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Partitioned multi-physics
preCICE1

CFD

Adapter

CSM

libprecice Adapterlibprecice

preCICE adapters for connecting solvers (e.g. OpenFOAM and CalculiX2)

Resources
• http://www.precice.org
• written in C++
• API for other languages available (Python, Fortran)
• OpenSource, LGPL (https://github.com/precice)

1Bungartz, H.-J., et al.(2016). preCICE – A Fully Parallel Library for Multi-Physics Surface Coupling.
2Uekermann, B., et al. (2017). Official preCICE Adapters for Standard Open-Source Solvers.
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Partitioned multi-physics
preCICE

EQUATION COUPLING COMMUNICATION DATA MAPPING

• Equation coupling:
quasi-Newton acceleration schemes
• Communication:

fully parallel, MPI or TCP/IP
• Data Mapping:

nearest neighbor/projection, radial basis
function interpolation

Shell and tube heat exchanger1

1Cheung Yau, L. (2016). Conjugate Heat Transfer with the Multiphysics Coupling Library preCICE.
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Partitioned multi-physics
Time-stepping challenges

Simple
Participants A and B use identical timestep
size and (high-order) solvers.

Subcycling
Participant A uses a time step size twice as
big as the time step size of participant B
τA = 2τB.

Substepping
Runge Kutta 4 needs function evaluations at
tn+1

2 , which are not directly accessible.

Inhomogeneous time stepping
Participants use different time stepping
schemes.
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Partitioned multi-physics
Time-stepping challenges

Three-Field Flow Coupling around a 2D Subsonic Free Jet1

1Uekermann, B. (2016). Partitioned Fluid-Structure Interaction on Massively Parallel Systems.

Benjamin Rüth (TUM) | Time Stepping for Partitioned Multi-Physics 5



Order degradation for simple time-stepping

• Convergence order cannot be maintained1

• Order degradation to O (τ)

• Reproduce and quantify this effect

• Show up possible solutions

1Blom, D. S., et al.(2015). On parallel scalability aspects of strongly coupled partitioned fluid-structure-acoustics interaction.
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Order degradation for simple time-stepping
1D heat transport problem

Heat Transport equation

∂u(x , t)
∂ t

= α
∂ 2u(x , t)

∂x2 ,x ∈ Ω, t ∈ R+

Dirichlet boundary conditions

u(x = xL, t) = uD
L ,u(x = xR, t) = uD

R

Initial condition

u(x , t = 0) = u0(x)
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Order degradation for simple time-stepping
Partitioned heat transport equation

Left heat transport equation

∂

∂ t
v(x , t) = α

∂ 2

∂x2v(x , t),x ∈ ΩL, t ∈ R+

uL(xL, t) = uD
L ,

∂

∂x
v(xC, t) = uN

C (t)

v(x ,0) = u0(x)

Right heat transport equation

∂

∂ t
w(x , t) = α

∂ 2

∂x2w(x , t),x ∈ ΩR, t ∈ R+

w(xC, t) = uD
C(t), w(xR, t) = uD

R

w(x ,0) = u0(x)

Benjamin Rüth (TUM) | Time Stepping for Partitioned Multi-Physics 8



Order degradation for simple time-stepping
Time stepping

Explicit Euler

un+1 = un + τ f (un, tn)

Implicit Euler

un+1 = un + τ f (un+1, tn+1)

Trapezoidal Rule

un+1 = un +
τ

2

[
f (un, tn) + f (un+1, tn+1)

]
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Order degradation for simple time-stepping
Coupling schemes

Dirichlet-Neumann coupling
Boundary condition for v

uN
C =

∂

∂x
w (xC)

Boundary condition for w

uD
C = v (xC)
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vn
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Order degradation for simple time-stepping
Convergence order in time

• use constant spatial meshwidth h

• refine temporal meshwidth τ

• compare to monolithic reference solution
un with fine τ
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time step 
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error in left domain L

Explicit Euler - Monolithic Approach
Implicit Euler - Monolithic Approach
Implicit Trapezoidal Rule - Monolithic Approach
Runge Kutta 4 - Monolithic Approach
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Order degradation for simple time-stepping
Explicit and implicit Euler
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Order degradation for simple time-stepping
Trapezoidal rule

• order reduced to O (τ)

• h = 0.2

• stability problems for Fully implicit
coupling

• stability problems for Fully explicit
coupling

10 2 10 1 100

time step 

10 7

10 5

10 3

10 1

er
ro

r 

 ( 1)

 ( 2)

error in left domain L

Implicit Trapezoidal Rule - Fully Explicit Coupling
Implicit Trapezoidal Rule - Fully Implicit Coupling
Implicit Trapezoidal Rule - Monolithic Approach

Benjamin Rüth (TUM) | Time Stepping for Partitioned Multi-Physics 13



Order degradation for simple time-stepping
Trapezoidal rule

• order reduced to O (τ)

• h = 0.01

• stability problems for Fully implicit
coupling

• stability problems for Fully explicit
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Order degradation for simple time-stepping
Trapezoidal rule

update scheme stability order

fully explicit
vn+1 = vn + τ

2

[
fv(vn, tn

,cn

) + fv(vn+1, tn+1

,cn

)
]

depends on τ O (τ)

wn+1 = wn + τ

2

[
fw(wn, tn

,cn+1

) + fw(wn+1, tn+1

,cn+1

)
]

fully implicit
vn+1 = vn + τ

2

[
fv(vn, tn

,cn+1

) + fv(vn+1, tn+1

,cn+1

)
]

depends on τ O (τ)

wn+1 = wn + τ

2

[
fw(wn, tn

,cn+1

) + fw(wn+1, tn+1

,cn+1

)
]

vn

vn+1

wn

wn+1

vn

vn+1

wn

wn+1
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semi explicit-implicit

vn+1 = vn + τ

2

[
fv(vn, tn,cn) + fv(vn+1, tn+1,cn+1)

]
??? ???

wn+1 = wn + τ

2

[
fw(wn, tn,cn) + fw(wn+1, tn+1,cn+1)

]
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Order degradation for simple time-stepping
Semi explicit-implicit coupling

• order O
(
τ2
)

maintained for semi
explicit-implicit coupling

• no stability problems for semi
explicit-implicit coupling

• h = 0.01

stability order
fully explicit depends on τ O (τ)
fully implicit depends on τ O (τ)

semi explicit-implicit unconditionally O
(
τ2
)
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Conclusions and Outlook
Order degradation of trapezoidal rule

coupling time-stepping order
semi Trapezoidal rule O

(
τ2
)

predictor Heun O
(
τ2
)

predictor Runge Kutta 2 O
(
τ2
)

interpolated Midpoint rule O
(
τ2
)

??? Runge Kutta 4 O (τ)

• order degradation to O (τ) for the trapezoidal rule with standard coupling schemes
• order O

(
τ2
)

using a specialized coupling scheme

• similar experiments for other higher order schemes
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Conclusions and Outlook
Partitioned multi-physics time stepping

Today Outlook
identical timesteps subcycling

simple schemes substepping
identical time stepping inhomogeneous time stepping

O
(
τ2
)

Higher order
taylored schemes general solution strategy

1D heat transport problem real-world scenario
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Appendix
Other 2nd order schemes

• Explicit Heun – predictor

up,cp = un + τ f (un, tn,cn)

un+1 = un +
τ

2
[f (un, tn,cn) + f (up, tn+1, ,cp)]

• Explicit Runge Kutta 2 – predictor

k1 = τ f (un, tn,cn)

up,cp = un +
1
2

k1

k2 = τ f
(

up, tn+1
2
,cp

)
un+1 = un + k2

• Implicit midpoint rule – interpolation

un+1,cn+1 = un + τ f
(

un + un+1

2
, tn+1

2
,
cn + cn+1

2

)
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Appendix
Runge Kutta 4

k1 = τ f (un, tn)

k2 = τ f
(

un +
1
2

k1, tn+1
2

)
k3 = τ f

(
un +

1
2

k2, tn+1
2

)
k4 = τ f (un + k3, tn)

un+1 = un +
1
6

(k1 + 2k2 + 2k3 + k4)
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Appendix
Spatial discretization & coupling condition

Monolithic solution Partitioned solution
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Appendix
Spatial discretization & coupling condition

Dirichlet-Neumann coupling
Boundary condition for w

uD
C(t) = v (xC)

Boundary condition for v

uN
C (t) =

∂

∂x
w (xC)

Coupling error
We only consider the error for the left
participant

ε
n =

∣∣∣∣∣∑i
un

i −vn
i

∣∣∣∣∣ , for xi ∈ ΩL

Coupled solution
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