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Abstract—In this paper we analytically analyze the tone
reservation method for the reduction of the peak to average
power ratio (PAPR) in code division multiple access (CDMA)
systems that employ the Walsh functions. We find the best
possible reduction of the PAPR and give one optimal information
set that achieves this reduction. Interestingly, when using more
than one information carrier, the smallest possible extension
constant is independent of the size of the information set and
has the value

√
2. We further show that the minimal extension

constant can also be achieved with finite compensation sets, and
illustrate the findings with a numerical example. For certain
special cases we are also able to provide results for the system of
complex exponentials, which is employed in orthogonal frequency
division multiplexing (OFDM).

Index Terms—Peak to average power, tone reservation, code
division multiple access, Walsh system, optimal constant

I. INTRODUCTION

CODE division multiple access (CDMA) is a transmission
technique that is used in many systems, e.g., in 3G and

UMTS, GPS, and Galileo [2]. Moreover, multiple extensions
such as multicarrier CDMA [3] exist.

The control of the peak to average power ratio (PAPR)
is an important task in any orthogonal transmission scheme
that employs orthogonal functions [4]–[7]. Such orthogonal
functions are used not only in CDMA, but also in other orthog-
onal transmission schemes, like orthogonal frequency division
multiplexing (OFDM). Large PAPR values are undesirable,
because they can overload amplifiers, distort the signals, and
lead to out-of-band radiation. For a further discussion of these
concepts and problems, we refer to [7].

Due to its importance, the PAPR problem has garnered
much attention, and many different approaches to reduce
the PAPR have been created [8]–[27]. In [14] and [18]
new selected mapping approaches with reduced complexity
were proposed. The selected mapping approach was further
analyzed in [16], where the complementary cumulative distri-
bution function performance was studied, and in [19], where
an asymptotic performance analysis of selected mapping was
performed. In [23] a PAPR reduction scheme that requires
no side information was studied. A different constellation
reshaping method was considered in [22].

Other publications consider PAPR reduction via optimiza-
tion. An active-set minimax approach for tone reservation was
analyzed in [12], and the application of convex optimization
to calculate the OFDM signal with minimum PAPR was
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considered in [13]. Further, in [17], the adaptive projected
subgradient method was studied.

In this paper we consider the popular tone reservation
method [8], [9], [12], [21], [26]–[28]. In this method, the set of
available carriers is partitioned into two sets, the information
set K, which is used to carry the information, and the compen-
sation set K{, which is used to reduce the PAPR. A significant
advantage of the tone reservation method is that no additional
information exchange is needed between the transmitter and
receiver. The set K is fixed and known by both parties. The
receiver simply has to select the carriers corresponding to the
set K. We will explain the tone reservation method in more
detail in Section III.

In [8] the tone reservation method for OFDM was intro-
duced, and finding the best compensation signal was phrased
as an optimization problem. However, the question of how
to choose the compensation set was not treated, nor was
an analytical analysis of the performance provided. A fast-
converging active set method for finding the optimal compen-
sation sequence was proposed in [12]. Then in [21], a first
analytical approach for the analysis of the tone reservation
method for OFDM was presented. There are further results for
specific applications. The PAPR reduction in offset quadrature
amplitude modulation-based orthogonal frequency division
multiplexing was considered in [26], and a novel multi-block
tone reservation scheme was proposed. Further, an adaptive
tone reservation scheme for multi-user MIMO-OFDM systems
that iteratively performs the tone reservation on the antenna
with the highest PAPR was studied in [27]. While most of the
above papers treat the PAPR problem for OFDM, the presented
ideas can often be directly transferred to the PAPR problem
for CDMA.

Reserving certain carriers for reducing the PAPR and not
for transmitting information affects the energy efficiency of
the entire communication system. Hence, from an energy
perspective there is a trade-off, and to date, a thorough
quantitative analysis of this trade-off seems to be missing for
the tone reservation method. For PAPR reduction via partial
transmit sequence, the energy-efficiency of non-contiguous
OFDM offset quadrature amplitude modulation based radio
networks was discussed in [24]. A first step towards the
development of such an analysis for the tone reservation
method, is to better understand it theoretically.

Tone reservation is an elegant procedure and easy to define.
The practical implementation is difficult however, because
there exist few explicit algorithms for the calculation of the
compensation set, and their complexity is in general high.
And even if one succeeded in finding an optimal compen-
sation set—the exact meaning of which will become clear in
Section IV—it is not easy to compute the specific compen-
sation signal for a given information signal. Moreover, the
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performance of these algorithms is unclear, i.e., there are no
performance guarantees and it is unknown how far they are
from the theoretical optimum. Most available results are based
on simulations and are not analytic.

In this paper we analytically treat the PAPR reduction prob-
lem via tone reservation for CDMA systems that employ the
Walsh functions. For these CDMA systems we answer three
important questions concerning the tone reservation method: 1.
What is the best possible reduction of the PAPR? 2. What is an
optimal information set that achieves this reduction, and how
can it be found? 3. What is the general structure of the optimal
information sets? All questions are answered in Section IV.
It is surprising that for CDMA, the optimal constants and
information sets can be derived. In Section V we consider the
practically important case of finite compensation sets and show
that with a finite number of compensation functions the same
optimal extension constant can be achieved as with infinitely
many compensation functions. For certain special cases we are
also able to provide results for OFDM. In particular, we derive
the optimal OFDM extension constant for information sets of
size two. The OFDM results are presented in Section VII.

Since the tone reservation method was studied by the
authors also in several other publications [1], [29]–[31], some
of the exposition in the introductory sections may overlap with
those publications.

II. NOTATION, CDMA, AND OFDM
By Lp[0, 1], 1 ≤ p ≤ ∞, we denote the usual Lp-spaces

on the interval [0, 1], equipped with the norm ‖ · ‖p. For an
index set I ⊂ Z, we denote by `2(I) the set of all square
summable sequences c = {ck}k∈I indexed by I. The norm is
given by ‖c‖`2(I) = (

∑
k∈I |ck|2)1/2. By |A| we denote the

cardinality of a set A. For N ∈ N we use the abbreviation
[N ] := {1, 2, . . . , N}.

The Rademacher functions rn, n ∈ N, on [0, 1] are defined
by rn(t) = sgn[sin(π2nt)], where sgn denotes the signum
function with the convention sgn(0) = −1. The Walsh
functions wn, n ∈ N, on [0, 1] are defined by

w1(t) = 1

and
w2k+m(t) = rk+1(t)wm(t)

for k = 0, 1, 2, . . . and m = 1, 2, . . . , 2k. Note that we use
an indexing of the Walsh functions that starts with 1. The
Rademacher system {rn}n∈N is an orthonormal system (ONS)
in L2[0, 1], but not a basis. The Walsh functions {wn}n∈N
form an orthonormal basis for L2[0, 1], and we have∫ 1

0

wn(t) dt = 0

for all n ∈ N. For further details about the Walsh function,
see, for example, [32].

The complete orthonormal system of Walsh functions
{wn}n∈N is used in CDMA systems and will be the main sub-
ject of analysis in this paper. In OFDM systems, the employed
set of functions is the set of complex exponentials {ei2πkt}k∈Z.
Note that {ei2πkt}k∈Z is a complete ONS in L2[0, 1]. We will
briefly discuss the OFDM case in Section VII.

III. PAPR AND TONE RESERVATION AND
SOLVABILITY CONCEPTS

Without loss of generality, we can restrict ourselves to sig-
nals defined on the interval [0, 1]. Signals with other duration
can be simply scaled to be concentrated on [0, 1]. For a signal
s ∈ L2[0, 1], we define

PAPR(s) =
‖s‖L∞[0,1]

‖s‖L2[0,1]
,

i.e., the PAPR is the ratio between the peak value of the signal
and the square root of the power of the signal. Note that the
PAPR is usually defined as the square of this value. However,
from a mathematical point of view, this makes no difference
for the results in this paper. In the case of an orthogonal
transmission scheme, using the ONS {φk}k∈I ⊂ L2[0, 1], the
PAPR of the transmit signal

s(t) =
∑
k∈I

ckφk(t), t ∈ [0, 1],

with coefficients c = {ck}k∈I , is given by

PAPR(s) =
‖
∑
k∈I ckφk‖L∞[0,1]

‖c‖`2(I)
,

because {φk}k∈I is a ONS, which implies that ‖s‖L2[0,1] =
‖c‖`2(I).

For an orthogonal transmission scheme, the peak value of
the signal s, and hence the PAPR, can become large, as the
following result shows. Given any system {φn}Nn=1 of N
orthonormal functions in L2[0, 1], then there exist a sequence
{cn}Nn=1 ⊂ C of coefficients with

∑N
n=1|cn|2 = 1, such that

‖
∑N
n=1 cnφn‖L∞[0,1] ≥

√
N [33]. This increase of the PAPR

with an order of
√
N is undesired and methods to battle it are

needed.
The tone reservation method, which we will explain next,

is one approach to reduce the PAPR. Let {φk}k∈I be an ONS
in L2[0, 1]. We additionally assume that ‖φk‖∞ < ∞, k ∈
I, i.e., we consider the practically relevant case of bounded
carriers. In the tone reservation method, the index set I is
partitioned in two disjoint sets K and K{. Note that the set
K can be finite or infinite. For a given information sequence
a = {ak}k∈K ∈ `2(K), the goal is to find a compensation
sequence b = {bk}k∈K{ ∈ `2(K{) such that the peak value of
the transmit signal

s(t) =
∑
k∈K

akφk(t)︸ ︷︷ ︸
=:A(t)

+
∑
k∈K{

bkφk(t)

︸ ︷︷ ︸
=:B(t)

, t ∈ [0, 1],

is as small as possible. A(t) denotes the signal part which
contains the information and B(t) the part which is used to
reduce the PAPR.

A priori, it is not clear how to obtain the optimal sequence b
for a given information sequence a. In Section VI we will see
that b can be found by solving a convex optimization problem.
For further details about the tone reservation method, we refer
to [28].

A block diagram illustrating the tone reservation method
for a CDMA transmission system using the Walsh functions
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Fig. 1. Block diagram of a CDMA transmission scheme with tone reservation.
In this example we have I = N, K = {k1, k2, k3 . . . } and K{ = N \ K =
{k{1, k{2, k{3, . . . }. For OFDM we have the same structure. However, we then
use the system of complex exponentials and the set I = Z.

is given in Fig. 1. For the Walsh functions, which we mainly
consider in this paper, the index set is given by I = N. In
Section VII, we also use the system of exponentials. Then the
index set is I = Z.

Note that we allow infinitely many carriers to be used for the
compensation of the PAPR. This is also of practical interest,
since the solvability of the PAPR problem in this setting is a
necessary condition for the solvability of the PAPR problem
in the setting with finitely many carriers.

We next define the solvability of the PAPR problem.

Definition 1. For an ONS {φk}k∈I and a set K ⊂ I, we
say that the PAPR problem is solvable with finite extension
constant CEX, if for all a ∈ `2(K) there exists a b ∈ `2(K{)
such that∥∥∥∥∥∥

∑
k∈K

akφk +
∑
k∈K{

bkφk

∥∥∥∥∥∥
L∞[0,1]

≤ CEX‖a‖`2(K). (1)

We call the PAPR problem solvable if it is solvable for some
finite extension constant CEX.

If the PAPR reduction problem is solvable, condition (1)
immediately implies that ‖b‖`2(K{) ≤ CEX‖a‖`2(K), because(∑

k∈K{

|bk|2
) 1

2

≤

(∑
k∈K

|ak|2 +
∑
k∈K{

|bk|2
) 1

2

=

(∫ 1

0

∣∣∣∣∣∑
k∈K

akφk(t) +
∑
k∈K{

bkφk(t)

∣∣∣∣∣
2

dt

) 1
2

≤ ess sup
t∈[0,1]

∣∣∣∣∣∑
k∈K

akφk(t) +
∑
k∈K{

bkφk(t)

∣∣∣∣∣, (2)

that is, the energy of the compensation signal is also bounded
by (CEX‖a‖`2(K))

2. Further, we have PAPR(s) ≤ CEX. It is
clear that finding the optimal, i.e., minimal extension constant
is an important problem that is relevant for applications.
Inequality (1) is also a statement about the compensation
signals. However, (1) cannot be directly used for an analytical
analysis. Therefore it is important to better understand the
signals created by the permissible information sets. We will
deal with this problem next. In [21], [34] the following
different but equivalent characterization of solvability was
given. In this characterization the set

P1(K) =

{
f ∈ L1[0, 1] :

f =
∑
k∈K

akφk for some {ak}k∈K ⊂ C

}
plays a central role.

Theorem 1. Let {φn}n∈N be a complete ONS, K ⊂ N, and
CEX > 0. We have

‖f‖L2[0,1] ≤ CEX‖f‖L1[0,1] (3)

for all f ∈ P1(K), if and only if the PAPR problem is solvable
for {φn}n∈N and K with constant CEX.

Remark 1. Theorem 1 is particularly interesting, because the
characterization only depends on the information set K and the
signals created by this set. That is, the compensation signals
are irrelevant. This will help us in our further analysis.

Based on Theorem 1 we can establish the following impor-
tant corollary.

Corollary 1. Let {φn}n∈N be a complete ONS and K ⊂ N
such that the PAPR problem is solvable, and set

U =

(
inf

f∈P1(K)
‖f‖L2[0,1]=1

‖f‖L1[0,1]

)−1

. (4)

Then the PAPR problem is solvable for {φn}n∈N and K with
extension constant CEX = U . Further, U is the smallest of all
possible extension constants.

Proof. We have

1

U
= inf

f∈P1(K)
‖f‖L2[0,1]=1

‖f‖L1[0,1] = inf
f∈P1(K)
f 6=0

‖f‖L1[0,1]

‖f‖L2[0,1]
.

Hence, we see that

‖f‖L2[0,1] ≤ U‖f‖L1[0,1]

for all f ∈ P1(K). From Theorem 1 it follows that the PAPR
problem is solvable with extension constant CEX = U . Next
we prove that U is the smallest possible extension constant. We
do a proof by contradiction. Assume that there exists a smaller
number U1 < U such that the PAPR problem is solvable with
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extension constant CEX = U1. Then we see from Theorem 1
that

‖f‖L2[0,1] ≤ U1‖f‖L1[0,1]

for all f ∈ P1(K). It follows that

1

U1
≤ inf

f∈P1(K)
‖f‖L2[0,1]=1

‖f‖L1[0,1].

Using the definition of U in (4), we obtain that

1

U1
≤ 1

U
,

or equivalently U1 ≥ U . However, this is a contradiction to
our assumption.

Corollary 1 in particular implies that for any given informa-
tion set K ⊂ N, under all extension constants CEX for which
the PAPR problem is solvable, there exists a smallest extension
constant CEX(K). We call

CEX(K) =

(
inf

f∈P1(K)
‖f‖L2[0,1]=1

‖f‖L1[0,1]

)−1

(5)

an optimal extension constant.

IV. OPTIMAL PAPR CONTROL AND OPTIMAL
INFORMATION SETS FOR CDMA

A. Main Results

For CDMA systems that employ the Walsh system as carrier
functions {φn}n∈N = {wn}n∈N, we will next answer the three
questions that were already stated in the introduction: 1. What
is the best possible reduction of the PAPR, i.e, how small is
the optimal extension constant CEX? 2. What is an optimal
information set K that achieves this reduction, and how can
it be found? 3. What is the general structure of the optimal
information sets? The proofs of all results in this section will
be given in Section IV-D.

For a given information set K ⊂ N, we denote by CEX(K)
the optimal, i.e., smallest, extension constant for which the
PAPR problem is solvable for the Walsh system {φn}n∈N =
{wn}n∈N and the set K. Next, we want to study how small
the optimal extension constant CEX(K), which was introduced
in IV, can become for different sets K of cardinality N , i.e.,
we are interested in

CEX(N) := inf
K⊂N
|K|=N

CEX(K). (6)

We will see in Theorem 4 that for each N ∈ N there indeed
exists a set Kopt(N) ⊂ N with |Kopt(N)| = N , such that
CEX(N) = CEX({Kopt(N)}). That is, the infimum in (6) is in
fact attained, and a minimum. Note that the set Kopt(N) does
not need to be unique.

A priori, it is not clear how the set Kopt(N) depends on N .
It could be that for different N we obtain completely different
sets Kopt(N).

The next theorem completely describes the smallest possible
extension constant CEX, and thus answers question 1.

Theorem 2. We have CEX(1) = 1 and CEX(N) =
√

2 for all
N ≥ 2.

Interestingly, for all N ≥ 2 the smallest possible extension
constant is independent of N . We call any information set
K ⊂ N that achieves the smallest possible extension constant
an optimal information set.

For N = 2 we have the important result that all possible
information sets K ⊂ N with |K| = 2 are optimal, i.e., give
the smallest possible extension constant.

Theorem 3. For all k1, k2 ∈ N, k1 6= k2, we have
CEX({k1, k2}) =

√
2.

The general case for arbitrary N ∈ N is given next. This
answers question 2 about finding an optimal information set
Kopt(N) that achieves the best possible PAPR reduction.

Theorem 4. For N ∈ N we have CEX(N) = CEX({2k +
1}N−1
k=0 ). That is, we have Kopt(N) = {2k + 1}N−1

k=0 , i.e., the
first N Rademacher functions achieve the minimal extension
constant CEX(N).

Remark 2. Theorem 4 shows that there exists a universal
infinite information set K = {2k + 1}∞k=0 such that for every
N ≥ 2, each subset KN = {2k + 1}N−1

k=0 consisting of
the smallest N elements of K, already achieves the smallest
possible extension constant CEX(KN ) =

√
2. Note that the set

K = {2k + 1}∞k=0 itself also satisfies CEX(K) =
√

2.
Finally, we study the structure of the optimal information

sets, and thus answer question 3. To this end, we introduce

Topt = {K ⊂ N : |K| ≥ 2, CEX(K) =
√

2},

which contains all optimal information sets K ⊂ N of arbitrary
cardinality greater than or equal to 2. We will now show that
for every set K ∈ Topt we have: Any subset of K gives
the optimal extension constant. This follows from the next
theorem, for which we need to introduce the set

W1(K) =

{
f ∈ L1[0, 1] :

f =
∑
k∈K

akwk for some {ak}k∈K ⊂ C

}
.

Theorem 5. Let K ⊂ N with |K| ≥ 2 be arbitrary. Then K
is optimal, i.e. CEX(K) =

√
2, if and only if for arbitrary sets

of subsets
K1 ⊂ K2 ⊂ · · · ⊂ K, (7)

where |K1| = 2, we have

inf
f∈W1(K1)
‖f‖L2[0,1]=1

‖f‖L1[0,1] = · · · = inf
f∈W1(K)
‖f‖L2[0,1]=1

‖f‖L1[0,1]. (8)

An immediate consequence of Theorem 5 is that subsets of
optimal information sets are always optimal.

Corollary 2. Let K ∈ Topt be an optimal information set.
Then any subset K1 ⊂ K with |K1| ≥ 2 is optimal as well,
i.e., we have K1 ∈ Topt.

Of course we cannot conclude that for K ∈ Topt and kl 6∈ K,
we have K ∪ {kl} ∈ Topt.
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B. Elementary Facts About Walsh Functions

Before we can give the proofs we need some elementary
facts about Walsh functions which were introduced in Sec-
tion II.

Let K = {k1, k2, . . . , kN} ⊂ N be a set of N arbitrary
distinct natural numbers. Further, let W (K) denote the largest
number C1 such that

C1

(
N∑
l=1

|αl|2
) 1

2

≤
∫ 1

0

∣∣∣∣∣
N∑
l=1

αlwkl(t)

∣∣∣∣∣ dt (9)

for all α1, . . . , αN ∈ C. Then we have

W (K) = inf
{αl}Nl=1∑N
l=1|αl|2=1

∫ 1

0

∣∣∣∣∣
N∑
l=1

αlωkl(t)

∣∣∣∣∣ dt

= min
{αl}Nl=1∑N
l=1|αl|2=1

∫ 1

0

∣∣∣∣∣
N∑
l=1

αlωkl(t)

∣∣∣∣∣ dt. (10)

The minimum in (10) is indeed attained, since the mapping

(a1, . . . , aN ) 7→
∫ 1

0

∣∣∣∣∣
N∑
l=1

αlωkl(t)

∣∣∣∣∣ dt

is continuous, and the minimum is taken over a compact set
in CN . According to the Cauchy–Schwarz inequality we have

∫ 1

0

∣∣∣∣∣
N∑
l=1

αlwkl(t)

∣∣∣∣∣ dt ≤

∫ 1

0

∣∣∣∣∣
N∑
l=1

αlwkl(t)

∣∣∣∣∣
2

dt

 1
2

=

(
N∑
l=1

|αl|2
) 1

2

,

which implies that
W (K) ≤ 1. (11)

Further, for arbitrary l ∈ [N ], we see from (10) that

W (K) ≤W (K \ {kl}). (12)

For N ∈ N we set

W (N) := sup
K⊂N
|K|≤N

W (K).

Clearly, we have 0 ≤ W (N) ≤ 1 for all N ∈ N, according
to (11). For N ≥ 2 and all sets {k1, . . . , kN}, it follows from
(12) that

W ({k1, . . . , kN}) ≤W (N − 1),

and consequently

W (N) ≤W (N − 1). (13)

Hence, we see that 0 ≤ W (N) ≤ 1 and, further, that
{W (N)}∞N=1 is a monotonically decreasing sequence of
real numbers that is bounded from below. Hence the limit
limN→∞W (N) exists.

C. Auxiliary Result About Rademacher Functions

In this section we prove an auxiliary result about
Rademacher functions that will be needed for the proof of
our main results.

For N ∈ N, let R(N) denote the largest number C2 such
that

C2

(
N∑
l=1

|αl|2
) 1

2

≤
∫ 1

0

∣∣∣∣∣
N∑
l=1

αlrl(t)

∣∣∣∣∣ dt (14)

for all α1, . . . , αN ∈ C. By the same reasoning as in
Section IV-B, there exists such a number.

Lemma 1. We have R(1) = 1 and R(N) = 1/
√

2 for all
N ≥ 2.

Proof. For N = 1, eq. (14) becomes C2|α1| ≤ |α1|, which
shows that R(1) = 1.

Next, we treat the case N ≥ 2. According to Khinchin’s
inequality, we have for all N ∈ N and all α1, . . . , αN ∈ C
that

1√
2

(
N∑
l=1

|αl|2
) 1

2

≤
∫ 1

0

∣∣∣∣∣
N∑
l=1

αlrl(t)

∣∣∣∣∣ dt. (15)

The constant 1/
√

2 in (15) is the best, i.e., largest possible
constant that holds for all N ∈ N [35], [36]. For fixed N ∈ N,
N ≥ 2, inequality (15) implies that

R(N) ≥ 1√
2
. (16)

A simple calculation shows that∫ 1

0

|r1(t) + r2(t)| dt = 1.

Hence, for N = 2 and α1 = α1 = 1, inequality (14) becomes
C2

√
2 ≤ 1, and and we see that R(2) ≤ 1/

√
2. Due to (16),

it follows that
R(2) =

1√
2
. (17)

Further, for N ≥ 3 we have
1√
2
≤ R(N) ≤ R(2) ≤ 1√

2
,

where the first inequality follows from (16), the second
inequality from the same arguments that led to (13), and
the third inequality from (17). Hence, for N ≥ 2, we have
R(N) = 1/

√
2.

D. Proofs

In this section we prove the results that were presented in
Section IV-A.

Based on Lemma 1 we can prove Lemma 2, which is needed
for the proof of Theorem 2.

Lemma 2. We have W (1) = 1 and W (N) = 1/
√

2 for all
N ≥ 2.

Proof. Since

W ({k}) =

∫ 1

0

|wk(t)| dt = 1,
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for all k ∈ N, it immediately follows that W (1) = 1.
According to the definition of W , we have W (N) ≥ R(N)
for all N ∈ N. Hence, it follows from Lemma 1 that

W (N) ≥ 1√
2

(18)

for all N ≥ 2. Let k1 < k2 be two arbitrary natural numbers.
We have∫ 1

0

|wk1(t) + wk2(t)| dt =

∫ 1

0

|wk1(t)(wk1(t) + wk2(t))| dt

=

∫ 1

0

|1 + wk1(t)wk2(t)| dt

=

∫ 1

0

|1 + wk′(t)| dt

=

∫ 1

0

1 + wk′(t) dt

= 1, (19)

and it follows that

W ({k1, k2}) ≤
∫ 1

0

∣∣∣∣ 1√
2
wk1(t) +

1√
2
wk2(t)

∣∣∣∣ dt

=
1√
2
, (20)

where we used (10) in the inequality and (19) in the equality.
Hence, we see that

W (2) ≤ 1√
2
. (21)

Since W (N) ≤ W (2) for all natural numbers N ≥ 2
according to (13), it follows that

1√
2
≤W (N) ≤W (2) ≤ 1√

2
,

where we used (18) in the first and (21) in the last inequality.
Consequently, we have W (N) = 1/

√
2 for all N ≥ 2.

Now we are in the position to prove Theorems 2 and 4.

Proof of Theorem 2. According to the definitions of CEX(N)
and W (N), and by using Theorem 1, we see that CEX(N) =
1/W (N). Hence, Lemma 2 completes the proof.

Proof of Theorem 3. From (20) we know that W ({k1, k2}) ≤
1/
√

2. Since W ({k1, k2}) ≤ W (2) = 1/
√

2, where the
inequality follows from the definition of W and the equality
from Lemma 2, we see that W ({k1, k2}) = 1/

√
2. Using

CEX({k1, k2}) =
1

W ({k1, k2})
,

which follows from (5) and (10), we finally obtain
CEX({k1, k2}) =

√
2.

Proof of Theorem 4. In the proof of Lemma 1 we have al-
ready seen that for every N ∈ N, the first N Rademacher
functions r1, . . . , rN give the maximal constant W (N) and
hence the minimal extension constant CEX(N). The first
N Rademacher functions {rn}Nn=1 correspond to the Walsh
functions {w2k+1}N−1

k=0 .

Proof of Theorem 5. “⇐”: From Theorem 3 we know that

inf
f∈W1(K1)
‖f‖L2[0,1]=1

‖f‖L1[0,1] =
1√
2
. (22)

Hence, from (8) it follows that

inf
f∈W1(K)
‖f‖L2[0,1]=1

‖f‖L1[0,1] =
1√
2
,

which in turn, using (5), implies that CEX(K) =
√

2.
“⇒”: Let K be optimal, i.e., CEX(K) =

√
2, and let

K1,K2, . . . be sets satisfying (7). Due to (7), we have

inf
f∈W1(K1)
‖f‖L2[0,1]=1

‖f‖L1[0,1] ≥ · · · ≥ inf
f∈W1(K)
‖f‖L2[0,1]=1

‖f‖L1[0,1]. (23)

Since CEX(K) =
√

2, according to our assumption, we have

inf
f∈W1(K)
‖f‖L2[0,1]=1

‖f‖L1[0,1] =
1√
2
, (24)

due to (5) . Further, we have

inf
f∈W1(K1)
‖f‖L2[0,1]=1

‖f‖L1[0,1] =
1√
2
, (25)

according to Theorem 3. Inequality (23) together with (24)
and (25) implies (8).

Proof of Corollary 2. According to Theorem 5, we have

inf
f∈W1(K1)
‖f‖L2[0,1]=1

‖f‖L1[0,1] =
1√
2
.

The assertion follows from (5).

V. FINITE COMPENSATION SETS

So far our analysis has been for infinite compensation sets.
Next, we analyze the behavior of tone reservation for certain
finite compensation sets. For information sets K ⊂ N, we use
the abbreviation KN = K ∩ [2N ]. Now we consider the finite
compensation set K{f

N = [2N ] \ KN .
Let CEX(KN , 2N ) be the smallest number such that for all

a ∈ `2(KN ) we can find a b ∈ `2(K{f
N ) such that∥∥∥∥∥∥

∑
k∈KN

akwk +
∑
k∈K{f

N

bkwk

∥∥∥∥∥∥
L∞[0,1]

≤ CEX(KN , 2N )‖a‖`2(KN ).

That is to say, CEX(KN , 2N ) is the smallest extension con-
stant for which the PAPR problem is solvable with a finite
compensation set K{f

N .

Theorem 6. Let K ⊂ N be an optimal information set and
N ∈ N arbitrary with |KN | > 1. Then we have

CEX(KN , 2N ) =
√

2.

Theorem 6 shows that using finite compensation sets is
already as good as using infinite sets, because the same
extension constant

√
2 can be achieved.
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Proof. Since we are restricting the compensation set, we have
CEX(KN , 2N ) ≥

√
2. Since K is an optimal information set,

we know from Corollary 2 that KN is an optimal information
set. Hence for arbitrary a ∈ `2(KN ) there exists a b ∈ `2(N \
KN ) such that∥∥∥∥∥∥

∑
k∈KN

akwk +
∑

k∈N\KN

bkwk

∥∥∥∥∥∥
L∞[0,1]

≤
√

2‖a‖`2(KN ).

We consider

F (t) =
∑
k∈KN

akwk(t) +
∑

k∈N\KN

bkwk(t) =
∑
k∈N

αkwk(t)

and

FN (t) =
2N∑
k=1

αkwk(t) =

∫ 1

0

F (τ)PN (t, τ) dτ,

where

PN (t, τ) =
2N∑
l=1

wl(t)wl(τ).

We have PN (t, τ) ≥ 0 for all (t, τ) ∈ [0, 1]2 and∫ 1

0

PN (t, τ) dτ = 1

for all t ∈ [0, 1]. It follows that

|FN (t)| ≤
∫ 1

0

|F (τ)|PN (t, τ) dτ

≤ ‖F‖L∞[0,1]

≤
√

2‖a‖`2(K).

Hence, we see that

‖FN‖L∞[0,1] ≤
√

2‖a‖`2(K),

and consequently that CEX(KN , 2N ) ≤
√

2.

A. Structural Properties

For the finite information sets KN , we can further charac-
terize the structure. We will see that these sets cannot contain
perfect Walsh sums if they are supposed to be optimal.

Let N ∈ N be arbitrary. For a set S ⊂ [2N ], we call the
sum ∑

s∈S
ws(t) (26)

a perfect Walsh sum, if there exists mutually distinct natural
numbers k1, k2, . . . , kr ∈ [2N ] such that∑
s∈S

ws(t) = wk1(t)(1+wk2(t))·. . .·(1+wkr+1
(t)), t ∈ [0, 1].

In this case, we call S a perfect Walsh set and |S| the size of
the perfect Walsh sum. If S is a perfect Walsh set, then we
have 2r = |S|. We have the following combinatoric condition
for optimal information sets.

Theorem 7. Let K ⊂ N be an optimal information set and
N ∈ N arbitrary with |KN | > 1. Then KN does not contain
a perfect Walsh set of size |S| > 2.

1 2 3 4 5 6 7 8 9 10 11 12 13
1

1.5

2

2.5

3

3.5

N

‖A∗N‖L∞[0,1]

‖s∗N‖L∞[0,1]√
N

√
2

Fig. 2. Plot of the L∞[0, 1]-norm of the uncompensated information signal
A∗N (red) and the transmit signal s∗N (blue) for N = 1, . . . , 13. The
L∞[0, 1]-norm of the uncompensated information signal A∗N shows the
worst-case

√
N behavior. The L∞[0, 1]-norm of the compensated information

signal, i.e., the transmit signal s∗N , is smaller than or equal to
√
2 for all N .

Remark 3. KN always contains a perfect Walsh set of size 2.
We conjecture that KN also needs to be sparse in [2N ].

Proof. We use a proof by contradiction. Assume that KN
contains a perfect Walsh set of size |S| > 2. Then we have∑
s∈S

ws(t) = wk1(t)(1 + wk2(t)) · . . . · (1 + wk1+log2|S|(t))

and∫ 1

0

∣∣∣∣∣∑
s∈S

ws(t)

∣∣∣∣∣ dt

=

∫ 1

0

|wk1(t)(1 + wk2(t)) · . . . · (1 + wk1+log2|S|(t))| dt

=

∫ 1

0

(1 + wk2(t)) · . . . · (1 + wk1+log2|S|(t)) dt

= 1. (27)

Since S ⊂ K, it follows from Corollary 2 that S is an optimal
information set. Hence, we have∫ 1

0

∣∣∣∣∣∑
s∈S

ws(t)

∣∣∣∣∣
2

dt

 1
2

≤
√

2

∫ 1

0

∣∣∣∣∣∑
s∈S

ws(t)

∣∣∣∣∣ dt

according to Theorem 1. Using (27) and the fact that∫ 1

0

∣∣∣∣∣∑
s∈S

ws(t)

∣∣∣∣∣
2

dt

 1
2

=
√
|S|,

we see that
√
|S| ≤

√
2, which is a contradiction to our

assumption |S| > 2.

VI. OPTIMIZATION PERSPECTIVE AND SIMULATION

In this section we will illustrate the findings with a simula-
tion and use the results of the previous sections to compute the
optimal compensation sequence b. In particular, we will see
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that it is sufficient to consider finite compensation sequences.
Further, we argue that the optimal b can be found by solving
a convex optimization problem.

For our simulation, we consider different numbers of infor-
mation carriers N ∈ N. For a given N , we choose KN =
Kopt(N) = {2k + 1}N−1

k=0 , i.e., an optimal information set.
Further, we set a∗k = 1/

√
N , k ∈ KN . Thus, the information

sequence {a∗k}k∈KN
satisfies ‖{a∗k}k∈KN

‖`2(KN ) = 1, and the
information signal

A∗N (t) =
∑
k∈KN

a∗kwk(t)

attains the largest possible peak value of ‖A∗N‖L∞[0,1] =
√
N ,

as shown in Figure 2 in red. By using compensation carriers
we can reduce the peak value. According to Theorem 6, it is
sufficient to consider the compensation set K{f

N = [2N ] \ KN
for an optimal compensation. The goal is to find the optimal
compensation sequence {bk}k∈K{f

N
∈ `2(K{f

N ) that minimizes
the peak value of the transmit signal

sN (t) =
∑
k∈KN

a∗kwk(t) +
∑
k∈K{f

N

bkwk(t),

i.e., we are interested in

{b∗k}k∈K{f
N

= arg min
b∈`2(K{f

N )

∥∥∥∥∥∥
∑
k∈KN

a∗kwk +
∑
k∈K{f

N

bkwk

∥∥∥∥∥∥
L∞[0,1]

. (28)

We first argue that this optimization problem has a solution.
It can be easily seen that the function to be minimized is
convex due to the properties of the norm. Further, the feasible
set is convex. Thus, for fixed information set KN and fixed
information sequence {a∗k}k∈KN

, we have a convex optimiza-
tion problem. Since the feasible set in (28), i.e., `2(K{f

N ), is
unbounded, it is a priori unclear whether the minimization
problem has always a solution. However, as we will show
next, in our setting, the feasible set is in fact a compact set,
and hence the minimization problem has always a solution.
According to Theorem 6, we have

CEX(KN , 2N ) =
√

2,

and therefore it follows that there exists a b̃ ∈ `2(K{f
N ) such

that ∥∥∥∥∥∥
∑
k∈KN

a∗kwk +
∑
k∈K{f

N

b̃kwk

∥∥∥∥∥∥
L∞[0,1]

≤
√

2. (29)

Hence, it suffices to restrict the feasible set in the minimization
problem to sequences b ∈ `2(K{f

N ) that satisfy (29). From (29)
it follows that∥∥∥∥∥∥

∑
k∈KN

a∗kwk +
∑
k∈K{f

N

bkwk

∥∥∥∥∥∥
L2[0,1]

≤
√

2, (30)

and consequently that

‖{bk}k∈K{f
N
‖`2(K{f

N ) ≤
√

2,

because

‖{bk}k∈K{f
N
‖`2(K{f

N ) =

∥∥∥∥∥∥
∑
k∈K{f

N

bkwk

∥∥∥∥∥∥
L2[0,1]

≤

(∥∥∥∥∥ ∑
k∈KN

a∗kwk

∥∥∥∥∥
2

L2[0,1]

+

∥∥∥∥∥∥
∑
k∈K{f

N

bkwk

∥∥∥∥∥∥
2

L2[0,1]

) 1
2

=

∥∥∥∥∥∥
∑
k∈KN

a∗kwk +
∑
k∈K{f

N

bkwk

∥∥∥∥∥∥
L2[0,1]

.

This shows that it is sufficient to consider the smaller feasible
set

Γ =
{
{bk}k∈K{f

N
: ‖{bk}k∈K{f

N
‖`2(K{f

N ) ≤
√

2
}

in the minimization problem. This is a finite dimensional set
that is closed and bounded, and hence compact. It follows that
the minimization problem

{b∗k}k∈K{f
N

= arg min
b∈`2(K{f

N )

∥∥∥∥∥∥
∑
k∈KN

a∗kwk +
∑
k∈K{f

N

bkwk

∥∥∥∥∥∥
L∞[0,1]

= arg min
b∈Γ

∥∥∥∥∥∥
∑
k∈KN

a∗kwk +
∑
k∈K{f

N

bkwk

∥∥∥∥∥∥
L∞[0,1]

(31)

has a solution.
In order to generate the plot, we numerically solved the

minimization problem (31) using CVXPY (version 1.0.6) in
Python (version 3.5). Let

s∗N (t) =
∑
k∈KN

a∗kwk(t) +
∑
k∈K{f

N

b∗kwk(t)

denote the compensated information signal, i.e., the transmit
signal. In Figure 2, the values of ‖s∗N‖L∞[0,1] are plotted for
N = 1, . . . , 13 in blue. It can be seen that the peak value of
the transmit signal ‖s∗N‖∞ is smaller than or equal to

√
2 for

all N .
Interestingly, for N > 2, we have ‖s∗N‖L∞[0,1] <

√
2, i.e.,

the peak value of the transmit signal is strictly smaller than
√

2.
Hence, for the specific information sequence {a∗k}k∈KN

we
achieve a better compensation than suggested by the smallest
possible extension constant CEX(KN , 2N ) =

√
2.

However, since according to Theorem 6 CEX(KN , 2N ) =√
2 for all N ≥ 2, our theory shows that there must exist an

information sequence {a∗∗k }k∈KN
with ‖{a∗∗k }k∈KN

‖`2(KN ) =
1, for which we have

min
b∈`2(K{f

N )

∥∥∥∥∥∥
∑
k∈KN

a∗∗k wk +
∑
k∈K{f

N

bkwk

∥∥∥∥∥∥
L∞[0,1]

=
√

2.

Let KN ⊂ [N ] with |KN | ≥ 2 and k1, k2 ∈ KN , k1 6= k2, be
arbitrary. Then such a signal is given by

a∗∗k =

{
1√
2
, k ∈ {k1, k2},

0, k ∈ KN \ {k1, k2}.
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Clearly we have ‖{a∗∗k }k∈KN
‖`2(KN ) = 1. Interestingly, no

compensation is required for this information sequence, since
the compensation sequence b∗∗K = 0 for all k ∈ K{f

N is already
optimal. We will prove this next by contradiction. As before,
it is sufficient to use K{f

N = [2N ] \KN as a compensation set.
Assume that there is a sequence {b̃k}k∈K{f

N
such that∥∥∥∥∥∥ 1√

2
wk1 +

1√
2
wk2 +

∑
k∈K{f

N

bkwk

∥∥∥∥∥∥
L∞[0,1]

<
√

2,

and let

A =

∫ 1

0

(
1√
2
wk1(t) +

1√
2
wk2(t)

)

×

(
1√
2
wk1(t) +

1√
2
wk2(t) +

∑
k∈K{f

N

bkwk(t)

)
dt.

Then we have

|A| ≤
∫ 1

0

∣∣∣∣∣ 1√
2
wk1(t) +

1√
2
wk2(t)

∣∣∣∣∣
×

∣∣∣∣∣ 1√
2
wk1(t) +

1√
2
wk2(t) +

∑
k∈K{f

N

bkwk(t)

∣∣∣∣∣ dt

<
√

2

∫ 1

0

∣∣∣∣∣ 1√
2
wk1(t) +

1√
2
wk2(t)

∣∣∣∣∣ dt

= 1, (32)

where we used (19) in the last line. We also have

A =

∫ 1

0

(
1√
2
wk1(t) +

1√
2
wk2(t)

)2

dt

+

∫ 1

0

(
1√
2
wk1(t) +

1√
2
wk2(t)

)( ∑
k∈K{f

N

bkwk(t)

)
dt.

The second integral is zero because {wk}k∈N is an ONS, and
for the first integral we obtain∫ 1

0

(
1√
2
wk1(t) +

1√
2
wk2(t)

)2

dt = 1,

due to Parseval’s identity. Hence, we see that A = 1, which
is a contradiction to (32).

VII. PAPR CONTROL FOR OFDM

As in the CDMA case, the goal in the OFDM case is to an-
swer the three questions that we presented in the introduction.
It turns out that the analysis of OFDM is far more complicated
than CDMA. We are only able to solve the problem for
information sets K with |K| = 2. Nevertheless, the result
is surprising, because for all K with |K| = 2 we have the
same optimal extension constant COFDM

EX (K), regardless of the
specific elements of K.

A. Special Case: Information Sets of Cardinality Two

Theorem 8. For OFDM, where the complete ONS is given by
{φk}k∈Z = {ei2πk · }k∈Z, we have COFDM

EX (K) = π/
√

8 for all
K ⊂ Z with |K| = 2.

Remark 4. It is interesting that for |K| = 2, the smallest pos-
sible extension constant for OFDM, which is π/

√
8 ≈ 1.11,

is much smaller than the smallest possible extension constant
for CDMA, which is

√
2 ≈ 1.41.

Remark 5. In the CDMA case we found that all optimal
information sets K with |K| > 2 also achieve the same mini-
mal extension constant

√
2. In general, the optimal extension

constant is a non-decreasing function of |K|. For OFDM we
indeed suspect that the optimal extension constant increases
with |K|.

Proof of Theorem 8. Let K = {k1, k2} ⊂ Z with k1 6= k2.
According to Corollary 1, we have

1

COFDM
EX (K)

= inf
a1,a2∈C

|a1|2+|a2|2=1

∫ 1

0

∣∣a1 ei2πk1t +a2 ei2πk2t
∣∣ dt.

Let φ1 = arg(a1) and φ2 = arg(a2). Since∫ 1

0

∣∣a1 ei2πk1t +a2 ei2πk2t
∣∣ dt

=

∫ 1

0

∣∣|a1| eiφ1 ei2πk1t +|a2| eiφ2 ei2πk2t
∣∣ dt

=

∫ 1

0

∣∣∣|a1|+ |a2| ei[φ2−φ1+2πt(k2−k1)]
∣∣∣ dt

=
1

2π(k2 − k1)

∫ φ2−φ1+2π(k2−k1)

φ2−φ1

∣∣|a1|+ |a2| eiτ
∣∣ dτ

=
1

2π

∫ 2π

0

∣∣|a1|+ |a2| eiτ
∣∣ dτ

=
1

π

∫ π

0

∣∣|a1|+ |a2| eiτ
∣∣ dτ,

where the second to last equality follows from the fact that∣∣|a1|+ |a2| eiτ
∣∣ is a 2π-periodic function and the last equality

follows out of symmetry reasons, we see that

1

COFDM
EX (K)

= inf
u,v>0

u2+v2=1

1

π

∫ π

0

∣∣u+ v eiτ
∣∣ dτ. (33)

Let

Ψ(u, v) =
1

π

∫ π

0

|u+ v eiτ | dτ. (34)

Ψ(u, v) is a continuous function in u and v. Hence, there exist
û, v̂ with û, v̂ > 0 and û2 + v̂2 = 1 such that

Ψ(û, v̂) = inf
u,v>0

u2+v2=1

Ψ(u, v),
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i.e., the infimum is in fact a minimum. For u =
√

1
2 + h and

v =
√

1
2 − h with h ∈ [−1/2, 1/2], we therefore obtain

Ψ(u, v) = Ψ

(√
1

2
+ h,

√
1

2
− h

)

=
1

π

∫ π

0

∣∣∣∣∣
√

1

2
+ h+

√
1

2
− h eiτ

∣∣∣∣∣ dτ

=
1

π

∫ π

0

(
1

2
+ h+ 2

√
1

2
− h
√

1

2
− h cos τ

+

(
1

2
− h
)

cos2(τ) +

(
1

2
− h
)

sin2(τ)

) 1
2

dτ

=
1

π

∫ π

0

(
1 + 2

√
1

4
− h2 cos τ

) 1
2

dτ

=
1

π
√

2

∫ π

0

(
2 + 2

√
1− 4h2 cos τ

) 1
2

dτ.

For h ∈ [−1/2, 1/2], we set

F (h) =
1

π
√

2

∫ π

0

(
2 + 2

√
1− 4h2 cos τ

) 1
2

dτ.

Clearly, we have F (h) = F (−h). Hence, it suffices to consider
h ∈ [0, 1/2] in the following. We have

F (0) =
1

π
√

2

∫ π

0

√
2 + 2 cos(τ) dτ

=
2

π
√

2

∫ π

0

cos(τ/2) dτ =

√
8

π
,

and

F (1/2) =
1

π
√

2

∫ π

0

√
2 dτ = 1.

For 0 < h < 1/2(
2 + 2

√
1− 4h2 cos(τ)

) 1
2

is infinitely often differentiable in h and τ , since

2 + 2
√

1− 4h2 cos(τ) > 0

for all τ ∈ [0, π]. Hence, for 0 < h < 1/2 we have

F ′(h)

=
1

π
√

2

∫ π

0

1

2
√

2 + 2
√

1− 4h2 cos(τ)

−8h cos(τ)√
1− 4h2

dτ

=
−4h

π
√

2
√

1− 4h2

∫ π

0

cos(τ)√
2 + 2

√
1− 4h2 cos(τ)

dτ.

The function

gh(τ) =
1√

2 + 2
√

1− 4h2 cos(τ)

is monotonically increasing on (0, π), i.e., we have g′h(τ) > 0
for all τ ∈ (0, π). We further have∫ π

0

gh(τ) cos(τ) dτ = gh(τ) sin(τ)
∣∣∣π
0
−
∫ π

0

g′h(τ) sin(τ) dτ

= −
∫ π

0

g′h(τ) sin(τ) dτ.

Since g′h(τ) > 0 for all τ ∈ (0, π), it follows that∫ π

0

gh(τ) cos(τ) dτ < 0,

and consequently that F ′(h) > 0 for all h ∈ (0, 1/2). Thus,
we see that

min
h∈[0,1/2]

F (h) = F (0) =

√
8

π
,

and obtain

min
u,v>0

u2+v2=1

Ψ(u, v) =

√
8

π
.

From (33) and (34) it follows that COFDM
EX (K) = π/

√
8.

The problem of calculating COFDM
EX (N) for N ≥ 3 is

completely open. Even bounds for COFDM
EX (N) seem to be

unknown.

B. Special Coefficient Sequences

In the Walsh case, we succeeded in solving the optimiza-
tion problem stated in (4), and thus were able to explicitly
find optimal information sequences that achieve the minimal
extension constant. For OFDM, the general problem is open.
In the last subsection we were able to solve it for |K| = 2.

In this subsection we will discuss OFDM signals with spe-
cific coefficient sequences. For arbitrary K = {k1, . . . , kN} ⊂
Z with |K| = N , we consider the specific OFDM signals

FK(t) =
∑
k∈K

1√
N

eikt, (35)

where all information coefficients ak are equal, having the
value 1/

√
N . Such OFDM signals recently garnered attention

in the mathematical literature [37], [38]. In the following we
will briefly analyze the connection between the L1-norm of
(35) and our PAPR problem. Formally, we see a resemblance
between (35) and the sum (26) in the Walsh case. However, for
OFDM, i.e., for (26), there is no theory analogous to the theory
of perfect Walsh sums, which we employed in Section V-A.

Clearly, FK is in the set

F1(K) =

{
f ∈ L1[0, 1] :

f =
∑
k∈K

ak ei2πk · for some {ak}k∈K ⊂ C

}
.

Let COFDM
EX (K) denote the optimal OFDM extension constant.

From Corollary 1 we know that
1

COFDM
EX (K)

= inf
f∈F1(K)
‖f‖L2[0,1]=1

‖f‖L1[0,1].
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Hence, we have for all K ⊂ N with |K| = N that

1

COFDM
EX (K)

≤ ‖FK‖L1[−π,π].

Using the abbreviation

C(N) = sup
K⊂N
|K|=N

‖FK‖L1[−π,π],

we see that
1

inf K⊂Z
|K|=N

COFDM
EX (K)

≤ C(N).

For N = 2 we have shown in the previous subsection that

C(2) =
1

inf K⊂Z
|K|=2

COFDM
EX (K)

.

The results in [37], [38] show that

lim sup
N→∞

C(N) ≥
√
π

2
.

Inspection of the calculations in [37], [38] and the resulting
difficulties of solving the problem even for simple OFDM
signals having the shape (35) strongly indicates that charac-
terizing COFDM

EX is a difficult task.

VIII. CONCLUSION

The control of the PAPR and finding optimal information
sets is an important problem. In [39] it was shown for Walsh
based CDMA systems that the information sets K for which
the PAPR is solvable need to be sparse in a certain sense,
in particular their upper densities need to be zero. However,
no statement about the optimal information set was made. In
general, little is known about the answers to questions 1–3,
and most of the results are based on simulations and not on
analytic considerations. For our proof, the optimal constant in
Khinchin’s inequality [35], [36] was essential. It would also be
interesting to answer the three questions for other orthogonal
transmission schemes, e.g., OFDM, where the ONS is the
system of complex exponentials. However, the present proof
technique is tailored to the specific properties of the Walsh
functions, and therefore cannot be used for other ONS.

In this paper, a purely deterministic analysis of the tone
reservation method was performed. This approach is in the
spirit of the original publications on tone reservation, [8] and
[9]. Using mathematical methods from functional analysis,
we were able to completely characterize the solvability of
the PAPR problem—in this paper for CDMA and in [31]
for general orthonormal transmission schemes—and to derive
optimal constants.

Future research directions could comprise a stochastic anal-
ysis of the PAPR or a study of performance measures, such
as the bit error rate. This path would be interesting not only
from an application point of view but also for the further
development of foundations of signal processing, to see if it
is possible to connect probabilistic methods with functional
analysis. Currently, it is not clear how the techniques from
[31] can advance in this direction.
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