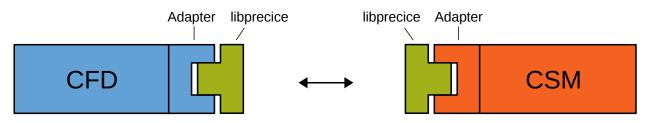


Time Stepping for Partitioned Multi-Physics

Benjamin Rüth Technical University of Munich Informatics Chair of Scientific Computing in Computer Science Jülich, 20. October 2017

Tur Uhrenturm

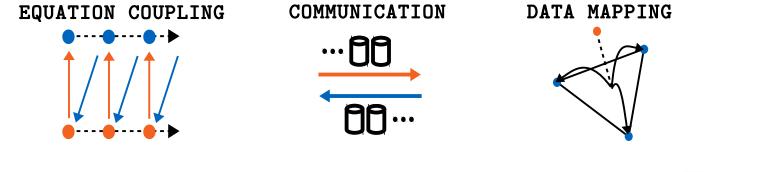


preCICE adapters for connecting solvers (e.g. OpenFOAM and CalculiX²)

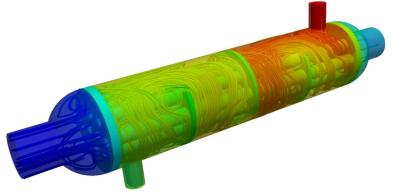
Resources

- http://www.precice.org
- written in C++
- API for other languages available (Python, Fortran)
- OpenSource, LGPL (https://github.com/precice)

¹Bungartz, H.-J., et al.(2016). preCICE – A Fully Parallel Library for Multi-Physics Surface Coupling. ²Uekermann, B., et al. (2017). Official preCICE Adapters for Standard Open-Source Solvers.



- Equation coupling: quasi-Newton acceleration schemes
- Communication: fully parallel, MPI or TCP/IP
- Data Mapping: nearest neighbor/projection, radial basis function interpolation



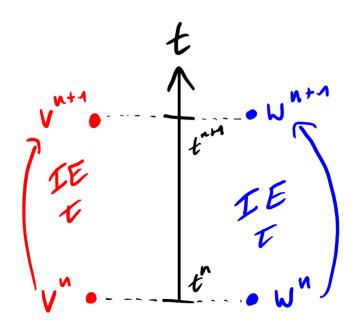
Shell and tube heat exchanger¹

¹Cheung Yau, L. (2016). Conjugate Heat Transfer with the Multiphysics Coupling Library preCICE.

Time-stepping challenges

Simple

Participants **A** and **B** use identical timestep size and (high-order) solvers.



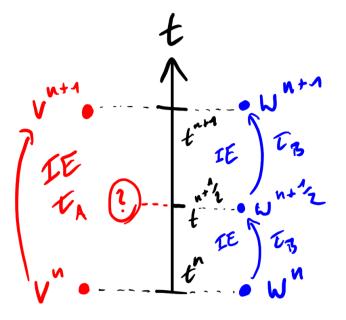
Time-stepping challenges

Simple

Participants **A** and **B** use identical timestep size and (high-order) solvers.

Subcycling

Participant **A** uses a time step size twice as big as the time step size of participant **B** $\tau_A = 2\tau_B$.



Time-stepping challenges

Simple

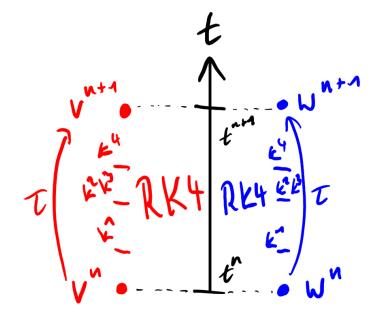
Participants **A** and **B** use identical timestep size and (high-order) solvers.

Subcycling

Participant **A** uses a time step size twice as big as the time step size of participant **B** $\tau_A = 2\tau_B$.

Substepping

Runge Kutta 4 needs function evaluations at $t^{n+\frac{1}{2}}$, which are not directly accessible.



Time-stepping challenges

Simple

Participants **A** and **B** use identical timestep size and (high-order) solvers.

Subcycling

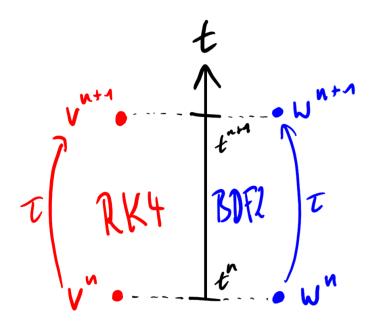
Participant **A** uses a time step size twice as big as the time step size of participant **B** $\tau_A = 2\tau_B$.

Substepping

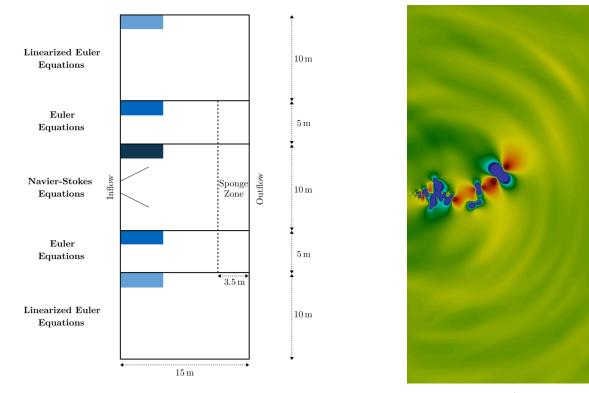
Runge Kutta 4 needs function evaluations at $t^{n+\frac{1}{2}}$, which are not directly accessible.

Inhomogeneous time stepping

Participants use different time stepping schemes.

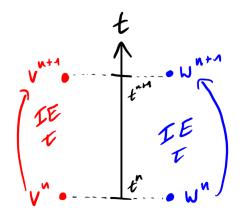


Time-stepping challenges



Three-Field Flow Coupling around a 2D Subsonic Free Jet¹

¹Uekermann, B. (2016). Partitioned Fluid-Structure Interaction on Massively Parallel Systems.



- Convergence order cannot be maintained¹
- Order degradation to $\mathscr{O}(\tau)$
- Reproduce and quantify this effect
- Show up possible solutions

¹*Blom, D. S., et al.(2015). On parallel scalability aspects of strongly coupled partitioned fluid-structure-acoustics interaction.* Benjamin Rüth (TUM) | Time Stepping for Partitioned Multi-Physics

1D heat transport problem

Heat Transport equation

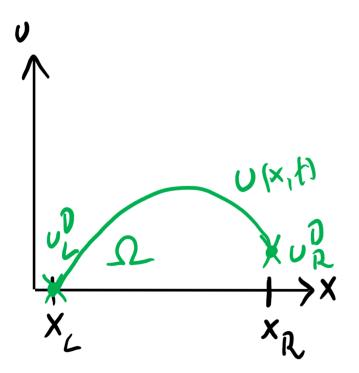
$$\frac{\partial u(x,t)}{\partial t} = \alpha \frac{\partial^2 u(x,t)}{\partial x^2}, x \in \Omega, t \in \mathbb{R}^+$$

Dirichlet boundary conditions

$$u(x = x_L, t) = u_L^D, u(x = x_R, t) = u_R^D$$

Initial condition

$$u(x,t=0)=u_0(x)$$



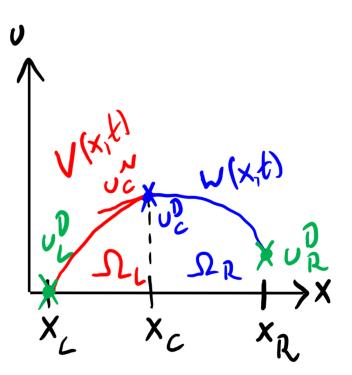
Partitioned heat transport equation

Left heat transport equation

$$\begin{aligned} \frac{\partial}{\partial t} v(x,t) &= \alpha \frac{\partial^2}{\partial x^2} v(x,t), x \in \Omega_L, t \in \mathbb{R}^+ \\ u_L(x_L,t) &= u_L^D, \ \frac{\partial}{\partial x} v(x_C,t) = u_C^N(t) \\ v(x,0) &= u_0(x) \end{aligned}$$

Right heat transport equation

$$egin{aligned} &rac{\partial}{\partial t}w(x,t)=lpharac{\partial^2}{\partial x^2}w(x,t), x\in\Omega_R, t\in\mathbb{R}^+\ &w(x_C,t)=u^D_C(t),\ w(x_R,t)=u^D_R\ &w(x,0)=u_0(x) \end{aligned}$$



Time stepping

Explicit Euler

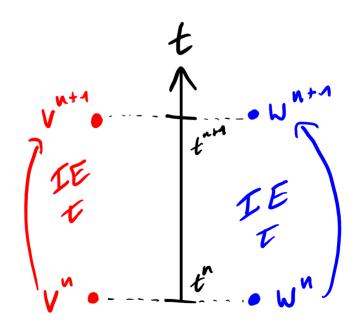
$$\boldsymbol{u}^{n+1} = \boldsymbol{u}^n + \tau f(\boldsymbol{u}^n, t_n)$$

Implicit Euler

$$u^{n+1} = u^n + \tau f(u^{n+1}, t_{n+1})$$

Trapezoidal Rule

$$\boldsymbol{u}^{n+1} = \boldsymbol{u}^n + \frac{\tau}{2} \left[f(\boldsymbol{u}^n, t_n) + f(\boldsymbol{u}^{n+1}, t_{n+1}) \right]$$



Coupling schemes

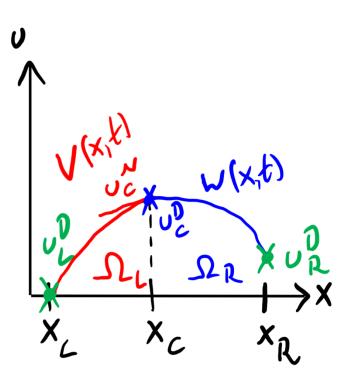
Dirichlet-Neumann coupling

Boundary condition for v

$$u_C^N = \frac{\partial}{\partial x} w(x_C)$$

Boundary condition for w

$$u_C^D = v(x_C)$$



Coupling schemes

Dirichlet-Neumann coupling

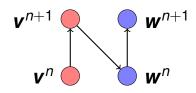
Boundary condition for v

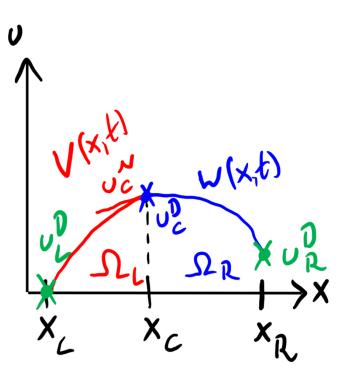
$$u_C^N = \frac{\partial}{\partial x} w(x_C)$$

Boundary condition for w

$$u_C^D = v(x_C)$$

Explicit coupling





Coupling schemes

Dirichlet-Neumann coupling

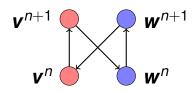
Boundary condition for v

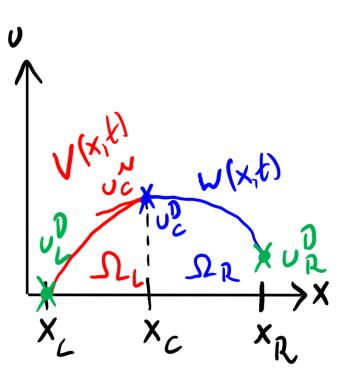
$$u_C^N = \frac{\partial}{\partial x} w(x_C)$$

Boundary condition for w

$$u_C^D = v(x_C)$$

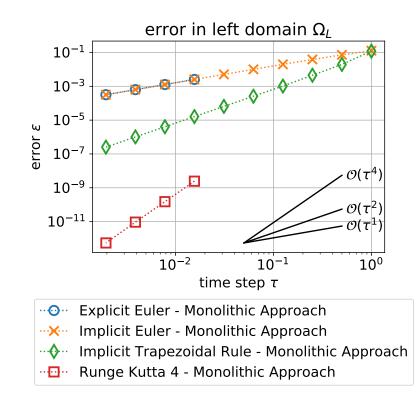
Implicit coupling



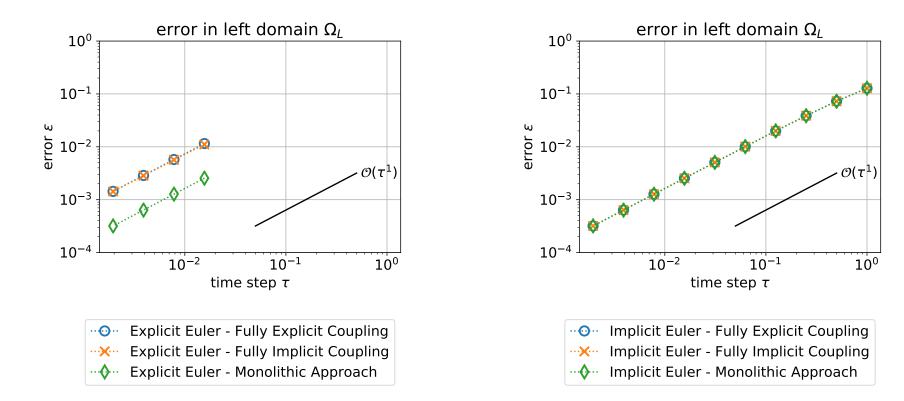


Convergence order in time

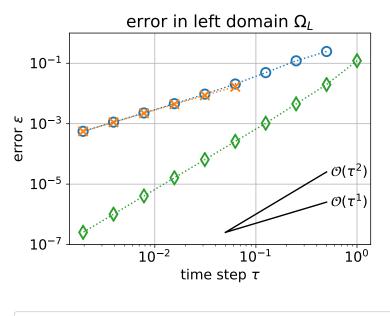
- use constant spatial meshwidth h
- refine temporal meshwidth au
- compare to monolithic reference solution \boldsymbol{u}^n with fine τ



Explicit and implicit Euler

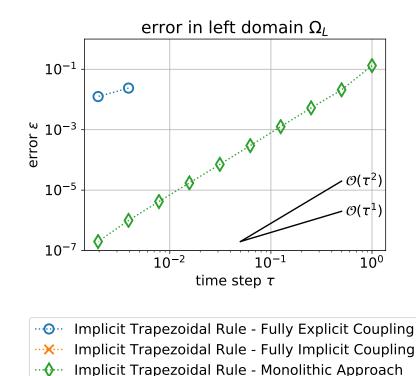


- order reduced to $\mathscr{O}(\tau)$
- *h* = 0.2
- stability problems for Fully implicit coupling



Implicit Trapezoidal Rule - Fully Explicit Coupling
 Implicit Trapezoidal Rule - Fully Implicit Coupling
 Implicit Trapezoidal Rule - Monolithic Approach

- order reduced to $\mathscr{O}(\tau)$
- *h* = 0.01
- stability problems for Fully implicit coupling
- stability problems for Fully explicit coupling



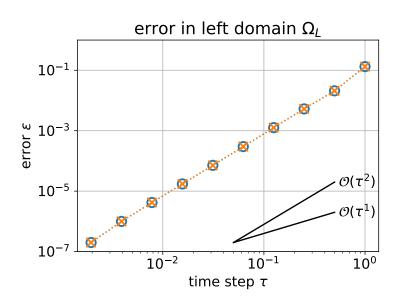
	update se	cheme	stability	order
fully explicit	$\mathbf{v}^{n+1} = \mathbf{v}^n + rac{\tau}{2} \left[f_v(\mathbf{v}^n, t_n) \right]$	$)+f_{\nu}(\boldsymbol{v}^{n+1},t_{n+1})]$	depends on $ au$	$\mathscr{O}(\tau)$
	$\boldsymbol{v}^{n+1} = \boldsymbol{v}^n + \frac{\tau}{2} \left[f_v(\boldsymbol{v}^n, t_n) \right]$ $\boldsymbol{w}^{n+1} = \boldsymbol{w}^n + \frac{\tau}{2} \left[f_w(\boldsymbol{w}^n, t_n) \right]$	$)+f_{w}(w^{n+1},t_{n+1})$]	- (')
fully implicit	$\mathbf{v}^{n+1} = \mathbf{v}^n + \frac{\tau}{2} \left[f_v(\mathbf{v}^n, t_n) \right]$	$)+f_{v}(\mathbf{v}^{n+1},t_{n+1})]$	depends on $ au$	$\mathscr{O}(\tau)$
	$\boldsymbol{v}^{n+1} = \boldsymbol{v}^n + \frac{\tau}{2} \left[f_{\boldsymbol{v}}(\boldsymbol{v}^n, t_n) \right]$ $\boldsymbol{w}^{n+1} = \boldsymbol{w}^n + \frac{\tau}{2} \left[f_{\boldsymbol{w}}(\boldsymbol{w}^n, t_n) \right]$	$)+f_{w}(w^{n+1},t_{n+1})$]	0 (0)
	\mathbf{v}^{n+1} \mathbf{w}^{n+1} \mathbf{w}^n	\mathbf{v}^{n+1}	w ⁿ⁺¹ w ⁿ	

	update scheme	stability	order
fully explicit	$\mathbf{v}^{n+1} = \mathbf{v}^{n} + \frac{\tau}{2} \left[f_{v}(\mathbf{v}^{n}, t_{n}, \mathbf{c}_{n}) + f_{v}(\mathbf{v}^{n+1}, t_{n+1}, \mathbf{c}_{n}) \right]$ $\mathbf{w}^{n+1} = \mathbf{w}^{n} + \frac{\tau}{2} \left[f_{w}(\mathbf{w}^{n}, t_{n}, \mathbf{c}_{n+1}) + f_{w}(\mathbf{w}^{n+1}, t_{n+1}, \mathbf{c}_{n+1}) \right]$	depends on $ au$	$\mathscr{O}(au)$
fully implicit	$\mathbf{v}^{n+1} = \mathbf{v}^n + \frac{\tau}{2} \left[f_v(\mathbf{v}^n, t_n, \mathbf{c}_{n+1}) + f_v(\mathbf{v}^{n+1}, t_{n+1}, \mathbf{c}_{n+1}) \right]$ $\mathbf{w}^{n+1} = \mathbf{w}^n + \frac{\tau}{2} \left[f_w(\mathbf{w}^n, t_n, \mathbf{c}_{n+1}) + f_w(\mathbf{w}^{n+1}, t_{n+1}, \mathbf{c}_{n+1}) \right]$	depends on $ au$	$\mathscr{O}(au)$
v^{n+1} w^{n+1} v^{n+1} w^{n+1} w^{n+1}			

	update scheme	stability	order
fully explicit	$\boldsymbol{v}^{n+1} = \boldsymbol{v}^n + \frac{\tau}{2} \left[f_v(\boldsymbol{v}^n, t_n, \boldsymbol{c}_n) + f_v(\boldsymbol{v}^{n+1}, t_{n+1}, \boldsymbol{c}_n) \right]$	depends on $ au$	$\mathscr{O}(\tau)$
	$\boldsymbol{w}^{n+1} = \boldsymbol{w}^{n} + \frac{\tau}{2} \left[f_{w}(\boldsymbol{w}^{n}, t_{n}, \boldsymbol{c}_{n+1}) + f_{w}(\boldsymbol{w}^{n+1}, t_{n+1}, \boldsymbol{c}_{n+1}) \right]$		0 (•)
fully implicit	$\boldsymbol{v}^{n+1} = \boldsymbol{v}^n + \frac{\tau}{2} \left[f_{v}(\boldsymbol{v}^n, t_n, \boldsymbol{c}_{n+1}) + f_{v}(\boldsymbol{v}^{n+1}, t_{n+1}, \boldsymbol{c}_{n+1}) \right]$	depends on $ au$	$\mathcal{O}(\tau)$
	$\boldsymbol{w}^{n+1} = \boldsymbol{w}^{n} + \frac{\tau}{2} \left[f_{w}(\boldsymbol{w}^{n}, t_{n}, \boldsymbol{c}_{n+1}) + f_{w}(\boldsymbol{w}^{n+1}, t_{n+1}, \boldsymbol{c}_{n+1}) \right]$		0(1)
semi explicit-implicit	$\boldsymbol{v}^{n+1} = \boldsymbol{v}^n + \frac{\tau}{2} \left[f_v(\boldsymbol{v}^n, t_n, \boldsymbol{c}_n) + f_v(\boldsymbol{v}^{n+1}, t_{n+1}, \boldsymbol{c}_{n+1}) \right]$???	???
	$\boldsymbol{w}^{n+1} = \boldsymbol{w}^n + \frac{\tau}{2} \left[f_w(\boldsymbol{w}^n, t_n, \boldsymbol{c}_n) + f_w(\boldsymbol{w}^{n+1}, t_{n+1}, \boldsymbol{c}_{n+1}) \right]$		

Semi explicit-implicit coupling

- order $\mathscr{O}\left(\tau^2\right)$ maintained for semi explicit-implicit coupling
- no stability problems for semi explicit-implicit coupling
- *h* = 0.01

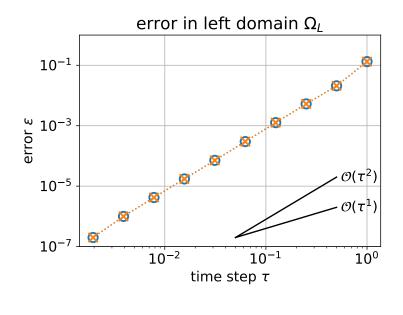


•••••• Trapezoidal Rule - Monolithic Approach•••••• Trapezoidal Rule - Semi Implicit Explicit Coupling

Semi explicit-implicit coupling

- order $\mathscr{O}\left(\tau^2\right)$ maintained for semi explicit-implicit coupling
- no stability problems for semi explicit-implicit coupling
- *h* = 0.01

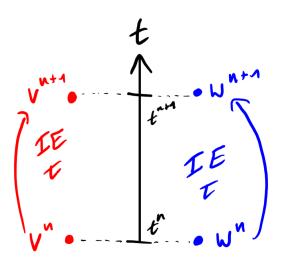
	stability	order
fully explicit	depends on $ au$	$\mathscr{O}(au)$
fully implicit	depends on $ au$	$\mathscr{O}(au)$
semi explicit-implicit	unconditionally	$\mathscr{O}\left(au^{2} ight)$



Trapezoidal Rule - Monolithic Approach
 Trapezoidal Rule - Semi Implicit Explicit Coupling

Conclusions and Outlook

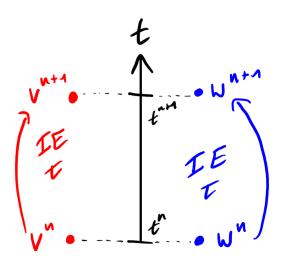
Order degradation of trapezoidal rule



- order degradation to $\mathscr{O}(\tau)$ for the trapezoidal rule with standard coupling schemes
- order $\mathscr{O}\left(\tau^2\right)$ using a specialized coupling scheme

Conclusions and Outlook

Order degradation of trapezoidal rule



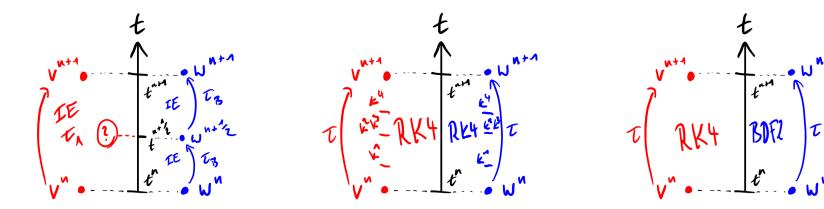
coupling	time-stepping	order
semi	Trapezoidal rule	$\mathscr{O}(\tau^2)$
predictor	Heun	$\mathscr{O}(\tau^2)$
predictor	Runge Kutta 2	$\mathscr{O}(\tau^2)$
interpolated	Midpoint rule	$\mathscr{O}(\tau^2)$
???	Runge Kutta 4	$\mathscr{O}(\tau)$

- order degradation to $\mathscr{O}(\tau)$ for the trapezoidal rule with standard coupling schemes
- order $\mathscr{O}\left(au^2
 ight)$ using a specialized coupling scheme
- similar experiments for other higher order schemes

Conclusions and Outlook

Partitioned multi-physics time stepping

Today	Outlook
identical timesteps	subcycling
simple schemes	substepping
identical time stepping	inhomogeneous time stepping
$\mathscr{O}\left(au^{2} ight)$	Higher order
taylored schemes	general solution strategy
1D heat transport problem	real-world scenario



N

Appendix Other 2nd order schemes

• Explicit Heun – predictor

$$\boldsymbol{u}_{p}, \boldsymbol{c}_{p} = \boldsymbol{u}^{n} + \tau f(\boldsymbol{u}^{n}, t_{n}, \boldsymbol{c}_{n})$$
$$\boldsymbol{u}^{n+1} = \boldsymbol{u}^{n} + \frac{\tau}{2} [f(\boldsymbol{u}^{n}, t_{n}, \boldsymbol{c}_{n}) + f(\boldsymbol{u}_{p}, t_{n+1}, \boldsymbol{c}_{p})]$$

• Explicit Runge Kutta 2 – predictor

$$k_{1} = \tau f(\boldsymbol{u}^{n}, t_{n}, \boldsymbol{c}_{n})$$
$$\boldsymbol{u}_{p}, \boldsymbol{c}_{p} = \boldsymbol{u}^{n} + \frac{1}{2}k_{1}$$
$$k_{2} = \tau f\left(\boldsymbol{u}_{p}, t_{n+\frac{1}{2}}, \boldsymbol{c}_{p}\right)$$
$$\boldsymbol{u}^{n+1} = \boldsymbol{u}^{n} + k_{2}$$

• Implicit midpoint rule – interpolation

$$\boldsymbol{u}^{n+1}, \boldsymbol{c}_{n+1} = \boldsymbol{u}^n + \tau f\left(\frac{\boldsymbol{u}^n + \boldsymbol{u}^{n+1}}{2}, t_{n+\frac{1}{2}}, \frac{\boldsymbol{c}_n + \boldsymbol{c}_{n+1}}{2}\right)$$

Appendix Runge Kutta 4

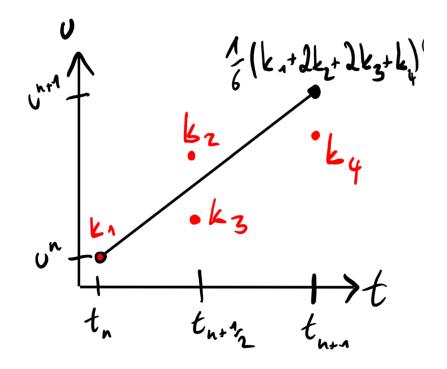
$$k_{1} = \tau f(\boldsymbol{u}^{n}, t_{n})$$

$$k_{2} = \tau f\left(\boldsymbol{u}^{n} + \frac{1}{2}k_{1}, t_{n+\frac{1}{2}}\right)$$

$$k_{3} = \tau f\left(\boldsymbol{u}^{n} + \frac{1}{2}k_{2}, t_{n+\frac{1}{2}}\right)$$

$$k_{4} = \tau f\left(\boldsymbol{u}^{n} + k_{3}, t_{n}\right)$$

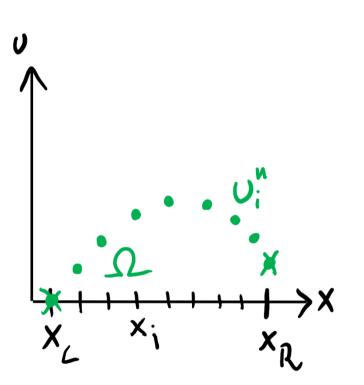
$$\boldsymbol{u}^{n+1} = \boldsymbol{u}^{n} + \frac{1}{6}\left(k_{1} + 2k_{2} + 2k_{3} + k_{4}\right)$$



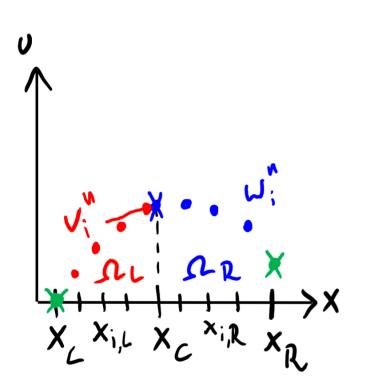
Appendix

Spatial discretization & coupling condition

Monolithic solution



Partitioned solution



Appendix

Spatial discretization & coupling condition

Dirichlet-Neumann coupling

Boundary condition for w

$$u_C^D(t) = v(x_C)$$

Boundary condition for v

$$u_C^N(t) = \frac{\partial}{\partial x} w(x_C)$$

Coupling error

We only consider the error for the left participant

$$\varepsilon^n = \left|\sum_i u_i^n - v_i^n\right|, \text{ for } x_i \in \Omega_L$$

Coupled solution

