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Abstract

Outlier detection helps to improve results of a clustering process by identifying noisy,
anomalous data points in a dataset. However, lots of techniques for outlier detection
require a density estimation of the data points, which cannot be computed exactly.
To deal with this problem, spatially adaptive sparse grids can be used to learn and
approximate the underlying density function of a multi-dimensional dataset. After
this learning process, also known as sparse grids density estimation, the obtained
approximated function can be evaluated at every data point to receive a corresponding
density value. In this thesis, several outlier detection techniques including the Local
Outlier Factor and the Local Density Factor are presented. Furthermore, a new density-
based approach to obtain a factor for the outlierness of a data point is introduced.
The purpose of this thesis is to assess whether outlier detection is a suitable field of
application for sparse grids density estimation. To this end, this approach is integrated
into an outlier detection framework allowing comparison to other known methods.
To validate the results of the presented outlier detection techniques, several artificial
datasets with a certain percentage of outliers are tested. Additionally, real datasets are
used for further expirements and analysis of the studied detection methods.
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1 Introduction

Clustering is an unsupervised machine learning task that tries to put unlabeled data
points with similar properties into the same cluster and data points with different
features in distinct clusters. If (single) data points do not belong to any of the clusters,
they can be considered outliers. The detection and removal of outliers in a dataset
can be very useful because outliers can be seen as noise, e.g. in a dataset containing
measurements, which distorts the actual data.

In 1996, a clustering algoritm that separates a dataset into different clusters including
a noise cluster, called Density-Based Spatial Clustering of Applications with Noise
(DBSCAN), was introduced by Ester, Kriegel, Sander, and X. Xu [7]. Another approach
of Rousseeuw [16] focuses on the quality of an already performed clustering. In
their method, they define a coefficient, the so-called Silhouette Coefficient, that gives
information about how good the assignment of a data point to a cluster is or if the data
point should be assigned to another cluster to improve the clustering.

Breunig, Kriegel, Ng, and Sander [4] came up with a new approach which not
focusses on deciding whether a data point is an outlier or not. Instead, their method
called Local Outlier Factor (LOF) assigns a value representing a degree of outlyingness
to every data point. Based on the LOF technique, Latecki, Lazarevic, and Pokrajac [11]
came up with the Local Density Factor (LDF) method that is based on a kernel density
estimate (KDE). It also uses the approach of LOF to only consider the local neighborhood
of a data point to compute its LDF. Similar to LOF, the LDF value gives a measure for
the degree of outlyingness of a data point.

In high-dimensional data space, detecting outliers becomes more difficult because of
the sparsity of the data [1]. Aggarwal and Yu [1] focus on the projections of a dataset
to detect outliers even in high-dimensional data space. Furthermore, Lu, Chen, and
Kou [12] propose algorithms that are able to detect sparse outliers accurately compared
to other methods by increasing the detection rate and decreasing the false alarm rate,
two measures that are defined in Latecki et al. [11].

In their survey, Hodge and Austin [9] compare different outlier detection techniques.
The discussed methods are proximity-based techniques and parametric, non-parametric
and semi-parametric approaches. Furthermore, Hodge et al. take a look at machine
learning and hybrid techniques. They conclude that the choice of an outlier detection
technique depends on the dataset and that there is no single universal method for all
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1 Introduction

datasets.
Pflüger [15] worked on spatially adaptive sparse grids for high-dimensional problems.

On this basis, Peherstorfer [14] used techniques of Pflüger to perform multi-dimensional
density estimation based on sparse grids (SGDE).

Inspired by the mentioned approaches, the idea of combining the previous work
of SGDE and existing outlier detection algorithms was born. This thesis focuses on
density-based outlier detection techniques computed with the densities returned by
SGDE for a given dataset. Additionally, this thesis presents a new approach for density-
based outlier detection in combination with SGDE. Furthermore, these methods are
evaluated and compared to non-density-based techniques to evaluate the quality of the
results and to conclude whether it is worthwhile to focus on outlier detection based on
SGDE in future work.

The rest of this thesis has the following structure. Chapter 2 gives an overview about
sparse grids and sparse grids density estimation. Additionally, it provides background
information about clustering, it presents a density-based clustering method and it gives
an introduction to outlier detection techniques and measures. Chapter 3 describes the
workflow of the outlier detection process. Therefore, it explains different techniques and
measures that were implemented during the thesis and it presents the new approach
for outlier detection. In chapter 4, the introduced outlier detection techniques and the
new approach are evaluated with the presented outlier detection measures. Finally,
conclusions are drawn in chapter 5.
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2 Background

2.1 Sparse Grids

According to Pflüger [15], sparse grids are numerical techniques to deal with high-
dimensional problems, e.g. interpolation. Therefore, sparse grids use hierarchical basis
functions for a decomposition of the underlying approximation spaces.

In the following, d-linear interpolation for a function f : Ω→ R, which may only be
evaluated at certain points, is explained. The presented interpolation process operates
on full grids.

First, for simplicity, Ω is restricted to Ω := [0, 1]d, which is the d-dimensional unit-
hypercube, because every d-dimensional rectangular volume can easily be linearly
transformed to [0, 1]d. Afterwards, Ω is discretized using a regular mesh. This grid
consists of equidistant points xi and mesh width hn := 2−n for every dimension of f ,
where n is the refinement level.

Starting with the interpolation of a one-dimensional function f , the standard hat
function

ϕ(x) = max{1− |x|, 0}
can be extended to the one-dimensional hat basis function,

ϕ(x)l,i := ϕ(2lx− i),

where l is a level and i is some index, 0 < i < 2l . These one-dimensional hat basis
functions are centered at the sampling points of f , xl,i = 2−li, and can be used to
interpolate f . As a restriction, f needs to be zero on the boundaries ∂Ω of the domain
Ω. The hat basis functions are a simple form of basis functions and can be replaced
with piecewise d-polynomial or B-spline basis functions or others [15] whilst taking
into account boundary behaviour of f . The interpolation u(x) of f (x) is part of the
space of piecewise linear functions Vn, u(x) ∈ Vn, which is constructed by a sum of
hierarchical subspaces Wl ,

Vn =
⊕
l≤n

Wl .

These hierarchical subspaces are spanned the following way,

Wl := span{ϕl,i(x) : i ∈ Il},
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2 Background

using the hierarchical index set

Il := {i ∈N : 1 ≤ i ≤ 2l − 1, i odd}.

Figure 2.1 shows the hierarchical subspaces Wl up to l = 3 and the corresponding
spaces of piecewise linear basis functions Vn up to n = 3.

Figure 2.1: One-dimensional hierarchical subspaces Wl with basis functions ϕl,i up
to level n = 3 (left) and corresponding spaces Vn in nodal point basis
(right). [15]

The interpolation u(x) can now be defined as

f (x) ≈ u(x) := ∑
l≤n,i∈Il

αl,i ϕl,i(x),

where αl,i are (hierarchical) surplusses for the corresponding basis functions. Figure 2.2
shows an interpolant u(x) constructed with weighted hierarchical basis functions.

This interpolation process can be extended to d dimensions. Therefore, the basis
functions are extended using a tensor product,

ϕ~l,~i(~x) :=
d

∏
j=1

ϕlj,ij(xj),

where ~l and ~i are d-dimensional multi-indices. In the d-dimensional case, Vn is the
space of piecewise d-linear functions,

Vn =
⊕
|~l|∞≤n

W~l ,
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2 Background

Figure 2.2: One-dimensional piecewise linear interpolation (left) with weighted hierar-
chical basis functions (right). [15]

and the interpolant u(~x) ∈ Vn can be written with the following finite sum,

u(~x) = ∑
|~l|∞≤n,~i∈I~l

α~l,~i ϕ~l,~i(~x),

where |~l|∞ is the maximum-norm of~l,

|~l|∞ = max
1≤j≤d

|lj|.

It is neither necessary nor computationally efficient to use full grids for every problem.
Therefore, sparse grids can be applied to these multi-dimensional problems. Sparse
grids are able to represent any multi-dimensional function f . Hence, the sparse grid
space is constructed with

V(1)
n =

⊕
|~l|1≤n+d−1

W~l ,

where |~l|1 is the l1-norm,

|~l|1 =
d

∑
j=1

lj.

To obtain the sparse grid space, subspaces from the full grid space Vn, which contain lots
of basis functions of small support, are left out. The resulting sparse grid interpolant
u(~x) ∈ V(1)

n is given by
u(~x) = ∑

|~l|1≤n+d−1,~i∈I~l

α~l,~i ϕ~l,~i(~x).
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2 Background

Figure 2.3 shows the two-dimensional subspaces W~l up to l = 3 and a two-dimensional
sparse grid of level n = 3.

Figure 2.3: Two-dimensional subspaces W~l up to l = 3 with h3 = 1/8 (left) and a sparse
grid of level n = 3 (right). The chosen selected subspaces (black) form the
sparse grid space V(1)

3 (right). Subspaces with lots of basis functions of small
support (gray) are left out. [15]

In some cases, the function f shows different smoothness characteristics in different
regions. Hence, in these areas more grid points are needed to get a more exact
representation of f . In this case, an adaptive refinement of the sparse grids is used to
add grid points in certain regions. The refinement is done after a grid is initialized at a
certain level. Therefore, an approximation error is calculated to see in which regions
more grid points are needed to make the representation of f more exact in this areas. In
figure 2.4, a sparse grid of level 2 is used at the beginning and afterwards gets refined
two times.

2.2 Density Estimation with Sparse Grids

Density estimation is the computation of a density value that belongs to a data point
in the dataset. According to Peherstorfer [14], SGDE is an application of sparse grids
with the aim of approximating the unknown density function p(XXX) with a random
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2 Background

Figure 2.4: A regular sparse grid of level 2 (left) is refined at the red grid point by
adding all its children in the tree of hierarchical basis functions (middle).
This process is repeated again (right). The gray points (right) are missing
hierarchical ancestors, which need to be created recursively. [15]

variable XXX, where data points of a dataset D = {xxx1, . . . , xxxN} ⊆ Rd are sampled from.
This approximation is constructed with a density estimation p̂ of p based on the data
points in D. A grid-based solution for the density estimation problem is obtained by a
solution for the following minimization problem

p̃ = arg min
f∈V

∫
Ω
( f (xxx)− pε(xxx))2dxxx + λ‖Λ f ‖2

L2 ,

where pε is a highly-overfitted initial guess, λ > 0 is a regularization parameter, V is a
function space, ‖Λ f ‖2

L2 is a regularization term, e.g. Λ is chosen to ∇, and ‖ · ‖L2 is the
L2-norm. In this approach, a smoother function p̂ is obtained by spline smoothing.

Sparse grids density estimation looks for an estimation p̂ in the space of (adaptive)
sparse grids, p̂ ∈ V(1)

n , of level n with a set of hierarchical basis functions Φn. In SGDE,
the equation ∫

Ω
p̂(xxx)ϕ(xxx)dxxx + λ

∫
Ω

Λ p̂(xxx) ·Λϕ(xxx)dxxx =
1
N

N

∑
j=1

ϕ(xxxj)

needs to hold for all ϕ ∈ Φn. The advantage of SGDE compared to KDE is that the
complexity grows with number of grid points not with the number of data points.

In the implementation of SGDE [14], a density function for every location xxx ∈ [0, 1]d

is learned for a normalized dataset D ⊂ [0, 1]d. SGDE takes batches of data points and
for every batch, SGDE learns a density function using grid refinement to improve the
results of the learned function. The split of the dataset into batches for computing is
feasible because of the adaptivity of sparse grids.

Figure 2.5 shows the density function for an example dataset D. It can be clearly
seen that the density values are higher at areas with more densly packed data points
than at regions with spatially distributed data points (figure 2.6).
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Figure 2.5: Learned density function of an example dataset.

This density function p̃(xxx) can be evaluated at every data point xxx ∈ D ⊂ [0, 1]d, or
more precisely at every point xxx ∈ [0, 1]d. Figure 2.6 shows the evaluation of p̃(xxx) at
every data point xxx in the example dataset.

2.3 Outlier Detection with Clustering Methods

Given a dataset D = {xxx1, . . . , xxxN}, |D| = N, containing d-dimensional data points
xxxi ∈ D, 1 ≤ i ≤ N, sampled from a given data space S (D ⊂ S), usually S = Rd, with
an unknown probability density f̂ (xxxi). Clustering is an unsupervised machine learning
task that tries to find similarities among objects within a dataset D and forms groups of
data points with similar properties, so-called clusters. Beside the different clusters, there
is also a set of noisy points, usually called outliers, which contains objects that do not
fit to any of the clusters. At the end of the clustering process it is important that similar
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Figure 2.6: SGDE of an example dataset.

objects are assigned to the same cluster and dissimilar objects have to be assigned to
different clusters or the set containing the outliers. The dissimilarity of two objects
can be measured using some distance function, usually the Euclidean distance or the
Manhatten distance. Today, there are many approaches with different algorithms to do
clustering, e.g. distance-based clustering, centroid-based clustering, connectivity-based
(hierarchical) clustering, distribution-based or density-based clustering, which will be
presented in further detail in section 2.3.1.

Since clustering is an unsupervised learning task, it can be used to get a first
insight into the structure of an unknown dataset. There are clustering algorithms, e.g.
DBSCAN (section 2.3.2), that consider outliers during the clustering process. Hence,
these algorithms can be used for outlier detection.
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2.3.1 Density-based Clustering

As presented in Kriegel, Kröger, Sander, and Zimek [10], density-based clustering
is a nonparametric subdomain of clustering that uses the probability density f̂ (xxx) of
the data points xxx ∈ D to identify different clusters. Therefore, an area with a high
density f̂ (xxx) is considered to be a cluster. As a consequence, regions with lower density
separate different clusters from each other. Advantages of density-based clustering
algorithms are their neutral behaviour towards the underlying density f̂ (xxx) or the
variance within a cluster and they do not require information about the number of
clusters. On a simple level, density-based clusters are data points in regions with a
higher density than a given threshold at where the underlying density function is ’cut’
off. It might be possible that different clusters are merged together to one cluster if this
density threshold is too small. If the threshold is too high, regions with lower density
will not be identified as clusters, but classified as outliers. OPTICS (Ordering Points
To Identify the Clustering Structure) [3] is a well-known density-based algorithm. It
orders data points based on their density which helps to identify cluster structures in a
dataset. Another density-based clustering algorithm is DBSCAN, which is explained in
further detail in the following.

2.3.2 DBSCAN

DBSCAN is a density-based clustering algorithm introduced by Ester et al. [7]. This
algorithm depends on two parameters Eps and MinPts, but according to Ester et al.,
it is possible to reduce the number of input parameters to one. DBSCAN assigns all
data points to the same cluster if they are density-reachable from each other. Defining
d(xxxj, xxxi) as some distance function for two data points xxxj and xxxi, e.g. the Euclidean
distance. A data point xxxi is directly density-reachable from xxxj if xxxi is inside the Eps-
neighborhood of xxxj, xxxi ∈ NEps(xxxj) = {xxxk ∈ D | d(xxxj, xxxk) ≤ Eps}, where the core point
codition holds,

|NEps(xxxj)| ≥ MinPts.

Using the definition of directly density-reachability, xxxi is density-reachable from xxxj
if a chain xxxj = xxx1, . . . , xxxn = xxxi of data points can be found where xxxi+1 is directly
density-reachable from xxxi for 1 ≤ i ≤ n− 1. According to these definitions, it is also
possible that two clusters are merged into one cluster. When the algorithm terminates,
all data points that are not assigned to a cluster of normal points are classified to the
noise cluster. In this thesis, the implementation of scikit-learn [13] is used to compute
DBSCAN.

Figure 2.7 shows the results of the DBSCAN algorithm with different parameter
settings. It can clearly be seen that DBSCAN finds more small clusters for lower
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values of Eps and MinPts. If the the parameter MinPts takes a higher value, DBSCAN
assigns data points at outer cluster regions with lower density to the noise cluster. The
explanation for this is given by the fact that MinPts defines the minimal number of
core points that form a cluster.

2.3.3 Local Density Estimate

The Local Density Estimate presented by Latecki et al. [11] is based on a nonparametric
kernel density estimate and estimates the local density of a data point xxxj ∈ D ⊂ Rd.
The LDE takes into account the local neighborhood of xxxj to determine its local density.
This local neighborhood is formed by the m nearest neighbors xxxi ∈ mNN(xxxj) of xxxj,
where m should be chosen large enough to get satisfiable results. To perform density
estimation, LDE uses the reachability distance, which is the maximum value of the
squared Euclidean distance d(xxxj, xxxi) = ‖xxxj − xxxi‖2 and the distance dk(xxxi) from xxxi to its
kth nearest neighbor,

rdk(xxxj, xxxi) = max{d(xxxj, xxxi), dk(xxxi)}.
Using h as a fixed bandwidth, the LDE of a data point xxxj is defined as

LDE(xxxj) =
1
m
· ∑

xxxi∈mNN(xxxj)

1

(2π)
d
2 (h · dk(xxxi))d

exp

(
−

rdk(xxxj, xxxi)
2

2(h · dk(xxxi))2

)
.

The difference between LDE and a KDE is that LDE does not sum over the whole
dataset like KDE, but it only uses the local neighborhood mNN(xxxj) of a data point xxxj.
This reduces the runtime complexity from O(n2) of the original KDE to O(mn log n) of
LDE. Since m has an influence on the computing time, it should not be chosen to large.
LDE can be seen as an alternative to SGDE and it is used in LDF (section 3.3.3).

2.3.4 Outliers

According to Hawkins [8], an outlier can be intuitively defined as "an observation
which deviates so much from other observations as to arouse suspicions that it was
generated by a different mechanism." In other words, an outlier is a data point in a
dataset which does not belong to any cluster. According to D. and Babu [6], outliers
can be subdivided in three different categories:

Point Outliers

A point outlier is just a single data point that deviates from the rest of the data
points in the dataset. In general, the focus of most outlier detection techniques is the
identification of point outliers.
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(c) DBSCAN with Eps = 0.05 and MinPts =
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Figure 2.7: DBSCAN with different parameter settings computed for dataset D1 (ta-
ble 3.1). Each color represents an own cluster. Data points in the noise
cluster are marked as black points.
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Contextual Outliers

A contextual outlier is a data point that is anomalous with respect to a specific context
of the dataset, e.g. to a single cluster.

Collective Outliers

Collective outliers are data points that are not necessarily anomalous by themselves
with respect to each other, but together deviate from the rest of the dataset. This
category of outliers can only be found in datasets where data points have a relationship
between each other, e.g. an anomalous interval of measurements inside of a time series.

2.4 Outlier Detection Techniques

Outlier detection techniques are methods that help to identify data points in a dataset
as outliers. There are different types of outlier detection techniques, e.g. density-based
or distance-based methods. In this thesis, different unsupervised outlier detection
techniques, like LDF (section 3.3.3) and LOF (section 3.3.4), are explained in further
detail. Furthermore, a way to use the Silhouette Coefficient (section 3.3.5) for outlier
detection is presented. Finally, a new own approach (section 3.3.6) for an outlier
detection technique is developed and presented.

2.5 Outlier Detection Measures

Outlier detection measures are measures to determine the accuracy of outlier detection
techniques. There are many outlier detection measures that are based on different
approaches. In this thesis, the presented measures use a ranking of the data points
based on their outlierness, which is determined by the corresponding outlier detection
technique. The following measures are used in the thesis and they are explained in
more detail in the implementation part:

• Detection rate and false alarm rate

• Precision at n

• Adjusted Precision at n

• Average Precision

• Adjusted Average Precision

• Area under the receiver operating characteristics curve (ROC AUC)
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3 Implementation

In this chapter, the implementation part of the thesis is explained in further detail. This
includes necessary steps to work with the existing codebase [14]. The codebase in this
thesis makes use of the SG++ library [15] to perform SGDE. Additionally, the different
outlier detection techniques and methods that were implemented during the thesis are
presented in this chapter.

3.1 Data Preprocessing

In the first step, the data points of a given dataset has to be converted to a format
which can be used by the density estimation process, which is the d-dimensional
unit-hypercube, [0, 1]d. Therefore, all attributes of a given dataset that are not real
numbers have to be mapped to real numbers. Another way to get matching datasets is
to generate own ones. In the following, this process will be explained in further detail.

3.1.1 Data Generation

Artificial datasets with two- or three-dimensional data points are created with Python by
sampling from different probability distributions using the library numpy. Additionally,
in a similar fashion, two- and three-dimensional datasets with a certain percentage of
true outliers are created to validate the performance of outlier detection techniques and
measures.

Table 3.1 gives information about the sizes, dimensionality and the number of true
outliers of the generated artificial datasets. All generated datasets consist of 1000
data points because the SGDE process (section 2.2) is relatively fast for that size of
a dataset and the density values are reasonable. The most generated datasets have
either two- or three-dimensional data points because the validation and evaluation for
high-dimensional datasets only rely on numerical measures and a meaningful visual
representation cannot be used anymore.

Dataset D1 is a two-dimensional dataset containing three Gaussian clusters and no
points are considered to be true outliers. The data points (X1, X2) = xxx ∈ D1 ⊂ R2 are
samples from different normal distributions, where the components X1 and X2 of the
first Gaussian cluster with 334 data points are distributed normally with X1 ∼ N (0, 0.5)
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Dataset Description Dimensions Size Outliers

D1 3 Gaussians 2 1000 0
D2 S-Curve 2 1000 0
D3 3 Gaussians 3 1000 0
D4 S-Curve 3 1000 0
D5 3 Gaussians 2 1000 50
D6 S-Curve 2 1000 50
D7 3 Gaussians 3 1000 50
D8 S-Curve 3 1000 50
D9 3 Gaussians 4 1000 50

Table 3.1: Information about used generated datasets.

and X2 ∼ N (2, 1). For the second Gaussian cluster with 333 data points, X1 and
X2 are distributed normally with X1 ∼ N (−2, 0.8) and X2 ∼ N (−2, 0.7). For the
third Gaussian cluster with 333 data points, X1 and X2 are distributed normally with
X1 ∼ N (2, 0.6) and X2 ∼ N (−2, 0.3). Figure 3.1 shows dataset D1, where (a) visualizes
each Gaussian cluster dyed in a different color and (b) shows the heatmap of D1 based
on the logarithm of number of data points in a specific hexagon.
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(a) Dataset D1, colored.
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(b) Dataset D1, heatmap.

Figure 3.1: Dataset D1 (table 3.1).

Dataset D2 is a two-dimensional dataset containing two Gaussian clusters and a
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cluster shaped like the letter ’S’. In D2, no points are considered to be true outliers. The
data points (X1, X2) = xxx ∈ D2 ⊂ R2 are samples from different normal distributions,
where the components X1 and X2 of the ’S’-cluster with 500 data points are distributed
normally with X1 ∼ N (1, 4). The values of X1 are forced to be in [−10, 10] and

X2 = Y ·
√

102 − X2
1 with Y ∼ N (X1, 0.4). For the first Gaussian cluster with 250 data

points, X1 and X2 are distributed normally with X1 ∼ N (−10, 2) and X2 = Y + 5 with
Y ∼ N (−10, 4). For the second Gaussian cluster with 250 data points, X1 and X2 are
distributed normally with X1 ∼ N (10, 2) and X2 = Y + 5 with Y ∼ N (10, 4). Figure 3.2
shows dataset D2, where (a) visualizes each cluster dyed in a different color and (b)
shows the heatmap of D2 based on the logarithm of number of data points in a specific
hexagon.
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(a) Dataset D2, colored.

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

lo
g 1

0(
N

)
(b) Dataset D2, heatmap.

Figure 3.2: Dataset D2 (table 3.1).

Dataset D3 is a three-dimensional dataset containing three Gaussian clusters and no
points are considered to be true outliers. The data points (X1, X2, X3) = xxx ∈ D3 ⊂ R3

are samples from different normal distributions, where the components X1 and X2 are
identical to the components X1 and X2 of dataset D1 for all three Gaussian clusters.
The component X3 for the first Gaussian cluster with 334 data points is distributed
normally with X3 ∼ N (5, 0.7). For the second Gaussian cluster with 333 data points,
X3 is distributed normally with X3 = Y − 3, where Y ∼ N (−10, 6). For the third
Gaussian cluster with 333 data points, X3 is distributed normally with X3 = Y + 1,
where Y ∼ N (10, 0.9).

Dataset D4 is a three-dimensional dataset containing a cluster shaped like the letter ’S’
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and two Gaussian clusters. In D4, no points are considered to be true outliers. The data
points (X1, X2, X3) = xxx ∈ D4 ⊂ R3 are samples from different normal distributions,
where the components X1 and X2 are identical to the components X1 and X2 of dataset
D2 for all three clusters. The component X3 for the ’S’-cluster with 500 data points is
distributed normally with X3 ∼ N (X1 · X2, 0.2), where X1 and X2 are the 500 X1 and
X2 components from dataset D2. For the first Gaussian cluster with 250 data points,
X3 is distributed normally with X3 = Y + 3, where Y ∼ N (−10, 6). For the second
Gaussian cluster with 250 data points, X3 is distributed normally with X3 = Y + 3,
where Y ∼ N (10, 6).

Figure 3.3 visualizes the datasets D3 and D4, where (a) and (b) show the front view,
(c) and (d) the side view and (e), and (f) the top view of D3 and D4, respectively.

The datasets D5 and D7 are identical to the datasets D1 and D3, but the first and
the second Gaussian cluster contain only 325 data points each and the third Gaussian
cluster contains only 300 data points. In D5 and D7, 50 data points are considered to
be true outliers. These outlier data points are samples from the uniform distribution,
X1, X2, X3 ∼ U (0, 1), and they are added to the datasets after the normalization process
(section 3.1.2) of the other 950 data points. Figure 3.4 shows the difference between
dataset D1 without outliers (a) and dataset D5 with outliers (b).

The datasets D6 and D8 are identical to the datasets D2 and D4, but the first cluster
contains only 450 data points. In D6 and D8, 50 data points are considered to be
true outliers. These outlier data points are samples from the uniform distribution,
X1, X2, X3 ∼ U (0, 1), and they are added to the datasets after the normalization process
(section 3.1.2) of the other 950 data points.

Dataset D9 is identital to D7, but it has one more dimension. X1 and X2 of
(X1, X2, X3, X4) = xxx ∈ D9 ⊂ R4 are sampled the same way as component X1 of D7.
The 50 outlier data points are samples from the uniform distribution, X1, X2, X3, X4 ∼
U (0, 1), and they are added to the datasets after the normalization process (section 3.1.2)
of the other 950 data points.

3.1.2 Data Normalization

For the SGDE part it is necessary to normalize the data points into the range [0, 1]d.
Therefore, a linear transformation is applied to every component xi of a data point
(x1, . . . , xd)

T = xxx ∈ D to transform it into the range [a, b] with a = 0 and b = 1. Before
applying the transformation to a specific component xi of a data point, the minimum
and maximum value of this component among all data points xxx ∈ D need to be known.
This minimum and maximum value are defined as

xmin
i = min

xxx∈D
xi
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(a) Dataset D3, front view.
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(d) Dataset D4, side view.
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(e) Dataset D3, top view.
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(f) Dataset D4, top view.

Figure 3.3: The datasets D3 and D4 (table 3.1).
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(a) Dataset D1.
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(b) DatasetD5 (outliers are marked with ’×××’).

Figure 3.4: Difference between the datasets D1 and D5 (table 3.1).

and
xmax

i = max
xxx∈D

xi.

Now, these values can be used to apply the following transformation to the correspond-
ing component of every data point:

x̃i = a +
xi − xmin

i

xmax
i − xmin

i
(b− a). (3.1)

The results x̃i of equation (3.1) are the components of the normalized data points
(x̃1, . . . , x̃d)

T = x̃̃x̃x ∈ D̃ ⊂ [0, 1]d.
In the case that one or more components xi of a data point xxx ∈ D lie on at least one of

the boundaries 0 or 1 of [0, 1], the SGDE with a linear hat basis function cannot estimate
the density of xxx. A solution to this problem is to apply the linear transformation in
equation (3.1) with other parameters, e.g. a = 0.01 and b = 0.99.

After the normalization process, the data D̃ is handed to the processing part. In the
following, it is considered that D is already normalized.
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3.2 Data Processing

The processing of the data points including SGDE and computing LDE and LDF was
performed in C++. Hence, the exising codebase was used to do SGDE. It starts with
reading in some .json files containing different parameters for SGDE, like the dimension
of the data points that will be computed. After that, the program reads in the data points
from a .txt file and stores them in a std::vector<Vector>, where Vector is implemented
as a std::vector<double>. In the following step, a DataController is set up, which passes
the data to the SGDE learner in the DensityEstimation class. This DataController needs
an adapter to be able to read data points from the std::vector<Vector> and pass them to
the SGDE learner. So, this adapter had to be implemented first, to get SGDE running.
After the initialization of the DataController and the assignment of the adapter to it, a
DensityEstimation object is initialized with this DataController. The DensityEstimation
object learns the underlying density function of a given dataset. Another modification
of the existing codebase was to implement a method that returns the learned density
function with a shared pointer outside of the DensityEstimation class. After that, the
density function can be used in the main() method and evaluated a every point [0, 1]d,
where d is the dimension of the data points in the dataset.

After the data processing part, the densities and the LDF values for the data points
are stored in a .txt file to pass them to the data postprocessing part (section 3.4).

3.3 Outlier Detection Techniques

Outlier detection techniques are methods that are able to detect outliers in a given
dataset. To do so, these techniques use different kind of measures, e.g. the densities
of the data points obtained by SGDE. In the following, different outlier detection
techniques are presented in further detail.

3.3.1 Flat Clustering Approach

The flat clustering approach is a very basic idea how to extract clusters from the
densities of the data points and it helps to get familiar with the used exitsting codebase
and to test the SGDE process. The idea behind this approach is to take a look at the
densities f (xxx) of all data points xxx in the dataset D and cut at a specific threshold α that
separates the outliers from the inliers. This cut means that all data points xxx ∈ D where
f (xxx) ≤ α are considered to be outliers, otherwise inliers.
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3.3.2 Belief Function

The use of a belief function proposed by Xu, Xu, and Feng [17] helps to detect outliers
by calculating the credibility of a data point xxx ∈ D using its probability density. This
belief function is defined as

r(xxx) = ln

(
f (xxx)

α

)
,

where f (xxx) is the probability density of data point xxx. In the data processing part
(section 3.2), f is the density function learned by SGDE. The parameter α is a certain
probability level, usually the product of a coefficient and the expectation value of f (xxx).
If r(xxx) > 0, the data point xxx is seen as an inlier or a normal datum, otherwise as an
outlier.

3.3.3 Local Density Factor

LDF introduced by Latecki et al. [11] is an outlier detection method based on a density
estimate. In their paper, they use LDE (section 2.3.3) as density estimate. The LDF at
data point xxxj ∈ D is defined as

LDF(xxxj) =

∑
xxxi∈mNN(xxxj)

LDE(xxxi)
m

LDE(xxxj) + c · ∑
xxxi∈mNN(xxxj)

LDE(xxxi)
m

, (3.2)

where mNN(xxxj) is the set containing the m nearest neighbors of xxxj, LDE(xxxi) is the local
density estimate of a data point xxxi and c is a scaling constant, which is set to c = 0.1 in
the implementation according to Latecki et al. [11]. This scaling constant normalizes
the LDF values to [0, 1/c].

The value LDF(xxxj) = 0 means that LDE(xxxj) � ∑ xxxi∈mNN(xxxj)
LDE(xxxi)

m , so the LDE of
data point xxxj is significantly greater than the average LDE of its m nearest neighbors.
Therefore, xxxj can be considered to be not an outlier. On the other hand, a data point
xxxj can be considered to be an outlier if LDF(xxxj) is close to 1/c, where the edge case
of LDF(xxxj) = 1/c is caused by LDE(xxxj) = 0. Keeping that in mind, outliers can be
detected using a threshold T with LDF(xxxj) > T, where T ∈ [0, 1/c].

In the thesis, this method is written in C++ in a flexible way: the implemented LDE
densities can be exchanged with those obtained from SGDE (section 2.2).

3.3.4 Local Outlier Factor

LOF is an approach of Breunig et al. [4] to determine the outlyingness of a data point
in a given dataset. It uses the reachability distance, defined as the maximum value of
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the Euclidean distance d(xxxj, xxxi) = ‖xxxj − xxxi‖ and the distance dk(xxxi) from xxxi to its kth
nearest neighbor,

rdk(xxxj, xxxi) = max{d(xxxj, xxxi), dk(xxxi)}.

The reachability distance used in LOF differs from that one used in LDE by using the
normal Euclidean distance. LOF focuses on the data points in the local neighborhood
Ndk(xxxj)(xxxj) = {xxxi ∈ D \ {xxxj} | d(xxxj, xxxi) ≤ dk(xxxj)} of xxxj, which in the following will be
denoted as Nk(xxxj). Using the above definitions, the local reachability density of xxxj can
be defined as

lrdMinPts(xxxj) =

(
1

|NMinPts(xxxj)|
· ∑

xxxi∈NMinPts(xxxj)

rdMinPts(xxxj, xxxi)

)−1

.

Finally, using the definition of lrdMinPts(xxxj), the LOF is defined as

LOFMinPts(xxxj) =
1

|NMinPts(xxxj)|
· ∑

xxxi∈NMinPts(xxxj)

lrdMinPts(xxxi)

lrdMinPts(xxxj)
.

It takes one input parameter MinPts that defines the minimal number of points which
form the local neighborhood of xxxj. The LOF gives a degree of outlyingness for a data
point xxxj. A LOFMinPts(xxxj) ≈ 1 means that xxxj has a similar density compared to the data
points in its local neighborhood. If LOFMinPts(xxxj) < 1, then xxxj can be considered as an
inlier, else if LOFMinPts(xxxj)� 1, then xxxj can be considered as an outlier. In this thesis,
the implementation from scikit-learn [13] is used to evaluate LOF.

3.3.5 Silhouette Coefficient

The Silhouette Coefficient presented by Rousseeuw [16] is a value that gives information
about the quality of a performed clustering. This value can be computed for all data
points in the dataset D. Using the Euclidean distance d(xxxj, xxxi) = ‖xxxj − xxxi‖, the average
dissimilarity of xxxj ∈ A to all other data points xxxi ∈ A in cluster A is defined as

a(xxxj) :=
1
|A| ∑

xxxi∈A
d(xxxj, xxxi).

The average dissimilarity of xxxj ∈ A to all data points in another cluster C 6= A, which
is considered to be minimal for a cluster B, is defined as

b(xxxj) := min
C 6=A

{
1
|C| ∑

xxxi∈C
d(xxxj, xxxi)

}
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The Silhouette Coefficient s(xxxj) of a data point xxxj uses the values a(xxxj) and b(xxxj) and it
is computed with

s(xxxj) =
b(xxxj)− a(xxxj)

max{a(xxxj), b(xxxj)}
.

This definition gives the restriction −1 ≤ s(xxxj) ≤ 1 for all xxxj ∈ D. A value s(xxxj) ≈ 1
means that a(xxxj)� b(xxxj) and that the choice of assigning xxxj to cluster A was the most
likely one. In the worst case, the Silhouette Coefficient takes a value of s(xxxj) ≈ −1,
where a(xxxj)� b(xxxj). In this case, xxxj should have been more likely assinged to cluster
B instead of cluster A. A Silhouette Coefficient of s(xxxj) ≈ 0 is caused by a(xxxj) ≈ b(xxxj),
which means that xxxj lies between the clusters A and B. In the thesis, this last property
of the Silhouette Coefficient is used to identify outliers. In the first step, the clustering
process for a dataset D is computed using the implementation of the k-Means algorithm
from scikit-learn [13]. k-Means is one of the most popular clustering algorithms and
it takes one input parameter k. k-Means tries to separate all data points xxx ∈ D into
k clusters with equal variance by minimizing the sum of the squared distance of a
data point to the mean of the cluster it is assigned to. After computing the k-Means
clustering, the Silhouette Coefficient s(xxx) is computed for all data points xxx ∈ D using
the scikit-learn [13] implementation. After that, the Silhouette Coefficient values are
plotted for all data points, where the values of two data points that are assigned to the
same cluster are plotted side by side. In a second figure, the data points are plotted
colored the same way as their corresponding plots of the Silhouette Coefficients. A way
to identify outliers is to choose the l data points xxxo with the smallest absolute value
|s(xxxo)| in every cluster Ci, 1 ≤ i ≤ k. This l data points can be considered as outliers
and marked as outliers in the plot because they lie in between to clusters.

Figure 3.5 shows an example plot of the Silhouette Coefficient values together with
the used dataset D2. It can be seen that s(xxx) < 0 for data points xxx in the light green
and gray cluster. This means that the points on the border between these two clusters
are not well-clustered. In figure 3.5, it can be seen that the cluster with the shape of the
letter ’S’ and the Gaussian cluster on the right side are not well-clustered according
to human intuition. Applied to dataset D2, k-Means fails because it only cares about
minimizing the sum of squared distances of data points to the cluster means and it
does not take the underlying density into account.

3.3.6 Own Approach

During the thesis, a new own approach for outlier detection with SGDE is introduced.
For a dataset D = {xxx1, . . . , xxxN} with |D| = N, the arithmetic mean of the densities of
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Figure 3.5: Silhouette Coefficient plot of dataset D2 (table 3.1). Clustering is performed
with k-Means with k = 3. Clusters are dyed in different colors. The circles
with numbers insight are the corresponding cluster centers (means). The
average Silhouette Coefficient is 0.562 (red dashed line).

its data points xxxi is defined as

µ(D) :=
1
N

N

∑
i=1

f (xxxi),

where f (xxxi) are the densities values of the data points returned by SGDE. For data
points that are assigned to the same cluster Cxxx as xxx ∈ D, e.g. by DBSCAN (section 2.3.2),
the arithmetic mean of the densities of all data points in Cxxx is defined as

µ(Cxxx) :=
1
|Cxxx| ∑

xxx′∈Cxxx

f (xxx′),

where f (xxx′) are the density values returned by SGDE. Using these two definitions, the
new approach is based on two properties of a data point xxx that have an effect on being
an outlier. The first feature (1) is measured by the density of a data point compared
to the arithmetic mean µ(D) of the density values of all data points in the dataset. If
a data point has a low density compared to µ(D), it is more likely an outlier. The
second property (2) to classify a data point xxx as an outlier is measured by its density
of compared to the arithmetic mean µ(Cxxx) of the density values of all data points that
are in the same cluster Cxxx as xxx. If xxx has a low density compared to µ(Cxxx), xxx is more
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likely an outlier. The combination of (1) and (2) measured for a data point leads to the
formula of the new approach,

v(xxx) =
f (xxx)

µ(D)︸ ︷︷ ︸
(1)

· f (xxx)
µ(Cxxx)︸ ︷︷ ︸

(2)

,

where a lower value v(xxx) tells that xxx is more likely an outlier. If either (1) < 1 or
(2) < 1, or (1) < 1 and (2) < 1 for a data point xxx, v(xxx) will take a small value,
0 ≤ v(xxx) < 1, and xxx is considered to be an outlier. Consequential, outliers can be
detected with v(xxx) ≤ α, where α > 0 is some threshold.

This approach is implemented in Python and starts by computing the DBSCAN
algorithm (section 2.3.2) with different parameters Eps and a fixed value for MinPts.
For each parameter setting, the average Silhouette Coefficient (section 3.3.5) is computed.
Since a high Silhouette Coefficient gives information about a good clustering, Eps is set
to the value where the Silhouette Coefficient is at the maximum. After that, DBSCAN
is computed with this fixed Eps value and different values for the MinPts parameter.
The optimal MinPts value is chosen the same way as Eps. In this first step, the single
values for the DBSCAN parameters has to be chosen carefully because it needs at least
two classes, the noise cluster and a normal cluster, to compute the average Silhouette
Coefficient. Finally, DBSCAN is computed with both optimal values for Eps and
MinPts. The class labels for every data point are stored in the DBSCAN object and
they are used together with the SGDE values to calculate µ(Cxxx). The value µ(D) is also
computed with the SGDE values. After that v(xxx) is calculated using µ(D), µ(Cxxx) and
the SGDE values f (xxx) for all xxx ∈ D.

3.4 Data Postprocessing

In the data postprocessing part, different outlier detection measures are applied to the
data points and their densities obtained by SGDE to measure the performance of the
outlier detection techniques that are applied to the data in the data processing part.
The data postprocessing was completely performed in Python.

3.5 Outlier Detection Measures

Outlier detection measures are metrics to determine the accuracy of outlier detection
techniques. To validate the outlier detection results, datasets with true outliers are used,
e.g. D5. In the following, several outlier detection measures are explained in further
detail.
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3.5.1 Detection Rate and False Alarm Rate

Two typical measures to evaluate outlier detection algorithms are the detection rate
and the false alarm rate. These two rates are defined as presented in Latecki et al. [11],

DetectionRate =
TP

TP + FN

FalseAlarmRate =
FP

FP + TN
,

where TP (true positives) is the number of correctly detected outliers, FN (false nega-
tives) is the number of outliers that are not detected, FP (false positives) is the number
of normal data points that are incorrectly detected as outliers and TN (true negatives)
is the number of normal data points that are correctly identified as normal data points.
Table 3.2 shows the relation between this four possible outcomes which occur in outlier
detection.

Predicted Outliers Predicted Normal

Actual Outliers
True Positives False Negatives

(TP) (FN)

Actual Normal
False Positives True Negatives

(FP) (TN)

Table 3.2: Confusion matrix with possible scenarios for detecting outliers [11].

So, the detection rate is the ratio of correctly detected outliers and the false alarm rate
is the ratio of normal data points that are incorrectly detected as outliers. In this thesis,
the detection rate and the false alarm rate are implemented in Python to evaluate the
outlier detection performed by DBSCAN (section 2.3.2), where data points are assigned
to the noise cluster. Hence, the labels for the data points stored in the DBSCAN object
are used to see if true outliers or true inliers are assigned to the noise cluster or not.
With this information, the four numbers TP, FP, TN and FN are obtained easily and the
detection rate and false alarm rate can be calculated. Furthermore, the detection rate
and the false alarm rate are computed with the k most likely outliers identified by LDF
(section 3.3.3) or by the new own approach (section 3.3.6).

26



3 Implementation

3.5.2 Precision at n

The precision at n (P@n) measure [5] is computed for a dataset D containing outliers
O ⊂ D and inliers I ⊆ D (D = I ∪O) using

P@n =
|{ooo ∈ O | rank(ooo) ≤ n}|

n
.

It gives validation ratio based on the correctly ranked ouliers in the top n ranks. The
ranking, which represents an outlierness score of the data points, must be unique,
where data points with the same rank can be ranked in an arbitrary, consistent way. In
the implementation, the ranking is based on the decreasing order of the LDF values or
the increasing order of the values obtained from the new approach.

3.5.3 Adjusted Precision at n

The adjusted precision at n measure is a modification of precision at n. It is proposed
by Campos et al. [5]. This modification is based on the fact that the maximum possible
value among the results of the original precision at n measure is |O|/n if n > |O| and 1
otherwise. Furthermore, the expected value of a completely random outlier ranking is
|O|/N for |D| = N. So, the modified precision at n computes values for n ≤ |O| with

Adjusted P@n =
P@n− |O|N

1− |O|N

. (3.3)

For n > |O|, 1 has to be replaced by |O|/n in equation (3.3). A disadvantage of
the adjusted precision at n measure is, that it is very sensitive to choice of n. In the
implementation, the ranking of the data points is created with the decreasing values of
LDF or the increasing values of the new approach.

3.5.4 Average Precision

The average precision (AP) measure [5] averages the P@n measure for all ranks of the
outlier points ooo ∈ O. It is defined as

AP =
1
|O| ∑

ooo∈O
P@rank(ooo). (3.4)

The ranking needed by the precision at n measure is performed by ordering the data
points in the decreasing order of their LDF values or in the increasing order of the
values obtained by the new approach.
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3.5.5 Adjusted Average Precision

The adjusted average precision measure, proposed by Campos et al. [5], is a modification
of the average precision measure. This modification is performed the same way as that
of the adjusted precision at n measure. So, the fact that maximum value of 1 is received
by a perfect ranking and the expected value is |O|/N for a random ranking, gives the
modification

Adjusted AP =
AP− |O|N

1− |O|N

.

3.5.6 ROC AUC

The ROC AUC measure [5] gives information about the ranking of a dataset D = I ∪O
with true inliers I and true outliers O. A ROC AUC value of 1 corresponds to a perfect
ranking, while a ROC AUC value of 0 is caused by an inverted perfect ranking. More
precisely, the ROC AUC measure gives the true positive rate over n objects in the top
ranks, where n is taken from the ranks of all inliers in I . It is defined as

ROC AUC := mean
ooo∈O, iii∈I


1 if score(ooo) > score(iii)
1
2 if score(ooo) = score(iii)

0 if score(ooo) < score(iii).

In the implementation, the score of xxx ∈ D corresponds to the LDF of xxx, score(xxx) =

LDF(xxx), or to the values obtained by the new approach, score(xxx) = v(xxx), which have to
be inverted afterwards for the second case.

3.6 Data Visualization Techniques

Data visualization techniques are displaying methods to visualize high-dimensional
data. Therefore, the data is transformed into another representation. In the following,
the Andrews curves visualization method is explained in further detail.

3.6.1 Andrews Curves

Visualizing high-dimensional data with two-dimensional curves based on sine and
cosine functions is proposed by Andrews [2]. For every data point xxx = (x1, . . . , xd)

T ∈
D ⊂ Rd construct a finite Fourier series of the following form:

fxxx(t) =
x1√

2
+ x2 sin(t) + x3 cos(t) + x4 sin(2t) + x5 cos(2t) + . . . (3.5)
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After that, all functions fxxx(t) are plotted in the range −π < t < π. This range represents
the whole function because of the periodic behaviour of the sine and cosine functions.
Figure 3.6 shows dataset D5 (a) and the corresponding curves (b) constructed from D5.
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(a) Dataset D5 (outliers are marked
with ’×××’).
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(b) Andrews curves plot of dataset D5.

Figure 3.6: Andrews curves plot of dataset D5 (table 3.1).

One helpful property of these curves is that they preserve distances:

‖ fxxxi(t)− fxxxj(t)‖L2 =

π∫
−π

(
fxxxi(t)− fxxxj(t)

)2 dt = π ‖xxxi − xxxj‖2,

with xxxi, xxxj ∈ D. Therefore, Andrews curves can be used to identify cluster structures or
outliers visually, but there is no guarantee for that. In this thesis, the Andrews curves
visualization technique is implemented in Python.
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In this chapter, the results of the outlier detection techniques presented in this thesis
are evaluated and compared. Therefore, the generated artificial datasets (table 3.1) are
used to analyze and validate the mentioned outlier detection methods. Additionally,
real datasets from Campos et al. [5] are used for validation and testing reasons. These
real datasets are randomly chosen examples of real-life datasets and do not reflect the
whole range of possible datasets available. As a consequence, further work with the
focus of testing a bigger range of real datasets and parameter settings, which extends
past the time and scope of this thesis, is necessary to draw conclusions on a larger basis
of experiment outcomes. Table 4.1 gives information about the used real datasets.

Dataset Dimensions Size Outliers Duplicates

Wilt 5 4671 93 yes
Shuttle 9 1013 13 no

Table 4.1: Information about used real datasets.

Since the flat clustering approach (section 3.3.1) and the belief function (section 3.3.2)
both aim to consider a certain density value as a boundary between outliers and inliers,
the results for both methods with the same threshold α are equal. Figure 4.1 shows
the results of the belief function approach for different threshold values α. The true
outliers in dataset D5 are sampled from a uniform distribution, X1, X2 ∼ U (0, 1). As a
consequence, theses true outliers are not limited to lie between normal clusters, but they
can also lie inside normal clusters. In figure 4.1, it can be seen that the flat clustering
approach or the belief function approach is able to detect outliers if they lie outside
of clusters and if the threshold is well-chosen. The detection of true outliers that lie
very close on the boundary of a cluster is possible by increasing α. Detecting true
outliers which lie in (dense) cluster regions is not possible with the belief function
approach without misclassifying a great number of normal data points as outliers.
This correlation can be seen in figure 4.2, where the false alarm rate grows with an
increasing detection rate caused by a growing threshold α.

The modification of the Silhouette Coefficient plot (section 3.3.5) is shown in figure 4.3.
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(a) Belief function with α = 0.5.
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(b) Belief function with α = 1.0.
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(c) Belief function with α = 1.5.
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(d) Belief function with α = 2.0.

Figure 4.1: Results of the belief function approach applied to dataset D5 (table 3.1).
True outliers are marked as big dots with diamond shape. Red dots are
classified as outliers, blue dots are classified as normal data. SGDE uses 295
grid points.
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(a) Belief function approach applied to
dataset D5.
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(b) Belief function approach applied to the

Wilt dataset.

Figure 4.2: Detection rate (blue) and false alarm rate (red) of the belief function ap-
proach applied to dataset D5 (table 3.1) and the Wilt dataset (table 4.1).
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Figure 4.3: Silhouette Coefficient plot of dataset D2 (table 3.1). Clustering is performed
with k-Means with k = 3. Distinct clusters are dyed in different colors. The
average Silhouette Coefficient is 0.683 (red dashed line). True outliers are
marked as dots of bigger size. Detected outliers are marked as dots with
diamond shape.
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As already mentioned in the implementation, the Silhouette Coefficient focuses on
the quality of clustering. Thus, the modified plot only detects outliers which lie on
the boundary between different clusters. So, the Silhouette Coefficient can be used to
identify and remove noisy data points that lie between two clusters to receive clear
boundaries for clustering. Compared to the belief function approach, which detects
ouliers that are in areas with less density with respect to a specific threshold α, the
Silhouette Coefficient can be used to detect outliers on cluster boundaries no matter
what density these regions have.

The DBSCAN algorithm (section 2.3.2) is another choice to detect outliers. During
the execution of the algorithm, outliers are assigned to a noise cluster for noisy data
points. Figure 4.4 shows the results of the DBSCAN algorithm applied to the datasets
D5 and D6. It can be seen that a higher detection rate and at the same time a smaller
false alarm rate are received for dataset D6 for the same parameter setting. This can be
explained by the fact that the data points in D6 which belong to normal clusters are
more densly packed with less single points on the cluster boundaries compared to the
data points in D5. Hence, less normal data points are misclassified as outliers.
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(a) DBSCAN of D5 with Eps = 0.05 and
MinPts = 10. DetectionRate = 0.64 and
FalseAlarmRate = 0.047.
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(b) DBSCAN of D6 with Eps = 0.05 and
MinPts = 10. DetectionRate = 0.7 and
FalseAlarmRate = 0.006

Figure 4.4: DBSCAN of datasets D5 and D6 (table 3.1). Each color represents an own
cluster. Data points in the noise cluster are marked as black dots. True
outliers are marked as dots with diamond shape.
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Comparing the plots of the belief function approach in figure 4.1 (d) and DBSCAN in
figure 4.4 (a) it can be seen that DBSCAN is a better choice for outlier detection because
even with a badly chosen parameter setting it only misclassifies data points that are no
core points of a cluster.

The LDF gives a degree of outlyingness for every data point in the dataset. Figure 4.5
shows the results of the LDF approach applied to dataset D5 using different parameter
settings for SGDE. It can be seen that different settings for the parameters of SGDE
have an influence on the result of LDF because the computed densities are different.

Figure 4.6 shows the evaluation of the result of LDF in figure 4.5 (a). The average
precision is AP = 0.509, the adjusted average precision is Adjusted AP = 0.483 and ROC
AUC = 0.875.

Figure 4.7 shows the evaluation of LDF applied to dataset D9. For this dataset, SGDE
uses 849 grid points to perform density estimation. The average precision is AP = 0.737,
the adjusted average precision is Adjusted AP = 0.723 and ROC AUC = 0.989. The
Adjusted P@n curve in figure 4.7 (b) tells that all outlier points are ranked in the top
n ≈ 100 ranks. Furthermore, the high P@n values for the first n ≈ 100 ranks and the
high ROC AUC value give information about a nearly perfect outlier ranking. This
means that LDF performed well for dataset D9 with a batch size of 50 and 10 refinement
steps.

The LOF depends on the parameter k, which is the size of the local neighborhood of
a data point. Figure 4.8 shows the LOF computed with different values for k. It can be
clearly seen that a higher value for k gives tighter boundaries for the regions of the LOF
values. Hence, outlier detection is improved, but the computing time will take longer.

Comparing the plot for the LDF in figure 4.5 (a) and the plot for the LOF in fig-
ure 4.8 (d) it can be seen that for this dataset the LOF is a good technique to detect
outliers around all clusters. In this case, the result of LDF is similar to the result of LOF
and both methods achieve good results for outlier detection.

The new approach presented in this thesis focuses on the density of a data point
compared to the arithmetic mean of the densities of all data points and the arithmetic
mean of the densities of the data points in the same cluster, respectively. Figure 4.9
shows the results of the new approach applied to dataset D5 using different parameter
settings for DBSCAN. SGDE uses 295 grid points after 10 refinement steps to perform
density estimation. The results in figure 4.9 (a) are based on the execution of DBSCAN
with Eps = 0.05 and MinPts = 10. DBSCAN finds 3 clusters besides the noise cluster
and it achieves an average Silhouette Coefficient of 0.616. Furthermore, the obtained
values for the detection rate and the false alarm rate are DetectionRate = 0.64 and
FalseAlarmRate = 0.047. Based on this results of DBSCAN, the new approach achieves
an average precision of AP = 0.486, an adjusted average precision of Adjusted AP = 0.459
and ROC AUC = 0.863. The corresponding P@n and Adjusted P@n curves can be seen
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(a) LDF with 295 grid points and batch size 50.
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(b) LDF with 317 grid points and batch size 200.

Figure 4.5: LDF of dataset D5 (table 3.1) with different batch sizes for the SGDE learner,
m = 30 and c = 0.1. The start level of the sparse grids is n = 3 and 10
refinement steps are performed. True outliers are marked as big dots with
diamond shape.
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(b) Adjusted P@n.

Figure 4.6: P@n and Adjusted P@n for the LDF applied to dataset D5 (table 3.1). The
fast decrease of the Adjusted P@n curve in the range of n ∈ [0, 50] tells
that some normal points have a higher outlier rank than true outliers. The
increasing value after this range tells that more and more outliers are ranked
one after another. The fast decrease of the Adjusted P@n value for n ≈ 975
gives information that a lot of normal points are ranked in this range of n.
An Adjusted P@n value of 1 tells that all outliers are ranked in the top n
ranks.
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(a) P@n.
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(b) Adjusted P@n.

Figure 4.7: P@n and Adjusted P@n for the LDF applied to dataset D9 (table 3.1). The
high P@n values in the range n ∈ [0, 100] and the Adjusted P@n curve,
which attains a value of Adjusted P@n = 1 at n ≈ 100, give information
about a good outlier ranking and a good performance of the LDF for this
dataset with respect to the corresponding parameter settings, e.g. the batch
size is chosen to 50 and SGDE performs 10 refinement steps.
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(a) LOF with k = 20.
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(b) LOF with k = 40.
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(c) LOF with k = 60.
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(d) LOF with k = 80.

Figure 4.8: LOF of dataset D5 (table 3.1) with different values for k. White dots are
true inliers and red dots are true outliers. The darker the blue background
becomes, the higher the LOF value and the more likely is a data point an
outlier.
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(a) Based on DBSCAN with Eps = 0.05 and MinPts = 10.
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(b) Based on DBSCAN with Eps = 0.05 and MinPts = 40.

Figure 4.9: Comparison of the new approach applied to dataset D5 (table 3.1) based on
different parameter settings for DBSCAN. True outliers are marked as big
dots with diamond shape.
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in figure 4.10 (a) and (b).
Figure 4.9 (b) shows the results of the new approach based on DBSCAN with

Eps = 0.05 and MinPts = 40. Using this parameter setting, DBSCAN finds 3 clusters
with an average Silhouette Coefficient of 0.342. Furthermore, it achieves a detection
rate of DetectionRate = 0.86 and a false alarm rate of FalseAlarmRate = 0.303. Based on
this results of DBSCAN, the new approach performs at an average precision of AP =
0.490, an adjusted average precision of 0.463 and ROC AUC = 0.883.

Comparing figure 4.9 (a) and (b), it can be seen that the clustering of DBSCAN has
an influence on the result of the new approach. Figure 4.10 shows the evalutation of
figure 4.9 (a) and (b). The result in figure 4.9 (b) is caused by a better outlier ranking
because all outliers are detected at a lower rank n than in figure 4.9 (a).
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(a) P@n for figure 4.9 (a).
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(b) Adjusted P@n for figure 4.9 (a).

200 400 600 800 1000
n

0.0

0.2

0.4

0.6

0.8

1.0

P@
n

(c) P@n for figure 4.9 (b).
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(d) Adjusted P@n for figure 4.9 (b).

Figure 4.10: P@n and Adjusted P@n curves for the new approach based on figure 4.9 (a)
and (b). The decrease of both Adjusted P@n curves in the range of
n ∈ [800, 999] is caused by many normal data points which have lower
outlier ranks than actual outliers. The result in figure 4.9 (b) has a better
performance because all outliers are detected at a lower rank n, according
to the Adjusted P@n curve in (d).

The Shuttle dataset in table 4.1 is a dataset for which the DBSCAN algorithm achieved
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good results in comparison to other real datasets from Campos et al. [5], but in general
the results are relatively bad. Figure 4.11 shows the comparison between the detection
rate and false alarm rate for DBSCAN, LDF and the new approach applied to the
Shuttle dataset.

It turns out that the used real datasets perform relatively bad with density-based
methods in general. One cause for this is the fact that most of the datasets contain
only a small number of data points in contrast to a large number of dimensions. As a
consequence, the few data points are widely spread over the data space which is one
of the disadvantages of density-based methods. Furthermore, lots of the real datasets
from Campos et al. [5] consider whole classes/clusters as outliers and for algorithms
like DBSCAN or other density-based approaches, data points in a normal cluster cannot
be detected as such.
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Figure 4.11: Comparison between DBSCAN, LDF and the new approach applied to the
Shuttle dataset (table 4.1). The detection rate (blue) and false alarm rate
(red) for DBSCAN either depend on Eps or on MinPts and for LDF and the
new approach it depends on the k most likely outliers, with respect to the
ranking. Additionally, (a) and (b) show the avarage Silhouette coefficient
(yellow) for the clustering performed by DBSCAN. It does not outgrow
0.6 and that means that only a moderate clustering is performed. The
stepwise increasing detection rates in (c) and (d) tell that outliers are found
in different steps. Values for k where the detection rate is constant are
caused by the effect of misclassifying normal data points as outliers. This
assumption is supported by linear increasing false alarm rates.
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5 Conclusion

In this thesis, different outlier detection techniques and measures are presented. Some
of these methods use SGDE as a metric. During the workflow of the thesis, these
approaches were implemented in a framework which now can be used to detect
outliers based on SGDE. Based on the results in chapter 4, the belief function approach
can be used to obtain reasonable results, but they depend on the structure of the
dataset. During the evaluation of the results, it turned out that LDF in combination
with SGDE was the most efficient technique for finding outliers. Furthermore, the
compution of the LDF for a dataset with 1000 data points was performed in a few
seconds and reasonable values were received. Compared to LDF, the new approach
also shows relatively good results. A very important point to keep in mind is that
datasets with a high sparsity are not suitable for density-based outlier detection or
clustering techniques. The real datasets used in the thesis are very sparse and therefore
the corresponding results turned out be relatively bad. In general, for the artificial
datasets it turned out, that outlier detection with SGDE is a good approach and it is
worthwhile to put further effort into this approach. Additionally to the work done in
this thesis, other clustering algorithms could be modified in a way to take advantage
for outlier detection like the modification of the Silhouette Coefficient plot explained
in section 3.3.5. For the future, it might be interesting to compute the new approach
presented in this thesis with other methods than SGDE and DBSCAN, e.g. the density
values could be calculated with LDE and a different algorithm than DBSCAN could be
used to perform clustering. Future work with the same purpose as this thesis could
also try lots of more different settings for SGDE and other methods to improve the
results. Furthermore, the presented techniques can be applied to many other real
datasets which are suitable for density-based methods.

42



List of Figures

2.1 One-dimensional hierarchical basis functions . . . . . . . . . . . . . . . . 4
2.2 One-dimensional piecewise linear interpolation . . . . . . . . . . . . . . 5
2.3 Two-dimensional sparse grid . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Sparse grids refinement process . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Density function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Sparse grids density estimation . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 DBSCAN with different parameter settings computed for dataset D1 . . 12

3.1 Dataset D1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Dataset D2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Datasets D3 and D4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Difference between the datasets D1 and D5 . . . . . . . . . . . . . . . . . 19
3.5 Silhouette Coefficient plot of dataset D2 . . . . . . . . . . . . . . . . . . . 24
3.6 Andrews curves plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Belief function approach with different thresholds . . . . . . . . . . . . . 31
4.2 Belief function evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Silhouette Coefficient plot of dataset D2 . . . . . . . . . . . . . . . . . . . 32
4.4 DBSCAN of datasets D5 and D6 . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 Comparison of LDF with different SGDE parameter settings . . . . . . . 35
4.6 Evaluation of LDF for dataset D5 . . . . . . . . . . . . . . . . . . . . . . . 36
4.7 Evaluation of LDF for dataset D9 . . . . . . . . . . . . . . . . . . . . . . . 36
4.8 Comparison of LOF with different values for k . . . . . . . . . . . . . . . 37
4.9 Comparison of the new approach based on different parameter settings

for DBSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.10 Evaluation of the new approach . . . . . . . . . . . . . . . . . . . . . . . 39
4.11 Comparison using a real dataset . . . . . . . . . . . . . . . . . . . . . . . 41

43



Bibliography

[1] C. C. Aggarwal and P. S. Yu. “Outlier Detection for High Dimensional Data.” In:
SIGMOD Rec. 30.2 (May 2001), pp. 37–46. issn: 0163-5808. doi: 10.1145/376284.
375668.

[2] D. F. Andrews. “Plots of High-Dimensional Data.” In: Biometrics 28.1 (1972),
pp. 125–136. issn: 0006341X, 15410420.

[3] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. “OPTICS: Ordering
Points to Identify the Clustering Structure.” In: SIGMOD Rec. 28.2 (June 1999),
pp. 49–60. issn: 0163-5808. doi: 10.1145/304181.304187.

[4] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. “LOF: Identifying Density-
based Local Outliers.” In: Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’00. Dallas, Texas, USA: ACM, 2000,
pp. 93–104. isbn: 1-58113-217-4. doi: 10.1145/342009.335388.

[5] G. O. Campos, A. Zimek, J. Sander, R. J. G. B. Campello, B. Micenková, E. Schubert,
I. Assent, and M. E. Houle. “On the evaluation of unsupervised outlier detection:
measures, datasets, and an empirical study.” In: Data Mining and Knowledge
Discovery 30.4 (July 2016), pp. 891–927. issn: 1573-756X. doi: 10.1007/s10618-
015-0444-8.

[6] D. D. and S. S. Babu. “Methods to detect different types of outliers.” In: 2016
International Conference on Data Mining and Advanced Computing (SAPIENCE). Mar.
2016, pp. 23–28. doi: 10.1109/SAPIENCE.2016.7684114.

[7] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. “A density-based algorithm for
discovering clusters in large spatial databases with noise.” In: AAAI Press, 1996,
pp. 226–231.

[8] D. M. Hawkins. “Introduction.” In: Identification of Outliers. Dordrecht: Springer
Netherlands, 1980, pp. 1–12. isbn: 978-94-015-3994-4. doi: 10.1007/978-94-015-
3994-4_1.

[9] V. Hodge and J. Austin. “A Survey of Outlier Detection Methodologies.” In:
Artif. Intell. Rev. 22.2 (Oct. 2004), pp. 85–126. issn: 0269-2821. doi: 10.1023/B:
AIRE.0000045502.10941.a9.

44

https://doi.org/10.1145/376284.375668
https://doi.org/10.1145/376284.375668
https://doi.org/10.1145/304181.304187
https://doi.org/10.1145/342009.335388
https://doi.org/10.1007/s10618-015-0444-8
https://doi.org/10.1007/s10618-015-0444-8
https://doi.org/10.1109/SAPIENCE.2016.7684114
https://doi.org/10.1007/978-94-015-3994-4_1
https://doi.org/10.1007/978-94-015-3994-4_1
https://doi.org/10.1023/B:AIRE.0000045502.10941.a9
https://doi.org/10.1023/B:AIRE.0000045502.10941.a9


Bibliography

[10] H.-P. Kriegel, P. Kröger, J. Sander, and A. Zimek. “Density-based clustering.”
In: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1.3 (),
pp. 231–240. doi: 10.1002/widm.30. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1002/widm.30.

[11] L. J. Latecki, A. Lazarevic, and D. Pokrajac. “Outlier Detection with Kernel
Density Functions.” In: Machine Learning and Data Mining in Pattern Recognition.
Ed. by P. Perner. Berlin, Heidelberg: Springer Berlin Heidelberg, July 2007, pp. 61–
75. isbn: 978-3-540-73499-4.

[12] C. .-.-. Lu, D. Chen, and Y. Kou. “Algorithms for spatial outlier detection.” In:
Third IEEE International Conference on Data Mining. Nov. 2003, pp. 597–600. doi:
10.1109/ICDM.2003.1250986.

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn: Machine
Learning in Python.” In: Journal of Machine Learning Research 12 (2011), pp. 2825–
2830.

[14] B. Peherstorfer. “Model Order Reduction of Parametrized Systems with Sparse
Grid Learning Techniques.” Dissertation. Department of Informatics, Technische
Universität München, Oct. 2013.

[15] D. Pflüger. Spatially Adaptive Sparse Grids for High-Dimensional Problems. München:
Verlag Dr. Hut, Aug. 2010. isbn: 9783868535556.

[16] P. J. Rousseeuw. “Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis.” In: Journal of Computational and Applied Mathematics 20 (1987),
pp. 53–65. issn: 0377-0427. doi: https://doi.org/10.1016/0377-0427(87)
90125-7.

[17] Y. Xu, N. Xu, and X. Feng. “A New Outlier Detection Algorithm Based on Kernel
Density Estimation for ITS.” In: 2016 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData). Dec. 2016, pp. 258–262. doi: 10.1109/iThings-GreenCom-CPSCom-
SmartData.2016.67.

45

https://doi.org/10.1002/widm.30
https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.30
https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.30
https://doi.org/10.1109/ICDM.2003.1250986
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.67
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.67

	Abstract
	Contents
	Introduction
	Background
	Sparse Grids
	Density Estimation with Sparse Grids
	Outlier Detection with Clustering Methods
	Density-based Clustering
	DBSCAN
	Local Density Estimate
	Outliers

	Outlier Detection Techniques
	Outlier Detection Measures

	Implementation
	Data Preprocessing
	Data Generation
	Data Normalization

	Data Processing
	Outlier Detection Techniques
	Flat Clustering Approach
	Belief Function
	Local Density Factor
	Local Outlier Factor
	Silhouette Coefficient
	Own Approach

	Data Postprocessing
	Outlier Detection Measures
	Detection Rate and False Alarm Rate
	Precision at n
	Adjusted Precision at n
	Average Precision
	Adjusted Average Precision
	ROC AUC

	Data Visualization Techniques
	Andrews Curves


	Evaluation
	Conclusion
	List of Figures
	Bibliography

