and ambient temperature as well as a generation of charging
recommendations is proposed. The resulting recommendation
is used to guide an EVO’s vehicle usage in order to prolong
the EV battery lifetime.

The data computation and analysis proposed in this paper
requires a data acquisition system to store EV driving perfor-
mance data from the EV CAN bus on a central database. From
there, data extraction and pre-processing components trans-
form and bundle the data for consecutive health assessment
components. The pre-processing component contains filtering
of raw data to omit invalid data, bundling of data within an
arbitrarily set time period and influence analysis. From the
analysis in the last step, SoH influencing parameter ranges are
determined and later used for recommendation generation.

Then, an experimental test shows the application of the
proposed system based on historical data from a consequent
fast charging experiment using a Nissan Leaf EV. Overall,
the system satisfies the requirements of determining the health
impact of the driving parameters as well as the generation of
recommendations at the correct timing. The computation is
based on the assumption, that the SoH parameter values can
improve by a slight percentage during short periods of time.
It is shown that charging high energy amounts at low ambient
temperatures correlates with an SoH improvement with Pear-
son correlation coefficients of rAs5,c = 0.27 and ry = —0.61.
However, it needs to be tested in more cases, if the derived
recommendation improves the SoH under its precondition for
generation. Moreover, long-term experiments are required in
order to determine a battery lifetime prolongation. From the
available data, this cannot be determined right now.

Furthermore, other modelling approaches need to be anal-
ysed in the future. For example, the static value ranges for gen-
erating the usage recommendations could be based on fuzzy
logic, e.g. providing the suggestions if a crisp condition applies
during a trip. Also, techniques like machine learning such
as Artificial Neural Network (ANN) would be an option to
automatically learn from correlations within the obtained data.
This way, the precision of the proposed methodology could
be improved strongly. However, machine learning requires a
high volume of data, which is currently not available from the
presented experiment. Therefore, a simple statistical evaluation
is used to determine recommendations.

Besides other techniques, the existing system needs to be
tested in other cases. For example, it is required to know, if the
proposed configuration is compatible to other EV types and if
it is functioning during winter or spring time. This is because
the system was only tested on one EV and its driving data
between a period of May and December 2017. Also, it needs
to be tested if the results of the system are reproducible with



consequently slow charged EVs or ones charged in arbitrary
ways.
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