Axiomatic Specification and Interactive Verification of Architectural Design Patterns in FACTum

Diego Marmsoler

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigten Dissertation.

Vorsitzender

Prof. Tobias Nipkow, Ph.D.
Prüfende der Dissertation:

1. Prof. Dr. Dr. h.c. Manfred Broy
2. Prof. Dr. Alexander Knapp, Universität Augsburg

Die Dissertation wurde am 09.11.2018 bei der Technischen Universität München eingereicht und durch die Fakultät für Informatik am 23.01.2019 angenommen.

A rchitectural design patterns (ADPs) are an important concept in software engineering used by architects for the design and the analysis of architectures. Usually, an ADP addresses a recurring architectural design problem by constraining an architectural design. To this end, it provides a set of guarantees for architectures implementing the pattern, which formalize correct solutions to the pattern's addressed design problem.
With this thesis, we address the problem that ADPs, as specified in literature, are usually not verified, i.e., it is not verified whether the imposed design constraints indeed lead to an architecture satisfying the claimed guarantee. This entails two undesired consequences: (i) The constraints imposed by a pattern may be too weak to ensure the guarantee. Thus, an architecture satisfying the constraints may indeed fail to correctly solve the intended design problem. Therefore, since patterns are usually selected based on the design problem they address, the architecture may not satisfy its requirements.
(ii) The constraints imposed by a pattern may be too restrictive for the provided guarantee. While unnecessary constraints are not as severe as missing constraints, they might unnecessarily restrict the application scope of an ADP.
Existing approaches to address this problem usually model ADPs in terms of state machines and apply model checking techniques to verify them. In this thesis, however, we argue that pattern specifications are axiomatic, focusing on a few, important properties an architecture must obey. Thus, their verification requires axiomatic reasoning, which is usually not supported by traditional approaches.

With this thesis, we propose an approach which is based on axiomatic specifications and interactive theorem proving. Accordingly, the major outcome of the thesis is FACTUM, a methodology for the axiomatic specification and interactive verification of ADPs. To this end, we provide the following contributions: (i) We provide specification techniques to support the axiomatic specification of patterns. (ii) We formalize a model for dynamic architectures in Isabelle/HOL and provide a sound algorithm to map an axiomatic pattern specification to a corresponding Isabelle/HOL theory. (iii) To support the axiomatic verification of patterns, we introduce a calculus to reason about axiomatic pattern specifications, show its soundness, and implement it in Isabelle/HOL. (iv) We evaluate the approach by means of three well-known ADPs and a larger case study from the domain of Blockchain architectures.
FACTum is implemented in Eclipse/EMF to support the specification and interactive verification of ADPs. Our results suggest that the approach is well-suited to specify and verify patterns for (potentially dynamic) architectures. In our case studies, for example, we discovered 16 different constraints for four different ADPs. Two of them can be considered fundamental but were not mentioned in any specification of these patterns, so far.
In the long term, this research aims to establish a repository of verified ADPs, which can be filled with verification results for existing or even new patterns. When verifying an architecture, an architect can connect to the repository and verify the architecture against the assumptions provided by the ADPs. The corresponding guarantees are then automatically transferred to the architecture, where they can be used to support in its verification.

Acknowledgements

I would like to thank my adviser Prof. Manfred Broy for the freedom in pursuing new, sometimes also unconventional, ideas. His critical look at my work has been a source of constant improvement. I am also grateful for his financial support, which allowed me to present my work to the broader scientific community. I am thankful to Prof. Alexander Knapp for introducing me to the beauty of Formal Methods and reviewing my thesis.
I would also like to thank my fellow doctoral students, in particular the Mensa-Broy group, for their company over the last five years. I would like to thank Vasileios Koutsumpas for his support and friendship. Special thanks go also to Mario Gleirscher, for interesting discussions and fruitful collaborations. I am thankful also to Maximilian Junker, for his valuable feedback on my work and his regular reviews of my papers. I am grateful to Wolfgang Böhm for his support in any project-related concern. Finally, I would like to thank all the anonymous reviewers for their comments on papers related to my thesis.
Last but not least, I would like to thank my parents Irmgard and Andreas for their lifelong support. Thanks go also to my brother Tobias for being my brother. Finally, I am thankful to my wife Veronika, not only for her feedback on my work, but also for her support in any other concern. Thank you!

Accompanying Publications This thesis is accompanied by the following publications:

- Diego Marmsoler. Towards a theory of architectural styles. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering - FSE 2014, pages 823-825. ACM, ACM Press, 2014
- Diego Marmsoler, Alexander Malkis, and Jonas Eckhardt. A model of layered architectures. In Bara Buhnova, Lucia Happe, and Jan Kofron, editors, Proceedings 12th International Workshop on Formal Engineering approaches to Software Components and Architectures, FESCA 2015, London, United Kingdom, April 12th, 2015., volume 178 of EPTCS, pages 47-61, 2015
- Diego Marmsoler and Mario Gleirscher. Specifying properties of dynamic architectures using configuration traces. In International Colloquium on Theoretical Aspects of Computing, pages 235-254. Springer, 2016
- D. Marmsoler and M. Gleirscher. On activation, connection, and behavior in dynamic architectures. Scientific Annals of Computer Science, 26(2):187-248, 2016
- Diego Marmsoler and Silvio Degenhardt. Verifying patterns of dynamic architectures using model checking. In Proceedings International Workshop on Formal Engineering approaches to Software Components and Architectures, FESCA@ETAPS 2017, Uppsala, Sweden, 22nd April 2017., pages 16-30, 2017
- Diego Marmsoler. On the semantics of temporal specifications of componentbehavior for dynamic architectures. In Eleventh International Symposium on Theoretical Aspects of Software Engineering. Springer, 2017
- Diego Marmsoler. Towards a calculus for dynamic architectures. In Dang Van Hung and Deepak Kapur, editors, Theoretical Aspects of Computing - ICTAC 2017 14th International Colloquium, Hanoi, Vietnam, October 23-27, 2017, Proceedings, volume 10580 of Lecture Notes in Computer Science, pages 79-99. Springer, 2017
- Diego Marmsoler. Dynamic architectures. Archive of Formal Proofs, July 2017. http://isa-afp.org/entries/DynamicArchitectures.html, Formal proof development
- Diego Marmsoler. Hierarchical specication and verication of architecture design patterns. In Fundamental Approaches to Software Engineering - 21th International Conference, FASE 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, 2018
- Diego Marmsoler. A theory of architectural design patterns. Archive of Formal Proofs, March 2018. http://isa-afp.org/entries/Architectural_Design_ Patterns.html, Formal proof development
- Diego Marmsoler and Habtom Kahsay Gidey. FACTum Studio: A tool for the axiomatic specification and verification of architectural design patterns. In Formal Aspects of Component Software - FACS 2018-15th International Conference, Proceedings, 2018
- Diego Marmsoler. A framework for interactive verification of architectural design patterns in Isabelle/HOL. In The 20th International Conference on Formal Engineering Methods, ICFEM 2018, Proceedings, 2018
- Diego Marmsoler and Habtom Kahsay Gidey. Interactive verification of architectural design patterns in FACTum. Formal Aspects of Computing, 2019. Under review
- Diego Marmsoler. A calculus of component behavior for dynamic architectures. Science of Computer Programming, 2019. Under review

Contents

Contents ix
I Introduction 1
1 Introduction 3
1.1 Architectural Design Patterns 3
1.2 Problem: Unverified Patterns 8
1.3 Approach 10
1.4 Contributions 11
1.5 Related Work 13
1.6 Outline 16
2 A Model of Dynamic Architectures 17
2.1 Messages and Ports 17
2.2 Port Valuations 18
2.3 Interfaces 18
2.4 Component Types 18
2.5 Architecture Specifications 22
2.6 Summary 30
II Specification 33
3 Specifying Architectural Design Patterns 35
3.1 Specifying Data Types 36
3.2 Specifying Component Types 37
3.3 Specifying Architectural Constraints 43
3.4 Summary 47
4 Advanced Specifications 49
4.1 Activation Annotations 49
4.2 Connection Annotations 51
4.3 Dependencies 53
4.4 Specifying Pattern Instantiations 56
4.5 Summary 58
III Verification 61
5 A Calculus for Architectural Design Patterns 63
5.1 Evaluating Behavior Trace Assertions over Architecture Traces 63
5.2 Rules of the Calculus 68
5.3 Summary 75
6 Interactive Pattern Verification in Isabelle/HOL 77
6.1 Coinductive Lists 78
6.2 Formalizing Architecture Traces 80
6.3 Specifying Architecture Traces 83
6.4 Formalizing the Calculus 84
6.5 Creating Pattern Theories 87
6.6 Summary 89
IV Evaluation 91
7 Singletons, Publisher-Subscribers, and Blackboards 93
7.1 Singleton 93
7.2 Publisher-Subscriber 96
7.3 Blackboard 100
7.4 Summary 105
8 Verification of Blockchain Architectures 109
8.1 Blockchain Architectures 109
8.2 Formalizing Blockchain Architectures 111
8.3 Data Types and Ports 111
8.4 Component Types 112
8.5 Architectural Constraints 115
8.6 Verifying Blockchain Architectures 118
8.7 Discussion 121
8.8 Summary 123
V Conclusion 127
9 Conclusion 129
9.1 Summary 129
9.2 Implications 132
9.3 Limitations 133
9.4 Outlook 134
9.5 Future Work 134
A Conventions 137
A. 1 Sets 137
A. 2 Functions 137
A. 3 Sequences 138
A. 4 Logics 139
B Proof for Thm. 1 141
B. $1 \Longrightarrow$ 141
B. $2 \Longleftarrow$ 141
C Behavior Trace Assertions 143
C. 1 Behavior terms 143
C. 2 Behavior assertions 144
C. 3 Behavior trace assertions 144
C. 4 Architecture Trace Assertions 148
D Remaining Rules of the Calculus 155
D. 1 Elimination Rules for Basic Logical Operators 155
D. 2 Elimination of Behavior Assertions 155
D. 3 Natural Numbers 157
D. 4 Extended Natural Numbers 158
D. 5 Lazy Lists 158
D. 6 A Model of Dynamic Architectures 160
D. 7 Dynamic Components 165
D. 8 Projection 166
D. 9 Activations 173
D. 10 Projection and Activation 179
D. 11 Least not Active 181
D. 12 Next Active 183
D. 13 Latest Activation 186
D. 14 Last Activation 187
D. 15 Mapping Time Points 189
D. 16 Extended Natural Numbers 195
D. 17 Lazy Lists 195
D. 18 Dynamic Evaluation of Temporal Operators 195
D. 19 Basic Operators 198
D. 20 Temporal Operators 208
D. 21 Proof of Completeness 237
E Soundness of Algorithm 1 241
E. 1 Case \Longrightarrow 241
E. 2 Case \Longleftarrow 242
F Pattern Hierarchy 243
F. 1 A Theory of Singletons 243
F. 2 A Theory of Publisher-Subscriber Architectures 246
F. 3 A Theory of Blackboard Architectures 248
G Verification of Blockchain Architectures 261
G. 1 Some Auxiliary Results 261
G. 2 Relative Frequency LTL 263
G. 3 A Theory of Blockchain Architectures 274
Bibliography 325
Glossary 335

Part I

Introduction

1 Introduction

The architecture of a system describes the overall organization of a system into components and connections between these components. Since software systems are becoming increasingly big and complex, the architecture of a system plays an ever more important role in their development.

There exist many different definitions of what constitutes an architecture [PW92, SG96, otSEC ${ }^{+} 00$, BS01, BCK07, TMD09]. For the scope of this thesis, we consider the following definition of architecture:

Definition: Architecture.

An architecture is a set of components and a description of how these components communicate to each other. Each component has an interface, in terms of input and output ports, and a behavior describing which output is produced for a given input. An architecture may be dynamic, in which case the number of components and connections between these components may change over time.

1.1 Architectural Design Patterns

Architectural design patterns (ADPs) are an important tool in software engineering employed for the conceptualization and analysis of architectures. They capture design experience and are regarded as the "Grand Tool" for designing a software system's architecture [TMD09]. Similar as for architectures, there exist many different definitions of ADPs. In the following, we list some of them:
"An architectural pattern is a named collection of architectural design decisions that are applicable to a recurring design problem, parametrized to account for different software development contexts in which that problem appears." [TMD09]
"An architectural pattern expresses a fundamental structural organization schema for software systems. It provides a set of predefined subsystems, specifies their responsibilities, and includes rules and guidelines for organizing the relationships between them." [$\mathrm{BMR}^{+} 96$]
"An architectural pattern is a description of element and relation types together with a set of constraints on how they may be used. A pattern can be thought of as a set of constraints on an architecture - on the element types and their patterns of interaction and these constraints define a set or family of architectures that satisfy them." [BCK07]
"An architectural style [...] defines a family of [...] systems in terms of a pattern of structural organization. More specifically, an architectural style defines a vocabulary of
components and connector types, and a set of constraints on how they can be combined." [SG96]

Although these definitions vary in some aspects, two characteristic properties about ADPs can be identified:

1. An ADP solves a recurring architectural design problem.
2. An ADP consists of a collection of architectural design constraints which restrict the design of architectures.

In the following, we demonstrate this observation by means of three prominent examples: the singleton pattern, the Publisher-Subscriber pattern, and the Blackboard pattern.

Example 1 (The Singleton Pattern). A very basic example of an ADP, used often in object-oriented systems, is the so-called Singleton pattern [GHJV94]. It aims to address the problem that a system must have at most one component of a certain type, activated at each point in time.

If we look at a Singleton's specification, we usually find a diagram similar to the one depicted in Fig. 1.1. The diagram is accompanied with a description explaining that "instance" contains an instance of the singleton which can be accessed through the interface "getInstance()". Moreover, the description poses a constraint on an architecture, requiring that a new instance of type singleton is only created if no instance exists yet.

Singleton
instance
getInstance()

Figure 1.1: Specification of the Singleton pattern as it is usually found in literature.

Example 2 (The Publisher-Subscriber Pattern). Another ADP often employed to design architectures is the so-called Publisher-Subscriber pattern. It aims to address the problem of obtaining a "flexible way of communication" between certain components of an architecture. Thereby, flexibility means that a component can register for certain events at other components and they are notified about the occurrence of such events.

The pattern is usually described with a diagram similar to the one depicted in Fig.1.2. The description usually requires the existence of two types of components: publishers and subscribers. Thereby, subscribers need to provide a mechanism to subscribe to certain events and publishers are able to publish messages associated to an event. Moreover, the description usually poses a constraint on the connection between publisher and subscriber components which requires that, whenever a publisher component publishes a message associated to an event for which a subscriber component was registered, a connection between the corresponding publisher and subscriber component needs to be established.

Figure 1.2: Specification of the Publisher-Subscriber pattern as it is usually found in literature.

Example 3 (The Blackboard Pattern). Another, more complex, pattern found in literature, is the Blackboard pattern [TMD09, BMR ${ }^{+} 96$, SG96] which is often employed for the design of systems solving logical equations.

The Blackboard pattern aims to address the design problem known as "collaborative problem ${ }^{1}$ solving". Thereby, it is desired to design an architecture for a system which can solve a complex problem by breaking it down into simpler subproblems, which can be solved and assembled to a solution for the original problem. For example, solving a complex, logical equation (involving multiple operators), can be split into the problem of solving simpler sub-formulas and combining their solutions according to the involved logical operators.

Figure 1.3 shows the diagram for the Blackboard pattern as it is usually found in literature. The pattern requires from an architecture existence of the following types of components: blackboards, knowledge sources, and an optional controller component. Thereby, a blackboard keeps the overall state towards solving the original problem and knowledge sources are able to solve specific subproblems. Amongst others, the pattern requires that knowledge sources communicate exclusively through the blackboard component: they either provide solutions to currently open subproblems (given that solutions for other subproblems are available), or they communicate their ability to solve open subproblems and require a set of other subproblems to be solved first. The controller component is optional and can be employed to improve the communication between blackboard and knowledge sources.

Figure 1.3: Specification of the Blackboard pattern as it is usually found in literature.

[^0]For the scope of this thesis, we define an ADP as follows:

Definition: Architectural design pattern.

An architectural design pattern consists of a set of architectural constraints, i.e., constraints about different aspects of an architecture, such as:

- The types of data exchanged by the components.
- The types of components involved in an architecture (including assumptions about its syntactic and semantic interface) as well as the existence of components of a certain type.
- Activation and deactivation of components of certain types.
- Connections between components of certain types.

An architectural design pattern usually comes with a set of invariants in terms of safety/liveness properties for an architecture implementing the pattern. In the following, we call such invariants architectural guarantees and usually they characterize correct solutions for the architectural design problem addressed by an ADP. Figure 1.4 summarizes the situation: An architecture which follows the constraints imposed by a pattern is assumed to satisfy the guarantees provided by the pattern.

Figure 1.4: Architectures and ADPs.

In the following, we demonstrate the definition by means of the three example patterns introduced above ${ }^{2}$.

Example 4 (The Singleton Pattern). Let us first consider the Singleton pattern introduced in Ex. 1 and reformulate it in terms of our new definition. The constraints imposed by a Singleton pattern usually concern two aspects of an architecture: the types of components as well as the activation and deactivation of components. Thus, we may formulate two corresponding types of architectural constraints:

[^1]- A Singleton pattern usually requires the existence of one type of component: the singleton. However, it does not pose any constraints on the interface of a singleton component and as a consequence it does also not constrain its behavior.
- In addition, our version of the Singleton pattern requires that a component of type singleton is always active and only one component of type singleton is active at each point in time. Note that other versions of the Singleton pattern may require that at most one component of type singleton is active at each point in time. Moreover, in our version of the Singleton pattern, we also require that the active component of type singleton is unique over time, i.e., the component does not change over time. Also here, we could think of different versions of the pattern, in which, for example, the singleton component is allowed to change over time.

If we reformulate the addressed design problem, we get the following architectural guarantee (in terms of a safety property) for an architecture implementing the singleton pattern:

A system implementing the Singleton pattern is guaranteed to have a unique component of type singleton which is active at each point in time.

Example 5 (The Publisher-Subscriber Pattern). Let us now turn to the PublisherSubscriber pattern and derive architectural constraints and architectural guarantees from the pattern's description provided in Ex. 2. In contrast to a Singleton pattern, a Publisher-Subscriber pattern usually constrains three aspects of an architecture: data types, component types, and connections between the ports of certain components. In the following, we provide corresponding architectural constraints:

- A Publisher-Subscriber pattern usually requires the existence of an abstract data type to represent subscriptions and un-subscriptions for certain events.
- In addition, a Publisher-Subscriber pattern requires two types of components: publisher and subscriber components. However, we do not require any assumptions about the behavior of these components.
- Finally, a Publisher-Subscriber pattern requires that, whenever a publisher component sends a message associated to an event for which a subscriber component is registered, the subscriber must be connected to the publisher, i.e. a channel between the corresponding ports of the publisher and subscriber component must be active in such a situation.

The following guarantee may be derived from the pattern's addressed design problem:
A subscriber receives all the messages associated to an event for which it is subscribed.

This time, the guarantee is given in terms of a liveness property for architectures implementing the pattern.

Example 6 (The Blackboard Pattern). Finally, let us derive some architectural constraints from the description of the Blackboard pattern presented in Ex. 3. Compared to the other examples, the Blackboard pattern constrains every aspect of an architecture: data types, component types, component activation, and connections between components.

- First of all, a Blackboard pattern requires the existence of data types for the problems to be solved and the corresponding solutions. It even requires the existence of a well-founded relation between problems and corresponding subproblems.
- Moreover, a Blackboard pattern requires the existence of two types of components: blackboards and knowledge sources. Thereby, it requires that blackboard components forward the current state towards solving the original problem, i.e., they are required to forward currently open subproblems as well as solutions for already solved subproblems. Knowledge source components, on the other hand, are required to solve a problem, whenever solutions for all the required subproblems are available. Moreover, they are also required to communicate subproblems for which they require solutions in order to solve a currently open subproblem.
- In order to guarantee that a Blackboard architecture indeed solves a given problem, the pattern requires that a blackboard component is unique and always activated. Moreover, the pattern requires that for every open subproblem, a knowledge source able to solve this problem is eventually activated.
- Finally, a Blackboard constrains also possible connections between blackboard and knowledge source components: whenever a knowledge source publishes a solution to a problem, or subproblems it requires to solve an open problem, the pattern requires the knowledge source to be connected to the blackboard component.

A guarantee provided by the Blackboard pattern may be stated as follows:
An architecture is guaranteed to collaboratively solve a given problem, even if no knowledge source can solve the problem on its own.

Again, it is a liveness property formalizing a correct solution to the pattern's addressed design problem.

1.2 Problem: Unverified Patterns

The main problem addressed with this thesis is that patterns found in current literature are usually not verified. Figure 1.5 depicts this situation: usually it is not clear whether the architectural constraints imposed by a pattern indeed lead to the corresponding guarantee. There are two possible consequences of this problem:

- The constraints may be too weak for the guarantee.
- The constraints may be unnecessarily strong for the provided guarantee.

Figure 1.5: Problem: unverified patterns.

1.2.1 Missing Constraints

If the architectural constraints required by an ADP are too weak to ensure the claimed guarantees, the pattern may not correctly solve the addressed design problem. Important constraints might be missing and architectures implementing the pattern may not satisfy the pattern's guarantees. In order to understand why missing design constraints indeed constitute a problem, let us first look at how ADPs are usually used for the design of an architecture. The situation is shown in Fig. 1.6: When designing an architecture based on some requirements, ADPs are usually selected based on the problem they solve. The architecture is then designed according to the constraints imposed by the pattern. If the constraints, however, do not solve the problem, the corresponding architecture does not correctly solve the problem either, which might lead to a system which does not fulfill its requirements.

Figure 1.6: The use of ADPs for the design of architectures.

1.2.2 Unnecessary Constraints

Even if the constraints required by an ADP are strong enough to ensure a pattern's guarantee, not all constraints may be needed in order to ensure the pattern's guarantee. Thus, a pattern's specification may contain unnecessary constraints. While this problem is actually not as severe as the problem of missing constraints mentioned above, it does also have some undesired consequences: Since architectural design constraints restrict the design space for an architecture, unnecessary constraints exclude possible designs for an architecture. This becomes a problem if such an unnecessary constraint excludes an optimal design and requires an architect to select only a suboptimal architecture for the given requirements.

1.3 Approach

Over the last decades, several so-called architecture description languages (ADLs) emerged to support the formal specification and analysis of software architectures [GR91, LKA ${ }^{+} 95$, Al197, GMW00, DVdHT01, FLV06, HF10]. Some of those even support the specification of dynamic aspects [MK96, ADG98, vOvdLKM00]. These techniques usually specify an architecture using some type of stat machine and the specification is then analyzed using model-checking techniques.Traditional approaches to address the problems identified above tried to apply these techniques, developed for the specification and verification of architectures, to ADPs. Kim and Garlan [KG06], for example, apply the Alloy [Jac02] model checker to automatically verify architectural styles specified in ACME [Gar03]. First approaches in this area come from some early attempts to formalize design patterns using UML [MCL04, SH04, ZA05]. A similar approach comes from Wong et al. [WSWS08] which applies Alloy for the verification of architecture patterns. Zhang et al. [ZLS $\left.{ }^{+} 12\right]$ applied model-checking techniques to verify architectural styles formulated in Wright\#, an extension of Wright [All97]. More recently, Marmsoler and Degenhardt [MD17] apply the NuSMV model checker [CCGR00] to verify properties of design patterns and Goethel et al. [GJS17] model patterns for self-adaptive systems using CSP [Hoa78] and use the FDR3 model checker [GRABR14] to analyze them.
Specifications of ADPs, however, have some peculiarities, which limit the application of the above techniques for their specification and verification: (i) Pattern specifications are usually axiomatic, focusing on a minimal set of constraints (about component behavior or architecture configurations), in order to ensure its guarantee. For example, in a Singleton pattern, we do not care about the concrete implementation of component activation, as long as it is guaranteed that a component of type singleton is only activated if no other component of that type is already active. For a Publisher-Subscriber pattern, on the other hand, we are not interested in the concrete mechanism which implements communication between components, as long as it is guaranteed that a subscriber component is connected to a publisher, whenever latter sends out some message for which the former is currently subscribed. Or in a Blackboard pattern, we are not concerned with how a knowledge source solves a certain problem, as long as it is guaranteed that it solves it somehow. (ii) Moreover, the specification of patterns does not necessarily contain a fixed number of components. Rather it provides upper or lower bounds and sometimes the number might be even unbounded. For example, in a Publisher-Subscriber pattern, we do not know the exact number of subscriber components. Or in a Blackboard pattern, we do not know the exact number of knowledge source components.
In this thesis, we propose an approach based on axiomatic specification techniques and interactive theorem proving, to address the problems identified above.

Thereby, to the best of our knowledge, this is the first approach applying interactive theorem proving for the verification of architectural design patterns.

Interactive theorem proving supports verification at an axiomatic level. This allows for the verification of the axiomatic specifications inherent in ADPs. The additional ef-
fort which comes with interactive theorem proving (compared to automatic verification techniques, employed in traditional approaches), is justified by the impact of verification results at pattern level: Each result obtained at the level of an ADP applies to every architecture which implements that pattern. Thus, if we think about how many architectures implement a Singleton or a Publisher-Subscriber pattern, this should justify the additional effort induced by manual verification approaches.

1.4 Contributions

Perhaps the major outcome of this thesis is a methodology for the specification and verification of ADPs. In the following, we briefly introduce the proposed methodology and summarize the major contributions of this thesis.

1.4.1 FACTum: Focus on Architectural Design Constraints

Figure 1.7 depicts a general overview of the FACTUM methodology. Thereby, verifying a pattern proceeds in three main phases:

- First, the pattern is formally specified. Therefore, one needs to specify the architectural constraints imposed by the pattern as well as the architectural guarantees derived from the pattern's addressed architectural design problem. The stick figure indicates that these activities are executed manually, by the person analyzing the ADP. The outcome of this activity is a formal specification of the constraints imposed by the pattern and the corresponding guarantees.
- In the next phase, an Isabelle/HOL theory is created from the specification of the pattern and theorems are created from the corresponding guarantees. As indicated by the gear-wheel, creating the theory as well as the corresponding theorems are fully automated activities.
- In the last phase, the pattern is finally verified by proving the theorem from the specification. As indicated by the symbols, this is a semi-automatic activity: a user writes the proof using Isabelle/HOLs structured proof language Isar. The soundness of the different steps is then automatically checked by Isabelle.

Note that the activities depicted in Fig. 1.7 are annotated with labeled stars. They indicate where the particular contributions of this thesis are located in the overall methodology. In total, the thesis provides 4 major contributions (3 of which contribute to the activities of the methodology and one additional contribution comes from the evaluation of the methodology):

C1 We provide an axiomatic specification framework which can be used to formally specify ADPs as well as its guarantees and implement it in Eclipse/EMF.

C2 We provide an algorithm to map a FACTum specification to a corresponding Isabelle/HOL theory, show its soundness, and implement it in Eclipse/EMF.

Figure 1.7: The FACTUM methodology for interactive pattern verification.

C3 We provide a calculus to reason about pattern specifications, show its soundness and relative completeness, and implement it in Isabelle/HOL.

C 4 We demonstrate our approach in terms of three running examples and evaluate it in terms of a larger case study.

In the following, we discuss each of these contributions in more detail.

1.4.2 C1: Axiomatic Pattern Specification Framework

To support the specification activity, we developed a framework for the axiomatic specification of ADPs. The framework consists of several languages to specify the different types of constraints imposed by a pattern as well as the architectural guarantees given by the pattern. The framework also comes with a denotational semantics for every language, which allows for a formal specification of an ADP. To support the specification, the basic, textual specification languages are complemented with a graphical extension which allows to easily express common activation and connection constraints. To support the hierarchical nature inherent in ADPs, the framework also supports hierarchical specifications: a pattern specification can instantiate another pattern specification by interpreting the corresponding component types.

The framework was also implemented as a tool in Eclipse/EMF, which supports the specification of ADPs by combining graphical and textual elements. Thereby, comprehensive type checking supports the user in the specification of architectural constraints as well as architectural guarantees.

1.4.3 C2: Theory Generation Algorithm

We also provide an algorithm to map a FACTum specification to a corresponding Isabelle/HOL theory. Therefore, we first implemented our formal model of architectures as an Isabelle/HOL theory. Then, we developed an algorithm to map a (hierarchical)

FACTum specification to a corresponding Isabelle/HOL theory. Thereby, the generated theory extends the theory given by the model implementation. The algorithm is shown to be sound and implemented in Eclipse/EMF. Thus, a user of the specification tool (presented as an outcome of C2), can automatically generate Isabelle theories and corresponding theorems from its specification of an ADP. Thereby, the original meaning of the specification is guaranteed to be preserved by the generated Isabelle/HOL theory.

1.4.4 C3: Verification Framework

To support the verification of a given pattern specification, we also provide a calculus which formalizes reasoning about behavior specifications of component types. The calculus comes in a natural deduction style and provides introduction and elimination rules for all the operators involved in a FACTum specification. The calculus is shown to be sound and it is implemented in Isabelle/HOL to support the verification of pattern specifications.

1.4.5 C4: Running Examples and Case Study

Throughout the thesis we shall use three running examples to demonstrate our concepts and ideas: the Singleton, the Publisher-Subscriber, and the Blackboard pattern. Thereby, we also provide verification results for these patterns. To evaluate our approach in more depth, however, we provide a larger case study in the area of blockchain architectures. Thereby, we specify a pattern for blockchain architectures based on the proof of work consensus algorithm and verify an important property for blockchain architectures: that entries of a blockchain are indeed resistant to modifications from untrusted nodes.

1.5 Related Work

As mentioned in the introduction, architecture description languages (ADLs) have been an active area of research and many approaches emerged to support the formal specification of architectures. Famous examples are Weaves [GR91], Rapide [LKA ${ }^{+}$95], Wright [All97], AADL [FLV06], ACME [GMW00], xADL [DVdHT01], and Autofocus [HF10]. Over the last years, specification and verification of dynamic aspects were of particular interest. Table 1.1 provides an overview of some representative examples in this area. For each of them, we list the underlying formalism as well as its support for dynamic aspects. To this end, we distinguish between Separate and Combined approaches: While the former separate the specification of behavior from the specification of architectural aspects, the latter combine the two.

Similar to most of the approaches shown in Tab. 1.1, we also separate the specification of behavioral aspects from that of structural aspects. The difference comes, however, in the verification: While most of these approaches focus on operational specifications and automatic verification techniques, with our work we aim towards axiomatic specifications and interactive theorem proving.

approach	dynamics	specification
Darwin [MK96]	S \& C	П-Calculus [Mil99]
Wright [All97, ADG98]	S	CSP[Hoa78]
COMMUNITY [WLF01, WF02]	S	Unity [Cha89]/SM
Aguirre and Maibaum [AM02b, AM02a]	S	TL [MP92]
ח-ADL [Oqu04]	S	П-Calculus [Mil99]
Reo [Arb04, BSAR06, KMLA11]	S	circuits
Castro et. al [CAPM10]	C	Category Theory
Canal et al. [CCS12]	S	LTS
Archery [SBR12, SMB15]	S	ACP [BK86]

Table 1.1: Overview of dynamic ADLs and Coordination Languages.

1.5.1 Axiomatic approaches

Even though they were not invented for the purpose of pattern verification, there exist some approaches which focus on the axiomatic specification of architectures, in general. One of the first attempts in this direction is done by Bergner [Ber96]. The author proposes an approach to specify component networks and verify whether a given (runtime) component network satisfies its specification. The approach is implemented in Spectrum [BFGea93], a functional programming language which allows for axiomatic specifications of functions. Another approach comes from Fensel and Schnogge [FS97], which apply the KIV interactive theorem prover [Rei95] to verify concrete architectures in the area of knowledge-based systems. Another example is Spichkova [Spi07], which provides a mapping from a FOCUS [BS01] specification to a corresponding Isabelle/HOL [NPW02] theory. More recently, some attempts were made to apply interactive theorem proving to the verification of architectural connectors. Li and Sun [LS13], for example, apply the Coq proof assistant [BC13] to verify connectors specified in Reo [Arb04]. These approaches, both, apply interactive theorem proving to verify architectures.
While also these approaches indeed support axiomatic specifications and verification of architectures, there are two major differences to our work.

1.5.1.1 Scope of Application

The first difference lies in the scope of the application: The approaches discussed so far apply axiomatic verification at the level of concrete architectures which might be too expensive, in general. Thus, we argue, that application of axiomatic verification should be restricted to architecture patterns, rather than concrete architectures. Thus, the expenses would pay off since each result at the level of pattern applies for each concrete architecture implementing the pattern. Just think about how many patterns employ a Singleton or Publisher-Subscriber pattern.

1.5.1.2 Dynamic Aspects

Another difference lies in the expressiveness of the specification languages: The above approaches mainly focus on the specification of static architectures. However, as shown at the beginning, some commonly used patterns require also the specification of dynamic aspects, such as:

Component Activation Some patterns, such as the Singleton pattern or the Blackboard pattern, require to specify activation and deactivation of components.

Reconfiguration Other patterns, such as the Publisher-Subscriber pattern or the Blackboard pattern, require means to specify architecture reconfiguration, i.e., means to specify activation and deactivation of connections between component ports.

There are two exceptions to this which support axiomatic specifications of even dynamic architectures. They are closely related to our approach and thus deserve a detailed analysis.

1.5.2 Componentware

One example which uses a model similar to ours to formalize UML models is Componentware [Rau01]. Here, the author provides means to specify architectural constraints in an UML-like notation [RJB04]. There are, however, some differences to our specification approach which makes the specification of patterns difficult:

- The main restriction is probably the use of OCL for the specification of the behavior of components. As our examples later on show, specifying component types involves the specification of temporal aspects which is not supported by OCL and consequently not possible in their approach.
- Another restriction is the limited possibility for analysis of specifications. The approach does not provide any calculus to analyze an axiomatic specification.

Nevertheless, the approach provides many interesting insights into axiomatic specification of dynamic architectures and indeed the underlying model of dynamic architectures is similar to the model used in the approach presented with this paper.

1.5.3 CommUnity

Another, closely related approach is the one of Aguirre and Maibaum [AM02b, AM02a]. The approach builds on top of CommUnity [FM97] and provides many interesting ideas found in our approach as well:

- It allows for the specification of abstract data types used by the components.
- It allows for the specification of classes which are similar to our notion of component types.

1 Introduction

- Instance of classes as well as reconfigurations can then be specified using so-called subsystems which are similar to our notion of architecture constraint specification.

There are, however, some subtle differences to our approach which limits its application for the specification of patterns:

- Instantiation of components as well as architecture reconfiguration must be explicitly triggered from outside. However, as shown later on, for some patterns there is no such well-defined trigger, i.e., the trigger may change in different implementations of the pattern.
- Their approach does not support the notion of parametric interfaces which turn out to be useful when it comes to the specification of patterns.
- The approach does not support hierarchical specifications which are very important when it comes to the specification of patterns since they are usually specified on top of each other.
- The approach is based on an action-synchronous model of systems. Some patterns are, however, better described using a time-synchronous model of communication.

Another key constraint of this approach is the lack of analysis methods to reason about such specifications.

1.6 Outline

This thesis is structured into five main parts: An introductory part, containing this introduction and our formal model of architectures; a specification part, describing techniques for the specification of ADPs over the model and demonstrating them by means of our three running examples; a verification part describing our verification framework and its formalization in Isabelle/HOL and demonstrating it in terms of our running examples; an evaluation part in which we present the outcome of evaluating the approach by means of our running examples and a larger case study from the domain of blockchain architectures; a concluding part containing an outlook and suggestions for future work as well as several appendices.

2 A Model of Dynamic Architectures

Since ADPs often involve the specification of dynamic aspects, our approach relies on a model for dynamic architectures. The model is based on Broy's Focus theory [Bro10] and its dynamic extension [Bro14]. It assumes a set of ports and messages to be given, together with a corresponding type function which assigns a set of messages to each port. Then, it defines the notion of an interface, which consists of a set of input and output ports. It then introduces the central notion of component type, which extends an interface with a set of so-called component parameters (formally represented as a set of ports and associated messages) and behavior. Behavior of component types is modeled in terms of sets of so-called behavior traces, i.e., causal [Bro10] streams of valuations of the ports of the component's interface. Besides component types, the model introduces the concept of an architecture trace: an infinite sequence of so-called architecture snapshots, which consists of a set of active components (belonging to some type), connections between their ports, and a valuation of the ports of active components. An architecture specification is then defined as a set of architecture traces which does not restrict the behavior of components. Finally, the notion of behavior projection is introduced to extract the behavior of a certain component out of a given architecture trace. Behavior projection is then used to define composition of component types under a given architecture specification: the result of composing a set of component types with an architecture specification is defined to consist of all the architecture traces from the architecture specification for which the projection to any component leads to a behavior trace allowed by the component's type. The model is formalized in Isabelle/HOL and available as the entry DynamicArchitectures [Mar17a] in the Archive of Formal Proofs. In order to deal with infinite streams, the formalization is based on Lochbihler's theory of coinductive (lazy) lists [Loc10]. Thereby, architecture traces are formalized in terms of lazy lists and behavior projection is formalized using the lazy filter operation.

In the following, we first introduce the basic concepts of messages, ports, and interfaces. Then, we describe two key concepts of our model: component types and architecture specifications. Thereby, we describe also the notion of behavior projection and composition. We conclude with a brief summary of the introduced concepts and their interrelationships.

2.1 Messages and Ports

In our model, components communicate to each other by exchanging messages over ports. Thus, we assume the existence of set \mathcal{M}, containing all messages, and set \mathcal{P}, containing
all ports, respectively. Moreover, we postulate the existence of a type function

$$
\begin{equation*}
\mathcal{T}: \mathcal{P} \rightarrow \wp(\mathcal{M}) \tag{2.1}
\end{equation*}
$$

which assigns a set of messages to each port.

2.2 Port Valuations

Ports are means to exchange messages between a component and its environment. This is achieved through the notion of port valuation. Roughly speaking, a valuation for a set of ports is an assignment of messages to each port.

Definition 1 (Port valuation). For a set of ports $P \subseteq \mathcal{P}$, we denote with \bar{P} the set of all possible, type-compatible port valuations, formally:

$$
\bar{P} \stackrel{\text { def }}{=}\{\mu \in(P \rightarrow \wp(\mathcal{M})) \mid \forall p \in P: \mu(p) \subseteq \mathcal{T}(p)\}
$$

Moreover, we denote by $\left[p_{1}, p_{2}, \ldots \mapsto M_{1}, M_{2}, \ldots\right]$ the valuation of ports p_{1}, p_{2}, \ldots with sets M_{1}, M_{2}, \ldots, respectively. For singleton sets we shall sometimes omit the set parentheses and simply write $\left[p_{1}, p_{2}, \ldots \mapsto m_{1}, m_{2}, \ldots\right]$.

In our model, ports may be valuated by sets of messages, meaning that a component can send/receive a set of messages via each of its ports at each point in time. A component may also send no message at all, in which case the corresponding port is valuated by the empty set.

2.3 Interfaces

The ports which a component may use to send and receive messages are grouped into so-called interfaces.

Definition 2 (Interface). An interface is a pair (CI, CO), consisting of disjoint sets of input ports $C I \subseteq \mathcal{P}$ and output ports $C O \subseteq \mathcal{P}$. The set of all interfaces is denoted by $I F_{\mathcal{P}}$. For an interface if $=(C I, C O)$, we denote by

- $\operatorname{in}(i f) \stackrel{\text { def }}{=} C I$ the set of input ports,
- out $(i f) \stackrel{\text { def }}{=} C O$ the set of output ports, and
- port $(i f) \stackrel{\text { def }}{=} C I \cup C O$ the set of all interface ports.

2.4 Component Types

An important concept of our model are component types, i.e., interfaces with associated component behavior.

2.4.1 Streams

In the following, we shall make use of finite as well as infinite streams [BS01]. Thereby, we denote with $(E)^{*}$ the set of all finite streams over elements of a given set E, by $(E)^{\infty}$ the set of all infinite streams over E, and by $(E)^{\omega}$ the set of all finite and infinite streams over E. The n-th element of a stream s is denoted with $s(n)$ and the first element is $s(0)$. Moreover, we shall use the following conventions for streams:

- With \rangle we denote the empty stream.
- With $e \& s$ we denote the stream resulting from appending stream s to element e.
- With $\widehat{s s^{\prime}}$ we denote the concatenation of stream s with stream s^{\prime}.
- With $r g(s)$ we denote the set of all elements of a given stream s.
- With $\# s \in \mathbb{N}_{\infty}$ we denote the length of s.
- We use $s \downarrow_{n}$ to extract the first n (excluding the n-th) elements of a stream. Thereby $s \downarrow_{0} \stackrel{\text { def }}{=}\langle \rangle$.
- With $s^{\prime} \sqsubseteq s$, we denote that s^{\prime} is a prefix of s.
- We may also lift the restriction operator from functions to streams of functions and use $\left.s\right|_{D}$ to denote a stream of length $\# s$, with $\left.\left.s\right|_{D}(n) \stackrel{\text { def }}{=} s(n)\right|_{D}$ for every time point $n<\#\left(\left.s\right|_{D}\right)$.

2.4.2 Component Type

Essentially, a component type is an interface with associated behavior. The behavior is given in terms of so-called behavior traces, streams of valuations of the corresponding interface ports.

Definition 3 (Component type). A component type is a pair (if, bhv), consisting of

- an interface if $\in I F_{\mathcal{P}}$,
- and a non-empty set of so-called behavior traces bhv $\subseteq(\overline{\operatorname{port}(i f)})^{\infty}$, such that:
- the behavior of a component is input-complete, i.e., for all $t \in$ bhv and all time points $n \in \mathbb{N}$:

$$
\begin{equation*}
\forall \mu \in \overline{\operatorname{in}(i f)} \exists t^{\prime} \in b h v: t^{\prime} \downarrow_{n}=\left.t \downarrow_{n} \wedge t^{\prime}(n)\right|_{\operatorname{in}(i f)}=\mu \tag{2.2}
\end{equation*}
$$

- the behavior of a component is causal, i.e., for all $t, t^{\prime} \in$ bhv and all time points $n \in \mathbb{N}$, we have:

$$
\begin{align*}
& \left(t \downarrow_{n-1}\right) \operatorname{lin}(i f)=\left.\left(t^{\prime} \downarrow_{n-1}\right)\right|_{\operatorname{in}(i f)} \tag{2.3}\\
& \Longrightarrow \exists t^{\prime \prime} \in b h v:\left(t^{\prime \prime} \downarrow_{n}\right) \operatorname{lin}(i f)=\left(t^{\prime} \downarrow_{n}\right) \operatorname{lin}(i f) \wedge t^{\prime \prime} \downarrow_{n}=t \downarrow_{n} \tag{2.4}
\end{align*}
$$

Actually, we could relax the second condition to require only equality of valuations for output ports. However, due to the first condition and Eq. (2.3), this is equal to requiring equality for the valuations of all the ports and thus the complete valuation.

We shall use the same notation as introduced in Def. 2 to denote input, output, and all interface ports for component types. Moreover, for a component type $c t=(i f, b h v)$, we denote by

$$
\begin{equation*}
\operatorname{bhv}(c t) \stackrel{\operatorname{def}}{=} b h v \tag{2.5}
\end{equation*}
$$

the behavior of that type.
Example 7 (Component type). Assuming \mathcal{P} contains ports $i_{0}, i_{1}, o_{0}, o_{1}$, Fig. 2.1 shows a conceptual representation of a component type (if,bhv), consisting of:

- Interface if $=(C I, C O)$, with
- input ports $C I=\left\{i_{0}, i_{1}\right\}$, and
- output ports $C O=\left\{o_{0}, o_{1}\right\}$.
- Behavior bhv $=\{\epsilon, \sigma, \nu, \mu, \omega, \delta, \eta\}$ which is assumed to be input complete and causal.

Figure 2.1: Conceptual representation of a component type with behavior bhv = $\{\epsilon, \sigma, \nu, \mu, \omega, \delta, \eta\}$.

2.4.3 Parametrized Component Types

Sometimes, it is convenient to specify and reason about groups of related components of a certain type. Consider, for example, the Blackboard pattern in which a set of knowledge source components work together to collaboratively solve an overall problem. Thereby, certain knowledge sources are only able to solve certain problems, which is why they can be classified into different groups, depending on the problem they can solve. In such cases, it is useful to extend the notion of component type by adding a set of parameters, used to group related components based on the value of the parameter.

Definition 4 (Parametrized component type). A parametrized component type is a triple (ct, CP, ν), consisting of

- a component type ct,
- so-called component parameters $C P \subseteq \mathcal{P}$ which are required to be disjoint from the component type's input and output ports,
- a valuation of the component parameters $\nu \in \overline{C P}$,

The set of all possible parametrized component types over a set of interfaces \mathcal{I} is denoted $C T_{\mathcal{I}}$. We shall use the same notation as introduced for component types in Def. 3 to denote the ports and behavior for parametrized component types. Moreover, for a parametrized component type $(c t, C P, \nu)$, we denote by

- $\operatorname{par}(c t) \stackrel{\text { def }}{=} C P$ its component parameters and
- $\operatorname{val}(c t) \stackrel{\text { def }}{=} \nu$ the valuation of component parameters.

Example 8 (Parametrized component type). Figure 2.2 shows a conceptual representation of a parametrized component type $(c t, C P, \nu)$, extending the component type described in Ex. 7 by a component parameter $C P=\{p\}$ valuated with a set of messages $\nu(p)=M$.

Figure 2.2: Conceptual representation of a parametrized component type with component parameter p valuated with a set of messages M.

Formally, component parameters are just normal ports, valuated with some messages. However, they have a special meaning in a specification, which distinguishes them from input and output ports. First, the valuation of a component parameter is bound to a component and does not change its value over time (compared to input and output ports which may change their valuation at each point in time). Second, for each parametrized component type, we require the existence of at least one component, for each possible valuation of the parameter (respecting its type). Note that existence does not require activation of that component, however it is required to ensure soundness of specifications involving parameterized component variables. Such variables are interpreted only by components with a corresponding parameter valuation. However, if for a certain parameter valuation no such component exists, the semantics of the specification is not well-defined. More on details on parametrized component variables can be found in Chap. 3.

2.5 Architecture Specifications

Component types specify the interface and the allowed behavior for components. However, they do not say anything about the activation and deactivation of components or their interconnections. Thus, in the following, we introduce the concept of an architecture specification to address these aspects. We conclude the section with the definition of a composition operator which allows to combine component types with an architecture specification.

2.5.1 Components

Component types can be instantiated to obtain components of that type. We shall use the same notation as introduced for parametrized component types in Def. 4, to access ports, valuation of component parameters, and behavior assigned to a component. Note, however, that instantiating a component leads to the notion of component port, which is a port combined with the corresponding component identifier. Thus, for a family of components $\left(\mathcal{C}_{c t}\right)_{c t \in \mathcal{C}}$ over a set of parametrized component types $\mathcal{C T} \subseteq C T_{\mathcal{I}}$, we denote by:

- in $(\mathcal{C}) \stackrel{\text { def }}{=} \bigcup_{c \in \mathcal{C}}(\{c\} \times \operatorname{in}(c))$, the set of component input ports,
- out $(\mathcal{C}) \stackrel{\text { def }}{=} \bigcup_{c \in \mathcal{C}}(\{c\} \times \operatorname{out}(c))$, the set of component output ports,
- $\operatorname{port}(\mathcal{C}) \stackrel{\text { def }}{=} \operatorname{in}(\mathcal{C}) \cup \operatorname{out}(\mathcal{C})$, the set of all component ports.

Moreover, we may lift the typing function (introduced for ports at the beginning of the chapter), to corresponding component ports:

$$
\mathcal{T}((c, p)) \stackrel{\text { def }}{=} \mathcal{T}(p) .
$$

Finally, we can generalize our notion of port valuation (Def. 1) for component ports $C P \subseteq \mathcal{C} \times \mathcal{P}$ to so-called component port valuations:

$$
\overline{C P} \quad \stackrel{\text { def }}{=}\{\mu \in(C P \rightarrow \wp(\mathcal{M})) \mid \forall c p \in C P: \mu(c p) \subseteq \mathcal{T}(c p)\}
$$

To better distinguish between ports and component ports, in the following, we shall use $p, q, p i, p o, \ldots$ to denote ports and $c p, c q, c i, c o, \ldots$ to denote component ports.

2.5.2 Architecture Snapshots

An architecture is modeled as a sequence of snapshots of its state during execution. To this end, in the following, we introduce the notion of architecture snapshot. Such a snapshot consists of snapshots of currently active components, i.e., interfaces with its ports valuated with messages, and connections between the ports of these components. Message exchange between components requires the valuation of connected ports to be equal.

Definition 5 (Architecture snapshot). An architecture snapshot is a triple (C^{\prime}, N, μ), consisting of:

- a set of components $C^{\prime} \subseteq \mathcal{C}$,
- a connection $N: \operatorname{in}\left(C^{\prime}\right) \rightarrow \wp\left(\operatorname{out}\left(C^{\prime}\right)\right)$, such that

$$
\begin{equation*}
\forall c i \in \operatorname{in}\left(C^{\prime}\right): \bigcup_{c o \in N(c i)} \mathcal{T}(c o) \subseteq \mathcal{T}(c i) \tag{2.6}
\end{equation*}
$$

- a component port valuation $\mu \in \overline{\operatorname{port}\left(C^{\prime}\right)}$.

We require connected ports to be consistent in their valuation, i.e., if a component provides messages at its output port, these messages are transferred to the corresponding, connected input ports:

$$
\begin{equation*}
\forall c i \in \operatorname{in}\left(C^{\prime}\right): N(c i) \neq \emptyset \Longrightarrow \mu(c i)=\bigcup_{c o \in N(c i)} \mu(c o) \tag{2.7}
\end{equation*}
$$

Note that Eq. (2.6) guarantees that Eq. (2.7) does not violate type restrictions. The set of all possible architecture snapshots is denoted by $A S_{\mathcal{T}}^{\mathcal{C}}$.

For an architecture snapshot as $=\left(C^{\prime}, N, \mu\right) \in A S_{\mathcal{T}}^{\mathcal{C}}$, we denote by

- $C M P_{a s} \stackrel{\text { def }}{=} C^{\prime}$ the set of active components and with $\} c c_{a s} \stackrel{\text { def }}{\Longleftrightarrow} c \in C^{\prime}$, that a component $c \in \mathcal{C}$ is active in as,
- CN as $\stackrel{\text { def }}{=} N$, its connection, and
- val $_{\text {as }} \stackrel{\text { def }}{=} \mu$, the port valuation.

Moreover, given a component $c \in C^{\prime}$, we denote by

$$
\begin{equation*}
\mathrm{cmp}_{a s}^{c} \in \overline{\operatorname{port}(\{c\})} \stackrel{\operatorname{def}}{=} \quad(\lambda c p \in \operatorname{port}(\{c\}): \mu(c p)) \tag{2.8}
\end{equation*}
$$

the valuation of the component's ports.
Note that $\mathrm{cmp}_{a s}^{c}$ is well-defined iff $\left\{c \xi_{a s}\right.$.
Moreover, note that connection N is modeled as a set-valued function from component input ports to component output ports, meaning that:

1. input/output ports can be connected to several output/input ports, respectively ${ }^{1}$, and
2. not every input/output port needs to be connected to an output/input port (in which case the connection returns the empty set).
[^2]Thus, ports of an architecture snapshot can be classified as either open or connected, depending on whether they are connected to any other ports or not. Ports which are not connected to any other port are called open architecture ports.

Definition 6 (Open architecture port). For an architecture snapshot as $=\left(C^{\prime}, N, \mu\right) \in$ $A S_{\mathcal{T}}^{\mathcal{C}}$, we denote by:

- oin $(a s) \stackrel{\text { def }}{=}\left\{c i \in \operatorname{in}\left(C^{\prime}\right) \mid N(c i)=\emptyset\right\}$, the set of open input ports,
- oout $(a s) \stackrel{\text { def }}{=}\left\{c o \in \operatorname{out}\left(C^{\prime}\right) \mid \nexists c i \in \operatorname{in}\left(C^{\prime}\right): c o \in N(c i)\right\}$, the set of open output ports,
- oport $(a s) \stackrel{\text { def }}{=} \operatorname{oin}(a s) \cup \operatorname{oout}(a s)$, the set of all open architecture ports.

On the other hand, ports which are connected to other ports are called connected architecture ports.

Definition 7 (Connected architecture port). For an architecture snapshot as $=$ $\left(C^{\prime}, N, \mu\right) \in A S_{\mathcal{T}}^{\mathcal{C}}$, we denote by:

- $\operatorname{cin}(a s) \stackrel{\text { def }}{=}\left\{c i \in \operatorname{in}\left(C^{\prime}\right) \mid N(c i) \neq \emptyset\right\}$, the set of connected input ports,
- $\operatorname{cout}(a s) \stackrel{\text { def }}{=}\left\{c o \in \operatorname{out}\left(C^{\prime}\right) \mid \exists c i \in \operatorname{in}\left(C^{\prime}\right): c o \in N(c i)\right\}$, the set of connected output ports,
- $\operatorname{cport}(a s) \stackrel{\text { def }}{=} \operatorname{cin}(a s) \cup \operatorname{cout}(a s)$, the set of all connected architecture ports.

Note that for an architecture snapshot $a s=\left(C^{\prime}, N, \mu\right)$,

$$
\operatorname{oin}(a s) \cup \operatorname{cin}(a s)=\operatorname{in}\left(C^{\prime}\right) \quad \text { and } \quad \operatorname{oout}(a s) \cup \operatorname{cout}(a s)=\operatorname{out}\left(C^{\prime}\right)
$$

Moreover, note that by Eq. (2.7), the valuation of an input port connected to many output ports is defined to be the union of all the valuations of the corresponding, connected output ports.

Example 9 (Architecture snapshot). Figure 2.3 shows a conceptual representation of an architecture snapshot $\left(C^{\prime}, N, \mu\right)$, consisting of:

- active components $C^{\prime}=\left\{c_{1}, c_{2}, c_{3}\right\}$ with corresponding component types (c_{3}, for example, is of a type as described in Ex. 7);
- connection N, defined as follows:
$-N\left(\left(c_{2}, i_{1}\right)\right)=\left\{\left(c_{1}, o_{1}\right)\right\}$,
$-N\left(\left(c_{3}, i_{1}\right)\right)=\left\{\left(c_{1}, o_{2}\right)\right\}$,
$-N\left(\left(c_{2}, i_{2}\right)\right)=\left\{\left(c_{3}, o_{1}\right)\right\}$, and
$-N\left(\left(c_{1}, i_{0}\right)\right)=N\left(\left(c_{2}, i_{0}\right)\right)=N\left(\left(c_{3}, i_{0}\right)\right)=\emptyset$; and
- component port valuation $\left[\left(c_{1}, o_{0}\right),\left(c_{2}, i_{1}\right),\left(c_{3}, o_{1}\right), \cdots \mapsto \mathrm{M}_{3}, \mathrm{M}_{5}, \mathrm{M}_{3}, \cdots\right]$.

Figure 2.3: Architecture snapshot consisting of three components c_{1}, c_{2}, and c_{3}; a connection between ports $\left(c_{2}, i_{1}\right)$ and $\left(c_{1}, o_{1}\right),\left(c_{2}, i_{2}\right)$ and $\left(c_{3}, o_{1}\right)$, and $\left(c_{3}, i_{1}\right)$ and $\left(c_{1}, o_{2}\right)$; and valuations of the component parameters and ports.

2.5.3 Architecture Traces

An architecture trace consists of a series of snapshots of an architecture during system execution. Thus, an architecture trace is modeled as a stream of architecture snapshots at certain points in time.

Definition 8 (Architecture trace). An architecture trace is an infinite stream $t \in$ $\left(A S_{\mathcal{T}}^{\mathcal{C}}\right)^{\infty}$. For an architecture trace $t \in\left(A S_{\mathcal{T}}^{\mathcal{C}}\right)^{\infty}$ and a component $c \in \mathcal{C}$, we denote with ${ }^{2}$

- last (c, t), the greatest $i \in \mathbb{N}$, such that $\xi_{c} \xi_{t(i)}$,
- $c \stackrel{n}{\Leftarrow} t$, the last time point less or equal to n at which c was not active in t, i.e., the least $n^{\prime} \in \mathbb{N}$, such that $n^{\prime}=n \vee\left(n^{\prime}<n \wedge \nexists n^{\prime} \leq k<n:\left\{c \xi_{t(k)}\right)\right.$,
- $c \stackrel{n}{\leftarrow} t$, the latest activation of component c (strictly) before n, and
- $c \xrightarrow{n} t$, the next point in time (after n) at which c is active in t.

Note that $c \stackrel{n}{\Leftarrow} t$ is always well-defined, while $c \stackrel{n}{\leftarrow} t$ and $c \stackrel{n}{\rightarrow} t$ are only well-defined iff there exists at least one activation of component c in the past (a point in time strictly less than n) or in the future (a point in time greater or equal to n), respectively. last $(c, t$), on the other hand, is well-defined iff i) component c is activated at least once in t : $\exists i \in \mathbb{N}:\left\{c \xi_{t(i)}\right.$ and ii) component c is not activated infinitely often, i.e., $\exists n \in \mathbb{N}: \forall n^{\prime} \geq$ $n: \neg \xi c \xi_{t\left(n^{\prime}\right)}$.

Example 10 (Architecture trace). Figure 2.4 shows an architecture trace $t \in\left(A S_{\mathcal{T}}^{\mathcal{C}}\right)^{\infty}$ with corresponding architecture snapshots $t(0)=k_{0}, t(1)=k_{1}$, and $t(2)=k_{2}$. Architecture snapshot k_{0}, for example, is described in Ex. 9.

[^3]

Figure 2.4: The first three architecture snapshots of an architecture trace.

Figure 2.5 lists some properties derived for the operators introduced for architecture traces in Def. 8. As indicated by the small Isabelle logo on the top right, these properties are all mechanically verified in our formalization of the model (App. D.2).

Properties of component activation

$$
\begin{aligned}
& \left\{c_{t}{ }_{t l a s t(c, t))} \text { [if } \exists i:\left\{c \xi_{t(i)} \text { and } \exists n: \forall n^{\prime}>n: \rightharpoondown\left\{c \xi_{t\left(n^{\prime}\right)}\right]\right.\right. \\
& \nexists n>\operatorname{last}(c, t):\left\{c_{t(n)}^{3}\left[\text { if } \exists n^{\prime}: \forall n^{\prime \prime}>n^{\prime}: \neg\left\langle c_{c t\left(n^{\prime \prime}\right)}\right)\right]\right. \\
& c \stackrel{0}{=} t=0 \\
& \xi_{\xi_{t(n-1)}} \Longrightarrow c \stackrel{n}{\Leftarrow} t=n[\text { if } n \geq 1] \\
& \forall c \stackrel{n}{\Leftarrow} t \leq n^{\prime}<n: \downarrow c_{c}^{3} t\left(n^{\prime}\right) \\
& c \stackrel{n}{=} t \leq n \\
& c \stackrel{c \stackrel{n}{\leftrightarrows} t}{\rightarrow} t=c \stackrel{n}{\leftarrow} t \text { [if } \exists i<n:\left\{c c_{t} \xi_{(i)}\right] \\
& c \xrightarrow{n} t>c \stackrel{n}{\leftarrow} t \text { [if } \exists i \geq n:\left\{c \xi_{t(i)} \text { and } \exists i<n:\left\{c \xi_{t(i)}\right]\right. \\
& c \xrightarrow{n} t \geq n \text { [if } \exists i \geq n:\left\{c_{t(i)}\right. \text {] } \\
& \left\{c \xi_{t(c \xrightarrow{n} t)} \text { if } \exists i \geq n:\left\{c \xi_{t(i)}\right]\right. \\
& \nexists n \leq k<c \xrightarrow{n} t:\left\{c \xi _ { t (k) } \left[\text { if } \exists i \geq n:\left\{c \xi_{t(i)}\right]\right.\right. \\
& \left\langle c c_{t(n)} \Longrightarrow c \xrightarrow{n} t=n\right. \\
& c \xrightarrow{n} t \geq c \stackrel{n}{\rightleftharpoons} t\left[\text { if } \exists i \geq n:\left\{c c_{t+(i)}\right]\right.
\end{aligned}
$$

Figure 2.5: Properties of component activation.

Behavior projection An important concept for our model is the notion of behavior projection. It is used to extract the behavior of a certain component out of a given architecture trace (Figure 2.6).

Figure 2.6: Conceptual representation of behavior projection.

In the following, we provide a co-recursive definition for behavior projection. This allows us to easily specify the operator also for infinite input traces by following a certain pattern in its specification. Then, we can use co-induction to reason about behavior projection ${ }^{3}$.
Definition 9 (Behavior projection). Given an architecture trace $t \in\left(A S_{\mathcal{T}}^{\mathcal{C}}\right)^{\omega}$. The behavior projection to component $c \in \mathcal{C}_{c t}$ of type $c t \in \mathcal{C} \mathcal{T}$ is denoted by $\Pi_{c}(t) \in(\overline{\operatorname{port}(c)})^{\omega}$ and defined by the following equations:

$$
\begin{array}{rlrl}
\Pi_{c}(\langle \rangle) & =\langle \rangle \\
\{c\}_{a s} & \Longrightarrow & \Pi_{c}(\text { as \& } t) & =\mathrm{cmp}_{a s}^{c} \& \Pi_{c}(t) \\
\neg\{c\}_{a s} & \Longrightarrow & \Pi_{c}(\text { as \& } t) & =\Pi_{c}(t) \\
\left(\forall a s \in r g(t): \neg\left\{c \xi_{a s}\right)\right. & \Longrightarrow & \Pi_{c}(t) & =\langle \rangle \tag{2.12}
\end{array}
$$

Note that the structure of the equations provided in Def. 9 ensures productivity [JR97] and hence they form a valid co-recursive definition. Thus, projection is indeed welldefined by those equations.

Example 11 (Behavior projection). Applying behavior projection of component c_{3} to the architecture trace described in Ex. 10 results in a behavior trace starting as follows:

$$
\left[i_{0}, i_{1}, o_{0}, o_{1} \mapsto \mathrm{M}_{2}, \mathrm{M}_{1}, \mathrm{M}_{1}, \mathrm{M}_{3}\right],\left[i_{0}, i_{1}, o_{0}, o_{1} \mapsto \mathrm{M}_{5}, \mathrm{M}_{3}, \mathrm{M}_{4}, \mathrm{M}_{6}\right], \cdots
$$

Figure 2.7 lists some characteristic properties of behavior projection.

2.5.4 Architecture Specifications

Finally, we can define our notion of architecture specification as a set of architecture traces with certain properties.

Definition 10 (Architecture specification). An architecture specification is a set $\mathcal{A} \subseteq$ $\left(A S_{\mathcal{T}}^{\mathcal{C}}\right)^{\infty}$ of architecture traces, such that:

[^4]Properties of behavior projection

$$
\begin{aligned}
& \# \Pi_{c}(t) \leq \# t \\
& \Pi_{c}(t)=\Pi_{c}\left(t \downarrow_{n}\right)\left[\text { if } \forall n \leq n^{\prime} \leq \# t: \neg\left\langle c_{c}^{\prime} \xi_{\left(n^{\prime}\right)}\right]\right. \\
& \text { finite }\left(\Pi_{c}(t)\right) \quad \Longleftrightarrow \quad \exists n \forall n^{\prime}>n: \neg\left\{c_{c} \xi_{t\left(n^{\prime}\right)}\right. \\
& t \sqsubseteq t^{\prime} \quad \Longrightarrow \quad \Pi_{c}(t) \sqsubseteq \Pi_{c}\left(t^{\prime}\right) \\
& \Pi_{c}\left(t^{\wedge} t^{\prime}\right)=\Pi_{c}(t)^{\wedge} \Pi_{c}\left(t^{\prime}\right)[\text { if finite }(t)] \\
& \Pi_{c}\left(t \downarrow_{n+1}\right)=\Pi_{c}\left(t \downarrow_{n}\right)\left[\text { if } n<\# t \text { and } \checkmark\left\{c_{t+(n)}\right]\right. \\
& \Pi_{c}\left(t \downarrow_{i+1}\right)=\Pi_{c}\left(t \downarrow_{i}\right)^{\wedge} \mathrm{cmp}_{t(i)}^{c} \&\langle \rangle\left[\text { if } i<\# t \text { and } \xi_{c}^{c} \xi_{t(i)}\right]
\end{aligned}
$$

Figure 2.7: Properties of behavior projection.

- it is input-complete, i.e., that for all $t \in \mathcal{A}$ and all time points $n \in \mathbb{N}$:

$$
\begin{align*}
\forall \mu \in \overline{\operatorname{oin}(t(n))} \exists t^{\prime} \in \mathcal{A}: & t^{\prime} \downarrow_{n}=t \downarrow_{n} \wedge \\
& C M P_{t(n)}=C M P_{t^{\prime}(n)} \wedge \\
& C N_{t(n)}=C N_{t^{\prime}(n)} \wedge \\
& v a l_{t^{\prime}(n)} \operatorname{oin}(t(n))=\mu \tag{2.13}
\end{align*}
$$

- it does not restrict the behavior of components, i.e., that for all $t \in \mathcal{A}$ and all time points $n \in \mathbb{N}$:

$$
\begin{align*}
\forall \mu \in \overline{\operatorname{out}\left(C M P_{t(n)}\right)} \exists t^{\prime} \in \mathcal{A}: & t^{\prime} \downarrow_{n}=t \downarrow_{n} \wedge \\
& C M P_{t(n)}=C M P_{t^{\prime}(n)} \wedge \\
& C N_{t(n)}=C N_{t^{\prime}(n)} \wedge \\
& \operatorname{val}_{t^{\prime}(n) \mid \operatorname{lout}\left(C M P_{t(n)}\right)}=\mu \tag{2.14}
\end{align*}
$$

Note that an architecture specification does not restrict the behavior of components. A component's behavior, on the other hand is restricted in the specification of component types. We conclude the section by introducing the notion of composition as a means to combine a specification of component types with a corresponding architecture specification.

Definition 11 (Composition). Composition of a family of components $\left(\mathcal{C}_{c t}\right)_{c t \in \mathcal{C} \mathcal{T}}$ with an architecture specification $\mathcal{A} \subseteq\left(A S_{\mathcal{T}}^{\mathcal{C}}\right)^{\infty}$, is defined as follows:

$$
\begin{align*}
& \otimes_{\mathcal{A}}(\mathcal{C}) \stackrel{\text { def }}{=}\{t \in \mathcal{A} \mid \\
&\left.\forall c t \in C T, c \in C_{c t} \exists t^{\prime} \subseteq(\overline{\operatorname{port}(c t)})^{\infty}: \Pi_{c}(t)^{\wedge} t^{\prime} \in \operatorname{bhv}(c t)\right\} \tag{2.15}
\end{align*}
$$

Note that the projection to an unfair architecture trace t, i.e., a trace in which a component is activated only finitely many times, the projection to this component results in only a finite behavior trace. Thus, we actually search for a valid continuation t^{\prime}, such that the concatenation for the projection $\Pi_{c}(t)$ with t^{\prime} is a valid behavior of c. The situation is depicted in Fig. 2.8: The projection to component c (represented by the empty rectangle) in architecture trace t, is combined with a possible continuation t^{\prime} to obtain a behavior trace $\Pi_{c}(t) \wedge t^{\prime}$ (shown at the bottom of Fig. 2.8).

	0	1	2	3	4	5	6
$t \in\left(A S_{\mathcal{T}}^{\mathcal{C}}\right)^{\infty}$	\square	\square	\square	\square	\square		

Figure 2.8: Continuations for unfair architecture traces.

2.5.5 A Note on Compositionality

We conclude the section with a brief discussion about compositionality, since it is an important property, which allows to combine specifications of components (usually by means of logical conjunction) to reason about its composition. In the following, we use Γ to denote a specification of component activation and port connection, as introduced by Def. 10. Moreover, we denote with $\gamma_{c t}$ a specification of component type $c t$, as described in Def. 4.
In the presented approach, the behavior of an architecture is fully determined by the behavior of the single components and an additional specification of architectural aspects, such as activation of components and connections (which is in line with our definition of architecture, presented in Sect. 1).

Theorem 1. Γ holds for an architecture specification $\mathcal{A} \subseteq\left(A S_{\mathcal{T}}^{\mathcal{C}}\right)^{\infty}$ and for each component type $c t \in C T_{\mathcal{I}}$ a specification $\gamma_{c t}$ holds, iff Γ holds for $\otimes_{\mathcal{A}}(\mathcal{C})$ and $\gamma_{c t}$ holds for the projection to every component $c \in \mathcal{C}$ of type ct in $\otimes_{\mathcal{A}}(\mathcal{C})$.

Figure 2.9 summarizes the situation (an informal proof is provided in App. B): Whenever we have a specification $\gamma_{c t}$ for component types $c t \in \mathcal{C} \mathcal{T}$ and a corresponding specification Γ for architecture specification \mathcal{A}, we can simply combine them using logical conjunction to have a specification for $\otimes_{\mathcal{A}}(\mathcal{C})$.
Note that this corresponds to a situation in which we have a designated controller component which, at every point in time, knows the state of an architecture and based on that determines activation and deactivation of components and connections.

Figure 2.9: Compositionality.

For a more decentralized approach, however, one could just require the existence of a separate specification of architecture reconfiguration, for each single component (or component type). Then, the behavior of an architecture is fully determined by the specification of components only (without any designated controller component). Again, there are two possible options for such a design:

- In one version, every component knows the state of the whole architecture, at each point in time.
- In another version, every component only knows the state of itself.

While the first option is actually equal to the centralized approach, the second option is more restrictive, i.e., not every set of architecture traces which can be specified with the first approach, can also be specified with the second approach.

2.6 Summary

Figure 2.10 summarizes the main concepts of our model and their interrelationships: Messages and ports (typed by sets of messages) form the basic concepts of the model. A key concept of the model is the notion of component type which consists of an interface and a behavior in terms of behavior traces (streams of port valuations, i.e., valuations of ports with messages). In order to deal with related groups of components, we extended the notion of component type to parametrized component type. Another important concept is the concept of architecture specification: a special set of architecture traces (streams of architecture snapshots, i.e., states of an architecture during execution). Finally, the model provides an operator to combine a given architecture specification with a set of component types and corresponding components. Therefore, the operator uses the concept of behavior projection which extracts the behavior of a certain component out of a given architecture trace.

Figure 2.10: Concept map summarizing major concepts and their interrelationships.

Part II

Specification

3 Specifying Architectural Design Patterns

In the last section, we described a model for dynamic architectures based on the concept of component types and architecture specifications. However, we did not yet provide any techniques to specify ADPs over the model. Figure 3.1 provides an overview of techniques which can be used to specify ADPs over the model introduced in Chap. 2. First, data types are specified for the messages exchanged by the components of an architecture using traditional, algebraic specification techniques [Bro96, Wir90]. Then, component types are specified on top of these datatypes: Therefore, corresponding interfaces are specified for each type of component using a graphical notation called architecture diagrams. Then, component behavior is specified over these interfaces using so-called behavior trace assertions, i.e., linear temporal logic formulæ with ports as free variables. Finally, an architectural specification is given by means of so-called architecture trace assertions: linear temporal logic formulæ with component variables and architectural predicates. The techniques come with a formal semantics in terms of the model introduced in Chap. 2 and they are implemented in terms of an Eclipse/EMF application [GM18] which supports the specification of ADPs by rigorous type checking mechanisms. In the following section, we detail on each of the techniques and demonstrate them by means of our three running example: the Singleton, the Publisher-Subscriber, and the Blackboard pattern.

Figure 3.1: Specifying architectural design patterns.

3.1 Specifying Data Types

As a first step, a set of data types is specified for a pattern. Data types are specified in terms of axioms over a signature and corresponding variables. They can be specified using traditional, algebraic specification techniques [Bro96, Wir90]. Figure 3.2 depicts a schematic example of an algebraic specification. Each specification has a name and may be parametrized by several sorts. Moreover, other data type specifications can by imported by means of their name. Function/predicate symbols are introduced with the corresponding sorts at the beginning of the specification. Some of the symbols might be declared as generator clauses, requiring that every element of the corresponding datatype can be "reached" by a term formulated with these symbols. Finally, a list of variables for the different sorts is defined and a set of axioms is specified to describe the characteristic properties of a data type.

DTSpec Name(param)	imports OtherDatatype
symbol1 :	Sort1
symbol2:	Sort1 \rightarrow Sort2
\vdots	
generated by symboly , symbola	
flex var1, var2:	Sort1
var3:	Sort2
assertion1 (symbolı, varı	
assertion2(symbol1, sym	bol2, var1, var4)

Figure 3.2: Schematic algebraic specification to for data types.
In the following, we demonstrate datatype specifications using our three running examples. The specification of the Singleton pattern does not require any special data types. Data types are required, however, for the specification of the Publisher-Subscriber pattern as well as the Blackboard pattern.

Example 12 (Datatype specification for the Publisher-Subscriber pattern). In a Publisher-Subscriber pattern, we usually have two types of messages: subscriptions for, and unsubscriptions from events. Figure 3.3 depicts the corresponding data type specification. Subscriptions are modeled as parametric data types over two type parameters: a type id for component identifiers and some type evt denoting events to subscribe for. The data type is freely generated by the constructor terms "sub id evt" and "unsub id evt", meaning that every element of the type has the form "sub id evt" or "unsub id evt".

DTSpec subscription(id, evt)
generated by sub id $\wp(\mathrm{evt})$, unsub id $\wp(\mathrm{evt})$
Figure 3.3: Data type specification for the Publisher-Subscriber pattern.

Example 13 (Datatype specification for the Blackboard pattern). Blackboard architectures usually work with problems and solutions for them. Figure 3.4 provides a specification of the corresponding data types. We denote by PROB the set of all problems and by SOL the set of all solutions. Complex problems consist of subproblems which can be complex themselves. To solve a problem, its subproblems have to be solved first. Therefore, we assume the existence of a subproblem relation $\prec \subseteq \operatorname{PROB} \times \mathrm{PROB}$ which relates problems with corresponding subproblems. For complex problems, the details of the relation may not be known in advance. Indeed, one of the benefits of a Blackboard architecture is that a problem can be solved even without knowing the exact nature of this relation in advance. However, the subproblem relation has to be well-founded ${ }^{1}$ (Eq. (3.1)) for a problem to be solvable. In particular, we do not allow for cycles in the transitive closure of \prec. While there may be different approaches to solve a problem (i.e., several ways to split a problem into subproblems), we assume that the final solution for a problem is always unique. Thus, we assume the existence of a function solve: PROB \rightarrow SOL which assigns the correct solution to each problem. Note, however, that it is not known in advance how to compute this function and it is indeed one of the reasons for using this pattern to calculate this function.

DTSpec ProbSol	imports SET
$\prec:$	PROB \times PROB
solve:	PROB \rightarrow SOL
well-founded (\prec)	(3.1)

Figure 3.4: Data type specification for the Blackboard pattern.

3.2 Specifying Component Types

On top of the specified data types, a set of parametrized component types (as described in Def. 4) is specified for the pattern. Component types are specified in two steps: First, an interface is specified for them using a graphical notation called architecture diagrams. Then, behavior is specified in terms of behavior trace assertions.

3.2.1 Specifying Interfaces

On top of the specified data types, a set of interfaces for the component types (as introduced in Def. 2) are specified. The specification of interfaces proceeds in two steps:

[^5]
3 Specifying Architectural Design Patterns

First, a set of ports is specified as means to exchange messages of a certain type. Then, interfaces are specified over the ports.

3.2.1.1 Port Specifications

Ports are specified in terms of templates which declare a set of port identifiers and a corresponding typing. Figure 3.5 shows such a template which specifies two ports port1 of type Sort1 and port2 of type Sort2, respectively.

PSpec Port Specification	imports Datatype
port1:	Sort1
port2 :	Sort2
\vdots	

Figure 3.5: Exemplary port specification.

Again, we demonstrate port specifications by means of our running examples and again, the specification of the Singleton pattern does not require any ports, at all. However, Publisher-Subscriber architectures and also Blackboard architectures require ports to be specified.

Example 14 (Port specification for the Publisher-Subscriber pattern). Two port types are specified for the Publisher-Subscriber pattern by the specification given in Fig. 3.6: a type sb which allows to exchange subscriptions for a specific event and a type nt which allows to exchange messages associated with a certain event. To this end, it uses a type parameter msg and imports the data type specification for subscriptions described in Ex. 12.

PSpec PSPorts(msg)	imports subscription(id, evt)
$s b:$	subscription(id, evt)
$n t:$	evt $\times \mathrm{msg}$

Figure 3.6: Port specification for the Publisher-Subscriber pattern.

Example 15 (Port specification for the Blackboard pattern). For the specification of the Blackboard pattern we require 4 different ports as specified in Fig. 3.7:

- rp is used to exchange a problem which a knowledge source is able to solve, together with a set of subproblems the knowledge source requires to be solved first.
- ns is used to exchange a problem solved by a knowledge source, together with the corresponding solution.
- op is used to exchange problems which still need to be solved.
- cs is used to exchange solutions for problems.

Moreover, a component parameter prob is specified to parametrize knowledge sources according to the problems they can solve.

PSpec BBPorts	imports ProbSol
$r p:$	PROB $\times \wp($ PROB $)$
$n s, c s:$	PROB \times SOL
$o p$, prob:	$\wp($ PROB $)$

Figure 3.7: Port specification for the Blackboard pattern.

3.2.1.2 Interface Specification

Interfaces consist of a set of input and output ports. Moreover, they consist of a set of so-called component parameters with a corresponding strictness condition to specify groups of related components. Formally, component parameters are represented as ports, however, they have a special meaning in the following sense:

- The valuation of component parameters is bound to a concrete component (as required by Def. 3), i.e., the valuation does not change over time, compared to valuations of input and output ports.
- For each possible valuation of the component parameters, at least one component is guaranteed to exist (as required in Sect. 2.5.1). This is not the case for input and output port valuations.
- If the interface is declared to be strict, then exactly one component exists for each valuation of the parameter ports.

Interfaces are specified over a given port specification and they are best expressed graphically using so-called architecture diagrams. Thereby, an interface is represented by a rectangle and consists of two parts: i) A name followed by a list of component parameters (enclosed between ' \langle ' and ' \rangle ' for non-strict interfaces and ' $\langle\langle$ ' and ' $\rangle\rangle$ ' for strict ones). ii) A set of input and output ports which are represented by empty and filled circles, respectively. Figure 3.8 shows a conceptual representation of an architecture diagram Name, which is based on a port specification "PortSpecification" and which specifies two interfaces:

- Interface If1 which consists of one input port i, one output port o, and a non-strict component parameter par.
- Interface If2 which consists of a single output port o, and a strict component parameter par.

In the following, we provide interface specifications for all of our running examples.

Figure 3.8: Exemplary architecture diagram specifying two interfaces.

Example 16 (Interface specification for the Singleton pattern). The interface for the Singleton pattern is specified by the architecture diagram depicted in Fig. 3.9: It consists of a single interface Singleton and does not require any special ports.

Figure 3.9: Architecture diagram for the Singleton pattern.

Example 17 (Interface specification for the Publisher-Subscriber pattern). The architecture diagram depicted in Fig. 3.10 shows the specification of the interfaces of the two types of components involved in a Publisher-Subscriber pattern: An interface "Publisher" is defined with an input port sb to receive subscriptions and an output port nt to send out notifications. Moreover, an interface "Subscriber" is defined with an input port nt receiving notifications and an output port sb to send out subscriptions. Note also that the diagram imports the specification of ports discussed in Ex. 14.

Figure 3.10: Architecture diagram for the Publisher-Subscriber pattern.

Example 18 (Interface specification for the Blackboard pattern). A Blackboard pattern usually involves two types of components: blackboards and knowledge sources. The corresponding interfaces are specified by the architecture diagram depicted in Fig. 3.11:

The blackboard interface is denoted "BB" and consists of two input ports rp and ns to receive subproblems for which solutions are required and new solutions to currently open
problems. Moreover, it specifies two output ports op and cs to communicate currently open problems and solutions for all currently solved problems.

The interface for knowledge sources is denoted "KS" and its specification actually mirrors the specification of the blackboard interface: A knowledge source is required to have two input ports op and cs to receive currently open problems and solutions for all currently solved problems, and two output ports rp and ns to communicate required subproblems and new solutions. Note that each knowledge source can only solve certain problems, which is why a knowledge source is parameterized by a set of problems "prob" it is able to solve. Since there may be different knowledge sources which are able to solve the same set of problems, the parameter is not declared to be strict. Again, the diagram imports the corresponding port specification from Ex. 15.

Figure 3.11: Architecture diagram for the Blackboard pattern.

3.2.2 Specifying Behavioral Constraints

We conclude the specification of component types by assigning constraints about component behavior to each interface. These constraints are expressed in terms of so-called behavior trace assertions. In the following, we introduce behavior trace assertions informally and demonstrate them by means of our Blackboard example. However, in App. C, we provide also a formal definition of the syntax and semantics of behavior trace assertions.

3.2.2.1 Behavior Trace Assertions

Behavior trace assertions are a means to specify a component's behavior in terms of behavior traces introduced in Def. 3. They are formulated by means of first-order linear temporal logic formulæ [MP92] over datatype variables and behavior assertions.

Datatype variables Behavior trace assertions may be specified over variables for messages. Thereby, variables are typed by the sorts of the pattern's datatype specification and we distinguish between two types of variables: rigid and flexible datatype variables. While rigid variables are only interpreted once, flexible variables are newly interpreted at each point in time.

Behavior assertions Roughly speaking, behavior assertions are predicate logic formulæ specified over a set of datatype variables and a set of ports, with terms consisting of:

- Datatype variables as well as the ports and parameters of a component type's interface.
- Function and predicate symbols of the corresponding data type specification.

They specify the state of a component (in terms of valuations of input and output ports) during execution.

3.2.2.2 Component Type Specification

Component types are specified using templates as shown in Fig. 3.12. The specification has a name and is associated with an interface of a corresponding interface specification. Then, a set of flexible and rigid variables for different sorts are declared. A component type specification concludes with a list of behavior trace assertions, formulated over the ports of the corresponding interface and the introduced data type variables.

BSpec Name	for iface of ispec
flex aDt1:	Sort1
rig aDt2:	Sort1
\vdots	
assertion1 (iface, aDt1, aDt2)	
assertion2(iface, aDt1, aDt2)	
\vdots	

Figure 3.12: Schematic component type specification.
In the following, we demonstrate component type specifications in terms of our running examples. However, since the Singleton pattern and the Publisher-Subscriber pattern do not pose any constraints on the behavior of components, we only provide behavior specifications for the two types of components involved in a Blackboard pattern.

Example 19 (Behavioral constraints for blackboard components). A blackboard provides the current state towards solving the original problem and forwards problems and solutions from knowledge sources. Figure 3.13 provides a specification of the blackboard's behavior in terms of three behavior trace assertions:

- If a solution s^{\prime} to a subproblem p^{\prime} is received on its input port $n s$, then it is eventually provided at its output port cs (Eq. 3.2).
- If it gets notified that solutions for subproblems P are required in order to solve a certain problem p on its input port r, these problems are eventually provided at its output port op (Eq. (3.3)).
- A problem p^{\prime} is provided at its output port op, as long as it is not solved (Eq. (3.4)).

Note that the last assertion (Eq. (3.4)) is formulated using a weak until operator which is defined as follows: $\gamma^{\prime} \mathcal{W} \gamma \stackrel{\text { def }}{=} \square\left(\gamma^{\prime}\right) \vee\left(\gamma^{\prime} \mathcal{U} \gamma\right)$.

BSpec Blackboard	for $B B$ of Blackboard	
flex	$p:$	
rig	p_{1}^{\prime}	
	s^{\prime}	PROB
$\square\left(\left(p^{\prime}, s^{\prime}\right) \in n s \longrightarrow \diamond\left(\left(p^{\prime}, s^{\prime}\right) \in c s\right)\right)$	PROB SET	
$\square\left((p, P) \in r p \longrightarrow\left(\forall p^{\prime} \in P:\left(\diamond\left(p^{\prime} \in o p\right)\right)\right)\right)$	PROB	
$\square\left(p^{\prime} \in o p \longrightarrow\left(p^{\prime} \in o p \mathcal{W}\left(p^{\prime}, \operatorname{solve}\left(p^{\prime}\right)\right) \in n s\right)\right)$		
\square		

Figure 3.13: Specification of behavior for blackboard components.

Example 20 (Behavioral constraints for knowledge source components). A knowledge source receives open problems and solutions for already solved problems. It might contribute to the solution of the original problem by solving currently open subproblems. Figure 3.14 provides a specification of knowledge source behavior in terms of three behavior trace assertions:

- If a knowledge source requires some subproblems P to be solved in order to solve a problem p^{\prime} and it gets solutions for all these subproblems q^{\prime} on its input port cs, then it eventually solves the original problem p^{\prime} and provides the solution through its output port ns (Eq. (3.5)).
- To solve a problem p, a knowledge source requires solutions only for smaller problems q (Eq. (3.6)).
- A knowledge source will eventually communicate its ability to solve an open problem via its output port rp (Eq. (3.7)).

3.3 Specifying Architectural Constraints

As a last step, an architecture specification (as described in Def. 10) is specified by means of constraints about the activation and deactivation of components as well as constraints about connections between component ports. Both types of constraints may be expressed in terms of architecture trace assertions, i.e, linear temporal logic formulæ [MP92] over datatype variables (introduced in the description of behavior trace assertions above), component variables, and architecture assertions. Their semantics is given in terms of architecture traces (as described in Def. 8). Again, in the following, we introduce architecture trace assertions informally, by means of our running examples and we provide a formal definition of the syntax and semantics in App. C.4.

BSpec Knowledge Source	for $K S\langle p r o b\rangle$ of Blackboard
flex pr $q:$	PROB
rig $\quad p^{\prime}, q^{\prime}:$	$\wp($ PROB $)$
$\square\left(\forall\left(p^{\prime}, P\right) \in r p: \quad\left(\left(\forall q^{\prime} \in P: \diamond\left(q^{\prime}\right.\right.\right.\right.$, solve $\left.\left.\left(q^{\prime}\right)\right) \in c s\right) \longrightarrow \diamond\left(p^{\prime}\right.$, solve $\left.\left.\left.\left(p^{\prime}\right)\right) \in n s\right)\right)$	
$\square(\forall(p, P) \in r p: \forall q \in P: q \prec p)$	
$\square(p r o b \in o p \longrightarrow \diamond(\exists P:(p r o b, P) \in r p))$	

Figure 3.14: Specification of behavior for knowledge source components.

3.3.1 Component Variables

Component variables are typed by component types and may be interpreted by corresponding components. Similar to datatype variables, component variables can be classified into "flexible" and "rigid", depending on whether they are newly interpreted at each point in time or whether they keep their value. Since component types may be parametrized, variables are assumed to be available for each possible valuation of the parameters. For example, a component variable declaration x for component type $X\langle$ bool \rangle would actually induce two component variables $x_{\langle\text {true }\rangle}$ and $x_{\langle f a l s e\rangle}$ which can be interpreted by components where parameter bool is valuated with the interpretations of true and false, respectively. Note that such parametrized component variables are only feasible since the semantics of a FACTUM specification requires the existence of at least one component for each different valuation of a component type's component parameters (as discussed in Sect. 3.2.1.2).

3.3.2 Architecture Assertions

Architecture assertions are predicates to specify snapshots of an architecture during execution (as described in Def. 5). Roughly speaking, they are predicate-logic formulæ specified over datatype and component variables, with terms consisting of:

- Datatype variables as well as component ports and component parameters, i.e., ports or parameters combined with corresponding component variables.
- Function and predicate symbols of the corresponding data type specification.

Moreover, several pre-defined, architectural predicates may be used for the formulation of architecture assertions:

- $\widehat{c . p}$ denotes that a component c is currently sending/receiving a message over port p,
- $\{c\}$ denotes that a component c is currently active, and
- c.p $\rightsquigarrow c^{\prime} . p^{\prime}$ denotes that output port p^{\prime} of component c^{\prime} is connected to input port p of component c.

3.3.3 Architecture Constraint Specification

Architectural constraints can be specified by means of specification templates (Fig. 3.15). Each template has a name and is based on a corresponding interface specification. Then, a list of flexible and rigid variables for the data types and components are defined. Finally, a list of architecture trace assertions is formulated over the variables. Note that the semantics of architecture constraint specifications is given in terms of architecture specifications as described in Chap. 2. Thus, they can only be used to specify component activation and reconfiguration and not to restrict the behavior of components.

ASpec Name	for ifSpec
flex	aDt1:
rig	aDt2: $1:$
	aCmp2:

Figure 3.15: Exemplary architecture constraint specification.
In the following, we provide architecture constraint specifications for all three patterns.
Example 21 (Architectural constraints for the Singleton pattern). Architectural constraints for the Singleton pattern are formalized by the specification depicted in Fig. 3.16. The specification requires two constraints for the activation of components: Equation 3.8 requires that at each point in time there exists a singleton component c which is activated. Equation 3.9 further asserts that there exists a unique component c^{\prime}, such that every active component c of type singleton is equal to c^{\prime} at every point in time. In our version of the singleton, we require that the singleton component is not allowed to change over time. This is why variable c^{\prime} is declared to be rigid in Fig. 3.16. Indeed, other versions of the singleton are possible in which the singleton may change over time.

ASpec Singleton for	for Singleton
$\begin{array}{ll} \hline \hline \text { flex } & c ; \\ \text { rig } & c^{\prime}: \end{array}$	Singleton Singleton
$\square(\exists c: 3 c\})$	(3.8)
$\left.\exists c^{\prime}:\left(\square\left(\forall c:(\xi c\} \longrightarrow c=c^{\prime}\right)\right)\right)$)) (3.9)

Figure 3.16: Activation constraints for a Singleton pattern.

Example 22 (Architectural constraints for the Publisher-Subscriber pattern). Activation constraints for the publisher component of a Publisher-Subscriber pattern are similar
to the ones specified for the Singleton pattern in Fig. 3.16. Moreover, a PublisherSubscriber pattern requires two additional constraints, regarding the connections between publisher and subscriber components, which are specified in Fig. 3.17:

- With Eq. (3.10), we require that a publisher's sb port is always connected to a subscriber's sb port, whenever both of them are active.
- With Eq. (3.11), we require that port nt of a subscriber s^{\prime} is always connected to a publisher's nt port, whenever the publisher sends out a message associated to an event e for which s^{\prime} was subscribed for.

ASpec Publisher-Subscriber	for Publisher-Subscriber
flex s :	Subscriber
p :	Publisher
	msg
rig ${ }_{s^{\prime}}^{\text {E }}$	Subscriber
e :	evt
$\square(\xi p\} \wedge\{s\} \wedge \widehat{s . s b} \longrightarrow p . s b \rightsquigarrow s . s b)$	(3.10)
$\square\left(\xi s^{\prime} \xi \wedge\left(\exists E: \operatorname{sub} s^{\prime} E \in s^{\prime} . s b \wedge e \in E\right)\right.$	
$\left.\longrightarrow\left((\xi p\} \wedge \ s^{\prime}\right\} \wedge(e, m) \in p . n t \longrightarrow s^{\prime} . n t \rightsquigarrow p . n t\right)$	
$\mathcal{W}\left(\left\{s^{\prime}\right\} \wedge\left(\exists E:\right.\right.$ unsub $\left.\left.\left.s^{\prime} E \in s^{\prime} . s b \wedge e \in E\right)\right)\right)$)	(3.11)

Figure 3.17: Architectural constraints for the Publisher-Subscriber pattern (in addition to the ones specified for the Singleton pattern).

Example 23 (Architectural constraints for the Blackboard pattern). Also for the Blackboard pattern we get similar activation constraints for blackboard components as the ones specified for the Singleton pattern in Fig. 3.16. Moreover, the Blackboard pattern requires similar connection constraints as required for the Publisher-Subscriber pattern in Fig. 3.17. Thereby, port rp of the Blackboard pattern corresponds to port sb and port cs of the Blackboard pattern to port nt.

In addition, Fig. 3.18 provides two connection constraints and three activation constraints for Blackboard architectures:

- By Eq. (3.12), we require that a blackboard's op port is always connected to a knowledge source's op port, whenever both of them are active.
- By Eq. (3.13), we require that a blackboard's ns port is always connected to a knowledge source's ns port, whenever both of them are active.

```
ASpec Blackboard for Blackboard
flex \(k s: \quad K S\langle\) prob \(\rangle\)
        \(b b: \quad \quad{ }_{B B}\)
    \(p\) :
    PROB
        SOL
rig
    \(K S\langle p r o b\rangle\)
                                    PROB
\(\square(\xi k s\} \wedge\{b b \xi \wedge \widehat{b b . o p} \longrightarrow k s . o p \rightsquigarrow b b . o p)\)
\(\square(\xi b b \xi \wedge\{k s\} \wedge \widehat{k s . n s} \longrightarrow b b . n s \rightsquigarrow k s . n s)\)
\[
\begin{equation*}
\square\left(\xi k s^{\prime} \xi \longrightarrow \square\left(\diamond \xi k s^{\prime} \xi\right)\right) \tag{3.13}
\end{equation*}
\]
\[
\begin{equation*}
\square\left(\xi k s^{\prime} \xi \wedge(p, P) \in k s^{\prime} . r p \wedge p^{\prime} \in P\right. \tag{3.14}
\end{equation*}
\]
\[
\begin{equation*}
\left.\left.\longrightarrow \square\left(\left(\exists b b:\left\{b b \xi \wedge\left(p^{\prime}, s\right) \in b b . c s\right) \longrightarrow \xi k s^{\prime}\right\}\right)\right)\right) \tag{3.15}
\end{equation*}
\]
\[
\begin{equation*}
\square\left(\forall p^{\prime} \in b b . o p: \diamond\left(\exists k s_{\left\langle p r o b=p^{\prime}\right\rangle}:\{k s \xi\}\right)\right. \tag{3.16}
\end{equation*}
\]

Figure 3.18: Architectural constraints for Blackboard architectures (in addition to the ones specified for the Singleton and the Publisher-Subscriber pattern).
- By Eq. (3.14), we require a fairness condition for the activation of already activated knowledge sources.
- By Eq. (3.15), we require that whenever a knowledge source offers to solve some problem \(p\), given that it receives solutions for corresponding subproblems \(P\), then the knowledge source is activated, whenever a solution for any of the problems of \(P\) is provided.
- By Eq. (3.16), we require that for each open problem \(p^{\prime}\), a knowledge source \(k s\) which is able to solve \(p^{\prime}\) is eventually activated.

Note expression \(\exists k_{\left\langle p r o b=p^{\prime}\right\rangle}\) : \(\left\{k s \xi^{\prime}\right.\) of Eq. (3.16) which demonstrates the use of parametrized component variables. Indeed, the variable \(k s_{\left\langle p r o b=p^{\prime}\right\rangle}\) actually represents a knowledge source component which has its parameter "prob" valuated with the problem represented by datatype variable \(p^{\prime}\). Such parametrized variables provide a convenient way to specify constraints about components of parametrized component types.

\subsection*{3.4 Summary}

Table 3.1 summarizes techniques for the specification of ADPs described in this chapter. For each technique it lists the specified model concept (with reference to the definition of the concept), the type of technique, and important specification elements.
\begin{tabular}{r|lll} 
& concept & type & elements \\
\hline \begin{tabular}{r} 
Algebraic \\
Specifications
\end{tabular} & \begin{tabular}{l} 
data types \\
for messages \\
(Sect. 2.1)
\end{tabular} & template & \begin{tabular}{l} 
function symbols, \\
datatype variables, \\
characteristic properties
\end{tabular} \\
\hline \begin{tabular}{r} 
Architecture \\
Diagrams
\end{tabular} & \begin{tabular}{l} 
interfaces \\
(Def. 2), \\
architecture \\
specification \\
(Def. 10)
\end{tabular} & \begin{tabular}{l} 
graphical, \\
annotations*
\end{tabular} & \begin{tabular}{l} 
interfaces, \\
connection annotations*, \\
activation annotations*
\end{tabular} \\
\hline Behavior Trace & \begin{tabular}{l} 
parameterized \\
Assertions \\
component \\
types
\end{tabular} & template & \begin{tabular}{l} 
datatype variables, \\
temporal operators,
\end{tabular} \\
& (Def. 4) & & \begin{tabular}{l} 
ports
\end{tabular} \\
\hline Architecture & architecture & template & \begin{tabular}{l} 
datatype variables, \\
Trace \\
specification
\end{tabular} \\
Assertions & (Def. 10) & & \begin{tabular}{l} 
temporal operators, \\
temponent ports,
\end{tabular} \\
& & \begin{tabular}{l} 
architectural predicates
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
* Introduced in the next chapter.
}

Table 3.1: Techniques used for the specification of architectural design patterns.

\section*{4 Advanced Specifications}

In the previous chapter, we introduced basic techniques to specify ADPs. We also applied the techniques to specify versions of three, well-known, ADPs: the Singleton, the Publisher-Subscriber, and the Blackboard pattern.

Specifying these patterns, however, led to two further observations:
1. Some architectural constraints are common to different ADPs. One example is the constraint that components of a certain type are required to be always activated. Another example is that components of a certain type are connected via certain ports, whenever they are activated.
2. Another observation is that, sometimes, pattern specifications reuse specifications from other patterns. For example, the specification of the Publisher-Subscriber pattern reused the activation specification from the Singleton pattern for the publisher component. Or the Blackboard pattern reused the whole specification of the PublisherSubscriber pattern.
Building on these observations, in the following chapter, we extend our specification approach with two features which turn out to be useful for the specification of patterns:
1. In order to facilitate the specification of common activation and connection constraints, we extend our notion of architecture diagram with so-called activation/connection annotations. These annotations provide a convenient way to express certain architectural constraints graphically by annotating the given architecture diagram.
2. In order to support hierarchical pattern specifications, we introduce the notion of pattern instantiations which allow to import a pattern specification within another pattern specification and instantiate the corresponding component types. Therefore, we provide additional annotations for architecture diagrams, which allow to easily express such instantiations in a graphical manner.
Again, the different techniques are demonstrated in terms of the three running examples introduced in Chap. 1.

\subsection*{4.1 Activation Annotations}

Activation annotations enhance an architecture diagram with constraints regarding the activation and deactivation of components. They are expressed by annotating component types with corresponding architecture assertions, determining situations in which components of the annotated type are required to be active or inactive. Figure 4.1, for example, depicts an activation annotation for a component type \(C T\), parametrized by a parameter \(P\). The annotation is enclosed between square brackets and takes a variable \(c\) of a component of type \(C T\), with parameter valuation \(\omega\), as input. It then specifies

\section*{4 Advanced Specifications}
two architecture assertions using variable \(c: \gamma(c)\) determines situations in which the component is required to be activated, while \(\gamma^{\prime}(c)\) determines a situation in which the component is required to be deactivated. For the case neither \(\gamma(c)\) nor \(\gamma^{\prime}(c)\) holds, \(c\) may be either active or not. If omitted, we assume default values true and false, respectively. In order to specify only the first parameter and leave the default value for the other one, we write \(\left\lfloor c_{\langle\omega\rangle}: \gamma(c)\right\rfloor\). Similarly, we write \(\left\lceil c_{\langle\omega\rangle}: \gamma(c)\right\rceil\) to only specify the second parameter and leave the default value for the other one.


Figure 4.1: Activation annotation for a component type \(C T\langle P\rangle\) with minimal activation condition \(\gamma(c)\) and deactivation condition \(\gamma^{\prime}(c)\).

Activation annotations as described so far specify the activation/deactivation of components of a certain type. However, they do not say anything about the identity of these components. The annotation in Fig. 4.1, for example, allows \(c\) to be a different component at different points in time. In order to require that the identity of the components does not change over time, we need a stronger notion of activation annotation. We call it rigid activation annotation and it is expressed using double square brackets, instead of single square brackets. Figure 4.2, for example, depicts an activation annotation, similar to the one presented in Fig. 4.1. However, since we use double square brackets, it is to be interpreted as a rigid activation annotation and variable \(c\) is not allowed to change over time. Similar as for activation annotations we take true and false as default values and write \(\|c: \gamma(c)\|\) and \(\|c: \gamma(c)\|\) to take the default values for the second and first condition only.


Figure 4.2: Rigid activation annotation for a component type \(C T\langle P\rangle\), with activation condition \(\gamma(c)\) and deactivation condition \(\gamma^{\prime}(c)\).

Using activation annotations, we can now specify a Singleton by adapting the architecture diagram presented in Fig. 3.9.

Example 24 (Annotations for the Singleton pattern). Figure 4.3 depicts the adapted architecture diagram for Singletons. The first condition requires that a singleton is always active. The second condition, on the other hand, requires that, whenever a singleton is active, it is the only component of that type which is active. Since we do not want singletons to change over time, we enclose the conditions into double squared brackets,
making it a rigid activation annotation. Note that the new architecture diagram now makes the activation specification presented in Fig. 3.16 superfluous.


Figure 4.3: Annotated architecture diagram for the Singleton pattern.

\subsection*{4.2 Connection Annotations}

Connection annotations enhance an architecture diagram by constraints regarding the connection of certain components. Such annotations are added to each type-consistent pair of input and output ports of component types and specify conditions under which the corresponding ports of components of these types are required to be connected or disconnected. Figure 4.4, for example, depicts a connection annotation for ports \(i\) and \(o\) of component types \(C T 1\) and \(C T 2\), respectively. The annotation takes two component variables \(c\) and \(c^{\prime}\) as input and specifies two architecture assertions \(\gamma\left(c, c^{\prime}\right)\) and \(\gamma^{\prime}\left(c, c^{\prime}\right)\) over these variables: \(\gamma\left(c, c^{\prime}\right)\) determines situations in which the connection is required to be established, while \(\gamma^{\prime}\left(c, c^{\prime}\right)\) determines a situation in which a connection is not allowed. For the case neither \(\gamma\left(c, c^{\prime}\right)\) nor \(\gamma^{\prime}\left(c, c^{\prime}\right)\) holds, the connection may be established or not. Again, we assume default values of true and false and may omit one of the conditions to take its default value. Also for connection annotations we may require components not to change over time, which is why we also introduce the notion of rigid connection annotation. Similar as for rigid activation annotations, we mark connection annotations as rigid by enclosing them into double square brackets, instead of single square brackets.


Figure 4.4: Connection annotation for connections between port \(i\) of component type \(C T 1\langle P\rangle\) and port \(o\) of component type \(C T 2\left\langle P^{\prime}\right\rangle\) with connection condition \(\gamma\left(c, c^{\prime}\right)\) and disconnection condition \(\gamma^{\prime}\left(c, c^{\prime}\right)\).

In the following, we demonstrate the use of connection annotations in terms of the examples introduced above.

Example 25 (Annotations for the Publisher-Subscriber pattern). We first adapt the architecture diagram for the Publisher-Subscriber pattern introduced in Fig. 3.10. The
resulting architecture diagram is depicted in Fig. 4.5. We require a similar activation annotation for a publisher component as the one introduced for singletons. To increase readability, however, the annotation uses abbreviations \(\gamma\) and \(\gamma^{\prime}\), which are expanded at the bottom of the diagram. Moreover, we add a connection annotation which requires port sb of a publisher component to be connected to port sb of a subscriber component, whenever the subscriber sends out some message. The dashed line without any annotation, denotes a connection constraint using the default values for connections and disconnections. Indeed the line could have been omitted and the semantics would not change. However, it is put there to highlight the fact that there is an additional connection constraint specified as architecture trace assertion in Eq. (3.11). The new architecture diagram allows us now to get rid of some of the architectural assertions introduced in Ex. 22. Indeed, the only remaining assertion is Eq. (3.11), which cannot be replaced with any annotation so far. Note that the connection annotation used in this example is used frequently which is why, from now one, we shall use a solid connection between ports to denote that the corresponding ports are required to be connected, whenever the output port is valuated with some message.


Figure 4.5: Annotated architecture diagram for the Publisher-Subscriber pattern.

Example 26 (Annotations for the Blackboard pattern). Next we adapt the architecture diagram for the Blackboard pattern as introduced in Fig. 3.11. The resulting architecture diagram is depicted in Fig. 4.6. Again, we add a similar annotation as the one required for singletons to the blackboard component type. Moreover, we add three connection annotations: the three solid lines between the ports of blackboard and knowledge source components use the new notation introduced in the last example to denote a required connection between the corresponding ports, whenever the output port sends out a message. The architecture diagram now captures all the architectural assertions imposed to a Blackboard architecture, except the activation assertions Eq. (3.14), Eq. (3.15), and Eq. (3.16), as well as the connection assertion formulated by Eq. (3.11).


Figure 4.6: Annotated architecture diagram for the Blackboard pattern.

\subsection*{4.3 Dependencies}

The annotations introduced so far affect all components of a certain type and they do not consider a component's context. Sometimes, however, activation as well as connection of certain components needs to be expressed relative to other components. Suppose, for example, we want to specify a Publisher-Subscriber pattern in which we can have multiple, different publisher components. Thus, we would first remove the activation constraint for the publisher component type which allows for multiple components of type publisher. Then, however, the activation and connection constraints for subscriber components need to be interpreted relatively to one of the publisher components.
To express this kind of constraints, in the following, we introduce so-called component relationships. They allow one to specify relationships between components of certain types and modify the semantics of activation and connection annotations accordingly.

\subsection*{4.3.1 Specifying Dependencies}

Basically, we distinguish between two types of dependencies: weak and strong dependencies.

Weak dependencies between two components allow them to be shared amongst other components. A weak dependency specifies an upper and a lower bound of how many components of one type are dependent on a component of another type. They are specified graphically by connecting the dependent components with an edge which starts with an empty diamond and ends with the corresponding cardinality. Specifying a weak dependency between two component types actually determines a relation between components of the corresponding types. The dependency specified in Fig. 4.7, for example, determines a relation between components of type \(C T 1\) and \(C T 2\) where each component of type CT1 is related with 5 to 10 components of type CT2. Since it is a weak dependency, components may be shared, i.e., the relation may contain an entry ( \(c_{1}, c^{\prime}\) ) and also an entry \(\left(c_{2}, c^{\prime}\right)\) in which case \(c^{\prime}\) is dependent on both \(c_{1}\) and \(c_{2}\).


Figure 4.7: Weak dependency between components of type CT1 and components of type CT2.

In order to avoid shared components, we also introduce the notion of strong dependency. Similarly to weak dependent annotations, they are specified graphically by connecting dependent component types with an edge which starts with a diamond and ends with corresponding cardinalities. However, in order to highlight that this is a strong dependency, we use filled diamonds, instead of empty ones. Similar as the specification of weak dependencies, also the specification of strong dependencies induces a relation between components of the corresponding type. Compared to weak dependencies, however, strong dependencies require the relation to be a function, i.e., that dependent components are not shared amongst components. The dependency specified in Fig. 4.8, for example, determines a relation between components of type \(C T 1\) and \(C T 2\) where each component of type CT1 is related with 5 to 10 components of type CT2. Since it is a strong dependency, however, components must not be shared, i.e., the relation is not allowed to contain entries \(\left(c_{1}, c^{\prime}\right)\) and \(\left(c_{2}, c^{\prime}\right)\) whenever \(c_{1} \neq c_{2}\).


Figure 4.8: Strong dependency between components of type CT1 and components of type CT2.

\subsection*{4.3.2 Dependent Connections}

As hinted in the introduction of this chapter, adding dependencies refines the semantics of the corresponding activation and connection annotations. Connection annotations are now interpreted w.r.t. the relation induced by the dependency specification. Thus, conditions for required and prohibited connections are combined with a requirement that the components are indeed related according to the dependency specification. Figure 4.9, for example, establishes a relation between components of type CT1 and components of type CT2 and requires that a connection between the corresponding ports of related components is established, whenever \(\gamma\left(c, c^{\prime}\right)\) holds. The ports must not be connected in situations described by \(\gamma^{\prime}\left(c, c^{\prime}\right)\).


Figure 4.9: Dependent connection between components of type CT1 and CT2.

\subsection*{4.3.3 Dependent Activations}

For activation annotations, dependencies change the semantics of activation annotations in such a way that the activation of one of the components becomes a precondition to the activation of the other one. Thereby, we distinguish four types of dependent activations.

A required activation annotation specifies that the activation of dependent components requires the activation of the components they depend on. Such annotations can be easily expressed with a solid line for dependencies. The specification in Fig. 4.10, for example, introduces a dependency between components of type CT1 and components of type CT2. Activations of components of type CT2 then depend on the activation of a component of type \(C T 1\), on which the component of type \(C T 2\) depends on.


Figure 4.10: Required activation annotation for components of type CT1 and CT2.
Sometimes, however, we want deactivation of a component to depend on the deactivation of dependent components. Such required deactivations can be expressed by changing the dependency line to a double dashed one. Figure 4.11, for example, requires a component of type \(C T 1\) to be deactivated in order for dependent components of type CT2 to be deactivated.


Figure 4.11: Required deactivation annotation for components of type if1 and if2.

Finally, we may require that the activation of a component is completely determined by the activation of a depending component. This can be expressed with a double line in the dependency specification. Figure 4.12, for example, depicts how to specify that components of type \(C T 2\) are activated whenever depending components of type CT1 are.


Figure 4.12: Dependent activation annotation for components of type if1 and if2.

Table 4.1 summarizes the different types of dependency annotations which can be used for architecture diagrams.

\subsection*{4.3.4 Publisher-Subscriber with multiple Publishers}

We can now use dependencies to specify an alternative version of the PublisherSubscriber pattern.


Table 4.1: Overview of dependency annotations for architecture diagrams.

Example 27 (Publisher-Subscriber with multiple Publishers). Figure 4.13 depicts the specification of a Publisher-Subscriber pattern which allows for multiple publisher components with subscriber components which can subscribe at different publishers. The architecture diagram has two major changes compared to the original one: First, we relaxed the activation annotation by removing the postcondition. The new diagram only requires each publisher to be always activated, however it does not require anymore that only one component of type publisher exists. The second difference is that we added a weak dependency relationship between publishers and subscribers which allows subscribers to be subscribed at different publishers. Note that without adding the dependency relation, each subscriber would be required to be subscribed at each available publisher.


Figure 4.13: Alternative version of a Publisher-Subscriber pattern with multiple publishers.
In another version of the Publisher-Subscriber pattern we could require that subscribers are only allowed to subscribe at one single publisher. To specify this version we would only change the dependency to be a strong one (with a filled diamond).

\subsection*{4.4 Specifying Pattern Instantiations}

As described above, pattern specifications may be built on top of other pattern specifications by instantiating their component types. Instantiating a pattern requires to provide a mapping which relates component types and port types. Such instantiations can be directly specified in a pattern's architecture diagram by annotating the corresponding interfaces.

Figure 4.14 depicts a schematic pattern instantiation. The diagram specifies a pattern PatternB and thereby instantiates another, existing specification PatternA, which is assumed to specify a component type \(C T 1\) with one single input port \(i\) and one single output port o. PatternB specifies one component type CT2 which is declared to be an instance of component type \(C T 1\) of PatternA. Since CT1 has two ports, the instantiation must provide mappings for these two ports which is done in square brackets right after the name of the instantiated component type. In our case, port \(i\) of component type \(C T 1\) is mapped to input port \(i_{1}\) and \(o\) to output port \(o_{1}\). Note that the interface of CT2 has two additional ports \(i_{2}\) and \(o_{2}\), which do not instantiate any port of interface CT1. Indeed, a port mapping is not required to be bijective, which means that a component type may add more ports to the interface of the component type it instantiates. However, we do require that the types of the ports refine the types of the port of the instantiated component type. For our example that means that the type of port \(i_{1}\) must be a refined version of the type of \(i\) and the type of \(o_{1}\) must refine the type of \(o\).


Figure 4.14: Architecture diagram in which component type \(C T 1\) of Pattern \(B\) instantiates component type CT1 of a pattern PatternA.

In the following, we demonstrate hierarchical specifications in terms of our running examples.

Example 28 (Publisher-Subscriber instantiating the Singleton pattern). First, we adapt the specification of the Publisher-Subscriber pattern introduced above such that a publisher component is considered to be an instance of the singleton type. Figure 4.15 depicts the adapted architecture diagrams, excluding (Fig. 4.15a) and including (Fig. 4.15b) annotations inherited from the imported Singleton pattern. The diagram first imports the specification of the Singleton. Then it declares the publisher component type to be an instance of a singleton component type from the Singleton pattern.

By instantiating the singleton, the publisher will inherit all its specified properties, i.e., an adapted version of the activation annotation of the Singleton will be available for publisher components.

Example 29 (Blackboard pattern instantiating the Publisher-Subscriber pattern). Finally we model a Blackboard pattern as an instance of the Publisher-Subscriber pattern. Thereby, the blackboard is specified to be an instance of the publisher type and knowledge sources instances of subscriber components, respectively. Figure 4.16 depicts the adapted architecture diagrams, excluding (Fig. 4.16a) and including (Fig. 4.16b) annotations inherited from the imported Publisher-Subscriber pattern. Again, the diagram imports the


Figure 4.15: Architecture diagrams for the Publisher-Subscriber pattern instantiating the Singleton pattern.
specification of the Publisher-Subscriber pattern and declares a blackboard to be an instance of a publisher and a knowledge source to be an instance of a subscriber. However, since publisher as well as subscriber interfaces have ports, we need to provide an additional port-mapping which maps every port of a publisher / subscriber to a corresponding port of a blackboard/knowledge source. Note also that a blackboard / knowledge source adds two additional ports which do not map to any of the ports of the Publisher-Subscriber pattern. Again, by instantiating the Publisher-Subscriber pattern, the Blackboard will inherit the specification of the Publisher-Subscriber pattern. Thereby, the properties are adapted as specified by the instantiation, i.e., publisher components will become blackboard components and subscriber components will become knowledge sources in the specified properties. Note that inherited properties will be propagated as well which means that the Blackboard will even inherit the properties of the Singleton since the publisher component instantiates the Singleton.

\subsection*{4.5 Summary}

Table 4.2 provides an overview of the advanced specification techniques for architecture diagrams introduced in this chapter. For each technique it lists the specified model concept, the type of technique, and important specification elements.

(a) Without inherited annotations.

(b) With inherited annotations.

Figure 4.16: Architecture diagram for the Blackboard pattern instantiating the PublisherSubscriber pattern.
\begin{tabular}{|c|c|c|c|}
\hline & concept & type & elements \\
\hline Activation Annotations & component activation and deactivation & textual for component types & activation conditions deactivation conditions \\
\hline \begin{tabular}{l}
Connection \\
Annotations
\end{tabular} & textual for connections & architecture assertions for connection & connection conditions deconnection conditions \\
\hline Dependencies & relations between components & graphical & weak dependency strong dependency cardinalities \\
\hline Instantiations & pattern instantiations & textual for component types & port mappings \\
\hline
\end{tabular}

Table 4.2: Summary of advanced architecture diagrams.

\section*{Part III}

\section*{Verification}

\section*{5 A Calculus for Architectural Design Patterns}

In the last chapter, we introduced the notion of behavior trace assertion, as a means to specify component types (introduced in Sect. 2.4). Moreover, we also introduced the notion of architecture trace assertion, as a means to formulate architecture specifications (introduced in Sect. 2.5). Verifying an ADP now requires to show that the composition of component types with the architectural specification satisfies a certain property. The process is summarized in Fig. 5.1: First, behavior for component types is specified in terms of a set of behavior traces. Then, an architectural specification is interpreted over a set of architecture traces. Finally, the architecture specification is combined with the component type specification using behavior projection for each involved component \(c\). The desired property is then verified over the resulting set of architecture traces.
Verifying ADPs using this approach led to the observation that certain proof steps are common for the verification of different ADPs. In an effort to shorten the verification process, we developed a calculus to reason about component behavior in a dynamic context by combining behavior and architecture specifications. Therefore, we first introduced a means to interpret a behavior specification directly over a set of architecture traces (dashed arrow in Fig. 5.1). Then, we introduced introduction and elimination rules for all the temporal operators involved in behavior specifications, to combine them with corresponding activation specifications and reason at a more abstract level \(\left(\vdash_{c}\right.\) in Fig. 5.1). Finally, we showed soundness of each of the rules w.r.t. the interpretation function introduced at the beginning.
In the following chapter, we first introduce an operator to interpret behavior specifications over architecture traces. Thereby, we extend our model introduced in Chap. 2 with some operators to map time points between architecture traces and corresponding projections. Then, we present our calculus in terms of 35 different rules and conclude the chapter with a brief summary.

\subsection*{5.1 Evaluating Behavior Trace Assertions over Architecture Traces}

Evaluating behavior specifications over architecture traces requires to first extract the behavior of a certain component out of the architecture trace and evaluate it against the behavior specification using the traditional semantics of liner temporal logics [MP92]. In order to define our new evaluation operator, we first need to extend our model intro-


Figure 5.1: Interactive verification of ADPs.
duced in Chap. 2 with three more operators to relate the states of a component in an architecture trace with the corresponding state of the extracted behavior trace.

\subsection*{5.1.1 Component Activations}

For the states of a component obtained through behavior projection, we can simply use the number of activations of a component to obtain the corresponding time point. If we look, for example, at Fig. 2.8, the state of the component in the resulting trace \(\Pi_{c}(t) \wedge t^{\prime}\) at time point 2 corresponds to the state of the empty component at time point 4 in \(t\), since it is the third activation of that component in \(t\). This, however, corresponds to the number of activations of the empty component in \(t\), up to time point 6 (exclusive).
In the following, we define component activation using the projection operator introduced in Chap. 2.

Definition 12 (Component activation). With \(\#_{c}^{n}(t) \in \mathbb{N}_{\infty}\), we denote the number of component activations of a component \(c\) in an (possibly finite) architecture trace \(t\) up to (including) point in time \(n\) :
\[
\begin{equation*}
\#_{c}^{n}(t) \stackrel{\text { def }}{=} \# \Pi_{c}\left(t \downarrow_{n}\right) . \tag{5.1}
\end{equation*}
\]

Note that parameter \(n\) as well as the return value of \(\#_{c}^{n}(t)\) is an element of the extended natural numbers \(\mathbb{N}_{\infty}\), including \(\infty\). Figure 5.2 lists some characteristic properties of activations and Fig. 5.3 lists some properties about the relationship of behavior projection and activations. As indicated by the small Isabelle logo on the top right, these properties are all mechanically verified in our formalization of the calculus (App. D.2).

\subsection*{5.1.2 Continuations}

In chapter 2 we mentioned that for the case in which a component is not activated infinitely often in an architecture trace, the corresponding projection yields only a finite architecture trace. In order to evaluate a temporal specification over such a finite behavior trace, we search for a valid continuation, i.e., an arbitrary behavior trace for the component which is appended to the projection. In order to calculate the time points

Properties of activations
\[
\begin{aligned}
& \#_{c}^{0}(t)=0 \\
& \#_{c}^{n}(\langle \rangle)=0 \\
& \#_{c}^{n}(t) \neq \infty[\text { if } n \neq \infty] \\
& c \stackrel{n}{=} t \leq n^{\prime} \quad \Longrightarrow \quad \#_{c}^{n}(t) \leq \#_{c}^{n^{\prime}}(t) \\
& \left.\#_{c}^{n}(t)<\#_{c}^{n^{\prime}}(t)\right] \quad \Longrightarrow \quad n<n^{\prime} \\
& \#_{c}^{n}(t) \leq \#_{c}^{n^{\prime}}(t) \quad \Longrightarrow \quad c \stackrel{n}{\models} t \leq n^{\prime} \\
& \#_{c}^{i+1}(t)=\#_{c}^{i}(t)\left[\text { if } i < \# t \text { and } \neg \left\{c_{c}^{\xi_{t}}(i)\right.\right. \text { ] } \\
& \#_{c}^{i+1}(t)=\#_{c}^{i}(t)+1\left[\text { if } i<\# t \text { and } \xi c_{c}^{s}(i)\right] \\
& \#_{c}^{n}(t)<\#_{c}^{n^{\prime}}(t) \quad \Longrightarrow \quad \exists n \leq i<n^{\prime}:\left\{c_{c}^{\xi_{t(i)}}\left[\text { if } n^{\prime}-1<\# t\right]\right. \\
& x<\# \Pi_{c}(t) \quad \Longrightarrow \quad \exists n^{\prime}: x=\#_{c}^{n^{\prime}}(t)
\end{aligned}
\]

Figure 5.2: Properties of activations.

Relating activation and projection
\[
\begin{aligned}
\#_{c}^{n}(t) & \leq \# \Pi_{c}(t) \\
\#_{c}^{n}(t) & =\# \Pi_{c}(t)\left[\text { if } \nexists i \geq n:\left\{c \xi_{t(i)}\right]\right. \\
\Pi_{c}\left(t \downarrow_{n}\right) & =\Pi_{c}(t) \downarrow_{\#_{c}^{n}}(t)[\text { if } n<\# t] \\
\Pi_{c}(t)\left(\#_{c}^{i}(t)\right) & =\mathrm{cmp}_{t(i)}^{c}\left[\text { if } i+1<\# t \text { and }\{c\}_{t(i)}\right]
\end{aligned}
\]

Figure 5.3: Properties of projection and activations.
of a corresponding continuation, we are going to introduce two operators to map time points from an architecture trace to a corresponding behavior trace and vice versa.
Definition 13 (Architecture to behavior trace). Given an architecture trace \(t \in\) \(\left(A S_{\mathcal{T}}^{\mathcal{C}}\right)^{\infty}\), a component \(c \in \mathcal{C}\), and a time point \(n \in \mathbb{N}\) (for architecture trace \(t\) ). With
\[
\begin{equation*}
c \Downarrow_{t}(n) \stackrel{\text { def }}{=} \# \Pi_{c}(t)-1+(n-\operatorname{last}(c, t)) \tag{5.2}
\end{equation*}
\]
we denote the corresponding point in time for a corresponding behavior projection.

Figure 5.4 lists some properties of this mapping.
Properties of architecture to behavior trace mapping
\[
\begin{aligned}
& n^{\prime} \geq n \quad \Longrightarrow \quad c_{c} \Downarrow_{t}\left(n^{\prime}\right) \geq{ }_{c} \Downarrow_{t}(n) \\
& \left.n \geq \operatorname{last}(c, t) \quad \Longrightarrow \quad{ }_{c} \Downarrow_{t}\left(n^{\prime}\right)>{ }_{c} \Downarrow_{t}(n) \text { [if and } n^{\prime}>n\right] \\
& { }_{c} \Downarrow_{t}(n+1)={ }_{c} \Downarrow_{t}(n)+1[\text { if } n \geq \operatorname{last}(c, t)] \\
& { }_{c} \Downarrow_{t}(\operatorname{last}(c, t))=\# \Pi_{c}(t)-1 \\
& \left.\Pi_{c}(t) \& t^{\prime}\left({ }_{c} \Downarrow_{t}(n)\right)=t^{\prime}(n-\operatorname{last}(c, t)-1) \text { [if } \exists i:\right\} c \xi_{t(i)} \text { and } \nexists i \geq n:\left\{c \xi_{t(i)}\right]
\end{aligned}
\]

Figure 5.4: Properties of architecture to behavior trace mapping.
As mentioned before, the mapping has a corresponding dual which is defined in the following.

Definition 14 (Behavior to architecture trace). Given an architecture trace \(t \in\) \(\left(A S_{\mathcal{T}}^{\mathcal{C}}\right)^{\infty}\), a component \(c \in \mathcal{C}\), and a time point \(n \in \mathbb{N}\) (for the corresponding behavior projection of \(c\) to \(t\) ). With
\[
\begin{equation*}
c \Uparrow_{t}(n) \stackrel{\text { def }}{=} \operatorname{last}(c, t)+\left(n-\left(\# \Pi_{c}(t)-1\right),\right. \tag{5.3}
\end{equation*}
\]
we denote the corresponding point in time for architecture trace \(t\).

Figure 5.5 lists some properties of this mapping and Fig. 5.6 lists some properties of the relationship between the two mappings.
In the following, we describe how a behavior trace assertion can be interpreted over architecture traces. We can define the interpretation using component projection (Def. 9), component activation (Def. 12), and mappings between time points (Def. 13 and Def. 14).
Definition 15 (Evaluating behavior trace assertions over architecture traces). With
\[
\begin{align*}
& \left(t, t^{\prime}, n\right) \models_{\bar{c}} \gamma \stackrel{\text { def }}{\Longleftrightarrow} \\
& \quad\left(\exists i \geq n: \xi c c_{t(i)}^{\prime} \wedge\left(\Pi_{c}(t)^{\wedge} t^{\prime}, \not \#_{c}^{n}(t)\right) \models \gamma\right) \vee  \tag{5.4}\\
& \quad\left(\exists i:\left\{c c_{t(i)} \wedge\left(\nexists i \geq n: \xi c_{t+(i)}^{3}\right) \wedge\left(\Pi_{c}(t) \wedge t^{\prime},{ }_{c} \Downarrow_{t}(n)\right) \models \gamma\right) \vee\right.  \tag{5.5}\\
& \quad\left(\nexists i:\left\{c_{c t(i)} \wedge\left(t^{\prime}, n\right) \models \gamma\right),\right. \tag{5.6}
\end{align*}
\]

Properties of behavior to architecture trace mapping
\[
\begin{aligned}
n^{\prime} \geq n & \Longrightarrow \quad{ }_{c} \Uparrow_{t}\left(n^{\prime}\right) \geq{ }_{c} \Uparrow_{t}(n) \\
n^{\prime}>n & \Longrightarrow \quad{ }_{c} \Uparrow_{t}\left(n^{\prime}\right)>{ }_{c} \Uparrow_{t}(n)\left[\text { if } n \geq \# \Pi_{c}(t)-1\right] \\
{ }_{c} \Uparrow_{t}\left(\# \Pi_{c}(t)\right) & \left.=\operatorname{last}(c, t)+1[\text { if } \exists i:\} c c_{t+(i)} \text { and finite }\left(\Pi_{c}(t)\right)\right]
\end{aligned}
\]

Figure 5.5: Properties of behavior to architecture trace mapping.

\section*{Relationship between mappings}
\[
\begin{aligned}
{ }_{c} \Uparrow_{t}\left({ }_{c} \Downarrow_{t}(n)\right) & =n[\text { if } n \geq \operatorname{last}(c, t)] \\
c_{c} \Downarrow_{t}\left({ }_{c} \Uparrow_{t}(n)\right) & =n\left[\text { if } n \geq \# \Pi_{c}(t)-1\right] \\
n^{\prime} \geq{ }_{c} \Downarrow_{t}(n) & \Longrightarrow \quad{ }_{c} \Uparrow_{t}\left(n^{\prime}\right) \geq n[\text { if } n \geq \operatorname{last}(c, t)] \\
n^{\prime} \geq{ }_{c} \Uparrow_{t}(n) & \Longrightarrow \quad{ }_{c} \Downarrow_{t}\left(n^{\prime}\right) \geq n\left[\text { if } n \geq \# \Pi_{c}(t)-1\right] \\
n<{ }_{c} \Downarrow_{t}\left(n^{\prime}\right) & \Longrightarrow \quad{ }_{c} \Uparrow_{t}(n)<n^{\prime}\left[\text { if } n \geq \# \Pi_{c}(t)-1\right]
\end{aligned}
\]

Figure 5.6: Relationship between mappings.
we denote that architecture trace \(t \in\left(A S_{\mathcal{T}}^{\mathcal{C}}\right)^{\infty}\) satisfies behavior trace assertion \(\gamma\) at time point \(n \in \mathbb{N}\) for continuation \(t^{\prime} \in(\overline{\operatorname{port}(c)})^{\infty}\). We denote with \(\left(t, t^{\prime}\right) \models \overline{\bar{c}} \gamma \stackrel{\text { def }}{\Longleftrightarrow}\) \(\left(t, t^{\prime}, 0\right) \overline{\bar{c}}_{\bar{c}} \gamma\) that architecture trace \(t\) satisfies behavior assertion \(\gamma\) for continuation \(t^{\prime}\) and with \(t \overline{\bar{c}} \gamma \stackrel{\text { def }}{\Longleftrightarrow} \exists t^{\prime} \in(\overline{\operatorname{port}(c)})^{\infty}:\left.\left(t, t^{\prime}\right)\right|_{\bar{c}} \gamma\) that architecture trace \(t\) satisfies behavior trace assertion \(\gamma\).

To satisfy a behavior trace assertion \(\gamma\) for a component \(c\) at a certain point in time \(n\) under a given continuation \(t^{\prime}\), an architecture trace \(t\) is required to fulfill one of the following conditions:
- By Eq. (5.4): Component \(c\) is activated again (after time point \(n\) ) and the projection to \(c\) for \(t\) fulfills \(\gamma\) at the point in time given by the current number of activations of \(c\) in \(t\).
- By Eq. (5.5): Component \(c\) is activated at least once, but not again in the future and the continuation fulfills \(\gamma\) at the point in time resulting from the difference of the current point in time and the last activation of \(c\).
- By Eq. (5.6): Component \(c\) is never activated and the continuation fulfills \(\gamma\) at point in time \(n\).

The following proposition relates Def. 15 with our notion of composition (Def. 11).
Proposition 1. Given a behavior specification \(\left(\gamma_{c t}\right)_{c t \in \mathcal{C T}}\) for a set of component types \(\mathcal{C T}\), such that \(\forall c t \in \mathcal{C} \mathcal{T}, \operatorname{bhv}(c t) \models \gamma_{c t}\); a specification \(\Gamma\), such that \(\mathcal{A} \models \Gamma\); and a set of components \(\left(\mathcal{C}_{c t}\right)_{c t \in \mathcal{C}}\) for each component type. Then, the composition of components \(\mathcal{C}\)
under architecture specification \(\mathcal{A}\) (as defined by Def. 11) can be derived using the newly introduced evaluation operator:
\[
\otimes_{\mathcal{A}}(\mathcal{C})=\left\{t \in \mathcal{A} \mid \forall c t \in \mathcal{C T}, c \in \mathcal{C}_{c t}, \exists t^{\prime} \in(\overline{\operatorname{port}(c t)})^{\infty}:\left(t, t^{\prime}\right) \overline{\bar{c}}^{\bar{c}} \gamma_{c t}\right\} .
\]

\subsection*{5.2 Rules of the Calculus}

In the following, we present introduction and elimination rules for all the temporal operators introduced for the specification of component behavior.

\subsection*{5.2.1 Basic Logical Operators}

In the following, we provide rules for the common logical operators. Essentially, for each operator we provide one introduction and one elimination rule. However, since elimination rules are symmetric to the corresponding introduction rules, in the following we list only the former type of rules. The elimination rules can be found in D.1.


\section*{ImpI}
\[
\frac{\left(t, t^{\prime}, n\right) \models_{\bar{c}} " \gamma^{\prime \prime} \longrightarrow\left(t, t^{\prime}, n\right) \models_{\bar{c}}{ }^{"} \gamma^{\prime} "}{\left(t, t^{\prime}, n\right) \bar{k}_{\bar{c}}^{"} \gamma \gamma^{\prime \prime \prime}}
\]
\[
\text { ExI } \frac{\exists x:\left(t, t^{\prime}, n\right) \bar{\epsilon}_{\bar{c}}{ }^{\prime \prime} \gamma^{\prime \prime}}{\left.\left(t, t^{\prime}, n\right)\right|_{\bar{c}}{ }^{\exists \exists x:} \gamma^{" \prime}}
\]

The rules essentially resemble their logical counterparts. Note, however, that basic logic operators are evaluated at the current point in time, no matter whether or not the component under consideration is currently active.

\subsection*{5.2.2 Behavior Assertions}

Next, we provide rules for the introduction and elimination of basic behavior assertions.

Introduction The first rules characterize introduction for basic behavior assertions. Therefore, we distinguish between three cases. First, the case in which a component is guaranteed to be eventually activated in the future:


For this case, in order to show that a BA \(\phi\) holds at time point \(n\), we have to show that \(\phi\) holds at the very next point in time at which component \(c\) is active.
For the case in which a component was sometimes active but is not activated again in the future, we get the following rule:
\[
\left.\left.\mathrm{BaI}_{\mathrm{n} 1} \frac{t^{\prime}(n-\operatorname{last}(c, t)-1) \models \phi}{\left(t, t^{\prime}, n\right) \overline{\bar{c}} \phi} \exists i:\right\} c \xi_{t(i)} \wedge \nexists i \geq n:\right\} c \xi_{t(i)}
\]

In order to show that BA \(\phi\) holds at a certain point in time \(n\), we have to show that \(\phi\) holds for the continuation \(t^{\prime}\). Note that the corresponding time point is calculated as the difference from \(n\) to the last point in time at which component \(c\) was active in \(t\).

Finally, we provide another rule for the case in which a component is never activated, at all:


For such cases, BA \(\phi\) holds at a certain point in time \(n\) when \(\phi\) holds for \(t^{\prime}\) at time point \(n\).

Elimination Elimination for behavior assertions is actually symmetric to the corresponding introduction rules. For the sake of completeness they are provided in D.2.

\subsection*{5.2.3 Next}

The next rules characterize introduction and elimination for the next operator.

Introduction We provide two different rules for introducing a next operator. The first rule describes introduction for the case in which a component is guaranteed to be eventually activated in the future:


The rule distinguishes between two cases: For the case in which the component is activated again after its next activation in \(t\), we have to show that BTA \(\bigcirc \gamma\) holds at some time point \(n^{\prime}\) with one single activation in between \(n\) and \(n^{\prime}\). For the case in which the component is activated only once in the future, we have to show that BTA \(\bigcirc \gamma\) holds at the next point in time after its next activation.
A second rule describes introduction of the next operator for the case in which a component is not activated again in the future:


In this case, the dynamic interpretation of the operator resembles its traditional one. Thus, it suffices to show that BTA \(\gamma\) holds for the next point in time \(n+1\), in order to conclude that \(\bigcirc \gamma\) holds at \(n\).

Elimination In contrary to introduction, we provide three rules to eliminate a next operator: The first rule deals with the case in which a component is guaranteed to be activated at least twice in the future:


Similar to the corresponding introduction rule, this rule allows us to conclude BTA \(\gamma\) for each point in time \(n^{\prime}\) where there is one single activation of component \(c\) in between \(n\) and \(n^{\prime}\).
For the case in which a component is activated exactly once in the future, we get the following rule:


The rule allows us to conclude \(\gamma\) right after the next activation of \(c\) in \(t\).
If a component is not activated in the future at all, we get the following rule for eliminating a next operator:


Again, the rule resembles the traditional interpretation of next which allows us to conclude that BTA \(\gamma\) holds for a certain point in time \(n+1\), whenever \(\bigcirc \gamma\) holds at \(n\).

\subsection*{5.2.4 Eventually}

In the following, we provide introduction and elimination rules for the eventually operator.

Introduction Two rules characterize introduction for the eventually operator. Again, the first rule applies for the case in which the corresponding component is guaranteed to be active in the future.


Similar to its traditional interpretation, the rule requires the existence of a future point in time \(n^{\prime}\) for which \(\gamma\) holds. There are, however, some peculiarities. First, \(n^{\prime}\) does not necessarily have to be in the future. Rather every point in time greater than the last activation of component \(c\) in \(t\) is allowed. Moreover, for the case in which the component is again activated after \(n^{\prime}\), it suffices to show the existence of a single point in time \(n^{\prime \prime}\) in between the last activation before \(n^{\prime}\) and the next activation after \(n^{\prime}\) for which \(\gamma\) holds. For the case in which there is no activation of the component after \(n^{\prime}\), we must indeed show that \(\gamma\) holds for time point \(n^{\prime}\).
In the case for which there is no future activation of the component, introduction of elimination again resembles its traditional interpretation:


Elimination Similar as for introduction, we provide two rules to eliminate an eventually operator. Again, the first rule applies for the case in which there is a future activation of the component:


Similar as for its traditional interpretation, the rule allows us to conclude that \(\gamma\) holds at some time point \(n^{\prime}\) in the future. However, there are two subtleties with the dynamic interpretation: First, we can conclude that the corresponding time point \(n^{\prime}\) is greater or equal to the component's next activation. Moreover, if there is an activation of component \(c\) after \(n^{\prime}\), then, we can conclude that \(\gamma\) holds for all time points in between the components last activation and next activation.
Again, the case in which there is no future activation of the component just resembles the operator's traditional interpretation:
\(\left.\operatorname{EvtE}_{\mathrm{n}} \quad \frac{\left(t, t^{\prime}, n\right) \bar{c}^{"} \diamond \gamma^{\prime \prime}}{\exists n^{\prime} \geq n:\left(t, t^{\prime}, n^{\prime}\right) \mid \bar{c}_{c}^{"} \gamma^{\prime \prime}} \nexists i \geq n:\right\} c c_{t(i)}\)

\subsection*{5.2.5 Globally}

Next, we discuss introduction and elimination for the globally operator.

Introduction Similar as for the eventually operator, we provide two introduction rules for the globally operator. As usual, the first rule applies for the case in which \(c\) is activated again in the future:
\[
\begin{aligned}
& \text { GlobIa } \\
& {\left[\begin{array}{l}
\exists i \geq n^{\prime}:\{c\}_{t(i)} \\
\wedge c \xrightarrow{n} t \leq n^{\prime}
\end{array}\right] \quad\left[\begin{array}{l}
\left.\nexists i \geq n^{\prime}:\right\} c \xi_{t(i)} \\
\wedge c \xrightarrow{n} t \leq n^{\prime}
\end{array}\right]}
\end{aligned}
\]

While the traditional interpretation requires that \(\gamma\) holds for all time points in the future, its dynamic interpretation allows us to weaken the corresponding introduction rule in two ways: First, we only need to consider time points \(n^{\prime}\) after the next activation of component \(c\). Moreover, for the case in which there exists an activation of component \(c\) after \(n^{\prime}\), it suffices to show that \(\gamma\) holds at an arbitrary point in time between the component's last activation and its next activation.

Introducing a globally operator for the case in which a component is not activated again in the future again resembles its traditional interpretation:


Elimination Rules for the elimination of a globally operator are indeed very similar to its traditional interpretation.

There is, however, a small difference for the case in which a component is active again:

\section*{GlobE \(_{\text {a }}\)}
\[
\frac{\left.\left(t, t^{\prime}, n\right)\right|_{\bar{c}} " \square \gamma " \quad n^{\prime} \geq c \stackrel{n}{\Leftarrow} t}{\left.\left(t, t^{\prime}, n^{\prime}\right)\right|_{\bar{c}} " \gamma "} \exists i \geq n:\left\{c \xi_{t(i)}\right.
\]

For that case, we can conclude \(\gamma\) for every time point after the component's last activation compared to its traditional interpretation which requires \(n^{\prime}\) to be in the future.

If a component is not active in the future, the corresponding elimination rule is as expected:
\[
\begin{aligned}
& \text { GlobE }_{\mathrm{n}} \longrightarrow \frac{\left.\left(t, t^{\prime}, n\right)\right|_{\bar{c}} " \square \gamma " \quad n^{\prime} \geq n}{\left.\left(t, t^{\prime}, n^{\prime}\right)\right|_{\bar{c}} ^{"} \gamma^{"}} \nexists i \geq n:\{c\}_{t(i)}
\end{aligned}
\]

\subsection*{5.2.6 Until}

We conclude the presentation with introduction and elimination rules for the until operator.

Introduction We provide two rules to introduce until operators. The first rule applies for the case in which component \(c\) is activated in the future.


In order to introduce an until operator, we have to show the existence of a time point \(n^{\prime}\) greater than the component's last activation, such that one of the following conditions hold.

For the case component \(c\) is activated after \(n^{\prime}\), condition (1) needs to be satisfied:
\[
\begin{aligned}
& \exists c \stackrel{n^{\prime}}{\stackrel{ }{\vDash} t \leq n^{\prime \prime} \leq c \xrightarrow{n^{\prime}} t:\left.\left(t, t^{\prime}, n^{\prime \prime}\right)\right|_{c} " \gamma^{\prime \prime} \wedge} \\
& \forall c \xrightarrow{n} t \leq n^{\prime \prime \prime}<c \stackrel{n^{\prime \prime}}{\Leftarrow} t \text { : } \\
& \exists c \stackrel{n^{\prime \prime \prime}}{\Leftarrow} t \leq n^{\prime \prime \prime \prime \prime} \leq c \stackrel{n^{\prime \prime \prime}}{\longrightarrow} t:\left(t, t^{\prime}, n^{\prime \prime \prime \prime}\right) \models_{\bar{c}}{ }^{\prime} \gamma^{\prime \prime}
\end{aligned}
\]

It requires the existence of some time point \(n^{\prime \prime}\) in between the component's last activation (before \(n^{\prime}\) ) and next activation (after \(n^{\prime}\) ), such that \(\gamma\) holds at \(n^{\prime \prime}\). Moreover it requires that for all time points \(n^{\prime \prime \prime}\) after the component's next activation (after \(n\) ) and before its last activation (before \(n^{\prime \prime}\) ), there exists another time point \(n^{\prime \prime \prime \prime}\) in between the last and next activation (of \(n^{\prime \prime \prime}\) ), such that \(\gamma^{\prime}\) holds at \(n^{\prime \prime \prime}\).
For the case that there is no activation of component \(c\) after \(n^{\prime}\), condition (2) needs to be satisfied:
\[
\begin{aligned}
& \left(t, t^{\prime}, n^{\prime}\right) \mid \bar{c}{ }^{\prime} \gamma^{\prime \prime} \wedge \\
& \forall c \xrightarrow{n} t \leq n^{\prime \prime}<n^{\prime}: \\
& \left(\exists i \geq n^{\prime \prime}:\left\{c_{c}^{\xi_{t(i)}}\right) \wedge\left(\exists c \stackrel{n^{\prime \prime}}{\Leftarrow} t \leq n^{\prime \prime \prime} \leq c \xrightarrow{n^{\prime \prime}} t:\left(t, t^{\prime}, n^{\prime \prime \prime}\right) \mid \bar{c}^{"} \gamma^{\prime \prime \prime}\right)\right. \\
& \vee\left(\nexists i \geq n^{\prime \prime}:\left.\left\{c c_{t+(i)}\right) \wedge\left(t, t^{\prime}, n^{\prime \prime}\right)\right|_{c}{ }^{\prime \prime} \gamma^{\prime \prime}\right.
\end{aligned}
\]

For this case, we need to show that \(\gamma\) holds for \(n^{\prime}\). In addition, we need to show for \(n^{\prime \prime}\) after the next activation of component \(c\) (after \(n\) ) and before \(n^{\prime}\) that one of the following two conditions hold: Either component \(c\) is activated after \(n^{\prime \prime}\) and there exists a time point \(n^{\prime \prime \prime}\) for which \(\gamma^{\prime}\) holds and which is in between the component's last activation (before \(n^{\prime \prime}\) ) and its next activation (after \(n^{\prime \prime}\) ). If component \(c\) is not activated after \(n^{\prime \prime}\), it must be shown that \(\gamma^{\prime}\) holds for \(n^{\prime \prime}\) itself.

Introduction for until for the case in which there is no future activation of component \(c\) is similar to its traditional interpretation:

\section*{UntilI \(_{n}\)}
\[
\begin{gathered}
{\left[n \leq n^{\prime \prime} \wedge n^{\prime \prime}<n^{\prime}\right]} \\
\vdots \\
\frac{n \leq n^{\prime} \quad\left(t, t^{\prime}, n^{\prime}\right)\left|\overline{\bar{c}}^{\prime} \gamma^{\prime \prime} \quad\left(t, t^{\prime}, n^{\prime \prime}\right)\right| \overline{\bar{c}}^{"} \gamma^{\prime \prime \prime}}{\left(t, t^{\prime}, n\right) \overline{\bar{c}}^{"} \gamma^{\prime} \mathcal{U} \gamma^{"}} \nexists i \geq n: \xi c c_{t+(i)}
\end{gathered}
\]

Elimination Finally, we provide two rules to eliminate until operators. The first one is, again, the one characterizing elimination for the case in which component \(c\) is activated in the future:
Untile \({ }_{a}\)
\[
\begin{aligned}
& \exists n^{\prime} \geq c \stackrel{n}{n} t: \quad \exists i \geq n:\left\{c \xi_{t(i)}\right.
\end{aligned}
\]
\[
\begin{aligned}
& \left(\forall c \stackrel{n}{\models} t \leq n^{\prime \prime}<c{ }^{\eta^{\prime}}=t:\left(t, t^{\prime}, n^{\prime \prime}\right) \mid \bar{c}^{"} \gamma^{\prime \prime}\right) \vee \\
& \left(\nexists i \geq n^{\prime}:\left\langle c c_{t+(i)}\right) \wedge\left(t, t^{\prime}, n^{\prime}\right) \mid \overline{\bar{c}}{ }^{\prime \prime} \gamma^{\prime \prime} \wedge\left(\forall c \xlongequal{n} t \leq n^{\prime \prime}<n^{\prime}:\left(t, t^{\prime}, n^{\prime \prime}\right) \mid \overline{\bar{c}}{ }^{\prime \prime} \gamma^{\prime \prime \prime}\right)\right.
\end{aligned}
\]

Assuming that \(\gamma^{\prime} \mathcal{U} \gamma\) holds at some time point \(n\), the rule allows us to conclude that there exists an \(n^{\prime}\) later than the component's next activation after \(n\) for which the following conditions are satisfied: Either component \(c\) is activated after \(n^{\prime}\) and \(\gamma\) holds for all \(n^{\prime \prime}\) in between the component's last activation (before \(n^{\prime}\) ) and its next activation (after \(n^{\prime}\) ). In addition, \(\gamma^{\prime}\) holds for all \(n^{\prime \prime}\) after the component's last activation (before \(n\) ) and strictly before the component's last activation (before \(n^{\prime}\) ). If component \(c\) is not activated after \(n^{\prime}\), we can conclude \(\gamma\) for time point \(n^{\prime}\) and \(\gamma^{\prime}\) for all time points \(n^{\prime \prime}\) after the last activation (before \(n\) ) and before \(n^{\prime}\).
The rule for eliminating until for the case in which component \(c\) is not activated anymore is as expected:


\subsection*{5.2.7 Soundness and Completeness}

In the following, we show soundness and completeness of the calculus. Thereby, we denote with \(\left(t, t^{\prime}, n\right) \bigsqcup_{c} \gamma\) that it is possible to derive \(\left(t, t^{\prime}, n\right) \overline{\bar{c}}_{\bar{c}} \gamma\) with the rules introduced above.
Theorem 2 (Soundness). The calculus presented in this subsection is sound:
\[
\left(t, t^{\prime}, n\right) \vdash_{\bar{c}} \gamma \quad \Longrightarrow \quad\left(t, t^{\prime}, n\right) \models_{\bar{c}} \gamma .
\]

The proof consists of soundness proofs for each of the rules and it is fully mechanized in Isabelle/HOL's structured proof language Isabelle/Isar [Wen07]. It is available in theory Dynamic_Architecture_Calculus at the AFP-Entry Dynamic_Architectures [Mar17a] and further discussed in the next section.

Theorem 3 (Relative Completeness). The calculus presented in this subsection is complete w.r.t. Def. 15:
\[
\left.\left(t, t^{\prime}, n\right)\right|_{\bar{c}} \gamma \Longrightarrow\left(t, t^{\prime}, n\right) \vdash_{c} \gamma
\]

The proof is done by structural induction over \(\gamma\) : Thus, for each operator, we assume that \(\gamma=O P \gamma^{\prime}\). Then, we apply Def. 15 to obtain facts about a model which satisfies \(\gamma\). Finally, we use these facts to apply one of the introduction rules for \(O P\). The detailed proof is provided in App. D.21.

\subsection*{5.3 Summary}

Table 5.1 depicts an overview of the rules of the calculus grouped by the corresponding logical operator. For each rule it lists its type (introduction vs. elimination) and the required condition on a component's activation state to apply the rule.
\begin{tabular}{|c|c|c|c|}
\hline & rule & type & condition \\
\hline \multirow[b]{2}{*}{Negation} & NegI & intro. & - \\
\hline & NegE & elim. & - \\
\hline \multirow[b]{2}{*}{Conjunction} & ConjI & intro. & - \\
\hline & ConjE & elim. & - \\
\hline \multirow[t]{2}{*}{Disjunction} & DisjI & intro. & - \\
\hline & DisjE & elim. & - \\
\hline \multirow[b]{2}{*}{Implication} & ImpI & intro. & - \\
\hline & ImpE & elim. & - \\
\hline \multirow[t]{2}{*}{Existential quantification} & ExI & intro. & - \\
\hline & ExE & elim. & - \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { All } \\
\text { quantification }
\end{array}
\]} & Alli & intro. & - \\
\hline & Alle & elim. & - \\
\hline \multirow[t]{6}{*}{Behavior assertion} & \(\mathrm{BaI}_{\mathrm{a}}\) & intro. & component activated in the future \\
\hline & \(\mathrm{BaI}_{\mathrm{n} 1}\) & intro. & component activated in the past \\
\hline & \(\mathrm{BaI}_{\mathrm{n} 2}\) & intro. & component never activated \\
\hline & \(\mathrm{BaE}_{\mathrm{a}}\) & elim. & component activated in the future \\
\hline & \(\mathrm{BaE}_{\mathrm{n} 1}\) & elim. & component activated in the past \\
\hline & \(\mathrm{BaE}_{\mathrm{n} 2}\) & elim. & component never activated \\
\hline \multirow[t]{5}{*}{Next} & \(\mathrm{NxtI}_{\mathrm{a}}\) & intro. & component activated in the future \\
\hline & \(\mathrm{NxtI}_{\mathrm{n}}\) & intro. & component not activated in the future \\
\hline & \(\mathrm{NutE}_{\text {a } 1}\) & elim. & component activated at least twice in the future \\
\hline & \(\mathrm{NutE}_{\text {a } 2}\) & elim. & component activated once in the future \\
\hline & \(\mathrm{NxtE}_{\mathrm{n}}\) & elim. & component not activated in the future \\
\hline \multirow[t]{4}{*}{Eventually} & \(\mathrm{EvtI}_{\mathrm{a}}\) & intro. & component activated in the future \\
\hline & \(\operatorname{EvtI}_{\mathrm{n}}\) & intro. & component not activated in the future \\
\hline & EvtEa & elim. & component activated in the future \\
\hline & EvtE \({ }_{\text {n }}\) & elim. & component not activated in the future \\
\hline \multirow[t]{4}{*}{Globally} & GlobIa & intro. & component activated in the future \\
\hline & \[
\text { GlobI }_{n}
\] & intro. & component not activated in the future \\
\hline & \(\mathrm{GlobE}_{\mathrm{a}}\) & elim. & component activated in the future \\
\hline & GlobE \(_{n}\) & elim. & component not activated in the future \\
\hline \multirow[t]{4}{*}{Until} & Untilla & intro. & component activated in the future \\
\hline & Untill \(_{n}\) & intro. & component not activated in the future \\
\hline & UntilE \({ }_{\text {a }}\) & elim. & component activated in the future \\
\hline & UntilE \({ }_{n}\) & elim. & component not activated in the future \\
\hline
\end{tabular}

Table 5.1: Rules to reason about component types.

\section*{6 Interactive Pattern Verification in Isabelle/HOL}

So far, we presented a model for dynamic architectures and techniques to specify ADPs over this model. We even implemented these techniques as an Eclipse/EMF modeling application to support a user in the development of specifications. In the last chapter, we then presented a calculus to reason about ADPs and thus support the verification of such specifications. Until now, however, verification needs to be done using plain "pen and paper", and the correctness of it is not mechanically verified. To address this problem, we implemented our calculus in Isabelle/HOL and developed an algorithm to map a pattern specification to a corresponding Isabelle theory. The algorithm was implemented in Eclipse/EMF and can be used to automatically generate Isabelle/HOL theories from a pattern specification. A generated pattern theory is based on the formalization of the calculus to allow the rules of the calculus to be used in the development of verification proofs. Moreover, pattern theories may instantiate other pattern theories and all the verification results of an instantiated pattern are automatically available to support the verification of the instantiating pattern.
Figure 6.1 provides an overview of our formalization. It is based on Lochbihler's formalization of co-inductive lists [Loc10] and consists of two Isabelle/HOL theories which are available as entry DynamicArchitectures [Mar17a] in the archive of formal proofs: Configuration_Traces and Dynamic_Architecture_Calculus. To this end Configuration_Traces formalizes the model presented in Chap. 2. Therefore, it introduces an Isabelle locale dynamic_component which requires two parameters: a function \(t C M P\) to obtain a snapshot of a component from an architecture snapshot, and a function active to assert whether a certain component is active in an architecture snapshot. Then, it introduces several definitions for the locale, reflecting the definitions presented in Chap. 2. Moreover, it provides formalizations for several, characteristic properties of the defined concepts and provides proofs for them in terms of Isabelle's structured proof language Isabelle/Isar [Wen07]. Theory Dynamic_Architecture_Calculus, on the other hand, formalizes the calculus presented in Chap. 5. To this end, it extends locale dynamic_component with definitions for each operator used in the specification of behavior trace assertions, as introduced in Chap. 3. Moreover, it formalizes the evaluation operator introduced by Def. 15 in the last chapter as well as all the rules of the calculus and provides Isabelle/Isar proofs for all of them.

In the following, we first summarize Lochbihler's formalization of co-inductive lists. Then, we present the formalization of the model presented in Chap. 2 on top of coinductive lists and summarize our formalization of the calculus presented in Chap. 5.

Finally, we present an algorithm to map a pattern specification to a corresponding Isabelle/HOL theory.


Figure 6.1: Overview of formalization in Isabelle/HOL.

\subsection*{6.1 Coinductive Lists}

In order to deal with possibly infinite architecture traces, our formalization is based on Lochbihler's theory of coinductive (lazy) lists [Loc10]. Lazy lists are formalized using Isabelle/HOL's notion of coinductive datatypes \(\left[\mathrm{BHL}^{+} 14\right]\). Figure 6.2 depicts the corresponding Isabelle/HOL fragment: Besides introducing the codatatype itself, the declaration also introduces some auxiliary constants:
- Destructors LNil and LCons.
- Discriminator lnull, to test whether a list is empty.
- Selectors \(l h d\) and \(l t l\), to select the first element of a given list and the remaining tail, respectively.
- Set function lset, which returns a (possibly infinite) set containing all the elements of a given list.
- Map function map, to apply a given function to a certain list.
- Relator rel, to compare two lists based on their elements.

The where clause at the end of the command specifies a default value for selectors lhd and \(l t l\) applied to \(L N i l\) on which they are not a priori specified.
```

codatatype (lset: 'a) llist =
lnull: LNil
| LCons (lhd:' 'a) (ltl: 'a llist)
for
map: lmap
rel: llist-all2
where
lhd LNil = undefined
ltl LNil = LNil

```

Figure 6.2: Formalization of lazy lists in Isabelle/HOL (excerpt from [Loc10]).
In addition, Lochbihler's theory introduces formalizations of different concepts for lazy lists, of which the following are most relevant for our theory:
inf-llist converts a function with domain of natural numbers to a corresponding infinite list.
llength returns the (possible infinite) length of a list.
Inth returns the \(n\)-th element of a list.
lappend concatenates two lists.
Ifilter extracts a sublist which contains only elements characterized by a given predicate.
Itake returns a prefix of a certain length of a given list.
Since lfilter and ltake are of particular importance for our theory, we discuss them in more detail.

\subsection*{6.1.1 Lazy Filter Function}

The lfilter function is important, since it forms the foundation for our formalization of the behavior projection operator. The function takes a predicate \(P\) and a lazy list \(x s\) and returns a sublist, containing only those elements of \(x s\) for which \(P\) holds. Its definition is provided in Fig. 6.3: It is formalized as a recursive function based on fixpoints in complete partial orders. Note that the definition does not require any termination proof. Rather, in order to guarantee the existence of a fixpoint, the definition must ensure that the induced functional is monotonic w.r.t. the prefix order for lazy lists.
```

partial-function (llist) lfilter :: 'a llist \Rightarrow 'a llist
where lfilter xs $=$ (case xs of $L N i l \Rightarrow L N i l$
|LCons $x x^{\prime} \Rightarrow$ if P x then LCons x (lfilter $\left.x s^{\prime}\right)$ else lfilter $\left.x s^{\prime}\right)$

```

Figure 6.3: Formalization of lazy filter function in Isabelle/HOL (excerpt from [Loc10]).

\subsection*{6.1.2 Lazy Take Function}

Another important function is the ltake function, since it is used to formalize our notion of number of activations of a component in an architecture trace. The function takes an extended natural number \(n\) (including \(\infty\) ) and a lazy list \(x s\), and returns a sublist, containing the first \(n\) elements of \(x s\). Figure 6.4 depicts its formalization in Isabelle/HOL: It is formalized as a primitive corecursive function, in which the syntactic structure of the definition ensures productivity (and thus well-definedness) of the function.
```

primcorec ltake :: enat }=>\mathrm{ 'a llist }=>\mathrm{ ' 'a llist
where
n=0\vee lnull xs \Longrightarrow lnull (ltake n xs)
| lhd (ltake n xs) = lhd xs
| ltl (ltake n xs) = ltake (epred n) (ltl xs)

```

Figure 6.4: Formalization of lazy take function in Isabelle/HOL (excerpt from [Loc10]).

\subsection*{6.2 Formalizing Architecture Traces}

In the following, we describe a possible formalization of the model presented in Chap. 2 using co-inductive lists. The following Isabelle/HOL snippet depicts the foundation of our formalization:
```

typedecl cnf
type-synonym trace = nat =>cnf
consts arch:: trace set

```

First, we introduce a type constant \(c n f\), which represents an architecture snapshot, i.e. the state of an architecture during system execution. An architecture trace is then formalized as a function which assigns a snapshot cnf to each point in time nat. Finally, an architecture arch is modeled as a set "trace set" of architecture traces.

As mentioned above, the interface to the model is given in terms of an Isabelle/HOL locale:
```

locale dynamic-component =
fixes tCMP :: 'id => cnf = 'cmp (\sigma-(-) [0,110]60)
and active :: 'id =>cnf => bool (}}-\xi-[0,110]60

```

The locale introduces two type parameters:
'id a type containing component identifiers.
\({ }^{\prime} \mathrm{cmp}\) a type containing component snapshots.
Moreover, it requires two function parameters:
\(t C M P\) is an operator to extract the state of a component with a certain identifier \({ }^{\prime} i d\) from an architecture snapshot cnf.
active is a predicate to assert whether a component with a certain identifier \({ }^{\prime} i d\) is activated within an architecture snapshot cnf.

The locale introduces several operators for architecture traces along with some characteristic properties thereof.

\subsection*{6.2.1 Behavior Projection}

Perhaps the most important operator is behavior projection. Intuitively, the operator takes a component identifier \(c\) and an architecture trace \(t\) and returns a so-called behavior trace, i.e., a list containing all the states of component \(c\) in \(t\). Thereby, all the time points in which component \(c\) is not activated in \(t\) are removed. The operator is formalized by combining the lazy filter function lfilter (described above) with the lazy map function lmap:
```

definition proj:: 'id }=>\mathrm{ (cnf llist) }=>\mathrm{ ('cmp llist) (}\mp@subsup{\pi}{-}{\prime}(-)[0,110]60
where proj c = lmap (\lambdacnf. (\sigmac(cnf))) ○ (lfilter (active c))

```

First, lfilter is used to remove all time points in \(t\), where \(c\) is not activated. Then, lmap is used to extract the state of a component out of a given architecture snapshot.

\subsection*{6.2.2 Number of Activations}

Another useful operator for architecture traces, introduced in the last section by Def. 12, returns the number of activations of a certain component within a given architecture trace. Intuitively, the operator takes a component identifier \(c\), a time point \(n\), and an architecture trace \(t\) and returns the number of activations of \(c\) up to (and including) time point \(n\). The operator is formalized by combining component projection with the lazy take function ltake (described above) and the lazy length function:
```

definition $n A c t:: ~ ' i d \Rightarrow$ enat $\Rightarrow($ cnf llist $) \Rightarrow$ enat $(\langle-\#--\rangle)$ where
$\left\langle c \#_{n} t\right\rangle \equiv$ llength $\left(\pi_{c}(\right.$ ltake $n t)$)

```

First, ltake is used to obtain a sublist of length \(n\) from the original architecture trace \(t\). Then, component projection is applied to the remaining architecture trace to remove all time points in which component \(c\) is not active. What is left is a lazy list containing all the activations of \(c\) in \(t\) up to time point \(n\) and we simply return its length.

\subsection*{6.2.3 Least Deactivation}

The following operator takes a component identifier \(c\), an architecture trace \(t\), and a time point \(n\) and returns the time point right after the last activation of \(c\) in \(t\) prior to \(n\). It is introduced by Def. 8 in Chap. 2 and it is formalized using Isabelle/HOL's definite description operator LEAST:
```

definition lNAct :: 'id $\Rightarrow($ nat \Rightarrow cnf $) \Rightarrow$ nat \Rightarrow nat $(\langle-\Leftarrow-\rangle-)$
where $\langle c \Leftarrow t\rangle_{n} \equiv\left(\right.$ LEAST $\left.n^{\prime} . n=n^{\prime} \vee\left(n^{\prime}<n \wedge\left(\nexists k . k \geq n^{\prime} \wedge k<n \wedge \xi c \xi_{t} k\right)\right)\right)$

```

Note that LEAST returns the least element which satisfies a certain condition or an arbitrary element of the corresponding type if no element satisfied the condition.

\subsection*{6.2.4 Next Activation}

Next activation is also introduced by Def. 8. It takes a component identifier \(c\), an architecture trace \(t\), and a time point \(n\) and returns the next point in time (including \(n\) ) at which \(c\) is active in \(t\). The formalization of this operator uses Isabelle/HOL's definite description operator THE:
```

definition nxtAct $::{ }^{\prime} i d \Rightarrow(n a t \Rightarrow c n f) \Rightarrow$ nat \Rightarrow nat $(\langle-\rightarrow-\rangle-)$
where $\langle c \rightarrow t\rangle_{n} \equiv\left(\right.$ THE $\left.n^{\prime} . n^{\prime} \geq n \wedge \xi c \xi_{t} n^{\prime} \wedge\left(\nexists k . k \geq n \wedge k<n^{\prime} \wedge \xi c \xi_{t}\right)\right)$

```

Note that THE returns the unique element which satisfies a given condition if such an element exists or an arbitrary element of the corresponding type if no such element exists.

\subsection*{6.2.5 Latest Activation}

In the following we describe the formalization of an operator to obtain the latest activation of a component before a certain point in time. Again it is introduced by Def. 8 and its formalization uses one of Isabelle/HOL's definite description operator:
```

definition latestAct $::$ 'id $\Rightarrow(n a t \Rightarrow c n f) \Rightarrow$ nat \Rightarrow nat $(\langle-\leftarrow-\rangle-)$
where latestAct ct $n=\left(\right.$ GREATEST $\left.n^{\prime} . n^{\prime}<n \wedge \xi c \xi_{t} n^{\prime}\right)$

```

Note that GREATEST in Isabelle/HOL is the dual of LEAST. It returns the greatest element which satisfies a certain condition or an arbitrary element of the corresponding type if element satisfied the condition.

\subsection*{6.2.6 Last Activation}

Also the last point in time at which a component is active in an architecture trace is introduced by Def. 8. It can be obtained using operator lActive and it is again formalized using Isabelle/HOL's GREATEST operator:
```

definition lActive :: 'id => (nat => cnf) => nat (\langle-^ -\rangle)
where }\langlec\wedget\rangle\equiv(GREATEST i.}c}t i

```

\subsection*{6.2.7 Mapping Time Points}

As discussed in the last chapter, applying behavior projection for a component \(c\) to an architecture trace \(t\), results in a behavior trace which contains all the states of \(c\) whenever it is active in \(t\). Thereby, the time points at which a certain state of \(c\) is available after applying projection may change (due to the deactivation of \(c\) in \(t\) ). Thus, in order to map time points in between an architecture trace and the corresponding projection, we introduced two additional operators with Def. 13 and Def. 14 which are formalized as follows:
```

definition cnf2bhv :: 'id $\Rightarrow($ nat $\Rightarrow c n f) \Rightarrow$ nat \Rightarrow nat $(-\downarrow-(-)[150,150,150]$ 110 $)$
where $c_{c}(n) \equiv$ the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)-1+(n-\langle c \wedge t\rangle)$
definition bhv2cnf :: 'id $\Rightarrow($ nat $\Rightarrow c n f) \Rightarrow$ nat \Rightarrow nat (- \uparrow-(-) $[150,150,150]$ 110)

```
```

where }\mp@subsup{c}{c}{}\mp@subsup{}{t}{}(n)\equiv\langlec\wedget\rangle+(n-(\mathrm{ the-enat(llength (}\mp@subsup{\pi}{c}{}(\mathrm{ inf-llist t)}))-1)

```

Note that cnf2bhv is used to map a given time point \(n\) for an architecture trace \(t\) to the corresponding projection \(\Pi_{c}(t)^{\wedge} t^{\prime}\), while bhv2cnf is used to map a time point \(n\) for the \(\Pi_{c}(t) \wedge t^{\prime}\) back to the corresponding architecture trace \(t\).

\subsection*{6.3 Specifying Architecture Traces}

In order to specify architecture traces, we formalized our notion of architecture trace assertion (introduced in Chap. 3). To this end, we first introduced a type synonym for architecture trace assertions:
```

type-synonym cta = trace }=>\mathrm{ nat }=>\mathrm{ bool

```

Then, we introduced a mapping to lift an architecture assertion (Sect. 3.3.2) to a corresponding architecture trace assertion:
```

definition ca :: (cnf => bool) => cta
where ca \varphi \equiv\lambdatn.\varphi (tn)

```

Finally, we defined each of the operators involved in the specification of architecture trace assertions in terms of predicate transformers, i.e., functions which take an architecture trace assertion and modify it accordingly.

\subsection*{6.3.1 Logical Connectives}

First, we introduced definitions for the basic logical operators:
```

definition neg :: cta }=>\operatorname{cta}(\mp@subsup{\neg}{}{c}-[19] 19
where }\mp@subsup{\neg}{}{c}\gamma\equiv\lambdatn.\neg\gammat
definition conj :: cta =>cta =>cta(infixl ^c 20)
where }\gamma\mp@subsup{\wedge}{}{c}\mp@subsup{\gamma}{}{\prime}\equiv\lambdatn.\gammatn\wedge\mp@subsup{\gamma}{}{\prime}t
definition disj :: cta =>cta =>cta(infixl \vee }\mp@subsup{\vee}{}{c}15
where }\gamma\mp@subsup{\vee}{}{c}\mp@subsup{\gamma}{}{\prime}\equiv\lambdatn.\gammatn\vee\mp@subsup{\gamma}{}{\prime}t
definition imp :: cta =>cta m cta(infixl \longrightarrow}\mp@subsup{}{}{c}10
where }\gamma\longrightarrow\mp@subsup{}{}{c}\mp@subsup{\gamma}{}{\prime}\equiv\lambdatn.\gammatn\longrightarrow\mp@subsup{\gamma}{}{\prime}t

```

They mainly lift each corresponding HOL operator to architecture traces. In a similar way, we introduced quantifiers for architecture trace assertions:
```

definition all :: (' }a=>\mathrm{ cta)
cta (binder }\mp@subsup{\forall}{c}{}10\mathrm{)
where all P}\equiv\lambdatn.(\forally.(Pytn)
definition ex :: ('a m cta)
cta (binder }\existsc>\mp@code{10)
where ex P \equiv\lambdat n.(\existsy.(Pytn))

```

\subsection*{6.3.2 Temporal Operators}

Then, we introduced definitions for each temporal logic operator. Their semantics indeed resembles the traditional semantics of linear temporal logics [MP92].

Temporal logic next is implemented as a function which takes an architecture trace assertion \(\gamma\) and returns another architecture trace assertion which evaluates \(\gamma\) at the next point in time.
```

definition $n x t:: c t a \Rightarrow c t a\left(O_{c}(-) 24\right)$
where $O_{c}(\gamma) \equiv \lambda t n$. γt (Suc n)

```

Eventually is formalized as a function which takes an architecture trace assertion \(\gamma\) and returns another architecture trace assertion which evaluates \(\gamma\) somewhere in the future:
```

definition evt $:: c t a \Rightarrow c t a\left(\diamond_{c}(-)\right.$ 23)
where $\diamond_{c}(\gamma) \equiv \lambda t n . \exists n^{\prime} \geq n . \gamma t n^{\prime}$

```

The globally operator transforms an architecture trace assertion \(\gamma\) to another architecture trace assertion which evaluates \(\gamma\) at every time in the future:
```

definition glob :: cta \Rightarrow cta $\left(\square_{c}(-)\right.$ 22)
where $\square_{c}(\gamma) \equiv \lambda t n . \forall n^{\prime} \geq n . \gamma t n^{\prime}$

```

Finally, until takes two architecture trace assertions \(\gamma\) and \(\gamma^{\prime}\) and evaluates \(\gamma^{\prime}\) in the future as long as \(\gamma\) does not hold:
```

definition until $:: c t a \Rightarrow c t a \Rightarrow c t a\left(\right.$ infixl \mathfrak{U}_{c} 21)
where $\gamma^{\prime} \mathfrak{U}_{c} \gamma \equiv \lambda t n . \exists n^{\prime \prime} \geq n$. $\gamma t n^{\prime \prime} \wedge\left(\forall n^{\prime} \geq n . n^{\prime}<n^{\prime \prime} \longrightarrow \gamma^{\prime} t n^{\prime}\right)$

```

We also introduce a weaker notion of until as a combination of until and globally:
```

definition wuntil :: cta =>cta m cta(infixl 放 20)
where }\mp@subsup{\gamma}{}{\prime}\mp@subsup{\mathfrak{W}}{c}{}\gamma\equiv\mp@subsup{\gamma}{}{\prime}\mp@subsup{\mathfrak{U}}{c}{}\gamma\mp@subsup{\vee}{}{c}\mp@subsup{\square}{c}{}(\mp@subsup{\gamma}{}{\prime}

```

\subsection*{6.4 Formalizing the Calculus}

In order to formalize the calculus presented in Chap. 5, we first formalized the notion of behavior trace assertion as described in Sect. 3.2.2.1. Then, we formalized the evaluation definition presented in Def. 15 of the last chapter. Finally, we formalized all of the rules of the calculus introduced in Chap. 5 and verified their soundness w.r.t. the introduced evaluation function.

\subsection*{6.4.1 Specifying Component Behavior}

As described in Sect. 2, component behavior is specified using behavior trace assertions. Just as for architecture trace assertions, we start the formalization by introducing a corresponding type synonym:
\[
\text { type-synonym 'c bta }=\left(n a t \Rightarrow^{\prime} c\right) \Rightarrow \text { nat } \Rightarrow \text { bool }
\]

A behavior trace assertion is formalized in terms of a predicate over a behavior trace and a natural number. Thereby, the state of a component is modeled in terms of a type parameter \({ }^{\prime} c\).

Similar as for architecture trace assertions, we then introduced an operator to lift behavior assertions (Sect. 3.2.2.1) to corresponding behavior trace assertions:
```

definition ba :: ('cmp => bool) => ('cmp bta)
where ba \varphi \equiv\lambdat n. \varphi (t n)

```

In addition, we also introduce an operator to lift an arbitrary HOL predicate to a corresponding behavior trace assertion:
```

definition pred $::$ bool \Rightarrow ('cmp bta)
where pred $P \equiv \lambda t n$. P

```

Note that such a definition was not required for architecture trace assertions since architecture assertions can be used to lift arbitrary predicates to the level of architecture trace assertion. For behavior assertions this is not possible since they are evaluated only at time points where a component is indeed active.

Finally, we defined each of the operators used in the specification of behavior trace assertions in terms of predicate transformers, i.e., functions which take a behavior trace assertion and modify it accordingly.

\subsection*{6.4.1.1 Logical Connectives}

Basic logical connectives are defined in a similar way as for architecture trace assertions:
```

definition $i m p::\left({ }^{\prime} c m p b t a\right) \Rightarrow\left({ }^{\prime} c m p b t a\right) \Rightarrow\left({ }^{\prime} c m p b t a\right)\left(\right.$ infixl $\left.\longrightarrow{ }^{b} 10\right)$
where $\gamma \longrightarrow{ }^{b} \gamma^{\prime} \equiv \lambda t n . \gamma t n \longrightarrow \gamma^{\prime} t n$
definition disj :: ('cmp bta) $\Rightarrow\left({ }^{\prime} c m p b t a\right) \Rightarrow\left({ }^{\prime} c m p b t a\right)\left(\right.$ infixl $\left.\vee^{b} 15\right)$
where $\gamma \vee^{b} \gamma^{\prime} \equiv \lambda t n$. $\gamma t n \vee \gamma^{\prime} t n$
definition conj :: ('cmp bta) $\Rightarrow\left({ }^{\prime} c m p b t a\right) \Rightarrow\left({ }^{\prime} c m p b t a\right)\left(\right.$ infixl \wedge^{b} 20)
where $\gamma \wedge^{b} \gamma^{\prime} \equiv \lambda t n . \gamma t n \wedge \gamma^{\prime} t n$
definition neg :: ('cmp bta) \Rightarrow ('cmp bta) (\neg^{b} - [19] 19)
where $\neg^{b} \gamma \equiv \lambda t n$. $\neg \gamma t n$

```

Behavior assertions also support quantification over variables of a certain type. Again, Isabelle/HOL quantifiers are used to formalize quantification for behavior assertions:
```

definition all :: ('a \# ('cmp bta))
\# ('cmp bta) (binder }\mp@subsup{\forall}{b}{\prime}10
where all P}\equiv\lambdatn.(\forally.(Pytn)
definition ex :: ('a m ('cmp bta))
=>('cmp bta) (binder \exists
where ex P\equiv\lambdat n. (\existsy.(P y t n))

```

\subsection*{6.4.1.2 Temporal Operators}

Similar as for architecture trace assertions, we formalize temporal operators for behavior trace assertions using their traditional semantics [MP92]:
```

definition nxt :: ('cmp bta) \Rightarrow ('cmpbta) $\left(\mathrm{O}_{b}(-)\right.$ 24)
where $O_{b}(\gamma) \equiv \lambda t n . \gamma t(S u c n)$
definition evt :: ('cmp bta) $\Rightarrow\left({ }^{\prime} c m p b t a\right)\left(\diamond_{b}(-)\right.$ 23)
where $\diamond_{b}(\gamma) \equiv \lambda t n . \exists n^{\prime} \geq n . \gamma t n^{\prime}$
definition glob :: ('cmp bta) $\Rightarrow\left({ }^{\prime} c m p\right.$ bta) $\left(\square_{b}(-)\right.$ 22 $)$
where $\square_{b}(\gamma) \equiv \lambda t n . \forall n^{\prime} \geq n$. $\gamma t n^{\prime}$
definition until :: ('cmp bta) $\Rightarrow\left({ }^{\prime} c m p b t a\right) \Rightarrow\left({ }^{\prime} c m p b t a\right)$ (infixl \mathfrak{U}_{b} 21)
where $\gamma^{\prime} \mathfrak{U}_{b} \gamma \equiv \lambda t n . \exists n^{\prime \prime} \geq n . \gamma t n^{\prime \prime} \wedge\left(\forall n^{\prime} \geq n . n^{\prime}<n^{\prime \prime} \longrightarrow \gamma^{\prime} t n^{\prime}\right)$
definition wuntil $::\left({ }^{\prime} c m p b t a\right) \Rightarrow\left({ }^{\prime} c m p b t a\right) \Rightarrow\left({ }^{\prime} c m p b t a\right)\left(i n f i x l ~ \mathfrak{W}_{b} 20\right)$
where $\gamma^{\prime} \mathfrak{W}_{b} \gamma \equiv \gamma^{\prime} \mathfrak{U}_{b} \gamma \vee^{b} \square_{b}\left(\gamma^{\prime}\right)$

```

\subsection*{6.4.2 Evaluation}

Remember that the specification of component behavior is given in terms of behavior trace assertions, i.e., temporal logic assertions over sequences of component snapshots. As already discussed at the beginning of the previous chapter, in order to evaluate such specifications over architecture traces, we need to define how a behavior trace assertion is to be interpreted over an architecture trace in which components are subject to activation and deactivation. Therefore, we presented an alternative evaluation function (Def. 15) which allows to interpret a given behavior trace assertion over an architecture trace instead of a behavior trace. The corresponding formalization is provided by function eval which takes a component identifier ' \(i d\) and a behavior trace assertion and transforms it to a corresponding architecture trace assertion:
```

definition eval:: 'id $\Rightarrow($ nat $\Rightarrow \mathrm{cnf}) \Rightarrow\left(\right.$ nat $\left.\Rightarrow{ }^{\prime} \mathrm{cmp}\right) \Rightarrow$ nat
$\Rightarrow\left(\left(\right.\right.$ nat $\left.\Rightarrow{ }^{\prime} \mathrm{cmp}\right) \Rightarrow$ nat \Rightarrow bool $) \Rightarrow$ bool
where eval cid $t t^{\prime} n \gamma \equiv$
$\left(\exists i \geq n .\left\{c i d \xi_{t} i\right) \wedge\right.$
$\gamma\left(\operatorname{lnth}\left(\left(\pi_{\text {cid }}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)($ the-enat $(\langle$ cid $\# n$ inf-llist $t\rangle)) \vee$
$\left.(\exists i\} c i. d \xi_{t} i\right) \wedge$
$\left(\nexists i^{\prime} . i^{\prime} \geq n \wedge \xi_{c i d \xi_{t}}^{i^{\prime}}\right) \wedge \gamma\left(\right.$ lnth $\left(\left(\pi_{\text {cid }}(\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left({ }_{c i d} \downarrow t(n)\right) \vee$
$\left(\nexists i . \xi_{c i d \xi_{t}}\right) \wedge \gamma\left(\right.$ lnth $\left(\left(\pi_{\text {cid }}(\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right) n$

```

In order to evaluate a behavior trace assertion \(\gamma\) over an architecture trace \(t\) at time point \(n\), eval distinguishes between three cases:
- If component cid is again activated in the future, \(\gamma\) is evaluated at the next point in time where cid is active in \(t\).
- If component cid is not again activated in the future but it is activated at least once in \(t\), then \(\gamma\) is evaluated at the point in time given by the corresponding time mapping.
- If component \(\operatorname{cid}\) is never active in \(t\), then \(\gamma\) is evaluated at time point \(n\).

\subsection*{6.4.3 Rules of the Calculus}

We can now use the evaluation function introduced above, to formalize all the rules of the calculus presented in the last chapter. Since the calculus was already discussed in the
previous chapter, we are not going to discuss all of it again in this chapter. However, we want to point out that instantiating locale dynamic-component for the different types of components involved in an ADP results in an instantiation of all the rules of the calculus for components of that type. This way, each component type comes with its own version of the calculus which can then be used to reason about the behavior of components of that type. The following excerpt shows, for example, the formalization of the introduction rule for the next operator in the case that there exists a future activation of a component:
```

lemma nxtIA[intro]:
fixes $c:$:' $i d$
and $t:: n a t \Rightarrow c n f$
and $t^{\prime}:: n a t \Rightarrow{ }^{\prime} c m p$
and $n:: n a t$
assumes $\exists i \geq n$. $\{c\}_{t} i$
and $\llbracket \exists i>\langle c \rightarrow t\rangle_{n} . \xi_{c} \xi_{t} \downarrow \rrbracket \Longrightarrow n^{\prime} \geq n .\left(\exists!i . n \leq i \wedge i<n^{\prime} \wedge \xi c \xi_{t} i\right) \wedge$ eval $c t t^{\prime} n^{\prime} \gamma$
and $\llbracket \neg\left(\exists i>\langle c \rightarrow t\rangle_{n} .\left\{c \xi_{t} i\right) \rrbracket \Longrightarrow\right.$ eval $c t t^{\prime}\left(S u c\langle c \rightarrow t\rangle_{n}\right) \gamma$
shows eval $c t t^{\prime} n\left(O_{b}(\gamma)\right)$

```

Mechanized proofs of this and all remaining rules are provided in App. D. 2 and available at the archive of formal proofs [Mar17a].

\subsection*{6.5 Creating Pattern Theories}

As mentioned at the beginning, the formalization of the model, as presented in this section, can be used to support the interactive verification of ADPs. To this end, a pattern specification (in terms of the techniques presented in Sect. 3) can be systematically transferred to a corresponding Isabelle/HOL theory. Algorithm 1 describes the mapping in more detail. In general, the transformation is done in four main steps:
1. The specified FACTUM datatypes are transferred to corresponding Isabelle/HOL datatypes.
2. An Isabelle locale is created for the corresponding pattern, which imports other locales for each instantiated pattern (or locale dynamic_component for each type of component which does not instantiate any component type from another pattern). Ports for component types are added as locale parameters and typed by the corresponding Isabelle/HOL datatypes.
3. Specifications of component behavior are added as locale assumptions, formulated in terms of behavior trace assertions (as formalized in Sect. 6.4.1), and evaluated using the evaluation function introduced in Sect. 6.4.2.
4. Activation and connection assertions are provided as locale assumptions, formulated in terms of architecture trace assertions, formalized in Sect. 6.3.

The following result guarantees soundness of Alg. 1, i.e., that the algorithm indeed preserves the semantics of a FACTUM specification.
```

Algorithm 1 Mapping a pattern specification to an Isabelle/HOL Theory.
Input: A FACTUM specification of ADP
$\{$ with Datatype Spec. $D S$, Component Type Spec. $C S$, and Architecture Spec. $A S\}$
Output: An Isabelle/HOL theory for the specification
for all Datatypes $d t$ in $D S$ do
create Isabelle/HOL datatype specification for $d t$
end for
create Isabelle/HOL locale for the pattern
for all Component Types $c t$ in $C S$ do
if $c t$ instantiates a component type of another pattern specification $P S$ then
import the corresponding locale for $P S$
\{requires to import the corresponing Isabelle theory \}
create instance of ports/parameters according to the specified port mapping
\{the parameter for every port of $c t$ is passed to the imported locale\}
else
import locale "dynamic_component" of theory "Configuration__Traces"
end if
create instance of locale parameters $t C M P$ and active
for all component parameters p of $c t$ which are not instances do
create locale parameter par of the type corresponding to the type of p
create locale assumption " $\forall x . \exists c . \operatorname{par}(c)=x "$
\{since FACTUM requires nonempty sets of components for each type\}
end for
\{instantiated parameters are already handled at line 8 \}
for all ports p which are not instances do
create locale parameter of the type corresponding to the datatype of p
end for
$\{$ instantiated ports are already handled at line 8 \}
for all behavior trace assertions b of $c t$ do
create locale assumption for b
\{use the operators and evaluation function presented in this chapter\}
end for
end for
for all architecture trace assertions c of $A S$ do
create locale assertion for c
\{use the operators presented in this chapter\}
end for

```

Theorem 4 (Soundness of Alg. 1). A set of architecture traces satisfies a FACTUM specification iff it satisfies the theory generated from the FACTUM specification by algorithm 1.

Although a formal proof for this theorem is out of the scope of this text, we provide an informal argument for it in App. E. Moreover, note that the generated theory is based on

Isabelle/HOL's implementation of architecture traces presented in this chapter. Thus, a calculus is instantiated for each component type which provides a set of rules to reason about the specification of the behavior of components of that type.

\subsection*{6.6 Summary}

Figure 6.5 provides an overview of the results presented in this chapter. First, we provide formalizations of the model presented in Chap. 2 as well as the calculus presented in Chap. 5 in terms of two Isabelle/HOL theories which are available through the archive of formal proofs [Mar17a]:
Configuration_Traces imports theory Coinductive_List and provides a formalization of the model described in Chap. 2 in terms of co-inductive lists.
Dynamic_Architecture_Calculus imports theory Configuration_Traces, provides operators for the specification of component behavior, and implements a calculus to reason about component behavior [Mar17c] specified using these operators. Moreover, we provide an interface to these theories in terms of an Isabelle/HOL locale [Bal04] dynamic_component. Finally, we provide an algorithm to map a FACTum specification to a corresponding Isabelle/HOL theory: Thereby, locale dynamic_component is instantiated for every type of component involved in the pattern. Then, the behavior of each component type is specified using the specification operators provided by the corresponding instantiation. Moreover, activation and connection constraints are specified for components of the different types.


Figure 6.5: Overview of results presented in this chapter.

\section*{Part IV}

Evaluation

\section*{7 Singletons, Publisher-Subscribers, and Blackboards}

In the last chapters, we introduced techniques to specify ADPs and verify them by means of interactive theorem proving. In the following chapter, we demonstrate feasibility of the approach. To this end, we first specify properties for each of our running examples and verify them in Isabelle/HOL.
Verification is based on our implementation of the calculus presented in Chap. 5. Moreover, we leverage the hierarchical nature of the specifications of our running examples. Thus, results obtained for the Singleton pattern are used for the verification of the Publisher-Subscriber pattern. In addition, results obtained for both patterns, the Singleton and the Publisher-Subscriber pattern, are used for the verification of the Blackboard pattern. In total, verification consists of three theories amounting up to almost 1000 lines of Isabelle/HOL proof code.
Although the examples presented in this chapter demonstrate feasibility of the approach, their main purpose is to demonstrate the concepts and ideas of this thesis. To further evaluate the methodology on a larger scale, the next chapter presents a case study from the domain of blockchain architectures.

\subsection*{7.1 Singleton}

First, we discuss verification of the Singleton pattern. We first present a possible guarantee for the pattern. Then, we show the Isabelle/HOL code generated from the specification of the pattern. Finally, we show how the guarantee is verified by proving the corresponding theorem.

\subsection*{7.1.1 Architectural Guarantee}

One possible guarantee of a Singleton is that there exists indeed a unique component of type singleton which is always active. It it is formalized in Fig. 7.1 in terms of an architecture trace assertion (as introduced in Sect. 3.3). First, we specify two component variables for singletons: a flexible variable \(s\) and a rigid variable the-singleton. While flexible variables may change their value at each point in time, rigid variables are required to keep their value during the whole execution. Then, we require the existence of such a rigid singleton, which is always activated and indeed the only component of type singleton which is active at any point in time.
\begin{tabular}{|c|c|}
\hline ASpec Guarantee_Singleton & for Singleton \\
\hline flex \(s\) : rig the-singleton & \\
\hline \multicolumn{2}{|l|}{} \\
\hline
\end{tabular}

Figure 7.1: Architectural guarantee for the Singleton pattern.

\subsection*{7.1.2 Mapping the Pattern Specification}

Since the specification of the Singleton did not involve the specification of data types, no Isabelle datatype specification is created. However, a corresponding Isabelle locale is created from the specification of a Singleton's interface (discussed in Ex. 16). The corresponding Isabelle/HOL excerpt looks as follows:
locale singleton \(=\) dynamic-component cmp active
for active :: 'id \(\Rightarrow c n f \Rightarrow\) bool \((\xi-\xi-[0,110] 60)\)
and \(c m p:: ' i d \Rightarrow c n f \Rightarrow{ }^{\prime} c m p\left(\sigma_{-}(-)[0,110] 60\right)+\)
In order to use our verification framework later on, locale dynamic-component must be instantiated for each type of component involved in a pattern's specification. Since the Singleton pattern consists of only one component type, a single instantiation of locale dynamic-component is generated. The locale requires two parameters:
- A mapping \(c m p\) to access a singleton component in a given architecture snapshot based on its identifier.
- A predicate active which checks whether a singleton component with a certain identifier is activated in an architecture snapshot.

Moreover, the specification of the singleton consists of two architectural assumptions (as described in Sec. 21), which are transferred to corresponding locale assumptions:
```

assumes alwaysActive: \ \. \existsid. {id\mp@subsup{}}{k}{}
and unique: \existsid. }\forallk.\forallid'.(\xiid\mp@subsup{|}{k}{}\longrightarrowid=id'

```

Locale assumption alwaysActive is generated from the singleton's assumption that a singleton component is always active. Locale assumption unique is created from the assumption that a singleton component is indeed unique.
The architectural guarantee specified for a singleton (Sec. 7.1.1) is systematically transferred to the following Isabelle/HOL theorem:
```

definition the-singleton \equivTHE id. }\forallk.\forallid\mp@subsup{d}{}{\prime}.{id\mp@subsup{\xi}{k}{\prime}\longrightarrowid'=i
theorem ts-prop:
fixes k::cnf
shows }\id.{ld\mp@subsup{}}{k}{}\Longrightarrowid=the-singleto
and 乡the-singleton\mp@subsup{}}{k}{}

```

First, Isabelle/HOL's definite description operator THE is used to define the unique singleton component. Then, a theorem is created which guarantees that a singleton is indeed unique and always activated.

\subsection*{7.1.3 Verification}

Since the singleton is declared to be an instance of locale dynamic-component, all the rules of our calculus are available for singleton components and can be used for the verification of the pattern.

\subsection*{7.1.4 Properties from the Calculus}

Figure 7.2 demonstrates the properties which are available for a singleton as part of the framework. Essentially, we get introduction and elimination rules for each of the operators used to specify component behavior. Since a singleton does not have any behavior specification, these rules are actually not used for the verification of the pattern. However, as we consider more complicated patterns, these rules turn out to be useful for verification.
```

baIA: \llbracket\existsi\geqn.{c}t i; \varphi (\sigma ct <c ->t\rangle
baIN1: \llbracket\existsi.{c\mp@subsup{}}{t i}{*};\neg(\existsi\geqn.{c\mp@subsup{}}{t}{}i);\varphi(\mp@subsup{t}{}{\prime}(n-\langlec\wedget\rangle-1))\rrbracket
eval ct t'n(ba \varphi)
baIN2: \llbracket\#i. }c}t i; \varphi(t' n)\rrbracket\Longrightarrow eval c t t' n (ba \varphi)
...Similar rules are available for each operator

```

Figure 7.2: Calculus instantiated for the Singleton pattern.

\subsection*{7.1.5 Proving the Theorem}

A possible proof for theorem \(t s\)-prop, presented in Sec. 7.1.2, may look as follows:
```

proof -
{ fix id
assume a1: {id}}\mp@subsup{k}{k}{
have (THE id..}\forallk.\foralli\mp@subsup{d}{}{\prime}.{id\mp@subsup{}}{k}{\prime}\longrightarrowi\mp@subsup{d}{}{\prime}=id)=i
proof (rule the-equality)
show }\forallki\mp@subsup{d}{}{\prime}.{id\mp@subsup{}}{k}{}\longrightarrowi\mp@subsup{|}{}{\prime}=i
proof
fix }k\mathrm{ show }\foralli\mp@subsup{d}{}{\prime}.{id\mp@subsup{|}{k}{\prime}\longrightarrowi\mp@subsup{d}{}{\prime}=i
proof
fix id' show }{i\mp@subsup{d}{}{\prime}\mp@subsup{\xi}{k}{}\longrightarrowi\mp@subsup{d}{}{\prime}=i
proof
assume {id多k
from unique have \existsid.}\forallk.\foralli\mp@subsup{d}{}{\prime}.(\xiid\mp@subsup{|}{k}{\prime}\longrightarrowid=id')

```
```

 then obtain }\mp@subsup{i}{}{\prime\prime}\mathrm{ where }\forallk.\foralli\mp@subsup{d}{}{\prime}.(\xiid\mp@subsup{|}{k}{\prime}\longrightarrow\mp@subsup{i}{}{\prime\prime}=i\mp@subsup{d}{}{\prime})\mathrm{ by auto
    ```

```

 thus id'=id by simp
 qed
 qed
 qed
 next
 fix }\mp@subsup{i}{}{\prime\prime}\mathrm{ show }\forallki\mp@subsup{d}{}{\prime}.{id\mp@subsup{|}{k}{\prime}\longrightarrowi\mp@subsup{d}{}{\prime}=\mp@subsup{i}{}{\prime\prime}\Longrightarrow\mp@subsup{i}{}{\prime\prime}=id\mathrm{ using a1 by auto
 qed
 hence {id\mp@subsup{}}{k}{}\Longrightarrowid= the-singleton by (simp add: the-singleton-def)
 } note g1 = this
thus }\id.{id\mp@subsup{\xi}{k}{}\Longrightarrowid=the-singleton by simp
from alwaysActive obtain id where {id}}\mp@subsup{k}{k}{}\mathrm{ by blast
with g1 have id = the-singleton by simp
with {{id\mp@subsup{\xi}{k}{}\rangle
qed

```

The proof is formulated in Isabelle's structured proof language Isabelle/Isar and resembles a normal, mathematical proof. Note, however, the reference to the two assumptions unique and alwaysActive generated from the pattern's imposed assumptions and discussed in Sec. 7.1.2.

\subsection*{7.2 Publisher-Subscriber}

Next, we discuss the verification of the Publisher-Subscriber pattern. Again, we first present a possible guarantee for such architectures. Then, we discuss the Isabelle/HOL code generated from its specification. Finally, we discuss the verification of the corresponding theorem in Isabelle/HOL.

\subsection*{7.2.1 Architectural Guarantees}

Since the publisher component was specified to be an instance of the Singleton pattern, the corresponding guarantee of the Singleton pattern is also available for the PublisherSubscriber pattern. Moreover, we can use the additional assumptions imposed by the specification of the Publisher-Subscriber pattern to come up with another guarantee for the pattern. It is specified in Fig. 7.3 and guarantees that a subscriber component indeed receives all the messages for which it is subscribed.

\subsection*{7.2.2 Mapping Data Types}

Since the specification of the Publisher-Subscriber pattern indeed contains specifications for data types, we first need to create the corresponding datatype specification in Isabelle/HOL:
```

datatype 'evt subscription = sub 'evt | unsub 'evt

```
```

ASpec Publisher-Subscriber for Publisher-Subscriber
flex the-pb: Publisher
m :
msg
$\wp(\mathrm{evt})$
rig $\begin{array}{lll}s^{\prime} \\ e: & \text { Subscriber } \\ \text { evt }\end{array}$
$\square\left(\xi s^{\prime}\right\} \wedge\left(\exists E: \operatorname{sub} E=s^{\prime} \cdot s b \wedge e \in E\right)$
$\longrightarrow\left(\left(\xi s^{\prime} \xi \wedge(e, m)=\right.\right.$ the-pb.nt $\left.\longrightarrow(e, m)=s^{\prime} . n t\right)$
$\mathcal{W}\left(\left\{s^{\prime} \xi \wedge\left(\exists E:\right.\right.\right.$ unsub $\left.\left.\left.\left.E=s^{\prime} . s b \wedge e \in E\right)\right)\right)\right)$

```

Figure 7.3: Architectural guarantee for the Publisher-Subscriber pattern.
According to the datatype specification presented in Ex. 12, we create a parametric datatype subscription, which depends on a type parameter 'evt to denote events for which subscribers can subscribe. Thereby, the elements of a subscription are defined to be either a subscription sub to an event 'evt, or an unsubscription unsub for an event 'evt.

\subsection*{7.2.3 Mapping Architectural Assumptions}

The specification of the patterns interfaces (Ex. 28) are again mapped to a corresponding locale specification:
```

locale publisher-subscriber =
pb: singleton pbactive pbcmp +
sb: dynamic-component sbcmp sbactive
for pbactive :: 'pid =>cnf => bool
and pbcmp :: 'pid => cnf = 'PB
and sbactive :: 'sid => cnf }=>\mathrm{ bool
and sbcmp :: 'sid => cnf => 'SB +

```

This time, however, two interfaces are specified which requires two instantiations for the locale. Since the publisher component type is specified to be a instance of the Singleton pattern, a corresponding instantiation of the singleton locale is created. The subscriber component type does not instantiate any other component type which is why it instantiates the default locale dynamic-component from our framework. Note that locale instantiations are indeed transitive which means that, implicitly, also the publisher component type instantiates locale dynamic-component. Thus, the verification framework can also be used for publisher components, although they do not directly instantiate dynamic-component.
In contrast to the singleton component type, which has no specified ports, publishers as well as subscribers have ports specified for their interfaces. The port types specified in Ex. 14 are mapped to corresponding locale parameters:
```

fixes $p b s b::$ ' $P B \Rightarrow$ ('evt set) subscription set
and pbnt $::{ }^{\prime} P B \Rightarrow\left({ }^{\prime}\right.$ evt \times 'msg)
and sbnt :: 'SB \Rightarrow ('evt \times 'msg) set
and $s b s b::$ 'SB \Rightarrow ('evt set) subscription

```

For each port, we create a locale parameter which takes a component of the corresponding component type and returns a set of messages of the corresponding port type.

Finally, the two connection assumptions specified for the Publisher-Subscriber pattern in Ex. 22, are mapped to corresponding locale assumptions:
```

assumes conn1: \bigwedgek pid. pbactive pid k
\Longrightarrow p b s b ~ (p b c m p ~ p i d ~ k) = (\bigcup ~ s i d \in \{ s i d . ~ s b a c t i v e ~ s i d ~ k \} . \{ s b s b ~ (s b c m p ~ s i d ~ k) \})
and conn2: \t n n'" sid pid E e m.
\llbracket t \in a r c h ; ~ p b a c t i v e ~ p i d ~ (t ~ n) ; ~ s b a c t i v e ~ s i d ~ (t ~ n) ; ~ n ^ { \prime \prime } \geq n ; e \in E ;
sub E = sbsb (sbcmp sid (tn));
\# n' E'. n'
unsub E'}= sbsb (sbcmp sid (t n')) ^e\inE'
(e,m) = pbnt (pbcmp pid (t n'\prime)); sbactive sid (t n'')]
\Longrightarrowpbnt (pbcmp pid (t n'\prime)) \in sbnt (sbcmp sid (t n'л))

```

Thereby, connections between two ports is simply mapped to an equality assumption for the corresponding locale parameters. conn1, for example, denotes the constraint that port \(s b\) of a publisher component is connected to port \(s b\) of every active subscriber component.

\subsection*{7.2.4 Mapping the Guarantee}

Similar as for the Singleton pattern, the architectural guarantee for Publisher-Subscriber architectures (specified in Sec. 7.2.1), is mapped to a corresponding Isabelle/HOL theorem. First, however, we introduce an abbreviation for the unique publisher component inherited from the singleton:
```

abbreviation the-pb :: 'pid where
the-pb \equivpb.the-singleton

```

Then, we can finally generate the corresponding theorem:
```

theorem msgDelivery:
fixes $t n n^{\prime \prime}$ sid E e m
assumes $t \in$ arch
and sbactive sid ($t n$)
and sub $E=s b s b(s b c m p$ sid $(t n))$
and $n^{\prime \prime} \geq n$
and $\nexists n^{\prime} E^{\prime} . n^{\prime} \geq n \wedge n^{\prime} \leq n^{\prime \prime} \wedge$ sbactive sid $\left(t n^{\prime}\right) \wedge$ unsub $E^{\prime}=\operatorname{sbsb}\left(\operatorname{sbcmp} \operatorname{sid}\left(t n^{\prime}\right)\right)$
$\wedge e \in E^{\prime}$
and $e \in E$
and $(e, m)=p b n t\left(p b c m p\right.$ the-pb $\left.\left(t n^{\prime \prime}\right)\right)$
and sbactive sid ($t n^{\prime \prime}$)
shows $(e, m) \in \operatorname{sbnt}\left(\operatorname{sbcmp} \operatorname{sid}\left(t n^{\prime \prime}\right)\right)$

```

\subsection*{7.2.5 Publisher-Subscriber}

Similar as for the Singleton pattern, our framework provides us with rules to support reasoning about component behavior. Moreover, since a publisher was declared to be an instance of a singleton, results from the Singleton pattern propagate to publishers.

\subsection*{7.2.5.1 Properties from the Calculus}

In contrast to the Singleton pattern, there are two types of components in a PublisherSubscriber pattern and each of these types, publishers as well as subscribers, come with their own instantiation of the calculus. Figure 7.4 depicts two of the introduction rules for basic behavior assertions which are available: one for publisher components and one for subscriber components. Note that the rules are similar, but for publisher components we use activation and selection parameters pbactive and \(p b c m p\), while for subscribers we use sbactive and sbcmp, respectively.
```

pb.baIA: \llbracket\existsi\geqn. pbactive c (t i); \varphi (pbcmp c (t (pb.nxtAct c t n)))\rrbracket
pb.eval c t t'n (pb.ba \varphi)
sb.baIA: \llbracket\existsi\geqn. sbactive c (t i); \varphi (sbcmp c (t (sb.nxtAct c t n)))\rrbracket
<sb.eval c t t' n (sb.ba \varphi)
...Similar rules are available for each operator

```

Figure 7.4: Calculus instantiated for the Publisher-Subscriber pattern.

\subsection*{7.2.5.2 Results from Pattern Instantiations}

Since the Publisher-Subscriber pattern instantiates the Singleton pattern, results obtained for the singleton are automatically interpreted in the context of the PublisherSubscriber pattern. Thus, declaring the publisher to be an instance of a singleton has two major consequences.

First, a corresponding definition of the unique publisher component is available:
```

abbreviation the-pb :: 'pid where
the-pb \equivpb.the-singleton

```

Essentially, the-pb abbreviates definition the-singleton introduced in Sec. 7.1.2.
Moreover, the theorem proved for singleton components is available also for components of type publisher:
```

pb.ts-prop (1): pbactive id k\Longrightarrowid = the-pb
pb.ts-prop (2): pbactive the-pb k

```

\subsection*{7.2.5.3 Proving the Theorem}

The proof for theorem msgDelivery, presented in Sec. 7.2.4 is a simple one-liner:
using conn1[OF pb.ts-prop(2)].
It follows directly from the assumptions generated for the pattern and the guarantee inherited from the singleton.

\subsection*{7.3 Blackboard}

Finally, we present the verification for the Blackboard pattern. Again, we first specify a possible guarantee for the pattern. Then, we present the corresponding Isabelle/HOL code and the proof of the theorem generated from the pattern's guarantee.

\subsection*{7.3.1 Architectural Guarantees}

Again, the architectural guarantee specified for singletons (Fig. 7.1) as well as the guarantee specified for Publisher-Subscriber architectures (Fig. 7.3) are inherited for the blackboard specification. Figure 7.5 provides the specification of an additional guarantee for Blackboard architectures: If for every open subproblem, a knowledge source able to solve this problem is eventually activated (Eq. (7.1)), then, the architecture will eventually solve a given problem (Eq. (7.2)), even if no single knowledge source is able to solve the problem on its own. Note that the specification uses the concept of parametrized variables for knowledge sources. Thus, given a problem \(p\), variable \(k s_{\langle p\rangle}\) denotes a variable for a knowledge source component which is indeed able to solve problem \(p\).


Figure 7.5: Architectural guarantee for the Blackboard pattern.

\subsection*{7.3.2 Mapping Data Types}

In contrast to the Publisher-Subscriber pattern, data types for the Blackboard pattern are specified axiomatically:
typedecl \(P R O B\)
consts \(s b::(P R O B \times P R O B)\) set
axiomatization where \(s b W F: w f s b\)
```

typedecl SOL
consts solve:: PROB => SOL

```

As required by the corresponding FACTUM datatype specification (Ex. 13), the specification introduces two abstract types: problems and solutions. It then requires the existence of a well-founded relation \(s b\) which relates problems with corresponding subproblems. Finally, it requires the existence of a mapping which is assumed to assign the correct solution to each problem.

\subsection*{7.3.3 Mapping Architectural Assumptions}

Again, the pattern specification is mapped to a corresponding Isabelle/HOL locale. Similar as for the Publisher-Subscriber pattern, the pattern's interfaces are used to generate a corresponding locale header:
```

locale blackboard $=$ publisher-subscriber bbactive bbcmp ksactive kscmp bbrp bbcs kscs ksrp
for bbactive :: 'bid \Rightarrow cnf \Rightarrow bool $(\xi-\xi-[0,110] 60)$
and bbcmp :: 'bid $\Rightarrow c n f \Rightarrow{ }^{\prime} B B\left(\sigma_{-}(-)[0,110] 60\right)$
and ksactive $::{ }^{\prime} k i d \Rightarrow c n f \Rightarrow$ bool $(\xi-\xi-[0,110] 60)$
and $k s c m p::$ 'kid $\Rightarrow c n f \Rightarrow{ }^{\prime} K S\left(\sigma_{-}(-)[0,110] 60\right)$
and bbrp $::{ }^{\prime} B B \Rightarrow(P R O B$ set $)$ subscription set
and bbcs :: ${ }^{\prime} B B \Rightarrow(P R O B \times S O L)$
and kscs :: ' $K S \Rightarrow(P R O B \times S O L)$ set
and ksrp $::{ }^{\prime} K S \Rightarrow($ PROB set $)$ subscription +
fixes bbns :: 'BB $\Rightarrow(P R O B \times S O L)$ set
and ksns :: 'KS $\Rightarrow(P R O B \times S O L)$
and bbop :: 'BB \Rightarrow PROB
and ksop $::{ }^{\prime} K S \Rightarrow P R O B$ set

```

Since the Blackboard is specified to be an instance of the Publisher-Subscriber pattern, the locale created for the Blackboard pattern instantiates the locale of the PublisherSubscriber pattern. The instantiation requires 8 parameters: The first 4 parameters are the usual parameters required by the framework to obtain a component from an architecture snapshot, and to check activation of a component within an architecture snapshot. In addition, we must provide an additional parameter for each port available in the specification of the Publisher-Subscriber pattern. These parameters denote ports of the Blackboard pattern which interpret the corresponding ports of the Publisher-Subscriber pattern (as specified in Ex. 29). For example, port rp of a blackboard corresponds to port \(s b\) of a publisher, port \(c s\) of a blackboard to port \(n t\) of the publisher, port \(c s\) of a knowledge source to port \(n t\) of a subscriber, and port \(r p\) of a knowledge source to port \(s b\) of a subscriber.

As a next step, we generate interface parameters and corresponding assumptions:
```

 and prob :: 'kid }=>\mathrm{ PROB
 assumes
ks1: \forallp. \existsks. p=prob ks - Component Parameter

```

Since knowledge sources are parametrized by problems, we must generate a corresponding locale parameter which assigns a problem to each knowledge source. Moreover, we
generate an assumption \(k s 1\), which requires the existence of at least one knowledge source for each problem (as required by the semantics of parametric component types).
Finally, we generate additional locale assumptions according to the activation and connection assumptions described in Ex. 23:
```

- Assertions about component activation.
and actks:
$\bigwedge t n$ kid $p . \llbracket t \in$ arch; ksactive kid $(t n) ; p=p r o b$ kid; $p \in$ ksop $(k s c m p$ kid $(t n)) \rrbracket$
$\Longrightarrow\left(\exists n^{\prime} \geq n\right.$. ksactive kid $\left(t n^{\prime}\right) \wedge(p$, solve $p)=$ ksns $\left(\right.$ kscmp kid $\left.\left(t n^{\prime}\right)\right) \wedge$
$\left(\forall n^{\prime \prime} \geq n . n^{\prime \prime}<n^{\prime} \longrightarrow\right.$ ksactive kid $\left.\left.\left(t n^{\prime \prime}\right)\right)\right)$
$\vee\left(\forall n^{\prime} \geq n\right.$. $\left(\right.$ ksactive kid $\left(t n^{\prime}\right) \wedge\left(\neg(p\right.$, solve $\left.\left.\left.p)=k s n s\left(k s c m p k i d\left(t n^{\prime}\right)\right)\right)\right)\right)$
- Assertions about connections.
and conn1: $\bigwedge k$ bid. bbactive bid k
\Longrightarrow bbns (bbcmp bid $k)=(\bigcup$ kid $\in\{$ kid. ksactive kid $k\} .\{$ ksns (kscmp kid $k)\})$
and conn2: $\bigwedge k$ kid. ksactive kid k
$\Longrightarrow k s o p($ kscmp kid $k)=(\bigcup$ bid $\in\{$ bid. bbactive bid $k\}$. $\{$ bbop (bbcmp bid $k)\})$

```

In contrast to the patterns discussed so far, a Blackboard involves also the specification of component types, i.e., assumptions about component behavior. Thus, one additional locale assumption is generated for every behavior assumption presented in Ex. 19 and Ex. 20:
```

- Assertions about component behavior.
and bhvbb1: $\wedge t t^{\prime}$ bId $p s . \llbracket t \in$ arch \Longrightarrow pb.eval bId $t t^{\prime} 0$
($p b . g l o b$ ($p b . b a$ ($\lambda b b .(p, s) \in b b n s b b)$
$\left.\longrightarrow^{p}(p b . e v t(p b . b a(\lambda b b .(p, s)=b b c s b b)))\right)$
and bhvbb2: $\wedge t t^{\prime}$ bId $P q$. $\llbracket t \in$ arch \Longrightarrow pb.eval bId $t t^{\prime} 0$
(p b.glob (pb.ba (λ bb. sub $P \in b b r p b b \wedge q \in P$) \longrightarrow^{p}
(pb.evt $(p b . b a(\lambda b b . q=b b o p b b)))))$
and bhvbb3: $\wedge t t^{\prime}$ bId $p . \llbracket t \in \operatorname{arch} \rrbracket \Longrightarrow p b$.eval bId $t t^{\prime} 0$
$\left(p b . g l o b\left(p b . b a(\lambda b b . p=b b o p(b b)) \longrightarrow^{p}\right.\right.$
$(p b . w u n t i l(p b . b a(\lambda b b . p=b b o p(b b)))(p b . b a(\lambda b b .(p$, solve $(p))=b b c s(b b))))))$
and bhvks1: $\wedge t t^{\prime} k I d p$. $\llbracket t \in$ arch; $p=$ prob $k I d \rrbracket \Longrightarrow$ sb.eval kId $t t^{\prime} 0$
(sb.glob $\left((s b . b a(\lambda k s . ~ s u b ~ P=k s r p k s)) \wedge^{s}\right.$
(sb.all $\left(\lambda q\right.$. $($ sb.pred $(q \in P)) \longrightarrow^{s}($ sb.evt $(s b . b a(\lambda k s .(q$, solve $\left.\left.(q)) \in k s c s k s)))\right)\right)$
$\longrightarrow^{s}(s b . e v t(s b . b a(\lambda k s .(p$, solve $\left.\left.p)=k s n s k s)))\right)\right)$
and bhvks2: $\wedge t t^{\prime}$ kId p P q. $\llbracket t \in \operatorname{arch} h ; p=$ prob $k I d \rrbracket \Longrightarrow$ sb.eval $k I d t t^{\prime} 0$
(sb.glob (sb.ba (λ ks. sub $P=k s r p k s \wedge q \in P \longrightarrow(q, p) \in s b))$)
and bhvks3: $\wedge t t^{\prime}$ kId $p . \llbracket t \in$ arch; $p=$ prob kId \rrbracket sb.eval kId $t t^{\prime} 0$
$\left(s b . g l o b\left((s b . b a \quad(\lambda k s . p \in k s o p k s)) \longrightarrow^{s}(s b . e v t(s b . b a \quad(\lambda k s .(\exists P . \operatorname{sub} P=k s r p k s))))\right)\right)$
and bhvks $4: \wedge t t^{\prime} k I d p$. $\llbracket t \in$ arch; $p \in P \rrbracket \Longrightarrow$ sb.eval kId $t t^{\prime} 0$
(sb.glob $\left((s b . b a(\lambda k s . s u b P=k s r p k s)) \longrightarrow{ }^{s}\right.$
(sb.wuntil $\left(\neg^{s}\left(\exists_{s} P^{\prime} .\left(s b . p r e d ~\left(p \in P^{\prime}\right) \wedge^{s}\left(s b . b a\left(\lambda k s\right.\right.\right.\right.\right.$. unsub $\left.\left.\left.\left.P^{\prime}=k s r p k s\right)\right)\right)\right)$
(sb.ba ($\lambda k s$. $(p$, solve $p) \in k s c s k s))))$)

```

In FACTum, assumptions about component behavior are specified without considering possible activations and deactivations of a component. Thus, they cannot be simply transferred to assumptions over an architecture trace, as it was done for the mapping of architectural assumptions. Rather, our framework provides an operation eval which
is instantiated for each component type and which can be used to specify assumptions about component behavior in a dynamic environment. Later on, our framework can be used to combine the assumptions about component activation with the assumptions about component behavior to reason about a pattern specification.

\subsection*{7.3.4 Mapping the Guarantee}

As for the other examples, we finally generate a theorem according to the guarantee presented in Sec. 7.3.1. Again, we first introduce an abbreviation for the unique blackboard component inherited from the Publisher-Subscriber:
```

abbreviation the-bb \equiv the- $p b$

```

To foster readability, we even use Isabelle/HOL's indefinite description operator \(S O M E\) to introduce an additional definition to denote a knowledge source with a certain property:
```

definition $s K s:: ~ P R O B \Rightarrow$ ' $k i d$ where
sKs $p \equiv$ (SOME kid. $p=$ prob kid)

```

Then, we can generate the corresponding Isabelle/HOL theorem:
```

theorem pSolved:
fixes t and t'::nat 质BB and t'::nat }\mp@subsup{|}{}{\prime}K
assumes t\inarch and
\foralln.(\exists\mp@subsup{n}{}{\prime}\geqn.ksactive (sKs (bbop(bbcmp the-bb (t n)))) (t n'))
shows
\foralln.(\forallP.(sub P G bbrp(bbcmp the-bb (t n))
\longrightarrow(\forallp\inP.(\existsm\geqn.(p,solve (p))=bbcs (bbcmp the-bb (t m))))))

```

\subsection*{7.3.5 Proving the Theorem}

Finally, we discuss the verification of the theorem generated for the Blackboard pattern. Again, we get all the rules of the calculus and all the results for the Singleton pattern and Publisher-Subscriber pattern, for free.

\subsection*{7.3.5.1 Results from the Calculus}

Similar as for the Publisher-Subscriber pattern, we get introduction and elimination rules for all the operators used in the specification of blackboards as well as knowledge sources. Figure 7.6 shows an introduction rule for basic behavior assertions instantiated for both types of components. Again, the rules are similar, except for the activation and selection parameters.
```

pb.baIA: \llbracket\existsi\geqn.{c}t i; \varphi (\sigma ct <c ->t\rangle
sb.baIA: \llbracket\existsi\geqn. {c}t i; \varphi((\sigmact (sb.nxtAct c t n))\rrbracket\Longrightarrow sb.eval c t t'n (sb.ba \varphi)
...Similar rules are available for each operator

```

Figure 7.6: Calculus instantiated for the Blackboard pattern.

\subsection*{7.3.5.2 Results from Pattern Instantiations}

Since a Blackboard instantiates the Publisher-Subscriber pattern (and therefore implicitly also the Singleton pattern), we get all the properties verified for these patterns also for the Blackboard pattern, for free. First, we get all the results for the Singleton pattern:
```

abbreviation the-bb \equiv the-pb
pb.ts-prop (1): {id\mp@subsup{\xi}{k}{}\Longrightarrow id = the-bb
pb.ts-prop (2): {the-bb\mp@subsup{}}{k}{}

```

Similar as for the Publisher-Subscriber, we first introduce an abbreviation the-bb to denote the unique component of type blackboard and then we get a corresponding lemma about uniqueness of a blackboard component.

In addition, we get results from the Publisher-Subscriber pattern:
```

msgDelivery:
$\llbracket t \in \operatorname{arch} ;$
\}sid $\xi_{t} n$;
sub $E=k s r p\left(\sigma_{\text {sid }} t n\right)$;
$n \leq n^{\prime \prime}$;
$\nexists n^{\prime} E^{\prime} . n \leq n^{\prime} \wedge n^{\prime} \leq n^{\prime \prime} \wedge \xi s_{i d \xi_{t} n^{\prime}} \wedge$ unsub $E^{\prime}=k \operatorname{srp}\left(\sigma_{\text {sid }} t n^{\prime}\right) \wedge e \in E^{\prime} ;$
$e \in E$;
$(e, m)=b b c s\left(\sigma_{t h e-b b} t n^{\prime \prime}\right) ;$
$\xi_{s i d \xi_{t} n^{\prime \prime}}{ }^{1}$
$\Longrightarrow(e, m) \in k s c s\left(\sigma_{s i d} t n^{\prime \prime}\right)$

```

Basically, the results resemble the property verified for Publisher-Subscriber patterns (discussed in the last section) with activation and selection parameters from knowledge sources and blackboards, respectively.

\subsection*{7.3.5.3 Proving the Theorem}

In order to prove theorem pSolved, presented in Sect. 7.3.4, we first prove a corresponding lemma:
```

lemma pSolved-Ind:
fixes t and $t^{\prime}:: n a t \Rightarrow^{\prime} B B$ and p and $t^{\prime \prime}:: n a t \Rightarrow^{\prime} K S$
assumes $t \in$ arch and

```
```

\foralln. (\exists\mp@subsup{n}{}{\prime}\geqn.ksactive (sKs (bbop(bbcmp the-bb (t n)))) (t n'))
shows
\foralln. (\existsP. sub P G bbrp(bbcmp the-bb (t n)) ^ p\inP)\longrightarrow
(\existsm\geqn. (p,solve (p)) = bbcs (bbcmp the-bb (t m)))

```

The lemma can be proved by well-founded induction over the subproblem relation sb, since \(s b\) was assumed to be well-founded in Sec. 7.3.2. The final theorem is now a direct consequence of this lemma and can be proved in a single line:
using assms pSolved-Ind by blast

\subsection*{7.4 Summary}

In this chapter, we presented results obtained from the interactive verification of the Singleton pattern, the Publisher-Subscriber pattern, and the Blackboard pattern. In the following, we briefly summarize the results obtained for each of the patterns.

\subsection*{7.4.1 Singleton}

The leftmost graph in Fig. 7.7 depicts the effort for the verification of the Singleton pattern. Essentially, we have two classes of verification results for this pattern:
- A key result for the pattern is formalized by property ts_prop, which guarantees that, in our version of the Singleton, a singleton component is unique and always active.
- The second class of results leverages property ts_prop to provide rules to reason about the behavior of singleton components. Remember that, in general, reasoning about the behavior of components requires to consider activation constraints for that type of component. However, since a singleton component is always active and unique, reasoning about its behavior can be done without considering activation specifications at all.

\subsection*{7.4.1.1 Publisher-Subscriber}

In our version of the Publisher-Subscriber pattern, we modeled a publisher component as an instance of a singleton. Thus, as already mentioned above, all the verification results for singleton components from the Singleton pattern are available for publisher components in the Publisher-Subscriber pattern. Hence, we get special rules to reason about the behavior of publisher components which we use for the verification of two additional properties for a Publisher-Subscriber architecture:
- Property msgDelivery provides a characteristic property for such architectures which ensures that a subscriber component indeed receives all the messages associated with events for which it is subscribed.


Figure 7.7: Propositions for the Singleton pattern.
- Property conn1A provides a more technical result to support the reasoning about Publisher-Subscriber architectures. It leverages the fact that a publisher is actually a singleton to provide an alternative version of the basic rule to reason about connected components.

As can be observed from Fig. 7.8, the proofs for both properties are simple one-liners. Note, however, that this is only due to the fact that the proofs are based on the results obtained from the Singleton pattern.


Figure 7.8: Propositions for the Publisher-Subscriber pattern.

\subsection*{7.4.1.2 Blackboard}

We modeled the Blackboard pattern as a version of the Publisher-Subscriber pattern in which a blackboard takes the role of a publisher and the knowledge sources correspond to subscriber components. Thus, again, all the results from the Publisher-Subscriber pattern are available to support the verification of the Blackboard pattern. The additional constraints added by the Blackboard pattern can then be used to derive some additional guarantees of which one is of particular interest: Property pSolved guarantees that a Blackboard architecture is able to solve a given problem, provided that for each open sub-problem there exists a knowledge source which is able to address it. To prove this property, we first proved a more general result pSolved_Ind by induction. As shown in Fig. 7.9, the proof of it consisted of 391 lines of Isabelle/HOL code. The final property then follows directly from this lemma.


Figure 7.9: Propositions for the Blackboard pattern.

\section*{8 Verification of Blockchain Architectures}

In the last chapter, we introduced FACTum and demonstrated it in terms of three running examples: the singleton, the publisher-subscriber, and the blackboard pattern. Thereby, the verification of these patterns was rather trivial and the main purpose was to demonstrate the methodology, rather than evaluating it.

In the following chapter, we apply the methodology to a larger case study to specify and verify a pattern for Blockchain architectures:
- First, we specify blockchains as parametric lists using algebraic specification techniques.
- Then, we specify two types of components: trusted nodes which follow a given consensus protocol and untrusted nodes which may deviate from the protocol.
- Finally, we specified several architectural assertions which constrain the activation of nodes and their interconnection.
Then, we systematically transfer the specification of the pattern to a corresponding Isabelle/HOL [NPW02] theory using the algorithm described in Chap. 6. Finally, we formalize the notion of "resistance to modification of blockchain entries", transfer it to a corresponding Isabelle/HOL theorem, and prove it using the calculus presented in Chap. 5.

In total, the verification consists of two Isabelle theory files amounting to roughly 3000 lines of Isabelle proof script. Thereby, we discovered 9 architectural assumptions required by Blockchain architectures in order to guarantee persistence of blockchain entries. While some of them are actually concerned with details of an architecture, one of the assumptions could be considered fundamental for Blockchain architectures: the requirement that the relative frequency of minings from trusted and untrusted nodes observed at every time interval is bounded by the number of confirmation blocks.

\subsection*{8.1 Blockchain Architectures}

Blockchain architectures were first introduced with the invention of the Bitcoin cryptocurrency [Nak08]. In cryptocurrencies, a digital coin is usually passed from one owner to the next by digitally signing an electronic transaction. In order to ensure that coins are only spent once by any owner, a payee has to know whether a received coin is already spent or not at the time he receives it. This problem is known as the double spend problem and before the invention of blockchain, it was solved using a central, trusted identity which knew every transaction of the system and confirmed that a coin was not already spent. In an attempt to avoid such central authorities, Bitcoin proposed a system called blockchain to solve the double spend problem in a distributed, peer-to-peer network.

Thereby, the network stores a continuously growing list of persistent entries which contain the actual money transactions. The list is shared amongst all participants of the network and by inspecting it, a node can independently verify that a coin was not already spent. In this chapter, we call such a network a Blockchain architecture and in the following we summarize some basic concepts of such architectures as described in [Nak08].

\subsection*{8.1.1 Blockchain Data Structure}

The term blockchain usually refers to the major data structure involved in a Blockchain architecture: a list of records aka. blocks. Blocks, on the other hand, contain the actual data elements, for example, money transactions in cryptocurrency applications. Blocks can be added on top of the chain and verified by a process known as mining. In Bitcoin, for example, mining involves the guessing of a random number (a so-called nonce), adding it to a candidate block and checking whether the corresponding hash exhibits a certain form (starting with a certain amount of zeros). This makes mining of a new block computationally expensive since it usually requires many guesses (and subsequent hashings) to find a number which produces the right hash. However, ensuring that a given block was indeed successfully mined remains computationally cheap (it only requires a single hashing).

\subsection*{8.1.2 Blockchain Architectures}

In a Blockchain architecture, every node maintains a local copy of the blockchain which it exchanges with its peers. Due to the distributed nature, it may happen that two different blocks are added concurrently, resulting in two different versions of the blockchain available in the network. In order to reach a consensus on which version is the "right" one, a Blockchain architecture usually comes with a strategy of how to select the right version from a set of competing blockchains. This rule is applied by every trusted node of the network and should guarantee that the nodes eventually reach a consensus.

\subsection*{8.1.3 Consensus Rules}

There are several different types of strategies used to reach consensus, such as proof of work [Nak08] or proof of stake [BGM16]. In the proposed pattern, we rely on the proof of work concept also used by Bitcoin and related applications. It is based on the observation that the number of blocks in a blockchain usually represents the amount of computing power involved to build this chain. Thus, the largest chain from a set of competing blockchains must be the one accepted by the majority of the network. Thus, if a trusted node is facing two versions of a blockchain, it is required to always choose the longer one.

\subsection*{8.1.4 Confirmation Blocks}

In a proof-of-work network, every CPU gets one vote and majority decisions can usually only be manipulated if one entity owns more than \(50 \%\) of the computing power of the
network. This might not be true, however, for blocks added to the blockchain only recently. A single node may just be lucky and guess the right nonce fast, without investing a lot of computational power. In order to cope with such lucky guesses, one usually waits for some blocks to be mined on top of the block containing a certain transaction, in order to accept this transaction as completed. In Bitcoin, for example, it is suggested to wait at least 6 blocks in order to accept a transaction as completed.

\subsection*{8.2 Formalizing Blockchain Architectures}

In the following, we present our formalization of a possible pattern for Blockchain architectures. Therefore, we first describe the involved data types. Then, we present the types of components and constraints about their behavior. Finally, we discuss additional architectural constraints about component activation and interconnection.

\subsection*{8.3 Data Types and Ports}

As described in Sect. 8.1, a key data type in Blockchain architectures is the blockchain itself. In the following, we first formalize a blockchain datastructure in terms of algebraic datatypes. Then, we specify two types of ports to send and receive blockchains.

\subsection*{8.3.1 Blockchains}

A blockchain is modeled as a parametric list where the nature of the list entries (the blocks) depends on the concrete application context of the pattern. In cryptocurrency applications, for example, a block is actually a set of transactions. In other applications, however, blocks could be of a different type.
Figure 8.1a provides a specification of blockchains in terms of an abstract data type specification [Bro96, Wir90]. First, a parametric sort \(\langle\mathrm{B}\rangle \mathrm{BC}\) is introduced as a synonym for a corresponding list. Thereby, the type of blocks is denoted with type parameter B. In addition, we specify a function symbol \(M A X\) for blockchains which takes a set of blockchains and returns a blockchain with maximal length. Thus, we require two characteristic properties for MAX: Eq. (8.1) requires that a maximal blockchain of a set of blockchains \(B C\) is indeed part of \(B C\) itself. In addition, Eq. (8.2) requires that MAX is indeed maximal, i.e., that the length of every other blockchain of the corresponding set \(B C\) is less or equal to the length of \(M A X\). Note that \(\operatorname{MAX}(B C)\) is guaranteed to exist whenever \(B C \neq \emptyset\) and \(B C\) is finite.

\subsection*{8.3.2 Port Types}

Figure 8.1 b specifies two types of ports which can be used to exchange blockchains: pin for input ports and pout for output ports. They will be used later on for the specification of component type interfaces.
\begin{tabular}{lr}
\hline DTSpec Blockchain & imports \(\langle\mathrm{B}\rangle\) LIST as \(\langle\mathrm{B}\rangle \mathrm{BC}\) \\
\hline \hline\(M A X:\) & \(\wp(\langle\mathrm{B}\rangle \mathrm{BC}) \rightarrow\langle\mathrm{B}\rangle \mathrm{BC}\) \\
\hline flex \(B C:\) & \(\wp(\langle\mathrm{B}\rangle \mathrm{BC})\) \\
\(b c:\) & BC \\
\(\bar{M} \bar{A} \bar{X}(\bar{B} \bar{C}) \bar{\in} \bar{B} \bar{C}\) & \((8 . \overline{1})\) \\
\(\forall b c \in B C: \# b c \leq \# M A X(B C)\) & \((8.2)\) \\
\hline
\end{tabular}

(b) Port specification.
(a) Data type specification.

Figure 8.1: Specification of the Blockchain pattern.
\begin{tabular}{|c|c|}
\hline Diagram Blockchain \(\langle c b\) : NAT & \\
\hline \(\left\lfloor n d_{t r}, n d^{\prime}{ }_{t r}: ~ t r r \wedge t r^{\prime}\right\rfloor\) & \begin{tabular}{rrr} 
var & tn: & Node \([\) trusted \(]\) \\
& un: & Node \([\neg\) trusted \(]\)
\end{tabular} \\
\hline \[
\begin{array}{|l}
\text { Node }\langle\text { trusted: bool }\rangle \\
\text { pin } \\
\text { bc: }\langle\mathrm{B}\rangle \mathrm{BC} \\
\text { mining: bool }
\end{array}
\] & \[
\begin{aligned}
& \text { PoW } \stackrel{\text { def }}{=} L E A S T x: \forall t n:\{t n\} \longrightarrow \# t n . b c \leq x \\
& \text { tmining } \stackrel{\text { def }}{=} \exists t n:\{t n\} \wedge t n . \text { mining } \\
& \text { umining } \stackrel{\text { def }}{=} \exists u n:\{u n\} \wedge \text { un.mining }
\end{aligned}
\] \\
\hline
\end{tabular}

Figure 8.2: Architecture diagram for Blockchain architectures.

\subsection*{8.4 Component Types}

The components involved in a Blockchain architecture are called nodes. In the following, we first describe the syntactic interface of such a node component. Then, we introduce some auxiliary definitions for nodes used later on. Finally, we provide a set of characteristic properties for a node's behavior.

\subsection*{8.4.1 Interfaces}

The architecture diagram depicted in Fig. 8.2 specifies the syntactic interface of blockchain nodes. Actually, the diagram also contains a graphical representation of a connection constraint as well as the definition of three auxiliary definitions for nodes. For now, however, we skip these additional aspects and focus on the description of the interface. We will come back to the auxiliary definitions in the next section and we will discuss the connection constraint later on in Sec. 8.5.

First of all, a node in a blockchain may either be trusted or untrusted. Therefore, a node is parametrized by a boolean value trusted which means that every component of type node has a constant, boolean value associated to it which determines its trustworthiness. In addition, a node has two state variables: variable bc keeps a local copy of the node's blockchain and variable mining signals the mining of a new block. Finally, a node may exchange blockchains through its input port pin and output port pout.

\subsection*{8.4.2 Auxiliary Definitions}

To support subsequent development, the right hand side of Fig. 8.2 introduces three auxiliary definitions for nodes: trusted proof of work and trusted/untrusted mining.

Trusted proof of work. Trusted proof of work is denoted by PoW and represents the maximal proof of work currently available in the trusted community. Since proof of work corresponds to the length of a blockchain (Sec. 8.1), trusted proof of work is defined as the least upper bound for the length of trusted blockchains, i.e., blockchains of active and trusted nodes. Note the use of the definite description operator LEAST to denote the least length \(x\) which is greater or equal to the length of the blockchain of every trusted and active node.

Trusted and untrusted mining. Trusted mining is a predicate denoted by tmining which states that at the current point in time, some trusted node was able to mine a new block. Similarly, untrusted mining states that currently an untrusted node was able to mine a new block. It is denoted by umining. Trusted and untrusted mining play an important role in the formalization of a fundamental property for Blockchain architectures later on.

\subsection*{8.4.3 Behavior}

The behavior of nodes is given in terms of a set of so-called behavior trace assertions, i.e., linear temporal logic [MP92] formulæ, formulated over a node's interface \({ }^{1}\). Figure 8.3 depicts the corresponding specification. First, we introduce several variables to denote single blocks ( \(b\) ), blockchains ( \(b c\) and \(b c^{\prime}\) ), trusted nodes ( \(t n\) ), untrusted nodes \(u n\), and nodes in general ( \(n d\) ). Note the distinction between "flexible" and "rigid" variables: while "flexible" variables may be newly interpreted at every point in time, "rigid" variables keep their value over time. Then, we require four assertions for a node's behavior: The first two assertions Eq. (8.3) and Eq. (8.4) are general properties required for trusted as well as untrusted node components. Eq. (8.3) requires that a new node is initialized by the empty blockchain while Eq. (8.4) requires that every node \(n d\) indeed always forwards a copy of its local blockchain to the network through its output port pout. Eq. (8.5) and Eq. (8.6), on the other hand, are specific to trusted and untrusted nodes. They are used to characterize the behavior for trusted and untrusted components and in the following they are described in more detail.

Trusted nodes. The behavior of trusted nodes is characterized by Eq. (8.5). The property essentially requires that a trusted node can only add newly mined blocks on top of a given blockchain. Moreover, it also contains the consensus rule for trusted nodes which requires that a trusted node always takes the blockchain with maximal proof of work as the current one, i.e. if a trusted node receives a blockchain on its input with

\footnotetext{
\({ }^{1}\) Behavior trace assertions are described in detail in Chap. 3
}


Figure 8.3: Specification of behavior for node components.
more proof of work than its own blockchain, then he will accept that blockchain as the current one.

The property actually consists of two parts. The precondition formalizes the consensus rule:
\[
b c= \begin{cases}M A X(\text { tn.pin }) & \text { if } \exists b c^{\prime} \in t n . p i n: \# b c^{\prime}>\# t n . b c \\ t n . b c & \text { else }\end{cases}
\]

Since the proof of work for a blockchain is given by its length, the property fixes a blockchain \(b c\) which is either a maximal blockchain from the input port pin of a trusted node \(t n\) (for the case that it is strictly longer than its own blockchain), or its own blockchain tn.bc (for the case that no blockchain from its input is longer than its own blockchain). The implication formalizes the mining process:
\[
\bigcirc(\neg t n . \text { mining } \wedge t n . b c=b c \vee \text { tn.mining } \wedge \exists b: t n . b c=b c @ b)
\]

Thereby, a trusted node tn may either mine a new block (mining), append it to bc and take the resulting chain as its current blockchain \(t n . b c\), or \(t n\) may not mine any new block ( \(\neg\) mining) and just set \(b c\) as its current blockchain \(t n . b c\).

Untrusted nodes. The behavior of untrusted nodes is characterized by Eq. (8.6). Note that, compared to trusted nodes, untrusted nodes may not follow the consensus rules. Thus, while trusted nodes always take the blockchain with the most proof of work as their current blockchain, untrusted nodes may take every blockchain from its input as the current one. Moreover, in contrast to trusted nodes, untrusted nodes may also drop elements from a blockchain, thus trying to modify a blockchain's history.

Similar as for trusted nodes, the specification of the behavior for untrusted nodes consists of two parts. The precondition again fixes a blockchain \(b c\) :
\[
b c=\left(\varepsilon b c^{\prime}: b c^{\prime} \in(u n . p i n \cup\{u n . b c\})\right)
\]

Note that we used Hilbert's \(\varepsilon\) operator here to denote some element \(b c^{\prime}\) from input port pin or state port \(b c\). The implication is similar to the implication for trusted nodes:
\[
\bigcirc(\neg u n . \text { mining } \wedge u n . b c \sqsubseteq b c \vee u n . \text { mining } \wedge \exists b: u n . b c=b c @ b)
\]

Note that, due to computing restrictions, even untrusted nodes may at most mine one single block at a time. Thus, the mining case is indeed the same as for trusted nodes. The difference, however, comes with the case in which no new block is mined. While, for such a case, trusted nodes are required to take \(b c\) as their current blockchain, untrusted nodes may take an arbitrary prefix of \(b c\) as their current blockchain.

\subsection*{8.5 Architectural Constraints}

Architectural constraints restrict activation and deactivation of components and connections between component ports [MG16a, MG16b]. They are mainly formulated in terms of architecture trace assertions, i.e., linear temporal logic formulæ, formulated over component ports \({ }^{2}\). Certain constraints, however, can be expressed more easily graphically by annotating the pattern's architecture diagram. In the following, we first discuss connection constraints for Blockchain architectures. Then, we present some basic activation constraints for such architectures. Finally, we conclude the section by describing a fundamental constraint for Blockchain architectures which is essential to guarantee persistence of blockchain entries.

\subsection*{8.5.1 Connection Constraints}

Connection constraints restrict connections between component ports and therefore they affect the topology of an architecture. For our pattern of Blockchain architectures, we require a single connection constraint which is expressed graphically by an annotation of the architecture diagram depicted in Fig. 8.2. The dashed connection between a node's input and output ports expresses a conditional connection between ports pout and pin of two (possible different) components of type node. The minimal condition for the connection to happen is expressed by the connections annotation:
\[
\left\lfloor n d_{t r}, n d^{\prime}{ }_{t r^{\prime}}: t r \wedge t r^{\prime}\right\rfloor .
\]

The condition essentially requires the corresponding ports to be connected whenever two components are trusted. Roughly speaking, the constraint requires that every trusted node is connected to every other trusted node of the network. While this constraint is indeed a strong requirement, it is necessary to guarantee persistence of blockchain entries.

\footnotetext{
\({ }^{2}\) Architecture trace assertions are described in detail in Chap. 3
}
\begin{tabular}{|c|c|}
\hline ASpec Basic & for Blockchain \\
\hline flex \(b c\) : & BC/B〉 \\
\hline \(n d\) : & Node \(\langle\) tr , \\
\hline \(n d^{\prime}\) : & Node〈tr \({ }^{\text {d }}\) \\
\hline rig \(t n\) : & Node[trusted] \\
\hline \(\square(\) finite \((\{n d \mid \xi n d \xi\}))\) & (8.7) \\
\hline \(\square(\exists t n:\langle t n\} \wedge \bigcirc\} t n\})\) & (8.8) \\
\hline \(\square(\xi t n\} \wedge\) tn.mining \(\longrightarrow \Theta\} t n\})\) & (8.9) \\
\hline \(\square\left(\xi n d \xi \wedge b c \in n d . p i n \longrightarrow \exists n d^{\prime}:\left\{n d^{\prime} \xi \wedge n d^{\prime} . b c=b c\right)\right.\) & (8.10) \\
\hline
\end{tabular}

Figure 8.4: Basic activation constraints for Blockchain architectures.

\subsection*{8.5.2 Basic Activation Constraints}

Activation constraints affect the activation and deactivation of components of a certain type. We require four basic activation constraints for Blockchain architectures summarized in Fig. 8.4 and explained in more detail in the following.

Finite amount of active nodes. Our first activation property for Blockchain architectures is more of theoretical nature and restricts the number of active components at each point in time. By Eq. (8.7), we require that at each point in time, only a finite number of node components can be activated. The property should be satisfied by every architecture found in practice. However, it is needed in order to guarantee that at every point in time, a node component receives only a finite amount of blockchains which, in turn, is required to guarantee that maximal blockchains are well-defined for a component's input port.

Keeping the trusted blockchain. The second activation property we require for Blockchain architectures is needed in order to guarantee that the trusted blockchain, i.e., the blockchain accepted by trusted nodes as the "correct" one, is not lost. It is formalized by Eq. (8.8) and requires that at every point in time, there exists an active and trusted node which stays active for at least one time step. Thus, it is guaranteed that the current trusted blockchain is stored by the trusted network and does not get lost.

Mining on most recent blockchain. Another basic activation property for Blockchain architectures is needed in order to ensure that the trusted network indeed collaborates in the mining process. The property is formalized by Eq. (8.9) using the previous operator: it requires that whenever a trusted node is mining a new block, this node was active at the time point right before the mining happened. This ensures that the node had indeed
access to the most recent version of the trusted blockchain and works on extending this version instead of an older version.

Closed architecture. The last basic activation property for Blockchain architectures requires such an architecture to be closed. Eq. (8.10) formalizes the property and requires that for every blockchain available at the input of any active node component at any point in time, there exists a corresponding active node component which provides the blockchain at its output. In other words, the property guarantees that every blockchain available in the architecture was built up from the network due to the mining process and not injected from the outside.

\subsection*{8.5.3 A Fundamental Constraint for Blockchain Architectures}

In the following section, we present a fundamental constraint for Blockchain architectures. Since its specification requires to express mining frequencies, we first introduce an operator to express such frequencies in LTL. Then, we use this operator to specify the property.

Relative frequencies in LTL. In the following, we introduce an operator for LTL which can be used to express statements of the form: "for every time span in which at least \(x\) states can be observed which satisfy a certain property \(\varphi\), at least \(y\) states can be observed to satisfy a certain property \(\varphi^{\prime \prime \prime}\).

Definition 16 (Weak until for relative frequencies). A trace \(t\) satisfies \(\varphi{ }_{\lceil x\rceil} \mathcal{W}_{\lfloor y\rfloor} \varphi^{\prime}\), for state predicates \(\varphi\) and \(\varphi^{\prime}\), at time point \(n\), iff
\[
\begin{aligned}
& \exists n^{\prime} \geq n: c c\left(t, n, n^{\prime}, \varphi^{\prime}\right) \geq y \wedge\left(\forall n \leq i<n^{\prime}: c c(t, n, i, \varphi) \leq x\right) \\
& \quad \vee\left(\forall n^{\prime} \geq n: c c\left(t, n, n^{\prime}, \varphi\right) \leq x\right),
\end{aligned}
\]
with \(c c\left(t, n, n^{\prime}, p\right) \stackrel{\text { def }}{=}\left|\left\{i^{\prime} \mid i^{\prime}>n \wedge i^{\prime} \leq n^{\prime} \wedge p(t(n))\right\}\right|\).
In the following, we provide an overview of some characteristic properties derived for the operator. The first lemma characterizes the operator for the case that the two indexes \(x\) and \(y\) are greater zero.

Lemma 1 (Indexes greater zero). Assuming \(t, n \models \varphi_{\lceil x\rceil} \mathcal{W}_{\lfloor y\rfloor} \varphi^{\prime}, x>0\), and \(y>0\), then, the following holds:
\[
\begin{aligned}
\varphi(t(n)) \wedge \varphi^{\prime}(t(n)) & \Longrightarrow t, n+1 \models \varphi_{\lceil x-1\rceil} \mathcal{W}_{\lfloor y-1\rfloor} \varphi^{\prime}, \\
\varphi(t(n)) \wedge \neg \varphi^{\prime}(t(n)) & \Longrightarrow t, n+1 \models \varphi_{\lceil x-1\rceil} \mathcal{W}_{\lfloor y\rfloor} \varphi^{\prime}, \\
\neg \varphi(t(n)) \wedge \varphi^{\prime}(t(n)) & \Longrightarrow t, n+1 \models \varphi_{\lceil x\rceil} \mathcal{W}_{\lfloor y-1\rfloor} \varphi^{\prime}, \text { and } \\
\neg \varphi(t(n)) \wedge \neg \varphi^{\prime}(t(n)) & \Longrightarrow t, n+1 \models \varphi_{\lceil x\rceil} \mathcal{W}_{\lfloor y\rfloor} \varphi^{\prime} .
\end{aligned}
\]
\begin{tabular}{lr}
\hline ASpec Blockchain & for Blockchain \\
\hline\(\square\left(\right.\) umining \(_{\lceil c b\rceil} \mathcal{W}_{\lfloor c b+1\rfloor}\) tmining \()\) & \((8.11)\) \\
\hline
\end{tabular}

Figure 8.5: Fundamental constraint for Blockchain architectures.
Essentially, the properties state that whenever \(\varphi_{\lceil x\rceil} \mathcal{W}_{\lfloor y\rfloor} \varphi^{\prime}\) holds for some trace \(t\) at some time point \(n\), then the indexes can be reduced by one for the next state, depending on whether \(\varphi\) or \(\varphi^{\prime}\) hold at the current state.

A second lemma specifies what happens if at some point in time we reach the point where the first index reaches zero:

Lemma 2 (First index zero). Assuming \(t, n \models \varphi_{\lceil x\rceil} \mathcal{W}_{\lfloor y\rfloor} \varphi^{\prime}\), \(x=0\), and \(y>0\). Then we have: \(\neg \varphi(t(n+1))\).

The property shows that after reaching zero at the first index, it is guaranteed that property \(\varphi\) does not hold again as long as \(y\) remains greater zero.

Relative mining frequencies. Now, we have everything it needs in order to formalize a fundamental requirement for Blockchain architectures. It is formalized as an architecture constraint in Fig. 8.5 using the operator introduced above. Essentially, the property requires that for every time span in which we can observe a number of untrusted minings which is greater or equal the number of confirmation blocks, then we can also observe a number of trusted minings which is greater than the number of confirmation blocks. Note that this is an important requirement needed to guarantee persistence of blockchain entries. Later on, in Sect. 8.7.1, we discuss the importance of this property in more detail.

\subsection*{8.6 Verifying Blockchain Architectures}

In the following, we verify an important property for Blockchain architectures which ensures persistence of blockchain entries.

\subsection*{8.6.1 Persistence of Blockchain Entries}

As described in the introduction, Blockchain architectures were invented to solve the double spend problem in a distributed peer-to-peer network. In order to do so, blockchain entries, once accepted by the network, must be resistant to future modifications. This property is summarized by the following theorem:

Theorem 5 (Persistence of blockchain entries). In a Blockchain architecture, the entries of trusted blockchains which are confirmed by a number of blocks greater or equal to the number of confirmation blocks, are resistant to future modifications.

The theorem is formally specified by the architectural assertion depicted in Fig. 8.6. Thereby, sbc denotes a blockchain which contains the entries supposed to be persistent.
```

| ASpec Save | | for Blockchain |
| :--- | :--- | ---: |
| flex | $t n:$ | Node $[$ trusted $]$ |
| | $u n:$ | Node $[\neg$ trusted $]$ |
| | $n d:$ | Node $[\neg$ trusted $]$ |
| rig | $t n^{\prime}:$ | Node |
| | $s b c:$ | $\langle\mathrm{B}\rangle \mathrm{BC}$ |

$\square\left(\left(\forall t n^{\prime}:\left(\neg \xi t n^{\prime} \xi\right) \mathcal{W}\left(\xi t n^{\prime} \xi \wedge s b c \sqsubseteq t n^{\prime} . b c\right)\right) \wedge\right.$
$P o W \geq \# s b c+c b \wedge$
$(\forall u n:\} u n\} \longrightarrow \# u n . b c<\# s b c) \wedge$
$\Theta \square(\forall n d:\{n d \xi \longrightarrow \# n d . b c<\# s b c \vee s b c \sqsubseteq n d . b c) \wedge$
$\longrightarrow \quad \square(\forall t n:\{\operatorname{tn}\} \longrightarrow s b c \sqsubseteq t n . b c))$

Figure 8.6: Specification of persistence property for Blockchain architectures.
Eq. (8.12) - Eq. (8.15) then characterize a time point n_{s} for which the property actually holds.

Eq. (8.12) requires that $s b c$ is indeed a prefix of the blockchain of every trusted node $t n^{\prime}$ at $t n^{\prime \prime}$ s first activation after n_{s}. It basically ensures that the trusted network is initialized with blockchains extending $s b c$.
Eq. (8.13) requires the proof of work at time point n_{s} to be greater or equal to the length of $s b c$ increased by the number of confirmation blocks $c b$. This equation is required to provide the trusted network with some lead over a potential attacker which might want to change $s b c$. Note, however, that the assumption is indeed feasible, since Thm. 5 ensures persistence only of entries which were confirmed by $c b$ number of blocks.
Eq. (8.14) requires the length of the blockchain of every active and untrusted node un to be less than the length of $s b c$. Together with Eq. (8.15), this equation ensures that a potential attacker did not prepare a "false" blockchain before time point n_{s} which he could then use later on to cheat the trusted network.
Eq. (8.15) requires for every node's blockchain $n d . b c$, at every time point before n_{s}, that $s b c$ is either a prefix of $n d . b c$ or that the length of $n d . b c$ is smaller than the length of $s b c$.

For every time point n_{s} for which the above conditions hold, the property depicted in Fig. 8.6 guarantees that $s b c$ will always be a prefix of every trusted node's blockchain (formalized by Eq. (8.16)).

8.6.2 Verification Approach

The above property was formalized as theorem blockchain-save in the corresponding Isabelle/HOL theory [Mar18c]. Its proof consists of roughly 11500 lines of normalized proof code. In the following, we are going to discuss the proof idea. Therefore, we first introduce an auxiliary concept: blockchain developments. Then we explain how this concept was used to prove the above property.

8.6.2.1 Blockchain Development

In a Blockchain architecture, at any point during the execution, the blockchain of every node has a history describing its development by prior mining activities from other nodes in the network. This is called a blockchain development and it is modeled as a sequence of blockchains. Such a development is characterized by an important property: a blockchain can grow at most by one element at each point in the development. This property has two important consequences which are discussed in the following.

Blockchain modifications. One important consequence regards the nature of modifications of blockchain entries in a development: in order to modify an entry of a blockchain, its development must first shrink the blockchain to the desired entry and then append the modified block.

Relative growth. Another important consequence regards the relative growth of two different types of developments: trusted and untrusted developments. In a trusted development, minings have to be done only by trusted nodes. Similarly, an untrusted development contains only minings from untrusted nodes. If we consider the fundamental property of blockchains described in Fig. 8.5, we can derive the following useful property: If at any point in time, the untrusted development is below the trusted one by at least $c b$ elements, then the length of the untrusted development will never surpass the one of the trusted development.

8.6.2.2 Overview of the Proof

Basically, the proof is by induction over the time point referred to by the globally operator provided in Eq. (8.16). For each time point we then show Eq. (8.16) by contradiction: In order to violate it, there must exist an untrusted node with a blockchain larger than the blockchain of one of the trusted nodes (since only then the consensus rule would require the trusted node to take the larger one). Assuming there exists such an untrusted node, we can then construct the untrusted development of the corresponding blockchain. Moreover, we can also construct the trusted development of the trusted node's blockchain. The "blockchain modification" property for blockchain developments discussed above, now requires that at some point, the untrusted development must be below the trusted development by at least $c b$ elements. Thus, property "relative growth", would require that the length of the untrusted development is always less than the length
of the trusted one. However, this would be in contradiction with the assumption that the blockchain of the untrusted node is smaller than the blockchain of the trusted node.

8.7 Discussion

In the following, we discuss some interesting observations about Blockchain architectures. In particular, we discuss the importance of Eq. (8.11) to guarantee Thm. 5.

8.7.1 Unbounded Untrusted Mining

First, we demonstrate why, in general, it is necessary to bound the number of subsequent minings of untrusted nodes, to guarantee persistence of blockchain entries. Therefore, we show how unbounded mining of untrusted nodes may lead to situations in which already confirmed entries of blockchains of trusted nodes may be modified in the future.

Example 30 (Modification of already confirmed blocks). Let us assume that our blockchain is storing characters A, B, C, \ldots Figure 8.7 depicts the development of two blockchain copies for a trusted node (solid) and an untrusted node (dashed) starting from a time point n. The blockchain of the trusted node initially (at time point $n)$ contains four entries: A, B, C, and D. If we consider the number of confirmation blocks to be two, then we can consider blocks A and B to be persistent, since two other blocks are already mined on top of them. Since the trusted node broadcasts its copy of the blockchain to the whole network, at time point $n+1$, the untrusted node receives the copy and stores it. By Eq. (8.6), the untrusted node may now perform one of two actions: either it removes some blocks from the top of its blockchain, or he mines a new block and appends it to its local copy of the blockchain. Lets assume, that the untrusted node first removes the top three blocks from the chain and then mines a new block X on top of its remaining blockchain. Thus, at time point $n+3$, the blockchain of the untrusted node contains two entries: A and X. Assuming that, in the meantime, the copy of the trusted node's blockchain did not change, the length of the untrusted blockchain is still less than the length of the trusted one. Thus, according to Eq. (8.4), the trusted node would currently not accept the untrusted blockchain. Now assume that the untrusted node is able to mine three additional blocks Y, Z, and K, on top of its blockchain, while the trusted node was still not able to mine any single block. Note that this is a feasible assumption,

Figure 8.7: Graphical depiction of a double spend attack.
since we do not have any constraints on the number of untrusted minings. The untrusted blockchain now consists of five blocks: A, X, Y, Z, and K. If it sends its copy of the chain to the trusted node, the latter would accept it, since the proof of work (the length) of the untrusted blockchain is now larger than the proof of work of its own copy. Thus, the untrusted node was indeed able to modify entry B of the trusted blockchain, although it was originally supposed to be persistent.

8.7.2 Weakening Eq. (8.11)

Example 30 shows that it is indeed necessary to constrain the number of subsequent minings of untrusted nodes, in order ensure persistence of blockchain entries. However, looking at the example, one may ask whether Eq. (8.9) is really necessary. Why not put a weaker constraint, such as requiring at least one trusted mining every $c b$ untrusted minings? While this would indeed suffice to cope with situations as described in the previous example, the next example describes a situation which shows that this weaker version of Eq. (8.9) is also not sufficient to guarantee persistence of blockchain entries.

Example 31 (Modification of already confirmed blocks). Due to the introduced bound on untrusted minings, the situation described by Ex. 30 is not feasible anymore: since at time point $n+3$, two consecutive minings of untrusted nodes happened, the newly introduced bound requires mining of a trusted node to happen next. However, Fig. 8.8 depicts an alternative continuation of the development discussed in Ex. 30 which satisfies the bound and still leads to a modification of an already confirmed entry of the blockchain of the trusted node. According to the new constraint, the next block (after time point $n+3$) has to be mined by a trusted node. This is what actually happens at time point $n+4$: the trusted node mines a new block E on top of its blockchain, while the untrusted node keeps its current copy of the blockchain. However, since a trusted mining just happened, the untrusted node may now mine two additional blocks before a trusted mining is required which may lead to a situation as depicted at time point $n+6$. Since the untrusted blockchain still contains less proof of work than the trusted one, the trusted node keeps its own copy and mines an additional block F on top of it at time point $n+7$. Again, occurrence of a trusted mining now allows for two additional untrusted minings, which leads to the situation shown at $n+9$. The last steps can be repeated to finally arrive at

| | | | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | | | O | | O | O |
| | | | | | | | | | | | | G | N | G | N | G | N | N |
| | | | | | | F | | F | L | F | L | F | L | F | L | F | L | L |
| E | | E | | E | | E | K | E | K | E | K | E | K | E | K | E | K | K |
| D | | D | Z | D | Z | D | Z | D | Z | D | Z | D | Z | D | Z | D | Z | Z |
| C | Y | C | Y | C | Y | C | Y | C | Y | C | Y | C | Y | C | Y | C | Y | Y |
| X B | X | B | X | B | X | B | X | B | X | B | X | B | X | B | X | B | X | X |
| A A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
| $\mathrm{n}+4$ | | $+5$ | | | | 7 | | | | | | | | 11 | | | | |

Figure 8.8: Graphical depiction of a double spend attack.
a situation where the length of the untrusted blockchain finally overtakes the length of the trusted node's blockchain (time point $n+12$) which will then accept the untrusted blockchain as required by the consensus rule (time point $n+13$). Thus, the first entry (block A) was modified although it was already confirmed.

8.7.3 A Note on Practical Feasibility

We admit that the constraint discussed in this section may somehow be idealized and difficult to verify in a practical environment. To verify it, one would indeed need to control the mining ability of untrusted entities which is not really feasible. Similar problems arise for other constraints provided in this chapter, such as the connection constraint from Fig. 8.2 which requires trusted nodes to be always connected.
This reveals a general characteristic of Blockchain architectures: they usually don't provide any strong guarantees. Rather, their guarantees are of probabilistic nature. Nevertheless, the constraints presented in this chapter formalize key assumptions behind Blockchain architectures and they may indeed be used by an architect to analyze a given Blockchain architecture: by guessing (or even measuring) the likelihood of the properties to be true in a given context, he can make an educated guess about the likelihood that blockchain entries are indeed persistent.

8.8 Summary

To evaluate the approach on a larger case study, we formalized a pattern for Blockchain architectures based on the proof-of-work consensus algorithm [Nak08]. We then verify a characteristic property for such architectures: persistence of blockchain entries [KRDO17]. While a detailed discussion of the blockchain pattern is beyond the scope of this paper, in the following, we provide an overview of the required effort to verify the pattern.
The verification is split intro 3 different Isabelle/HOL theories available at [Mar18c]:

- A theory Auxiliary which contains some auxiliary results, such as custom induction rules.
- A theory RF_LTL which contains a calculus for Blockchain architectures based on counting LTL [LMP10].
- A theory Blockchain which is the main theory containing the actual formalization of the pattern.

Figure 8.9 depicts the effort of the corresponding verification in terms of proof code for each proposition. The key property is formalized as theorem blockchain-save (highlighted with gray color in the figure). Its proof is by induction and consists of roughly 300 lines of Isabelle/HOL proof code. It required to introduce two auxiliary concepts:

- a set his containing a blockchain's history, i.e., its state during certain points in time and

8 Verification of Blockchain Architectures

- a function devBC, representing a blockchain's development.

The main remaining propositions are then concerned with these two concepts:

- Lemma his_determ_ext shows that the history of a blockchain is deterministic, i.e., that it has a unique state at each point in time.
- Lemma devExt_devop proves a basic property for blockchain developments, i.a., that it can only grow by one through a mining process.
- Lemma devExt shows that the development of a blockchain (which is defined using its history), is indeed a well-defined function.
8.8 Summary

Figure 8.9: Propositions for the Blockchain pattern.

Part V

Conclusion

9 Conclusion

This thesis introduced FACTum, a methodology for the axiomatic specification and verification of architectural design patterns (ADPs). Therefore, we first developed a model for (potentially dynamic) architectures and techniques to specify ADPs over this model. Then, we developed a calculus to support the verification of such specifications, implemented the calculus in Isabelle/HOL, and provided an algorithm to map a given specification to a corresponding Isabelle/HOL theory. To evaluate it, FACTum was implemented in Eclipse/EMF and applied for the verification of 4 different ADPs: the Singleton, the Publisher-Subscriber, the Blackboard pattern, and a pattern for Blockchain architectures. To conclude the thesis, in the following, we first summarize the major results obtained with this thesis and discuss possible implications thereof. Then, we describe our overall research agenda and point to future work which is needed to achieve our vision.

9.1 Summary

Chap. 2 introduces our model for dynamic architectures and Chap. 3 and Chap. 4 present techniques to specify ADPs over this model. Chap. 5 then presents a calculus to reason about such specifications and in Chap. 6 we presents the formalization of the model and the calculus in Isabelle/HOL. Chap. 7 then combines all the results into an overall methodology for the interactive verification of ADPs. Finally, Chap. 8 presents a case study in which the approach is used to verify a pattern for blockchain architectures. In the following, we summarize each chapter in more detail.

9.1.1 A Model of Dynamic Architectures

Since patterns exist for static as well as for dynamic architectures, our approach is based on a model of dynamic architectures, which is described in detail in Chap. 2. Our model is a dynamic version of Broy's FOCUS model [BS01] and consists of the following main concepts:

- messages and ports (typed with sets of messages),
- interfaces consisting of input and output ports,
- a set of component types which consist of an interface, component parameters valuated with messages, and associated behavior in terms of a causal set of behavior traces, i.e., streams of snapshots of a component during execution,
- an architecture specification consisting of a set of architecture traces, i.e., streams of snapshots of an architecture during execution,
- a projection operator, which extracts the behavior of a single component out of a given architecture trace, and
- a composition operator which combines a set of component types with a given architecture specification.

9.1.2 Basic Specification Techniques

Based on the model presented in Chap. 2, we describe basic techniques for the axiomatic specification of ADPs in Chap. 3. Such a specification consist of three parts: an interface specification, a component type specification, and a specification of architectural constraints.

9.1.2.1 Interface Specification

An interface specification consists of a specification of the abstract data types used in a pattern, a set of port identifiers typed by these data types, and a set of interfaces over these ports. Data types are specified using traditional, algebraic specification techniques [Bro96], and interfaces can be specified using a graphical specification language called architecture diagrams.

In order to support the specification of related types of components (which is often required for the specification of ADPs), we also provide a notion of parametrized component types. Therefore, interfaces may contain so-called interface parameters which are typed by the abstract datatypes introduced for the pattern. Their semantics requires that at least one component exists for each valuation of interface parameters, which allows to introduce the notion of parametrized component variables. Such variables are guaranteed to be interpreted only by components with corresponding parameter values and thus support the specification of component types and architectural assumptions.

9.1.2.2 Component Type Specification

A component type specification consists of a set of axioms for each interface to specify assumptions about the behavior of components of a certain type. In order to specify these axioms, we introduce the notion of behavior trace assertion, a type of linear temporal logic with component ports as free variables.

9.1.2.3 Specifying Architectural Constraints

Architectural constraints are formulated over all interfaces to specify assumptions about the activation/deactivation of components and their connections. To specify these axioms, we introduce the notion of architecture trace assertions, which are again a type of linear temporal logic with special predicates to denote component activation/deactivation and connections between the ports of components.

9.1.3 Advanced Specification Techniques

In order to facilitate the specification of certain activation and connection constraints, Chap. 4 introduces various types of annotations for architecture diagrams. Moreover, a pattern specification may reuse other pattern specifications by instantiating the corresponding component types.

9.1.3.1 Annotations for Architecture Diagrams

We provide three types of annotations for architecture diagrams: activation annotations, connection annotations, and dependencies. In general, annotations are graphical synonyms for corresponding architectural assertions and their semantics is given by mapping them to corresponding architecture trace assertions (as introduced in Chap. 3).

Activation annotations Activation annotations allow to annotate a component type with pre- and postconditions regarding the activation and deactivation of components of that type.

Connection annotations Connection annotations allow to specify pre- and postconditions for connections by annotating the corresponding edge in an architecture diagram.

Dependencies Dependencies allow to express relationships between components of certain types by connecting the corresponding interfaces in an architecture digram. These relationships can then be used to express relative activation and connection conditions, i.e., conditions which depend on certain conditions from a related component.

Hierarchical Specifications In order to address the hierarchical nature of patterns, FACTUM specifications allow for hierarchical pattern specifications, i.e., patterns can be instantiated for the specification of other patterns. Pattern instantiations are expressed by annotating the interfaces of architecture diagrams by so-called port mappings, i.e., mappings which relate the ports of instantiated components with the ports of the corresponding instantiating component.

9.1.4 Reasoning about Pattern Specifications

To support the verification of FACTum specifications, Chap. 5 introduces a calculus to reason about FACTUM specifications. The calculus formalizes reasoning about a component type specification in the context of a corresponding component activation specification. It provides introduction and elimination rules for each operator involved in a FACTum specification and consists of roughly 35 rules. It is shown to be sound and it is implemented in Isabelle/HOL, where it can be used for the verification of pattern specifications.

9.1.5 Evaluation

In order to evaluate our approach, we implemented it in Eclipse/EMF and used it to verify properties for our running examples as well as a larger case study from the domain of Blockchain architectures.

9.1.5.1 FACTum Studio

To support an architect in the specification of ADPs, FACTUM comes with tool support in terms of a corresponding Eclipse/EMF application. The tool supports the graphical modeling of architecture diagrams (as described in Chap. 4), which can then be enriched by corresponding textual specifications. To support the textual specifications, the tool also provides rigorous type checking mechanisms for the specification of datatypes, component types, and architectural assumptions (as described in Chap. 3). Finally, the tool implements the algorithm presented in Chap. 6 to generate corresponding Isabelle/HOL theories on top of the verification framework presented in Chap. 5.

9.1.5.2 Running Examples

We demonstrated our approach by means of three running examples: the singleton, the publisher subscriber, and the blackboard pattern. For each pattern, we provide a formal specification of the pattern's assumptions and corresponding guarantees. Then, we verify each of them in Isabelle/HOL. To demonstrate hierarchical specification and verification, the publisher component is modeled as an instance of the singleton and the blackboard pattern is specified as an instance of the publisher subscriber pattern.

9.1.5.3 Case Study: Verified Blockchain Architectures

For our case study we propose a pattern for blockchain architectures based on the proof of work consensus algorithm. Therefore, we first apply the specification techniques from Chap. 3 and Chap. 4 to formalize the patterns assumptions as well as an important guarantee for blockchain architectures: persistence of blockchain entries. We then map the specification to a corresponding Isabelle/HOL theory and the guarantee to a corresponding Isabelle/HOL theorem (using the algorithm presented in Chap. 6) and verify the theorem using the calculus presented in Chap. 5. Thereby, we discover an important property for blockchain architectures which is essential to ensure its guarantee: relative mining frequencies need to be bounded by the number of confirmation blocks.

9.2 Implications

The methodology presented in this thesis can be used to formally investigate ADPs. Thereby, we address both problems with pattern specifications identified in Chap. 1.

9.2.1 Problem 1: Missing Constraints

Verifying an ADP may reveal constraints assumed by the pattern which are important to meet its guarantee, but which are not mentioned in any specification of the pattern so far. While the major part of such missing constraints is usually concerned with details of an architecture, some of them can be also of more fundamental nature. For example, in this thesis, we discover around 16 assumptions for different ADPs. While many of them are concerned with details about an architecture, two of them may be considered fundamental: The first one is assumed by blackboard architectures and requires problems to be ordered by a subproblem relation which is required to be well-founded. This is a fundamental constraint which needs to be ensured before applying the pattern. Otherwise, the corresponding architecture will not be able to solve certain problems and the pattern would not fulfill its purpose. A second fundamental constraint concerns relative mining frequencies in blockchain architectures. In order to apply the pattern, one needs to ensure that it will indeed be highly unlikely that the mining frequency of untrusted nodes exceeds the mining frequency of trusted nodes by the number of confirmation blocks. Otherwise, entries of a blockchain may be subject to modification by untrusted entities and the pattern would fail its guarantee.

9.2.2 Problem 2: Unnecessary Constraints

The support for verification also has the potential to uncover unnecessary constraints in a pattern specification. If certain assumptions a pattern makes about an architecture are not used for the verification of its guarantee, the corresponding constraints can be removed and the scope of the pattern is increased. For example, many descriptions of blockchain architectures require the data entries to be financial transactions with corresponding private and public keys. However, these assumptions are not required in order to guarantee persistence of entries and they unnecessarily restrict the application scope of the pattern.

Note, however, that the problem of too strong assumptions, compared to the problem of too weak assumptions, cannot be guaranteed to be solved by verifying the corresponding ADP. A proof of an architectural guarantee may indeed contain unnecessary references to architectural constraints. However, if the proof does not contain any reference to an architectural constraint, the corresponding architectural design constraint can be safely removed from a pattern's specification.

9.3 Limitations

In the following, we take a critical look at the results obtained with this thesis.

9.3.1 Non-functional Aspects

When it comes to ADPs, non-functional aspects play an important role. Many patterns are actually invented to address certain non-functional aspects, such as maintainability.

With the approach presented in this thesis it is not possible to investigate whether or not a certain pattern really satisfies certain non-functional aspects. Rather, with our approach we focus on the correct implementation of a pattern and we consider them as lemmata to support the verification of architectures using these patterns. Nevertheless, we admit that non-functional aspects play an important role and indeed a lot of research in the architecture community is devoted to this aspect. One line of research uses a quantitative approach and aims towards the development of pattern-specific cost models for certain quality attributes [KK99, Mar10]. Another line of research follows a more qualitative approach and uses so-called quality attribute scenarios to evaluate quality attributes for patterns [BCK07].

9.3.2 Target Audience

Using interactive theorem proving make the approach presented in this thesis very general and thus able to address the abstract nature of patterns. However, it makes the approach also difficult to apply, since ITP comes with a steep learning curve and is not yet well-known in the architecture community. The algorithm (and its implementation in Eclipse/EMF) as well as the calculus to support the interactive verification of patterns in Isabelle/HOL are first steps towards making the approach accessible to a broader audience. However, users still need to have some expertise in ITP to efficiently use the approach and thus it might be difficult to apply for practitioners. Thus, as of now, the target group of the approach is mainly researchers in software architectures. In the next section, however, we also provide some ideas for future work to make the approach usable also for practitioners.

9.4 Outlook

Figure 9.1 depicts our overall research agenda. We basically consider ADPs as lemmata for the verification of architectures. To this end, which we envision a repository containing a growing collection of verified ADPs. Researchers can connect to the repository and fill it with verification results for existing or even new ADPs. Thereby, they can leverage the hierarchical nature of patterns and verify higher-level patterns using available results from lower level patterns. When verifying an architecture, an architect can connect to the repository and verify the architecture against the assumptions provided by the ADPs. The corresponding guarantee is then automatically transferred to the architecture and can be used to support its verification.

9.5 Future Work

To achieve our vision, future work is required in at least two areas: The development of an interactive pattern verification language and the integration of our approach in current architecture verification practice.

Figure 9.1: Research vision: A repository of verified ADPs.

9.5.1 Interactive Pattern Verification Language

With this thesis, we provide a first step towards interactive pattern verification: An architect can specify a pattern in Eclipse/EMF and then generate a corresponding Isabelle/HOL theory out of it. Then he can verify the pattern in Isabelle/HOL using a corresponding calculus.

However, as discussed above, architects are usually not trained in interactive theorem proving and future work should investigate possibilities to further support an architect in the verification process. A first step could be the development of a more abstract proof language which allows an architect to sketch a proof using abstractions he is familiar with, such as sequence diagrams. The abstract proof should then be translated to a corresponding Isabelle/Isar proof and verified by Isabelle.

9.5.2 Integration into Architecture Verification

Another crucial step to achieve our vision concerns the integration of verification results obtained for ADPs to support the verification of architectures. Compared to the verification of ADPs (which can be reused for different architectures), verification of architectures against ADPs has to be done for each architecture, which is why future work should investigate possibilities to automate this step.

A Conventions

A. 1 Sets

Convention 1 (Natural numbers). We denote with \mathbb{N} the set of natural numbers, with \mathbb{N}^{+}the set of positive natural numbers (excluding 0), and with \mathbb{N}_{∞} the set of extended natural numbers (including ∞).

Convention 2 (Powerset). We denote with $\wp(S)$ the powerset of a set S, i.e., the set containing all subsets of S.

Convention 3 (Tuples). For an n-tuple $c=\left(c_{1}, \ldots, c_{n}\right)$ (where $n \in \mathbb{N}^{+}$), we denote by $c_{(i)}=c_{i}$ with $1 \leq i \leq n$ the projection to the i-th component of c.

Convention 4 (Indexed family of sets). Given a non-empty set I, we denote with $\left(S_{i}\right)_{i \in I}$ a family of sets indexed by I, i.e., a mapping associating a set S_{i} with each element $i \in I$.

A. 2 Functions

Convention 5 (Functions). Given two sets A and B, we denote with $A \rightarrow B$ the set of functions with domain A and range B. For a function $f: A \rightarrow B$ we denote with $\operatorname{dom}(f) \stackrel{\text { def }}{=} A$ the domain of f and with $\operatorname{ran}(f) \stackrel{\text { def }}{=} B$ its range.

Given four sets A, B, C, D, we denote with $(A \rightarrow B) \overrightarrow{\mathrm{U}}(C \rightarrow D)$ the set of all functions $f:(A \cup C) \rightarrow(B \cup D)$, such that $\forall x \in A: f(x) \in B$ and $\forall x \in C: f(x) \in D$.

For a function $f: D \rightarrow R$ and an element $r \in R$, we denote with $f^{-1}(r) \stackrel{\text { def }}{=}\{d \in$ $D \mid f(d)=r\}$ the inverse image of r in f.

Convention 6 (Function merge). For two functions $f: A \rightarrow B$ and $g: C \rightarrow D$ with disjoint domains $A \cap C=\emptyset$, we denote with $f \cup g: A \cup C \rightarrow B \cup D$ their merge:

$$
(f \cup g)(x) \stackrel{\text { def }}{=} \begin{cases}f(x) & \text { if } x \in A \\ g(x) & \text { else }\end{cases}
$$

Convention 7 (Function update). For a function $f: D \rightarrow R$ and elements $d \in D$ and $r \in R$, we denote with $f[d \mapsto r]: D \rightarrow R$ a function which is equal to f but maps d to r :

$$
f[d \mapsto r](x) \quad \stackrel{\text { def }}{=} \begin{cases}r & \text { if } x=d \\ f(x) & \text { else }\end{cases}
$$

A Conventions

Convention 8 (Indexed family of functions). For two indexed families of functions $F=\left(F_{i}\right)_{i \in I}$ and $F^{\prime}=\left(F_{i}\right)_{i \in I}$, with disjoint domains $\operatorname{dom}\left(F_{i}\right) \cap \operatorname{dom}\left(F_{i}^{\prime}\right)=\emptyset$ for each $i \in I$, we denote with $F \cup F^{\prime}=\left(F \cup F_{i}^{\prime}\right)_{i \in I}$ a new family of functions with $\left(F \cup F^{\prime}\right)_{i} \stackrel{\text { def }}{=}$ $F_{i} \cup F_{i}^{\prime}$.

For an indexed family of functions $F=\left(F_{i}\right)_{i \in I}$, index $j \in I$, function $F_{j}: D \rightarrow R$, elements $d \in D$ and $r \in R$, we denote by $F[j: d \mapsto r]$ an indexed family of functions where function F_{j} is updated to $F_{j}[d \mapsto r]$.

$$
F[j: d \mapsto r]_{i} \stackrel{\text { def }}{=} \begin{cases}F_{i}[d \mapsto r] & \text { if } i=j, \\ F_{i} & \text { else } .\end{cases}
$$

Convention 9 (Mappings). We denote by $\left[i_{1}, i_{2}, \ldots \mapsto o_{1}, o_{2}, \ldots\right]$ a function which maps input i_{1} to output o_{1}, input i_{2} to output o_{2}, etc.

A. 3 Sequences

Convention 10 (Sequences). Given any set E, we denote by $(E)^{*}$ the set of all finite sequences over E, by $(E)^{\infty}$ the set of all infinite sequences over E, and by $(E)^{\omega}$ the set of all finite and infinite sequences over E. We use the following notations for sequences:

- With \rangle we denote the empty sequence.
- Similar as for restriction of functions, we shall use $\left.s\right|_{n}$ to extract the first n elements of a sequence. Thereby $\left.s\right|_{0} \stackrel{\text { def }}{=}\langle \rangle$.
- For a sequence s, we denote by \#s the length of s and with s\&e the sequence resulting by appending element $e \in E$ to sequence s.
- For two sequences s and s^{\prime}, we denote by $\hat{s s^{\prime}}$ the concatenation of s and s^{\prime}.
- With $s^{\prime} \sqsubseteq s$ we denote that s^{\prime} is a prefix of s.
- With $r g(s)$ we denote the set of all elements of a given sequence s.

We assume the following properties for sequences s:

- $\forall n \in \mathbb{N}: s(n)=\left.s\right|_{n+1}(n)$. (A.1)
- $s \& e(\# s)=e$. (A.2)

Convention 11 (Prefix). With $s^{\prime} \sqsubseteq s$ we denote that sequence s^{\prime} is a prefix of s.
A function $m:(E)^{\omega} \rightarrow(E)^{\omega}$ such that $s^{\prime} \sqsubseteq s \Longrightarrow m\left(s^{\prime}\right) \sqsubseteq m(s)$ is called prefixmonotonic. For a prefix-monotonic function m we assume the following property:

$$
\begin{equation*}
\forall n \in \mathbb{N}:\left.m(s)\right|_{\# m\left(\left.s\right|_{n+1}\right)}=m\left(\left.s\right|_{n+1}\right) . \tag{A.3}
\end{equation*}
$$

A. 4 Logics

Convention 12 (Boolean values). With true we denote logical truth and with false logical false. With $\mathbb{B}=\{$ true, false $\}$ we denote the set of boolean values.

B Proof for Thm. 1

We show that Γ holds for an architecture specification $\mathcal{A} \subseteq\left(A S_{\mathcal{T}}^{\mathcal{C}}\right)^{\infty}$ and for each component type $c t \in \mathcal{C T}$ a property $\gamma_{c t}$ holds, iff Γ holds for $\otimes_{\mathcal{A}}(\mathcal{C})$ and $\gamma_{c t}$ holds for the projection to every component $c \in \mathcal{C}$ of type $c t$ in $\otimes_{\mathcal{A}}(\mathcal{C})$.

B. $1 \Longrightarrow$

Assume that $t \in \otimes_{\mathcal{A}}(\mathcal{C})$. We show

1. t fulfills Γ and
2. $\gamma_{c t}$ holds for the projection to every component $c \in \mathcal{C}$ of type $c t$.

B.1.1 Goal 1

By Def. $11, t \in \mathcal{A}$. Thus, by assumption, t fulfills Γ.

B.1.2 Goal 2

Again, by Def. 11, $\forall c t \in \mathcal{C T}, c \in \mathcal{C}_{c t} \exists t^{\prime} \subseteq(\overline{\operatorname{port}(c t)})^{\infty}: \Pi_{c}(t)^{\wedge} t^{\prime} \in \operatorname{bhv}(c t)$. Thus, by assumption, $\gamma_{c t}$ holds for the projection to every component $c \in \mathcal{C}$ of type $c t$.

B. 2

Assume that t fulfills Γ and $\gamma_{c t}$ holds for the projection to every component $c \in \mathcal{C}$ of type $c t$. We show $t \in \otimes_{\mathcal{A}}(\mathcal{C})$. To this end, we show that

1. $t \in \mathcal{A}$ and
2. $\forall c t \in \mathcal{C T}, c \in \mathcal{C}_{c t} \exists t^{\prime} \subseteq(\overline{\operatorname{port}(c t)})^{\infty}: \Pi_{c}(t)^{\wedge} t^{\prime} \in \operatorname{bhv}(c t)$.

Then, we conclude $t \in \otimes_{\mathcal{A}}(\mathcal{C})$ by Def. 11 .

B.2.1 Goal 1

$t \in \mathcal{A}$ follows directly from the assumption.

B.2.2 Goal 2

Again, by assumption, $\gamma_{c t}$ holds for the projection to every component $c \in \mathcal{C}$ of type $c t$.

C Behavior Trace Assertions

Behavior trace assertions are formulated over data type variables, i.e., variables representing messages of a certain type. Thus, given a signature $\Sigma=(S, F, B)$, we assume the existence of a family of data type variables $D V=\left(D V_{s}\right)_{s \in S}$ and rigid data type variables $D V^{\prime}$. Both types of variables are interpreted over an algebra $A=$ $\left(\left(A_{s}\right)_{s \in S},\left(f^{A}\right)_{f \in F},\left(p^{A}\right)_{p \in B}\right) \in \mathcal{A}(\Sigma)$ for signature Σ (where F^{n} and B^{n} denote all the function/predicate symbols of arity n, and sf and sp assign a tuple of sorts to each function/predicate symbol, respectively ${ }^{1}$). Thereby, data type variable assignments $\iota=\left(\iota_{s}\right)_{s \in S}$ consist of interpretations $\iota_{s}: D V_{s} \rightarrow A_{s}$, which are newly evaluated at each point in time. Rigid data type variables, on the other hand, are interpreted only once for the whole execution by a so-called rigid data type variable assignment $\iota^{\prime}=\left(\iota_{s}^{\prime}\right)_{s \in S}$. With $\mathcal{I}_{A}^{D V}$ we denote the set of all data type variable assignments for data type variables $D V$ in algebra A and with $\mathcal{I}_{A}^{\prime D V^{\prime}}$ the set of all rigid data type variable assignments for rigid data type variables $D V^{\prime}$ in algebra A, respectively.

C. 1 Behavior terms

C.1.1 Syntax

Definition 17 (Behavior terms: syntax). The set of all behavior terms of sort $s \in S$ over a signature $\Sigma=(S, F, B)$, datatype variables $D V$, and port specification $p s=$ (PID, tp), is the smallest set ${ }_{\Sigma}^{s} B T_{D V}(p s)$ satisfying the equations of Fig. C.1. The set of all behavior terms of all sorts is denoted by ${ }_{\Sigma} B T_{D V}(p s)$.

[^6]Behavior terms: syntax

$$
\left.\begin{array}{rl}
v \in D V_{s} & \Longrightarrow " v " \in{ }_{\Sigma}^{s} B T_{D V}(p s), \\
p \in P I D & \Longrightarrow " p " \in{ }_{\Sigma}^{s} B T_{D V}(p s)[\text { for } \operatorname{tp}(p)=s] \\
f \in F^{0} & \Longrightarrow " f " \in{ }_{\Sigma}^{s} B T_{D V}(p s)\left[\text { for } \operatorname{sf}(f)_{(0)}=s\right] \\
f \in F^{n+1} \wedge \\
\left." t_{1} " \in{ }_{\Sigma}^{s_{1}} B T_{D V}(p s), \cdots,\right\} \\
" t_{n+1} " \in{ }_{\Sigma}^{s_{n+1}} B T_{D V}(p s)
\end{array}\right\} \quad \Longrightarrow\left\{\begin{array}{l}
" f\left(t_{1}, \cdots, t_{n+1}\right) " \in{ }_{\Sigma}^{s} B T_{D V}(p s) \\
{\left[\text { for } n \in \mathbb{N}, \operatorname{sf}(f)_{(0)}=s,\right. \text { and }} \\
\left.\operatorname{sf}(f)_{(1)}=s_{1}, \cdots, \operatorname{sf}(f)_{(n+1)}=s_{n+1}\right]
\end{array}\right.
$$

Figure C.1: Inductive definition of behavior terms.

Behavior terms: semantics

$$
\begin{aligned}
& { }_{A}^{\iota}\left[{ }^{\iota}{ }^{"} v " \rrbracket_{\mu}^{\delta}=\iota_{s}(v)\left[\text { for } v \in D V_{s}\right],\right. \\
& { }_{A}^{\iota} \llbracket " p " \rrbracket_{\mu}^{\delta}=\mu(\delta(p))[\text { for } p \in P I D] \text {, } \\
& { }_{A}^{\iota} \llbracket " f " \rrbracket_{\mu}^{\delta}=A_{f}\left[\text { for function symbol } f \in F^{0}\right] \text {, }
\end{aligned}
$$

Figure C.2: Recursive definition of semantic function for behavior terms.

C.1.2 Semantics

Definition 18 (Behavior terms: semantics). The semantics of behavior terms ${ }_{\Sigma} B T_{D V}(p s)$, formulated over port specification $p s=(P I D, \mathrm{tp})$, is defined over an algebra $A \in \mathcal{A}(\Sigma)$ with corresponding data type variable assignments $\iota \in \mathcal{I}_{A}^{D V}$ and a valuation $\mu \in \overline{\mathcal{P}}$ of a set of ports \mathcal{P} with corresponding interpretation $\delta: P I D \rightarrow \mathcal{P}$ for the port identifiers of ps. It is given by a semantic function ${ }_{A}^{{ }^{4}} \mathbb{Z} \rrbracket_{\mu}^{\delta}: \vec{U}_{s \in S}\left({ }_{\Sigma}^{s} B T_{D V}(p s) \rightarrow A_{s}\right)$, defined recursively by the equations provided in Fig. C.2.

C. 2 Behavior assertions

C.2.1 Syntax

Definition 19 (Behavior assertions: syntax). The set of all behavior assertions over a signature $\Sigma=(S, F, B)$, datatype variables $D V$, and port specification ps $=(P I D, \mathrm{tp})$, is the smallest set ${ }_{\Sigma} B A_{D V}(p s)$ satisfying the equations of Fig. C.3.

C.2.2 Semantics

Definition 20 (Behavior assertions: semantics). The semantics of behavior assertions ${ }_{\Sigma} B A_{D V}(p s)$, formulated over port specification $p s=(P I D, \mathrm{tp})$, is defined over an algebra $A \in \mathcal{A}(\Sigma)$ with corresponding data type variable assignments $\iota \in \mathcal{I}_{A}^{D V}$ and an interpretation $\delta: P I D \rightarrow \mathcal{P}$ for the port identifiers of ps with concrete ports of a set \mathcal{P}. It is given by a relation $\left\lvert\, \frac{\delta}{\bar{A}, \iota} \subseteq \overline{\mathcal{P}} \times{ }_{\Sigma} B A_{D V}(p s)\right.$ defined recursively by the equations provided in Fig. C. 4

C. 3 Behavior trace assertions

C.3.1 Syntax

Definition 21 (Behavior trace assertions: syntax). The set of all behavior trace assertions over a signature $\Sigma=(S, F, B)$, disjoint sets of datatype variables $D V$ and

Behavior assertions: syntax

$$
\begin{aligned}
& \text { "true" } \in_{\Sigma} B A_{D V}(p s), \\
& \text { "false" } \in_{\Sigma} B A_{D V}(p s), \\
& b \in B^{0} \Longrightarrow \quad " b " \in{ }_{\Sigma} B A_{D V}(p s) \text {, } \\
& \left.\begin{array}{l}
b \in B^{n+1} \wedge \\
" t_{1} " \in{ }_{\Sigma}^{s_{1}} B T_{D V}(p s), \cdots, \\
" t_{n+1} " \in{ }_{\Sigma}^{s_{n+1}} B T_{D V}(p s)
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
\text { "b(t, } \left., \cdots, t_{n+1}\right) " \in{ }_{\Sigma} B A_{D V}(p s) \\
{[\text { for } n \in \mathbb{N} \text { and }} \\
\left.\operatorname{sp}(b)_{(1)}=s_{1}, \cdots, \operatorname{sp}(b)_{(n+1)}=s_{n+1}\right],
\end{array}\right. \\
& \text { " } t \text { ", " } t \text { " } \in_{\Sigma}^{s} B T_{D V}(p s) \Longrightarrow " t=t^{\prime} " \in{ }_{\Sigma} B A_{D V}(p s) \text { [for some } s \in S \text {], } \\
& " \phi " \in_{\Sigma} B A_{D V}(p s) \Longrightarrow \quad " \neg \phi " \in_{\Sigma} B A_{D V}(p s) \text {, } \\
& " \phi ", " \phi^{\prime} " \in_{\Sigma} B A_{D V}(p s) \Longrightarrow\left\{\begin{array}{l}
" \phi \wedge \phi^{\prime \prime} \in \in_{\Sigma} B A_{D V}(p s), \\
" \phi \vee \phi^{\prime \prime} \in_{\Sigma} B A_{D V}(p s), \\
" \phi \longrightarrow \phi^{\prime \prime}, \in_{\Sigma} B A_{D V}(p s), \\
" \phi \longleftrightarrow \phi^{\prime \prime} \in_{\Sigma} B A_{D V}(p s) .,
\end{array}\right. \\
& " \phi " \in{ }_{\Sigma} B A_{D V}(p s) \wedge x \in D V_{s} \Longrightarrow\left\{\begin{array}{l}
" \forall x: \phi " \in_{\Sigma} B A_{D V}(p s), \\
" \exists x: \phi " \in_{\Sigma} B A_{D V}(p s)[\text { for } s \in S] . .
\end{array}\right.
\end{aligned}
$$

Figure C.3: Inductive definition of behavior assertions.
rigid datatype variables $D V^{\prime}$, and port specification $p s=(P I D, \mathrm{tp})$, is the smallest set ${ }_{\Sigma} B T A_{D V}^{D V^{\prime}}(p s)$ satisfying the equations of Fig. C.5.

C.3.2 Semantics

Definition 22 (Behavior trace assertions: semantics). The semantics of behavior trace assertions ${ }_{\Sigma} B T A_{D V}^{D V^{\prime}}(p s)$, formulated over port specification ps $=(P I D, \mathrm{tp})$, is defined over an algebra $A \in \mathcal{A}(\Sigma)$ with corresponding rigid data type variable assignments $\iota^{\prime} \in$ $\mathcal{I}_{A}^{\prime D V^{\prime}}$ and an interpretation $\delta: P I D \rightarrow \mathcal{P}$ for the port identifiers of ps with concrete ports of a set \mathcal{P}. It is given by a relation $\underset{A,,^{\prime}}{\stackrel{\delta}{\mathcal{L}}} \subseteq\left((\overline{\mathcal{P}})^{\infty} \times \mathbb{N}\right) \times{ }_{\Sigma} B A_{D V}(p s)$ defined recursively by the equations provided in Fig. C.6.

Behavior assertions: semantics

$$
\begin{aligned}
& \mu \left\lvert\, \frac{\delta}{\bar{A}, \iota}\right. \text { "true" , } \\
& \neg\left(\mu \left\lvert\, \frac{\delta}{\bar{A}, \iota}\right.\right. \text { "false") , } \\
& \mu \stackrel{\left.\right|_{\bar{A}, \iota} ^{\bar{\delta}} " b " \quad \Longleftrightarrow A_{b}\left[\text { for } b \in B^{0}\right], ~}{\text {] }} \\
& \mu \left\lvert\, \frac{\delta}{\overline{A, \iota}} " b\left(t_{1}, \cdots, t_{n}\right) " \Longleftrightarrow A_{b}\left({ }_{A}^{\iota} \llbracket " t_{1} " \rrbracket_{\mu}^{\delta}, \cdots,{ }_{A}^{\iota} \llbracket{ }^{\iota} t_{n} " \rrbracket \rrbracket_{\mu}^{\delta}\right)\left[\text { for } b \in B^{n+1}\right]\right. \text {, } \\
& \mu \left\lvert\, \frac{\delta}{\overline{A, L}} " t=t^{\prime \prime} \quad \Longleftrightarrow \quad{ }_{A}^{\iota} \llbracket " t " \rrbracket_{\mu}^{\delta}={ }_{A}^{\iota} \llbracket " t ">\rrbracket_{\mu}^{\delta}\right., \\
& \left.\mu\left|\frac{\delta}{\bar{A}, \iota} " \phi \wedge \phi \quad \Longleftrightarrow \quad \mu\right| \frac{\delta}{\bar{A}, \iota} " \phi " \wedge \mu \right\rvert\, \frac{\delta}{\bar{A}, \iota} " \phi \phi^{\prime} ",
\end{aligned}
$$

$$
\begin{aligned}
& \left.\mu\left|\frac{\delta}{\bar{A}, \iota} " \phi \longrightarrow \phi^{\prime \prime} \Longleftrightarrow \mu\right| \frac{\delta}{\bar{A}, \iota} " \phi " \wedge \mu \right\rvert\, \frac{\delta}{\bar{A}, \iota} " \phi^{\prime} ", \\
& \left.\mu\left|\frac{\delta}{\bar{A}, \iota} " \phi \longleftrightarrow \phi^{\prime} " \Longleftrightarrow \mu\right| \frac{\delta}{\bar{A}, \iota} " \phi " \wedge \mu \right\rvert\, \frac{\delta}{\bar{A}, \iota} " \phi^{\prime} ",
\end{aligned}
$$

$$
\begin{aligned}
& \mu \left\lvert\, \frac{\delta}{\overline{A, L}} " \forall x\right.: \phi " \Longleftrightarrow\left\{\begin{array}{l}
\left.\forall x^{\prime} \in A_{s}: \mu_{A, \iota\left[s s^{\prime}: x \mapsto x^{\prime}\right]}^{\stackrel{\delta}{\mid}} "\right\rangle " \\
{\left[\text { for } s \in S \text { and } x \in D V_{s}\right],}
\end{array}\right.
\end{aligned}
$$

Figure C.4: Recursive definition of satisfaction relation for behavior assertions.

Behavior trace assertions: syntax

$$
\begin{aligned}
& \text { "true", "false" } \in_{\Sigma} B T A_{D V}^{D V^{\prime}}(p s), \\
& \phi \in{ }_{\Sigma} B A_{D V \cup D V^{\prime}}(p s) \Longrightarrow \phi \in{ }_{\Sigma} B T A_{D V}^{D V^{\prime}}(p s) \text {, } \\
& " \gamma " \in{ }_{\Sigma} B T A_{D V}^{D V^{\prime}}(p s) \Longrightarrow \quad " \neg \gamma ", " \bigcirc \gamma ", " \diamond \gamma ", " \square \gamma " \in_{\Sigma} B T A_{D V}^{D V^{\prime}}(p s), \\
& " \gamma ", " \gamma^{\prime \prime} \in_{\Sigma} B T A_{D V}^{D V^{\prime}}(p s) \Longrightarrow\left\{\begin{array}{l}
" \gamma \wedge \gamma^{\prime "}, " \gamma \vee \gamma^{\prime "}, \\
" \gamma \longrightarrow \gamma^{\prime} ", "\left(\gamma^{\prime} \mathcal{U} \gamma\right) " \in_{\Sigma} B T A_{D V}^{D V^{\prime}}(p s),
\end{array}\right. \\
& \left.\begin{array}{l}
x \in D V^{\prime} \wedge \\
" \gamma " \in{ }_{\Sigma} B T A_{D V}^{D V^{\prime}(p s)}
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
" \forall x: \gamma " \in_{\Sigma} B T A_{D V}^{D V^{\prime}}(p s), \\
" \exists x: \\
\gamma " \in_{\Sigma} B T A_{D V}^{D V^{\prime}}(p s) .
\end{array}\right.
\end{aligned}
$$

Figure C.5: Inductive definition of behavior trace assertions.

Behavior trace assertions: semantics

$$
\begin{aligned}
& (t, n) \underset{A, \iota^{\prime}}{\stackrel{\delta}{\bar{\prime}}} " t r u e^{\prime}, \\
& \neg\left((t, n) \stackrel{\delta}{\overline{A, \iota^{\prime}}} \stackrel{\delta}{ } \text { false }^{\prime}\right) \text {, } \\
& (t, n) \underset{A, \iota^{\prime}}{\stackrel{\delta}{\prime}} \phi \quad \Longleftrightarrow \quad \forall \iota \in \mathcal{I}_{A}^{D V}: t(n) \underset{A, \iota \iota_{\iota}^{\prime}}{ } \phi\left[\text { for } \phi \in{ }_{\Sigma} B A_{D V}(p s)\right],
\end{aligned}
$$

$$
\begin{aligned}
& (t, n) \stackrel{A_{A, \iota^{\prime}}}{\stackrel{\delta}{A}} \diamond \gamma " \Longleftrightarrow \exists n^{\prime} \geq n:\left(t, n^{\prime}\right) \stackrel{\delta}{A, \iota^{\prime}} " \gamma \text { ", }
\end{aligned}
$$

$$
\begin{aligned}
& (t, n) \underset{A, \iota^{\prime}}{=} " \forall x: \gamma " \Longleftrightarrow\left\{\begin{array}{l}
\forall x^{\prime} \in A_{s}:(t, n) \underset{A, \iota^{\prime}\left[\mid \leq x \mapsto x^{\prime}\right]}{ } " \gamma " \\
{\left[\text { for } s \in S \text { and } x \in D V_{s}\right] .}
\end{array}\right.
\end{aligned}
$$

Figure C.6: Recursive definition of satisfaction relation for behavior trace assertions.

Architecture terms: syntax

$$
\begin{aligned}
& v \in D V_{s} \quad \Longrightarrow \quad " v " \in{ }_{\Sigma}^{s} C T_{C V}^{D V}(i s), \\
& v \in\left(C V_{i}\right)_{\omega} \wedge p \in \operatorname{port}(\text { if }(i)) \Longrightarrow\left\{\begin{array}{l}
\text { " } v \cdot p " \in{ }_{\Sigma}^{s} C T_{C V}^{D V}(i s) \\
{[\text { for } i \in I \text { and } \operatorname{tp}(p)=s],}
\end{array}\right. \\
& f \in F^{0} \quad \Longrightarrow \quad " f " \in{ }_{\Sigma}^{s} C T_{C V}^{D V}(i s)\left[\text { for } \operatorname{sf}(f)_{(0)}=s\right] \text {, } \\
& \left.\begin{array}{l}
f \in F^{n+1} \wedge \\
" t_{1} " \in{ }_{\Sigma}^{s_{1}} C T_{C V}^{D V}(i s), \cdots, \\
" t_{n+1} " \in{ }_{\Sigma}^{s_{n+1}} C T_{C V}^{D V}(i s)
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
" f\left(t_{1}, \cdots, t_{n+1}\right) " \in{ }_{\Sigma}^{s} C T_{C V}^{D V}(i s) \\
{\left[\text { for } n \in \mathbb{N}, \operatorname{sf}(f)_{(0)}=s,\right. \text { and }} \\
\left.\operatorname{sf}(f)_{(1)}=s_{1}, \cdots, \operatorname{sf}(f)_{(n+1)}=s_{n+1}\right] .
\end{array}\right.
\end{aligned}
$$

Figure C.7: Inductive definition of architecture terms.

C. 4 Architecture Trace Assertions

In addition to variables for data types (as introduced already for behavior trace assertions), architecture trace assertions are formulated also over component variables, i.e., variables representing components of a certain type. Thus, given a signature Σ and an interface specification $i s=(I$, if $)$ over port specification $(P I D$, tp $)$, we assume the existence of a family of component variables $C V=\left(C V_{i}\right)_{i \in I}$ with component variables $C V_{i}=\left(\left(C V_{i}\right)_{\omega}\right)_{\omega: p \mapsto D t T_{\operatorname{tp}(p)}(\Sigma, D V)}$ for each interface $i \in I$ and each valuation of component parameters ω. In addition, we assume the existence of a corresponding family of rigid component variables $C V^{\prime}$.

Component variables are interpreted over a family of components $\mathcal{C}=\left(\mathcal{C}_{c t}\right)_{c t \in C T_{\mathcal{I}}}$ by a so-called component variable assignment $\kappa=\left(\kappa_{i}\right)_{i \in I}$, with $\kappa_{i}=\left(\left(\kappa_{i}\right)_{\omega}\right)_{\omega: p \mapsto D t T_{\operatorname{tp}(p)}(\Sigma, D V)}$
 and port interpretation δ). Again, we denote with κ^{\prime} a corresponding rigid component variable assignment for rigid component variables. The set of all component variable assignments is denoted with $\mathcal{K}_{\mathcal{C}}^{C V}$ and the set of all rigid component variable assignments with $\mathcal{K}^{\prime}{ }_{\mathcal{C}}{ }^{C V^{\prime}}$.

C.4.1 Architecture Terms

C.4.1.1 Syntax

Definition 23 (Architecture terms: syntax). The set of all architecture terms of sort $s \in S$ over a signature $\Sigma=(S, F, B)$, interface specification is $=(I$, if $)$ over port specification ($P I D, \mathrm{tp}$), datatype variables $D V$, and component variables $C V$, is the smallest set ${ }_{\Sigma}^{s} C T_{C V}^{D V}(i s)$, satisfying the equations of Fig. C.7. The set of all architecture terms of all sorts is denoted by ${ }_{\Sigma} C T_{C V}^{D V}(i s)$.

Architecture terms: semantics

$$
\begin{aligned}
{ }_{A}^{\iota} \llbracket " v " \rrbracket \rrbracket_{\delta}^{\kappa}(a s) & =\iota_{s}(v)\left[\text { for } v \in D V_{s}\right], \\
{ }_{A}^{\iota} \llbracket " v \cdot p " \rrbracket \rrbracket_{\delta}^{\kappa}(a s) & =\left\{\begin{array}{l}
v a l_{a s}\left(\left(\left(\kappa_{i}\right)_{\omega}(v),(\delta(p))\right)\right) \\
{\left[\text { for } i \in I \text { and } v \in\left(C V_{i}\right)_{\omega}\right],}
\end{array}\right. \\
{ }_{A}^{\iota} \llbracket " f " \rrbracket \rrbracket_{\delta}^{\kappa}(a s) & =A_{f}\left[\text { for function symbol } f \in F^{0}\right], \\
{ }_{A}^{\iota} \llbracket " f\left(t_{1}, \cdots, t_{n}\right) " \rrbracket \rrbracket_{\delta}^{\kappa}(a s) & =\left\{\begin{array}{l}
\left.\left.\left.A_{f}\left({ }_{A}^{\iota} \llbracket " t_{1} "\right]\right]_{\delta}^{\kappa}(a s), \cdots,{ }_{A}^{\iota} \llbracket " t_{n} "\right]_{\delta}^{\kappa}(a s)\right) \\
{\left[\text { for function symbol } f \in F^{n+1}\right] .}
\end{array}\right.
\end{aligned}
$$

Figure C.8: Recursive definition of semantic function for architecture terms.

C.4.1.2 Semantics

Definition 24 (Architecture terms: semantics). The semantics of architecture terms ${ }_{\Sigma} C T_{C V}^{D V}(i s)$, formulated over interface specification is $=(I$, if $)$ and port specification (PID, tp), is defined over an algebra $A \in \mathcal{A}(\Sigma)$ with corresponding data type variable assignments $\iota \in \mathcal{I}_{A}^{D V}$, an architecture snapshot as $\in A S_{\mathcal{T}}^{\mathcal{C}}$ with corresponding port interpretation $\delta: P I D \rightarrow \mathcal{P}$ for the port identifiers of $p s$, and component interpretation $\kappa \in \mathcal{K}_{\mathcal{C}}^{C V}$. It is given by a semantic function $\left.{ }_{A}^{\iota} \llbracket \ldots\right]_{\delta}^{\kappa}(a s): \widehat{\bigcup}_{s \in S}\left({ }_{\Sigma}^{s} C T_{C V}^{D V}(i s) \rightarrow A_{s}\right)$, defined recursively by the equations provided in Fig. C.8.

C.4.2 Architecture Assertions

C.4.2.1 Syntax

Definition 25 (Architecture assertions: syntax). The set of all architecture assertions over a signature Σ, interface specification is $=(I$, if) over port specification (PID, tp), data type variables $D V$, and component variables $C V$ is the smallest set ${ }_{\Sigma} C A_{C V}^{D V}(i s)$ satisfying the equations in Fig. C.9.

C.4.2.2 Semantics

Definition 26 (Architecture assertion: semantics). The semantics of architecture assertions ${ }_{\Sigma} C A_{C V}^{D V}(i s)$, formulated over interface specification is $=(I$, if $)$ and port specification (PID, tp), is defined over an algebra $A \in \mathcal{A}(\Sigma)$ with corresponding data type variable assignments $\iota \in \mathcal{I}_{A}^{D V}$, interface interpretation $\epsilon: I \rightarrow C T_{\mathcal{I}}$, an interpretation $\delta: P I D \rightarrow \mathcal{P}$ for the port identifiers of $p s$, and component interpretation $\kappa \in \mathcal{K}_{\mathcal{C}}^{C V}$. It is given by a relation $\underset{\bar{A}, \iota}{\epsilon_{1} \delta, \kappa} \subseteq A S_{\mathcal{T}}^{\mathcal{C}} \times{ }_{\Sigma} C A_{C V}^{D V}(i s)$ defined recursively by the equations provided in Fig. C. 10

C Behavior Trace Assertions

Architecture assertions: syntax

$$
\begin{aligned}
& " t r u e " \in_{\Sigma} C A_{C V}^{D V}(i s), \\
& \text { "false" } \in_{\Sigma} C A_{C V}^{D V}(i s), \\
& b \in B^{0} \quad \Longrightarrow \quad " b " \in_{\Sigma} C A_{C V}^{D V}(i s) \text {, } \\
& \left.\begin{array}{l}
b \in B^{n+1} \wedge \\
" t_{1} " \in{ }_{\Sigma}^{s_{1}} C T_{C V}^{D V}(i s), \cdots, \\
" t_{n+1} " \in{ }_{\Sigma}^{s_{n+1}} C T_{C V}^{D V}(i s)
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
" b\left(t_{1}, \cdots, t_{n+1}\right) " \in{ }_{\Sigma} C A_{C V}^{D V}(i s) \\
{[\text { for } n \in \mathbb{N} \text { and }} \\
\left.\operatorname{sp}(b)_{(1)}=s_{1}, \cdots, \operatorname{sp}(b)_{(n+1)}=s_{n+1}\right],
\end{array}\right. \\
& " t ", " t " \in{ }_{\Sigma}^{s} C T_{C V}^{D V}(i s) \Longrightarrow " t=t^{\prime} " \in{ }_{\Sigma} C A_{C V}^{D V}(i s) \text { [for some } s \in S \text {], } \\
& " \phi " \in_{\Sigma} C A_{C V}^{D V}(i s) \quad \Longrightarrow \quad " \neg \phi " \in_{\Sigma} C A_{C V}^{D V}(i s), \\
& " \phi ", " \phi^{\prime} " \in_{\Sigma} C A_{C V}^{D V}(i s) \Longrightarrow\left\{\begin{array}{l}
" \phi \wedge \phi^{\prime} " \in_{\Sigma} C A_{C V}^{D V}(i s), \\
" \phi \vee \phi^{\prime \prime} \in_{\Sigma} C A_{C V}^{D V}(i s), \\
" \phi \longrightarrow \phi^{\prime \prime} \in_{\Sigma} C A_{C V}^{D V}(i s), \\
" \phi \longleftrightarrow \phi^{\prime \prime} \in_{\Sigma} C A_{C V}^{D V}(i s) .,
\end{array}\right. \\
& " \phi " \in{ }_{\Sigma} C A_{C V}^{D V}(i s) \wedge x \in D V_{s} \Longrightarrow\left\{\begin{array}{l}
" \forall x: \phi " \in{ }_{\Sigma} C A_{C V}^{D V}(i s), \\
" \exists x: \phi " \in_{\Sigma} C A_{C V}^{D V}(i s)[\text { for } s \in S] .,
\end{array}\right. \\
& " \phi " \in{ }_{\Sigma} C A_{C V}^{D V}(i s) \wedge x \in\left(C V_{i}\right)_{\omega} \Longrightarrow\left\{\begin{array}{l}
" \forall x: \phi " \in_{\Sigma} C A_{C V}^{D V}(i s), \\
" \exists x: \phi " \in_{\Sigma} C A_{C V}^{D V}(i s)[\text { for } i \in I] .,
\end{array}\right. \\
& v \in\left(C V_{i}\right)_{\omega} \wedge p \in \operatorname{port}(\mathrm{if}(i)) \Longrightarrow \quad " \widehat{v . p} " \in_{\Sigma} C A_{C V}^{D V}(i s)[\text { for } i \in I] \text {, } \\
& \left.v \in\left(C V_{i}\right)_{\omega} \quad \Longrightarrow \quad " \xi v\right\} " \in{ }_{\Sigma} C A_{C V}^{D V}(i s)[\text { for } i \in I] \text {, } \\
& \left.\begin{array}{l}
v \in\left(C V_{i}\right)_{\omega} \wedge v^{\prime} \in\left(C V_{j}\right)_{\tau} \wedge \\
p \in \operatorname{in}(\operatorname{if}(i)) \wedge p^{\prime} \in \operatorname{out}(\operatorname{if}(j))
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
" v \cdot p \rightsquigarrow v^{\prime} \cdot p^{\prime \prime} \in_{\Sigma} C A_{C V}^{D V}(i s), \\
{[\text { for } i, j \in I] .}
\end{array}\right.
\end{aligned}
$$

Figure C.9: Inductive definition of architecture assertions.

Architecture assertions: semantics

$$
\begin{aligned}
& \text { as } \frac{\bar{\epsilon}_{1} \delta, \kappa}{\bar{A}, \iota} \text { "true", } \\
& \neg\left(\text { as } \stackrel{\epsilon_{1}, \delta, \kappa}{\bar{A}, \iota}\right. \text { "false") , } \\
& \text { as } \stackrel{\epsilon_{q} \delta, \kappa}{\overline{A, L}} \text { " } b " \Longleftrightarrow A_{b}\left[\text { for } b \in B^{0}\right], \\
& \text { as } \stackrel{\epsilon_{,} \delta, \kappa}{\bar{A}, \iota} " b\left(t_{1}, \cdots, t_{n}\right) " \Longleftrightarrow A_{b}\left({ }_{A}^{\iota} \llbracket " t_{1} " \rrbracket_{J}^{\kappa}(a s), \cdots,{ }_{A}^{\iota} \llbracket " t_{n} " \rrbracket_{J}^{\kappa}(a s)\right)\left[\text { for } b \in B^{n+1}\right] \text {, } \\
& \text { as } \left.\stackrel{\epsilon_{1} \delta, \kappa}{\overline{A, \iota}} " t=t^{\prime} \quad \Longleftrightarrow \quad{ }_{A}^{\iota} \llbracket " t " \rrbracket{ }_{J}^{\kappa}(a s)={ }_{A}^{\iota} \llbracket " t^{\prime} " \rrbracket\right]_{J}^{\kappa}(a s),
\end{aligned}
$$

$$
\begin{aligned}
& a s \stackrel{\epsilon_{i} \delta, \kappa^{\prime}}{\bar{A}, \iota} \exists x: \phi " \Longleftrightarrow\left\{\begin{array}{l}
\exists x^{\prime} \in \mathcal{C}_{\left(\epsilon(i), \lambda p:{ }_{A} \llbracket \omega(p) \rrbracket\right)}: a s^{\epsilon, \delta, \kappa\left[i: \omega \mapsto \kappa_{i}\left[\omega: x \mapsto x^{\prime}\right]\right]_{"}} \phi_{\bar{A}} \quad \Longleftrightarrow \\
{\left[\text { for } i \in I \text { and } x \in\left(C V_{i}\right)_{\omega}\right],}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { as } \stackrel{\epsilon_{,} \delta, \kappa}{\bar{A}, \iota} " \widehat{v . p} " \Longleftrightarrow\left\{\begin{array}{l}
\operatorname{val}_{a s}\left(\left(\left(\kappa_{i}\right)_{\omega}(v),(\delta(p))\right)\right) \neq \emptyset \\
{\left[\text { for } i \in I, v \in\left(C V_{i}\right)_{\omega}, \text { and } p \in \operatorname{port}(\operatorname{if}(i))\right],}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { as } \stackrel{\epsilon, \delta, \kappa}{\bar{A}, \iota} \text { " } v . p \rightsquigarrow v^{\prime} \cdot p^{\prime} " \Longleftrightarrow\left\{\begin{array}{l}
\left(\left(\left(\kappa_{i}\right)_{\omega}\left(v^{\prime}\right), \delta\left(p^{\prime}\right)\right)\right) \in C N_{a s}\left(\left(\left(\kappa_{j}\right)_{\tau}(v), \delta(p)\right)\right) \\
{\left[\text { for } i \in I, v \in\left(C V_{i}\right)_{\omega}, p \in \operatorname{in}(\operatorname{if}(i)),\right.} \\
\left.j \in I, v^{\prime} \in\left(C V_{j}\right)_{\omega}, p^{\prime} \in \operatorname{out}(\operatorname{if}(j))\right] .
\end{array}\right.
\end{aligned}
$$

Figure C.10: Recursive definition of satisfaction relation for architecture assertions.

Architecture trace assertions: syntax

Figure C.11: Inductive definition of architecture trace assertions.

C.4.3 Architecture Trace Assertions

C.4.3.1 Syntax

Definition 27 (Architecture trace assertion: syntax). The set of all architecture trace assertions over signature Σ, interface specification is $=(I$, if $)$ over (PID, tp), data type variables $D V$, rigid data type variables $D V^{\prime}$, component variables $C V$, and rigid component variables $C V^{\prime}$ is the smallest set ${ }_{\Sigma} C T A_{\left(D V^{\prime}, C V^{\prime}\right)}^{(D V, C V)}(i s)$ satisfying the equations in Fig. C.11.

C.4.3.2 Semantics

Definition 28 (Architecture trace assertion: semantics). The semantics of architecture trace assertions ${ }_{\Sigma} C T A_{\left(D V^{\prime}, C V^{\prime}\right)}^{(D V, C V)}(i s)$, formulated over interface specification is $=(I$, if) and port specification (PID, tp), is defined over an algebra $A \in \mathcal{A}(\Sigma)$ with corresponding rigid data type variable assignments $\iota^{\prime} \in \mathcal{I}_{A}^{\prime D V^{\prime}}$, interface interpretation $\epsilon: I \rightarrow C T_{\mathcal{I}}$, an interpretation $\delta: P I D \rightarrow \mathcal{P}$ for the port identifiers of $p s$, and rigid component interpre-

defined recursively by the equations provided in Fig. C.12

Architecture trace assertions: semantics

$$
\begin{aligned}
& (t, n) \stackrel{\epsilon, \delta, \kappa^{\prime}}{\overline{A, \iota^{\prime}}}{ }^{\prime} \text { true", } \\
& \neg\left((t, n) \stackrel{\epsilon, \delta, \kappa^{\prime}}{\overline{A, \iota^{\prime}}} " \text { false" }\right), \\
& (t, n) \stackrel{\epsilon_{1} \delta, \kappa^{\prime}}{\overline{A, \iota^{\prime}}} \boldsymbol{\prime} \phi \quad \forall \iota \in \mathcal{I}_{A}^{D V}, \kappa \in \mathcal{K}_{\mathcal{C}}^{C V}: t(n) \stackrel{\epsilon, \delta_{\rho} \kappa \cup \kappa^{\prime}}{A, \iota \cup \iota^{\prime}} \underset{\underset{\sim}{\cup}}{ } \phi,
\end{aligned}
$$

$$
\begin{aligned}
& (t, n) \stackrel{\epsilon \cdot \delta, \kappa^{\prime}}{\overline{A, \iota^{\prime}} "} \bigcirc \gamma " \Longleftrightarrow(t, n+1) \stackrel{\epsilon, \frac{\delta, \kappa^{\prime}}{\overline{A, \iota^{\prime}}}{ }^{\prime} \gamma^{\prime} \gamma^{\prime}, ~}{\text {, }} \\
& (t, n) \stackrel{\epsilon_{1} \delta, \kappa^{\prime}}{\overline{A, \iota^{\prime}}} " \diamond \gamma " \Longleftrightarrow n^{\prime} \geq n:\left(t, n^{\prime}\right) \stackrel{\epsilon_{1} \delta, \kappa^{\prime}}{\overline{A, \iota^{\prime}} "} \gamma^{\prime},
\end{aligned}
$$

Figure C.12: Recursive definition of satisfaction relation for architecture trace assertions.

D Remaining Rules of the Calculus

D. 1 Elimination Rules for Basic Logical Operators

In the following we list elimination rules for the basic logical operators:

OrE
$\frac{\left(t, t^{\prime}, n\right) \models_{\bar{c}} " \gamma \vee \gamma^{\prime \prime}}{\left(t, t^{\prime}, n\right) \overline{\bar{c}}_{\bar{c}} " \gamma " \vee\left(t, t^{\prime}, n\right) \models_{\bar{c}} " \gamma^{\prime \prime}}$

AndE

$$
\frac{\left.\left(t, t^{\prime}, n\right)\right|_{\bar{c}} " \gamma \wedge \gamma^{\prime \prime}}{\left(t, t^{\prime}, n\right) \vdash_{\bar{c}} " \gamma^{"} \wedge\left(t, t^{\prime}, n\right) \overline{\bar{c}}^{\prime} " \gamma^{\prime \prime}}
$$

$\frac{\left(t, t^{\prime}, n\right) \overline{\bar{c}}_{\bar{c}} " \gamma \wedge \gamma^{\prime \prime}}{\left(t, t^{\prime}, n\right) \overline{\bar{c}}_{\bar{c}} " \gamma^{\prime \prime} \wedge\left(t, t^{\prime}, n\right) \overline{\bar{c}}_{\bar{c}} " \gamma^{\prime \prime "}}$

$$
\text { NotE } \frac{\left(t, t^{\prime}, n\right) \overline{\bar{c}}^{\prime} " \neg \gamma "}{\neg\left(t, t^{\prime}, n\right) \bar{k}_{\bar{c}} " \gamma "}
$$

$$
\operatorname{ExE}^{\frac{\left(t, t^{\prime}, n\right) \overline{\bar{E}}_{\bar{c}} " \exists x: \gamma "}{\exists x:\left(t, t^{\prime}, n\right) \vdash_{\bar{c}} " \gamma "}}
$$

D. 2 Elimination of Behavior Assertions

The first case describes elimination for situations in which a component is guaranteed to be activated sometimes in the future:

The rule for such cases allows us to eliminate a basic BA ϕ and conclude that ϕ holds at the very next point in time where component c is active.
The next rule deals with the case in which a component was sometimes active, but is not activated again in the future:
AssE $_{\mathrm{n} 1}$

$$
\frac{\left(t, t^{\prime}, n\right) \models_{\bar{c}} \phi}{t^{\prime}(n-\operatorname{last}(c, t)-1) \models \phi} \exists i:\left\{c_{t}^{\xi_{t(i)}} \wedge \nexists i \geq n:\left\{c_{t}^{3}(i)\right.\right.
$$

The rule for this case allows us to conclude that a BA ϕ holds at a certain point in time for continuation t^{\prime}. Again, the corresponding time point is calculated as the difference of n and the last time component c was activated.
Finally, we provide a rule for the case in which a component is never activated:

D Remaining Rules of the Calculus

For such cases, we may eliminate ϕ and conclude that ϕ holds at n for continuation t^{\prime}.

The following theory formalizes configuration traces [MG16a, MG16b] as a model for dynamic architectures. Since configuration traces may be finite as well as infinite, the theory depends on Lochbihler's theory of co-inductive lists [Loc10].

```
theory Configuration-Traces
    imports Coinductive.Coinductive-List
begin
```

In the following we first provide some preliminary results for natural numbers, extended natural numbers, and lazy lists. Then, we introduce a locale @textdynamic_architectures which introduces basic definitions and corresponding properties for dynamic architectures.

D. 3 Natural Numbers

We provide one additional property for natural numbers.

```
lemma boundedGreatest:
    assumes \(P\) ( \(i:: n a t\) )
        and \(\forall n^{\prime}>n\). \(\neg P n^{\prime}\)
    shows \(\exists i^{\prime} \leq n . P i^{\prime} \wedge\left(\forall n^{\prime} . P n^{\prime} \longrightarrow n^{\prime} \leq i^{\prime}\right)\)
proof -
    have \(P(i:: n a t) \Longrightarrow n \geq i \Longrightarrow \forall n^{\prime}>n . \neg P n^{\prime} \Longrightarrow\left(\exists i^{\prime} \leq n . P i^{\prime} \wedge\left(\forall n^{\prime} \leq n . P n^{\prime} \longrightarrow n^{\prime} \leq i^{\prime}\right)\right)\)
    proof (induction \(n\) )
        case 0
        then show? case by auto
    next
        case (Suc n)
        then show? case
        proof cases
            assume \(i=\) Suc \(n\)
            then show ?thesis using Suc.prems by auto
    next
            assume \(\neg(i=\) Suc \(n)\)
            thus ?thesis
            proof cases
                assume \(P\) (Suc n)
                    thus ?thesis by auto
                next
                    assume \(\neg P(\) Suc \(n)\)
                with Suc.prems have \(\forall n^{\prime}>n\). \(\neg P n^{\prime}\) using Suc-lessI by blast
                moreover from \(\langle\neg(i=S u c n)\rangle\) have \(i \leq n\) and \(P i\) using Suc.prems by auto
                    ultimately obtain \(i^{\prime}\) where \(i^{\prime} \leq n \wedge P i^{\prime} \wedge\left(\forall n^{\prime} \leq n . P n^{\prime} \longrightarrow n^{\prime} \leq i^{\prime}\right)\)
                    using Suc.IH by blast
                    hence \(i^{\prime} \leq n\) and \(P i^{\prime}\) and ( \(\left.\forall n^{\prime} \leq n . P n^{\prime} \longrightarrow n^{\prime} \leq i^{\prime}\right)\) by auto
                thus ?thesis by (metis le-SucI le-Suc-eq)
            qed
        qed
    qed
```

```
moreover have n\geqi
proof (rule ccontr)
    assume }\neg(n\geqi
    hence }n<i\mathrm{ by arith
    thus False using assms by blast
qed
ultimately obtain }\mp@subsup{i}{}{\prime}\mathrm{ where }\mp@subsup{i}{}{\prime}\leqn\mathrm{ and }P\mp@subsup{i}{}{\prime}\mathrm{ and }\forall\mp@subsup{n}{}{\prime}\leqn.P \mp@subsup{n}{}{\prime}\longrightarrow\mp@subsup{n}{}{\prime}\leq\mp@subsup{i}{}{\prime}\mathrm{ using assms by
blast
    with assms have }\forall\mp@subsup{n}{}{\prime}.P\mp@subsup{n}{}{\prime}\longrightarrow\mp@subsup{n}{}{\prime}\leq\mp@subsup{i}{}{\prime}\mathrm{ using not-le-imp-less by blast
    with \langlei'}\leqn\rangle\mathrm{ and }\langleP \mp@subsup{i}{}{\prime}\rangle\mathrm{ show ?thesis by auto
qed
```


D. 4 Extended Natural Numbers

We provide one simple property for the strict order over extended natural numbers.
lemma enat-min:
assumes $m \geq$ enat n^{\prime}
and enat $n<m-$ enat n^{\prime}
shows enat $n+$ enat $n^{\prime}<m$
using assms by (metis add.commute enat.simps(3) enat-add-mono enat-add-sub-same le-iff-add)

D. 5 Lazy Lists

In the following we provide some additional notation and properties for lazy lists.

```
notation LNil ([]l)
notation LCons (infixl #l 60)
notation lappend (infixl @ }\mp@subsup{l}{l}{60)
lemma lnth-lappend[simp]:
    assumes lfinite xs
        and \neg lnull ys
    shows lnth (xs @ l ys) (the-enat (llength xs))=lhd ys
proof -
    from assms have \existsk. llength xs = enat k using lfinite-conv-llength-enat by auto
    then obtain k where llength xs = enat k by blast
    hence lnth (xs @ll ys) (the-enat (llength xs)) = lnth ys 0
        using lnth-lappend2[of xs k k ys] by simp
    with assms show ?thesis using lnth-0-conv-lhd by simp
qed
lemma lfilter-ltake:
    assumes }\forall(n::nat)\leqllength xs. n\geqi\longrightarrow(\negP(lnth xs n)
    shows lfilter P xs = lfilter P (ltake ixs)
proof -
    have lfilter P xs =lfilter P ((ltake i xs) @ }ll(ldrop i xs))
        using lappend-ltake-ldrop[of (enat i) xs] by simp
    hence lfilter P xs = (lfilter P ((ltake i) xs)) @ (lfilter P (ldrop i xs)) by simp
```

```
show ?thesis
proof cases
    assume enat i\leqllength xs
    have }\forallx<llength (ldrop i xs). \negP(lnth (ldrop ixs) x)
    proof (rule allI)
        fix x show enat x < llength (ldrop (enat i) xs) \longrightarrow\negP(lnth (ldrop (enat i) xs) x)
        proof
            assume enat x < llength (ldrop (enat i) xs)
            moreover have llength (ldrop (enat i) xs) = llength xs - enat i
                using llength-ldrop[of enat i] by simp
        ultimately have enat x< llength xs - enat i by simp
        with <enat i\leqllength xs> have enat x + enat i<llength xs
            using enat-min[of i llength xs x] by simp
        moreover have enat i + enat x = enat x + enat i by simp
        ultimately have enat i+ enat x<llength xs by arith
        hence }i+x<llength xs by sim
        hence lnth (ldrop i xs) x = lnth xs (x + the-enat i) using lnth-ldrop by simp
        moreover have }x+i\geqi\mathrm{ by simp
        with assms }\langlei+x<llength xs> have \neg P (lnth xs (x+ the-enat i)
            by (simp add: assms(1) add.commute)
        ultimately show \negP(lnth (ldrop ixs) x) using assms by simp
        qed
    qed
    hence lfilter P (ldrop i xs) = [|l by (metis diverge-lfilter-LNil in-lset-conv-lnth)
    with <lfilter P xs = (lfilter P ((ltake i) xs)) @ (lfilter P (ldrop i xs))>
        show lfilter P xs = lilter P (ltake ixs) by simp
    next
    assume \neg enat i\leq llength xs
    hence enat i> llength xs by simp
    hence ldrop i xs = []l by simp
    hence lfilter P (ldrop i xs) = [|l using lfilter-LNil[of P] by arith
    with <lfilter P xs = (lfilter P ((ltake i) xs)) @ (lfilter P (ldrop i xs))>
        show lfilter P xs = lfilter P (ltake i xs) by simp
    qed
qed
lemma lfilter-lfinite[simp]:
    assumes lfinite (lfilter P t)
        and }\neg\mathrm{ lfinite }
    shows \existsn.\foralln'>n.\negP(lnth t n')
proof -
    from assms have finite {n. enat n<llength t ^P(lnth t n)} using lfinite-lfilter by auto
    then obtain k where sset:
        {n. enat n<llength t ^P(lnth t n)}\subseteq{n. n<k\wedge enat n<llength t ^P(lnth t n)}
        using finite-nat-bounded[of {n. enat n<llength t \wedge P (lnth t n)}] by auto
    show ?thesis
    proof (rule ccontr)
    assume }\neg(\existsn.\forall\mp@subsup{n}{}{\prime}>n.\negP(\operatorname{lnth}t\mp@subsup{n}{}{\prime})
```

```
    hence }\foralln.\exists\mp@subsup{n}{}{\prime}>n.P(lntht n') by sim
    then obtain n' where n'>k and P (lnth t n') by auto
    moreover from <\neg lfinite t> have }\mp@subsup{n}{}{\prime}<llength t by (simp add: not-lfinite-llength
    ultimately have n' }\not\in{n.n<k\wedge enat n<llength t\wedgeP(lnth t n)} and
        n'}\in{n. enat n<llength t\wedgeP(lnth t n)} by aut
    with sset show False by auto
qed
qed
```


D. 6 A Model of Dynamic Architectures

In the following we formalize dynamic architectures in terms of configuration traces, i.e., sequences of architecture configurations. Moreover, we introduce definitions for operations to support the specification of configuration traces.

```
typedecl cnf
type-synonym trace = nat =>cnf
consts arch:: trace set
```


D.6.1 Implication

```
definition \(\mathrm{imp}::((n a t \Rightarrow c n f) \Rightarrow\) nat \(\Rightarrow\) bool \() \Rightarrow((n a t \Rightarrow c n f) \Rightarrow\) nat \(\Rightarrow\) bool \()\)
    \(\Rightarrow((n a t \Rightarrow c n f) \Rightarrow\) nat \(\Rightarrow\) bool \()\left(\right.\) infixl \(\left.\longrightarrow{ }^{c} 10\right)\)
    where \(\gamma \longrightarrow{ }^{c} \gamma^{\prime} \equiv \lambda t n . \gamma t n \longrightarrow \gamma^{\prime} t n\)
declare \(\operatorname{imp}-\operatorname{def}[s i m p]\)
lemma impI[intro!]:
    fixes \(t n\)
    assumes \(\gamma t n \Longrightarrow \gamma^{\prime} t n\)
    shows \(\left(\gamma \longrightarrow^{c} \gamma^{\prime}\right) t n\) using assms by simp
lemma impE[elim!]:
    fixes \(t n\)
    assumes \(\left(\gamma \longrightarrow^{c} \gamma^{\prime}\right) t n\) and \(\gamma t n\) and \(\gamma^{\prime} t n \Longrightarrow \gamma^{\prime \prime} t n\)
    shows \(\gamma^{\prime \prime} t n\) using assms by simp
```


D.6.2 Disjunction

```
definition disj \(::((n a t \Rightarrow c n f) \Rightarrow\) nat \(\Rightarrow\) bool \() \Rightarrow((n a t \Rightarrow c n f) \Rightarrow\) nat \(\Rightarrow\) bool \()\)
    \(\Rightarrow((n a t \Rightarrow c n f) \Rightarrow\) nat \(\Rightarrow\) bool \()\left(\right.\) infixl \(\left.\vee^{c} 15\right)\)
    where \(\gamma \vee^{c} \gamma^{\prime} \equiv \lambda t n . \gamma t n \vee \gamma^{\prime} t n\)
declare \(\operatorname{disj-def}[s i m p]\)
lemma disjI1[intro]:
    assumes \(\gamma t n\)
    shows \(\left(\gamma \vee^{c} \gamma^{\prime}\right)\) t \(n\) using assms by simp
```

```
lemma disjI2[intro]:
    assumes }\mp@subsup{\gamma}{}{\prime}t
    shows (\gamma \vee}\mp@subsup{\vee}{}{c}\mp@subsup{\gamma}{}{\prime})tn\mathrm{ using assms by simp
lemma disjE[elim!]:
    assumes ( }\gamma\mp@subsup{\vee}{}{c}\mp@subsup{\gamma}{}{\prime})t
        and }\gammatn\Longrightarrow\mp@subsup{\gamma}{}{\prime\prime}t
        and }\mp@subsup{\gamma}{}{\prime}tn\Longrightarrow\mp@subsup{\gamma}{}{\prime\prime}t
    shows }\mp@subsup{\gamma}{}{\prime\prime}tn\mathrm{ using assms by auto
```


D.6.3 Conjunction

definition conj $::((n a t \Rightarrow c n f) \Rightarrow$ nat \Rightarrow bool $) \Rightarrow((n a t \Rightarrow c n f) \Rightarrow$ nat \Rightarrow bool $)$
$\Rightarrow((n a t \Rightarrow c n f) \Rightarrow$ nat \Rightarrow bool $)\left(\right.$ infixl $\left.\wedge^{c} 20\right)$ where $\gamma \wedge^{c} \gamma^{\prime} \equiv \lambda t n . \gamma t n \wedge \gamma^{\prime} t n$
declare conj-def[simp]
lemma conjI[intro!]:
fixes n
assumes $\gamma t n$ and $\gamma^{\prime} t n$
shows $\left(\gamma \wedge^{c} \gamma^{\prime}\right) t n$ using assms by simp
lemma conjE[elim!]:
fixes n
assumes $\left(\gamma \wedge^{c} \gamma^{\prime}\right) t n$ and $\gamma t n \Longrightarrow \gamma^{\prime} t n \Longrightarrow \gamma^{\prime \prime} t n$
shows $\gamma^{\prime \prime} t n$ using assms by simp

D.6.4 Negation

definition not $::(($ nat $\Rightarrow c n f) \Rightarrow$ nat \Rightarrow bool $) \Rightarrow((n a t \Rightarrow c n f) \Rightarrow$ nat \Rightarrow bool $)\left(\neg^{c}-[19] 19\right)$ where $\neg^{c} \gamma \equiv \lambda t n$. $\neg \gamma t n$
declare not-def[simp]
lemma notI[intro!]:
assumes $\gamma t n \Longrightarrow$ False
shows $\left(\neg^{c} \gamma\right) t n$ using assms by auto
lemma notE[elim!]:
assumes $\left(\neg^{c} \gamma\right) t n$
and $\gamma t n$
shows $\gamma^{\prime} t n$ using assms by simp

D.6.5 Quantifiers

definition all :: (${ }^{\prime} a \Rightarrow((n a t \Rightarrow c n f) \Rightarrow$ nat \Rightarrow bool $\left.)\right)$
$\Rightarrow((n a t \Rightarrow c n f) \Rightarrow n a t \Rightarrow$ bool $)$ (binder \forall_{c} 10)
where all $P \equiv \lambda t n .(\forall y .(P$ y $t n))$

```
declare all-def[simp]
lemma allI[intro!]:
    assumes }\x.\gammaxt
    shows (\forallcx.\gammax)tn using assms by simp
lemma allE[elim!]:
    fixes n
    assumes ( }\mp@subsup{|}{c}{}x.\gammax)tn\mathrm{ and }\gammaxtn\Longrightarrow\mp@subsup{\gamma}{}{\prime}t
    shows }\mp@subsup{\gamma}{}{\prime}tn\mathrm{ using assms by simp
definition ex :: ('a m ((nat =>cnf) => nat => bool))
    =>((nat => cnf) => nat => bool) (binder \existsc 10)
    where ex P\equiv\lambdat n.(\existsy.(Pytn))
declare ex-def[simp]
lemma exI[intro!]:
    assumes }\gammaxt
    shows (\exists}\mp@subsup{c}{c}{x.\gammax)tn using assms HOL.exI by simp
lemma exE[elim!]:
    assumes (\existsc
    shows }\mp@subsup{\gamma}{}{\prime}tn\mathrm{ using assms HOL.exE by auto
```


D.6.6 Atomic Assertions

First we provide rules for basic behavior assertions.

```
definition \(c a::(c n f \Rightarrow\) bool \() \Rightarrow((n a t \Rightarrow c n f) \Rightarrow\) nat \(\Rightarrow\) bool \()\)
    where \(c a \varphi \equiv \lambda t n . \varphi(t n)\)
lemma caI[intro]:
    fixes \(n\)
    assumes \(\varphi(t n)\)
    shows (ca \(\varphi\) ) t \(n\) using assms ca-def by simp
lemma caE[elim]:
    fixes \(n\)
    assumes \((c a \varphi) t n\)
    shows \(\varphi(t n)\) using assms ca-def by simp
```


D.6.7 Next Operator

definition $n x t::((n a t \Rightarrow c n f) \Rightarrow$ nat $\Rightarrow b o o l) \Rightarrow((n a t \Rightarrow c n f) \Rightarrow n a t \Rightarrow b o o l)\left(O_{c}(-)\right.$ 24 $)$ where $O_{c}(\gamma) \equiv \lambda(t::($ nat $\Rightarrow c n f)) n . \gamma t($ Suc $n)$

D.6.8 Eventually Operator

definition evt $::((n a t \Rightarrow c n f) \Rightarrow$ nat \Rightarrow bool $) \Rightarrow((n a t \Rightarrow c n f) \Rightarrow$ nat \Rightarrow bool $)\left(\diamond_{c}(-)\right.$ 23 $)$
where $\diamond_{c}(\gamma) \equiv \lambda(t::(n a t \Rightarrow c n f)) n$. $\exists n^{\prime} \geq n . \gamma t n^{\prime}$

D.6.9 Globally Operator

definition glob $::(($ nat \Rightarrow cnf $) \Rightarrow$ nat \Rightarrow bool $) \Rightarrow((n a t \Rightarrow c n f) \Rightarrow$ nat \Rightarrow bool $)\left(\square_{c}(-)\right.$ 22) where $\square_{c}(\gamma) \equiv \lambda(t::(n a t \Rightarrow c n f)) n . \forall n^{\prime} \geq n . \gamma t n^{\prime}$
lemma globI[intro!]:
fixes n^{\prime}
assumes $\forall n \geq n^{\prime}$. $\gamma t n$
shows $\left(\square_{c}(\gamma)\right) t n^{\prime}$ using assms glob-def by simp
lemma globE[elim!]:
fixes $n n^{\prime}$
assumes $\left(\square_{c}(\gamma)\right) t n$ and $n^{\prime} \geq n$
shows $\gamma t n^{\prime}$ using assms glob-def by simp

D.6.10 Until Operator

```
definition until \(::((\) nat \(\Rightarrow\) cnf \() \Rightarrow\) nat \(\Rightarrow\) bool \() \Rightarrow((n a t \Rightarrow c n f) \Rightarrow\) nat \(\Rightarrow\) bool \()\)
    \(\Rightarrow((\) nat \(\Rightarrow\) cnf \() \Rightarrow\) nat \(\Rightarrow\) bool \()\left(\right.\) infixl \(\mathfrak{U}_{c}\) 21)
    where \(\gamma^{\prime} \mathfrak{U}_{c} \gamma \equiv \lambda(t::(n a t \Rightarrow c n f)) n\). \(\exists n^{\prime \prime} \geq n . \gamma t n^{\prime \prime} \wedge\left(\forall n^{\prime} \geq n . n^{\prime}<n^{\prime \prime} \longrightarrow \gamma^{\prime} t n^{\prime}\right)\)
lemma untilI[intro]:
    fixes \(n\)
    assumes \(\exists n^{\prime \prime} \geq n\). \(\gamma t n^{\prime \prime} \wedge\left(\forall n^{\prime} \geq n . n^{\prime}<n^{\prime \prime} \longrightarrow \gamma^{\prime} t n^{\prime}\right)\)
    shows \(\left(\gamma^{\prime} \mathfrak{U}_{c} \gamma\right) t n\) using assms until-def by simp
lemma untilE[elim]:
    fixes \(n\)
    assumes \(\left(\gamma^{\prime} \mathfrak{U}_{c} \gamma\right) t n\)
    shows \(\exists n^{\prime \prime} \geq n\). \(\gamma t n^{\prime \prime} \wedge\left(\forall n^{\prime} \geq n . n^{\prime}<n^{\prime \prime} \longrightarrow \gamma^{\prime} t n^{\prime}\right)\) using assms until-def by simp
```


D.6.11 Weak Until

definition wuntil $::((n a t \Rightarrow c n f) \Rightarrow$ nat \Rightarrow bool $) \Rightarrow((n a t \Rightarrow c n f) \Rightarrow$ nat \Rightarrow bool $)$ $\Rightarrow((n a t \Rightarrow c n f) \Rightarrow$ nat \Rightarrow bool $)\left(\right.$ infixl \mathfrak{W}_{c} 20) where $\gamma^{\prime} \mathfrak{W}_{c} \gamma \equiv \gamma^{\prime} \mathfrak{U}_{c} \gamma \vee^{c} \square_{c}\left(\gamma^{\prime}\right)$
lemma wUntilI[intro]:
fixes n
assumes $\left(\exists n^{\prime \prime} \geq n . \gamma t n^{\prime \prime} \wedge\left(\forall n^{\prime} \geq n . n^{\prime}<n^{\prime \prime} \longrightarrow \gamma^{\prime} t n^{\prime}\right)\right) \vee\left(\forall n^{\prime} \geq n . \gamma^{\prime} t n^{\prime}\right)$
shows $\left(\gamma^{\prime} \mathfrak{W}_{c} \gamma\right)$ t n using assms wuntil-def by auto
lemma wUntilE[elim]:
fixes $n n^{\prime}$
assumes $\left(\gamma^{\prime} \mathfrak{W}_{c} \gamma\right) t n$
shows $\left(\exists n^{\prime \prime} \geq n\right.$. $\left.\gamma t n^{\prime \prime} \wedge\left(\forall n^{\prime} \geq n . n^{\prime}<n^{\prime \prime} \longrightarrow \gamma^{\prime} t n^{\prime}\right)\right) \vee\left(\forall n^{\prime} \geq n . \gamma^{\prime} t n^{\prime}\right)$
proof -
from assms have $\left(\gamma^{\prime} \mathfrak{U}_{c} \gamma \vee^{c} \square_{c}\left(\gamma^{\prime}\right)\right)$ t n using wuntil-def by simp

```
    hence (\mp@subsup{\gamma}{}{\prime}}\mp@subsup{\mathfrak{U}}{c}{}\gamma)tn\vee(\mp@subsup{\square}{c}{}(\mp@subsup{\gamma}{}{\prime}))tn\mathrm{ by simp
    thus ?thesis
    proof
        assume ( }\mp@subsup{\gamma}{}{\prime}\mp@subsup{\mathfrak{U}}{c}{}\gamma)t
        hence }\exists\mp@subsup{n}{}{\prime\prime}\geqn.\gammat\mp@subsup{n}{}{\prime\prime}\wedge(\forall\mp@subsup{n}{}{\prime}\geqn.\mp@subsup{n}{}{\prime}<\mp@subsup{n}{}{\prime\prime}\longrightarrow\mp@subsup{\gamma}{}{\prime}tn)\mathrm{ by auto
        thus ?thesis by auto
    next
        assume ( }\mp@subsup{\square}{c}{}\mp@subsup{\gamma}{}{\prime})t
        hence }\forall\mp@subsup{n}{}{\prime}\geqn.\mp@subsup{\gamma}{}{\prime}t\mp@subsup{n}{}{\prime}\mathrm{ by auto
        thus ?thesis by auto
    qed
qed
lemma wUntil-Glob:
    assumes ( }\mp@subsup{\gamma}{}{\prime}\mp@subsup{\mathfrak{W}}{c}{}\gamma)t
    and (\squarec}(\mp@subsup{\square}{}{\prime}\longrightarrow\mp@subsup{\longrightarrow}{}{c}\mp@subsup{\gamma}{}{\prime\prime}))t
    shows ( }\mp@subsup{\gamma}{}{\prime\prime}\mp@subsup{\mathfrak{W}}{c}{}\gamma)t
proof
    from assms(1) have (\exists\mp@subsup{n}{}{\prime\prime}\geqn.\gammat n'\prime}\wedge(\forall\mp@subsup{n}{}{\prime}\geqn. \mp@subsup{n}{}{\prime}<\mp@subsup{n}{}{\prime\prime}\longrightarrow\mp@subsup{\gamma}{}{\prime}t\mp@subsup{n}{}{\prime}))\vee(\forall\mp@subsup{n}{}{\prime}\geqn.\mp@subsup{\gamma}{}{\prime}tn'
        using wUntilE by simp
    thus (\exists\mp@subsup{n}{}{\prime\prime}\geqn.\gammat n'\prime}\wedge(\forall\mp@subsup{n}{}{\prime}\geqn.\mp@subsup{n}{}{\prime}<\mp@subsup{n}{}{\prime\prime}\longrightarrow\mp@subsup{\gamma}{}{\prime\prime}t\mp@subsup{n}{}{\prime}))\vee(\forall\mp@subsup{n}{}{\prime}\geqn.\mp@subsup{\gamma}{}{\prime\prime}t\mp@subsup{n}{}{\prime}
    proof
    assume }\exists\mp@subsup{n}{}{\prime\prime}\geqn.\gammat\mp@subsup{n}{}{\prime\prime}\wedge(\forall\mp@subsup{n}{}{\prime}\geqn. \mp@subsup{n}{}{\prime}<\mp@subsup{n}{}{\prime\prime}\longrightarrow\mp@subsup{\gamma}{}{\prime}t\mp@subsup{n}{}{\prime}
    show (\exists\mp@subsup{n}{}{\prime\prime}\geqn.\gammat n'^}\wedge(\forall\mp@subsup{n}{}{\prime}\geqn.\mp@subsup{n}{}{\prime}<\mp@subsup{n}{}{\prime\prime}\longrightarrow\mp@subsup{\gamma}{}{\prime\prime}t\mp@subsup{n}{}{\prime}))\vee(\forall\mp@subsup{n}{}{\prime}\geqn.\mp@subsup{\gamma}{}{\prime\prime}t\mp@subsup{n}{}{\prime}
    proof -
        from «\exists n't\geqn.\gammat t n'\prime}\wedge(\forall\mp@subsup{n}{}{\prime}\geqn.\mp@subsup{n}{}{\prime}<\mp@subsup{n}{}{\prime\prime}\longrightarrow\mp@subsup{\gamma}{}{\prime}t\mp@subsup{n}{}{\prime})\rangle\mathrm{ obtain }\mp@subsup{n}{}{\prime\prime
            where }\mp@subsup{n}{}{\prime\prime}\geqn\mathrm{ and }\gammat\mp@subsup{n}{}{\prime\prime}\mathrm{ and a1: }\forall\mp@subsup{n}{}{\prime}\geqn.\mp@subsup{n}{}{\prime}<\mp@subsup{n}{}{\prime\prime}\longrightarrow\mp@subsup{\gamma}{}{\prime}t\mp@subsup{n}{}{\prime}\mathrm{ by auto
        moreover have }\forall\mp@subsup{n}{}{\prime}\geqn. \mp@subsup{n}{}{\prime}<\mp@subsup{n}{}{\prime\prime}\longrightarrow\mp@subsup{\gamma}{}{\prime\prime}t\mp@subsup{n}{}{\prime
        proof
            fix }\mp@subsup{n}{}{\prime
            show }\mp@subsup{n}{}{\prime}\geqn\longrightarrow\mp@subsup{n}{}{\prime}<\mp@subsup{n}{}{\prime\prime}\longrightarrow\mp@subsup{\gamma}{}{\prime\prime}t\mp@subsup{n}{}{\prime
            proof (rule HOL.impI[OF HOL.impI])
                assume n'\geqn and n'<n'\prime
                    with assms(2) have ( }\mp@subsup{\gamma}{}{\prime}\longrightarrow\mp@subsup{\longrightarrow}{}{c}\mp@subsup{\gamma}{}{\prime\prime})t\mp@subsup{n}{}{\prime}\mathrm{ using globE by simp
                    hence }\mp@subsup{\gamma}{}{\prime}t\mp@subsup{n}{}{\prime}\longrightarrow\mp@subsup{\gamma}{}{\prime\prime}t\mp@subsup{n}{}{\prime}\mathrm{ using impE by auto
```



```
                    ultimately show }\mp@subsup{\gamma}{}{\prime\prime}t\mp@subsup{n}{}{\prime}\mathrm{ by simp
            qed
        qed
        ultimately show ?thesis by auto
        qed
    next
        assume a1: }\forall\mp@subsup{n}{}{\prime}\geqn.\mp@subsup{\gamma}{}{\prime}t\mp@subsup{n}{}{\prime
        have }\forall\mp@subsup{n}{}{\prime}\geqn.\mp@subsup{\gamma}{}{\prime\prime}t\mp@subsup{n}{}{\prime
        proof
            fix }\mp@subsup{n}{}{\prime
            show }\mp@subsup{n}{}{\prime}\geqn\longrightarrow\mp@subsup{\gamma}{}{\prime\prime}t\mp@subsup{n}{}{\prime
            proof
                assume n'\geqn
```

```
            with assms(2) have ( }\mp@subsup{\gamma}{}{\prime}\longrightarrow\mp@subsup{\longrightarrow}{}{c}\mp@subsup{\gamma}{}{\prime\prime})t\mp@subsup{n}{}{\prime}\mathrm{ using globE by simp
            hence }\mp@subsup{\gamma}{}{\prime}t\mp@subsup{n}{}{\prime}\longrightarrow\mp@subsup{\gamma}{}{\prime\prime}t\mp@subsup{n}{}{\prime}\mathrm{ using impE by auto
            moreover from a1 \langlen'\geqn\rangle have }\mp@subsup{\gamma}{}{\prime}t\mp@subsup{n}{}{\prime}\mathrm{ by simp
            ultimately show }\mp@subsup{\gamma}{}{\prime\prime}t\mp@subsup{n}{}{\prime}\mathrm{ by simp
        qed
    qed
        thus(\exists\mp@subsup{n}{}{\prime\prime}\geqn.\gammat n'\prime}\wedge(\forall\mp@subsup{n}{}{\prime}\geqn.\mp@subsup{n}{}{\prime}<\mp@subsup{n}{}{\prime\prime}\longrightarrow\mp@subsup{\gamma}{}{\prime\prime}t\mp@subsup{n}{}{\prime}))\vee(\forall\mp@subsup{n}{}{\prime}\geqn.\mp@subsup{\gamma}{}{\prime\prime}tn)\mathrm{ by simp
    qed
qed
```


D. 7 Dynamic Components

To support the specification of patterns over dynamic architectures we provide a locale for dynamic components. It takes the following type parameters:

- id: a type for component identifiers
- cmp: a type for components
- cnf: a type for architecture configurations
locale dynamic-component $=$
fixes $t C M P$:: $i d \Rightarrow c n f \Rightarrow{ }^{\prime} c m p\left(\sigma_{-}(-)[0,110] 60\right)$
and active $::$ ' $i d \Rightarrow c n f \Rightarrow$ bool $(\xi-\xi-[0,110] 60)$
begin
The locale requires two parameters:
- $t C M P$ is an operator to obtain a component with a certain identifier from an architecture configuration.
- active is a predicate to assert whether a certain component is activated within an architecture configuration.

The locale provides some general properties about its parameters and introduces six important operators over configuration traces:

- An operator to extract the behavior of a certain component out of a given configuration trace.
- An operator to obtain the number of activations of a certain component within a given configuration trace.
- An operator to obtain the least point in time (before a certain point in time) from which on a certain component is not activated anymore.
- An operator to obtain the latest point in time where a certain component was activated.
- Two operators to map time-points between configuration traces and behavior traces.

Moreover, the locale provides several properties about the operators and their relationships.

```
lemma nact-active:
    fixes \(t:: n a t \Rightarrow c n f\)
        and \(n:: n a t\)
        and \(n^{\prime \prime}\)
        and \(i d\)
    assumes \(\left\{i d \xi_{t} n\right.\)
        and \(n^{\prime \prime} \geq n\)
        and \(\neg\left(\exists n^{\prime} \geq n . n^{\prime}<n^{\prime \prime} \wedge\left\{i d \xi_{t} n^{\prime}\right)\right.\)
    shows \(n=n^{\prime \prime}\)
    using assms le-eq-less-or-eq by auto
lemma nact-exists:
    fixes \(t:: n a t \Rightarrow c n f\)
    assumes \(\exists i \geq n\). \(\left\{c \xi_{t} i\right.\)
    shows \(\exists i \geq n .\{c\}_{t} i \wedge\left(\nexists k . n \leq k \wedge k<i \wedge \xi c \xi_{t} k\right)\)
proof -
    let \(\left.? L=L E A S T i .\left(i \geq n \wedge \xi_{c}\right\}_{t} i\right)\)
    from assms have ? \(L \geq n \wedge \xi c \xi_{t}\) ? \(L\) using LeastI[of \(\lambda x:: n a t\). \(\left.\left(x \geq n \wedge \xi c \xi_{t} x\right)\right]\) by auto
    moreover have \(\nexists k . n \leq k \wedge k<? L \wedge \xi c \xi_{t} k\) using not-less-Least by auto
    ultimately show ?thesis by blast
qed
lemma lActive-least:
    assumes \(\exists i \geq n . i<l\) length \(t \wedge \xi c \xi_{\text {lnth }} t i\)
    shows \(\exists i \geq n .(i<l\) length \(t \wedge \xi c\} l_{\text {lnth }} t i \wedge\left(\nexists k . n \leq k \wedge k<i \wedge k<l\right.\) length \(\left.\left.t \wedge \xi c \xi_{\text {lnth }} t k\right)\right)\)
proof -
    let \(? L=L E A S T i .(i \geq n \wedge i<\) llength \(t \wedge \xi c\}\) lnth \(t i)\)
    from assms have ? \(L \geq n \wedge ? L<\) llength \(t \wedge \xi c\}\) lnth \(t ? L\)
            using LeastI[of \(\lambda x:: n a t .(x \geq n \wedge x<\) llength \(\left.\left.t \wedge \xi c\}{ }_{l n}{ }^{n} t h t x\right)\right]\) by auto
    moreover have \(\nexists k . n \leq k \wedge k<\) llength \(t \wedge k<? L \wedge \xi c\} \ln t h t k\) using not-less-Least by auto
    ultimately show ?thesis by blast
qed
```


D. 8 Projection

In the following we introduce an operator which extracts the behavior of a certain component out of a given configuration trace.

```
definition proj:: 'id \(\Rightarrow(\) cnf llist \() \Rightarrow(' c m p ~ l l i s t)\left(\pi_{-}(-)[0,110] 60\right)\)
    where \(\operatorname{proj} c=\operatorname{lmap}\left(\lambda c n f .\left(\sigma_{c}(c n f)\right)\right) \circ(\) lfilter \((\) active \(c))\)
lemma proj-lnil [simp,intro]:
    \(\pi_{c}\left([]_{l}\right)=[]_{l}\) using proj-def by simp
```

```
lemma proj-lnull [simp]:
    \(\pi_{c}(t)=[]_{l} \longleftrightarrow(\forall k \in\) lset \(\left.t . \neg\} c \xi_{k}\right)\)
proof
    assume \(\pi_{c}(t)=[]_{l}\)
    hence lfilter (active \(c\) ) \(t=[]_{l}\) using proj-def lmap-eq-LNil by auto
    thus \(\forall k \in\) lset \(t\). \(\neg\left\{c \xi_{k}\right.\) using lfilter-eq-LNil[of active \(\left.c\right]\) by simp
next
    assume \(\forall k \in\) lset \(t . \neg\{c\}_{k}\)
    hence lfilter (active c) \(t=[]_{l}\) by simp
    thus \(\pi_{c}(t)=[]_{l}\) using proj-def by simp
qed
lemma proj-LCons [simp]:
    \(\pi_{i}\left(x \#_{l} x s\right)=\left(\right.\) if \(\xi_{\imath} \xi_{x}\) then \(\left(\sigma_{i}(x)\right) \#_{l}\left(\pi_{i}(x s)\right)\) else \(\left.\pi_{i}(x s)\right)\)
    using proj-def by simp
lemma proj-llength[simp]:
    llength \(\left(\pi_{c}(t)\right) \leq\) llength \(t\)
    using llength-lfilter-ile proj-def by simp
lemma proj-ltake:
    assumes \(\forall\left(n^{\prime}::\right.\) nat \() \leq\) llength \(t . n^{\prime} \geq n \longrightarrow\left(\neg\left\{c \xi_{\text {lnth }} t n^{\prime}\right)\right.\)
    shows \(\pi_{c}(t)=\pi_{c}\) (ltake \(n t\) ) using lfilter-ltake proj-def assms by (metis comp-apply)
lemma proj-finite-bound:
    assumes lfinite ( \(\pi_{c}\) (inf-llist t))
    shows \(\exists n . \forall n^{\prime}>n . \neg\left\{c \xi_{t} n^{\prime}\right.\)
    using assms lfilter-lfinite[of active c inf-llist t] proj-def by simp
```


D.8.1 Monotonicity and Continuity

```
lemma proj-mcont:
shows mcont lSup lprefix lSup lprefix (proj c)
proof -
have mcont lSup lprefix lSup lprefix \(\left(\lambda x\right.\). lmap \(\left(\lambda c n f . \sigma_{c}(c n f)\right)(\) lilter \(\left.(\operatorname{active} c) x)\right)\) by \(\operatorname{simp}\)
moreover have \(\left(\lambda x . \operatorname{lmap}\left(\lambda c n f . \sigma_{c}(c n f)\right)(\right.\) lfilter \((\) active \(\left.c) x)\right)=\)
\(\operatorname{lmap}\left(\lambda c n f . \sigma_{c}(c n f)\right) \circ\) lfilter (active \(\left.c\right)\) by auto
ultimately show ?thesis using proj-def by simp
qed
lemma proj-mcont2mcont:
assumes mcont lub ord lSup lprefix f
shows mcont lub ord lSup lprefix \(\left(\lambda x . \pi_{c}(f x)\right)\)
proof -
have mcont lSup lprefix lSup lprefix (proj c) using proj-mcont by simp
with assms show ?thesis using llist.mcont2mcont[of lSup lprefix proj c] by simp qed
```

```
lemma proj-mono-prefix[simp]:
    assumes lprefix t t'
    shows lprefix ( }\mp@subsup{\pi}{c}{}(t))(\mp@subsup{\pi}{c}{}(\mp@subsup{t}{}{\prime})
proof -
    from assms have lprefix (lfilter (active c) t) (lfilter (active c) t') using lprefix-lilterI by simp
    hence lprefix (lmap (\lambdacnf. }\mp@subsup{\sigma}{c}{}(cnf))(lfilter (active c) t))
        (lmap (\lambdacnf. }\mp@subsup{\sigma}{c}{}(cnf))(lfilter (active c) t')) using lmap-lprefix by simp
    thus ?thesis using proj-def by simp
qed
```


D.8.2 Finiteness

lemma proj-finite[simp]:
assumes lfinite t
shows lfinite $\left(\pi_{c}(t)\right)$
using assms proj-def by simp
lemma proj-finite2:
assumes $\forall\left(n^{\prime}::\right.$ nat $) \leq$ llength $t . n^{\prime} \geq n \longrightarrow\left(\neg\left\{c \xi_{\text {lnth }} t n^{\prime}\right)\right.$
shows lfinite $\left(\pi_{c}(t)\right)$ using assms proj-ltake proj-finite by simp
lemma proj-append-lfinite[simp]:
fixes $t t^{\prime}$
assumes lfinite t
shows $\pi_{c}\left(t @_{l} t^{\prime}\right)=\left(\pi_{c}(t)\right) @_{l}\left(\pi_{c}\left(t^{\prime}\right)\right)($ is ? $/ h s=$? $r h s)$
proof -
have ?lhs $=\left(\operatorname{lmap}\left(\lambda c n f . \sigma_{c}(c n f)\right) \circ(\right.$ lilter $($ active $\left.c))\right)\left(t @_{l} t^{\prime}\right)$ using proj-def by simp
also have $\ldots=\operatorname{lmap}\left(\lambda c n f . \sigma_{c}(c n f)\right)($ liflter (active $\left.c)\left(t @_{l} t^{\prime}\right)\right)$ by simp
also from assms have $\ldots=\operatorname{lmap}\left(\lambda c n f . \sigma_{c}(c n f)\right)$
$\left((\right.$ lfilter $($ active $c) t) @_{l}\left(\right.$ lfilter $($ active $\left.\left.c) t^{\prime}\right)\right)$ by simp
also have $\ldots=\left(@_{l}\right)\left(\operatorname{lmap}\left(\lambda c n f . \sigma_{c}(c n f)\right)(\right.$ lfilter $($ active $\left.c) t)\right)$
(lmap ($\left.\lambda c n f . \sigma_{c}(c n f)\right)$ (lfilter (active c) $\left.t^{\prime}\right)$) using lmap-lappend-distrib by simp
also have $\ldots=$?rhs using proj-def by simp
finally show ?thesis .
qed
lemma proj-one:
assumes $\exists i$. $i<l$ length $t \wedge \xi c\}{ }_{l n t h} t i$
shows llength $\left(\pi_{c}(t)\right) \geq 1$
proof -
from assms have $\exists x \in$ lset t. $\{c\} x$ using lset-conv-lnth by force
hence \neg lfilter $\left(\lambda k .\left\{c \xi_{k}\right) t=[]_{l}\right.$ using lfilter-eq-LNil[of $\left(\lambda k .\left\{c \xi_{k}\right)\right]$ by blast
hence $\neg \pi_{c}(t)=[]_{l}$ using proj-def by fastforce
thus ?thesis by (simp add: ileI1 lnull-def one-eSuc)
qed

D.8.3 Projection not Active

lemma proj-not-active[simp]:
assumes enat $n<$ llength t

```
    and }\neg{c\mp@subsup{}}{lnth t n}{n
    shows }\mp@subsup{\pi}{c}{}(\mathrm{ ltake (Suc n) t) = 和(ltake n t) (is ?lhs = ?rhs)
proof -
    from assms have ltake (enat (Suc n)) t=(ltake (enat n) t) @ ((lnth t n) #l [ [] )
        using ltake-Suc-conv-snoc-lnth by blast
    hence ?lhs = \mp@subsup{\pi}{c}{}((ltake (enat n) t) @ ( (lnth t n) #l [] l)) by simp
    moreover have ... = ( }\mp@subsup{\pi}{c}{}(l\mathrm{ ltake (enat n) t)) @ }\mp@subsup{l}{l}{}(\mp@subsup{\pi}{c}{}((lnth t n) #l []l)) by simp
    moreover from assms have }\mp@subsup{\pi}{c}{}((\mathrm{ lnth t n) # # []l) = []l by simp
    ultimately show ?thesis by simp
qed
lemma proj-not-active-same:
    assumes enat n \leq ( n'::enat)
        and \neglfinite t\vee n'-1<llength t
        and ##k. k\geqn}\wedgek<\mp@subsup{n}{}{\prime}\wedgek<llength t\wedge{c} lnth t k
    shows }\mp@subsup{\pi}{c}{}(\mathrm{ ltake n't)}=\mp@subsup{\pi}{c}{\prime}(\mathrm{ ltake nt)
proof -
    have }\mp@subsup{\pi}{c}{}(\mathrm{ ltake ( }n+(\mp@subsup{n}{}{\prime}-n))t)=\mp@subsup{\pi}{c}{}((\mathrm{ ltake n t) @ }ll(ltake ( (n'-n) (ldrop n t)))
    by (simp add: ltake-plus-conv-lappend)
    hence }\mp@subsup{\pi}{c}{}(\mathrm{ ltake }(n+(\mp@subsup{n}{}{\prime}-n))t)
        (\pi
    moreover have }\mp@subsup{\pi}{c}{}(\mathrm{ ltake }(\mp@subsup{n}{}{\prime}-n)(ldrop n t))=[]
    proof -
        have }\forallk\in{lnth (ltake (n' - enat n) (ldrop (enat n) t)) na |
```



```
    proof
            fix }k\mathrm{ assume }k\in{lnth (ltake ( n' - enat n) (ldrop (enat n) t)) na |
            na. enat na<llength (ltake ( }\mp@subsup{n}{}{\prime}-\mathrm{ enat n) (ldrop (enat n) t))}
            then obtain k' where enat }\mp@subsup{k}{}{\prime}<llength (ltake ( n' - enat n) (ldrop (enat n) t)
            and k=lnth (ltake ( }\mp@subsup{n}{}{\prime}-\mathrm{ enat n) (ldrop (enat n) t)) k' by auto
        have enat ( }\mp@subsup{k}{}{\prime}+n)<llength 
        proof -
            from <enat k}\mp@subsup{k}{}{\prime}<llength (ltake ( n' - enat n) (ldrop (enat n) t))>
                    have enat }\mp@subsup{k}{}{\prime}<\mp@subsup{n}{}{\prime}-n\mathrm{ by simp
            hence enat k'+n< n' using assms(1) enat-min by auto
            show ?thesis
            proof cases
                    assume linite t
                    with }\neg\mathrm{ lfinite }t\vee\mp@subsup{n}{}{\prime}-1<llength t\rangle have n'-1<llength t by sim
                    hence }\mp@subsup{n}{}{\prime}<e\mathrm{ eSuc (llength t) by (metis eSuc-minus-1 enat-minus-mono1 leD leI)
                    hence n'\leq llength t using eSuc-ile-mono ileI1 by blast
                    with <enat k'}+n<n'\ show ?thesis by (simp add: add.commute
            next
                    assume }\neg\mathrm{ lfinite }
                    hence llength t=\infty using not-lfinite-llength by auto
                    thus?thesis by simp
            qed
        qed
        moreover have k= lnth t ( }\mp@subsup{k}{}{\prime}+n
```

```
    proof -
    from <enat \(k^{\prime}<\) llength (ltake \(\left(n^{\prime}-\right.\) enat \(\left.n\right)(\) ldrop \((\) enat \(n) t)\) )
        have enat \(k^{\prime}<n^{\prime}-\) enat \(n\) by auto
        hence \(\operatorname{lnth}\left(l t a k e\left(n^{\prime}-\right.\right.\) enat \(\left.\left.n\right)(l d r o p(e n a t n) t)\right) k^{\prime}=\operatorname{lnth}(l d r o p(e n a t n) t) k^{\prime}\)
        using lnth-ltake of \(k^{\prime} n^{\prime}-\) enat \(\left.n\right]\) by simp
        with <enat \(\left(k^{\prime}+n\right)<\) llength \(\left.t\right\rangle\) show ?thesis using lnth-ldrop \(\left[\right.\) of \(\left.n k^{\prime} t\right]\)
        using \(\left\langle k=\operatorname{lnth}\left(l t a k e\left(n^{\prime}-\right.\right.\right.\) enat \(\left.n\right)(l d r o p(\) enat \(\left.\left.n) t)\right) k^{\prime}\right\rangle\) by (simp add: add.commute)
    qed
    moreover from 〈enat \(n \leq\left(n^{\prime}::\right.\) enat \(\left.)\right\rangle\) have \(k^{\prime}+\) the-enat \(n \geq n\) by auto
    moreover from <enat \(k^{\prime}<l l e n g t h ~(l t a k e ~(~ n ' ~ e n a t ~ n) ~(l d r o p ~(e n a t ~ n) ~ t)) ~>~\)
        have \(k^{\prime}+n<n^{\prime}\) using assms(1) enat-min by auto
    ultimately show \(\neg\{c\} \xi_{k}\) using \(\not \nexists k . k \geq n \wedge k<n^{\prime} \wedge k<\) llength \(\left.t \wedge \xi c\right\} \ln t h t k^{\prime}\) by simp
qed
hence \(\forall k \in\) lset (ltake \(\left(n^{\prime}-n\right)(\) ldrop \(n t)\) ). \(\neg\left\{c \xi_{k}\right.\)
    using lset-conv-lnth \(\left[\right.\) of (ltake ( \(n^{\prime}-\) enat \(\left.n\right)(l d r o p(\) enat \(n) t)\) )] by simp
    thus ?thesis using proj-lnull by auto
qed
moreover from assms have \(n+\left(n^{\prime}-n\right)=n^{\prime}\)
by (meson enat.distinct(1) enat-add-sub-same enat-diff-cancel-left enat-le-plus-same(1) less-imp-le)
ultimately show ?thesis by simp
```

qed

D.8.4 Projection Active

lemma proj-active[simp]:
assumes enat $i<$ llength $t\{c\}$ lnth $t i$
shows $\pi_{c}($ ltake $($ Suc $i) t)=\left(\pi_{c}(\right.$ ltake $\left.\left.i t)\right) @_{l}\left(\left(\sigma_{c}(\operatorname{lnth} t i)\right) \#_{l}\right]_{l}\right)($ is ?lhs $=$?rhs $)$
proof -
from assms have ltake (enat (Suc i)) $t=($ ltake (enat $i) t) @_{l}\left((\right.$ lnth $\left.t i) \#_{l}[]_{l}\right)$
using ltake-Suc-conv-snoc-lnth by blast
hence ?lhs $=\pi_{c}\left((\right.$ ltake $($ enat $\left.i) t) @_{l}\left((\operatorname{lnth} t i) \#_{l}[]_{l}\right)\right)$ by simp
moreover have $\ldots=\left(\pi_{c}(\right.$ ltake $($ enat $\left.i) t)\right) @_{l}\left(\pi_{c}\left((\operatorname{lnth} t i) \#_{l}[]_{l}\right)\right)$ by simp
moreover from assms have $\pi_{c}\left((\operatorname{lnth} t i) \#_{l}[]_{l}\right)=\left(\sigma_{c}(\operatorname{lnth} t i)\right) \#_{l}[]_{l}$ by simp
ultimately show ?thesis by simp
qed
lemma proj-active-append:
assumes a1: $(n:: n a t) \leq i$
and a2: enat $i<\left(n^{\prime}::\right.$ enat $)$
and a3: ᄀ linite $t \vee n^{\prime}-1<$ llength t
and $a 4:\{c\} \ln t h t i$
and $\forall i^{\prime} .\left(n \leq i^{\prime} \wedge\right.$ enat $i^{\prime}<n^{\prime} \wedge i^{\prime}<$ llength $\left.t \wedge \xi c \xi_{\text {lnth }} t i^{\prime}\right) \longrightarrow\left(i^{\prime}=i\right)$
shows $\pi_{c}\left(\right.$ ltake $\left.n^{\prime} t\right)=\left(\pi_{c}(\right.$ ltake $\left.n t)\right) @_{l}\left(\left(\sigma_{c}(\operatorname{lnth} t i)\right) \#_{l}[]_{l}\right)($ is ?lhs $=$?rhs $)$
proof -
have ?lhs $=\pi_{c}($ ltake $($ Suc i) $t)$
proof -
from a2 have Suc $i \leq n^{\prime}$ by (simp add: Suc-ile-eq)
moreover from $a 3$ have \neg lfinite $t \vee n^{\prime}-1<$ llength t by simp
moreover have $\nexists k$. enat $k \geq$ enat $($ Suc $\left.i) \wedge k<n^{\prime} \wedge k<l l e n g t h ~ t \wedge \xi c\right\} \ln t h t k$

```
    proof
        assume \(\exists k\). enat \(k \geq\) enat (Suc \(i) \wedge k<n^{\prime} \wedge k<\) llength \(t \wedge \xi c \xi_{\text {lnth }} t k\)
        then obtain \(k\) where enat \(k \geq e n a t\) (Suc \(i\) ) and \(k<n^{\prime}\) and \(k<l l e n g t h ~ t\) and \(\{c\} \operatorname{lnth} t k\)
            by blast
        moreover from <enat \(k \geq\) enat (Suc \(i\) ) > have enat \(k \geq n\)
            using assms by (meson dual-order.trans enat-ord-simps(1) le-SucI)
        ultimately have enat \(k=\) enat \(i\) using assms using enat-ord-simps(1) by blast
        with <enat \(k \geq\) enat (Suc \(i\) ) > show False by simp
    qed
    ultimately show ?thesis using proj-not-active-same \([\) of Suc in't \(c\) ] by simp
qed
also have \(\ldots=\left(\pi_{c}(\right.\) ltake \(\left.i t)\right) @_{l}\left(\left(\sigma_{c}(\operatorname{lnth} t i)\right) \#_{l}[]_{l}\right)\)
proof -
    have \(i<\) llength \(t\)
    proof cases
        assume lfinite \(t\)
        with \(a 3\) have \(n^{\prime}-1<\) llength \(t\) by simp
        hence \(n^{\prime} \leq\) llength \(t\) by (metis eSuc-minus-1 enat-minus-mono1 ileI1 not-le)
        with \(a 2\) show enat \(i<\) llength \(t\) by simp
    next
        assume \(\neg\) lfinite \(t\)
        thus ?thesis by (metis enat-ord-code(4) llength-eq-infty-conv-lfinite)
    qed
    with \(a 4\) show ?thesis by simp
    qed
    also have \(\ldots=\) ? \(r h s\)
    proof -
    from a1 have enat \(n \leq\) enat \(i\) by simp
    moreover from a2 a3 have \(\neg\) lfinite \(t \vee\) enat \(i-1<\) llength \(t\)
        using enat-minus-mono1 less-imp-le order.strict-trans1 by blast
    moreover have \(\nexists k . k \geq n \wedge\) enat \(k<\) enat \(i \wedge\) enat \(k<\) llength \(t \wedge\{c\}\) lnth \(t k\)
    proof
        assume \(\exists k . k \geq n \wedge\) enat \(k<\) enat \(i \wedge\) enat \(k<\) llength \(t \wedge \xi c\}\) lnth \(t k\)
        then obtain \(k\) where \(k \geq n\) and enat \(k<\) enat \(i\) and enat \(k<l l e n g t h ~ t a n d ~\{c\} \operatorname{lnth} t k\)
            by blast
        moreover from 〈enat \(k<\) enat \(i\rangle\) have enat \(k<n^{\prime}\) using assms dual-order.strict-trans
            by blast
        ultimately have enat \(k=\) enat \(i\) using assms by \(\operatorname{simp}\)
        with «enat \(k<\) enat \(i\) s show False by simp
    qed
    ultimately show ?thesis using proj-not-active-same[of nitc] by simp
    qed
    finally show ?thesis by simp
qed
```


D.8.5 Same and not Same

lemma proj-same-not-active:
assumes $n \leq n^{\prime}$
and enat $\left(n^{\prime}-1\right)<$ llength t
and $\pi_{c}\left(\right.$ ltake $\left.n^{\prime} t\right)=\pi_{c}($ ltake $n t)$
shows $\left.\nexists k . k \geq n \wedge k<n^{\prime} \wedge \xi c\right\} \ln t h t k$
proof
assume $\exists k . k \geq n \wedge k<n^{\prime} \wedge \xi c \xi_{\ln t h} t k$
then obtain i where $i \geq n$ and $i<n^{\prime}$ and $\left.\} c\right\} l_{n t h} t i$ by blast
moreover from <enat $\left(n^{\prime}-1\right)<$ llength $\left.t\right\rangle$ and $\left\langle i<n^{\prime}\right\rangle$ have $i<$ llength t
by (metis diff-Suc-1 dual-order.strict-trans enat-ord-simps(2) lessE)
ultimately have $\pi_{c}($ ltake $($ Suc i) $t)=$
$\left(\pi_{c}(\right.$ ltake $\left.i t)\right) @_{l}\left(\left(\sigma_{c}(\right.\right.$ lnth $\left.\left.t i)\right) \#_{l}[]_{l}\right)$ by simp
moreover from $\left\langle i<n^{\prime}\right\rangle$ have Suc $i \leq n^{\prime}$ by simp
hence lprefix $\left(\pi_{c}(\right.$ ltake $\left.(S u c i) t)\right)\left(\pi_{c}\left(\right.\right.$ ltake $\left.\left.n^{\prime} t\right)\right)$ by simp
then obtain $t l$ where $\pi_{c}\left(\right.$ ltake $\left.n^{\prime} t\right)=\left(\pi_{c}(\right.$ ltake $($ Suc $\left.i) t)\right) @_{l} t l$
using lprefix-conv-lappend by auto
moreover from $\langle n \leq i\rangle$ have lprefix $\left(\pi_{c}\right.$ (ltake $\left.\left.n t\right)\right)\left(\pi_{c}(\right.$ ltake $\left.i t)\right)$ by simp
hence lprefix $\left(\pi_{c}(\right.$ ltake $\left.n t)\right)\left(\pi_{c}(\right.$ ltake $\left.i t)\right)$ by simp
then obtain $h d$ where $\pi_{c}($ ltake $i t)=\left(\pi_{c}(\right.$ ltake $\left.n t)\right) @_{l} h d$
using lprefix-conv-lappend by auto
ultimately have π_{c} (ltake $\left.n^{\prime} t\right)=$
$\left(\left(\left(\pi_{c}(\right.\right.\right.$ ltake $\left.\left.n t)\right) @_{l} h d\right) @_{l}\left(\left(\sigma_{c}(\right.\right.$ lnth $\left.\left.\left.t i)\right) \#_{l}[]_{l}\right)\right) @_{l} t l$ by simp
also have $\ldots=\left(\left(\pi_{c}(l\right.\right.$ ltake $\left.\left.n t)\right) @_{l} h d\right) @_{l}\left(\left(\sigma_{c}(\right.\right.$ lnth $\left.\left.t i)\right) \#_{l} t l\right)$
using lappend-snocL1-conv-LCons2[of $\left(\pi_{c}(\right.$ ltake $\left.n t)\right) @_{l} h d \sigma_{c}($ lnth $\left.t i)\right]$ by simp
also have $\ldots=\left(\pi_{c}(\right.$ ltake $\left.n t)\right) @_{l}\left(h d @_{l}\left(\left(\sigma_{c}(\operatorname{lnth} t i)\right) \#_{l} t l\right)\right)$
using lappend-assoc by auto
also have $\pi_{c}\left(\right.$ ltake $\left.n^{\prime} t\right)=\left(\pi_{c}\left(\right.\right.$ ltake $\left.\left.n^{\prime} t\right)\right) @_{l}[]_{l}$ by simp
finally have $\left(\pi_{c}\left(l\right.\right.$ take $\left.\left.n^{\prime} t\right)\right) @_{l}[]_{l}=\left(\pi_{c}(l\right.$ ltake $\left.n t)\right) @_{l}\left(h d @_{l}\left(\left(\sigma_{c}(\operatorname{lnth} t i)\right) \#_{l} t l\right)\right)$.
moreover from $\operatorname{assms}(3)$ have llength $\left(\pi_{c}\left(\right.\right.$ ltake $\left.\left.n^{\prime} t\right)\right)=$ llength $\left(\pi_{c}(\right.$ ltake $\left.n t)\right)$ by simp
ultimately have lfinite $\left(\pi_{c}\left(l\right.\right.$ lake $\left.\left.n^{\prime} t\right)\right) \longrightarrow[]_{l}=h d @_{l}\left(\left(\sigma_{c}(\operatorname{lnth} t i)\right) \#_{l} t l\right)$
using assms(3) lappend-eq-lappend-conv[of $\pi_{c}\left(\right.$ ltake $\left.n^{\prime} t\right) \pi_{c}($ ltake $\left.n t)[]_{l}\right]$ by simp
moreover have lfinite (π_{c} (ltake $\left.n^{\prime} t\right)$) by simp
ultimately have []$_{l}=h d @_{l}\left(\left(\sigma_{c}(\ln t h t i)\right) \#_{l} t l\right)$ by simp
hence $\left.\left(\sigma_{c}(\operatorname{lnth} t i)\right) \#_{l} t l=\right\rceil_{l}$ using LNil-eq-lappend-iff by auto thus False by simp
qed
lemma proj-not-same-active:
assumes enat $n \leq\left(n^{\prime}::\right.$ enat $)$
and $(\neg$ lininite $t) \vee n^{\prime}-1<$ llength t
and $\neg\left(\pi_{c}\left(\right.\right.$ ltake $\left.n^{\prime} t\right)=\pi_{c}($ ltake $\left.n t)\right)$
shows $\exists k . k \geq n \wedge k<n^{\prime} \wedge$ enat $k<$ llength $t \wedge \xi c \xi_{l n t h} t k$
proof (rule ccontr)
assume $\neg\left(\exists k . k \geq n \wedge k<n^{\prime} \wedge\right.$ enat $\left.\left.k<l l e n g t h ~ t \wedge \xi c\right\} \operatorname{lnth} t k\right)$
have $\pi_{c}\left(\right.$ ltake $\left.n^{\prime} t\right)=\pi_{c}($ ltake $($ enat $n) t)$
proof cases
assume lfinite t
hence llength $t \neq \infty$ by (simp add: lfinite-llength-enat)
hence enat (the-enat (llength $t)$) $=$ llength t by auto
with assms $\left\langle\neg\left(\exists k \geq n . k<n^{\prime} \wedge\right.\right.$ enat $k<$ llength $\left.\left.t \wedge \xi c \xi_{l n t h} t k\right)\right\rangle$
show ?thesis using proj-not-active-same $\left[\right.$ of $\left.n n^{\prime} t c\right]$ by simp

```
    next
    assume \neglfinite t
    with assms <\neg(\existsk\geqn.k< n'^ enat k< llength t ^ {c}lnth t k)>
        show ?thesis using proj-not-active-same[of n n't c] by simp
    qed
    with assms show False by simp
qed
```


D. 9 Activations

We also introduce an operator to obtain the number of activations of a certain component within a given configuration trace.

```
definition \(n A c t::^{\prime}\) id \(\Rightarrow\) enat \(\Rightarrow(\) cnf llist \() \Rightarrow\) enat \((\langle-\#--\rangle)\) where
\(\langle c \# n t\rangle \equiv\) llength \(\left(\pi_{c}(\right.\) ltake \(\left.n t)\right)\)
lemma nAct- \(O[\) simp \(]\) :
    \(\left\langle c \#_{0} t\right\rangle=0\) by (simp add: nAct-def)
lemma \(n A c t-N I L[s i m p]\) :
    \(\left\langle c \# n[]_{l}\right\rangle=0\) by (simp add: \(\left.n A c t-d e f\right)\)
lemma nAct-Null:
    assumes llength \(t \geq n\)
            and \(\langle c \# n t\rangle=0\)
            shows \(\forall i<n\). \(\neg\left\{c \xi_{\text {lnth }} t i\right.\)
proof -
    from assms have lnull ( \(\pi_{c}\) (ltake \(n t\) )) using \(n\) Act-def lnull-def by simp
    hence \(\pi_{c}(\) ltake \(\left.n t)=\right\rceil_{l}\) using lnull-def by blast
    hence ( \(\forall k \in\) lset (ltake \(n t\) ). \(\neg\left\{c \xi_{k}\right.\) ) by simp
    show ?thesis
    proof (rule ccontr)
        assume \(\neg(\forall i<n . \neg\{c\}\) lnth \(t i)\)
        then obtain \(i\) where \(i<n\) and \(\{c\} l_{n t h} t i\) by blast
        moreover have enat \(i<l l e n g t h(l t a k e ~ n t) \wedge \operatorname{lnth}(\) ltake \(n t) i=(\operatorname{lnth} t i)\)
        proof
            from 〈llength \(t \geq n\) 〉 have \(n=\min n\) (llength \(t\) ) using min.orderE by auto
            hence llength (ltake \(n t)=n\) by simp
            with \(\langle i<n\rangle\) show enat \(i<\) llength (ltake \(n t\) ) by auto
            from \(\langle i<n\rangle\) show lnth (ltake \(n t) i=(\) lnth \(t i)\) using lnth-ltake by auto
        qed
        hence (lnth \(t i \in \operatorname{lset}(\) ltake \(n t)\) ) using in-lset-conv-lnth[of lnth \(t i\) ltake \(n t]\) by blast
        ultimately show False using \(\left\langle(\forall k \in\right.\) lset (ltake \(n t)\). \(\left.\neg\left\{c \xi_{k}\right)\right\rangle\) by simp
    qed
qed
lemma nAct-ge-one[simp]:
    assumes llength \(t \geq n\)
    and \(i<n\)
```

```
            and {c}lnth ti
    shows }\langlec#\mp@subsup{#}{n}{}t\rangle\geq\mathrm{ enat 1
proof (rule ccontr)
    assume }\neg(\langlec#\mp@subsup{#}{n}{}t\rangle\geq\mathrm{ enat 1)
    hence }\langlec#nt\rangle<enat 1 by sim
    hence }\langlec#\mp@subsup{n}{n}{}t\rangle<1\mathrm{ using enat-1 by simp
    hence }\langlec#\mp@subsup{#}{n}{}t\rangle=0\mathrm{ using Suc-ile-eq \ᄀ enat 1 }\leq\langlec#n t\rangle\ranglezero-enat-def by aut
    with <llength t\geqn> have }\foralli<n.\neg{c}lnth ti using nAct-Null by sim
    with assms show False by simp
qed
lemma nAct-finite[simp]:
    assumes n\not=\infty
    shows \existsn'.}\langlec#nt\rangle= enat n'
proof -
    from assms have lfinite (ltake nt) by simp
    hence lfinite ( }\mp@subsup{\pi}{c}{}(\mathrm{ ltake n t)) by simp
    hence }\exists\mp@subsup{n}{}{\prime}\mathrm{ . llength ( }\mp@subsup{\pi}{c}{}(\mathrm{ ltake n t)})=\mathrm{ enat }\mp@subsup{n}{}{\prime
        using linite-llength-enat[of }\mp@subsup{\pi}{c}{}(\mathrm{ ltake n t)] by simp
    thus ?thesis using nAct-def by simp
qed
lemma nAct-enat-the-nat[simp]:
    assumes n\not=\infty
    shows enat (the-enat (\langlec#n t\rangle)) = \langlec #nt\rangle
proof -
    from assms have }\langlec#nt\rangle\not=\infty\mathrm{ by simp
    thus ?thesis using enat-the-enat by simp
qed
```


D.9.1 Monotonicity and Continuity

lemma nAct-mcont:
shows mcont lSup lprefix Sup (\leq) (nAct c n)
proof -
have mcont lSup lprefix lSup lprefix (ltake n) by simp
hence mcont lSup lprefix lSup lprefix ($\lambda t . \pi_{c}$ (ltake $n t$))
using proj-mcont2mcont[of lSup lprefix (ltake n)] by simp
hence mcont lSup lprefix Sup $(\leq)\left(\lambda\right.$ t. llength $\left(\pi_{c}(\right.$ ltake $\left.\left.n t)\right)\right)$ by simp
moreover have $n A c t$ c $n=\left(\lambda t\right.$. llength $\left(\pi_{c}(\right.$ ltake $\left.n t)\right)$ using $n A c t-d e f$ by auto
ultimately show ?thesis by simp
qed
lemma nAct-mono:
assumes $n \leq n^{\prime}$
shows $\left\langle c \#_{n} t\right\rangle \leq\left\langle c \#_{n^{\prime}} t\right\rangle$
proof -
from assms have lprefix (ltake $n t$) (ltake n^{\prime} t) by simp
hence lprefix $\left(\pi_{c}\right.$ (ltake $\left.\left.n t\right)\right)\left(\pi_{c}\left(\right.\right.$ ltake $\left.\left.n^{\prime} t\right)\right)$ by simp

```
    hence llength ( }\mp@subsup{\pi}{c}{}(\mathrm{ ltake n t) ) < llength ( }\mp@subsup{\pi}{c}{}(\mathrm{ ltake n' t))
    using lprefix-llength-le[of ( }\mp@subsup{\pi}{c}{}(\mathrm{ ltake n t))] by simp
    thus ?thesis using nAct-def by simp
qed
lemma nAct-strict-mono-back:
    assumes }\langlec#n\mp@subsup{n}{}{t}\rangle<\langlec\mp@subsup{#}{\mp@subsup{n}{}{\prime}}{t}
        shows n< n'
proof (rule ccontr)
    assume }\negn<\mp@subsup{n}{}{\prime
    hence n\geq\mp@subsup{n}{}{\prime}}\mathrm{ by simp
    hence }\langlec#\mp@subsup{#}{n}{}t\rangle\geq\langlec#\mp@subsup{#}{\mp@subsup{n}{}{\prime}}{\prime}\rangle\mathrm{ \ using nAct-mono by simp
    thus False using assms by simp
qed
```


D.9.2 Not Active

lemma nAct-not-active[simp]:
fixes $n:: n a t$
and $n^{\prime}:: n a t$
and $t::($ cnf llist)
and $c:: ' i d$
assumes enat $i<$ llength t
and $\neg\{c\} \ln t h t i$
shows $\left\langle c \#_{\text {Suc } i t\rangle} t\right\rangle=\left\langle \#_{i} t\right\rangle$
proof -
from assms have π_{c} (ltake $($ Suc $\left.i) t\right)=\pi_{c}$ (ltake $\left.i t\right)$ by simp
hence llength $\left(\pi_{c}(\right.$ ltake $($ enat $\left.(S u c i)) t)\right)=\operatorname{llength}\left(\pi_{c}(\right.$ ltake $\left.i t)\right)$ by simp
moreover have llength $\left(\pi_{c}\right.$ (ltake it)) $\neq \infty$
using llength-eq-infty-conv-lfinite $\left[\right.$ of π_{c} (ltake (enat i) t)] by simp
ultimately have llength $\left(\pi_{c}\right.$ (ltake $($ Suc $\left.\left.i) t\right)\right)=$ llength $\left(\pi_{c}(\right.$ ltake $\left.i t)\right)$
using the-enat-eSuc by simp
with nAct-def show ?thesis by simp
qed
lemma nAct-not-active-same:
assumes enat $n \leq\left(n^{\prime}::\right.$ enat $)$
and $n^{\prime}-1<$ llength t
and $\nexists k$. enat $\left.k \geq n \wedge k<n^{\prime} \wedge \xi c\right\} \ln$ th $t k$
shows $\left\langle c \#_{n^{\prime}} t\right\rangle=\left\langle c \#_{n} t\right\rangle$
using assms proj-not-active-same nAct-def by simp

D.9.3 Active

lemma nAct-active[simp]:
fixes n ::nat
and $n^{\prime}::$ nat
and $t::($ cnf llist $)$
and $c:: ' i d$
assumes enat $i<$ llength t

```
    and \(\{c\} \ln\) th \(t i\)
    shows \(\left\langle c \#_{S u c}{ }^{t} t\right\rangle=e S u c\left(\left\langle c \#_{i} t\right\rangle\right)\)
proof -
    from assms have \(\pi_{c}(\) ltake \((\) Suc i) \(t)=\)
        \(\left(\pi_{c}(\right.\) ltake \(\left.i t)\right) @_{l}\left(\left(\sigma_{c}(\operatorname{lnth} t i)\right) \#_{l}[]_{l}\right)\) by simp
    hence llength \(\left(\pi_{c}(\right.\) ltake \((\) enat \((\) Suc \(\left.i)) t)\right)=e \operatorname{Suc}\left(\right.\) llength \(\left(\pi_{c}(\right.\) ltake \(\left.\left.i t)\right)\right)\)
        using plus-1-eSuc one-eSuc by simp
    moreover have llength \(\left(\pi_{c}\right.\) (ltake \(\left.\left.i t\right)\right) \neq \infty\)
        using llength-eq-infty-conv-lfinite[of \(\pi_{c}\) (ltake (enat i) t)] by simp
    ultimately have llength \(\left(\pi_{c}(\right.\) ltake \(\left.(S u c i) t)\right)=e \operatorname{Suc}\left(\right.\) llength \(\left(\pi_{c}(\right.\) ltake \(\left.\left.i t)\right)\right)\)
        using the-enat-eSuc by simp
    with nAct-def show ?thesis by simp
qed
lemma nAct-active-suc:
    fixes \(n\) ::nat
        and \(n^{\prime}::\) enat
        and \(t::(\) cnf llist)
        and \(c:: ' i d\)
    assumes \(\neg\) lfinite \(t \vee n^{\prime}-1<\) length \(t\)
        and \(n \leq i\)
        and enat \(i<n^{\prime}\)
        and \(\left\{c \xi_{\text {lnth }} t i\right.\)
        and \(\forall i^{\prime} .\left(n \leq i^{\prime} \wedge\right.\) enat \(i^{\prime}<n^{\prime} \wedge i^{\prime}<\) llength \(t \wedge\left\{c \xi_{\text {lnth }} t i^{\prime}\right) \longrightarrow\left(i^{\prime}=i\right)\)
    shows \(\left\langle c \#_{n^{\prime}} t\right\rangle=e S u c(\langle c \# n t\rangle)\)
proof -
    from assms have \(\pi_{c}\left(\right.\) ltake \(\left.n^{\prime} t\right)=\left(\pi_{c}(\right.\) ltake \((\) enat \(\left.n) t)\right) @_{l}\left(\left(\sigma_{c}(\operatorname{lnth} t i)\right) \#_{l}[]_{l}\right)\)
        using proj-active-append [of \(\left.n i n^{\prime} t c\right]\) by blast
    moreover have llength \(\left(\left(\pi_{c}(\right.\right.\) ltake \((\) enat \(\left.\left.n) t)\right) @_{l}\left(\left(\sigma_{c}(\operatorname{lnth} t i)\right) \#_{l}[]_{l}\right)\right)=\)
        eSuc (llength \(\left(\pi_{c}(\right.\) ltake \((\) enat \(n)\) t) )) using one-eSuc eSuc-plus-1 by simp
    ultimately show ?thesis using nAct-def by simp
qed
lemma nAct-less:
    assumes enat \(k<\) llength \(t\)
        and \(n \leq k\)
        and \(k<\left(n^{\prime}::\right.\) enat \()\)
        and \(\left\{c \xi_{\ln t h} t k\right.\)
    shows \(\left\langle c \#_{n} t\right\rangle<\left\langle c \#_{n^{\prime}} t\right\rangle\)
proof -
    have \(\left\langle c \#_{k} t\right\rangle \neq \infty\) by \(\operatorname{simp}\)
    then obtain en where en-def: \(\left\langle c \#_{k} t\right\rangle=\) enat en by blast
    moreover have eSuc (enat en) \(\leq\left\langle c \#_{n^{\prime}} t\right\rangle\)
    proof -
        from assms have Suc \(k \leq n^{\prime}\) using Suc-ile-eq by simp
        hence \(\left\langle c \#_{S u c}{ }^{t} t\right\rangle \leq\left\langle c \#_{n^{\prime}} t\right\rangle\) using nAct-mono by simp
        moreover from assms have \(\left\langle c \#_{\text {Suc } k} t\right\rangle=e S u c\left(\left\langle c \#_{k} t\right\rangle\right)\) by simp
        ultimately have \(e S u c\left(\left\langle c \#_{k} t\right\rangle\right) \leq\left\langle c \#_{n^{\prime}} t\right\rangle\) by simp
        thus ?thesis using en-def by simp
```

qed
moreover have enat en <eSuc (enat en) by simp
ultimately have enat en $<\left\langle c \#_{n^{\prime}} t\right\rangle$ using less-le-trans[of enat en eSuc (enat en)] by simp
moreover have $\left\langle c \#_{n} t\right\rangle \leq$ enat en
proof -
from assms have $\left\langle c \#_{n} t\right\rangle \leq\left\langle c \#_{k} t\right\rangle$ using $n A c t-m o n o$ by simp
thus ?thesis using en-def by simp
qed
ultimately show ?thesis using le-less-trans[of $\langle c \neq n t\rangle]$ by simp
qed
lemma nAct-less-active:
assumes $n^{\prime}-1<$ llength t
and $\left\langle c \#_{\text {enat } n}{ }^{t}\right\rangle<\left\langle c \#_{n^{\prime}} t\right\rangle$
shows $\exists i \geq n . i<n^{\prime} \wedge\left\{c \xi_{l n t h} t i\right.$
proof (rule ccontr)
assume $\neg\left(\exists i \geq n . i<n^{\prime} \wedge \xi c \xi_{\text {lnth }} t i\right)$
moreover have enat $n \leq n^{\prime}$ using assms(2) less-imp-le nAct-strict-mono-back by blast
ultimately have $\left\langle c \#_{n} t\right\rangle=\left\langle c \#_{n^{\prime}} t\right\rangle$ using $\left\langle n^{\prime}-1<\right.$ llength $\left.t\right\rangle$ nAct-not-active-same
by simp
thus False using assms by simp
qed

D.9.4 Same and Not Same

lemma nAct-same-not-active:
assumes $\left\langle c \#_{n^{\prime}}\right.$ inf-llist $\left.t\right\rangle=\langle c \# n$ inf-llist $t\rangle$
shows $\forall k \geq n . k<n^{\prime} \longrightarrow \neg\left\{c \xi_{t} k\right.$
proof (rule ccontr)
assume $\neg\left(\forall k \geq n . k<n^{\prime} \longrightarrow \neg\left\{c \xi_{t} k\right)\right.$
then obtain k where $k \geq n$ and $k<n^{\prime}$ and $\{c\}_{t} k$ by blast
hence $\left\langle c \#_{\text {Suc } k}\right.$ inf-llist t $\rangle=e$ Suc ($\left\langle c \#_{k}\right.$ inf-llist $\left.t\right\rangle$) by simp
moreover have $\left\langle c \#_{k}\right.$ inf-llist $\left.t\right\rangle \neq \infty$ by simp
ultimately have $\left\langle c \#_{k}\right.$ inf-llist $\left.t\right\rangle<\left\langle c \#_{\text {Suc } k}\right.$ inf-llist $\left.t\right\rangle$ by fastforce
moreover from $\langle n \leq k\rangle$ have $\left\langle c \#_{n}\right.$ inf-llist $\left.t\right\rangle \leq\left\langle c \#_{k}\right.$ inf-llist $\left.t\right\rangle$ using nAct-mono by simp moreover from $\left\langle k<n^{\prime}\right\rangle$ have Suc $k \leq n^{\prime}$ by (simp add: Suc-ile-eq)
hence $\left\langle c \#_{\text {Suc }} k\right.$ inf-llist $\left.t\right\rangle \leq\left\langle c \#_{n^{\prime}}\right.$ inf-llist $\left.t\right\rangle$ using n Act-mono by simp
ultimately show False using assms by simp
qed
lemma nAct-not-same-active:
assumes $\left\langle c \#_{\text {enat } n}{ }^{t}\right\rangle<\left\langle c \#_{n^{\prime}} t\right\rangle$
and \neg linite $t \vee n^{\prime}-1<$ llength t
shows $\exists(i:: n a t) \geq n$. enat $\left.i<n^{\prime} \wedge i<l l e n g t h ~ t \wedge \xi c\right\}{ }_{l n t h} t i$
proof -
from assms have llength $\left(\pi_{c}(\right.$ ltake $\left.n t)\right)<\operatorname{llength}\left(\pi_{c}\left(\right.\right.$ ltake $\left.\left.n^{\prime} t\right)\right)$ using n Act-def by simp hence π_{c} (ltake $\left.n^{\prime} t\right) \neq \pi_{c}$ (ltake $n t$) by auto
moreover from assms have enat $n<n^{\prime}$ using nAct-strict-mono-back[of cenat n] by simp ultimately show ?thesis using proj-not-same-active $\left[\right.$ of $\left.n n^{\prime} t c\right]$ assms by simp
qed
lemma nAct-less-llength-active:
assumes $x<$ llength $\left(\pi_{c}(t)\right)$
and enat $x=\left\langle c \#_{\text {enat } n^{\prime}} t\right\rangle$
shows $\exists(i:: n a t) \geq n^{\prime}$. $i<$ llength $t \wedge \xi c \xi_{\text {lnth }} t i$
proof -
have llength $\left(\pi_{c}\left(\right.\right.$ ltake $\left.\left.n^{\prime} t\right)\right)<\operatorname{llength}\left(\pi_{c}(t)\right)$ using assms(1) assms(2) nAct-def by auto hence $\operatorname{llength}\left(\pi_{c}\left(\right.\right.$ ltake $\left.\left.n^{\prime} t\right)\right)$ llength $\left(\pi_{c}(\right.$ ltake (llength $\left.\left.t) t\right)\right)$ by (simp add: ltake-all)
hence $\left\langle c \#_{\text {enat } n^{\prime}}{ }^{t}\right\rangle<\left\langle c \#_{\text {llength } t} t\right\rangle$ using $n A c t-$ def by simp
moreover have \neg linite $t \vee$ llength $t-1<$ llength t
proof (rule Meson.imp-to-disjD[OF HOL.impI])
assume lfinite t
hence llength $t \neq \infty$ by (simp add: llength-eq-infty-conv-lfinite)
moreover have llength $t>0$
proof -
from $\left\langle x<\operatorname{llength}\left(\pi_{c}(t)\right)\right\rangle$ have llength $\left(\pi_{c}(t)\right)>0$ by auto
thus ?thesis using proj-llength Orderings.order-class.order.strict-trans2 by blast qed
ultimately show llength $t-1<$ llength t by (metis One-nat-def (lfinite t) diff-Suc-less
enat-ord-simps(2) idiff-enat-enat lfinite-conv-llength-enat one-enat-def zero-enat-def)
qed
ultimately show ?thesis using nAct-not-same-active [of c n^{\prime} t llength t] by simp qed
lemma nAct-exists:
assumes $x<$ llength $\left(\pi_{c}(t)\right)$
shows $\exists\left(n^{\prime}::\right.$ nat $)$. enat $x=\left\langle c \#_{n^{\prime}} t\right\rangle$
proof -
have $x<\operatorname{llength}\left(\pi_{c}(t)\right) \longrightarrow\left(\exists\left(n^{\prime}::\right.\right.$ nat $)$. enat $\left.x=\left\langle c \#_{n^{\prime}} t\right\rangle\right)$
proof (induction x)
case 0
thus ?case by (metis nAct-0 zero-enat-def)
next
case (Suc x)
show ?case
proof
assume Suc $x<\operatorname{llength}\left(\pi_{c}(t)\right)$
hence $x<$ llength $\left(\pi_{c}(t)\right)$ using Suc-ile-eq less-imp-le by auto
with Suc.IH obtain n^{\prime} where enat $x=\left\langle c \#_{\text {enat } n^{\prime}} t\right\rangle$ by blast
with $\left\langle x<\operatorname{llength}\left(\pi_{c}(t)\right)\right\rangle$ have $\exists i \geq n^{\prime} . i<$ llength $\left.t \wedge \xi c\right\} \ln$ th $t i$
using n Act-less-llength-active[of x ct n] by simp
then obtain i where $i \geq n^{\prime}$ and $i<$ llength t and $\xi c \xi_{\ln }$ nth $t i$
and $\nexists k . n^{\prime} \leq k \wedge k<i \wedge k<$ llength $t \wedge\left\{c \xi \xi_{\text {lnth }} t k\right.$ using lActive-least $\left[\right.$ of $\left.n^{\prime} t c\right]$ by auto moreover from $\langle i<$ llength t) have \neg linite $t \vee$ enat (Suc i) $-1<$ llength t
by (simp add: one-enat-def)
moreover have enat $i<$ enat (Suc i) by simp
moreover have $\forall i^{\prime}$. $\left(n^{\prime} \leq i^{\prime} \wedge\right.$ enat $i^{\prime}<$ enat $($ Suc $i) \wedge i^{\prime}<$ llength $\left.t \wedge \xi c \xi_{\text {lnth } t} i^{\prime}\right)$ $\longrightarrow\left(i^{\prime}=i\right)$

```
        proof (rule HOL.impI[THEN HOL.allI])
            fix }\mp@subsup{i}{}{\prime}\mathrm{ assume n's i'^ enat i'<enat (Suc i) ^ i'<llength t ^ {c} lnth t i'
            with <# k. n'\leqk^k<i^k<llength t}\wedge{c}lnth t k> show i'=i by fastforce
        qed
        ultimately have }\langlec\mp@subsup{#}{Suc i}{}t\rangle=eSuc(\langlec\mp@subsup{#}{\mp@subsup{n}{}{\prime}}{}t\rangle
        using nAct-active-suc[of t Suc i n' i c] by simp
        with <enat x = <c # enat n't\rangle> have }\langlec\mp@subsup{#}{\mathrm{ Suc i }}{
        thus \existsn'. enat (Suc x) = <c # enat n't\rangle by (metis eSuc-enat)
    qed
qed
    with assms show ?thesis by simp
qed
```


D. 10 Projection and Activation

In the following we provide some properties about the relationship between the projection and activations operator.

```
lemma nAct-le-proj:
    \(\langle c \neq n t\rangle \leq l l e n g t h\left(\pi_{c}(t)\right)\)
proof -
    from \(n A c t-d e f\) have \(\langle c \# n t\rangle=\) llength \(\left(\pi_{c}(\right.\) ltake \(\left.n t)\right)\) by simp
    moreover have llength \(\left(\pi_{c}(\right.\) ltake \(\left.n t)\right) \leq\) llength \(\left(\pi_{c}(t)\right)\)
    proof -
        have lprefix (ltake \(n t\) ) \(t\) by simp
        hence lprefix ( \(\pi_{c}(\) ltake \(n t)\) ) \(\left(\pi_{c}(t)\right)\) by \(\operatorname{simp}\)
        hence llength \(\left(\pi_{c}(\right.\) ltake \(\left.n t)\right) \leq\) llength \(\left(\pi_{c}(t)\right)\) using lprefix-llength-le by blast
        thus?thesis by auto
    qed
    thus ?thesis using nAct-def by simp
qed
lemma proj-nAct:
    assumes (enat \(n<\) llength \(t\) )
    shows \(\pi_{c}(\) ltake \(n t)=\) ltake \(\left(\left\langle c \#_{n} t\right\rangle\right)\left(\pi_{c}(t)\right)(\) is ?lhs \(=\) ? \(r h s)\)
proof -
    have ?lhs \(=\) ltake \(\left(\right.\) llength \(\left(\pi_{c}(\right.\) ltake \(\left.\left.n t)\right)\right)\left(\pi_{c}(\right.\) ltake \(\left.n t)\right)\)
        using ltake-all[of \(\pi_{c}\) (ltake \(n\) t) llength \(\left(\pi_{c}(\right.\) ltake \(\left.\left.n t)\right)\right]\) by simp
    also have \(\ldots=\) ltake \(\left(\right.\) llength \(\left(\pi_{c}(\right.\) ltake \(\left.\left.n t)\right)\right)\left(\left(\pi_{c}(\right.\right.\) ltake \(\left.n t)\right) @_{l}\left(\pi_{c}(\right.\) ldrop \(\left.\left.n t)\right)\right)\)
        using ltake-lappend1 [of llength \(\left(\pi_{c}(\right.\) ltake \((\) enat \(\left.n) t)\right) \pi_{c}(\) ltake \(n t)\left(\pi_{c}(\right.\) ldrop \(\left.\left.n t)\right)\right]\) by simp
    also have \(\ldots=\) ltake \(\left(\left\langle c \#_{n} t\right\rangle\right)\left(\left(\pi_{c}(\right.\right.\) ltake \(\left.n t)\right) @_{l}\left(\pi_{c}(\right.\) ldrop \(\left.\left.n t)\right)\right)\) using \(n\) Act-def by simp
    also have \(\ldots=\) ltake \(\left(\left\langle c \#_{n} t\right\rangle\right)\left(\pi_{c}\left((\right.\right.\) ltake \((\) enat \(\left.\left.n) t) @_{l}(l d r o p n t)\right)\right)\) by simp
    also have \(\ldots=\) ltake \(\left(\left\langle c \#_{n} t\right\rangle\right)\left(\pi_{c}(t)\right)\) using lappend-ltake-ldrop \([\) of \(n t]\) by simp
    finally show? ?hesis by simp
qed
lemma proj-active-nth:
    assumes enat (Suc \(i\) ) < llength \(t\} c\}\) lnth \(t i\)
```

```
    shows \(\operatorname{lnth}\left(\pi_{c}(t)\right)\left(\right.\) the-enat \(\left.\left(\left\langle c \#_{i} t\right\rangle\right)\right)=\sigma_{c}(\operatorname{lnth} t i)\)
proof -
    from assms have enat \(i<\) llength \(t\) using Suc-ile-eq[of i llength \(t\) ] by auto
    with assms have \(\pi_{c}(\) ltake \((\) Suc \(i) t)=\left(\pi_{c}(\right.\) ltake \(\left.i t)\right) @_{l}\left(\left(\sigma_{c}(\right.\right.\) lnth \(\left.\left.t i)\right) \#_{l}[]_{l}\right)\) by simp
    moreover have lnth \(\left(\left(\pi_{c}(\right.\right.\) ltake \(\left.i t)\right) @_{l}\left(\left(\sigma_{c}(\right.\right.\) lnth \(\left.\left.\left.t i)\right) \#_{l}[]_{l}\right)\right)\)
        \(\left(\right.\) the-enat \(\left(\right.\) llength \(\left(\pi_{c}(\right.\) ltake \(\left.\left.\left.i t)\right)\right)\right)=\sigma_{c}(\) lnth \(t i)\)
    proof -
        have \(\neg \operatorname{lnull}\left(\left(\sigma_{c}(\operatorname{lnth} t i)\right) \#_{l}[]_{l}\right)\) by simp
        moreover have lfinite ( \(\pi_{c}(\) ltake \(i t)\) ) by simp
        ultimately have lnth \(\left(\left(\pi_{c}(\right.\right.\) ltake \(\left.\left.i t)\right) @_{l}\left(\left(\sigma_{c}(\operatorname{lnth} t i)\right) \#_{l}[]_{l}\right)\right)\)
            \(\left(\right.\) the-enat \(\left(\right.\) llength \(\left(\pi_{c}(\right.\) ltake \(\left.\left.\left.i t)\right)\right)\right)=\operatorname{lhd}\left(\left(\sigma_{c}(\operatorname{lnth} t i)\right) \#_{l}[]_{l}\right)\) by simp
        also have \(\ldots=\sigma_{c}(\operatorname{lnth} t i)\) by simp
        finally show \(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\) ltake \(\left.\left.i t)\right) @_{l}\left(\left(\sigma_{c}(\operatorname{lnth} t i)\right) \#_{l}[]_{l}\right)\right)\)
            \(\left(\right.\) the-enat \(\left(\right.\) llength \(\left(\pi_{c}(\right.\) ltake \(\left.\left.\left.i t)\right)\right)\right)=\sigma_{c}(\operatorname{lnth} t i)\) by simp
    qed
    ultimately have \(\sigma_{c}(\operatorname{lnth} t i)=\operatorname{lnth}\left(\pi_{c}(\right.\) ltake \((\) Suc i) \(t))\)
        (the-enat (llength \(\left(\pi_{c}(\right.\) ltake \(\left.\left.i t)\right)\right)\) ) by simp
    also have \(\ldots=\operatorname{lnth}\left(\pi_{c}\right.\) (ltake \(\left.\left.(S u c i) t\right)\right)\) (the-enat \(\left.\left(\left\langle c \#_{i} t\right\rangle\right)\right)\) using \(n\) Act-def by simp
    also have \(\ldots=\operatorname{lnth}\left(l\right.\) ltake \(\left.\left(\left\langle c \#_{S u c} i t\right\rangle\right)\left(\pi_{c}(t)\right)\right)\left(\right.\) the-enat \(\left.\left(\left\langle c \#_{i} t\right\rangle\right)\right)\)
    using proj-nAct[of Suc it c] assms by simp
    also have \(\ldots=\ln\) th \(\left(\pi_{c}(t)\right)\left(\right.\) the-enat \(\left.\left(\left\langle c \#_{i} t\right\rangle\right)\right)\)
    proof -
    from assms have \(\left\langle c \#_{S u c} i t\right\rangle=e S u c\left(\left\langle c \#_{i} t\right\rangle\right)\) using \(\langle e n a t i<l l e n g t h ~ t\rangle\) by simp
    moreover have \(\left\langle c \#_{i} t\right\rangle<e S u c\left(\left\langle c \#_{i} t\right\rangle\right)\)
        using iless-Suc-eq[of the-enat ( \(\left.\left.\left\langle c \#_{\text {enat } i} i t\right\rangle\right)\right]\) by simp
    ultimately have \(\left\langle c \#_{i} t\right\rangle<\left(\left\langle c \#_{S u c} i t\right\rangle\right)\) by simp
    hence enat (the-enat \(\left.\left(\left\langle c \#_{\text {Suc } i} t\right\rangle\right)\right)>\) enat (the-enat \(\left.\left(\left\langle c \#_{i} t\right\rangle\right)\right)\) by simp
    thus ?thesis using lnth-ltake[of the-enat \(\left(\left\langle c \#_{i} t\right\rangle\right)\) the-enat \(\left.\left(\left\langle c \#_{\text {enat (Suc } i)} t\right\rangle\right) \pi_{c}(t)\right]\)
        by \(\operatorname{simp}\)
    qed
    finally show ?thesis ..
qed
lemma nAct-eq-proj:
    assumes \(\neg\left(\exists i \geq n\right.\). \(\left.\{c\}_{\text {lnth } t i}\right)\)
    shows \(\langle c \# n t\rangle=\) llength \(\left(\pi_{c}(t)\right)(\) is ?lhs \(=\) ?rhs \()\)
proof -
    from \(n\) Act-def have ?lhs \(=\) llength \(\left(\pi_{c}\right.\) (ltake \(\left.n t\right)\) ) by simp
    moreover from assms have \(\forall\left(n^{\prime}:: n a t\right) \leq\) llength \(t . n^{\prime} \geq n \longrightarrow\left(\neg\left\{c \xi_{l n t h} t n^{\prime}\right)\right.\) by simp
    hence \(\pi_{c}(t)=\pi_{c}\) (ltake \(n t\) ) using proj-ltake by simp
    ultimately show ?thesis by simp
qed
lemma nAct-llength-proj:
    assumes \(\exists i \geq n\). \(\left\{c \xi_{t} i\right.\)
    shows llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.t)\right) \geq e S u c\left(\left\langle c \#_{n}\right.\right.\) inf-llist \(\left.\left.t\right\rangle\right)\)
proof -
    from \(\langle\exists i \geq n\). \(\left.\} c \xi_{t} i\right\rangle\) obtain \(i\) where \(i \geq n\) and \(\} c \xi_{t} i\)
        and \(\neg\left(\exists k \geq n . k<i \wedge k<\right.\) llength \((\) inf-llist \(\left.t) \wedge \xi c \xi_{t}\right)\)
```

using lActive-least [of n inf-llist $t c]$ by auto
moreover have llength $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right) \geq\left\langle c \#_{\text {Suc } i}\right.$ inf-llist $\left.t\right\rangle$ using nAct-le-proj by simp moreover have eSuc $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)=\left\langle c \#_{\text {Suc } i}\right.$ inf-llist $\left.t\right\rangle$
proof -
have enat (Suc i) < llength (inf-llist t) by simp
moreover have $i<S u c i$ by simp
moreover from $\left\langle\neg\left(\exists k \geq n . k<i \wedge k<\right.\right.$ llength $($ inf-llist $\left.\left.t) \wedge \xi c \xi_{t} k\right)\right\rangle$
have $\forall i^{\prime} . n \leq i^{\prime} \wedge i^{\prime}<S u c i \wedge \xi c \xi_{\text {lnth }}($ inf-llist $t) i^{\prime} \longrightarrow i^{\prime}=i$ by fastforce
ultimately show ?thesis using n Act-active-suc $\langle i \geq n\rangle\left\langle\left\{c \xi_{t} i\right\rangle\right.$ by simp
qed
ultimately show?thesis by simp
qed

D. 11 Least not Active

In the following, we introduce an operator to obtain the least point in time before a certain point in time where a component was deactivated.

```
definition lNAct :: 'id \(\Rightarrow(\) nat \(\Rightarrow c n f) \Rightarrow\) nat \(\Rightarrow\) nat \((\langle-\Leftarrow-\rangle-)\)
    where \(\langle c \Leftarrow t\rangle_{n} \equiv\left(\right.\) LEAST \(\left.n^{\prime} . n=n^{\prime} \vee\left(n^{\prime}<n \wedge\left(\nexists k . k \geq n^{\prime} \wedge k<n \wedge \xi c \xi_{t}\right)\right)\right)\)
lemma lNactO[simp]:
    \(\langle c \Leftarrow t\rangle_{0}=0\)
    by (simp add: lNAct-def)
lemma lNact-least:
    assumes \(n=n^{\prime} \vee n^{\prime}<n \wedge\left(\nexists k . k \geq n^{\prime} \wedge k<n \wedge \xi c \xi_{t} k\right)\)
    shows \(\langle c \Leftarrow t\rangle_{n} \leq n^{\prime}\)
using Least-le[of \(\left.\lambda n^{\prime} . n=n^{\prime} \vee\left(n^{\prime}<n \wedge\left(\nexists k . k \geq n^{\prime} \wedge k<n \wedge \xi c \xi_{t} k\right)\right) n^{\prime}\right] l N A c t-\) def using assms
by auto
lemma lNAct-ex: \(\langle c \Leftarrow t\rangle_{n}=n \vee\langle c \Leftarrow t\rangle_{n}<n \wedge\left(\nexists k . k \geq\langle c \Leftarrow t\rangle_{n} \wedge k<n \wedge \xi c \xi_{t}\right)\)
proof -
    let? \(P=\lambda n^{\prime} . n=n^{\prime} \vee n^{\prime}<n \wedge\left(\nexists k . k \geq n^{\prime} \wedge k<n \wedge \xi c \xi_{t} k\right)\)
    from \(l N A c t-d e f\) have \(\langle c \Leftarrow t\rangle_{n}=\left(L E A S T n^{\prime}\right.\). ?P \(\left.n^{\prime}\right)\) by simp
    moreover have ? P \(n\) by simp
    with LeastI have ?P (LEAST \(n^{\prime}\). ?P \(n^{\prime}\) ).
    ultimately show ?thesis by auto
qed
lemma lNact-notActive:
    fixes \(c t n k\)
    assumes \(k \geq\langle c \Leftarrow t\rangle_{n}\)
        and \(k<n\)
    shows \(\neg\{c\}_{t} k\)
    by (metis assms lNAct-ex leD)
lemma lNactGe:
    fixes \(c t n n^{\prime}\)
```

```
    assumes }\mp@subsup{n}{}{\prime}\geq\langlec\Leftarrowt\mp@subsup{\rangle}{n}{
        and {c\mp@subsup{}}{t}{\prime}\mp@subsup{n}{}{\prime}
    shows }\mp@subsup{n}{}{\prime}\geq
    using assms lNact-notActive leI by blast
lemma lNactLe[simp]:
    fixes n n'
    shows }\langlec\Leftarrowt\mp@subsup{\rangle}{n}{}\leq
    using lNAct-ex less-or-eq-imp-le by blast
lemma lNactLe-nact:
    fixes n n'
    assumes n'=n\vee( }\mp@subsup{n}{}{\prime}<n\wedge(\not\existsk.k\geq\mp@subsup{n}{}{\prime}\wedgek<n\wedge\xic\mp@subsup{}}{t}{}k)
    shows }\langlec\Leftarrowt\mp@subsup{\rangle}{n}{}\leq\mp@subsup{n}{}{\prime
    using assms lNAct-def Least-le[of \lambdan'. n= n' }\vee(\mp@subsup{n}{}{\prime}<n\wedge(\not\existsk.k\geq\mp@subsup{n}{}{\prime}\wedgek<n\wedge{c\mp@subsup{\xi}{t}{}k))]\mathrm{ by auto
lemma lNact-active:
    fixes cid t n
    assumes }\forallk<n.{cid\mp@subsup{}}{t}{}
    shows }\langle\mathrm{ cid }\Leftarrowt\rangle\mp@subsup{\rangle}{n}{}=
    using assms lNAct-ex by blast
lemma nAct-mono-back:
    fixes ct and n and n'
    assumes }\langlec\mp@subsup{#}{\mp@subsup{n}{}{\prime}}{\prime}\mathrm{ inf-llist t }\rangle\geq\langlec#n inf-llist t
    shows }\mp@subsup{n}{}{\prime}\geq\langlec\Leftarrowt\rangle\mp@subsup{\rangle}{n}{
proof cases
    assume }\langlec\mp@subsup{#}{\mp@subsup{n}{}{\prime}}{}\mathrm{ inf-llist t }\rangle=\langlec#n inf-llist t
    thus ?thesis
    proof cases
        assume n'\geqn
        thus ?thesis using lNactLe by (metis HOL.no-atp(11))
    next
        assume }\neg\mp@subsup{n}{}{\prime}\geq
        hence }\mp@subsup{n}{}{\prime}<n\mathrm{ by simp
```



```
            by (metis enat-ord-simps(1) enat-ord-simps(2) nAct-same-not-active)
        thus ?thesis using lNactLe-nact by (simp add: <n' < < \)
    qed
next
    assume}\neg\langlec\mp@subsup{#}{\mp@subsup{n}{}{\prime}}{\prime}\mathrm{ inf-llist t }\rangle=\langlec#n inf-llist t
    with assms have }\langlec\mp@subsup{#}{\mathrm{ enat n' }\mp@subsup{n}{}{\prime}\mathrm{ inf-llist t }\rangle>\langlec\mp@subsup{#}{\mathrm{ enat n inf-llist t }\rangle\mathrm{ by simp}}{}\mp@subsup{|}{}{\prime}}{
    hence }\mp@subsup{n}{}{\prime}>n\mp@code{using nAct-strict-mono-back[of c enat n inf-llist t enat n] by simp
    thus ?thesis by (meson dual-order.strict-implies-order lNactLe le-trans)
qed
lemma nAct-mono-lNact:
    assumes }\langlec\Leftarrowt\rangle\mp@subsup{\rangle}{n}{}\leq\mp@subsup{n}{}{\prime
    shows }\langlec#n inf-llist t\rangle\leq\langlec # n, inf-llist t
```

```
proof -
```



```
    moreover have enat n - < < llength (inf-llist t) by (simp add: one-enat-def)
    moreover from }\langle\langlec\Leftarrowt\rangle\mp@subsup{\rangle}{n}{}\leqn'\rangle have enat \langlec\Leftarrowt\rangle\mp@subsup{\rangle}{n}{\prime}\leq enat n by sim
    ultimately have }\langlec#n inf-llist t\rangle=\langlec##c\Leftarrowt\ranglen inf-llist t
        using nAct-not-active-same by simp
    thus ?thesis using nAct-mono assms by simp
qed
```


D. 12 Next Active

In the following, we introduce an operator to obtain the next point in time when a component is activated.

```
definition nxtAct \(::\) 'id \(\Rightarrow(n a t \Rightarrow c n f) \Rightarrow\) nat \(\Rightarrow\) nat \((\langle-\rightarrow-\rangle-)\)
    where \(\langle c \rightarrow t\rangle_{n} \equiv\left(\right.\) THE \(n^{\prime} . n^{\prime} \geq n \wedge\left\{c \xi_{t} n^{\prime} \wedge\left(\nexists k . k \geq n \wedge k<n^{\prime} \wedge \xi c \xi_{t}\right)\right)\)
lemma nxtActI:
    fixes \(n:: n a t\)
        and \(t:: n a t \Rightarrow c n f\)
        and \(c:: ' i d\)
    assumes \(\exists i \geq n\). \(\xi_{c} \xi_{t}{ }_{i}\)
    shows \(\langle c \rightarrow t\rangle_{n} \geq n \wedge\left\{c \xi_{t}\langle c \rightarrow t\rangle_{n} \wedge\left(\nexists k . k \geq n \wedge k<\langle c \rightarrow t\rangle_{n} \wedge\right\} c \xi_{t} k\right)\)
proof -
    let ? \(P=\) THE \(n^{\prime} . n^{\prime} \geq n \wedge \xi c \xi_{t n^{\prime}} \wedge\left(\nexists k . k \geq n \wedge k<n^{\prime} \wedge \xi_{c} \xi_{t} k_{k}\right)\)
    from assms obtain \(i\) where \(i \geq n \wedge \xi c \xi_{t} i \wedge\left(\nexists k . k \geq n \wedge k<i \wedge \xi c \xi_{t} k\right)\)
        using lActive-least \([\) of \(n\) inf-llist \(t c]\) by auto
    moreover have \(\left(\bigwedge x . n \leq x \wedge \xi c \xi_{t} x \wedge \neg\left(\exists k \geq n . k<x \wedge \xi c \xi_{t}\right) \Longrightarrow x=i\right)\)
    proof -
        fix \(x\) assume \(n \leq x \wedge \xi_{c} \xi_{t} x \wedge \neg\left(\exists k \geq n . k<x \wedge \xi c \xi_{t} k\right)\)
        show \(x=i\)
        proof (rule ccontr)
            assume \(\neg(x=i)\)
            thus False using \(\left\langle i \geq n \wedge \xi c \xi_{t} i \wedge\left(\nexists k . k \geq n \wedge k<i \wedge \xi c \xi_{t}\right)\right\rangle\)
                \(\left\langle n \leq x \wedge \xi c \xi_{t} x \wedge \neg\left(\exists k \geq n . k<x \wedge \xi c \xi_{t} k\right)\right\rangle\) by fastforce
        qed
    qed
    ultimately have \((? P) \geq n \wedge \xi c \xi_{t}(? P) \wedge\left(\nexists k . k \geq n \wedge k<? P \wedge\left\{c \xi_{t} k\right)\right.\)
        using the \(\left[\right.\) of \(\left.\lambda n^{\prime} . n^{\prime} \geq n \wedge \xi c \xi_{t n^{\prime}} \wedge\left(\nexists k . k \geq n \wedge k<n^{\prime} \wedge \xi c \xi_{t} k\right)\right]\) by blast
    thus ?thesis using nxtAct-def[of c \(t n\) ] by metis
qed
lemma nxtActLe:
    fixes \(n n^{\prime}\)
    assumes \(\exists i \geq n\). \(\left\{c^{\prime}\right\}_{t} i\)
    shows \(n \leq\langle c \rightarrow t\rangle_{n}\)
    by (simp add: assms nxtActI)
lemma nxtAct-eq:
```

```
assumes \(n^{\prime} \geq n\)
    and \(\left\{c \xi_{t} n^{\prime}\right.\)
    and \(\forall n^{\prime \prime} \geq n . n^{\prime \prime}<n^{\prime} \longrightarrow \neg\left\{c \xi_{t} n^{\prime \prime}\right.\)
shows \(n^{\prime}=\langle c \rightarrow t\rangle_{n}\)
by (metis assms(1) assms(2) assms(3) nxtActI linorder-neqE-nat nxtActLe)
lemma nxtAct-active:
    fixes \(i:: n a t\)
        and \(t:: n a t \Rightarrow c n f\)
        and \(c:: ' i d\)
    assumes \(\}_{c} \xi_{t} i\)
    shows \(\langle c \rightarrow t\rangle_{i}=i\) by (metis assms le-eq-less-or-eq nxtActI)
lemma nxtActive-no-active:
    assumes \(\exists\) ! \(i, i \geq n \wedge \xi c \xi_{t} i\)
    shows \(\left.\neg\left(\exists i^{\prime} \geq S u c\langle c \rightarrow t\rangle_{n}.\right\} c \xi_{t i^{\prime}}\right)\)
proof
    assume \(\exists i^{\prime} \geq S u c\langle c \rightarrow t\rangle_{n} .\left\{c \xi_{t} i^{\prime}\right.\)
    then obtain \(i^{\prime}\) where \(i^{\prime} \geq S u c\langle c \rightarrow t\rangle_{n}\) and \(\left\{c \xi_{t} i^{\prime}\right.\) by auto
    moreover from \(\operatorname{assms}(1)\) have \(\langle c \rightarrow t\rangle_{n} \geq n\) using \(n x t A c t I\) by auto
    ultimately have \(i^{\prime} \geq n\) and \(\left\{c \xi_{t} i^{\prime}\right.\) and \(i^{\prime} \neq\langle c \rightarrow t\rangle_{n}\) by auto
    moreover from \(\operatorname{assms}(1)\) have \(\left\{c \xi_{t}\langle c \rightarrow t\rangle_{n}\right.\) and \(\langle c \rightarrow t\rangle_{n} \geq n\) using nxtActI by auto
    ultimately show False using assms(1) by auto
qed
lemma nxt-geq-lNact[simp]:
    assumes \(\exists i \geq n\). \(\left\{c \xi_{t} i\right.\)
    shows \(\langle c \rightarrow t\rangle_{n} \geq\langle c \Leftarrow t\rangle_{n}\)
proof -
    from assms have \(n \leq\langle c \rightarrow t\rangle_{n}\) using nxtActLe by simp
    moreover have \(\langle c \Leftarrow t\rangle_{n} \leq n\) by simp
    ultimately show ?thesis by arith
qed
lemma active-geq-nxtAct:
    assumes \(\{c\}_{t} i\)
        and the-enat \(\left(\left\langle c \#_{i}\right.\right.\) inf-llist \(\left.\left.t\right\rangle\right) \geq\) the-enat \(\left(\left\langle c \#_{n}\right.\right.\) inf-llist \(\left.\left.t\right\rangle\right)\)
    shows \(i \geq\langle c \rightarrow t\rangle_{n}\)
proof cases
    assume \(\left\langle c \#_{i}\right.\) inf-llist \(\left.t\right\rangle=\left\langle c \#_{n}\right.\) inf-llist \(\left.t\right\rangle\)
    show ?thesis
    proof (rule ccontr)
    assume \(\neg i \geq\langle c \rightarrow t\rangle_{n}\)
    hence \(i<\langle c \rightarrow t\rangle_{n}\) by simp
    with \(\left\langle\left\langle c \#_{i}\right.\right.\) inf-llist \(\left.t\right\rangle=\left\langle c \#_{n}\right.\) inf-llist \(\left.\left.t\right\rangle\right\rangle\) have \(\neg\left(\exists k \geq i . k<n \wedge \xi c \xi_{t} k\right)\)
            by (metis enat-ord-simps(1) leD leI nAct-same-not-active)
    moreover have \(\neg\left(\exists k \geq n . k<\langle c \rightarrow t\rangle_{n} \wedge \xi c \xi_{t} k\right)\) using nxtActI by blast
    ultimately have \(\neg\left(\exists k \geq i . k<\langle c \rightarrow t\rangle_{n} \wedge \xi c \xi_{t}\right)\) by auto
    with \(\left\langle i<\langle c \rightarrow t\rangle_{n}\right\rangle\) show False using \(\left\} c\left\}_{t} i^{\rangle}\right.\right.\)by simp
```

```
    qed
next
    assume }\neg\langlec\mp@subsup{#}{i}{}\mathrm{ inf-llist t }\rangle=\langlec#n inf-llist t t 
    moreover from <the-enat ( }\langlec\mp@subsup{#}{i}{}\mathrm{ inf-llist t }\rangle)\geq\mathrm{ the-enat ( }\langlec#\mp@subsup{#}{n}{}\mathrm{ inf-llist t }\rangle\mathrm{ ) >
    have }\langlec\mp@subsup{#}{i}{}\mathrm{ inf-llist t }\rangle\geq\langlec#n inf-llist t
    by (metis enat.distinct(2) enat-ord-simps(1) nAct-enat-the-nat)
    ultimately have }\langlec\mp@subsup{#}{i}{}\mathrm{ inf-llist t }\rangle>\langlec#n inf-llist t\rangle by sim
    hence i>n using nAct-strict-mono-back[of c n inf-llist t i] by simp
    with {乡c}t i> show ?thesis by (meson dual-order.strict-implies-order leI nxtActI)
qed
lemma nAct-same:
    assumes }\langlec\Leftarrowt\mp@subsup{\rangle}{n}{}\leq\mp@subsup{n}{}{\prime}\mathrm{ and n's n}\langlec->t\mp@subsup{\rangle}{n}{
    shows the-enat ( }\langlec\mp@subsup{#}{\mathrm{ enat n}}{\prime
proof cases
    assume n\leq n'
    moreover have n' - < <length (inf-llist t) by simp
    moreover have }\neg(\existsi\geqn.i<n'^{c}t i) by (meson assms(2) less-le-trans nxtActI)
    ultimately show ?thesis using nAct-not-active-same by (simp add: one-enat-def)
next
    assume }\negn\leqn
    hence }\mp@subsup{n}{}{\prime}<n\mathrm{ by simp
    moreover have n-1< llength (inf-llist t) by simp
    moreover have }\neg(\existsi\geq\mp@subsup{n}{}{\prime}.i<n\wedge{c\mp@subsup{}}{t}{}i
        by (metis «\neg n\leq n``assms(1) dual-order.trans lNAct-ex)
    ultimately show ?thesis using nAct-not-active-same[of n' n] by (simp add: one-enat-def)
qed
lemma nAct-mono-nxtAct:
    assumes }\existsi\geqn.{c}+t 
        and }\langlec->t\mp@subsup{\rangle}{n}{}\leq\mp@subsup{n}{}{\prime
    shows }\langlec\mp@subsup{#}{n}{}\mathrm{ inf-llist t}\rangle\leq\langlec\mp@subsup{#}{\mp@subsup{n}{}{\prime}}{\prime}\mathrm{ inf-llist t }
proof -
    from assms have }\langlec\mp@subsup{#}{\langlec->t\rangle}{n}\mp@subsup{|}{n}{}\mathrm{ inf-llist t }\rangle\leq\langlec\mp@subsup{#}{\mp@subsup{n}{}{\prime}}{\prime}\mathrm{ inf-llist t }
        using nAct-mono assms by simp
    moreover have }\langlec#\langlec->t\ranglen inf-llist t\rangle=\langlec# #n inf-llist t
    proof -
```



```
            using nxtActI by auto
        moreover have enat }\langlec->t\mp@subsup{\rangle}{n}{}-1<llength (inf-llist t) by (simp add: one-enat-def
        ultimately show ?thesis using nAct-not-active-same[of n}\langlec->t\ranglen] by aut
    qed
    ultimately show ?thesis by simp
qed
```


D. 13 Latest Activation

In the following, we introduce an operator to obtain the latest point in time when a component is activated.

```
abbreviation latestAct-cond:: 'id \(\Rightarrow\) trace \(\Rightarrow\) nat \(\Rightarrow\) nat \(\Rightarrow\) bool
    where latestAct-cond ctnn\(n^{\prime} \equiv n^{\prime}<n \wedge\left\{c \xi_{t} n^{\prime}\right.\)
definition latestAct:: 'id \(\Rightarrow\) trace \(\Rightarrow\) nat \(\Rightarrow\) nat \((\langle-\leftarrow-\rangle-)\)
    where latestAct ct \(n=\left(\right.\) GREATEST \(n^{\prime}\). latestAct-cond ctn \(\left.n n^{\prime}\right)\)
lemma latestActEx:
    assumes \(\exists n^{\prime}<n\). \(\{n i d\}_{t} n^{\prime}\)
    shows \(\exists n^{\prime}\). latestAct-cond nid \(t n n^{\prime} \wedge\left(\forall n^{\prime \prime}\right.\). latestAct-cond nid \(\left.t n n^{\prime \prime} \longrightarrow n^{\prime \prime} \leq n^{\prime}\right)\)
proof -
    from assms obtain \(n^{\prime}\) where latestAct-cond nid \(t n n^{\prime}\) by auto
    moreover have \(\forall n^{\prime \prime}>n\). \(\neg\) latestAct-cond nid \(t n n^{\prime \prime}\) by simp
    ultimately obtain \(n^{\prime}\) where latestAct-cond nid \(t n n^{\prime} \wedge\)
            ( \(\forall n^{\prime \prime}\). latestAct-cond nid \(t n n^{\prime \prime} \longrightarrow n^{\prime \prime} \leq n^{\prime}\) )
            using boundedGreatest[of latestAct-cond nid \(t n n\rceil\) by blast
    thus ?thesis ..
qed
lemma latestAct-prop:
    assumes \(\exists n^{\prime}<n\). \(\{n i d\}_{t} n^{\prime}\)
    shows \{nid \(_{t}\) (latestAct nid \(\left.t n\right)\) and latestAct nid \(t n<n\)
proof -
    from assms latestActEx have
            latestAct-cond nid \(t n\) (GREATEST \(x\). latestAct-cond nid \(t n x\) )
            using GreatestI-ex-nat[of latestAct-cond nid \(t n\) ] by blast
    thus _nid \(\left._{{ }^{4}}{ }_{\langle n i d} \leftarrow t\right\rangle n\) and latestAct nid \(t n<n\) using latestAct-def by auto
qed
lemma latestAct-less:
    assumes latestAct-cond nid \(t n n^{\prime}\)
    shows \(n^{\prime} \leq\langle n i d \leftarrow t\rangle_{n}\)
proof -
    from assms latestActEx have \(n^{\prime} \leq(\) GREATEST \(x\). latestAct-cond nid \(t n x)\)
            using Greatest-le-nat [of latestAct-cond nid \(t n\) ] by blast
    thus ? thesis using latestAct-def by auto
qed
lemma latestActNxt:
    assumes \(\exists n^{\prime}<n\). \(\left\{\begin{array}{l}\text { nid } \xi_{t} n^{\prime} \\ \end{array}\right.\)
    shows \(\left.\langle\text { nid } \rightarrow t\rangle_{\langle n i d} \leftarrow t\right\rangle_{n}=\langle n i d \leftarrow t\rangle_{n}\)
    using assms latestAct-prop(1) nxtAct-active by auto
lemma latestActNxtAct:
    assumes \(\exists n^{\prime} \geq n\). \(\{t i d\}_{t} n^{\prime}\)
```

```
    and \existsn'<n.{tid\mp@subsup{}}{t n}{}
    shows }\langle\mathrm{ tid }->t\mp@subsup{\rangle}{n}{}>>\langletid \leftarrowt\rangle \ n
    by (meson assms latestAct-prop(2) less-le-trans nxtActI zero-le)
lemma latestActless:
    assumes \existsn'\geqn}\mp@subsup{n}{s}{}.\mp@subsup{n}{}{\prime}<n\wedge{nid\mp@subsup{\xi}{t n}{\prime
    shows }\langlenid)\leftarrowt\mp@subsup{\rangle}{n}{}\geq\mp@subsup{n}{s}{
    by (meson assms dual-order.trans latestAct-less)
lemma latestActEq:
    fixes nid::'id
    assumes {nid\mp@subsup{\xi}{t n}{\prime}
    shows }\langlenid \leftarrowt\rangle\mp@subsup{\rangle}{n}{}=\mp@subsup{n}{}{\prime
    using latestAct-def
proof
    have (GREATEST n'. latestAct-cond nid t n n') = n'
    proof (rule Greatest-equality[of latestAct-cond nid t n n |])
        from assms(1) assms (3) show latestAct-cond nid t n n' by simp
    next
        fix y assume latestAct-cond nid t n y
        hence {nid\mp@subsup{}}{t}{}y}\mathrm{ and }y<n\mathrm{ by auto
        thus y\leqn' using assms(1) assms (2) leI by blast
    qed
    thus n' = (GREATEST n'. latestAct-cond nid t n n) by simp
qed
```


D. 14 Last Activation

In the following we introduce an operator to obtain the latest point in time where a certain component was activated within a certain configuration trace.

```
definition lActive :: 'id \(\Rightarrow(\) nat \(\Rightarrow c n f) \Rightarrow\) nat \((\langle-\wedge-\rangle)\)
    where \(\langle c \wedge t\rangle \equiv(\) GREATEST \(\left.i .\}. c \xi_{t} i\right)\)
lemma lActive-active:
    assumes \(\{c\}_{t} i\)
        and \(\forall n^{\prime}>n . \neg\left(\xi_{c} \xi_{t} n^{\prime}\right)\)
    shows \(\left\{c \xi_{t}(\langle c \wedge t\rangle)\right.\)
proof -
    from assms obtain \(i^{\prime}\) where \(\left\{c \xi_{t} i^{\prime}\right.\) and \(\left(\forall y .\left\{c \xi_{t} \longrightarrow y \leq i^{\prime}\right)\right.\)
        using boundedGreatest \(\left[\right.\) of \(\lambda i^{\prime}\). \(\left\{c \xi_{t} i^{\prime} i n\right]\) by blast
    thus ?thesis using lActive-def Nat. GreatestI-nat[of \(\lambda i^{\prime}\). \(\left.\xi_{\xi_{t}}{ }_{i}\right]\) by simp
qed
lemma lActive-less:
    assumes \(\{c\}_{t} i\)
        and \(\forall n^{\prime}>n\). \(\neg\left(\xi_{c} \xi_{t} n^{\prime}\right)\)
    shows \(\langle c \wedge t\rangle \leq n\)
proof (rule ccontr)
```

```
    assume \(\neg\langle c \wedge t\rangle \leq n\)
    hence \(\langle c \wedge t\rangle>n\) by simp
    moreover from assms have \(\left\{c \xi_{t}(\langle c \wedge t\rangle)\right.\) using lActive-active by simp
    ultimately show False using assms by simp
qed
lemma lActive-greatest:
    assumes \(\left\{c \xi_{t} i\right.\)
        and \(\forall n^{\prime}>n\). \(\neg\left(\xi c \xi_{t} n^{\prime}\right)\)
    shows \(i \leq\langle c \wedge t\rangle\)
proof -
    from assms obtain \(i^{\prime}\) where \(\left\{c \xi_{t} i^{\prime}\right.\) and \(\left(\forall y .\{c\}_{t y} \longrightarrow y \leq i^{\prime}\right)\)
        using boundedGreatest \(\left[\right.\) of \(\lambda i^{\prime}\). \(\left.\{c\}_{t} i^{\prime} i n\right]\) by blast
    with assms show ?thesis using lActive-def Nat.Greatest-le-nat \(\left.\left[\text { of } \lambda i^{\prime} .\right\}_{c \xi_{t}} i^{\prime} i\right]\) by simp
qed
lemma lActive-greater-active:
    assumes \(n>\langle c \wedge t\rangle\)
        and \(\forall n^{\prime \prime}>n^{\prime} . \neg\left\{c \xi_{t n^{\prime \prime}}\right.\)
    shows \(\neg\left\{c \xi_{t} n\right.\)
proof (rule ccontr)
    assume \(\neg \neg\left\{c \xi_{t} n\right.\)
    with \(\left\langle\forall n^{\prime \prime}>n^{\prime} . \neg\left\{c_{t}{ }_{n^{\prime \prime}}\right\rangle\right.\) have \(n \leq\langle c \wedge t\rangle\) using lActive-greatest by simp
    thus False using assms by simp
qed
lemma lActive-greater-active-all:
    assumes \(\forall n^{\prime \prime}>n^{\prime} . \neg\left\{c \xi_{t} n^{\prime \prime}\right.\)
    shows \(\neg\left(\exists n>\langle c \wedge t\rangle .\{c\}_{t} n\right)\)
proof (rule ccontr)
    assume \(\neg \neg\left(\exists n>\langle c \wedge t\rangle .\{c\}_{t} n\right)\)
    then obtain \(n\) where \(n>\langle c \wedge t\rangle\) and \(\xi c \xi_{t}{ }_{n}\) by blast
    with \(\left\langle\forall n^{\prime \prime}>n^{\prime} . \neg\left(\xi_{c} \xi_{t} n^{\prime \prime}\right)\right\rangle\) have \(\neg\left\{c \xi_{t} n\right.\) using lActive-greater-active by simp
    with \(\} c\}_{t} n^{\rangle}\)show False by simp
qed
lemma lActive-equality:
    assumes \(\left\{c \xi_{t} i\right.\)
        and \(\left.\left.(\bigwedge x .\}_{c}\right\}_{t} x \Longrightarrow x \leq i\right)\)
    shows \(\langle c \wedge t\rangle=i\) unfolding lActive-def
    using assms Greatest-equality[of \(\left.\lambda i^{\prime} . \xi_{c} \xi_{t}{ }_{i}\right]\) by simp
lemma nxtActive-lactive:
    assumes \(\exists i \geq n\). \(\left\{c \xi_{t} i\right.\)
        and \(\neg\left(\exists i>\langle c \rightarrow t\rangle_{n} .\left\{c \xi_{t} i\right)\right.\)
    shows \(\langle c \rightarrow t\rangle_{n}=\langle c \wedge t\rangle\)
proof -
    from \(\operatorname{assms}(1)\) have \(\xi_{c} \xi_{t}\langle c \rightarrow t\rangle_{n}\) using nxtActI by auto
    moreover from assms have \(\neg\left(\exists i^{\prime} \geq S u c\langle c \rightarrow t\rangle_{n} .\left\{c \xi_{t} i^{\prime}\right)\right.\)
```

using nxtActive-no-active by simp
hence $\left(\bigwedge x .\left\{c \xi_{t}{ }_{x} \longrightarrow x \leq\langle c \rightarrow t\rangle_{n}\right)\right.$ using not-less-eq-eq by auto
ultimately show ?thesis using $\neg \neg\left(\exists i^{\prime} \geq\right.$ Suc $\langle c \rightarrow t\rangle_{n}$. $\left.\left.\{c\}_{t}{ }^{\prime}{ }^{\prime}\right)\right\rangle$ lActive-equality by simp qed

D. 15 Mapping Time Points

In the following we introduce two operators to map time-points between configuration traces and behavior traces.

D.15.1 Configuration Trace to Behavior Trace

First we provide an operator which maps a point in time of a configuration trace to the corresponding point in time of a behavior trace.

```
definition cnf2bhv \(::^{\prime} i d \Rightarrow(n a t \Rightarrow c n f) \Rightarrow\) nat \(\Rightarrow\) nat \((-\downarrow-(-)[150,150,150] 110)\)
    where \(c \downarrow t(n) \equiv\) the-enat \(\left(\right.\) llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.\left.t)\right)\right)-1+(n-\langle c \wedge t\rangle)\)
lemma cnf2bhv-mono:
    assumes \(n^{\prime} \geq n\)
    shows \(c \downarrow_{t}\left(n^{\prime}\right) \geq c \downarrow_{t}(n)\)
    by (simp add: assms cnf2bhv-def diff-le-mono)
lemma cnf2bhv-mono-strict:
    assumes \(n \geq\langle c \wedge t\rangle\) and \(n^{\prime}>n\)
    shows \(c \downarrow_{t}\left(n^{\prime}\right)>c \downarrow_{t}(n)\)
    using assms cnf2bhv-def by auto
```

Note that the functions are nat, that means that also in the case the difference is negative they will return a 0 !
lemma cnf2bhv-ge-llength[simp]:
assumes $n \geq\langle c \wedge t\rangle$
shows $c \downarrow_{t}(n) \geq$ the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)-1$
using assms cnf2bhv-def by simp
lemma cnf2bhv-greater-llength[simp]:
assumes $n>\langle c \wedge t\rangle$
shows $c \downarrow_{t}(n)>$ the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)-1$
using assms cnf2bhv-def by simp
lemma cnfəbhv-suc[simp]:
assumes $n \geq\langle c \wedge t\rangle$
shows $c \downarrow_{t}($ Suc $n)=S u c\left(c \downarrow_{t}(n)\right)$
using assms cnf2bhv-def by simp
lemma cnf2bhv-lActive[simp]:
shows $c \downarrow t(\langle c \wedge t\rangle)=$ the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)-1$
using cnf2bhv-def by simp

```
lemma cnf2bhv-lnth-lappend:
    assumes act: \(\exists i\). \(\} c \xi_{t} i\)
        and nAct: \(\nexists i . i \geq n \wedge \xi c \xi_{t} i\)
    shows \(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\) inf-llist \(\left.t)\right) @_{l}\left(\right.\) inf-llist \(\left.\left.t^{\prime}\right)\right)(c \downarrow t(n))=\operatorname{lnth}\left(\right.\) inf-llist \(\left.t^{\prime}\right)(n-\langle c \wedge t\rangle-1)\)
        (is ? \(\mathrm{lh} s=?\) ? rhs )
proof -
    from \(n A c t\) have linite ( \(\pi_{c}\) (inf-llist \(t\) )) using proj-finite2 by auto
    then obtain \(k\) where \(k\)-def: llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.t)\right)=\) enat \(k\)
        using lfinite-llength-enat by blast
    moreover have \(k \leq{ }_{\downarrow} \downarrow_{t}(n)\)
    proof -
        from nAct have \(\nexists i . i>n-1 \wedge \xi_{c} \xi_{t}{ }_{i}\) by simp
        with act have \(\langle c \wedge t\rangle \leq n-1\) using lActive-less by auto
        moreover have \(n>0\) using act nAct by auto
        ultimately have \(\langle c \wedge t\rangle<n\) by simp
        hence the-enat (llength ( \(\pi_{c}\) inf-llist \(\left.t\right)\) ) - \(1<c \downarrow_{t}(n)\) using \(c n f 2 b h v-g r e a t e r-l l e n g t h ~ b y ~ s i m p ~\)
        with \(k\)-def show ?thesis by simp
    qed
    ultimately have ?lhs \(=\operatorname{lnth}\left(\right.\) inf-llist \(\left.t^{\prime}\right)(c \downarrow t(n)-k)\) using lnth-lappend2 by blast
    moreover have \(c \downarrow_{t}(n)-k=n-\langle c \wedge t\rangle-1\)
    proof -
        from cnf2bhv-def have
            \(c_{t}(n)-k=\) the-enat \(\left(\right.\) llength \(\left(\pi_{c}\right.\) inf-llist \(\left.\left.t\right)\right)-1+(n-\langle c \wedge t\rangle)-k\) by simp
        also have \(\ldots=\) the-enat (llength \(\left(\pi_{c}\right.\) inf-llist \(\left.\left.t\right)\right)-1+(n-\langle c \wedge t\rangle)-\)
            the-enat (llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.t)\right)\) ) using \(k\)-def by simp
        also have \(\ldots=\) the-enat \(\left(\right.\) llength \(\left(\pi_{c}\right.\) inf-llist \(\left.\left.t\right)\right)+(n-\langle c \wedge t\rangle)-1-\)
            the-enat (llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.t)\right)\) )
        proof -
            have \(\exists i\). enat \(i<\) llength \((\) inf-llist \(t) \wedge\{c\}\) lnth \((\) inf-llist \(t) i\) by (simp add: act)
            hence llength ( \(\pi_{c}\) inf-llist \(t\) ) \(\geq 1\) using proj-one by simp
            moreover from \(k\)-def have llength ( \(\pi_{c}\) inf-llist \(t\) ) \(\neq \infty\) by simp
            ultimately have the-enat (llength \(\left(\pi_{c}\right.\) inf-llist \(\left.\left.t\right)\right) \geq 1\) by (simp add: \(k\)-def one-enat-def)
            thus ?thesis by simp
        qed
        also have \(\ldots=\) the-enat \(\left(\right.\) llength \(\left(\pi_{c}\right.\) inf-llist \(\left.\left.t\right)\right)+(n-\langle c \wedge t\rangle)-\)
            the-enat (llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.\left.t)\right)\right)-1\) by simp
        also have \(\ldots=n-\langle c \wedge t\rangle-1\) by simp
        finally show? thesis.
    qed
    ultimately show ?thesis by simp
qed
lemma nAct-cnf2proj-Suc-dist:
    assumes \(\exists i \geq n\). \(\left\{c_{3}^{3}{ }_{t}\right.\)
        and \(\neg\left(\exists i>\langle c \rightarrow t\rangle_{n}\right.\). \(\left\{c \xi_{t} i\right)\)
    shows Suc (the-enat \(\langle c\) \# enat ninf-llist \(t\rangle)={ }_{c \downarrow t}(\) Suc \(\langle c \rightarrow t\rangle n)\)
proof -
    have the-enat \(\langle c \#\) enat \(n\) inf-llist \(t\rangle=c \downarrow_{t}(\langle c \rightarrow t\rangle n)(\) is \(? L H S=? R H S)\)
```

```
proof -
    from assms have ?RHS = the-enat(llength ( }\mp@subsup{\pi}{c}{}(\mathrm{ inf-llist t )}))-
        using nxtActive-lactive[of n c t] by simp
    also have llength ( }\mp@subsup{\pi}{c}{}(\mathrm{ inf-llist t ) ) = eSuc ( }\langlec\mp@subsup{#}{\langlec->t\ranglen}{n}\mp@subsup{|}{\mathrm{ inf-llist t t )}}{
    proof -
        from assms have }\neg(\exists\mp@subsup{i}{}{\prime}\geq\mathrm{ Suc ( <c }->t\ranglen).{c\mp@subsup{}}{t}{\prime}\mp@subsup{i}{}{\prime})\mathrm{ using nxtActive-no-active by simp
        hence }\langlec\mp@subsup{#}{\mathrm{ Suc ( }}{\mathrm{ cc }->t\ranglen) inf-llist t }\rangle=\mathrm{ llength ( }\mp@subsup{\pi}{c}{}(\mathrm{ inf-llist t )}
            using nAct-eq-proj[of Suc (\langlec->t\ranglen) c inf-llist t] by simp
        moreover from assms(1) have {c\mp@subsup{}}{t}{(}\mp@subsup{\}{c}{}->t\ranglen)}\mathrm{ using nxtActI by blast
        hence }\langlec\mp@subsup{#}{Suc(\langlec->t\ranglen)}{}\mathrm{ inf-llist t }\rangle=eSuc(\langlec#\mp@subsup{#}{\langlec->t\rangle}{n}\mp@code{inf-llist t\rangle) by simp
        ultimately show ?thesis by simp
    qed
    also have the-enat(eSuc (\langlec##c->t\ranglen inf-llist t\rangle)) - 1 = (\langlec #\langlecctt\mp@subsup{\rangle}{n}{}}\mathrm{ inf-llist t \)
    proof -
        have }\langlec#\mp@subsup{#}{\langlec->t\rangle}{n}\mp@code{inf-llist t\rangle}\not=\infty\mathrm{ by simp
```



```
            using the-enat-eSuc by simp
        thus ?thesis by simp
    qed
    also have ... = ?LHS
    proof -
        have enat }\langlec->t\mp@subsup{\rangle}{n}{}-1<llength (inf-llist t) by (simp add:one-enat-def
        moreover from assms(1) have }\langlec->t\mp@subsup{\rangle}{n}{}\geqn\mathrm{ and
            #k. enat n\leq enat k}\wedge enat k< enat \langlec->t\rangle n ^{c} lnth (inf-llist t) k
            using nxtActI by auto
        ultimately have }\langlec# #nat \langlec->t\ranglen inf-llist t\rangle=\langlec# # enat ninf-llist t
            using nAct-not-active-same[of n \langlec->t\rangle}\mp@subsup{n}{n}{}\mathrm{ inf-llist t c] by simp
        moreover have }\langlec##\mathrm{ enat ninf-llist t }\rangle\not=\infty\mathrm{ by simp
        ultimately show ?thesis by auto
    qed
    finally show ?thesis by fastforce
qed
moreover from assms have }\langlec->t\mp@subsup{\rangle}{n}{}=\langlec\wedget\rangle\mathrm{ using nxtActive-lactive by simp
hence Suc (c\mp@subsup{\downarrow}{t}{}(\langlec->t\mp@subsup{\rangle}{n}{}))=c\mp@subsup{\downarrow}{t}{}(Suc\langlec->t\mp@subsup{\rangle}{n}{})
    using cnf2bhv-suc[where n=\langlec->t\rangle}\mp@subsup{|}{n}{}]\mathrm{ by simp
    ultimately show ?thesis by simp
qed
```


D.15.2 Behavior Trace to Configuration Trace

Next we define an operator to map a point in time of a behavior trace back to a corresponding point in time for a configuration trace.

```
definition bhv2cnf \(::{ }^{\prime} i d \Rightarrow(\) nat \(\Rightarrow\) cnf \() \Rightarrow\) nat \(\Rightarrow\) nat (-个-(-) \(\left.[150,150,150] 110\right)\)
    where \(c \uparrow t(n) \equiv\langle c \wedge t\rangle+\left(n-\left(\right.\right.\) the-enat \(\left(\right.\) llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.\left.\left.\left.t)\right)\right)-1\right)\right)\)
lemma bhv2cnf-mono:
    assumes \(n^{\prime} \geq n\)
    shows \(c \uparrow_{t}\left(n^{\prime}\right) \geq c^{\uparrow} t^{\prime}(n)\)
```

by (simp add: assms bhv2cnf-def diff-le-mono)
lemma bhv2cnf-mono-strict:
assumes $n^{\prime}>n$
and $n \geq$ the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)-1$
shows $c_{c}{ }_{t}\left(n^{\prime}\right)>{ }_{c} \uparrow_{t}(n)$
using assms bhv2cnf-def by auto
Note that the functions are nat, that means that also in the case the difference is negative they will return a 0 !
lemma bhv2cnf-ge-lActive[simp]:
shows ${ }_{c} \uparrow_{t}(n) \geq\langle c \wedge t\rangle$
using bhv2cnf-def by simp
lemma bhv2cnf-greater-lActive[simp]:
assumes $n>$ the-enat(llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)-1$
shows $c \uparrow t(n)>\langle c \wedge t\rangle$
using assms bhv2cnf-def by simp
lemma bhv2cnf-lActive[simp]:
assumes $\exists i$. $\{c\}_{t} i$
and linite ($\pi_{c}($ inf-llist $t)$)
shows $c \uparrow{ }_{t}\left(\right.$ the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.\left.t)\right)\right)\right)=\operatorname{Suc}(\langle c \wedge t\rangle)$
proof -
from assms have $\pi_{c}($ inf-llist $t) \neq[]_{l}$ by simp
hence llength $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)>0$ by $(\operatorname{simp}$ add: lnull-def)
moreover from 〈lfinite $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)$ have llength $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right) \neq \infty$ using llength-eq-infty-conv-lfinite by auto
ultimately have the-enat (llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)>0$ using enat- 0 -iff (1) by fastforce
hence the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)-\left(\right.$ the-enat $\left(l l e n g t h ~\left(\pi_{c}(\right.\right.$ inf-llist $\left.\left.\left.t)\right)\right)-1\right)=1$ by simp
thus ?thesis using bhv2cnf-def by simp
qed

D.15.3 Relating the Mappings

In the following we provide some properties about the relationship between the two mapping operators.

```
lemma bhv2cnf-cnf2bhv:
    assumes \(n \geq\langle c \wedge t\rangle\)
    shows \(c \uparrow_{t}\left(c_{t}(n)\right)=n(\) is ?lhs \(=\) ? \(r h s)\)
proof -
    have ?lhs \(=\langle c \wedge t\rangle+\left(\left(c \downarrow_{t}(n)\right)-\left(\right.\right.\) the-enat \(\left(\right.\) llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.\left.\left.\left.t)\right)\right)-1\right)\right)\)
        using bhv2cnf-def by simp
    also have \(\ldots=\langle c \wedge t\rangle+\left(\left(\left(\right.\right.\right.\) the-enat \(\left(\right.\) llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.\left.\left.\left.t)\right)\right)\right)-1+(n-\langle c \wedge t\rangle)\right)-\)
        (the-enat (llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.\left.\left.\left.t)\right)\right)-1\right)\right)\) using cnf2bhv-def by simp
    also have (the-enat (llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.\left.\left.t)\right)\right)\right)-1+(n-(\langle c \wedge t\rangle))-\)
        \(\left(\right.\) the-enat \(\left(\right.\) llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.\left.\left.t)\right)\right)-1\right)=\left(\right.\) the-enat \(\left(\right.\) llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.\left.\left.t)\right)\right)\right)-1-\)
        \(\left(\left(\right.\right.\) the-enat \(\left(\right.\) llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.\left.\left.\left.t)\right)\right)\right)-1\right)+(n-(\langle c \wedge t\rangle))\) by simp
```

also have $\ldots=n-(\langle c \wedge t\rangle)$ by simp
also have $(\langle c \wedge t\rangle)+(n-(\langle c \wedge t\rangle))=(\langle c \wedge t\rangle)+n-\langle c \wedge t\rangle$ using assms by simp also have $\ldots=$? rhs by simp
finally show? ?thesis.
qed
lemma cnf2bhv-bhv2cnf:
assumes $n \geq$ the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)-1$
shows $c \downarrow_{t}\left(c \uparrow_{t}(n)\right)=n($ is ? lhs $=$? $r h s)$
proof -
have ?lhs $=$ the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)-1+((c \uparrow t(n))-(\langle c \wedge t\rangle))$ using cnf2bhv-def by simp
also have $\ldots=$ the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)-1+(\langle c \wedge t\rangle+$ $\left(n-\left(\right.\right.$ the-enat $\left(l l e n g t h ~\left(\pi_{c}(\right.\right.$ inf-llist $\left.\left.\left.\left.\left.t)\right)\right)-1\right)\right)-(\langle c \wedge t\rangle)\right)$ using bhv2cnf-def by simp
also have $\langle c \wedge t\rangle+\left(n-\left(\right.\right.$ the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.\left.\left.t)\right)\right)-1\right)\right)-(\langle c \wedge t\rangle)=$ $\langle c \wedge t\rangle-(\langle c \wedge t\rangle)+\left(n-\left(\right.\right.$ the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.\left.\left.t)\right)\right)-1\right)\right)$ by simp
also have $\ldots=n-\left(\right.$ the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.\left.t)\right)\right)-1\right)$ by simp also have
the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)-1+\left(n-\left(\right.\right.$ the-enat $\left(\operatorname{llength}\left(\pi_{c}(\right.\right.$ inf-llist $\left.\left.\left.\left.t)\right)\right)-1\right)\right)=$ $n-\left(\right.$ the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.\left.t)\right)\right)-1\right)+\left(\right.$ the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.\left.t)\right)\right)-1\right)$
by simp
also have $\ldots=n+\left(\left(\right.\right.$ the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.\left.t)\right)\right)-1\right)-$
(the-enat (llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.\left.\left.t)\right)\right)-1\right)\right)$ using assms by simp
also have $\ldots=$?rhs by simp
finally show ?thesis.
qed
lemma $p 2 c-m o n o-c 2 p$:
assumes $n \geq\langle c \wedge t\rangle$
and $n^{\prime} \geq c \downarrow_{t}(n)$
shows $c \uparrow_{t}\left(n^{\prime}\right) \geq n$
proof -
from $\left\langle n^{\prime} \geq c \downarrow_{t}(n)\right\rangle$ have $c \uparrow_{t}\left(n^{\prime}\right) \geq c \uparrow_{t}\left(c \downarrow_{t}(n)\right)$ using bhv2cnf-mono by simp
thus ?thesis using bhv2cnf-cnf2bhv $\langle n \geq\langle c \wedge t\rangle\rangle$ by simp
qed
lemma p2c-mono-c2p-strict:
assumes $n \geq\langle c \wedge t\rangle$
and $n<{ }_{c} \uparrow{ }_{t}\left(n^{\prime}\right)$
shows $c \downarrow_{t}(n)<n^{\prime}$
proof (rule ccontr)
assume $\neg\left(c \downarrow_{t}(n)<n^{\prime}\right)$
hence $c \downarrow_{t}(n) \geq n^{\prime}$ by simp
with $\left\langle n \geq\langle c \wedge t\rangle\right.$ have $c \uparrow_{t}\left(\operatorname{nat}^{\left.\left(c \downarrow_{t}(n)\right)\right) \geq c \uparrow_{t}\left(n^{\prime}\right)}\right.$
using bhv2cnf-mono by simp
hence $\neg\left(c \uparrow_{t}\left(n_{\text {at }}\left(c \downarrow_{t}(n)\right)\right)<c \uparrow_{t}\left(n^{\prime}\right)\right)$ by simp
with $\left\langle n \geq\langle c \wedge t\rangle\right.$ have $\neg\left(n<c \uparrow t\left(n^{\prime}\right)\right)$
using bhv2cnf-cnf2bhv by simp
with assms show False by simp
qed
lemma c2p-mono-p2c:
assumes $n \geq$ the-enat (llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)-1$
and $n^{\prime} \geq c \uparrow_{t}(n)$
shows $c \downarrow_{t}\left(n^{\prime}\right) \geq n$
proof -
from $\left\langle n^{\prime} \geq c \uparrow_{t}(n)\right\rangle$ have $c \downarrow_{t}\left(n^{\prime}\right) \geq c \downarrow_{t}\left(c \uparrow_{t}(n)\right)$ using cnf2bhv-mono by simp
thus ? thesis using cnf2bhv-bhv2cnf $\left\langle n \geq\right.$ the-enat (llength $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)$) - 1\rangle by simp
qed
lemma c2p-mono-p2c-strict:
assumes $n \geq$ the-enat (llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)-1$
and $n<{ }_{c} \downarrow_{t}\left(n^{\prime}\right)$
shows $c_{\uparrow}{ }_{t}(n)<n^{\prime}$
proof (rule ccontr)
assume $\neg\left({ }_{c} \uparrow_{t}(n)<n^{\prime}\right)$
hence $c^{\uparrow}{ }_{t}(n) \geq n^{\prime}$ by simp
with $\left\langle n \geq\right.$ the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.\left.t)\right)\right)-1\right\rangle$ have $c \downarrow_{t}\left(n a t\left(c \uparrow{ }_{t}(n)\right)\right) \geq{ }_{c} \downarrow_{t}\left(n^{\prime}\right)$
using cnf2bhv-mono by simp
hence $\neg\left(c \downarrow_{t}\left(n a t\left(c \uparrow_{t}(n)\right)\right)<c \downarrow_{t}(n)\right)$ by simp
with $\left\langle n \geq\right.$ the-enat (llength $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)$) 1 have $\neg\left(n<c \downarrow_{t}(n)\right)$
using cnf2bhv-bhv2cnf by simp
with assms show False by simp
qed
end
end

The following theory formalizes our calculus for dynamic architectures [Mar17b, Mar17c] and verifies its soundness. The calculus allows to reason about temporal-logic specifications of component behavior in a dynamic setting. The theory is based on our theory of configuration traces and introduces the notion of behavior trace assertion to specify component behavior in a dynamic setting.

```
theory Dynamic-Architecture-Calculus
imports Configuration-Traces
begin
```


D. 16 Extended Natural Numbers

We first provide one additional property for extended natural numbers.

```
lemma the-enat-mono[simp]:
    assumes \(m \neq \infty\)
        and \(n \leq m\)
    shows the-enat \(n \leq\) the-enat \(m\)
    using assms(1) assms(2) enat-ile by fastforce
```


D. 17 Lazy Lists

Finally, we provide an additional property for lazy lists.
lemma llength-geq-enat-lfiniteD: llength $x s \leq$ enat $n \Longrightarrow$ lfinite $x s$
using not-lfinite-llength by force
context dynamic-component
begin

D. 18 Dynamic Evaluation of Temporal Operators

In the following we introduce a function to evaluate a behavior trace assertion over a given configuration trace.

```
definition eval:: 'id \(\Rightarrow(\) nat \(\Rightarrow c n f) \Rightarrow\left(n a t \Rightarrow{ }^{\prime} c m p\right) \Rightarrow\) nat
    \(\Rightarrow\left(\left(\right.\right.\) nat \(\left.\Rightarrow{ }^{\prime} \mathrm{cmp}\right) \Rightarrow\) nat \(\Rightarrow\) bool \() \Rightarrow\) bool
    where eval cid \(t t^{\prime} n \gamma \equiv\)
    \(\left(\exists i \geq n .\left\{c i d \xi_{t} i\right) \wedge \gamma\left(\operatorname{lnth}\left(\left(\pi_{c i d}(\right.\right.\right.\right.\) inf-llist \(\left.t)\right) @_{l}\left(\right.\) inf-llist \(\left.\left.\left.t^{\prime}\right)\right)\right)(\) the-enat \((\langle\) cid \(\# n\) inf-llist \(t\rangle))\)
    \(\checkmark\)
    \(\left.(\exists i\} c i. d \xi_{t} i\right) \wedge\left(\nexists i^{\prime} . i^{\prime} \geq n \wedge \xi c i d \xi_{t} i^{\prime}\right) \wedge \gamma\left(\operatorname{lnth}\left(\left(\pi_{c i d}(\right.\right.\right.\) inf-llist \(\left.t)\right) @_{l}(\) inf-llist \(\left.\left.t)\right)\right)(c i d \downarrow t(n))\)
    \(\vee\)
    \(\left(\nexists i . \xi \operatorname{cid} \xi_{t} i\right) \wedge \gamma\left(\right.\) lnth \(\left(\left(\pi_{c i d}(\right.\right.\) inf-llist \(\left.t)\right) @_{l}(\) inf-llist \(\left.\left.t\rangle\right)\right) n\)
```

eval takes a component identifier cid, a configuration trace t, a behavior trace t^{\prime}, and point in time n and evaluates behavior trace assertion γ as follows:

- If component cid is again activated in the future, γ is evaluated at the next point in time where cid is active in t.

D Remaining Rules of the Calculus

- If component cid is not again activated in the future but it is activated at least once in t, then γ is evaluated at the point in time given by cid \downarrow t n.
- If component cid is never active in t, then γ is evaluated at time point n.

The following proposition evaluates definition eval by showing that a behavior trace assertion γ holds over configuration trace t and continuation t^{\prime} whenever it holds for the concatenation of the corresponding projection with t^{\prime}.

```
proposition eval-corr:
    eval cid \(t t^{\prime} 0 \gamma \longleftrightarrow \gamma\left(\right.\) lnth \(\left(\left(\pi_{\text {cid }}(\right.\right.\) inf-llist \(\left.t)\right) @_{l}\left(\right.\) inf-llist \(\left.\left.\left.t^{\prime}\right)\right)\right) 0\)
proof
    assume eval cid \(t t^{\prime} 0 \gamma\)
    with eval-def have \(\left(\exists i \geq 0 ., c_{c i d \xi_{t}} i\right) \wedge\)
    \(\gamma\left(\operatorname{lnth}\left(\pi_{\text {cid }}\right.\right.\) inf-llist \(t @_{l}\) inf-llist \(\left.\left.t^{\prime}\right)\right)\left(\right.\) the-enat \(\left\langle\right.\) cid \(\left.\#_{\text {enat }} 0^{\text {inf-llist } t\rangle)} \vee\right)\)
    \(\left.(\exists i\} c i. d \xi_{t} i\right) \wedge \neg\left(\exists i^{\prime} \geq 0 . \xi_{c i d \xi_{t}}^{i^{\prime}}\right) \wedge \gamma\left(\right.\) lnth \(\left(\pi_{c i d}\right.\) inf-llist \(t @_{l}\) inf-llist \(\left.\left.t^{\prime}\right)\right)\left({ }_{c i d} \downarrow t 0\right) \vee\)
    \(\left.(\nexists i\} c i. d \xi_{t} i\right) \wedge \gamma\left(\right.\) lnth \(\left(\pi_{c i d}\right.\) inf-llist \(t @_{l}\) inf-llist \(\left.\left.t^{\prime}\right)\right) 0\) by simp
    thus \(\gamma\left(\operatorname{lnth}\left(\pi_{\text {cid }}\right.\right.\) inf-llist \(t @_{l}\) inf-llist \(\left.\left.t^{\prime}\right)\right) 0\)
    proof
        assume
            \(\left(\exists i \geq 0 . \xi_{c i d} \xi_{t}\right) \wedge \gamma\left(\right.\) lnth \(\left(\pi_{\text {cid }}\right.\) inf-llist \(t @_{l}\) inf-llist \(\left.\left.t^{\prime}\right)\right)\left(\right.\) the-enat \(\left\langle\right.\) cid \(\#_{\text {enat }} 0^{\text {inf-llist } t\rangle)}\)
        moreover have the-enat \(\langle\) cid \# enat oinf-llist \(t\rangle=0\) using zero-enat-def by auto
        ultimately show?thesis by simp
    next
        assume \(\left.(\exists i\} c i. d \xi_{t} i\right) \wedge \neg\left(\exists i^{\prime} \geq 0 .\left\{c i d \xi_{t} i^{\prime}\right) \wedge \gamma\left(\right.\right.\) lnth \(\left(\pi_{c i d}\right.\) inf-llist \(t @_{l}\) inf-llist \(\left.\left.t^{\prime}\right)\right)\left({ }_{c i d} \downarrow t 0\right)\)
            \(\left.\vee(\nexists i\} c i. d \xi_{t}\right) \wedge \gamma\left(\right.\) lnth \(\left(\pi_{\text {cid }}\right.\) inf-llist \(t @_{l}\) inf-llist \(\left.\left.t^{\prime}\right)\right) 0\)
        thus ?thesis by auto
    qed
next
    assume \(\gamma\left(\right.\) lnth \(\left(\left(\pi_{\text {cid }}(\right.\right.\) inf-llist \(\left.t)\right) @_{l}\left(\right.\) inf-llist \(\left.\left.\left.t^{\prime}\right)\right)\right) 0\)
    show eval cid \(t t^{\prime} 0 \gamma\)
    proof cases
        assume \(\exists i\). \({ }^{\text {ccid }}{ }_{t} i\)
        hence \(\exists i \geq 0\). ccid \(_{t} i\) by simp
        moreover from \(\left\langle\gamma\left(\right.\right.\) lnth \(\left(\left(\pi_{\text {cid }}(\right.\right.\) inf-llist \(\left.t)\right) @_{l}\left(\right.\) inf-llist \(\left.\left.\left.\left.t^{\prime}\right)\right)\right) 0\right\rangle\) have
            \(\gamma\left(\right.\) lnth \(\left(\left(\pi_{c i d}(\right.\right.\) inf-llist \(\left.t)\right) @_{l}\left(\right.\) inf-llist \(\left.\left.\left.t^{\prime}\right)\right)\right)(\) the-enat \((\langle\) cid \# enat 0 inf-llist \(t\rangle))\)
            using zero-enat-def by auto
        ultimately show ?thesis using eval-def by simp
    next
        assume \(\nexists i\} c i. d \xi_{t} i\)
        with \(\left\langle\gamma\left(\operatorname{lnth}\left(\left(\pi_{c i d}(\right.\right.\right.\right.\) inf-llist \(\left.t)\right) @_{l}\left(\right.\) inf-llist \(\left.\left.\left.\left.t^{\prime}\right)\right)\right) 0\right\rangle\) show ?thesis using eval-def by simp
    qed
qed
```


D.18.1 Simplification Rules

lemma validCI-act[simp]:
assumes $\exists i \geq n$. $\left\{\begin{array}{c}\text { cid } \xi_{t} \\ i\end{array}\right.$
and $\gamma\left(\operatorname{lnth}\left(\left(\pi_{c i d}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left(\right.$ the-enat $\left(\left\langle\right.\right.$ cid $\#_{n}$ inf-llist $\left.\left.\left.t\right\rangle\right)\right)$
shows eval cid $t t^{\prime} n \gamma$

```
    using assms eval-def by simp
lemma validCI-cont[simp]
    assumes }\existsi.{cid\mp@subsup{}}{t}{}
        and # #i'. i'\geqn^{cid\mp@subsup{\xi}{t}{\prime}}\mp@subsup{i}{}{\prime
        and \gamma (lnth (( }\mp@subsup{\pi}{cid}{}(\mathrm{ inf-llist t)) @ }\mp@subsup{l}{l}{}(\mathrm{ inf-llist t}\mp@subsup{t}{}{\prime})))(\mp@subsup{c}{cid}{}\downarrowt(n)
    shows eval cid t t' n \gamma
    using assms eval-def by simp
lemma validCI-not-act[simp]:
    assumes # i. {cid\mp@subsup{}}{t}{}i
        and \gamma (lnth (( }\mp@subsup{\pi}{cid}{}(\mathrm{ inf-llist t)) @ }\mp@subsup{l}{l}{(\mathrm{ inf-llist t}\mp@subsup{t}{}{\prime})))n
    shows eval cid t t' n \gamma
    using assms eval-def by simp
lemma validCE-act[simp]:
    assumes }\existsi\geqn.{\mp@code{cid\mp@subsup{}}{t i}{}
        and eval cid t t' n \gamma
    shows }\gamma(lnth ((\mp@subsup{\pi}{cid}{}(\mathrm{ inf-llist t)) @ ( (inf-llist t' })))(\mathrm{ the-enat (<cid #n inf-llist t t))
    using assms eval-def by auto
lemma validCE-cont[simp]:
    assumes }\existsi.{cid\mp@subsup{}}{t}{}
        and # #i'. i'\geqn^{cid\mp@subsup{\xi}{t i}{\prime}
        and eval cid t t'n}
    shows \gamma (lnth (( }\mp@subsup{|}{cid}{}(\mathrm{ inf-llist t)) @ }\mp@subsup{l}{l}{}(\mathrm{ inf-llist t}\mp@subsup{t}{}{\prime})))(cid\downarrowt(n)
    using assms eval-def by auto
lemma validCE-not-act[simp]:
    assumes #i. {cid\mp@subsup{}}{t}{}i
        and eval cid t t' n \gamma
    shows }\gamma(lnth ((\mp@subsup{\pi}{cid}{}(\mathrm{ inf-llist t )) @ }\mp@subsup{l}{l}{(\mathrm{ inf-llist t'})))n
    using assms eval-def by auto
```


D.18.2 No Activations

```
    proposition validity1:
```

 assumes \(n \leq n^{\prime}\)
 and \(\exists i \geq n^{\prime}\). \(\{c\}_{t} i\)
 and \(\forall k \geq n . k<n^{\prime} \longrightarrow \neg\left\{c \xi_{t} k\right.\)
 shows eval ct \(t^{\prime} n \gamma \Longrightarrow\) eval ct \(t^{\prime} n^{\prime} \gamma\)
 proof -
assume eval c $t t^{\prime} n \gamma$
moreover from assms have $\exists i \geq n$. $\left.\}_{c}\right\}_{t} i$ by (meson order.trans)
ultimately have $\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)($ the-enat $(\langle c \#$ enat n inf-llist $t\rangle))$
using validCE-act by blast
moreover have enat $n^{\prime}-1<$ llength (inf-llist t) by (simp add: one-enat-def)
with assms have the-enat $\left(\left\langle c \#_{\text {enat } n}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)=$ the-enat $\left(\left\langle c \#_{\text {enat } n^{\prime}}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)$
using n Act-not-active-same $\left[o f ~ n n^{\prime}\right.$ inf-llist $t c$] by simp

```
ultimately have \(\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.\) inf-llist \(\left.t)\right) @_{l}\left(\right.\) inf-llist \(\left.\left.\left.t^{\prime}\right)\right)\right)\left(\right.\) the-enat \(\left(\left\langle c \#_{\text {enat } n^{\prime}}\right.\right.\) inf-llist \(\left.\left.\left.t\right\rangle\right)\right)\)
    by simp
    with assms show ?thesis using validCI-act by blast
qed
proposition validity2:
    assumes \(n \leq n^{\prime}\)
        and \(\exists i \geq n^{\prime}\). \(\xi_{c} \xi_{t} i\)
        and \(\forall k \geq n . k<n^{\prime} \longrightarrow \neg\left\{c \xi_{t} k\right.\)
    shows eval ct \(t^{\prime} n^{\prime} \gamma \Longrightarrow\) eval \(c t t^{\prime} n \gamma\)
proof -
    assume eval ct \(t^{\prime} n^{\prime} \gamma\)
    with \(\left\langle\exists i \geq n^{\prime}\right.\). \(\left\{^{\prime}\right\}_{t}{ }^{i}{ }^{\rangle}\)
        have \(\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.\) inf-llist \(\left.t)\right) @_{l}\left(\right.\) inf-llist \(\left.\left.\left.t^{\prime}\right)\right)\right)\left(\right.\) the-enat \(\left(\left\langle c \#_{\text {enat } n^{\prime}}\right.\right.\) inf-llist \(\left.\left.\left.t\right\rangle\right)\right)\)
        using validCE-act by blast
    moreover have enat \(n^{\prime}-1<\) llength (inf-llist \(t\) ) by (simp add: one-enat-def)
    with assms have the-enat \(\left(\left\langle c \#_{\text {enat }} n\right.\right.\) inf-llist \(\left.\left.t\right\rangle\right)=\) the-enat \(\left(\left\langle c \#_{\text {enat } n^{\prime}}\right.\right.\) inf-llist \(\left.\left.t\right\rangle\right)\)
        using nAct-not-active-same by simp
    ultimately have \(\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.\) inf-llist \(\left.t)\right) @_{l}\left(\right.\) inf-llist \(\left.\left.\left.t^{\prime}\right)\right)\right)\left(\right.\) the-enat \(\left(\left\langle c \#_{\text {enat } n}\right.\right.\) inf-llist \(\left.\left.\left.t\right\rangle\right)\right)\)
        by simp
    moreover from assms have \(\exists i \geq n\). \(\xi_{c} \xi_{t} i\) by (meson order.trans)
    ultimately show ?thesis using validCI-act by blast
qed
```


D. 19 Basic Operators

In the following we introduce some basic operators for behavior trace assertions.

D.19.1 Predicates

Every predicate can be transformed to a behavior trace assertion.

```
definition pred \(::\) bool \(\Rightarrow\left(\left(\right.\right.\) nat \(\Rightarrow{ }^{\prime}\) cmp \() \Rightarrow\) nat \(\Rightarrow\) bool \()\)
    where pred \(P \equiv \lambda t n\). \(P\)
lemma predI[intro]:
    fixes cid \(t t^{\prime} n P\)
    assumes \(P\)
    shows eval cid \(t t^{\prime} n\) (pred \(P\) )
proof cases
    assume \(\left.(\exists i\} c i. d \xi_{t} i\right)\)
    show ?thesis
    proof cases
        assume \(\exists i \geq n\). \(\xi_{c} i d \xi_{t} i\)
        with assms show ?thesis using eval-def pred-def by auto
    next
        assume \(\left.\neg(\exists i \geq n\} c i. d \xi_{t} i\right)\)
        with assms show ?thesis using eval-def pred-def by auto
    qed
```

```
next
    assume }\neg(\existsi.{cid\mp@subsup{}}{t}{}i
    with assms show ?thesis using eval-def pred-def by auto
qed
lemma predE[elim]:
    fixes cid t t' n P
    assumes eval cid t t' n (pred P)
    shows P
proof cases
    assume ( }\existsi.{cid\mp@subsup{}}{t}{}i
    show ?thesis
    proof cases
            assume \existsi\geqn. {cid\mp@subsup{}}{t}{}i
            with assms show ?thesis using eval-def pred-def by auto
    next
            assume }\neg(\existsi\geqn.{cid\mp@subsup{\xi}{t}{}i
            with assms show ?thesis using eval-def pred-def by auto
    qed
next
    assume }\neg(\existsi.{cid\mp@subsup{}}{t}{}i
    with assms show ?thesis using eval-def pred-def by auto
qed
```


D.19.2 True and False

definition true $::\left(\right.$ nat $\Rightarrow{ }^{\prime}$ cmp $) \Rightarrow$ nat \Rightarrow bool where true $\equiv \lambda t n$. HOL.True
definition false :: (nat $\left.\Rightarrow{ }^{\prime} \mathrm{cmp}\right) \Rightarrow$ nat \Rightarrow bool where false $\equiv \lambda t$ n. HOL.False

D.19.3 Implication

definition $\mathrm{imp}::\left(\left(\right.\right.$ nat $\left.^{\mathrm{m}}{ }^{\prime} \mathrm{cmp}\right) \Rightarrow$ nat $\left.\Rightarrow \mathrm{bool}\right) \Rightarrow\left(\left(\right.\right.$ nat $\left.\Rightarrow{ }^{\prime} \mathrm{cmp}\right) \Rightarrow$ nat \Rightarrow bool $)$ $\Rightarrow\left(\left(\right.\right.$ nat $\left.\Rightarrow{ }^{\prime} \mathrm{cmp}\right) \Rightarrow$ nat \Rightarrow bool $)\left(\right.$ infixl $\left.\longrightarrow{ }^{b} 10\right)$ where $\gamma \longrightarrow{ }^{\prime} \gamma^{\prime} \equiv \lambda t n . \gamma t n \longrightarrow \gamma^{\prime} t n$
lemma impI[intro!]:
assumes eval cid $t t^{\prime} n \gamma \longrightarrow$ eval cid $t t^{\prime} n \gamma^{\prime}$
shows eval cid $t t^{\prime} n\left(\gamma \longrightarrow^{b} \gamma^{\prime}\right)$
proof cases
assume $\exists i\} c i. d \xi_{t} i$
show ?thesis
proof cases
assume $\exists i \geq n$. $\}_{c} i d \xi_{t} i$
with 〈eval cid $t t^{\prime} n \gamma \longrightarrow$ eval cid $\left.t t^{\prime} n \gamma^{\prime}\right\rangle$
have $\gamma\left(\operatorname{lnth}\left(\pi_{\text {cid }}\right.\right.$ inf-llist $t @_{l}$ inf-llist $\left.\left.t^{\prime}\right)\right)$ (the-enat $\left\langle\right.$ cid \# enat $n^{\text {inf-llist } t\rangle)}$
$\longrightarrow \gamma^{\prime}\left(\operatorname{lnth}\left(\pi_{\text {cid }}\right.\right.$ inf-llist $t @_{l}$ inf-llist $\left.\left.t^{\prime}\right)\right)\left(\right.$ the-enat $\left\langle\right.$ cid \# enat $n^{\text {inf-llist } t\rangle)}$
using eval-def by blast
with $\exists i \geq n$ ．$\left\{c i d \xi_{t} i^{\rangle}\right.$have eval cid $t t^{\prime} n\left(\lambda t n . \gamma t n \longrightarrow \gamma^{\prime} t n\right)$ using validCI－act［where $\left.\gamma=\lambda t n . \gamma t n \longrightarrow \gamma^{\prime} t n\right]$ by blast
thus ？thesis using imp－def by simp
next
assume $\neg\left(\exists i \geq n .\left\{c i d \xi_{t} i\right)\right.$
with $\left\langle\exists i\right.$ ．$\left\{\right.$ cid $\xi_{t} i^{\rangle}$〈eval cid $t t^{\prime} n \gamma \longrightarrow$ eval cid $\left.t t^{\prime} n \gamma^{\prime}\right\rangle$
have $\gamma\left(\operatorname{lnth}\left(\pi_{\text {cid }}\right.\right.$ inf－llist $t @_{l}$ inf－llist $\left.\left.t^{\prime}\right)\right)\left({ }_{c i d} \downarrow t^{n}\right)$
$\longrightarrow \gamma^{\prime}\left(\operatorname{lnth}\left(\pi_{c i d}\right.\right.$ inf－llist $t @_{l}$ inf－llist $\left.\left.t^{\prime}\right)\right)\left(\begin{array}{c}\text { cid }\end{array}{ }_{t} n\right)$ using eval－def by blast
with $\left\langle\exists i . \xi_{c i d \xi_{t}} i^{\rangle} \neg\left(\exists i \geq n\right.\right.$ ．$\left.\left.\xi_{c i d \xi_{t}} i\right)\right\rangle$ have eval cid $t t^{\prime} n\left(\lambda t n . \gamma t n \longrightarrow \gamma^{\prime} t n\right)$
using validCI－cont［where $\left.\gamma=\lambda t n . \gamma t n \longrightarrow \gamma^{\prime} t n\right]$ by blast
thus？？hesis using imp－def by simp
qed
next
assume $\left.\neg(\exists i\} c i. d \xi_{t} i\right)$
with 〈eval cid $t t^{\prime} n \gamma \longrightarrow$ eval cid $t t^{\prime} n \gamma^{\prime}$ 〉
have $\gamma\left(\operatorname{lnth}\left(\pi_{c i d}\right.\right.$ inf－llist $t @_{l}$ inf－llist $\left.\left.t^{\prime}\right)\right) n \longrightarrow \gamma^{\prime}\left(\operatorname{lnth}\left(\pi_{\text {cididinf－llist } t} @_{l}\right.\right.$ inf－llist $\left.\left.t^{\prime}\right)\right) n$ using eval－def by blast
with $\left.\left\langle\neg(\exists i\} c i. d \xi_{t} i\right)\right\rangle$ have eval cid $t t^{\prime} n\left(\lambda t n . \gamma t n \longrightarrow \gamma^{\prime} t n\right)$
using validCI－not－act［where $\left.\gamma=\lambda t n . \gamma t n \longrightarrow \gamma^{\prime} t n\right]$ by blast
thus ？thesis using imp－def by simp
qed
lemma impE［elim！］：
assumes eval cid $t t^{\prime} n\left(\gamma \longrightarrow^{b} \gamma^{\prime}\right)$
shows eval cid $t t^{\prime} n \gamma \longrightarrow$ eval cid $t t^{\prime} n \gamma^{\prime}$
proof cases
assume $\left(\exists i . \xi_{c}{ }^{d} \xi_{t} i\right)$
show ？thesis
proof cases
assume $\exists i \geq n$ ．$\xi_{c} i d \xi_{t} i$
moreover from＜eval cid $t t^{\prime} n\left(\gamma \longrightarrow{ }^{b} \gamma^{\prime}\right)$ ）have eval cid $t t^{\prime} n\left(\lambda t n . \gamma t n \longrightarrow \gamma^{\prime} t n\right)$
using imp－def by simp
ultimately have $\gamma\left(\operatorname{lnth}\left(\pi_{\text {cid }}\right.\right.$ inf－llist $t @_{l}$ inf－llist $\left.\left.t^{\prime}\right)\right)\left(\right.$ the－enat $\left\langle\right.$ cid $\#_{\text {enat }} n^{\text {inf－llist } t\rangle)}$
$\longrightarrow \gamma^{\prime}\left(\ln t h\left(\pi_{c i d}\right.\right.$ inf－llist $t @_{l}$ inf－llist $\left.\left.t^{\prime}\right)\right)($ the－enat \langle cid \＃enat ninf－llist $t\rangle)$
using validCE－act［where $\left.\gamma=\lambda t n . \gamma t n \longrightarrow \gamma^{\prime} t n\right]$ by blast
with $\langle\exists i \geq n \text { ．}\}_{\left.c i d \xi_{t} i\right\rangle}$ show ？thesis using eval－def by blast
next
assume $\left.\neg(\exists i \geq n\} c i. d \xi_{t} i\right)$
moreover from＜eval cid $t t^{\prime} n\left(\gamma \longrightarrow \gamma^{b}\right)$ 〉 have eval cid $t t^{\prime} n\left(\lambda t n . \gamma t n \longrightarrow \gamma^{\prime} t n\right)$ using imp－def by simp
ultimately have $\gamma\left(\operatorname{lnth}\left(\pi_{c i d}\right.\right.$ inf－llist $t @_{l}$ inf－llist $\left.\left.t^{\prime}\right)\right)\left({ }_{c i d} \downarrow t n\right)$
$\longrightarrow \gamma^{\prime}\left(\operatorname{lnth}\left(\pi_{c i d}\right.\right.$ inf－llist $t @_{l}$ inf－llist $\left.\left.t^{\prime}\right)\right)\left({ }_{c i d} \downarrow t n\right)$
using validCE－cont［where $\left.\gamma=\lambda t n . \gamma t n \longrightarrow \gamma^{\prime} t n\right]\{\exists i\} c i. d \xi_{t} i^{\rangle}$by blast
with $\left\langle\neg\left(\exists i \geq n .\left\{c i d \xi_{t} i\right)\right\rangle\left\langle\exists i\right.\right.$ ．$\left.\xi_{c i d \xi_{t} i}\right\rangle$ show ？thesis using eval－def by blast
qed
next
assume $\left.\neg(\exists i\} c i. d \xi_{t} i\right)$
moreover from＜eval cid $t t^{\prime} n\left(\gamma \longrightarrow{ }^{b} \gamma^{\prime}\right)$ ’ have eval cid $t t^{\prime} n\left(\lambda t n . \gamma t n \longrightarrow \gamma^{\prime} t n\right)$ using imp－def by simp

```
    ultimately have \(\gamma\left(\operatorname{lnth}\left(\pi_{\text {cid }}\right.\right.\) inf-llist \(t @_{l}\) inf-llist \(\left.\left.t^{\prime}\right)\right) n\)
    \(\longrightarrow \gamma^{\prime}\left(\operatorname{lnth}\left(\pi_{c i d}\right.\right.\) inf-llist \(t @_{l}\) inf-llist \(\left.\left.t^{\prime}\right)\right) n\)
        using validCE-not-act[where \(\left.\gamma=\lambda t n . \gamma t n \longrightarrow \gamma^{\prime} t n\right]\) by blast
```



```
qed
```


D.19.4 Disjunction

```
definition disj :: ((nat => 'cmp) => nat => bool ) => ((nat 后'cmp) => nat => bool)
    =>((nat => ' 'cmp) => nat => bool) (infixl \vee }\mp@subsup{}{}{b} 15
    where }\gamma\mp@subsup{\vee}{}{b}\mp@subsup{\gamma}{}{\prime}\equiv\lambdatn.\gammatn\vee\mp@subsup{\gamma}{}{\prime}t
lemma disjI[intro!]:
    assumes eval cid t t' n \gamma\vee eval cid t t' n \gamma'
    shows eval cid t t' n ( }\gamma\mp@subsup{\vee}{}{b}\mp@subsup{\gamma}{}{\prime}
proof cases
    assume }\existsi.{cid\mp@subsup{}}{t}{}
    show ?thesis
    proof cases
    assume }\existsi\geqn.{cid\mp@subsup{\xi}{t}{}
        with <eval cid t t' n \gamma \vee eval cid t t' n \gamma'`
            have }\gamma(lnth ( ( <cid inf-llist t @ linf-llist t')) (the-enat \langlecid # enat n inf-llist t\rangle)
```



```
            using eval-def by blast
        with }\mp@subsup{\exists}{}{\prime}i\geqn.{cid\mp@subsup{}}{t}{}\mp@subsup{i}{}{\prime}\mathrm{ have eval cid t t' n ( }\lambdatn.\gammatn\vee\mp@subsup{\gamma}{}{\prime}tn
            using validCI-act[where }\gamma=\lambdatn.\gammatn\vee\mp@subsup{\gamma}{}{\prime}tn] by blas
        thus ?thesis using disj-def by simp
    next
        assume }\neg(\existsi\geqn.{cid\mp@subsup{}}{t}{}i
        with }\mp@subsup{\exists}{|}{i.{cid\mp@subsup{}}{t}{}\mp@subsup{i}{}{\rangle}\langleeval cid t t' n \gamma}\vee eval cid t t' n \gamma'`
            have \gamma (lnth ( }\mp@subsup{\pi}{cid}{c
            \vee }\mp@subsup{\gamma}{}{\prime}(\mathrm{ lnth ( }\mp@subsup{\pi}{cid}{
        with «\existsi.{cid\mp@subsup{\xi}{t}{}i\rangle<\neg(\existsi\geqn.}cid\mp@subsup{\xi}{t}{}i)\rangle\mathrm{ have eval cid t t' n( }\lambdatn.\gammatn\vee\mp@subsup{\gamma}{}{\prime}tn)
            using validCI-cont[where }\gamma=\lambdatn.\gammatn\vee\mp@subsup{\gamma}{}{\prime}tn] by blas
        thus ?thesis using disj-def by simp
    qed
next
    assume }\neg(\existsi.{cid\mp@subsup{}}{t}{}i
    with <eval cid t t' n \gamma\vee eval cid t t' n \gamma'`
        have \gamma (lnth ( }\mp@subsup{\pi}{cid}{c
        using eval-def by blast
    with }\neg\neg(\existsi.{cid\mp@subsup{\xi}{t}{}i)\rangle\mathrm{ have eval cid t t'n ( }\lambdatn.\gammatn\vee\mp@subsup{\gamma}{}{\prime}tn
        using validCI-not-act[where \gamma=\lambdatn.\gammatn\vee 尓tn] by blast
    thus ?thesis using disj-def by simp
qed
lemma disjE[elim!]:
    assumes eval cid t t' n ( }\gamma\mp@subsup{\vee}{}{b}\mp@subsup{\gamma}{}{\prime}
```



```
proof cases
    assume ( }\existsi.{cid\mp@subsup{}}{t}{}\mp@subsup{|}{i}{\prime
    show ?thesis
    proof cases
        assume }\existsi\geqn.{cid\mp@subsup{}}{t}{}\mp@subsup{}{i}{
        moreover from (eval cid t t'n (\gamma\vee \vee}\mp@subsup{\gamma}{}{\prime})\mathrm{ ) have eval cid t t t'n( ( t n. }\gammatn\vee\mp@subsup{\gamma}{}{\prime}tn
        using disj-def by simp
    ultimately have \gamma (lnth ( }\mp@subsup{\pi}{cid}{}\mathrm{ inf-llist t @ @ inf-llist t')) (the-enat \cid # enat ninf-llist t>)
        \vee }\mp@subsup{\gamma}{}{\prime}(lnth ( ( < cid inf-llist t @ @ inf-llist t'))(the-enat \langlecid # enat ninf-llist t\rangle),
        using validCE-act[where }\gamma=\lambdatn.\gammatn\vee\mp@subsup{\gamma}{}{\prime}tn]\mathrm{ by blast
        with }\exists\existsi\geqn.{cid\mp@subsup{}}{t}{}i\rangle\mathrm{ show ?thesis
        using validCI-act[of n cid t \gamma t] validCI-act[of n cid t }\mp@subsup{\gamma}{}{\prime}t\\mathrm{ ' by blast
    next
        assume }\neg(\existsi\geqn.{cid}ti
        moreover from <eval cid t t'n (\gamma\vee V}\mp@subsup{\gamma}{}{\prime})\mathrm{ ) have eval cid t t t n ( }\lambdatn.\gammatn\vee\mp@subsup{\gamma}{}{\prime}tn
        using disj-def by simp
```



```
            using validCI-cont[of cid t n \gamma t] validCI-cont[of cid t n \gamma' t\ by blast
    qed
next
    assume }\neg(\existsi.}cid}t i
    moreover from <eval cid t t' n ( }\gamma\mp@subsup{\vee}{}{b}\mp@subsup{\gamma}{}{\prime})\mathrm{ ) have eval cid t t t'n( ( t n. }\gammatn\vee\mp@subsup{\gamma}{}{\prime}tn
        using disj-def by simp
    ultimately have \gamma (lnth ( }\mp@subsup{\pi}{cid}{}\mathrm{ inf-llist t @ @ inf-llist t'))n
        \vee 尔 (lnth ( }\mp@subsup{\pi}{cid}{}\mathrm{ inf-llist t @ @ inf-llist t'))n
        using validCE-not-act[where }\gamma=\lambdatn.\gammatn\vee\mp@subsup{\gamma}{}{\prime}tn] by blas
    with }\neg\neg(\existsi.}cid}ti)\rangle\mathrm{ show ?thesis
        using validCI-not-act[of cid t \gamma t' n] validCI-not-act[of cid t }\mp@subsup{\gamma}{}{\prime}\mp@subsup{t}{}{\prime}n]\mathrm{ by blast
qed
```


D.19.5 Conjunction

```
definition conj :: ((nat => 'cmp) => nat => bool) => ((nat => 'cmp) => nat => bool)
    =>((nat =>''cmp) = nat => bool)(infixl }\mp@subsup{\wedge}{}{b}20
    where }\gamma\mp@subsup{\wedge}{}{b}\mp@subsup{\gamma}{}{\prime}\equiv\lambdatn.\gammatn\wedge\mp@subsup{\gamma}{}{\prime}t
lemma conjI[intro!]:
    assumes eval cid t t' n}\gamma\wedge\mathrm{ eval cid t t' n }\mp@subsup{\gamma}{}{\prime
    shows eval cid t t' n(\gamma}\mp@subsup{\wedge}{}{b}\mp@subsup{\gamma}{}{\prime}
proof cases
    assume }\existsi.{cid\mp@subsup{}}{t}{}\mp@subsup{}{i}{
    show ?thesis
    proof cases
    assume \existsi\geqn. {cid\mp@subsup{}}{t}{}\mp@subsup{}{i}{}
    with (eval cid t t' n\gamma^ eval cid t t ' n ' ')
        have }\gamma(lnth ( ( < cid inf-llist t @ | inf-llist t '))(the-enat \langlecid # enat ninf-llist t\rangle)
```



```
    using eval-def by blast
```



```
        using validCI-act[where }\gamma=\lambdatn.\gammatn\wedge\mp@subsup{\gamma}{}{\prime}tn] by blas
    thus ?thesis using conj-def by simp
next
    assume }\neg(\existsi\geqn.{cid\mp@subsup{}}{t}{}i
```



```
        have \gamma (lnth ( }\mp@subsup{\pi}{cid}{}\mathrm{ inf-llist t @ @ inf-llist t ' )) (cid}\mp@subsup{|}{}{\prime}n
        \wedge }\mp@subsup{\gamma}{}{\prime}(\mathrm{ lnth ( }\mp@subsup{\pi}{\mathrm{ cid inf-llist t @ }}{l}\mathrm{ inf-llist t')) ( cid}\downarrowtn) using eval-def by blast
```



```
        using validCI-cont[where }\gamma=\lambdatn.\gammatn\wedge\mp@subsup{\gamma}{}{\prime}tn] by blas
    thus ?thesis using conj-def by simp
    qed
next
    assume }\neg(\existsi.{cid\mp@subsup{}}{t}{}i
    with <eval cid t t' n \gamma ^ eval cid t t' n \gamma > have \gamma (lnth ( }\mp@subsup{\pi}{\mathrm{ cidinf-llist t @ }}{l
        \wedge }\mp@subsup{\gamma}{}{\prime}(lnth ( ( < cid inf-llist t @ l inf-llist t')) n using eval-def by blas
    with }\neg\neg(\existsi.{cid\mp@subsup{}}{t}{}i)\rangle\mathrm{ have eval cid t t' n ( }\lambdatn.\gammatn\wedge\mp@subsup{\gamma}{}{\prime}tn
        using validCI-not-act[where \gamma=\lambdatn.\gammatn\wedge 尔tn] by blast
    thus ?thesis using conj-def by simp
qed
lemma conjE[elim!]:
    assumes eval cid t t' n ( }\gamma\mp@subsup{\wedge}{}{b}\mp@subsup{\gamma}{}{\prime}
    shows eval cid t t' n \gamma ^ eval cid t t ' n }\mp@subsup{\gamma}{}{\prime
proof cases
    assume ( }\existsi.{cid\mp@subsup{}}{t}{}i
    show ?thesis
    proof cases
        assume \existsi\geqn.{cid\mp@subsup{}}{t}{}i
        moreover from <eval cid t t' n (\gamma ^}\mp@subsup{}{}{b}\mp@subsup{\gamma}{}{\prime})\rangle\mathrm{ have eval cid t t' n( }\lambdatn.\gammatn\wedge \mp@subsup{\gamma}{}{\prime}tn
        using conj-def by simp
        ultimately have \gamma (lnth ( }\mp@subsup{\pi}{\mathrm{ cid inf-llist t @ }}{l
        \wedge }\mp@subsup{\gamma}{}{\prime}(lnth ( (\mp@subsup{\pi}{cid}{
        using validCE-act[where }\gamma=\lambdatn.\gammatn\wedge\mp@subsup{\gamma}{}{\prime}tn] by blas
        with }{\existsi\geqn.{cid\mp@subsup{\xi}{t}{}\mp@subsup{i}{}{\rangle}\mathrm{ show ?thesis using eval-def by blast
    next
        assume }\neg(\existsi\geqn.{cid\mp@subsup{\xi}{t}{}i
        moreover from <eval cid t t' n ( }\gamma\mp@subsup{\wedge}{}{b}\mp@subsup{\gamma}{}{\prime})\rangle\mathrm{ have eval cid t t' n ( }\lambdatn.\gammatn\wedge | | t n
        using conj-def by simp
        ultimately have \gamma (lnth ( }\mp@subsup{\pi}{\mathrm{ cid inf-llist t @ }}{l}\mp@subsup{|}{\mathrm{ inf-llist t}}{
        \wedge }\mp@subsup{\gamma}{}{\prime}(lnth ( ( cid inf-llist t @ @ inf-llist t')) (cid\downarrowtn)
        using validCE-cont[where \gamma=\lambdatn.\gamma tn ^ \gamma'tn] «\existsi.{cid\mp@subsup{}}{t}{}\mp@subsup{i}{}{\prime}}\mathrm{ by blast
    with }\neg\neg(\existsi\geqn.{cid\mp@subsup{\xi}{t}{}i)\rangle\langle\existsi.{cid\mp@subsup{\xi}{t}{}i\rangle\mathrm{ show ?thesis using eval-def by blast
    qed
next
    assume }\neg(\existsi.{cid\mp@subsup{}}{t}{}\mp@subsup{}{i}{}
    moreover from <eval cid t t' n ( }\gamma\mp@subsup{\wedge}{}{b}\mp@subsup{\gamma}{}{\prime})\rangle\mathrm{ have eval cid t t' n( }\lambdatn.\gammatn\wedge \mp@subsup{\gamma}{}{\prime}tn
```

using conj-def by simp
ultimately have $\gamma\left(\right.$ lnth $\left(\pi_{c i d}\right.$ inf-llist $t @_{l}$ inf-llist $\left.\left.t^{\prime}\right)\right) n \wedge \gamma^{\prime}\left(\operatorname{lnth}\left(\pi_{c i d}\right.\right.$ inf-llist $t @_{l}$ inf-llist $\left.t^{\prime}\right)$) n
using validCE-not-act[where $\left.\gamma=\lambda t n . \gamma t n \wedge \gamma^{\prime} t n\right]$ by blast
with $\leadsto \neg\left(\exists i\right.$. $\left.\left\{c i d \xi_{t} i\right)\right\rangle$ show ?thesis using eval-def by blast
qed

D.19.6 Negation

definition not ::
$\left(\left(\right.\right.$ nat $\Rightarrow{ }^{\prime}$ cmp $) \Rightarrow$ nat \Rightarrow bool $) \Rightarrow\left(\left(\right.\right.$ nat $\Rightarrow{ }^{\prime}$ cmp $) \Rightarrow$ nat \Rightarrow bool $)\left(\neg^{b}-[19] 19\right)$
where $\neg^{b} \gamma \equiv \lambda t n . \neg \gamma t n$
lemma notI[intro!]:
assumes \neg eval cid $t t^{\prime} n \gamma$
shows eval cid $t t^{\prime} n\left(\neg^{b} \gamma\right)$
proof cases
assume $\exists i .{ }^{\xi} c i d \xi_{t} i$
show ?thesis
proof cases
assume $\exists i \geq n$. $\left\{\right.$ cid ${ }_{t}{ }_{i}$
with $\left\langle\neg\right.$ eval cid $\left.t t^{\prime} n \gamma\right\rangle$
have $\neg \gamma\left(\right.$ lnth $\left(\pi_{\text {cid }}\right.$ inf-llist $t @_{l}$ inf-llist $\left.\left.t^{\prime}\right)\right)\left(\right.$ the-enat $\left\langle\right.$ cid $\#_{\text {enat }} n^{\text {inf-llist } t\rangle)}$
using eval-def by blast
with $\langle\exists i \geq n \text {. }\}_{c} i d \xi_{t} i^{\rangle}$have eval cid $t t^{\prime} n(\lambda t n$. $\neg \gamma t n)$
using validCI-act[where $\gamma=\lambda t n$. $\neg \gamma t n]$ by blast
thus ?thesis using not-def by simp
next
assume $\neg\left(\exists i \geq n .\left\{c i d \xi_{t} i\right)\right.$
with $\left\langle\exists i\right.$. $\left.\{\text { cid }\}_{t}\right\rangle\left\langle\neg\right.$ eval cid $\left.t t^{\prime} n \gamma\right\rangle$
have $\neg \gamma\left(\right.$ lnth $\left(\pi_{\text {cid }}\right.$ inf-llist $t @_{l}$ inf-llist $\left.\left.t^{\prime}\right)\right)\left({ }_{\text {cid }} \downarrow{ }^{2} n\right)$ using eval-def by blast

using validCI-cont[where $\gamma=\lambda t n$. $\neg \gamma t n]$ by blast
thus ?thesis using not-def by simp
qed
next
assume $\left.\neg(\exists i\} c i. d \xi_{t} i\right)$
with $\left\langle\neg\right.$ eval cid $\left.t t^{\prime} n \gamma\right\rangle$ have $\neg \gamma\left(\right.$ lnth $\left(\pi_{\text {cid }}\right.$ inf-llist $t @_{l}$ inf-llist $\left.\left.t^{\prime}\right)\right) n$ using eval-def by blast
with $\left\langle\neg\left(\exists i .\left\{c i d \xi_{t} i\right)\right\rangle\right.$ have eval cid $t t^{\prime} n(\lambda t n$. $\neg \gamma t n)$
using validCI-not-act[where $\gamma=\lambda t n$. $\neg \gamma t n]$ by blast
thus ?thesis using not-def by simp
qed
lemma notE[elim!]:
assumes eval cid $t t^{\prime} n\left(\neg^{b} \gamma\right)$
shows \neg eval cid $t t^{\prime} n \gamma$
proof cases
assume $\left.(\exists i\} c i. d \xi_{t} i\right)$

```
show ?thesis
proof cases
    assume \existsi\geqn. {cid\mp@subsup{}}{t}{}i
    moreover from <eval cid t t t'n ( }\mp@subsup{\neg}{}{b}\gamma)\rangle\mathrm{ have eval cid t t' n ( }\lambdatn.\neg\gammatn
        using not-def by simp
```



```
        using validCE-act[where }\gamma=\lambdatn.\neg\gammatn] by blas
    with {\existsi\geqn.{cid\mp@subsup{}}{t}{}\mp@subsup{i}{}{`}}\mathrm{ show ?thesis using eval-def by blast
next
    assume }\neg(\existsi\geqn.{cid\mp@subsup{}}{t}{}i
    moreover from <eval cid t t ' n ( }\mp@subsup{\neg}{}{b}\gamma)\mathrm{ ` have eval cid t t' n ( }\lambdatn.\neg\gammatn
        using not-def by simp
    ultimately have }\neg\gamma(\operatorname{lnth}(\mp@subsup{\pi}{cid}{cinf-llist t @ inf-llist t}\mp@subsup{t}{}{\prime}))(cid\downarrowt n
        using validCE-cont[where }\gamma=\lambdatn.\neg\gammatn]{\existsi.{cid\mp@subsup{}}{t}{}\mp@subsup{i}{}{\prime}\mathrm{ by blast
    with }\neg\neg(\existsi\geqn.{cid\mp@subsup{}}{t}{}i)\rangle\langle\existsi.{cid\mp@subsup{}}{t}{}i\rangle\mathrm{ show ?thesis using eval-def by blast
    qed
next
    assume }\neg(\existsi.{cid\mp@subsup{}}{t}{}i
    moreover from <eval cid t t'n (\negb}\gamma)> have eval cid t t' n (\lambdat n. \neg\gamma tn
        using not-def by simp
    ultimately have }\neg\gamma(\mathrm{ lnth ( }\mp@subsup{\pi}{cid}{}\mathrm{ inf-llist t @ @ inf-llist t'))n
        using validCE-not-act[where }\gamma=\lambdatn.\neg\gammatn] by blas
    with }\neg\neg(\existsi.{cid\mp@subsup{}}{t}{}i)\rangle\mathrm{ show ?thesis using eval-def by blast
qed
```


D.19.7 Quantifiers

```
definition all \(::\left({ }^{\prime} a \Rightarrow\left(\left(n a t \Rightarrow{ }^{\prime} c m p\right) \Rightarrow\right.\right.\) nat \(\Rightarrow\) bool \(\left.)\right)\)
    \(\Rightarrow\left(\left(n a t \Rightarrow{ }^{\prime} \mathrm{cmp}\right) \Rightarrow\right.\) nat \(\Rightarrow\) bool \()\left(\right.\) binder \(\left.\forall_{b} 10\right)\)
    where all \(P \equiv \lambda t n .(\forall y .(P\) y \(t n))\)
lemma allI[intro!]:
    assumes \(\forall p\). eval cid \(t t^{\prime} n(\gamma p)\)
    shows eval cid \(t t^{\prime} n(\) all \((\lambda p . \gamma p))\)
proof cases
    assume \(\exists i\). \(\xi_{c i d \xi_{t}}\)
    show ?thesis
    proof cases
    assume \(\exists i \geq n\). \(\xi_{c} i d \xi_{t} i\)
    with \(\left\langle\forall p\right.\). eval cid \(\left.t t^{\prime} n(\gamma p)\right\rangle\)
    have \(\forall p\). \((\gamma p)\left(\operatorname{lnth}\left(\pi_{\text {cid }}\right.\right.\) inf-llist \(t @_{l}\) inf-llist \(\left.\left.t^{\prime}\right)\right)(\) the-enat \(\langle\) cid \(\#\) enat \(n\) inf-llist \(t\rangle)\)
        using eval-def by blast
```



```
        using validCI-act \([\) where \(\gamma=\lambda t n .(\forall y .(\gamma y t n))]\) by blast
        thus ?thesis using all-def[of \(\gamma]\) by auto
next
    assume \(\neg\left(\exists i \geq n . \xi_{c} i d \xi_{t} i\right)\)
```



```
        have \(\forall p\). \((\gamma p)\left(\right.\) lnth \(\left(\pi_{c i d}\right.\) inf-llist \(t @_{l}\) inf-llist \(\left.\left.t^{\prime}\right)\right)\left({ }_{c i d \downarrow t} n\right)\)
```

using eval-def by blast
with $\langle\exists i\} c i. d \xi_{t} i^{〉}\left\langle\neg\left(\exists i \geq n\right.\right.$. $\left.\left.\xi_{c i d \xi_{t}}\right)\right\rangle$ have eval cid $t t^{\prime} n(\lambda t n$. $(\forall y .(\gamma$ y $t n)))$
using validCI-cont[where $\gamma=\lambda t n .(\forall y .(\gamma y t n))]$ by blast
thus ?thesis using all-def[of $\gamma]$ by auto
qed
next
assume $\left.\neg(\exists i\} c i d.\}_{t} i\right)$
with $\left\langle\forall\right.$. eval cid $\left.t t^{\prime} n(\gamma p)\right\rangle$ have $\forall p$. $(\gamma p)\left(\operatorname{lnth}\left(\pi_{\text {cid }}\right.\right.$ inf-llist $t @_{l}$ inf-llist $\left.\left.t^{\prime}\right)\right) n$ using eval-def by blast
with $\left.\left\langle\neg(\exists i.\} \operatorname{cid} \xi_{t}{ }_{i}\right)\right\rangle$ have eval cid $t t^{\prime} n(\lambda t n .(\forall y .(\gamma$ y $t n)))$
using validCI-not-act[where $\gamma=\lambda t n .(\forall y .(\gamma y t n))]$ by blast
thus ?thesis using all-def[of $\gamma]$ by auto
qed
lemma allE[elim!]:
assumes eval cid $t t^{\prime} n($ all $(\lambda p . \gamma p))$
shows $\forall p$. eval cid $t t^{\prime} n(\gamma p)$
proof cases
assume $\left.(\exists i\} c i. d \xi_{t} i\right)$
show ?thesis
proof cases
assume $\exists i \geq n$. $\left\{\right.$ cid ξ_{t}
moreover from <eval cid $t t^{\prime} n($ all $\left.(\lambda p . \gamma p))\right\rangle$ have eval cid $t t^{\prime} n(\lambda t n .(\forall y .(\gamma y t n)))$ using all-def[of $\gamma]$ by auto
ultimately have
$\forall p .(\gamma p)\left(\operatorname{lnth}\left(\pi_{c i d}\right.\right.$ inf-llist $t @_{l}$ inf-llist $\left.\left.t^{\prime}\right)\right)\left(\right.$ the-enat $\left\langle\right.$ cid \# enat $\left.n^{\text {inf-llist } t\rangle}\right)$ using validCE-act[where $\gamma=\lambda t n$. $(\forall y .(\gamma y t n))]$ by blast with $₫ \exists i \geq n$. $\}_{c}$ cd $\xi_{t} i^{〉}$ show ?thesis using eval-def by blast
next
assume $\neg\left(\exists i \geq n .\left\{c i d \xi_{t} i\right)\right.$
moreover from <eval cid $t t^{\prime} n($ all $\left.(\lambda p . \gamma p))\right\rangle$ have eval cid $t t^{\prime} n(\lambda t n .(\forall y .(\gamma y t n)))$ using all-def[of $\gamma]$ by auto
ultimately have $\forall p$. $(\gamma p)\left(\operatorname{lnth}\left(\pi_{c i d}\right.\right.$ inf-llist $t @_{l}$ inf-llist $\left.\left.t^{\prime}\right)\right)\left({ }_{c i d} \downarrow_{t} n\right)$
using validCE-cont[where $\gamma=\lambda t n$. $(\forall y .(\gamma y t n))]$ $\exists i$. $\}$ cid $\xi_{t} i^{i}$ by blast
with $\left.\left\langle\neg\left(\exists i \geq n .\left\{c i d \xi_{t} i\right)\right\rangle \exists \exists i.\right\} c i d \xi_{t} i\right\rangle$ show ?thesis $\mathbf{u s i n g}$ eval-def by blast
qed
next
assume $\neg\left(\exists i . \xi_{c i d\}_{t}} i\right)$
moreover from <eval cid $t t^{\prime} n($ all $\left.(\lambda p . \gamma p))\right\rangle$ have eval cid $t t^{\prime} n(\lambda t n .(\forall y .(\gamma y t n)))$ using all-def[of $\gamma]$ by auto
ultimately have $\forall p .(\gamma p)\left(\operatorname{lnth}\left(\pi_{c i d}\right.\right.$ inf-llist $t @_{l}$ inf-llist $\left.\left.t^{\prime}\right)\right) n$
using validCE-not-act $[$ where $\gamma=\lambda t n .(\forall y .(\gamma$ y $t n))]$ by blast
with $\left\langle\neg\left(\exists i\right.\right.$. $\left.\left\{c i d \xi_{t} i\right)\right\rangle$ show ?thesis using eval-def by blast
qed
definition ex $::\left({ }^{\prime} a \Rightarrow\left(\left(n a t \Rightarrow{ }^{\prime} c m p\right) \Rightarrow\right.\right.$ nat \Rightarrow bool $\left.)\right)$
$\Rightarrow\left(\left(n a t \Rightarrow{ }^{\prime} c m p\right) \Rightarrow\right.$ nat \Rightarrow bool $)\left(\right.$ binder $\left.\exists_{b} 10\right)$
where ex $P \equiv \lambda t n$. $(\exists y .(P y t n))$

```
lemma exI[intro!]:
    assumes \existsp. eval cid t t' n ( }\gammap
    shows eval cid t t' n ( }\mp@subsup{\exists}{b}{}p.\gammap
proof cases
    assume }\existsi.{cid\mp@subsup{}}{t}{}
    show ?thesis
    proof cases
        assume \existsi\geqn.{cid\mp@subsup{}}{t}{}i
        with {\exists p. eval cid t t t' n (\gamma p)>
            have \existsp. (\gamma p)(lnth ( }\mp@subsup{\pi}{cid}{}\mathrm{ inf-llist t @ inf-llist t')) (the-enat <cid # enat ninf-llist t \)
            using eval-def by blast
        with }\exists\existsi\geqn.{cid\mp@subsup{\xi}{t}{}\mp@subsup{i}{}{`}\mathrm{ have eval cid t t' n ( }\lambdatn.(\existsy.(\gamma y t n))
            using validCI-act[where }\gamma=\lambdatn.(\existsy.(\gammaytn))]\mathrm{ by blast
        thus ?thesis using ex-def[of \gamma] by auto
    next
        assume }\neg(\existsi\geqn.{cid\mp@subsup{}}{t}{}i
        with {\existsi.{cid\mp@subsup{\xi}{t}{}\mp@subsup{i}{}{\rangle}\langle\exists
```



```
            using validCI-cont[where }\gamma=\lambdatn.(\existsy.(\gammaytn))] by blas
        thus ?thesis using ex-def[of \gamma] by auto
    qed
next
    assume }\neg(\existsi.}cid}t i
    with }\exists>p.eval cid t t' n (\gamma p)> have \existsp. (\gamma p) (lnth ( ( < cidinf-llist t @ l inf-llist t')) n
        using eval-def by blast
    with }\langle\neg(\existsi.{cid\mp@subsup{\xi}{t}{}\mp@subsup{i}{i}{\prime}\rangle\mathrm{ have eval cid t t' n ( }\lambdatn.(\existsy.(\gamma y t n))
        using validCI-not-act[where }\gamma=\lambdatn.(\existsy.(\gammaytn))]\mathrm{ by blast
    thus ?thesis using ex-def[of \gamma] by auto
qed
lemma exE[elim!]:
    assumes eval cid t t' n ( }\mp@subsup{\exists}{b}{}p.\gammap
    shows \existsp. eval cid t t t' n ( }\gammap
proof cases
    assume ( }\existsi.}cid\mp@subsup{}}{t}{}i
    show ?thesis
    proof cases
        assume \existsi\geqn. {cid\mp@subsup{}}{t}{}i
        moreover from <eval cid t t' n (ex (\lambdap.\gamma p))> have eval cid t t' n (\lambdat n. (\existsy. (\gamma y t n)))
            using ex-def[of }\gamma]\mathrm{ by auto
        ultimately have
```



```
            using validCE-act[where }\gamma=\lambdatn.(\existsy.(\gammaytn))]\mathrm{ by blast
        with }\existsi\geqn.{cid\mp@subsup{\xi}{t}{}\mp@subsup{i}{}{\rangle}\mathrm{ show ?thesis using eval-def by blast
    next
        assume }\neg(\existsi\geqn.}cid\mp@subsup{}}{t}{}i
        moreover from <eval cid t t' n (\exists}\mp@subsup{b}{b}{}p.\gammap)\rangle\mathrm{ have eval cid t t' n ( }\lambdatn.(\existsy.(\gamma\mathrm{ y t n) ))
            using ex-def[of \gamma] by auto
```

ultimately have $\exists p .(\gamma p)\left(\operatorname{lnth}\left(\pi_{c i d}\right.\right.$ inf-llist $t @_{l}$ inf-llist $\left.\left.t^{\prime}\right)\right)\left({ }_{c i d}{ }_{t} n\right)$
using validCE-cont[where $\gamma=\lambda t n .(\exists y .(\gamma y t n))]$ $\left.\exists i\} c i. d \xi_{t}\right\rangle$ by blast
with $\left\langle\neg\left(\exists i \geq n .\left\{c i d \xi_{t} i\right)\right\rangle\langle\exists i\} c i. d \xi_{t} i\right\rangle$ show ?thesis using eval-def by blast
qed
next
assume $\left.\neg(\exists i\} c i. d \xi_{t} i\right)$
moreover from 〈eval cid $\left.t t^{\prime} n\left(\exists_{b} p . \gamma p\right)\right\rangle$ have eval cid $t t^{\prime} n(\lambda t n .(\exists y .(\gamma y t n)))$ using ex-def[of $\gamma]$ by auto
ultimately have $\exists p .(\gamma p)\left(\operatorname{lnth}\left(\pi_{c i d}\right.\right.$ inf-llist $t @_{l}$ inf-llist $\left.\left.t^{\prime}\right)\right) n$ using validCE-not-act[where $\gamma=\lambda t n .(\exists y .(\gamma y t n))]$ by blast with $\left\langle\neg\left(\exists i\right.\right.$. $\left.\left.\xi_{c i d \xi_{t}} i\right)\right\rangle$ show ?thesis using eval-def by blast
qed

D. 20 Temporal Operators

We are now able to formalize all the rules of the calculus presented in [Mar17c].

D.20.1 Behavior Assertions

First we provide rules for basic behavior assertions.

```
definition \(b a::\left({ }^{\prime} c m p \Rightarrow\right.\) bool \() \Rightarrow\left(\left(n a t \Rightarrow{ }^{\prime} c m p\right) \Rightarrow\right.\) nat \(\Rightarrow\) bool \()\)
    where \(b a \varphi \equiv \lambda t n . \varphi(t n)\)
lemma baIA[intro]:
    fixes \(c:: ' i d\)
        and \(t:: n a t \Rightarrow c n f\)
        and \(t^{\prime}:: n a t \Rightarrow{ }^{\prime} c m p\)
        and \(n:: n a t\)
    assumes \(\exists i \geq n .\left\{c \xi_{t} i\right.\)
        and \(\varphi\left(\sigma_{c}\left(t\langle c \rightarrow t\rangle_{n}\right)\right)\)
    shows eval \(c t t^{\prime} n(b a \varphi)\)
proof -
    from assms have \(\varphi\left(\sigma_{c}\left(t\langle c \rightarrow t\rangle_{n}\right)\right)\) by simp
    moreover have \(\sigma_{c}\left(t\langle c \rightarrow t\rangle_{n}\right)=\operatorname{lnth}\left(\pi_{c}(\right.\) inf-llist \(\left.t)\right)\left(\right.\) the-enat \(\left(\left\langle c \#_{\langle c \rightarrow t\rangle}\right.\right.\) inf-llist \(\left.\left.\left.t\right\rangle\right)\right)\)
    proof -
        have enat (Suc \(\langle c \rightarrow t\rangle_{n}\) ) < llength (inf-llist t) using enat-ord-code by simp
        moreover from assms have \(\left\{c \xi_{t}(\langle c \rightarrow t\rangle n)\right.\) using nxtActI by simp
        hence \(\{c\}_{l n t h}(\) inf-llist \(t)\langle c \rightarrow t\rangle{ }_{n}\) by simp
        ultimately show ?thesis using proj-active-nth by simp
    qed
    ultimately have \(\varphi\left(\operatorname{lnth}\left(\pi_{c}(\right.\right.\) inf-llist \(\left.t)\right)\left(\right.\) the-enat \(\left(\left\langle c \#_{\langle c \rightarrow t\rangle}{ }_{n}\right.\right.\) inf-llist \(\left.\left.\left.\left.t\right\rangle\right)\right)\right)\) by simp
    moreover have \(\left\langle c \#_{n}\right.\) inf-llist \(\left.t\right\rangle=\langle c \#\langle c \rightarrow t\rangle n\) inf-llist \(t\rangle\)
    proof -
        from assms have \(\nexists k\). \(n \leq k \wedge k<\langle c \rightarrow t\rangle_{n} \wedge \xi c \xi_{t}{ }_{k}\) using \(n x t A c t I\) by simp
        hence \(\neg\left(\exists k \geq n . k<\langle c \rightarrow t\rangle_{n} \wedge \xi c \xi_{l n t h}(\right.\) inf-llist \(\left.t) k\right)\) by \(\operatorname{simp}\)
        moreover have enat \(\langle c \rightarrow t\rangle_{n}-1<\) llength (inf-llist \(t\) ) by (simp add: one-enat-def)
        moreover from assms have \(\langle c \rightarrow t\rangle_{n} \geq n\) using \(n x t A c t I\) by simp
```

ultimately show ?thesis using nAct-not-active-same [of $n\langle c \rightarrow t\rangle_{n}$ inf-llist $\left.t c\right]$ by simp qed
ultimately have $\varphi\left(\operatorname{lnth}\left(\pi_{c}(\right.\right.$ inf-llist $\left.t)\right)\left(\right.$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.\left.\left.t\right\rangle\right)\right)\right)$ by simp
moreover have enat (the-enat $(\langle c$ \# enat n inf-llist $t\rangle))<\operatorname{llength}\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)$ proof -
have ltake $\infty($ inf-llist $t)=($ inf-llist $t)$ using ltake-all[of inf-llist $t]$ by simp hence llength $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)=\langle c \# \infty$ inf-llist $t\rangle$ using $n A c t$-def by simp moreover have $\left\langle c \#_{\text {enat }} n\right.$ inf-llist $\left.t\right\rangle\left\langle\left\langle c \#_{\infty}\right.\right.$ inf-llist $\left.t\right\rangle$
proof -
have enat $\langle c \rightarrow t\rangle_{n}<$ llength (inf-llist t) by simp
moreover from assms have $\langle c \rightarrow t\rangle_{n} \geq n$ and $\left\{c \xi_{t}(\langle c \rightarrow t\rangle n)\right.$ using $n x t A c t I$ by auto
ultimately show ?thesis using n Act-less $\left[o f\langle c \rightarrow t\rangle_{n}\right.$ inf-llist $\left.t n \infty\right]$ by simp qed
ultimately show ?thesis by simp
qed
hence $\operatorname{lnth}\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)\left(\right.$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.\left.t\right\rangle\right)\right)=$
$\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.t^{\prime}\right)\right)($ the-enat $(\langle c \neq n$ inf-llist $t\rangle))$
using lnth-lappend1 [of the-enat ($\langle c \#$ enat n inf-llist $t\rangle) \pi_{c}($ inf-llist $t)$ inf-llist t] by simp
ultimately have $\varphi\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.t^{\prime}\right)\right)\left(\right.$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.\left.\left.t\right\rangle\right)\right)\right)$ by simp
hence $\varphi\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.t^{\prime}\right)\right)\left(\right.$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.\left.\left.t\right\rangle\right)\right)\right)$ by simp moreover from assms have $\langle c \rightarrow t\rangle_{n} \geq n$ and $\xi_{c} \xi_{t}\left(\langle c \rightarrow t\rangle_{n}\right)$ using nxtActI by auto ultimately have $\left(\exists i \geq s n d(t, n) .\{c\}_{f s t}(t, n) i\right) \wedge$
$\varphi\left(\operatorname{lnth}\left(\left(\pi_{c}(\inf -l l i s t(f s t(t, n)))\right) @_{l}\left(\right.\right.\right.$ inf-llist $\left.\left.t^{\prime}\right)\right)$
(the-enat $\left(\left\langle c \#_{\text {the-enat }}(\right.\right.$ snd $(t, n))$ inf-llist $\left.\left.\left.\left.(f s t(t, n))\right\rangle\right)\right)\right)$ by auto
thus ?thesis using ba-def by simp
qed
lemma baIN1[intro]:
fixes $c:: ' i d$
and $t:: n a t \Rightarrow c n f$
and $t^{\prime}:: n a t \Rightarrow{ }^{\prime} c m p$
and $n:: n a t$
assumes act: $\exists i .\{c\}_{t} i$
and nAct: $\nexists i . i \geq n \wedge \xi c \xi_{t}{ }_{i}$
and al: $\varphi\left(t^{\prime}(n-\langle c \wedge t\rangle-1)\right)$
shows eval $c t t^{\prime} n(b a \varphi)$
proof -
have $t^{\prime}(n-\langle c \wedge t\rangle-1)=\operatorname{lnth}\left(\right.$ inf-llist $\left.t^{\prime}\right)(n-\langle c \wedge t\rangle-1)$ by simp
moreover have $\ldots=\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.t^{\prime}\right)\right)\left(c \downarrow_{t}(n)\right)$
using act nAct cnf2bhv-lnth-lappend by simp
ultimately have $\varphi\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\left(c \downarrow_{t}(n)\right)\right)$ using al by simp
with act nAct show ?thesis using ba-def by simp
qed
lemma baIN2[intro]:
fixes $c:: ' i d$
and $t:: n a t \Rightarrow c n f$
and $t^{\prime}:: n a t \Rightarrow{ }^{\prime} c m p$
and $n:: n a t$
assumes $n A c t: \nexists i\}. c \xi_{t} i$ and al: $\varphi\left(t^{\prime} n\right)$
shows eval ct $t^{\prime} n(b a \varphi)$
proof -
have $t^{\prime} n=\operatorname{lnth}\left(\right.$ inf-llist $\left.t^{\prime}\right) n$ by simp
moreover have $\ldots=\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.t^{\prime}\right)\right) n$
proof -
from n Act have $\pi_{c}($ inf-llist $t)=[]_{l}$ by simp
hence $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.t^{\prime}\right)=$ inf-llist t^{\prime} by $\left(\right.$ simp add: $\left\langle\pi_{c}\right.$ inf-llist $\left.\left.t=[]_{l}\right\rangle\right)$
thus?thesis by simp
qed
ultimately have $\varphi\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right) n\right)$ using al by simp
hence $\varphi\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right) n\right)$ by simp
with $n A c t$ show ?thesis using ba-def by simp
qed
lemma baIANow[intro]:
fixes $t \cap c \varphi$
assumes $\varphi\left(\sigma_{c}(t n)\right)$
and $\left\{c \xi_{t} n\right.$
shows eval ct $t^{\prime} n(b a \varphi)$
proof -
from assms have $\varphi\left(\sigma_{c}\left(t\langle c \rightarrow t\rangle_{n}\right)\right)$ using nxtAct-active by simp
with assms show ?thesis using baIA by blast
qed
lemma baEA[elim]:
fixes $c::$ ' $i d$
and $t:: n a t \Rightarrow c n f$
and $t^{\prime}:: n a t \Rightarrow{ }^{\prime} \mathrm{cmp}$
and $n:: n a t$
and $i:: n a t$
assumes $\exists i \geq n$. $\left\{c \xi_{t} i\right.$
and eval $c t t^{\prime} n(b a \varphi)$
shows $\varphi\left(\sigma_{c}\left(t\langle c \rightarrow t\rangle_{n}\right)\right)$
proof -
from <eval $\left.c t t^{\prime} n(b a \varphi)\right\rangle$ have eval $c t t^{\prime} n(\lambda t n . \varphi(t n))$ using ba-def by simp
moreover from assms have $\langle c \rightarrow t\rangle_{n} \geq n$ and $\left\{c \xi_{t}(\langle c \rightarrow t\rangle n)\right.$
using nxtActI[of $n c t]$ by auto
ultimately have $\varphi\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.t^{\prime}\right)\right)\left(\right.$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.\left.\left.t\right\rangle\right)\right)\right)$ using validCE-act by blast
hence $\varphi\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.t^{\prime}\right)\right)\left(\right.$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.\left.\left.t\right\rangle\right)\right)\right)$ by simp
moreover have enat (the-enat $\left(\left\langle c \#_{\text {enat } n}\right.\right.$ inf-llist $\left.\left.\left.t\right\rangle\right)\right)<\operatorname{llength}\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)$
proof -
have ltake $\infty($ inf-llist $t)=($ inf-llist $t)$ using ltake-all $[$ of inf-llist $t]$ by simp hence llength $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)=\left\langle c \#_{\infty}\right.$ inf-llist $\left.t\right\rangle$ using $n A c t-d e f$ by simp moreover have $\left\langle c \#_{\text {enat }} n\right.$ inf-llist $\left.t\right\rangle<\langle c \# \infty$ inf-llist $t\rangle$
proof -
have enat $\langle c \rightarrow t\rangle_{n}<$ llength (inf-llist t) by simp
with $\left.\langle\langle c \rightarrow t\rangle\rangle_{n} \geq n\right\rangle\left\langle\left\{c \xi_{t}\langle c \rightarrow t\rangle{ }_{n}\right\rangle\right.$ show ?thesis using n Act-less by simp
qed
ultimately show ?thesis by simp
qed
hence $\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.t^{\prime}\right)\right)\left(\right.$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.\left.t\right\rangle\right)\right)=$ $\operatorname{lnth}\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)\left(\right.$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.\left.t\right\rangle\right)\right)$
using lnth-lappend1 [of the-enat ($\langle c$ \# enat n inf-llist $t\rangle) \pi_{c}($ inf-llist $t)$ inf-llist t] by simp
ultimately have $\varphi\left(\operatorname{lnth}\left(\pi_{c}(\right.\right.$ inf-llist $\left.t)\right)$ (the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.\left.\left.t\right\rangle\right)\right)\right)$ by simp
moreover have $\langle c \# n$ inf-llist $t\rangle=\left\langle c \#_{\langle c \rightarrow t\rangle}\right.$ inf-llist $\left.t\right\rangle$
proof -
from assms have $\nexists k . n \leq k \wedge k<\langle c \rightarrow t\rangle_{n} \wedge \xi c \xi_{t}{ }_{k}$ using $n x t A c t I[$ of $n c t]$ by auto
hence $\neg\left(\exists k \geq n . k<\langle c \rightarrow t\rangle_{n} \wedge \xi c \xi_{l n t h}(\right.$ inf-llist $\left.t) k\right)$ by simp
moreover have enat $\langle c \rightarrow t\rangle_{n}-1<$ llength (inf-llist t) by (simp add: one-enat-def)
ultimately show ?thesis using $\left\langle\langle c \rightarrow t\rangle_{n} \geq n\right\rangle$ nAct-not-active-same by simp
qed
moreover have $\sigma_{c}\left(t\langle c \rightarrow t\rangle_{n}\right)=\operatorname{lnth}\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)\left(\right.$ the-enat $\left(\left\langle c \#_{\langle c \rightarrow t\rangle_{n}}\right.\right.$ inf-llist $\left.\left.\left.t\right\rangle\right)\right)$
proof -
have enat (Suc i) < llength (inf-llist t) using enat-ord-code by simp
moreover from $\left\langle\xi c \xi_{t}\langle c \rightarrow t\rangle_{n}\right\rangle$ have $\left\langle c \xi_{\text {lnth }}\right.$ (inf-llist $\left.t\right)\langle c \rightarrow t\rangle_{n}$ by simp
ultimately show ?thesis using proj-active-nth by simp
qed
ultimately show?thesis by simp
qed
lemma baEN1[elim]:
fixes $c::$ 'id
and $t:: n a t \Rightarrow c n f$
and $t^{\prime}:: n a t \Rightarrow{ }^{\prime} \mathrm{cmp}$
and $n:: n a t$
assumes act: $\exists i\} c.\}_{t} i$
and nAct: $\nexists i . i \geq n \wedge \xi c \xi_{t} i$
and al: eval ct $t^{\prime} n(b a \varphi)$
shows $\varphi\left(t^{\prime}(n-\langle c \wedge t\rangle-1)\right)$
proof -
from al have $\varphi\left(\right.$ lnth $\left(\left(\pi_{c}(\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\left(c \downarrow_{t}(n)\right)\right)$
using act nAct validCE-cont ba-def by metis
hence $\varphi\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\left(c \downarrow_{t}(n)\right)\right)$ by simp
moreover have
$\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.t^{\prime}\right)\right)\left(c \downarrow_{t}(n)\right)=\operatorname{lnth}\left(\right.$ inf-llist $\left.t^{\prime}\right)(n-\langle c \wedge t\rangle-1)$
using act nAct cnf2bhv-lnth-lappend by simp
moreover have $\ldots=t^{\prime}(n-\langle c \wedge t\rangle-1)$ by simp
ultimately show?thesis by simp
qed
lemma baEN2[elim]:
fixes $c::$ 'id
and $t:: n a t \Rightarrow c n f$
and $t^{\prime}:: n a t \Rightarrow{ }^{\prime} c m p$
and $n:: n a t$
assumes $n A c t: \nexists i\}. c \xi_{t} i$
and al: eval $c t t^{\prime} n(b a \varphi)$
shows $\varphi\left(t^{\prime} n\right)$
proof -
from al have $\varphi\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right) n\right)$
using nAct validCE-not-act ba-def by metis
hence $\varphi\left(\right.$ lnth $\left(\left(\pi_{c}(\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right) n\right)$ by simp
moreover have $\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.t^{\prime}\right)\right) n=\operatorname{lnth}\left(\right.$ inf-llist $\left.t^{\prime}\right) n$
proof -
from n Act have $\pi_{c}($ inf-llist $t)=[]_{l}$ by simp
hence $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.t^{\prime}\right)=$ inf-llist t^{\prime} by $\left(\right.$ simp add: $\left\langle\pi_{c}\right.$ inf-llist $\left.\left.t=[]_{l}\right\rangle\right)$
thus ?thesis by simp
qed
moreover have $\ldots=t^{\prime} n$ by simp
ultimately show ?thesis by simp
qed
lemma baEANow[elim]:
fixes $t n c \varphi$
assumes eval ct $t^{\prime} n(b a \varphi)$
and $\left\{c \xi_{t} n\right.$
shows $\varphi\left(\sigma_{c}(t n)\right)$
proof -
from assms have $\varphi\left(\sigma_{c}\left(t\langle c \rightarrow t\rangle_{n}\right)\right)$ using baEA by blast
with assms show ?thesis using nxtAct-active by simp
qed

D.20.2 Next Operator

```
definition nxt :: \(\left(\left(\right.\right.\) nat \(\left.\Rightarrow{ }^{\prime} \mathrm{cmp}\right) \Rightarrow\) nat \(\Rightarrow\) bool \() \Rightarrow\left(\left(\right.\right.\) nat \(\Rightarrow{ }^{\prime}\) cmp \() \Rightarrow\) nat \(\Rightarrow\) bool \()\left(\mathrm{O}_{b}(-)^{24}\right)\)
    where \(\bigcirc_{b}(\gamma) \equiv \lambda t n . \gamma t(\) Suc \(n)\)
lemma nxtIA[intro]:
    fixes \(c:: ' i d\)
        and \(t:: n a t \Rightarrow c n f\)
        and \(t^{\prime}:: n a t \Rightarrow{ }^{\prime} c m p\)
        and \(n:: n a t\)
    assumes \(\exists i \geq n .\left\{c \xi_{t} i\right.\)
    and \(\llbracket \exists i>\langle c \rightarrow t\rangle_{n} . \xi_{c} \xi_{t} i \rrbracket \Longrightarrow \exists n^{\prime} \geq n .\left(\exists!i . n \leq i \wedge i<n^{\prime} \wedge \xi c \xi_{t} i\right) \wedge\) eval \(c t t^{\prime} n^{\prime} \gamma\)
    and \(\llbracket \neg\left(\exists i>\langle c \rightarrow t\rangle_{n}\right.\). \(\left\langle c \xi_{t} i\right) \rrbracket \Longrightarrow\) eval \(c t t^{\prime}\left(S u c\langle c \rightarrow t\rangle_{n}\right) \gamma\)
    shows eval c \(t t^{\prime} n\left(O_{b}(\gamma)\right)\)
proof (cases)
    assume \(\exists i\rangle\langle c \rightarrow t\rangle_{n}\). \(\xi_{n} \xi_{t} i\)
    with \(\operatorname{assms}(2)\) obtain \(n^{\prime}\) where \(n^{\prime} \geq n\) and \(\exists!i . n \leq i \wedge i<n^{\prime} \wedge \xi c \xi_{t} i\) and eval \(c t t^{\prime} n^{\prime} \gamma\)
        by blast
    moreover from assms(1) have \(\left\{c \xi_{t}\langle c \rightarrow t\rangle_{n}\right.\) and \(\langle c \rightarrow t\rangle_{n} \geq n\) using nxtActI by auto
    ultimately have \(\exists i^{\prime} \geq n^{\prime}\). \(\left\{c \xi_{t} i^{\prime}\right.\)
        by (metis \(\langle\exists i\rangle\langle c \rightarrow t\rangle_{n} .\{c\}_{t} i^{\rangle}\)dual-order.strict-trans2 leI nat-less-le)
```

with 〈eval ct $\left.t^{\prime} n^{\prime} \gamma\right\rangle$
have $\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left(\right.$ the-enat $\left(\left\langle c \#_{\text {enat } n^{\prime}}\right.\right.$ inf-llist $\left.\left.\left.t\right\rangle\right)\right)$ using validCE-act by blast
moreover have the-enat $\left(\left\langle c \#_{n^{\prime}}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)=\operatorname{Suc}\left(\right.$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.\left.t\right\rangle\right)\right)$
proof -
from $\exists \exists!i . n \leq i \wedge i<n^{\prime} \wedge \xi c \xi_{t} i^{\prime}$ obtain i where $n \leq i$ and $i<n^{\prime}$ and $\xi c \xi_{t} i$
and $\forall i^{\prime} . n \leq i^{\prime} \wedge i^{\prime}<n^{\prime} \wedge \xi c \xi_{t} i^{\prime} \longrightarrow i^{\prime}=i$ by blast
moreover have $n^{\prime}-1<$ llength (inf-llist t) by simp
ultimately have the-enat $\left(\left\langle c \#_{n^{\prime}}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)=\operatorname{the-enat}\left(e S u c\left(\left\langle c \#_{n}\right.\right.\right.$ inf-llist $\left.\left.\left.t\right\rangle\right)\right)$
using nAct-active-suc[of inf-llist $\left.t n^{\prime} n i c\right]$ by (simp add: $\left.\langle n \leq i\rangle\right)$
moreover have $\left\langle c \#_{i}\right.$ inf-llist $\left.t\right\rangle \neq \infty$ by simp
ultimately show ?thesis using the-enat-eSuc by simp
qed
ultimately have $\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left(\right.$ Suc $\left(\right.$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.\left.\left.t\right\rangle\right)\right)\right)$ by simp
with assms have eval ct $t^{\prime} n(\lambda t n$. γt (Suc $n)$)
using validCI-act[of $\left.n c t \lambda t n . \gamma t(S u c n) t^{\prime}\right]$ by blast
thus ?thesis using nxt-def by simp
next
assume $\neg\left(\exists i>\langle c \rightarrow t\rangle_{n} .\left\{c \xi_{t} i\right)\right.$
with assms(3) have eval ct t' Suc $\left.^{\prime}\langle c \rightarrow t\rangle_{n}\right) \gamma$ by simp
moreover from $\left.\left\langle\neg\left(\exists i>\langle c \rightarrow t\rangle_{n} \text {. }\right\}_{c} \xi_{t}{ }_{i}\right)\right\rangle$ have $\left.\neg\left(\exists i \geq S u c\langle c \rightarrow t\rangle_{n} \text {. } \xi_{c}\right\}_{t} i\right)$ by simp
ultimately have $\gamma\left(\operatorname{lnth}\left(\pi_{c}\right.\right.$ inf-llist $t @_{l}$ inf-llist $\left.\left.t^{\prime}\right)\right)\left(c \downarrow_{t}\left(S u c\langle c \rightarrow t\rangle_{n}\right)\right)$
using assms(1) validCE-cont[of ctSuc $\left.\langle c \rightarrow t\rangle_{n} t^{\prime} \gamma\right]$ by blast
moreover from $\left.\left.\operatorname{assms}(1)\langle\neg(\exists i\rangle\langle c \rightarrow t\rangle n\} c.\}_{t} i\right)\right\rangle$
have Suc (the-enat $\left\langle c \#\right.$ enat $n^{\text {inf-llist } t\rangle)}={ }_{c} \downarrow t\left(S u c\langle c \rightarrow t\rangle_{n}\right)$
using nAct-cnf2proj-Suc-dist by simp
ultimately have $\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left(\right.$ Suc $\left(\right.$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.\left.\left.t\right\rangle\right)\right)\right)$ by simp
moreover from $\operatorname{assms}(1)$ have $\left\{c \xi_{t}\langle c \rightarrow t\rangle_{n}\right.$ and $\langle c \rightarrow t\rangle_{n} \geq n$ using nxtActI by auto ultimately have eval ct $t^{\prime} n(\lambda t n . \gamma t(S u c n))$
using validCI-act[of nct $\left.\lambda t n . \gamma t(S u c n) t^{\prime}\right]$ by blast
with $\left\langle\left\{c \xi_{t}\langle c \rightarrow t\rangle n^{\rangle}\left\langle\neg\left(\exists i^{\prime} \geq S u c\langle c \rightarrow t\rangle_{n}\right.\right.\right.\right.$. $\left.\left\{c \xi_{t} i^{\prime}\right)\right\rangle$ show ?thesis using nxt-def by simp qed
lemma $n x t I N[$ intro]:
fixes $c:: ' i d$
and $t:: n a t \Rightarrow c n f$
and $t^{\prime}:: n a t \Rightarrow{ }^{\prime} c m p$
and $n:: n a t$
assumes $\neg\left(\exists i \geq n\right.$. $\left\{c \xi_{t} i\right)$
and eval c $t t^{\prime}(S u c n) \gamma$
shows eval c $t t^{\prime} n\left(\bigcirc_{b}(\gamma)\right)$
proof cases
assume $\exists i\} c.\}_{t} i$
moreover from $\left\langle\neg\left(\exists i \geq n\right.\right.$. $\left.\left.\xi_{c} \xi_{t} i\right)\right\rangle$ have $\neg(\exists i \geq$ Suc n. $\left.\} c \xi_{t} i\right)$ by simp
ultimately have $\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left(c \downarrow_{t}(\right.$ Suc $\left.n)\right)$
using validCE-cont <eval c $t t^{\prime}$ (Suc n) $\left.\gamma\right\rangle$ by blast
with $\exists i\} c.\}_{t} i^{\rangle}$have $\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left(S u c\left(c \downarrow_{t}(n)\right)\right)$
using $\left\langle\neg\left(\exists i \geq n\right.\right.$. $\left.\left.\{c\}_{t} i\right)\right\rangle$ lActive-less by auto
with $\left\langle\neg\left(\exists i \geq n\right.\right.$. $\left.\left.\left.\left.\xi^{\prime} \xi_{\xi_{t}} i\right)\right\rangle\langle\exists i\} c.\right\}_{t}\right\rangle$ have eval $c t t^{\prime} n(\lambda t n . \gamma t($ Suc $n))$
using validCI-cont[where $\gamma=(\lambda t n . \gamma t(S u c n))]$ by simp
thus ?thesis using nxt-def by simp
next
assume $\left.\neg(\exists i\}. c \xi_{t} i\right)$
with assms have γ (lnth (π_{c} inf-llist $t @_{l}$ inf-llist $\left.t^{\prime}\right)$) (Suc n) using validCE-not-act by blast
with $\neg \neg\left(\exists i\right.$. $\left.\left\langle c \xi_{t} i\right)\right\rangle$ have eval $c t t^{\prime} n(\lambda t n$. $\gamma t($ Suc $n))$
using validCI-not-act[where $\gamma=(\lambda t n . \gamma t(S u c n))]$ by blast
thus ?thesis using nxt-def by simp
qed
lemma nxtEA1[elim]:
fixes $c::$ ' $i d$
and $t:: n a t \Rightarrow c n f$
and $t^{\prime}:: n a t \Rightarrow{ }^{\prime} \mathrm{cmp}$
and $n:: n a t$
assumes $\exists i>\langle c \rightarrow t\rangle_{n}$. $\{c\} t i$
and eval ctt $t^{\prime} n\left(O_{b}(\gamma)\right)$
and $n^{\prime} \geq n$
and $\exists!\bar{i} . i \geq n \wedge i<n^{\prime} \wedge \xi c \xi_{t} i$
shows eval $c t t^{\prime} n^{\prime} \gamma$
proof -
from 〈eval ct $\left.t^{\prime} n\left(O_{b}(\gamma)\right)\right\rangle$ have eval $c t t^{\prime} n(\lambda t n . \gamma t(S u c n))$ using nxt-def by simp
moreover from $\operatorname{assms}(4)$ obtain i where $i \geq n$ and $i<n^{\prime}$ and $\left\{c \xi_{t} i\right.$
and $\forall i^{\prime} . n \leq i^{\prime} \wedge i^{\prime}<n^{\prime} \wedge\left\{c \xi_{t} i^{\prime} \longrightarrow i^{\prime}=i\right.$ by blast
ultimately have $\gamma\left(\ln\right.$ th $\left(\pi_{c}\right.$ inf-llist $t @_{l}$ inf-llist $\left.\left.t^{\prime}\right)\right)\left(S u c\left(\right.\right.$ the-enat $\left\langle c \#_{\text {enat }} n^{\text {inf-llist } t\rangle))}\right.$
using validCE-act[of nct t' $\lambda t n . \gamma t$ (Suc n)] by blast
moreover have the-enat $\left(\left\langle c \#_{n^{\prime}}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)=\operatorname{Suc}\left(\right.$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.\left.t\right\rangle\right)\right)$
proof -
have $n^{\prime}-1<$ llength (inf-llist t) by simp
with $\left\langle i<n^{\prime}\right\rangle$ and $\left\langle\xi c \xi_{t} i^{\prime}\right.$ and $\left\langle\forall i^{\prime} . n \leq i^{\prime} \wedge i^{\prime}<n^{\prime} \wedge \xi c \xi_{t} i^{\prime} \longrightarrow i^{\prime}=i\right\rangle$
have the-enat $\left(\left\langle c \#_{n^{\prime}}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)=$ the-enat $\left(e S u c\left(\left\langle c \#_{n}\right.\right.\right.$ inf-llist $\left.\left.\left.t\right\rangle\right)\right)$
using nAct-active-suc[of inf-llist $\left.t n^{\prime} n i c\right]$ by (simp add: $\left.\langle n \leq i\rangle\right)$
moreover have $\left\langle c \#_{i}\right.$ inf-llist $\left.t\right\rangle \neq \infty$ by simp
ultimately show ?thesis using the-enat-eSuc by simp
qed
ultimately have $\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}\right.\right.\right.$ inf-llist $\left.t\right) @_{l}$ inf-llist $\left.\left.t^{\prime}\right)\right)\left(\right.$ the-enat $\left(\left\langle c \#_{n^{\prime}}\right.\right.$ inf-llist $\left.\left.\left.t\right\rangle\right)\right)$ by simp
moreover have $\exists i^{\prime} \geq n^{\prime} .\left\{c \xi_{t} i^{\prime}\right.$
proof -
from $\operatorname{assms}(4)$ have $\langle c \rightarrow t\rangle_{n} \geq n$ and $\xi c \xi_{t}\langle c \rightarrow t\rangle_{n}$ using $n x t A c t I$ by auto
with $\left\langle\forall i^{\prime} . n \leq i^{\prime} \wedge i^{\prime}<n^{\prime} \wedge \xi c \xi_{t} i^{\prime} \longrightarrow i^{\prime}=i\right\rangle$ show ?thesis
using assms(1) by (metis leI le-trans less-le)
qed
ultimately show ?thesis using validCI-act by blast
qed
lemma nxtEA2[elim]:
fixes $c:: ' i d$

```
    and t::nat }=>cn
    and t'::nat => 'cmp
    and n::nat
    and i
    assumes }\existsi\geqn.{c\mp@subsup{}}{t}{}i\mathrm{ and }\neg(\existsi>\langlec->t\rangle\mp@subsup{\rangle}{n}{}.{c\mp@subsup{}}{t}{}i
        and eval ct t' n (Ob
    shows eval c t t'}(Suc\langlec->t\mp@subsup{\rangle}{n}{})
proof -
    from <eval c t t' n (Ob(\gamma))> have eval c t t' n(\lambdat n. \gamma t (Suc n)) using nxt-def by simp
    with assms(1) have
        \gamma (lnth ( }\mp@subsup{\pi}{c}{}\mathrm{ inf-llist t @ @ inf-llist t')) (Suc (the-enat <c # enat n inf-llist t }\rangle)
        using validCE-act[of n c t t' \lambdat n. \gamma t (Suc n)] by blast
    moreover from assms(1) assms(2) have
    Suc (the-enat }\langlec##\mathrm{ enat ninf-llist t )})=c\downarrowt(Suc \langlec ->t\rangle n)
    using nAct-cnf2proj-Suc-dist by simp
```



```
    using nxtActive-no-active by simp
    ultimately show ?thesis using validCI-cont[where n=Suc \langlec->t\rangle}n]\mathrm{ assms(1) by blast
qed
lemma nxtEN[elim]:
    fixes c::'id
        and t::nat =>cnf
        and t'::nat => ' cmp
        and n::nat
    assumes }\neg(\existsi\geqn.{c\mp@subsup{}}{t}{}i
        and eval c t t' n (Ob}(\gamma)
    shows eval c t t'(Suc n) \gamma
proof cases
    assume }\existsi.{c
    moreover from <eval c t t ' n (Ob(\gamma))> have eval c t t' n (\lambdat n. \gamma t (Suc n))
        using nxt-def by simp
    ultimately have \gamma (lnth ( }\mp@subsup{\pi}{c}{}\mathrm{ inf-llist t @ }\mp@subsup{l}{l}{}\mathrm{ inf-llist t })\mathrm{ ) (Suc ( }c\downarrowtn)
        using }\langle\neg(\existsi\geqn.{c\mp@subsup{}}{t}{}i)\rangle\mathrm{ validCE-cont[where }\gamma=(\lambdat n.\gammat(Suc n))] by sim
    hence \gamma (lnth (( }\mp@subsup{\pi}{c}{}(\mathrm{ inf-llist t)) @ ( inf-llist t'))) (c\t (Suc n))
```



```
    ultimately show ?thesis using validCI-cont[where n=Suc n] {\existsi.{c}t i> by blast
next
    assume }\neg(\existsi.}c\mp@subsup{}}{t}{}\mp@subsup{i}{}{\prime}
    moreover from <eval c t t'n (Ob}(\gamma))\rangle have eval c t t' n (\lambdat n. \gamma t (Suc n)
        using nxt-def by simp
    ultimately have \gamma (lnth ( }\mp@subsup{\pi}{c}{}\mathrm{ inf-llist t @ }\mp@subsup{l}{l}{}\mathrm{ inf-llist t}\mp@subsup{t}{}{\prime}))(\mathrm{ Suc n)
        using <\neg(\existsi.{c} t i)\ranglevalidCE-not-act[where \gamma=(\lambdat n. \gamma t (Suc n))] by blast
    with }\neg\neg(\existsi.{c\mp@subsup{}}{t}{}\mp@subsup{i}{)}{}\rangle\mathrm{ show ?thesis using validCI-not-act[of ct }\gamma\mp@subsup{t}{}{\prime}\mathrm{ Suc n] by blast
qed
```


D.20.3 Eventually Operator

definition evt :: $\left(\left(\right.\right.$ nat $\left.\Rightarrow{ }^{\prime} \mathrm{cmp}\right) \Rightarrow$ nat \Rightarrow bool $) \Rightarrow\left(\left(\right.\right.$ nat $\Rightarrow{ }^{\prime}$ cmp $) \Rightarrow$ nat \Rightarrow bool $)\left(\diamond_{b}(-)\right.$ 23) where $\diamond_{b}(\gamma) \equiv \lambda t n . \exists n^{\prime} \geq n . \gamma t n^{\prime}$
lemma evtIA[intro]:
fixes $c::$ ' $i d$
and $t:: n a t \Rightarrow c n f$
and $t^{\prime}:: n a t \Rightarrow{ }^{\prime} \mathrm{cmp}$
and $n:: n a t$
and $n^{\prime}:: n a t$
assumes $\exists i \geq n$. $\{c\}_{t} i$
and $n^{\prime} \geq\langle c \Leftarrow t\rangle_{n}$
and $\llbracket \exists i \geq n^{\prime} .\{c\}_{t} \rrbracket \Longrightarrow \exists n^{\prime \prime} \geq\langle c \Leftarrow t\rangle_{n^{\prime}} . n^{\prime \prime} \leq\langle c \rightarrow t\rangle_{n^{\prime}} \wedge$ eval $c t t^{\prime} n^{\prime \prime} \gamma$
and $\llbracket \neg\left(\exists i \geq n^{\prime}\right.$. $\left\{c \xi_{t} i\right) \rrbracket \Longrightarrow$ eval $c t t^{\prime} n^{\prime} \gamma$
shows eval ct $t^{\prime} n\left(\diamond_{b}(\gamma)\right)$
proof cases assume $\exists i^{\prime} \geq n^{\prime} .{ }^{\prime}{ }^{c} \xi_{t} i^{\prime}$
with $\operatorname{assms}(3)$ obtain $n^{\prime \prime}$ where $n^{\prime \prime} \geq\langle c \Leftarrow t\rangle_{n^{\prime}}$ and $n^{\prime \prime} \leq\langle c \rightarrow t\rangle_{n^{\prime}}$ and eval $c t t^{\prime} n^{\prime \prime} \gamma$
by auto
hence $\exists i^{\prime} \geq n^{\prime \prime} .\left\{c \xi_{t} i^{\prime}\right.$ using $\left\langle\exists i^{\prime} \geq n^{\prime} .\left\{c \xi_{t} i^{\prime\rangle} n x t A c t I\right.\right.$ by blast
with <eval ct $\left.t^{\prime} n^{\prime \prime} \gamma\right\rangle$ have
$\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left(\right.$ the-enat $\left(\left\langle c \#_{n^{\prime \prime}}\right.\right.$ inf-llist $\left.\left.\left.t\right\rangle\right)\right)$
using validCE-act by blast
moreover have the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right) \leq$ the-enat $\left(\left\langle c \#_{n^{\prime \prime}}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)$
proof -
from $\left\langle\langle c \Leftarrow t\rangle_{n^{\prime}} \leq n^{\prime \prime}\right\rangle$ have $\left\langle c \#_{n^{\prime}}\right.$ inf-llist $\left.t\right\rangle \leq\left\langle c \#_{n^{\prime \prime}}\right.$ inf-llist $\left.t\right\rangle$
using nAct-mono-lNact by simp
moreover from $\left\langle n^{\prime} \geq\langle c \Leftarrow t\rangle\right\rangle_{n^{\prime}}$ have $\left\langle c \#_{n}\right.$ inf-llist $\left.t\right\rangle \leq\left\langle c \#_{n^{\prime}}\right.$ inf-llist $\left.t\right\rangle$
using nAct-mono-lNact by simp
moreover have $\left\langle c \#_{n^{\prime}}\right.$ inf-llist $\left.t\right\rangle \neq \infty$ by simp
ultimately show? ?thesis by simp
qed
moreover have $\exists i^{\prime} \geq n .\left\{c \xi_{t} i^{\prime}\right.$
proof -
from $\left\langle\exists i^{\prime} \geq n^{\prime}\right.$. $\left\{c \xi_{t} i^{\prime}\right.$ obtain i^{\prime} where $i^{\prime} \geq n^{\prime}$ and $\left\{c \xi_{t} i^{\prime}\right.$ by blast
with $\left\langle n^{\prime} \geq\langle c \Leftarrow t\rangle{ }_{n}\right\rangle$ have $i^{\prime} \geq n$ using lNactGe le-trans by blast
with $\\left\{c \xi_{t} i^{\prime \prime}\right.$ show ?thesis by blast
qed
ultimately have eval ct $t^{\prime} n\left(\lambda t n . \exists n^{\prime} \geq n . \gamma t n^{\prime}\right)$
using validCI-act[where $\gamma=\left(\lambda t n . \exists n^{\prime} \geq n\right.$. $\left.\left.\gamma t n^{\prime}\right)\right]$ by blast
thus ?thesis using evt-def by simp
next
assume $\left.\neg\left(\exists i^{\prime} \geq n^{\prime}.\right\} c \xi_{t} i^{\prime}\right)$
with $\left\langle\left(\exists i \geq n\right.\right.$. $\left.\left\langle c \xi_{t} i\right)\right\rangle$ have $n^{\prime} \geq\langle c \wedge t\rangle$ using lActive-less by auto
hence $c \downarrow_{t}\left(n^{\prime}\right) \geq$ the-enat (llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)-1$ using cnf2bhv-ge-llength by simp
moreover have the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)-1 \geq$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)$
proof -
from $\left\{\exists i \geq n .\{c\}_{t} i^{\rangle}\right.$have llength $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right) \geq e S u c(\langle c \# n$ inf-llist $t\rangle)$
using nAct-llength-proj by simp
moreover from $\left\langle\neg\left(\exists i^{\prime} \geq n^{\prime} .\left\{c \xi_{t} i^{\prime}\right)\right\rangle\right.$ have lfinite $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)$
using proj－finite2［of inf－llist t］by simp
hence llength $\left(\pi_{c}(\right.$ inf－llist $\left.t)\right) \neq \infty$ using llength－eq－infty－conv－lfinite by auto
ultimately have the－enat（llength $\left(\pi_{c}(\right.$ inf－llist $\left.\left.t)\right)\right) \geq$ the－enat $(e S u c(\langle c \# n$ inf－llist $t\rangle))$ by simp
moreover have $\left\langle c \#_{n}\right.$ inf－llist $\left.t\right\rangle \neq \infty$ by simp
ultimately have the－enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf－llist $\left.\left.t)\right)\right) \geq S u c\left(\right.$ the－enat $\left(\left\langle c \#_{n}\right.\right.$ inf－llist $\left.\left.\left.t\right\rangle\right)\right)$
using the－enat－eSuc by simp
thus ？thesis by simp
qed
ultimately have $c \downarrow_{t}\left(n^{\prime}\right) \geq$ the－enat $\left(\left\langle c \#_{n}\right.\right.$ inf－llist $\left.\left.t\right\rangle\right)$ by simp
moreover from $\left\langle\neg\left(\exists i^{\prime} \geq n^{\prime} .\{c\}_{t} i^{\prime}\right)\right\rangle$ have eval $c t t^{\prime} n^{\prime} \gamma$ using assms（4）by simp with $\left\langle\exists i \geq n\right.$ ．$\{c\}_{t} i^{\rangle}\left\langle\neg\left(\exists i^{\prime} \geq n^{\prime} .\left\{c \xi_{t}{ }_{i}{ }^{\prime}\right\rangle\right\rangle\right.$
have $\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf－llist $\left.t)\right) @_{l}\left(\right.$ inf－llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left(c \downarrow_{t}\left(n^{\prime}\right)\right)$ using validCE－cont by blast
ultimately have eval ct $t^{\prime} n\left(\lambda t n . \exists n^{\prime} \geq n . \gamma t n^{\prime}\right)$
using $\left\langle\exists i \geq n\right.$ ．$\xi^{〔} \xi_{t} i^{\rangle}$validCI－act $\left[\right.$where $\left.\gamma=\left(\lambda t n . \exists n^{\prime} \geq n . \gamma t n^{\prime}\right)\right]$ by blast
thus ？thesis using evt－def by simp
qed
lemma evtIN［intro］：
fixes $c::$＇id
and $t:: n a t \Rightarrow c n f$
and $t^{\prime}:: n a t \Rightarrow{ }^{\prime} \mathrm{cmp}$
and $n:: n a t$
and $n^{\prime}:: n a t$
assumes $\neg(\exists i \geq n$ ．$\left.\} c \xi_{t} i\right)$
and $n^{\prime} \geq n$
and eval ct $t^{\prime} n^{\prime} \gamma$
shows eval c $t t^{\prime} n\left(\diamond_{b}(\gamma)\right)$
proof cases
assume $\exists i$ ．$\left.\}_{c}\right\}_{t} i$
moreover from $\operatorname{assms}(1) \operatorname{assms}(2)$ have $\neg\left(\exists i^{\prime} \geq n^{\prime} .\left\{c \xi_{t} i^{\prime}\right)\right.$ by simp
ultimately have $\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf－llist $\left.t)\right) @_{l}\left(\right.$ inf－llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left(c \downarrow_{t}\left(n^{\prime}\right)\right)$
using validCE－cont［of ct $n^{\prime} t^{\prime} \gamma$ ］〈eval ct $\left.t^{\prime} n^{\prime} \gamma\right\rangle$ by blast
moreover from $\left\langle n^{\prime} \geq n\right\rangle$ have $c \downarrow_{t}\left(n^{\prime}\right) \geq c \downarrow_{t}(n)$ using cnf2bhv－mono by simp
ultimately have eval $c t t^{\prime} n\left(\lambda t n . \exists n^{\prime} \geq n . \gamma t n^{\prime}\right)$
using validCI－cont［where $\left.\gamma=\left(\lambda t n . \exists n^{\prime} \geq n . \gamma t n^{\prime}\right)\right]\langle\exists i\}. c \xi_{t} i^{〉}\left\langle\neg\left(\exists i \geq n\right.\right.$ ．$\left.\left.\xi_{c} \xi_{t} i\right)\right\rangle$ by blast
thus ？thesis using evt－def by simp
next
assume $\left.\neg(\exists i\}. c \xi_{t} i\right)$
with assms have $\gamma\left(\right.$ lnth $\left(\pi_{c}\right.$ inf－llist $t @_{l}$ inf－llist $\left.\left.t^{\prime}\right)\right) n^{\prime}$ using validCE－not－act by blast with $\left.\left\langle\neg(\exists i\}. c \xi_{t} i\right)\right\rangle$ have eval $c t t^{\prime} n\left(\lambda t n . \exists n^{\prime} \geq n . \gamma t n^{\prime}\right)$
using validCI－not－act［where $\left.\gamma=\lambda t n . \exists n^{\prime} \geq n . \gamma t n^{\prime}\right]\left\langle n^{\prime} \geq n\right\rangle$ by blast
thus ？thesis using evt－def by simp
qed
lemma evtEA［elim］：
fixes $c::$＇id
and $t:: n a t \Rightarrow c n f$
and $t^{\prime}:: n a t \Rightarrow{ }^{\prime}$ cmp
and $n:: n a t$
assumes $\exists i \geq n$. $\left\{c c_{t}{ }_{t}\right.$ and eval ct $t^{\prime} n\left(\diamond_{b}(\gamma)\right)$
shows $\exists n^{\prime} \geq\langle c \rightarrow t\rangle_{n}$.
$\left(\exists i \geq n^{\prime} \cdot\left\{c c_{t}^{3} i \wedge\left(\forall n^{\prime \prime} \geq\langle c \Leftarrow t\rangle_{n^{\prime}} . n^{\prime \prime} \leq\langle c \rightarrow t\rangle_{n^{\prime}} \longrightarrow\right.\right.\right.$ eval $\left.\left.c t t^{\prime} n^{\prime \prime} \gamma\right)\right) \vee$
$\left(\neg\left(\exists i \geq n^{\prime} .\left\{c \xi_{t} i\right) \wedge\right.\right.$ eval $\left.c t t^{\prime} n^{\prime} \gamma\right)$
proof -
from 〈eval ct $t^{\prime} n\left(\diamond_{b}(\gamma)\right)$) have eval $\operatorname{t} t t^{\prime} n\left(\lambda t n . \exists n^{\prime} \geq n . \gamma t n^{\prime}\right)$ using evt-def by simp with $\exists \exists i \geq n$. $\left.\left.\}_{c}\right\}_{t} i\right)$
have $\exists n^{\prime} \geq$ the-enat $\left\langle c \#_{\text {enat }} n^{\text {inf-llist } t\rangle . \gamma(l n t h ~(~} \pi_{c}\right.$ inf-llist $t @_{l}$ inf-llist $\left.\left.t^{\prime}\right)\right) n^{\prime}$ using validCE-act[where $\left.\gamma=\lambda t n . \exists n^{\prime} \geq n . \gamma t n^{\prime}\right]$ by blast
then obtain x where $x \geq$ the-enat ($\left\langle c \#_{n}\right.$ inf-llist $\left.t\right\rangle$) and
$\gamma\left(\right.$ lnth $\left(\left(\pi_{c}(\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right) x$ by auto
thus ?thesis
proof (cases)
assume $x \geq$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)$
moreover from $\left\langle\left(x \geq\right.\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.\left.t)\right)\right)\right\rangle$ have llength $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right) \neq \infty$ by (metis infinity-ileE)
moreover from $\nexists i \geq n$. $\left\langle c \xi_{t}{ }_{i}\right\rangle$ have llength $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right) \geq 1$
using proj-one [of inf-llist t] by auto
ultimately have the-enat (llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)-1<x$
by (metis One-nat-def Suc-ile-eq antisym-conv2 diff-Suc-less enat-ord-simps(2) enat-the-enat less-imp-diff-less one-enat-def)
hence $x=c \downarrow_{t}\left(c^{\uparrow} \uparrow_{t}(x)\right)$ using $c n f 2 b h v-b h v 2 c n f$ by simp
with $\left\langle\gamma\left(\right.\right.$ lnth $\left(\left(\pi_{c}(\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.\left.t^{\prime}\right)\right)\right) x\right\rangle$
have $\gamma\left(\right.$ lnth $\left(\left(\pi_{c}(\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left({ }^{\prime} \downarrow t(c \uparrow t(x))\right)$ by simp
moreover have $\neg(\exists i \geq c \uparrow \uparrow(x)$. $\left.\} c \xi_{t} i\right)$
proof -
from $\left\langle x \geq\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right\rangle$ have linite $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)$
using llength-geq-enat-lfiniteD[of π_{c} (inf-llist t) x] by simp
then obtain z where $\forall n^{\prime \prime}>z . \neg\left\{c \xi_{t} n^{\prime \prime}\right.$ using proj-finite-bound by blast
moreover from <the-enat (llength $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)$) $-1\langle x\rangle$ have $\langle c \wedge t\rangle\left\langle{ }_{c} \uparrow t(x)\right.$ using bhv2cnf-greater-lActive by simp
ultimately show ?thesis using lActive-greater-active-all by simp
qed
ultimately have eval ct $t t^{\prime}\left(c^{\uparrow} t x\right) \gamma$
using $\boxminus \exists i \geq n$. $\left.\xi_{c} \xi_{t}{ }_{i}\right)$ validCI-cont $\left[\right.$ of $\left.c t{ }_{c} \uparrow(x)\right]$ by blast
moreover have $c \uparrow_{t}(x) \geq\langle c \rightarrow t\rangle_{n}$
proof -
from $\left\langle x \geq\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right\rangle$ have linite $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)$
using llength-geq-enat-lfiniteD[of π_{c} (inf-llist t) x] by simp
then obtain z where $\forall n^{\prime \prime}>z . \neg\left\{c \xi_{t} n^{\prime \prime}\right.$ using proj-finite-bound by blast
moreover from $\left\{\exists i \geq n\right.$. $\left\{c \xi_{t}\right\}_{i}$ have $\left\{c \xi_{t}\langle c \rightarrow t\rangle{ }_{n}\right.$ using nxtActI by simp
ultimately have $\langle c \wedge t\rangle \geq\langle c \rightarrow t\rangle_{n}$ using lActive-greatest by fastforce
moreover have $c^{\uparrow}{ }_{t}(x) \geq\langle c \wedge t\rangle$ by simp
ultimately show $c \uparrow_{t}(x) \geq\langle c \rightarrow t\rangle_{n}$ by arith
qed
ultimately show ?thesis using $\left\langle\neg\left(\exists i \geq c \uparrow t(x) .\left\{c \xi_{t} i\right)\right\rangle\right.$ by blast next

```
    assume }\neg(x\geq\mathrm{ llength }(\mp@subsup{\pi}{c}{}(\mathrm{ inf-llist t ) ))
    hence x<llength ( }\mp@subsup{\pi}{c}{}(\mathrm{ inf-llist t)) by simp
    then obtain n'::nat where x=\langlec # n}\mp@subsup{n}{}{\prime}\mathrm{ inf-llist t> using nAct-exists by blast
    with <enat x<llength ( }\mp@subsup{\pi}{c}{}(\mathrm{ inf-llist t) )> have }\existsi\geqn'.{c}\mp@subsup{}}{t}{}
        using nAct-less-llength-active by force
    then obtain i where i\geqn' and {c\mp@subsup{}}{t}{}i\mathrm{ and }\neg(\existsk\geq\mp@subsup{n}{}{\prime}.k<i\wedge{c\mp@subsup{\xi}{t k}{})
        using nact-exists by blast
    moreover have ( }\forall\mp@subsup{n}{}{\prime\prime}\geq\langlec\Leftarrowt\rangle\mp@subsup{\rangle}{i}{}.\mp@subsup{n}{}{\prime\prime}\leq\langlec->t\mp@subsup{\rangle}{i}{}\longrightarrow\mathrm{ eval ct t t' n' }\gamma\mathrm{ )
    proof
    fix }\mp@subsup{n}{}{\prime\prime}\mathrm{ show }\langlec\Leftarrowt\mp@subsup{\rangle}{i}{}\leq\mp@subsup{n}{}{\prime\prime}\longrightarrow\mp@subsup{n}{}{\prime\prime}\leq\langlec->t\mp@subsup{\rangle}{i}{}\longrightarrow\mathrm{ eval c t t' n'|}
    proof(rule HOL.impI[OF HOL.impI])
        assume }\langlec\Leftarrowt\mp@subsup{\rangle}{i}{}\leq\mp@subsup{n}{}{\prime\prime}\mathrm{ and }\mp@subsup{n}{}{\prime\prime}\leq\langlec->t\rangle\mp@subsup{\rangle}{i}{
        hence the-enat (\langlec # enat i inf-llist t\rangle) = the-enat ( \langlec # enat n" inf-llist t\rangle)
            using nAct-same by simp
        moreover from \{c}\mp@subsup{}}{t}{}i}\mathrm{ \ have {c}}\mp@subsup{}}{t}{\langlec}->t\mp@subsup{\rangle}{i}{}\mathrm{ using nxtActI by auto
        with <n'\prime}\leq\langlec->t\mp@subsup{\rangle}{i}{\prime}\rangle\mathrm{ have }\existsi\geq\mp@subsup{n}{}{\prime\prime}.{c\mp@subsup{}}{t}{}i\mathrm{ using dual-order.strict-implies-order by auto
        moreover have
```



```
        proof -
            have enat i - 1 < llength (inf-llist t) by (simp add: one-enat-def)
            with \langlex=\langlec # n', inf-llist t\rangle>\langlei\geqn`\rangle\langle\neg (\existsk\geq\mp@subsup{n}{}{\prime}.k<i\wedge}c}}\mp@subsup{|}{k}{\prime})
                have x=\langlec #}\mp@subsup{i}{i}{}\mathrm{ inf-llist t }
                using one-enat-def nAct-not-active-same by simp
            moreover have }\langlec\mp@subsup{#}{i}{}\mathrm{ inf-llist t}\rangle\not=\infty\mathrm{ by simp
            ultimately have x=the-enat( \langlec # i inf-llist t\rangle) by fastforce
            thus ?thesis using <\gamma (lnth (( }\mp@subsup{\pi}{c}{}(\mathrm{ inf-llist t)) @ }ll(\mathrm{ inf-llist t}\mp@subsup{t}{}{\prime}))) x\rangle by blast
        qed
        with <the-enat (\langlec # enat i inf-llist t\rangle) = the-enat (\langlec # enat n" inf-llist t\rangle)\rangle have
```



```
        ultimately show eval c t t' }\mp@subsup{n}{}{\prime\prime}\gamma\mathrm{ using validCI-act by blast
    qed
    qed
    moreover have i\geq\langlec->t\mp@subsup{\rangle}{n}{}
    proof -
        have enat i - < llength (inf-llist t) by (simp add: one-enat-def)
```



```
        using one-enat-def nAct-not-active-same by simp
    moreover have }\langlec\mp@subsup{#}{i}{}\mathrm{ inf-llist t }\rangle\not=\infty\mathrm{ by simp
    ultimately have x=the-enat( }\langlec\mp@subsup{#}{i}{}\mathrm{ inf-llist t \) by fastforce
    with <x\geqthe-enat ( }\langlec#\mp@subsup{#}{n}{}\mathrm{ inf-llist t t)>
        have the-enat ( }\langlec\mp@subsup{#}{i}{}\mathrm{ inf-llist t }\rangle)\geq\mathrm{ the-enat ( }\langlec#n inf-llist t\rangle) by simp
    with \{<c}t i\rangle show ?thesis using active-geq-nxtAct by simp
qed
ultimately show ?thesis using \乡c}\t i> by auto
qed
qed
lemma evtEN[elim]:
    fixes c::'id
```

```
    and t::nat => cnf
    and t'::nat => 'cmp
    and n::nat
    and n'::nat
assumes }\neg(\existsi\geqn.{c\mp@subsup{}}{t}{}i
    and eval c t t' n (\diamond
shows \exists}\mp@subsup{n}{}{\prime}\geqn\mathrm{ . eval c t t t}\mp@subsup{n}{}{\prime}
proof cases
assume }\existsi.{c\mp@subsup{}}{t}{
moreover from <eval c t t' n (}\mp@subsup{\diamond}{b}{}(\gamma))>\mathrm{ have eval ct t' n( }\lambdatn.\exists\mp@subsup{n}{}{\prime}\geqn.\gammat\mp@subsup{n}{}{\prime}
    using evt-def by simp
ultimately have \exists n'\geq}\mp@subsup{c}{c}{}\downarrown\mathrm{ n. }\gamma(\mathrm{ lnth ( }\mp@subsup{\pi}{c}{}\mathrm{ inf-llist t @ }\mp@subsup{l}{l}{}\mathrm{ inf-llist t')) n'
using validCE-cont[where \gamma=(\lambdat n.\existsn'\geqn.\gamma t n})]\langle\neg(\existsi\geqn.{c\mp@subsup{}}{t}{}i)\rangle\mathrm{ by blast
then obtain x where x\geqc\downarrowt (n) and \gamma (lnth (( }\mp@subsup{\pi}{c}{}(\mathrm{ inf-llist t)) @ (inf-llist t'))) x by auto
moreover have the-enat (llength ( }\mp@subsup{\pi}{c}{}(\mathrm{ inf-llist t))) - 1<x
proof -
    have }\langlec\wedget\rangle<
    proof (rule ccontr)
        assume }\neg\langlec\wedget\rangle<
        hence }\langlec\wedget\rangle\geqn by sim
        moreover from {\existsi.}c\mp@subsup{\xi}{t i}{\prime}\langle\neg(\existsi\geqn.{c\mp@subsup{}}{t}{}i)\rangle\mathrm{ have {c}}\mp@subsup{}{t}{\langlec}\langlect\rangle
            using lActive-active less-or-eq-imp-le by blast
        ultimately show False using <\neg(\existsi\geqn.{c}ti)\rangle by simp
        qed
        hence the-enat (llength ( }\mp@subsup{\pi}{c}{}(\mathrm{ inf-llist t))) - 1<cctt (n) using cnf2bhv-greater-llength by simp
        with \langlex\geqc\downarrowt (n)\rangle show ?thesis by simp
    qed
    hence }x=c\mp@subsup{\downarrow}{t}{}(c\uparrow\mp@subsup{}{t}{\prime}(x))\mathrm{ using cnf2bhv-bhv2cnf by simp
    ultimately have \gamma (lnth ((\pi
    moreover from }\neg\neg(\existsi\geqn.{c\mp@subsup{}}{t}{}i)\rangle\mathrm{ have }\neg(\existsi\geqc\uparrowtt(x).{c\mp@subsup{}}{t}{}i
    proof -
        from }\langle\neg(\existsi\geqn.{c\mp@subsup{}}{t}{}i)\rangle\mathrm{ have lfinite ( }\mp@subsup{\pi}{c}{}(\mathrm{ (inf-llist t)) using proj-finite2 by simp
        then obtain z}\mathrm{ where }\forall\mp@subsup{n}{}{\prime\prime}>z.\neg{c\mp@subsup{\xi}{t t n' using proj-finite-bound by blast}{
        moreover from <the-enat (llength ( }\mp@subsup{\pi}{c}{\prime}(\mathrm{ inf-llist t))) - 1 < x have }\langlec\wedget\rangle<\mp@subsup{c}{c}{}\uparrowt(x
            using bhv2cnf-greater-lActive by simp
        ultimately show ?thesis using lActive-greater-active-all by simp
    qed
    ultimately have eval c t t' (c`}\mp@subsup{t}{}{\prime}x)
    using validCI-cont[of c t c }\mp@subsup{\uparrow}{t}{}(x)\gamma]|\existsi.}c\mp@subsup{}}{t}{}\mp@subsup{i}{}{\rangle}\mathrm{ by blast
moreover from {\existsi.{c}\mp@subsup{}}{t i}{\prime}\langle\neg(\existsi\geqn.{c\mp@subsup{}}{t}{}i)\rangle}\mathrm{ have }\langlec\wedget\rangle\leq
    using lActive-less[of ct-n] by auto
    with <x\geqc\downarrow}\mp@subsup{\}{t}{}(n)\rangle\mathrm{ have }n\leqc\uparrowt(x) using p2c-mono-c2p by blas
    ultimately show ?thesis by auto
next
    assume }\neg(\existsi.}c\mp@subsup{}}{t}{}i
    moreover from <eval c t t' n (}\mp@subsup{\diamond}{b}{}(\gamma))\rangle\mathrm{ have eval c t t' n ( }\lambdatn.\existsn'\geqn.\gammat n'
        using evt-def by simp
    ultimately obtain n' where }\mp@subsup{n}{}{\prime}\geqn\mathrm{ and }\gamma(\mathrm{ lnth ( }\mp@subsup{\pi}{c}{}\mathrm{ inf-llist t @ l inf-llist t')) n'
        using <\neg(\existsi.{c}t i)\ranglevalidCE-not-act[where \gamma=\lambdat n. \exists n'\geqn.\gammat n] by blast
```

with $\triangleleft \neg\left(\exists i\right.$. $\left.\left.\langle c\}_{t} i\right)\right\rangle$ show ?thesis using validCI-not-act $\left[\right.$ of $\left.c t \gamma t^{\prime} n\right]$ by blast qed

D.20.4 Globally Operator

definition glob $::\left(\left(n a t \Rightarrow{ }^{\prime} c m p\right) \Rightarrow\right.$ nat \Rightarrow bool $) \Rightarrow\left(\left(n a t \Rightarrow{ }^{\prime} c m p\right) \Rightarrow n a t \Rightarrow\right.$ bool $)\left(\square_{b}(-)\right.$ 22 $)$ where $\square_{b}(\gamma) \equiv \lambda t n . \forall n^{\prime} \geq n . \gamma t n^{\prime}$
lemma globIA[intro]:
fixes $c::$ 'id
and $t:: n a t \Rightarrow c n f$
and $t^{\prime}:: n a t \Rightarrow{ }^{\prime} c m p$
and $n:: n a t$
assumes $\exists i \geq n$. $\{c\}_{t} i$
and $\bigwedge n^{\prime} . \llbracket \exists i \geq n^{\prime} .\left\{c \xi_{t} i ; n^{\prime} \geq\langle c \rightarrow t\rangle_{n} \rrbracket \Longrightarrow\right.$ $\exists n^{\prime \prime} \geq\langle c \Leftarrow t\rangle_{n^{\prime}} . n^{\prime \prime} \leq\langle c \rightarrow t\rangle_{n^{\prime}} \wedge$ eval ct $t^{\prime} n^{\prime \prime} \gamma$
and $\left.\bigwedge n^{\prime} . \llbracket \neg\left(\exists i \geq n^{\prime}.\right\} c \xi_{t}\right) ; n^{\prime} \geq\langle c \rightarrow t\rangle n \rrbracket \Longrightarrow$ eval c $t t^{\prime} n^{\prime} \gamma$
shows eval ct $t^{\prime} n\left(\square_{b}(\gamma)\right)$
proof -

proof
fix x ::nat show
$x \geq$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right) \longrightarrow \gamma\left(\operatorname{lnth}\left(\pi_{c}\right.\right.$ inf-llist $t @_{l}$ inf-llist $\left.\left.t^{\prime}\right)\right) x$ proof
assume $x \geq$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)$
show $\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right) x$
proof (cases)
assume $\left(x \geq\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)$
hence lfinite $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)$
using llength-geq-enat-lfinite $D\left[\right.$ of π_{c} (inf-llist t) $\left.x\right]$ by simp
then obtain z where $\forall n^{\prime \prime}>z . \neg\left\{c \xi_{t} n^{\prime \prime}\right.$ using proj-finite-bound by blast
moreover have $\left\{c \xi_{t}\langle c \rightarrow t\rangle n\right.$ by (simp add: $\exists \exists i \geq n$. $\left\{c \xi_{t} i^{\rangle} n x t A c t I\right.$)
ultimately have $\langle c \wedge t\rangle \geq\langle c \rightarrow t\rangle_{n}$ using lActive-greatest[of $\left.c t\langle c \rightarrow t\rangle_{n}\right]$ by blast
moreover have $c \uparrow t(x) \geq\langle c \wedge t\rangle$ by simp
ultimately have $c^{\uparrow}{ }_{t}(x) \geq\langle c \rightarrow t\rangle_{n}$ by arith
moreover have $\neg\left(\exists i^{\prime} \geq_{c} \uparrow_{t}(x) .\left\{c \xi_{t} i^{\prime}\right)\right.$
proof -
from $\left\langle l\right.$ finite $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right\rangle\left\langle\exists i \geq n\right.$. $\xi_{c} \xi_{t} i^{\rangle}$
have $c^{\uparrow}{ }_{t}\left(\right.$ the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.\left.t)\right)\right)\right)=S u c(\langle c \wedge t\rangle)$
using bhv2cnf-lActive by blast
moreover from $\left\langle\left(x \geq\right.\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.\left.t)\right)\right)\right\rangle$
have $x \geq$ the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)$
using the-enat-mono by fastforce
hence ${ }_{c} \uparrow t(x) \geq{ }_{t} \uparrow{ }_{t}\left(\right.$ the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.\left.t)\right)\right)\right)$
using bhv2cnf-mono of the-enat (llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right) x$ by simp
ultimately have $c \uparrow(t) \geq$ Suc $(\langle c \wedge t\rangle)$ by simp
hence ${ }_{c}{ }^{\uparrow} t(x)>\langle c \wedge t\rangle$ by simp
with $\left\langle\forall n^{\prime \prime}>z\right.$. $\neg\left\{c \xi_{t} n^{\prime \prime}\right\rangle$ show ?thesis using lActive-greater-active-all by simp
qed
ultimately have eval $\operatorname{ct} t^{\prime}\left({ }_{c} \uparrow_{t}(x)\right) \gamma$ using $\operatorname{assms}(3)$ by simp
hence $\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)(c \downarrow t(c \uparrow t(x)))$
using validCE-cont[of $\left.c t c \uparrow t(x) t^{\prime} \gamma\right]\left\langle\exists i \geq n\right.$. $\xi_{c} \xi_{t} i^{\rangle}\left\langle\neg\left(\exists i \geq{ }_{c} \uparrow t(x)\right.\right.$. $\left.\left.\} c \xi_{t} i^{\prime}\right)\right\rangle$ by blast
moreover from $\left\langle\left(x \geq\right.\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.\left.t)\right)\right)\right\rangle$
have (enat $x \geq$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)$ by auto
with 〈lfinite $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right\rangle$ have llength $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right) \neq \infty$
using llength-eq-infty-conv-lfinite by auto
with $\left\langle\left(x \geq\right.\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.\left.t)\right)\right)\right\rangle$
have the-enat(llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)-1 \leq x$ by auto
ultimately show ?thesis using cnf2bhv-bhv2cnf[of ctx] by simp
next
assume $\neg\left(x \geq\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)$
hence $x<$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)$ by simp
then obtain $n^{\prime}::$ nat where $x=\left\langle c \#_{n^{\prime}}\right.$ inf-llist $\left.t\right\rangle$ using $n A c t$-exists by blast
moreover from $\left\langle\right.$ enat $x<l l e n g t h ~\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right\rangle\left\langle\right.$ enat $x=\left\langle c \#_{\text {enat } n^{\prime}}\right.$ inf-llist $\left.\left.t\right\rangle\right\rangle$
have $\exists i \geq n^{\prime}$. $\left\{_{c} \xi_{t} i\right.$ using n Act-less-llength-active by force
then obtain i where $i \geq n^{\prime}$ and $\left\{c \xi_{t} i\right.$ and $\neg\left(\exists k \geq n^{\prime} . k<i \wedge \xi c \xi_{t} k\right)$
using nact-exists by blast
moreover have enat $i-1$ < llength (inf-llist t) by (simp add: one-enat-def)
ultimately have $x=\left\langle c \#_{i}\right.$ inf-llist $\left.t\right\rangle$ using one-enat-def $n A c t-n o t-a c t i v e-s a m e ~ b y ~ s i m p ~$
moreover have $\left\langle c \#_{i}\right.$ inf-llist $\left.t\right\rangle \neq \infty$ by simp
ultimately have $x=$ the-enat $\left(\left\langle c \#_{i}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)$ by fastforce
from $\left\langle x \geq\right.$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.\left.t\right\rangle\right)\right\rangle\left\langle x=\right.$ the-enat $\left(\left\langle c \#_{i}\right.\right.$ inf-llist $\left.\left.\left.t\right\rangle\right)\right\rangle$
have the-enat $\left(\left\langle c \#_{i}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right) \geq$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)$ by simp
with $\left\langle\xi_{c} \xi_{t}{ }_{i}\right\rangle$ have $i \geq\langle c \rightarrow t\rangle_{n}$ using active-geq-nxtAct by simp
moreover from $\left\langle x=\left\langle c \#_{i}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right\rangle\left\langle x<\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right\rangle$
have $\exists i^{\prime} . i \leq$ enat $i^{\prime} \wedge \xi_{c} \xi_{t} i^{\prime}$ using nAct-less-llength-active[of x cinf-llist $\left.t i\right]$ by simp
hence $\exists i^{\prime} \geq i$. $\left\{c \xi_{t} i^{\prime}\right.$ by simp
ultimately obtain $n^{\prime \prime}$ where eval ct $t^{\prime} n^{\prime \prime} \gamma$ and $n^{\prime \prime} \geq\langle c \Leftarrow t\rangle_{i}$ and $n^{\prime \prime} \leq\langle c \rightarrow t\rangle_{i}$ using assms(2) by blast
moreover have $\exists i^{\prime} \geq n^{\prime \prime} .\left\{c \xi_{t} i^{\prime}\right.$
using $\left\langle\left\{c \xi_{t} i^{\rangle}\left\langle n^{\prime \prime} \leq\langle c \rightarrow t\rangle_{i}\right\rangle\right.\right.$ less-or-eq-imp-le nxtAct-active by auto
ultimately have $\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left(\right.$ the-enat $\left(\left\langle c \#_{n^{\prime \prime}}\right.\right.$ inf-llist $\left.\left.\left.t\right\rangle\right)\right)$ using validCE-act[of $n^{\prime \prime} c t t^{\prime} \gamma$] by blast
moreover from $\left\langle n^{\prime} \geq\langle c \Leftarrow t\rangle_{i}\right\rangle$ and $\left\langle n^{\prime \prime} \leq\langle c \rightarrow t\rangle_{i}\right\rangle$
have the-enat $\left(\left\langle c \#_{n^{\prime \prime}}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)=$ the-enat $\left(\left\langle c \#_{i}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)$
using nAct-same by simp
hence the-enat $\left(\left\langle c \#_{n^{\prime \prime}}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)=x$
by (simp add: $\left\langle x=\right.$ the-enat $\left\langle c \#_{\text {enat }} i\right.$ inf-llist $\left.\left.\left.t\right\rangle\right\rangle\right)$
ultimately have $\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)($ the-enat $x)$ by simp
thus ?thesis by simp
qed
qed
qed
with $\nexists i \geq n$. $\left.\}_{c}\right\}_{t} i^{\rangle}$have eval $c t t^{\prime} n\left(\lambda t n . \forall n^{\prime} \geq n . \gamma t n^{\prime}\right)$
using validCI-act[of $\left.n c t \lambda t n . \forall n^{\prime} \geq n . \gamma t n^{\prime} t\right]$ by blast
thus ?thesis using glob-def by simp
qed

```
lemma globIN[intro]:
    fixes \(c::\) :id
        and \(t:: n a t \Rightarrow c n f\)
        and \(t^{\prime}:: n a t \Rightarrow{ }^{\prime} c m p\)
        and \(n:: n a t\)
    assumes \(\neg\left(\exists i \geq n\right.\). \(\left.\{c\}_{t} i\right)\)
        and \(\bigwedge n^{\prime} . n^{\prime} \geq n \Longrightarrow\) eval \(c t t^{\prime} n^{\prime} \gamma\)
    shows eval ct \(t^{\prime} n\left(\square_{b}(\gamma)\right)\)
proof cases
    assume \(\exists i\). \(\} c\}_{t} i\)
    from \(\left\langle\neg\left(\exists i \geq n\right.\right.\). \(\left.\left\{c \xi_{t} i\right)\right\rangle\) have lfinite \(\left(\pi_{c}(\right.\) inf-llist \(\left.t)\right)\) using proj-finite2 by simp
    then obtain \(z\) where \(\forall n^{\prime \prime}>z\). \(\neg\left\{c \xi_{t} n^{\prime \prime}\right.\) using proj-finite-bound by blast
    have \(\forall x:: n a t \geq{ }_{c} \downarrow t(n) . \gamma\left(\operatorname{lnth}\left(\pi_{c}\right.\right.\) inf-llist \(t @_{l}\) inf-llist \(\left.\left.t^{\prime}\right)\right) x\)
    proof
    fix \(x:: n a t\) show \(\left(x \geq c \downarrow_{t}(n)\right) \longrightarrow \gamma\left(\operatorname{lnth}\left(\pi_{c}\right.\right.\) inf-llist \(t @_{l}\) inf-llist \(\left.\left.t^{\prime}\right)\right) x\)
    proof
        assume \(x \geq_{c} \downarrow_{t}(n)\)
        moreover from \(\left\langle\neg\left(\exists i \geq n\right.\right.\). \(\left.\left.\xi_{c} \xi_{t} i\right)\right\rangle\) have \(\langle c \wedge t\rangle \leq n\)
            using \(\exists \exists i\). \(\left.\{c\}_{t} i\right\rangle\) lActive-less by auto
        ultimately have \(c \uparrow t(x) \geq n\) using \(p 2 c\)-mono-c2p by simp
        with assms have eval ct \(t^{\prime}(c \uparrow t(x)) \gamma\) by simp
        moreover have \(\neg\left(\exists i^{\prime} \geq_{c} \uparrow_{t}(x) .\left\{c \xi_{t} i^{\prime}\right)\right.\)
        proof -
            from 〈lfinite \(\left(\pi_{c}(\right.\) inf-llist \(\left.\left.\left.t)\right)\right\rangle\langle\exists i\}. c \xi_{t} i\right\rangle\)
                have \(c^{\uparrow}{ }_{t}\left(\right.\) the-enat \(\left(\right.\) llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.\left.\left.t)\right)\right)\right)=S u c(\langle c \wedge t\rangle)\)
                using bhv2cnf-lActive by blast
            moreover from \(\left\langle\neg\left(\exists i \geq n\right.\right.\). \(\left.\left.\xi_{c} \xi_{t} i\right)\right\rangle\) have \(n>\langle c \wedge t\rangle\)
                by (meson \(\left.\langle\exists i\}. c \xi_{t} i\right\rangle\) lActive-active leI le-eq-less-or-eq)
            hence \(n \geq\) Suc \((\langle c \wedge t\rangle)\) by simp
            with \(\langle n \geq S u c(\langle c \wedge t\rangle)\rangle\langle c \uparrow t(x) \geq n\rangle\) have \(c \uparrow t(x) \geq S u c(\langle c \wedge t\rangle)\) by simp
            hence \(c \uparrow t(x)>\langle c \wedge t\rangle\) by simp
            with \(\left\langle\forall n^{\prime \prime}>z\right.\). \(\neg\left\{c \xi_{t} n^{\prime \prime \prime}\right.\) show ?thesis using lActive-greater-active-all by simp
        qed
        ultimately have \(\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.\) inf-llist \(\left.t)\right) @_{l}\left(\right.\) inf-llist \(\left.\left.\left.t^{\prime}\right)\right)\right)\left(c \downarrow_{t}\left(c \uparrow_{t}(x)\right)\right)\)
            using validCE-cont[of \(\left.c t c \uparrow t(x) t^{\prime} \gamma\right]\) 〕 \(\exists i\). \(\xi^{〔} \xi_{t} i^{〉}\) by blast
        moreover have \(x \geq\) the-enat (llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.\left.t)\right)\right)-1\)
            using \(\langle c \downarrow t(n) \leq x\rangle\) cnf2bhv-def by auto
        ultimately show \(\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.\) inf-llist \(\left.t)\right) @_{l}\left(\right.\) inf-llist \(\left.\left.\left.t^{\prime}\right)\right)\right) x\)
            using cnf2bhv-bhv2cnf by simp
        qed
    qed
    with \(\langle\exists i\}. c \xi_{t} i^{〉}\left\langle\neg\left(\exists i \geq n\right.\right.\). \(\left.\left.\{c\}_{t} i\right)\right\rangle\) have eval ctt \(t^{\prime} n\left(\lambda t n . \forall n^{\prime} \geq n . \gamma t n^{\prime}\right)\)
        using validCI-cont[of ct \(n \lambda t n . \forall n^{\prime} \geq n\). \(\left.\gamma t n^{\prime} t^{\prime}\right]\) by simp
    thus ?thesis using glob-def by simp
next
    assume \(\left.\neg(\exists i\} c.\}_{t} i\right)\)
    with assms have \(\forall n^{\prime} \geq n . \gamma\left(\operatorname{lnth}\left(\pi_{c}\right.\right.\) inf-llist \(t @_{l}\) inf-llist \(\left.\left.t^{\prime}\right)\right) n^{\prime}\)
        using validCE-not-act by blast
```

with $\left.\left\langle\neg(\exists i\}. c \xi_{t} i\right)\right\rangle$ have eval $c t t^{\prime} n\left(\lambda t n . \forall n^{\prime} \geq n . \gamma t n^{\prime}\right)$
using validCI-not-act[where $\left.\gamma=\lambda t n . \forall n^{\prime} \geq n . \gamma t n^{\prime}\right]$ by blast
thus ?thesis using glob-def by simp
qed
lemma globEA[elim]:
fixes $c:: ' i d$
and $t:: n a t \Rightarrow c n f$
and $t^{\prime}:: n a t \Rightarrow{ }^{\prime} c m p$
and $n:: n a t$
and $n^{\prime}:: n a t$
assumes $\exists i \geq n$. $\{c\}_{t} i$
and eval ct $t t^{\prime} n\left(\square_{b}(\gamma)\right)$
and $n^{\prime} \geq\langle c \Leftarrow t\rangle_{n}$
shows eval ct $t^{\prime} n^{\prime} \gamma$
proof (cases)
assume $\exists i \geq n^{\prime} .\left\{c \xi_{t} i\right.$
with $\left\langle n^{\prime} \geq\langle c \Leftarrow t\rangle_{n^{\prime}}\right.$ have the-enat $\left(\left\langle c \#_{n^{\prime}}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right) \geq$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)$ using nAct-mono-lNact $\exists \exists i \geq n$. $\left.\} c \xi_{t} i\right\rangle$ by simp
moreover from <eval ct $\left.t^{\prime} n\left(\square_{b}(\gamma)\right)\right\rangle$ have eval ct $t^{\prime} n\left(\lambda t n . \forall n^{\prime} \geq n . \gamma t n n^{\prime}\right)$ using glob-def by simp
hence $\forall x \geq$ the-enat $\left\langle c \#_{\text {enat }} n^{\text {inf-llist } t\rangle . \gamma(l n t h ~}\left(\pi_{c}\right.\right.$ inf-llist $t @_{l}$ inf-llist $\left.\left.t^{\prime}\right)\right) x$ using validCE-act $\left\{\exists i \geq n\right.$. $\{c\}_{t} i$ by blast
ultimately have
$\gamma\left(\right.$ lnth $\left(\left(\pi_{c}(\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left(\right.$ the-enat $\left(\left\langle c \#_{n^{\prime}}\right.\right.$ inf-llist $\left.\left.\left.t\right\rangle\right)\right)$ by simp
with $\left\langle\exists i \geq n^{\prime}\right.$. $\left.\{c\}_{t}\right\rangle$ show ?thesis using validCI-act by blast
next
assume $\neg\left(\exists i \geq n^{\prime} .\{c\}_{t} i\right)$
from <eval ct $\left.t t^{\prime} n\left(\square_{b}(\gamma)\right)\right\rangle$ have eval $c t t^{\prime} n\left(\lambda t n\right.$. $\forall n^{\prime} \geq n$. $\left.\gamma t n^{\prime}\right)$ using glob-def by simp
hence $\forall x \geq$ the-enat $\langle c \#$ enat n inf-llist $t\rangle$. $\gamma\left(\ln\right.$ th $\left(\pi_{c}\right.$ inf-llist $t @_{l}$ inf-llist $\left.\left.t^{\prime}\right)\right) x$
using validCE-act $\left\{\exists i \geq n\right.$. $\left\langle c \xi_{t} i^{〉}\right.$ by blast
moreover have $c \downarrow_{t}\left(n^{\prime}\right) \geq$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)$
proof -
have $\left\langle c \#_{n}\right.$ inf-llist $\left.t\right\rangle \leq$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)$ using $n A c t-l e-p r o j$ by metis
moreover from $\left\langle\neg\left(\exists i \geq n^{\prime}\right.\right.$. $\left.\left\{c \xi_{t} i\right)\right\rangle$ have llength $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right) \neq \infty$
by (metis llength-eq-infty-conv-lfinite lnth-inf-llist proj-finite2)
ultimately have the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right) \leq$ the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)$ by simp
moreover from $\left.\left.\left.\langle\exists i \geq n \text {. }\}_{c}\right\}_{t} i\right\rangle\left\langle\neg\left(\exists i \geq n^{\prime}.\right\} c \xi_{t} i\right)\right\rangle$ have $\left.n^{\prime}\right\rangle\langle c \wedge t\rangle$
using lActive-active by (meson leI le-eq-less-or-eq)
hence $c \downarrow_{t}\left(n^{\prime}\right)>$ the-enat (llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)-1$
using cnfobhv-greater-llength by simp
ultimately show?thesis by simp
qed
ultimately have $\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left(c \downarrow_{t}\left(n^{\prime}\right)\right)$ by simp
with $\left\langle\exists i \geq n\right.$. $\left\{c \xi_{t} i\right\rangle \neg\left(\exists i \geq n^{\prime}\right.$. $\left.\left.\xi^{\prime} \xi_{t}{ }_{i}\right)\right\rangle$ show ?thesis using validCI-cont by blast qed
lemma globEANow:
fixes $c t t^{\prime} n i \gamma$

```
    assumes \(n \leq i\)
    and \(\xi c \xi_{t} i\)
    and eval c \(t t^{\prime} n\left(\square_{b} \gamma\right)\)
    shows eval ct \(t^{\prime} i \gamma\)
proof -
    from \(\left\langle\xi_{c} \xi_{t}{ }_{i}\right\rangle\langle n \leq i\rangle\) have \(\exists i \geq n\). \(\xi_{c} \xi_{t} i\) by auto
    moreover from \(\langle n \leq i\rangle\) have \(\langle c \Leftarrow t\rangle_{n} \leq i\) using dual-order.trans lNactLe by blast
    ultimately show ?thesis using globEA[of n ct t' \(\gamma i]\left\langle e v a l\right.\) c \(t t^{\prime} n\left(\square_{b} \gamma\right)\) 〉 by simp
qed
lemma globEN[elim]:
    fixes \(c::\) ' \(i d\)
        and \(t:: n a t \Rightarrow c n f\)
        and \(t^{\prime}:: n a t \Rightarrow{ }^{\prime} c m p\)
        and \(n:: n a t\)
        and \(n^{\prime}:: n a t\)
    assumes \(\neg\left(\exists i \geq n\right.\). \(\left.\{c\}_{t} i\right)\)
        and eval c \(t t^{\prime} n\left(\square_{b}(\gamma)\right)\)
        and \(n^{\prime} \geq n\)
    shows eval ct \(t^{\prime} n^{\prime} \gamma\)
proof cases
    assume \(\exists i\). \(\left.\}_{c}\right\}_{t} i\)
    moreover from 〈eval c \(\left.t t^{\prime} n\left(\square_{b}(\gamma)\right)\right\rangle\) have eval \(c t t^{\prime} n\left(\lambda t n . \forall n^{\prime} \geq n . \gamma t n n^{\prime}\right)\)
        using glob-def by simp
    ultimately have \(\forall x \geq c \downarrow t n\). \(\gamma\left(\right.\) lnth \(\left(\pi_{c}\right.\) inf-llist \(t @_{l}\) inf-llist \(\left.\left.t^{\prime}\right)\right) x\)
        using validCE-cont[of ctn \(\left.t^{\prime} \lambda t n . \forall n^{\prime} \geq n . \gamma t n\right]\left\langle\neg\left(\exists i \geq n\right.\right.\). \(\left.\left.\xi^{\prime} \xi_{t} i\right)\right\rangle\) by blast
    moreover from \(\left\langle n^{\prime} \geq n\right\rangle\) have \(c \downarrow_{t}\left(n^{\prime}\right) \geq c \downarrow_{t}(n)\) using cnf2bhv-mono by simp
    ultimately have \(\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.\) inf-llist \(\left.t)\right) @_{l}\left(\right.\) inf-llist \(\left.\left.\left.t^{\prime}\right)\right)\right)\left(c \downarrow_{t}\left(n^{\prime}\right)\right)\) by simp
    moreover from \(\left\langle\neg\left(\exists i \geq n\right.\right.\). \(\left.\left\{c \xi_{t} i\right)\right\rangle\left\langle n^{\prime} \geq n\right\rangle\) have \(\neg\left(\exists i \geq n^{\prime}\right.\). \(\left.\xi_{c} \xi_{t} i\right)\) by simp
    ultimately show ?thesis using validCI-cont \(\left.\langle\exists i\} c.\}_{t} i\right\rangle\) by blast
next
    assume \(\left.\neg(\exists i\} c.\}_{t} i\right)\)
    moreover from <eval ct \(\left.t^{\prime} n\left(\square_{b}(\gamma)\right)\right\rangle\) have eval ct \(t^{\prime} n\left(\lambda t n . \forall n^{\prime} \geq n . \gamma t n^{\prime}\right)\)
        using glob-def by simp
    ultimately have \(\forall n^{\prime} \geq n . \gamma\left(\operatorname{lnth}\left(\pi_{c}\right.\right.\) inf-llist \(t @_{l}\) inf-llist \(\left.\left.t^{\prime}\right)\right) n^{\prime}\)
        using \(\left.\left\langle\neg(\exists i\}. c \xi_{t} i\right)\right\rangle\) validCE-not-act \(\left[\right.\) where \(\left.\gamma=\lambda t n . \forall n^{\prime} \geq n . \gamma t n\right]\) by blast
    with \(\left.\left\langle\neg(\exists i\}. c \xi_{t} i\right)\right\rangle\left\langle n^{\prime} \geq n\right\rangle\) show ?thesis using validCI-not-act by blast
qed
```


D.20.5 Until Operator

definition until $::\left(\left(\right.\right.$ nat $\left.\Rightarrow{ }^{\prime} c m p\right) \Rightarrow$ nat \Rightarrow bool $) \Rightarrow\left(\left(n a t \Rightarrow{ }^{\prime} \mathrm{cmp}\right) \Rightarrow\right.$ nat \Rightarrow bool $)$
$\Rightarrow\left(\left(n a t \Rightarrow{ }^{\prime} \mathrm{cmp}\right) \Rightarrow\right.$ nat \Rightarrow bool $)\left(\right.$ infixl \mathfrak{U}_{b} 21)
where $\gamma^{\prime} \mathfrak{U}_{b} \gamma \equiv \lambda t n . \exists n^{\prime \prime} \geq n . \gamma t n^{\prime \prime} \wedge\left(\forall n^{\prime} \geq n . n^{\prime}<n^{\prime \prime} \longrightarrow \gamma^{\prime} t n^{\prime}\right)$
lemma untilIA[intro]:
fixes $c:: ' i d$
and $t:: n a t \Rightarrow c n f$
and $t^{\prime}:: n a t \Rightarrow{ }^{\prime} c m p$
and $n:: n a t$
and $n^{\prime}:: n a t$
assumes $\exists i \geq n$. $\left\{c \xi_{t} i\right.$
and $n^{\prime} \geq\langle c \Leftarrow t\rangle_{n}$
and $\llbracket \exists i \geq n^{\prime} . \xi_{c} \xi_{t}{ }_{i} \rrbracket \Longrightarrow \exists n^{\prime \prime} \geq\langle c \Leftarrow t\rangle_{n^{\prime}} . n^{\prime \prime} \leq\langle c \rightarrow t\rangle_{n^{\prime}} \wedge$ eval ct $t^{\prime} n^{\prime \prime} \gamma \wedge$
$\left(\forall n^{\prime \prime \prime} \geq\langle c \rightarrow t\rangle\right\rangle_{n} \cdot n^{\prime \prime \prime}<\langle c \Leftarrow t\rangle_{n^{\prime \prime}}$
$\longrightarrow\left(\exists n^{\prime \prime \prime \prime} \geq\langle c \Leftarrow t\rangle_{n^{\prime \prime \prime}} n^{\prime \prime \prime \prime} \leq\langle c \rightarrow t\rangle_{n^{\prime \prime \prime}} \wedge\right.$ eval ct $\left.\left.t^{\prime} n^{\prime \prime \prime \prime} \gamma^{\prime}\right)\right)$
and $\llbracket \neg\left(\exists i \geq n^{\prime}\right.$. $\left.\} c \xi_{t} i\right) \rrbracket \Longrightarrow$ eval $c t t^{\prime} n^{\prime} \gamma \wedge$
$\left(\forall n^{\prime \prime} \geq\langle c \rightarrow t\rangle_{n} . n^{\prime \prime}<n^{\prime}\right.$
$\longrightarrow\left(\left(\exists i \geq n^{\prime \prime} .\left\{c \xi_{t} i\right) \wedge\left(\exists n^{\prime \prime \prime} \geq\langle c \Leftarrow t\rangle_{n^{\prime \prime}} . n^{\prime \prime \prime} \leq\langle c \rightarrow t\rangle_{n^{\prime \prime}} \wedge\right.\right.\right.$ eval $\left.\left.c t t^{\prime} n^{\prime \prime \prime} \gamma^{\prime}\right)\right) \vee$ $\left(\neg\left(\exists i \geq n^{\prime \prime}.\right\} c \xi_{t} i\right) \wedge$ eval $\left.\left.c t t^{\prime} n^{\prime \prime} \gamma^{\prime}\right)\right)$
shows eval ct $t^{\prime} n\left(\gamma^{\prime} \mathfrak{U}_{b} \gamma\right)$
proof cases
assume $\exists i^{\prime} \geq n^{\prime} .\left\{c \xi_{t} i^{\prime}\right.$
with $\operatorname{assms}(3)$ obtain $n^{\prime \prime}$ where $n^{\prime \prime} \geq\langle c \Leftarrow t\rangle_{n^{\prime}}$ and $n^{\prime \prime} \leq\langle c \rightarrow t\rangle_{n^{\prime}}$ and eval $c t t^{\prime} n^{\prime \prime} \gamma$ and
a1: $\forall n^{\prime \prime \prime} \geq\langle c \rightarrow t\rangle_{n} . n^{\prime \prime \prime}<\langle c \Leftarrow t\rangle_{n^{\prime \prime}}$
$\longrightarrow\left(\exists n^{\prime \prime \prime \prime} \geq\langle c \Leftarrow t\rangle_{n^{\prime \prime \prime}} . n^{\prime \prime \prime \prime} \leq\langle c \rightarrow t\rangle_{n^{\prime \prime \prime}} \wedge\right.$ eval $\left.c t t^{\prime} n^{\prime \prime \prime \prime} \gamma^{\prime}\right)$ by blast
hence $\exists i^{\prime} \geq n^{\prime \prime}$. $\left\{c \xi_{t} i^{\prime}\right.$ using $\left\langle\exists i^{\prime} \geq n^{\prime}\right.$. $\left\{c \xi_{t} i^{\prime}\right.$ nxtActI by blast
with «eval $\left.c t t^{\prime} n^{\prime \prime} \gamma\right\rangle$ have
$\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left(\right.$ the-enat $\left(\left\langle c \#_{n^{\prime \prime}}\right.\right.$ inf-llist $\left.\left.\left.t\right\rangle\right)\right)$
using validCE-act by blast
moreover have the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right) \leq$ the-enat $\left(\left\langle c \#_{n^{\prime \prime}}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)$
proof -
from $\left\langle\langle c \Leftarrow t\rangle_{n} \leq n^{\prime}\right\rangle$ have $\left\langle c \#_{n}\right.$ inf-llist $\left.t\right\rangle \leq\left\langle c \#_{n^{\prime}}\right.$ inf-llist $\left.t\right\rangle$
using nAct-mono-lNact by simp
moreover from $\left\langle\langle c \Leftarrow t\rangle_{n^{\prime}} \leq n^{\prime \prime}\right\rangle$ have $\left\langle c \#_{n^{\prime}}\right.$ inf-llist $\left.t\right\rangle \leq\left\langle c \#_{n^{\prime \prime}}\right.$ inf-llist $\left.t\right\rangle$
using nAct-mono-lNact by simp
ultimately have $\left\langle c \#_{n}\right.$ inf-llist $\left.t\right\rangle \leq\left\langle c \#_{n^{\prime \prime}}\right.$ inf-llist $\left.t\right\rangle$ by simp
moreover have $\left\langle c \#_{n^{\prime}}\right.$ inf-llist $\left.t\right\rangle \neq \infty$ by simp
ultimately show?thesis by simp
qed
moreover have $\exists i^{\prime} \geq n .\left\{c \xi_{t} i^{\prime}\right.$
proof -
from $\measuredangle \exists i^{\prime} \geq n^{\prime} .\left\{c \xi_{t} i^{\prime}\right.$ obtain i^{\prime} where $i^{\prime} \geq n^{\prime}$ and $\left\{c \xi_{t} i^{\prime}\right.$ by blast with $\left\langle n^{\prime} \geq\langle c \Leftarrow t\rangle n_{n}\right\rangle$ have $i^{\prime} \geq n$ using lNactGe le-trans by blast with $\left\{\left\{c \xi_{t} i^{\prime}\right.\right.$ show ?thesis by blast
qed
moreover have $\forall n^{\prime} \geq$ the-enat $\left\langle c \#_{n i n f-l l i s t ~ t ~}\right\rangle . n^{\prime}<\left(\right.$ the-enat $\left\langle c \#_{\text {enat } n^{\prime \prime}}\right.$ inf-llist $\left.\left.t\right\rangle\right)$ $\longrightarrow \gamma^{\prime}\left(\right.$ lnth $\left(\pi_{c}\right.$ inf-llist $t @_{l}$ inf-llist $\left.\left.t^{\prime}\right)\right) n^{\prime}$
proof
fix $x::$ nat show $x \geq$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)$
$\longrightarrow x<\left(\right.$ the-enat $\left\langle c \#_{\text {enat }} n^{\prime \prime}\right.$ inff-llist $\left.\left.t\right\rangle\right) \longrightarrow \gamma^{\prime}\left(\right.$ lnth $\left(\pi_{c}\right.$ inf-llist $t @_{l}$ inf-llist $\left.\left.t^{\prime}\right)\right) x$ proof (rule HOL.impI[OF HOL.impI])
assume $x \geq$ the-enat ($\left\langle c \#_{n}\right.$ inf-llist $\left.t\right\rangle$) and $x<\left(\right.$ the-enat $\left\langle c \#_{\text {enat } n^{\prime \prime}}\right.$ inf-llist $\left.\left.t\right\rangle\right)$ moreover have the-enat $\left(\left\langle c \#_{\text {enat }} n^{\prime \prime}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)=\left\langle c \#_{\text {enat }} n^{\prime \prime}\right.$ inf-llist $\left.t\right\rangle$ by simp ultimately have $x<$ llength ($\pi_{c}($ inf-llist $t)$) using $n A c t-l e-p r o j[o f ~ c ~ n " ~ i n f-l l i s t ~ t] ~$
by (metis enat-ord-simps(2) less-le-trans)
hence $x<$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)$ by simp
then obtain $n^{\prime}::$ nat where $x=\left\langle c \#_{n^{\prime}}\right.$ inf-llist $\left.t\right\rangle$ using $n A c t$-exists by blast
moreover from <enat $x<$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right\rangle\left\langle e n a t x=\left\langle c \#_{\text {enat } n^{\prime}}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right\rangle$
have $\exists i \geq n^{\prime}$. $\left\{_{c} \xi_{t} i\right.$ using n Act-less-llength-active by force
then obtain i where $i \geq n^{\prime}$ and $\left\{c \xi_{t} i\right.$ and $\neg\left(\exists k \geq n^{\prime} . k<i \wedge\left\{c \xi_{t} k\right)\right.$
using nact-exists by blast
moreover have enat $i-1<l l e n g t h(i n f-l l i s t ~ t)$ by (simp add: one-enat-def)
ultimately have $x=\left\langle c \#_{i}\right.$ inf-llist $\left.t\right\rangle$ using one-enat-def nAct-not-active-same by simp
moreover have $\left\langle c \#_{i}\right.$ inf-llist $\left.t\right\rangle \neq \infty$ by simp
ultimately have $x=$ the-enat $\left(\left\langle c \#_{i}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)$ by fastforce
from $\left\langle x \geq\right.$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.\left.t\right\rangle\right)\right\rangle\left\langle x=\right.$ the-enat $\left(\left\langle c \#_{i}\right.\right.$ inf-llist $\left.\left.\left.t\right\rangle\right)\right\rangle$
have the-enat $\left(\left\langle c \#_{i}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right) \geq$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)$ by simp
with $\left\langle\xi c \xi_{t} i\right\rangle$ have $i \geq\langle c \rightarrow t\rangle_{n}$ using active-geq-nxtAct by simp
moreover have $i<\langle c \Leftarrow t\rangle_{n^{\prime \prime}}$
proof -
have the-enat $\left\langle c \#_{\text {enat } n^{\prime \prime}}\right.$ inf-llist $\left.t\right\rangle=\left\langle c \#_{\text {enat } n^{\prime \prime}}\right.$ inf-llist $\left.t\right\rangle$ by simp
with $\left\langle x<\left(\right.\right.$ the-enat $\left\langle c \#_{\text {enat } n^{\prime \prime}}\right.$ inf-llist $\left.\left.\left.t\right\rangle\right)\right\rangle$ and $\left\langle x=\left\langle c \#_{i}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right\rangle$ have $\left\langle c \#_{i}\right.$ inf-llist $\left.t\right\rangle<\left\langle c \#_{n^{\prime \prime}}\right.$ inf-llist $\left.t\right\rangle$ by (metis enat-ord-simps(2))
hence $i<n^{\prime \prime}$ using nAct-strict-mono-back[of ciinf-llist $\left.t n^{\prime}\right]$ by auto
with $\left\langle\xi c \xi_{t} i\right\rangle$ show ?thesis using lNact-notActive leI by blast
qed
ultimately obtain $n^{\prime \prime}$ where eval ct $t^{\prime} n^{\prime \prime} \gamma^{\prime}$ and $n^{\prime \prime} \geq\langle c \Leftarrow t\rangle_{i}$ and $n^{\prime \prime} \leq\langle c \rightarrow t\rangle_{i}$ using a1 by auto
moreover have $\exists i^{\prime} \geq n^{\prime \prime} .\left\{c \xi_{t} i^{\prime}\right.$ using $\left\langle\{c\}_{t}\right\rangle\left\langle n^{\prime \prime} \leq\langle c \rightarrow t\rangle_{i}\right\rangle$ less-or-eq-imp-le nxtAct-active by auto
ultimately have
$\gamma^{\prime}\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left(\right.$ the-enat $\left(\left\langle c \#_{n^{\prime \prime}}\right.\right.$ inf-llist $\left.\left.\left.t\right\rangle\right)\right)$
using validCE-act[of $\left.n^{\prime \prime} c t t^{\prime} \gamma^{\prime}\right]$ by blast
moreover from $\left\langle n^{\prime \prime} \geq\langle c \Leftarrow t\rangle_{i}\right\rangle$ and $\left\langle n^{\prime \prime} \leq\langle c \rightarrow t\rangle_{i}\right\rangle$
have the-enat $\left(\left\langle c \#_{n^{\prime \prime}}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)=$ the-enat ($\left\langle c \#_{i}\right.$ inf-llist $\left.t\right\rangle$) using nAct-same by simp
hence the-enat $\left(\left\langle c \#_{n^{\prime \prime}}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)=x$
by (simp add: $\left\langle x=\right.$ the-enat $\left\langle c \#_{\text {enat }} i\right.$ inf-llist $\left.\left.\left.t\right\rangle\right\rangle\right)$
ultimately show $\gamma^{\prime}\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right) x$ by simp
qed
qed
ultimately have eval ct t'n($\left.\lambda t n . \exists n^{\prime \prime} \geq n . \gamma t n^{\prime \prime} \wedge\left(\forall n^{\prime} \geq n . n^{\prime}<n^{\prime \prime} \longrightarrow \gamma^{\prime} t n^{\prime}\right)\right)$
using validCI-act[where $\left.\gamma=\lambda t n . \exists n^{\prime \prime} \geq n . \gamma t n^{\prime \prime} \wedge\left(\forall n^{\prime} \geq n . n^{\prime}<n^{\prime \prime} \longrightarrow \gamma^{\prime} t n^{\prime}\right)\right]$ by blast
thus ?thesis using until-def by simp
next
assume $\neg\left(\exists i^{\prime} \geq n^{\prime} .\left\{c \xi_{t} i^{\prime}\right)\right.$
with $\operatorname{assms}(4)$ have eval $c t t^{\prime} n^{\prime} \gamma$ and $a 2: \forall n^{\prime \prime} \geq\langle c \rightarrow t\rangle_{n} . n^{\prime \prime}<n^{\prime}$ $\longrightarrow\left(\left(\exists i \geq n^{\prime \prime} .\left\{c \xi_{t} i\right) \wedge\left(\exists n^{\prime \prime \prime} \geq\langle c \Leftarrow t\rangle_{n^{\prime \prime}} . n^{\prime \prime \prime} \leq\langle c \rightarrow t\rangle_{n^{\prime \prime}} \wedge\right.\right.\right.$ eval $\left.\left.c t t^{\prime} n^{\prime \prime \prime} \gamma^{\prime}\right)\right) \vee$ $\left(\neg\left(\exists i \geq n^{\prime \prime} .\{c\}_{t} i\right) \wedge\right.$ eval $\left.c t t^{\prime} n^{\prime \prime} \gamma^{\prime}\right)$ by auto
with $\left\langle\neg\left(\exists i^{\prime} \geq n^{\prime} .\left\{c \xi_{t} i^{\prime}\right)\right\rangle\left\langle\text { eval } c t t^{\prime} n^{\prime} \gamma\right\rangle\langle\exists i \geq n \text {. }\}_{c}\right\}_{t} i^{\rangle}$have $\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left(c \downarrow_{t}\left(n^{\prime}\right)\right)$ using validCE-cont by blast
moreover have $c \downarrow_{t}\left(n^{\prime}\right) \geq$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)$
proof -
from $\left\langle\left(\exists i \geq n .\left\{c \xi_{t} i\right)\right\rangle\left\langle\neg\left(\exists i^{\prime} \geq n^{\prime} .\left\{c \xi_{t} i^{\prime}\right)\right\rangle\right.\right.$ have $n^{\prime} \geq\langle c \wedge t\rangle$ using lActive-less by auto hence $c \downarrow_{t}\left(n^{\prime}\right) \geq$ the-enat (llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)-1$ using cnfobhv-ge-llength by simp moreover have the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)-1 \geq$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)$

```
proof -
    from \({ } \exists i \geq n\). \(\}_{c} \xi_{t} i_{i}\) have llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.t)\right) \geq e S u c\left(\left\langle c \#_{n}\right.\right.\) inf-llist \(\left.\left.t\right\rangle\right)\)
        using nAct-llength-proj by simp
    moreover from \(\left\langle\neg\left(\exists i^{\prime} \geq n^{\prime} .\left\{c \xi_{t}{ }^{\prime}\right)\right\rangle\right.\) have lfinite \(\left(\pi_{c}(\right.\) inf-llist \(\left.t)\right)\)
        using proj-finite2 [ of inf-llist t] by simp
    hence llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.t)\right) \neq \infty\) using llength-eq-infty-conv-lfinite by auto
    ultimately have the-enat (llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.\left.t)\right)\right) \geq\) the-enat \((e S u c(\langle c \neq n\) inf-llist \(t\rangle))\)
        by \(\operatorname{simp}\)
    moreover have \(\langle c \# n\) inf-llist \(t\rangle \neq \infty\) by simp
    ultimately have the-enat \(\left(\right.\) llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.\left.t)\right)\right) \geq\) Suc (the-enat \(\left(\left\langle c \#_{n}\right.\right.\) inf-llist \(\left.\left.\left.t\right\rangle\right)\right)\)
        using the-enat-eSuc by simp
    thus ?thesis by simp
    qed
    ultimately show ?thesis by simp
qed
moreover have \(\forall x \geq\) the-enat \(\left\langle c \#_{n}\right.\) inf-llist \(\left.t\right\rangle . x<\left(c \downarrow_{t}\left(n^{\prime}\right)\right)\)
\(\longrightarrow \gamma^{\prime}\left(\right.\) lnth \(\left(\pi_{c}\right.\) inf-llist \(t @_{l}\) inf-llist \(\left.\left.t^{\prime}\right)\right) x\)
proof
    fix \(x:\) :nat show
        \(x \geq\) the-enat \(\left\langle c \#{ }_{n}\right.\) inf-llist \(\left.t\right\rangle \longrightarrow x<\left(c \downarrow t\left(n^{\prime}\right)\right) \longrightarrow \gamma^{\prime}\left(\operatorname{lnth}\left(\pi_{c}\right.\right.\) inf-llist \(t @_{l}\) inf-llist \(\left.\left.t^{\prime}\right)\right) x\)
proof (rule HOL.impI[OF HOL.impI])
    assume \(x \geq\) the-enat \(\left\langle c \#_{n}\right.\) inf-llist \(\left.t\right\rangle\) and \(x<\left(c \downarrow_{t}\left(n^{\prime}\right)\right)\)
    show \(\gamma^{\prime}\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.\) inf-llist \(\left.t)\right) @_{l}\left(\right.\) inf-llist \(\left.\left.\left.t^{\prime}\right)\right)\right) x\)
    proof (cases)
    assume \(\left(x \geq\right.\) llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.\left.t)\right)\right)\)
        hence lfinite \(\left(\pi_{c}(\right.\) inf-llist \(\left.t)\right)\)
            using llength-geq-enat-lfinite \(D\left[\right.\) of \(\pi_{c}\) (inf-llist t) \(x\) ] by simp
        then obtain \(z\) where \(\forall n^{\prime \prime}>z\). \(\neg\left\{c \xi_{t} n^{\prime \prime}\right.\) using proj-finite-bound by blast
        moreover have \(\left\{c \xi_{t}\langle c \rightarrow t\rangle n\right.\) by (simp add: \(\left\langle\exists i \geq n\right.\). \(\left\{c \xi_{t} i^{\rangle}{ }^{n x t A c t I)}\right.\)
        ultimately have \(\langle c \wedge t\rangle \geq\langle c \rightarrow t\rangle_{n}\) using lActive-greatest \(\left[\right.\) of \(\left.c t\langle c \rightarrow t\rangle_{n}\right]\) by blast
        moreover have \(c \uparrow t(x) \geq\langle c \wedge t\rangle\) by simp
        ultimately have \(c \uparrow_{t}(x) \geq\langle c \rightarrow t\rangle_{n}\) by arith
        moreover have \(\neg\left(\exists i^{\prime} \geq_{c} \uparrow t(x) .\left\{c \xi_{t} i^{\prime}\right)\right.\)
        proof -
            from 〈lfinite \(\left(\pi_{c}(\right.\) inf-llist \(\left.\left.t)\right)\right\rangle\left\langle\exists i \geq n\right.\). \(\left.\xi_{c} \xi_{t} i\right\rangle\)
                have \(c \uparrow t\left(\right.\) the-enat \(\left(\right.\) llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.\left.\left.t)\right)\right)\right)=S u c(\langle c \wedge t\rangle)\)
                using bhv2cnf-lActive by blast
            moreover from \(\left\langle\left(x \geq\right.\right.\) llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.\left.\left.t)\right)\right)\right\rangle\)
                have \(x \geq\) the-enat(llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.\left.t)\right)\right)\)
                using the-enat-mono by fastforce
            hence \({ }_{c} \uparrow(t) \geq{ }_{c} \uparrow t\left(\right.\) the-enat \(\left(\right.\) llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.\left.\left.t)\right)\right)\right)\)
                using bhv2cnf-mono[of the-enat (llength \(\left(\pi_{c}(\right.\) inf-llist \(\left.\left.\left.t)\right)\right) x\right]\) by simp
            ultimately have \(c \uparrow t(x) \geq\) Suc \((\langle c \wedge t\rangle)\) by simp
            hence \(c \uparrow t(x)>\langle c \wedge t\rangle\) by simp
            with \(\left\langle\forall n^{\prime \prime}>z\right.\). \(\neg\left\{c \xi_{t} n^{\prime \prime \prime}\right.\) show ?thesis using lActive-greater-active-all by simp
        qed
        moreover have \({ }_{c} \uparrow t x<n^{\prime}\)
        proof -
            from 〈lfinite \(\left(\pi_{c}(\right.\) inf-llist \(\left.\left.t)\right)\right\rangle\)
```

have llength $\left(\pi_{c}\right.$ inf－llist $\left.t\right)=$ the－enat $\left(\right.$ llength $\left(\pi_{c}\right.$ inf－llist $\left.\left.t\right)\right)$
by（simp add：enat－the－enat llength－eq－infty－conv－lfinite）
with $\left\langle x \geq\right.$ llength $\left(\pi_{c}(\right.$ inf－llist $\left.\left.t)\right)\right\rangle$ have $x \geq$ the－enat（llength $\left(\pi_{c}\right.$ inf－llist $\left.\left.t\right)\right)$
using enat－ord－simps（1）by fastforce
moreover from $\left\lfloor\exists i \geq n\right.$ ．$\{c\}_{t} i^{\rangle}$have llength $\left(\pi_{c}\right.$ inf－llist $\left.t\right) \geq 1$ using proj－one by force
ultimately have the－enat（llength（ π_{c} inf－llist $\left.t\right)$ ）$-1 \leq x$ by simp
with $\left\langle x<\left(c \downarrow_{t}\left(n^{\prime}\right)\right)\right\rangle$ show ？thesis using c2p－mono－p2c－strict by simp
qed
ultimately have eval $c t t^{\prime}(c \uparrow t(x)) \gamma^{\prime}$ using a2 by blast
hence $\gamma^{\prime}\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf－llist $\left.t)\right) @_{l}\left(\right.$ inf－llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left(c \downarrow_{t}\left(c{ }_{c}(x)\right)\right)$
using validCE－cont［of $\left.c t{ }_{c} \uparrow_{t}(x) t^{\prime} \gamma^{\eta}\right] \exists i \geq n$ ．$\left\{c \xi_{t} i^{〉}\left\langle\neg\left(\exists i^{\prime} \geq c \uparrow_{t}(x) .\left\{c \xi_{t} i^{\prime}\right)\right\rangle\right.\right.$ by blast
moreover from $\left\langle\left(x \geq\right.\right.$ llength $\left(\pi_{c}(\right.$ inf－llist $\left.\left.\left.t)\right)\right)\right\rangle$
have（enat $x \geq$ llength $\left(\pi_{c}(\right.$ inf－llist $\left.t)\right)$ ）by auto
with 〈lfinite $\left(\pi_{c}(\right.$ inf－llist $\left.t)\right)$ 〉 have llength $\left(\pi_{c}(\right.$ inf－llist $\left.t)\right) \neq \infty$
using llength－eq－infty－conv－lfinite by auto
with $\left\langle\left(x \geq\right.\right.$ llength $\left(\pi_{c}(\right.$ inf－llist $\left.\left.\left.t)\right)\right)\right\rangle$
have the－enat（llength $\left(\pi_{c}(\right.$ inf－llist $\left.\left.t)\right)\right)-1 \leq x$ by auto
ultimately show ？thesis using cnfəbhv－bhv2cnf［of cta］by simp
next
assume $\neg\left(x \geq\right.$ llength $\left(\pi_{c}(\right.$ inf－llist $\left.\left.t)\right)\right)$
hence $x<$ llength $\left(\pi_{c}\right.$（inf－llist $\left.t\right)$ ）by simp
then obtain $n^{\prime \prime}::$ nat where $x=\left\langle c \#_{n^{\prime \prime}}\right.$ inf－llist $\left.t\right\rangle$ using n Act－exists by blast
moreover from＜enat $x<$ llength $\left(\pi_{c}(\right.$ inf－llist $\left.\left.t)\right)\right\rangle\left\langle\right.$ enat $x=\left\langle c \#_{\text {enat }} n^{\prime \prime}\right.$ inf－llist $\left.\left.t\right\rangle\right\rangle$ have $\exists i \geq n^{\prime \prime}$ ．$\xi_{c} \xi_{t} i$ using n Act－less－llength－active by force
then obtain i where $i \geq n^{\prime \prime}$ and $\xi c \xi_{t} i$ and $\neg\left(\exists k \geq n^{\prime \prime} . k<i \wedge \xi c \xi_{t} k\right)$
using nact－exists by blast
moreover have enat $i-1<$ llength（inf－llist t ）by（simp add：one－enat－def）
ultimately have $x=\left\langle c \#_{i}\right.$ inf－llist $\left.t\right\rangle$ using one－enat－def $n A c t$－not－active－same by simp
moreover have $\left\langle c \#_{i}\right.$ inf－llist $\left.t\right\rangle \neq \infty$ by simp
ultimately have $x=$ the－enat（ $\left\langle c \#_{i}\right.$ inf－llist $\left.t\right\rangle$ ）by fastforce
from $\left\langle x \geq\right.$ the－enat $\left(\left\langle c \#_{n}\right.\right.$ inf－llist $\left.\left.\left.t\right\rangle\right)\right\rangle\left\langle x=\right.$ the－enat $\left(\left\langle c \#_{i}\right.\right.$ inf－llist $\left.\left.\left.t\right\rangle\right)\right\rangle$
have the－enat $\left(\left\langle c \#_{i}\right.\right.$ inf－llist $\left.\left.t\right\rangle\right) \geq$ the－enat $\left(\left\langle c \#_{n}\right.\right.$ inf－llist $\left.\left.t\right\rangle\right)$ by simp
with $\left\langle\left\{c \xi_{t}{ }_{i}\right\rangle\right.$ have $i \geq\langle c \rightarrow t\rangle_{n}$ using active－geq－nxtAct by simp
moreover from $\left\langle x=\left\langle c \#_{i}\right.\right.$ inf－llist $\left.t\right\rangle\left\langle x<\right.$ llength $\left(\pi_{c}(\right.$ inf－llist $\left.\left.t)\right)\right\rangle$
have $\exists i^{\prime} . i \leq$ enat $i^{\prime} \wedge \xi c \xi_{t} i^{\prime}$ using nAct－less－llength－active［of x c inf－llist $t i$ ］by simp
hence $\exists i^{\prime} \geq i$ ．$\left\{c \xi_{t} i^{\prime}\right.$ by simp
moreover have $i<n^{\prime}$
proof－
from $\left\langle\exists i \geq n .\{c\}_{t} i^{\rangle}\left\langle\neg\left(\exists i^{\prime} \geq n^{\prime} .\left\{c \xi_{t} i^{\prime}\right)\right\rangle\right.\right.$ have $n^{\prime} \geq\langle c \wedge t\rangle$ using lActive－less by auto
hence $c \downarrow_{t}\left(n^{\prime}\right) \geq$ the－enat（llength $\left(\pi_{c}(\right.$ inf－llist $\left.t)\right)$ ）－ 1 using cnf2bhv－ge－llength by simp
with $\left\langle x<\right.$ llength $\left(\pi_{c}(\right.$ inf－llist $\left.\left.t)\right)\right\rangle$ show ？thesis
using $\left\langle\neg\left(\exists i^{\prime} \geq n^{\prime} .\left\{c \xi_{t} i^{\prime}\right)\right\rangle\left\langle\left\{c \xi_{t} i^{\rangle}\right.\right.\right.$le－neq－implies－less nat－le－linear by blast
qed
ultimately obtain $n^{\prime \prime \prime}$ where eval $c t t^{\prime} n^{\prime \prime \prime} \gamma^{\prime}$ and $n^{\prime \prime \prime} \geq\langle c \Leftarrow t\rangle_{i}$ and $n^{\prime \prime \prime} \leq\langle c \rightarrow t\rangle_{i}$ using a2 by blast
moreover from $\left\langle\xi c \xi_{t} i\right\rangle$ have $\left\{c \xi_{t}\langle c \rightarrow t\rangle_{i}\right.$ using nxtActI by auto
with $\left\langle n^{\prime \prime \prime} \leq\langle c \rightarrow t\rangle_{i^{\prime}}\right.$ have $\exists i^{\prime} \geq n^{\prime \prime \prime} .\{c\}_{t} i^{\prime}$ using less－or－eq－imp－le by blast
ultimately have
$\gamma^{\prime}\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf－llist $\left.t)\right) @_{l}\left(\right.$ inf－llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left(\right.$ the－enat $\left(\left\langle c \#_{n^{\prime \prime \prime}}\right.\right.$ inf－llist $\left.\left.\left.t\right\rangle\right)\right)$

```
            using validCE-act[of n't\prime c t t' \gamma '] by blast
        moreover from <n'\prime\prime}\geq\langlec\Leftarrow\Leftarrowt\mp@subsup{\rangle}{i}{}\mp@subsup{\rangle}{}{\prime}\mathrm{ and }\langle\mp@subsup{n}{}{\prime\prime\prime}\leq\langlec->t\mp@subsup{\rangle}{i}{}\mp@subsup{\rangle}{}{\prime
            have the-enat ( }\langlec\mp@subsup{#}{\mp@subsup{n}{}{\prime\prime\prime}}{\prime\prime}\mathrm{ inf-llist t }\rangle)=\mathrm{ the-enat ( }\langlec\mp@subsup{|}{i}{}\mathrm{ inf-llist t t)
            using nAct-same by simp
        hence the-enat ( }\langlec\mp@subsup{#}{\mp@subsup{n}{}{\prime\prime\prime}}{\prime\mathrm{ inf-llist t }\rangle)}=
            by (simp add: <x = the-enat \langlec # enat inf-llist t \rangle>)
        ultimately have }\mp@subsup{\gamma}{}{\prime}(\operatorname{lnth}((\mp@subsup{\pi}{c}{}(\mathrm{ inf-llist t ) ) @ }ll(\mathrm{ inf-llist t}\mp@subsup{t}{}{\prime})))(\mathrm{ the-enat x) by simp
        thus ?thesis by simp
        qed
    qed
qed
ultimately have eval ctt'n(\lambdatn.\exists\mp@subsup{n}{}{\prime\prime}\geqn.\gammat n'^^(\foralln'\geqn. n'< n'l}\longrightarrow\mp@subsup{n}{}{\prime
    using <\existsi\geqn.{c} 施i
    validCI-act[of n c t \lambdatn.\exists\mp@subsup{n}{}{\prime\prime}\geqn.\gammat n'\prime}\wedge(\forall\mp@subsup{n}{}{\prime}\geqn.\mp@subsup{n}{}{\prime}<\mp@subsup{n}{}{\prime\prime}\longrightarrow\mp@subsup{\gamma}{}{\prime}t\mp@subsup{n}{}{\prime})\mp@subsup{t}{}{\prime}
    by blast
    thus ?thesis using until-def by simp
qed
lemma untilIN[intro]:
    fixes c::'id
        and t::nat }=>cn
        and t'::nat }=>\mp@subsup{}{}{\prime}cm
        and n::nat
        and n'::nat
    assumes }\neg(\existsi\geqn.{c\mp@subsup{\xi}{t}{}i
    and }\mp@subsup{n}{}{\prime}\geq
    and eval ct t' n'\gamma
    and a1: \bigwedgen''.\llbracketn\leqn'\prime; n'< n\rrbracket\Longrightarrow eval c t t' n' }\mp@subsup{n}{}{\prime\prime
    shows eval c t t'n ( }\mp@subsup{\gamma}{}{\prime}\mp@subsup{\mathfrak{U}}{b}{}\gamma
proof cases
    assume }\existsi.{c\mp@subsup{}}{t}{}
    moreover from assms(1) assms(2) have }\neg(\exists\mp@subsup{i}{}{\prime}\geq\mp@subsup{n}{}{\prime}.{c\mp@subsup{}}{t}{\prime}\mp@subsup{i}{}{\prime})\mathrm{ by simp
    ultimately have }\gamma(\mathrm{ lnth }((\mp@subsup{\pi}{c}{}(\mathrm{ inf-llist t)) @ }\mp@subsup{l}{l}{}(\mathrm{ inf-llist t'}\mp@subsup{t}{}{\prime})))(c\mp@subsup{\downarrow}{t}{}(\mp@subsup{n}{}{\prime})
    using validCE-cont[of ct n' t' \gamma] <eval c t t ' }\mp@subsup{n}{}{\prime}\gamma\rangle\mathrm{ by blast
```



```
    moreover have }\forallx::nat\geqc\mp@subsup{\downarrow}{t}{}(n).x<c\downarrowt(n')\longrightarrow\mp@subsup{\gamma}{}{\prime}(lnth ((\mp@subsup{\pi}{c}{}(\mathrm{ inf-llist t)) @ }\mp@subsup{l}{l}{(\mathrm{ inf-llist t}\mp@subsup{t}{}{\prime})))x
    proof (rule HOL.allI[OF HOL.impI[OF HOL.impI]])
    fix }x\mathrm{ assume }x\geqc\downarrowtt(n) and x<c&\downarrowt(n'
    from }\neg\neg(\existsi\geqn.{c\mp@subsup{}}{t}{}i)\rangle\mathrm{ have }\langlec\wedget\rangle\leqn\mathrm{ using }{\existsi.{c\mp@subsup{}}{t}{}\mp@subsup{i}{}{\prime}>lActive-less by aut
    with <x\geqc\downarrowt (n)\rangle have c}\mp@subsup{c}{}{\uparrow}t(x)\geqn\mathrm{ using p2c-mono-c2p by simp
    moreover from }\langle\langlec\wedget\rangle\leqn\rangle\langlec\downarrowt(n)\leqx\rangle have x\geq the-enat (llength ( (\picc(inf-llist t))) - 1
        using cnf2bhv-ge-llength dual-order.trans by blast
    with \langlex<c\mp@subsup{\nu}{t}{}(\mp@subsup{n}{}{\prime})\rangle}\mathrm{ have }c\mp@subsup{\uparrow}{t}{\prime}(x)<\mp@subsup{n}{}{\prime}\mathrm{ using c2p-mono-p2c-strict[of ct x n } by simp
    moreover from }\langle\neg(\existsi\geqn.{c\mp@subsup{}}{t}{}i)\rangle\langlec\uparrowtt(x)\geqn\rangle\mathrm{ have }\neg(\exists\mp@subsup{i}{}{\prime\prime}\mp@subsup{\geq}{c}{}\uparrow\mp@subsup{}{t}{}(x).{c\mp@subsup{}}{t}{}\mp@subsup{i}{}{\prime\prime})\mathrm{ by auto
    ultimately have eval c t t'}(c\uparrowt(x))\mp@subsup{\gamma}{}{\prime}\mathrm{ using a1[of c^t (x)] by simp
    with <\neg (\exists\mp@subsup{i}{}{\prime\prime}\geq\mp@subsup{c}{c}{}\uparrow}\mp@subsup{t}{}{x}x.{c\mp@subsup{}}{t}{}\mp@subsup{i}{}{\prime\prime})
        have }\mp@subsup{\gamma}{}{\prime}(\operatorname{lnth}((\mp@subsup{\pi}{c}{}(\mathrm{ inf-llist t )) @ }\mp@subsup{l}{l}{(\mathrm{ inf-llist t}\mp@subsup{t}{}{\prime})))(c\downarrowt(c\uparrowt}\mp@subsup{t}{}{\prime}(x))
        using validCE-cont[of ct c^tt(x) t' \gamma}]{\existsi.{c\mp@subsup{}}{t}{}\mp@subsup{i}{}{\rangle}\mathrm{ by blast
```

```
    moreover have }x\geq\mathrm{ the-enat (llength ( }\mp@subsup{\pi}{c}{}(\mathrm{ inf-llist t))) - 1
        using <c\downarrowt (n) \leq x cnf2bhv-def by auto
    ultimately show }\mp@subsup{\gamma}{}{\prime}(\mathrm{ lnth }((\mp@subsup{\pi}{c}{}(\mathrm{ inf-llist t ) ) @ }\mp@subsup{l}{l}{(\mathrm{ inf-llist t}}\mp@subsup{t}{}{\prime})))(x
        using cnf2bhv-bhv2cnf by simp
qed
```



```
    \exists i. {c}\mp@subsup{}}{t i}{i}<\neg(\existsi
    thus ?thesis using until-def by simp
next
    assume }\neg(\existsi.{c}\mp@subsup{}}{t}{}i
    with assms have \existsn'\prime\geqn. \gamma (lnth ( }\mp@subsup{\pi}{c}{}\mathrm{ inf-llist t @ inf-llist t')) n'^}
        (\forall\mp@subsup{n}{}{\prime}\geqn. n' < n'\prime}\longrightarrow\mp@subsup{\gamma}{}{\prime}(lnth(\picinf-llist t @ linf-llist t')) n'
        using validCE-not-act by blast
    with {\neg(\existsi.}c\mp@subsup{}}{t i i )}{}
```



```
        by blast
    thus ?thesis using until-def by simp
qed
lemma untilEA[elim]:
    fixes n::nat
        and n'::nat
        and t::nat =>cnf
        and t'::nat }=>\mp@subsup{}{}{\prime}cm
        and c::'id
    assumes }\existsi\geqn.{c\mp@subsup{}}{t}{}
        and eval c t t' n ( }\mp@subsup{\gamma}{}{\prime}\mp@subsup{\mathfrak{U}}{b}{}\gamma
    shows \exists}\mp@subsup{n}{}{\prime}\geq\langlec->t\mp@subsup{\rangle}{n}{}\mathrm{ .
```



```
        \wedge(\forall\mp@subsup{n}{}{\prime\prime}\geq\langlec&t\rangle
```



```
proof -
    from <eval c t t' n ( }\mp@subsup{\gamma}{}{\prime}\mp@subsup{\mathfrak{U}}{b}{}\gamma)
```



```
by simp
    with }\\existsi\geqn.{c}\mp@subsup{}}{t}{}\mp@subsup{i}{}{\prime}\mathrm{ obtain }
```



```
    using validCE-act[where \gamma=\lambdatn.\exists\mp@subsup{n}{}{\prime\prime}\geqn.\gammat\mp@subsup{n}{}{\prime\prime}\wedge(\forall\mp@subsup{n}{}{\prime}\geqn. n'< n'l}\longrightarrow\mp@subsup{\gamma}{}{\prime}t\mp@subsup{n}{}{\prime})]\mathrm{ by blast
    thus ?thesis
    proof (cases)
    assume }x\geq\mathrm{ llength (}\mp@subsup{\pi}{c}{}(\mathrm{ inf-llist t )}
    moreover from <(x\geq llength ( }\mp@subsup{\pi}{c}{}(\mathrm{ inf-llist t)))> have llength }(\mp@subsup{\pi}{c}{}(\mathrm{ inf-llist t ) )}\not=
        by (metis infinity-ileE)
    moreover from {\existsi\geqn. {c\mp@subsup{\xi}{t}{}\mp@subsup{i}{}{\}>\mathrm{ have llength ( }\mp@subsup{\pi}{c}{}(\mathrm{ inf-llist t ) ) }\geq1
            using proj-one[of inf-llist t] by auto
    ultimately have the-enat (llength (}\mp@subsup{\pi}{c}{}(\mathrm{ inf-llist t))) - 1<x
```

by (metis One-nat-def Suc-ile-eq antisym-conv2 diff-Suc-less enat-ord-simps(2) enat-the-enat less-imp-diff-less one-enat-def)
hence $x=c \downarrow_{t}\left(c \uparrow_{t}(x)\right)$ using cnf2bhv-bhv2cnf by simp
with $\left\langle\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.\left.t^{\prime}\right)\right)\right) x\right\rangle$
have $\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left(c \downarrow_{t}(c \uparrow t(x))\right)$ by simp
moreover have $\left.\neg\left(\exists i \geq_{c} \uparrow t(x).\right\} c \xi_{t}\right)$
proof -
from $\left\langle x \geq\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right\rangle$ have lfinite $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)$
using llength-geq-enat-lfinite $D\left[\right.$ of $\pi_{c}($ inf-llist $t)$ x] by simp
then obtain z where $\forall n^{\prime \prime}>z$. $\neg\left\{c \xi_{t} n^{\prime \prime}\right.$ using proj-finite-bound by blast
moreover from $\left\langle\right.$ the-enat (llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.\left.t)\right)\right)-1<x\right\rangle$ have $\langle c \wedge t\rangle<{ }_{c} \uparrow_{t}(x)$
using bhv2cnf-greater-lActive by simp
ultimately show ?thesis using lActive-greater-active-all by simp
qed
ultimately have eval c $t t^{\prime}(c \uparrow t x) \gamma$
using $\left\langle\exists i \geq n\right.$. $\{c\}_{t} i^{\rangle}$validCI-cont $\left[\right.$of $\left.c t{ }_{c} \uparrow t(x)\right]$ by blast
moreover have $c \uparrow t(x) \geq\langle c \rightarrow t\rangle_{n}$
proof -
from $\left\langle x \geq\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right\rangle$ have lfinite $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)$
using llength-geq-enat-lfinite $D\left[\right.$ of π_{c} (inf-llist t) x] by simp
then obtain z where $\forall n^{\prime \prime}>z$. $\neg\left\{c \xi_{t} n^{\prime \prime}\right.$ using proj-finite-bound by blast
moreover from $\left\{\exists i \geq n\right.$. $\{c\}_{t} i^{\rangle}$have $\left\{c \xi_{t}\langle c \rightarrow t\rangle{ }_{n}\right.$ using nxtActI by simp
ultimately have $\langle c \wedge t\rangle \geq\langle c \rightarrow t\rangle_{n}$ using lActive-greatest by fastforce
moreover have $c \uparrow t(x) \geq\langle c \wedge t\rangle$ by simp
ultimately show $c \uparrow t(x) \geq\langle c \rightarrow t\rangle_{n}$ by arith
qed
moreover have $\forall n^{\prime \prime} \geq\langle c \Leftarrow t\rangle_{n}$. $n^{\prime \prime}<(c \uparrow t x) \longrightarrow$ eval $c t t^{\prime} n^{\prime \prime} \gamma^{\prime}$
proof
fix $n^{\prime \prime}$ show $\langle c \Leftarrow t\rangle_{n} \leq n^{\prime \prime} \longrightarrow n^{\prime \prime}<c \uparrow t x \longrightarrow$ eval ct $t^{\prime} n^{\prime \prime} \gamma^{\prime}$
proof (rule HOL.impI[OF HOL.impI])
assume $\langle c \Leftarrow t\rangle_{n} \leq n^{\prime \prime}$ and $n^{\prime \prime}<c^{\uparrow}{ }_{t} x$
show eval c $t t^{\prime} n^{\prime \prime} \gamma^{\prime}$
proof cases
assume $\exists i \geq n^{\prime \prime} .\{c\}_{t} i$
with $\left\langle n^{\prime \prime} \geq\langle c \Leftarrow t\rangle_{n^{\prime}}\right.$ have the-enat $\left(\left\langle c \#_{n^{\prime \prime}}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right) \geq$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)$
using nAct-mono-lNact $\exists \exists i \geq n$. $\{c\}_{t} i^{\rangle}$by simp
moreover have the-enat $\left(\left\langle c \#_{n^{\prime \prime}}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)<x$
proof -

using n Act-llength-proj by auto
with $\left\langle x \geq\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right\rangle$ have $e S u c\left\langle c \#_{\text {enat } n^{\prime \prime}}{ }^{\prime \prime n f}\right.$-llist $\left.t\right\rangle \leq x$ by simp
moreover have $\left\langle c \#_{\text {enat } n^{\prime \prime}}\right.$ inf-llist $\left.t\right\rangle \neq \infty$ by simp
ultimately have Suc (the-enat $\left(\left\langle c \#_{\text {enat } n^{\prime \prime}}\right.\right.$ inf-llist $\left.\left.\left.t\right\rangle\right)\right) \leq x$
by (metis enat.distinct(2) the-enat.simps the-enat-eSuc the-enat-mono)
thus ?thesis by simp
qed
ultimately have
$\gamma^{\prime}\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left(\right.$ the-enat $\left(\left\langle c \#_{n^{\prime \prime}}\right.\right.$ inf-llist $\left.\left.\left.t\right\rangle\right)\right)$
using a1 by auto
with $\left\lfloor\exists i \geq n^{\prime \prime}\right.$. $\{c\}_{t} i^{\rangle}$show ?thesis using validCI-act by blast
next
assume $\neg\left(\exists i \geq n^{\prime \prime} .\left\{c \xi_{t} i\right)\right.$
moreover have $c \downarrow_{t}\left(n^{\prime \prime}\right) \geq$ the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)$
proof -
have $\left\langle c \#_{n}\right.$ inf-llist $\left.t\right\rangle \leq l l e n g t h ~\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)$ using $n A c t-l e-p r o j$ by metis
moreover from $\left\langle\neg\left(\exists i \geq n^{\prime \prime} .\left\{c \xi_{t} i\right)\right\rangle\right.$ have llength $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right) \neq \infty$
by (metis llength-eq-infty-conv-lfinite lnth-inf-llist proj-finite2)
ultimately have the-enat $\left(\left\langle c \#_{n}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right) \leq$ the-enat $\left(\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)$
by simp
moreover from $\left\langle\exists i \geq n\right.$. $\xi_{c} \xi_{t} i^{\rangle}\left\langle\neg\left(\exists i \geq n^{\prime \prime}\right.\right.$. $\left.\left.\xi_{c} \xi_{t} i\right)\right\rangle$ have $\left.n^{\prime \prime}\right\rangle\langle c \wedge t\rangle$ using lActive-active by (meson leI le-eq-less-or-eq)
hence $c \downarrow_{t}\left(n^{\prime \prime}\right)>$ the-enat (llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)-1$ using cnfobhv-greater-llength by simp
ultimately show? ?thesis by simp
qed
moreover from $\left.\left\langle\neg\left(\exists i \geq n^{\prime \prime} .\right\}_{c} \xi_{t} i\right)\right\rangle$ have $\langle c \wedge t\rangle \leq n^{\prime \prime}$
using assms(1) lActive-less by auto
with $\left\langle n^{\prime \prime}<c \uparrow_{t} x\right\rangle$ have $c \downarrow_{t}\left(n^{\prime \prime}\right)<x$ using p2c-mono-c2p-strict by simp
ultimately have $\gamma^{\prime}\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left(c \downarrow_{t}\left(n^{\prime}\right)\right)$
using a1 by auto
with $\left\langle\exists i \geq n\right.$. $\left\{c \xi_{t} i^{\rangle}\left\langle\neg\left(\exists i \geq n^{\prime \prime}\right.\right.\right.$. $\left.\left\{c \xi_{t} i\right)\right\rangle$ show ?thesis $\mathbf{u s i n g}$ validCI-cont by blast qed
qed
qed
ultimately show ?thesis using $\left\langle\neg\left(\exists i \geq c \uparrow t(x)\right.\right.$. $\left.\left.\{c\}_{t} i\right)\right\rangle$ by blast
next
assume $\neg\left(x \geq\right.$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)$
hence $x<$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)$ by simp
then obtain $n^{\prime}::$ nat where $x=\left\langle c \#_{n^{\prime}}\right.$ inf-llist $\left.t\right\rangle$ using $n A c t$-exists by blast
with <enat $x<$ llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right\rangle$ have $\exists i \geq n^{\prime}$. $\left\{c \xi_{t} i\right.$
using n Act-less-llength-active by force
then obtain i where $i \geq n^{\prime}$ and $\left\{c \xi_{t} i\right.$ and $\neg\left(\exists k \geq n^{\prime} . k<i \wedge \xi c \xi_{t} k\right)$ using nact-exists by blast
moreover have $\left(\forall n^{\prime \prime} \geq\langle c \Leftarrow t\rangle_{i} . n^{\prime \prime} \leq\langle c \rightarrow t\rangle_{i} \longrightarrow\right.$ eval ct $\left.t^{\prime} n^{\prime \prime} \gamma\right)$
proof
fix $n^{\prime \prime}$ show $\langle c \Leftarrow t\rangle_{i} \leq n^{\prime \prime} \longrightarrow n^{\prime \prime} \leq\langle c \rightarrow t\rangle_{i} \longrightarrow$ eval $c t t^{\prime} n^{\prime \prime} \gamma$
proof(rule HOL.impI[OF HOL.impI])
assume $\langle c \Leftarrow t\rangle_{i} \leq n^{\prime \prime}$ and $n^{\prime \prime} \leq\langle c \rightarrow t\rangle_{i}$
hence the-enat ($\left\langle c \#_{\text {enat } i}\right.$ inf-llist $\left.\left.t\right\rangle\right)=$ the-enat $\left(\left\langle c \#_{\text {enat }} n^{\prime \prime}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right)$
using nAct-same by simp
moreover from $\left\langle\xi c \xi_{t} i^{\rangle}\right.$have $\left\{c \xi_{t}\langle c \rightarrow t\rangle_{i}\right.$ using nxtActI by auto
with $\left\langle n^{\prime \prime} \leq\langle c \rightarrow t\rangle_{i} \text { have } \exists i \geq n^{\prime \prime} \text {. } \xi_{c}\right\}_{t} i$ using dual-order.strict-implies-order by auto moreover have
$\gamma\left(\right.$ lnth $\left(\left(\pi_{c}(\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left(\right.$ the-enat $\left(\left\langle c \#_{\text {enat } i}\right.\right.$ inf-llist $\left.\left.\left.t\right\rangle\right)\right)$
proof -
have enat $i-1<$ llength (inf-llist t) by (simp add: one-enat-def)
with $\left\langle x=\left\langle c \#_{n^{\prime}}\right.\right.$ inf-llist $\left.\left.t\right\rangle\right\rangle\left\langle i \geq n^{\prime}\right\rangle\left\langle\neg\left(\exists k \geq n^{\prime} . k<i \wedge \xi^{\prime} c \xi_{t}{ }_{k}\right)\right\rangle$
have $x=\left\langle c \#_{i}\right.$ inf-llist $\left.t\right\rangle$

```
            using one-enat-def nAct-not-active-same by simp
            moreover have \(\left\langle c \#_{i}\right.\) inf-llist \(\left.t\right\rangle \neq \infty\) by simp
            ultimately have \(x=\) the-enat \(\left(\left\langle c \#_{i}\right.\right.\) inf-llist \(\left.\left.t\right\rangle\right)\) by fastforce
                            thus ? thesis using \(<\gamma\left(\right.\) lnth \(\left(\left(\pi_{c}(\right.\right.\) inf-llist \(\left.t)\right) @_{l}\left(\right.\) inf-llist \(\left.\left.\left.\left.t^{\prime}\right)\right)\right) x\right\rangle\) by blast
    qed
    with \(\left\langle\right.\) the-enat \(\left(\left\langle c \#_{\text {enat } i}\right.\right.\) inf-llist \(\left.\left.t\right\rangle\right)=\) the-enat \(\left(\left\langle c \#_{\text {enat }} n^{\prime \prime}\right.\right.\) inf-llist \(\left.\left.\left.t\right\rangle\right)\right\rangle\) have
            \(\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.\) inf-llist \(\left.t)\right) @_{l}\left(\right.\) inf-llist \(\left.\left.\left.t^{\prime}\right)\right)\right)\left(\right.\) the-enat \(\left(\left\langle c \#_{\text {enat }} n^{\prime \prime}\right.\right.\) inf-llist \(\left.\left.\left.t\right\rangle\right)\right)\) by simp
    ultimately show eval \(c t t^{\prime} n^{\prime \prime} \gamma\) using validCI-act by blast
    qed
qed
moreover have \(i \geq\langle c \rightarrow t\rangle_{n}\)
proof -
    have enat \(i-1<\) llength (inf-llist t) by (simp add: one-enat-def)
    with \(\left\langle x=\left\langle c \#_{n^{\prime}}\right.\right.\) inf-llist \(\left.\left.t\right\rangle\right\rangle\left\langle i \geq n^{\prime}\right\rangle\left\langle\neg\left(\exists k \geq n^{\prime} . k<i \wedge \xi c \xi_{t} k\right)\right\rangle\) have \(x=\left\langle c \#_{i}\right.\) inf-llist \(\left.t\right\rangle\)
        using one-enat-def nAct-not-active-same by simp
    moreover have \(\left\langle c \#_{i}\right.\) inf-llist \(\left.t\right\rangle \neq \infty\) by simp
    ultimately have \(x=\) the-enat \(\left(\left\langle c \#_{i}\right.\right.\) inf-llist \(\left.\left.t\right\rangle\right)\) by fastforce
    with \(\langle x \geq\) the-enat \((\langle c \# n\) inf-llist \(t\rangle)\rangle\)
        have the-enat \(\left(\left\langle c \#_{i}\right.\right.\) inf-llist \(\left.\left.t\right\rangle\right) \geq\) the-enat \(\left(\left\langle c \#_{n}\right.\right.\) inf-llist \(\left.\left.t\right\rangle\right)\) by simp
    with \(\left\{\{c\}_{t} i\right\rangle\) show ?thesis using active-geq-nxtAct by simp
qed
moreover have \(\forall n^{\prime \prime} \geq\langle c \Leftarrow t\rangle_{n} . n^{\prime \prime}<\langle c \Leftarrow t\rangle_{i} \longrightarrow\) eval \(c t t^{\prime} n^{\prime \prime} \gamma^{\prime}\)
proof
    fix \(n^{\prime \prime}\) show \(\langle c \Leftarrow t\rangle_{n} \leq n^{\prime \prime} \longrightarrow n^{\prime \prime}<\langle c \Leftarrow t\rangle_{i} \longrightarrow\) eval ct \(t^{\prime} n^{\prime \prime} \gamma^{\prime}\)
    proof (rule HOL.impI[OF HOL.impI])
        assume \(\langle c \Leftarrow t\rangle_{n} \leq n^{\prime \prime}\) and \(n^{\prime \prime}<\langle c \Leftarrow t\rangle_{i}\)
        moreover have \(\langle c \Leftarrow t\rangle_{i} \leq i\) by simp
    ultimately have \(\exists i \geq n^{\prime \prime}\). \(\left\{c \xi_{t} i\right.\) using \(\left\{\xi_{c} \xi_{t} i^{\rangle}\right.\)by (meson less-le less-le-trans)
    with \(\left\langle n^{\prime \prime} \geq\langle c \Leftarrow t\rangle_{n^{\prime}}\right.\) have the-enat \(\left(\left\langle c \#_{n^{\prime \prime}}\right.\right.\) inf-llist \(\left.\left.t\right\rangle\right) \geq\) the-enat \(\left(\left\langle c \#_{n}\right.\right.\) inf-llist \(\left.t\right\rangle\) )
        using nAct-mono-lNact \(\exists \exists i \geq n\). \(\left.\}_{c} \xi_{t} i\right\rangle\) by simp
    moreover have the-enat \(\left(\left\langle c \#_{n^{\prime \prime}}\right.\right.\) inf-llist \(\left.\left.t\right\rangle\right)<x\)
    proof -
        from \(\left\langle n^{\prime \prime}<\langle c \Leftarrow t\rangle_{i}\right\rangle\left\langle\langle c \Leftarrow t\rangle_{i} \leq i\right\rangle\) have \(n^{\prime \prime}<i\)
            using dual-order.strict-trans1 by arith
        with \(\left\langle n^{\prime \prime}<\langle c \Leftarrow t\rangle_{i^{\prime}}\right.\) have \(\exists i^{\prime} \geq n^{\prime \prime} . i^{\prime}<i \wedge \xi c \xi_{t} i^{\prime}\)
            using lNact-least[of i \(\left.n^{\prime \prime}\right]\) by fastforce
        hence \(\left\langle c \#_{n^{\prime \prime}}\right.\) inf-llist \(\left.t\right\rangle<\left\langle c \#_{i}\right.\) inf-llist \(\left.t\right\rangle\) using \(n\) Act-less by auto
        moreover have enat \(i-1<\) llength (inf-llist \(t\) ) by (simp add: one-enat-def)
        with \(\left\langle x=\left\langle c \#_{n^{\prime}}\right.\right.\) inf-llist \(\left.\left.\left.t\right\rangle\right\rangle\left\langle i \geq n^{\prime}\right\rangle\left\langle\neg\left(\exists k \geq n^{\prime} . k<i \wedge \xi c\right\}_{t} k\right)\right\rangle\)
            have \(x=\left\langle c \#_{i}\right.\) inf-llist \(\left.t\right\rangle\)
            using one-enat-def nAct-not-active-same by simp
        moreover have \(\left\langle c \#_{n^{\prime \prime}}\right.\) inf-llist \(\left.t\right\rangle \neq \infty\) by simp
        ultimately show ?thesis by (metis enat-ord-simps(2) enat-the-enat)
    qed
    ultimately have
        \(\gamma^{\prime}\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.\) inf-llist \(\left.t)\right) @_{l}\left(\right.\) inf-llist \(\left.\left.\left.t^{\prime}\right)\right)\right)\left(\right.\) the-enat \(\left(\left\langle c \#_{n^{\prime \prime}}\right.\right.\) inf-llist \(\left.\left.\left.t\right\rangle\right)\right)\)
        using a1 by auto
    with \(\measuredangle \exists i \geq n^{\prime \prime} .\left\{c \xi_{t} i^{〉}\right.\) show eval \(c t t^{\prime} n^{\prime \prime} \gamma^{\prime}\) using validCI-act by blast
    qed
```


qed

ultimately show ?thesis using $\langle\xi c\}$ t $i\rangle$ by auto
qed
qed
lemma untilEN[elim]:
fixes $n:: n a t$
and $n^{\prime}:: n a t$
and $t:: n a t \Rightarrow c n f$
and $t^{\prime}:: n a t \Rightarrow{ }^{\prime} \mathrm{cmp}$
and $c:: ' i d$
assumes $\nexists i . i \geq n \wedge \xi c \xi_{t} i$ and eval ct $t^{\prime} n\left(\gamma^{\prime} \mathfrak{U}_{b} \gamma\right)$
shows $\exists n^{\prime} \geq n$. eval c $t t^{\prime} n^{\prime} \gamma \wedge$ $\left(\forall n^{\prime \prime} \geq n . n^{\prime \prime}<n^{\prime} \longrightarrow\right.$ eval $\left.c t t^{\prime} n^{\prime \prime} \gamma^{\prime}\right)$
proof cases
assume $\exists i$. $\}_{c} \xi_{t} i$
moreover from <eval ct $t^{\prime} n\left(\gamma^{\prime} \mathfrak{U}_{b} \gamma\right)$ 〉
have eval $c t t^{\prime} n\left(\lambda t n . \exists n^{\prime \prime} \geq n . \gamma t n^{\prime \prime} \wedge\left(\forall n^{\prime} \geq n . n^{\prime}<n^{\prime \prime} \longrightarrow \gamma^{\prime} t n^{\prime}\right)\right)$
using until-def by simp
ultimately have $\exists n^{\prime \prime} \geq c \downarrow_{t}(n) . \gamma\left(\operatorname{lnth}\left(\pi_{c}\right.\right.$ inf-llist $t @_{l}$ inf-llist $\left.\left.t^{\prime}\right)\right) n^{\prime \prime} \wedge$
$\left(\forall n^{\prime} \geq c \downarrow_{t}(n) . n^{\prime}<n^{\prime \prime} \longrightarrow \gamma^{\prime}\left(\right.\right.$ lnth $\left(\pi_{c}\right.$ inf-llist $t @_{l}$ inf-llist $\left.\left.\left.t^{\prime}\right)\right) n^{\prime}\right)$
using validCE-cont[where $\gamma=\lambda t n$. $\left.\exists n^{\prime \prime} \geq n . \gamma t n^{\prime \prime} \wedge\left(\forall n^{\prime} \geq n . n^{\prime}<n^{\prime \prime} \longrightarrow \gamma^{\prime} t n^{\prime}\right)\right]$ $\not \nexists i . i \geq n \wedge \xi c\}_{t} i^{\rangle}$by blast
then obtain x where $x \geq c \downarrow_{t}(n)$ and $\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right) x$ and $\forall x^{\prime} \geq c \downarrow_{t}(n) . x^{\prime}<x \longrightarrow \gamma^{\prime}\left(\right.$ lnth $\left(\left(\pi_{c}(\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right) x^{\prime}$ by auto
moreover from $\left\langle\neg\left(\exists i \geq n\right.\right.$. $\left.\left.\xi c \xi_{t} i\right)\right\rangle$ have the-enat (llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)-1<x$
proof -
have $\langle c \wedge t\rangle<n$
proof (rule ccontr)
assume $\neg\langle c \wedge t\rangle<n$
hence $\langle c \wedge t\rangle \geq n$ by simp
moreover from $\left\langle\exists i .\left\{c \xi_{t} i^{〉} \neg\left(\exists i \geq n .\{c\}_{t} i\right)\right\rangle\right.$ have $\left\{c \xi_{t}\langle c \wedge t\rangle\right.$
using lActive-active less-or-eq-imp-le by blast
ultimately show False using $\prec \neg\left(\exists i \geq n\right.$. $\left.\left.\xi c \xi_{t} i\right)\right\rangle$ by simp
qed
hence the-enat (llength $\left(\pi_{c}(\right.$ inf-llist $\left.\left.t)\right)\right)-1<c \downarrow t(n)$
using cnfobhv-greater-llength by simp
with $\left\langle x \geq c \downarrow_{t}(n)\right\rangle$ show ?thesis by simp
qed
hence $x=c \downarrow_{t}(c \uparrow t(x))$ using cnf2bhv-bhv2cnf by simp
ultimately have $\gamma\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left(c \downarrow_{t}\left(c \uparrow{ }_{t}(x)\right)\right)$ by simp
moreover from $\left\langle\neg\left(\exists i \geq n\right.\right.$. $\left.\left.\xi_{c} \xi_{t} i\right)\right\rangle$ have $\neg\left(\exists i \geq c \uparrow t(x)\right.$. $\left.\xi_{c} \xi_{t} i\right)$
proof -
from $\left\langle\neg\left(\exists i \geq n\right.\right.$. $\left.\left\langle c \xi_{t} i\right)\right\rangle$ have lfinite $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)$ using proj-finite2 by simp
then obtain z where $\forall n^{\prime \prime}>z$. $\neg\left\{c \xi_{t} n^{\prime \prime}\right.$ using proj-finite-bound by blast
moreover from sthe-enat (llength $\left(\pi_{c}(\right.$ inf-llist $\left.t)\right)$) $\left.1<x\right\rangle$ have $\langle c \wedge t\rangle<c \uparrow{ }_{t}(x)$
using bhv2cnf-greater-lActive by simp
ultimately show ?thesis using lActive-greater-active-all by simp

qed

ultimately have eval $\operatorname{ct} t t^{\prime}\left({ }_{c} \uparrow_{t}(x)\right) \gamma$ using validCI-cont $\langle\exists i$. $\} c \xi_{t} i^{\rangle}$by blast
moreover from $₫ \exists i$. $\left.\xi^{\prime} \xi_{t} t_{i}\right)\left\langle\left(\exists i \geq n\right.\right.$. $\left.\left\{c \xi_{t} i\right)\right\rangle$ have $\langle c \wedge t\rangle \leq n$
using lActive-less[of ct-n] by auto
with $\left\langle x \geq{ }_{c} \downarrow_{t}(n)\right\rangle$ have $n \leq c_{\uparrow} \dagger_{t}(x)$ using $p 2 c-m o n o-c 2 p$ by blast
moreover have $\forall n^{\prime \prime} \geq n$. $n^{\prime \prime}<c_{c} \uparrow_{t}(x) \longrightarrow$ eval $c t t^{\prime} n^{\prime \prime} \gamma^{\prime}$
proof (rule HOL.allI[OF HOL.impI[OF HOL.impI]])
fix $n^{\prime \prime}$ assume $n \leq n^{\prime \prime}$ and $n^{\prime \prime}<c^{\uparrow} t^{(x)}$
hence $c \downarrow_{t}\left(n^{\prime \prime}\right) \geq c \downarrow_{t}(n)$ using cnf2bhv-mono by simp
moreover have $n^{\prime \prime}<{ }_{c} \uparrow_{t}(x)$ by (simp add: $\left\langle n^{\prime \prime}<{ }_{c} \uparrow_{t} x\right)$)
with $\langle\langle c \wedge t\rangle \leq n\rangle\left\langle n \leq n^{\prime \prime}\right\rangle$ have $c_{c t}\left(n^{\prime \prime}\right)<{ }_{c} \downarrow_{t}\left(c \uparrow_{t}(x)\right)$
using cnf2bhv-mono-strict by simp
with $\left\langle x=c \downarrow_{t}\left(c \uparrow_{t}(x)\right)\right\rangle$ have $c \downarrow_{t}\left(n^{\prime}\right)<x$ by simp
ultimately have $\gamma^{\prime}\left(\operatorname{lnth}\left(\left(\pi_{c}(\right.\right.\right.$ inf-llist $\left.t)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.t^{\prime}\right)\right)\right)\left(c \downarrow_{t}\left(n^{\prime \prime}\right)\right)$
using $\forall x^{\prime} \geq_{c} \downarrow_{t}(n) . x^{\prime}<x \longrightarrow \gamma^{\prime}\left(\right.$ lnth $\left(\left(\pi_{c}\right.\right.$ (inf-llist $\left.\left.t\right)\right) @_{l}\left(\right.$ inf-llist $\left.\left.\left.\left.t^{\prime}\right)\right)\right) x^{\prime}\right\rangle$ by simp
moreover from $\left\langle n \leq n^{\prime \prime}\right\rangle$ have $\nexists i . i \geq n^{\prime \prime} \wedge \xi \xi_{\xi_{t}} i$ using $\left.\notin i . i \geq n \wedge \xi c \xi_{t} i\right)$ by simp
ultimately show eval c $t t^{\prime} n^{\prime \prime} \gamma^{\prime}$ using validCI-cont using $\exists \exists$. $\left\{\xi_{\}} \xi_{t} i\right.$ by blast
qed
ultimately show? ?thesis by auto
next
assume $\neg(\exists i$. $\left.\}<\xi_{t} i\right)$
moreover from seval ct t $t^{\prime} n\left(\gamma^{\prime} \mathfrak{U}_{b} \gamma\right)$)
have eval $\operatorname{ct} t^{\prime} n\left(\lambda t n\right.$. ヨ $\left.n^{\prime} \geq n . \gamma t n^{\prime \prime} \wedge\left(\forall n^{\prime} \geq n . n^{\prime}<n^{\prime \prime} \longrightarrow \gamma^{\prime} t n^{\prime}\right)\right)$
using until-def by simp
ultimately have $\exists n^{\prime \prime} \geq n . \gamma\left(\right.$ lnth $\left(\pi_{c}\right.$ inf-llist $t @_{l}$ inf-llist ty)) $n^{\prime \prime}$
$\wedge\left(\forall n^{\prime} \geq n . n^{\prime}<n^{\prime \prime} \longrightarrow \gamma^{\prime}\left(\right.\right.$ lnth $\left(\pi_{c}\right.$ inf-llist $t @_{l}$ inf-llist $\left.\left.\left.t^{\prime}\right)\right) n^{\prime}\right)$ using $\measuredangle \neg\left(\exists i\right.$. $\left.\left\langle c c_{c}{ }_{t}\right)\right\rangle$ validCE-not-act $\left[\right.$ where $\gamma=\lambda t n$. $\left.\exists n^{\prime \prime} \geq n . \gamma t n^{\prime \prime} \wedge\left(\forall n^{\prime} \geq n . n^{\prime}<n^{\prime \prime} \longrightarrow \gamma^{\prime} t n^{\prime}\right)\right]$ by blast
with $\left\langle\neg\left(\exists i\right.\right.$. $\left.\left.\xi c \xi_{t} t i\right)\right\rangle$ show ?thesis using validCI-not-act by blast
qed

D.20.6 Weak Until

definition wuntil :: ((nat $\Rightarrow{ }^{\prime}$ cmp $) \Rightarrow$ nat \Rightarrow bool $) \Rightarrow\left(\left(n a t \Rightarrow{ }^{\prime} c m p\right) \Rightarrow\right.$ nat \Rightarrow bool $)$
$\Rightarrow\left(\left(\right.\right.$ nat $\Rightarrow{ }^{\prime}$ cmp $) \Rightarrow$ nat \Rightarrow bool $)\left(\right.$ infixl \mathfrak{W}_{b} 20)
where $\gamma^{\prime} \mathfrak{W}_{b} \gamma \equiv \gamma^{\prime} \mathfrak{U}_{b} \gamma \vee^{b} \square_{b}\left(\gamma^{\prime}\right)$
end
end

D. 21 Proof of Completeness

Assume $\left(t, t^{\prime}, n\right) \models_{\bar{c}} \gamma$. We show by structural induction over γ, that $\left(t, t^{\prime}, n\right) \prod_{\bar{c}} \gamma$ can be derived using the rules presented in Sect. 5 .

Case γ is a basic behavior assertion " ϕ ": Since $\left(t, t^{\prime}, n\right) \mid \overline{\bar{c}} \gamma$ conclude $\left(\exists i \geq n:\left\{c_{t} \xi_{t(i)} \wedge\right.\right.$ $\left.\left(\Pi_{c}(t) \wedge t^{\prime}, \#_{c}^{n}(t)\right) \models " \phi "\right) \vee\left(\exists i:\left\{c \xi_{t+(i)} \wedge\left(\nexists i \geq n:\left\{c \xi_{t(i)}\right) \wedge\left(\Pi_{c}(t) \wedge t^{\prime},{ }_{c} \Downarrow_{t}(n)\right) \models " \phi "\right) \vee\right.\right.$ $\left(\nexists i:\left\{c_{t+(i)} \wedge\left(t^{\prime}, n\right) \models " \phi "\right)\right.$ by Def. 15.

- Case $\exists i \geq n:\left\{c \xi_{t(i)} \wedge\left(\Pi_{c}(t)\right)^{\prime}, \#_{c}^{n}(t)\right) \models$ " ϕ ": Since $\exists i \geq n:\left\{c \xi_{t(i)}\right.$ conclude $\left.\Pi_{c}(t)\right)^{\prime}\left(\#_{c}^{n}(t)\right)=\operatorname{val}(c) \cup\left(\lambda p \in \operatorname{port}(c): \operatorname{val}_{t(c \rightarrow t)}^{n}(c, p)\right)$. Thus, since ϕ is a basic behavior assertion and $\left(\Pi_{c}(t)^{\wedge} t^{\prime}, \#_{c}^{n}(t)\right) \models$ " ϕ " conclude $\operatorname{val}(c) \cup(\lambda p \in$ $\left.\operatorname{port}(c): \operatorname{val}_{t(c \rightarrow t)}^{n}(c, p)\right) \models$ " ϕ ". Thus, since $\exists i \geq n:\left\{c c_{t(i)}\right.$ we can apply BaI Io $_{\text {a }}$ have $\left(t, t^{\prime}, n\right) \models_{c} " \phi$ ".
- Case $\exists i:\} c \xi_{t(i)} \wedge\left(\nexists i \geq n:\left\{c \xi_{t(i)}\right) \wedge\left(\Pi_{c}(t) t^{\prime},{ }_{c} \Downarrow_{t}(n)\right) \models\right.$ " ϕ ": Since $\left.\exists i:\right\} c \xi_{t(i)} \wedge(\nexists i \geq$ $n:\left\{c c_{t(i)}\right)$ conclude $\left.\Pi_{c}(t) t^{\prime}\left({ }_{c} \Downarrow_{t}(n)\right)=t^{\prime}(n-\operatorname{last}(c, t)-1)\right)$. Thus, since ϕ is a basic behavior assertion and $\left(\Pi_{c}(t) t^{\prime},{ }_{c} \Downarrow_{t}(n)\right) \models$ " ϕ " conclude $t^{\prime}\left({ }_{c} \Downarrow_{t}(n)\right) \models$ " ϕ ". Thus, since $\exists i \geq n$: $\xi_{c}^{3}(t)$ we can apply $\operatorname{BaI}_{\mathrm{n} 1}$ to have $\left(t, t^{\prime}, n\right) \overline{\bar{c}}^{\prime \prime} \phi \phi^{\prime}$ ".
- Case $\nexists i:\left\{c \xi_{t(i)} \wedge\left(t^{\prime}, n\right) \models\right.$ " $\phi ":$ Since ϕ is a basic behavior assertion and $\left(t^{\prime}, n\right) \models$ " ϕ " conclude $t^{\prime}(n) \models$ " ϕ ". Thus, since $\nexists i$: $\left\{c_{t(t)}\right.$ we can apply $\mathrm{BaI}_{\mathrm{n} 2}$ to have $\left(t, t^{\prime}, n\right) \overline{\bar{c}}^{\prime \prime} \phi$ ".

Case $\gamma=$ "O $\gamma^{\prime \prime}$: Since $\left(t, t^{\prime}, n\right) \mid \overline{\bar{c}} \gamma$ conclude $\left(\exists i \geq n:\left\{c_{c t}^{\xi_{t}}(i) \wedge\left(\Pi_{c}(t) t^{\prime}, \#_{c}^{n}(t)\right) \models\right.\right.$ " $\left.\bigcirc \gamma^{\prime \prime \prime}\right) \vee\left(\exists i:\left\{c \xi_{t(i)} \wedge\left(\nexists i \geq n:\left\{c c_{t+(i)}\right) \wedge\left(\Pi_{c}(t) \wedge t^{\prime}, c \Downarrow_{t}(n)\right) \models " \bigcirc \gamma^{\prime \prime \prime}\right) \vee\left(\nexists i:\left\{c c_{t}\right\}_{t i)} \wedge\left(t^{\prime}, n\right) \models\right.\right.\right.$ " $O \gamma^{\prime \prime}$ ") by Def. 15.

- Case $\exists i \geq n:\left\{c_{t} \xi_{t(i)} \wedge\left(\Pi_{c}(t) t^{\prime}, \not \#_{c}^{n}(t)\right) \vDash\right.$ " $\bigcirc \gamma^{\prime} ":$ We show $\exists \underline{i}>c \xrightarrow{n} t:\left\{c c_{t+(i)} \Longrightarrow\right.$
 $\left(t, t^{\prime}, c \xrightarrow{n} t+1\right) \mid \overline{\bar{c}}^{\prime \prime} \gamma^{\prime \prime \prime}$ to conclude $\left(t, t^{\prime}, n\right) \overline{\bar{c}}^{\bar{c}} \gamma$ by rule $\mathrm{NxtI}_{\mathrm{a}}$.
$-\exists \underline{i}>c \xrightarrow{n} t:\left\{c_{\xi_{t}(i)} \Longrightarrow \exists \underline{n}^{\prime} \geq n:\left(\exists!n \leq \underline{i}<n^{\prime}:\left\{c \xi_{t(i)}\right) \wedge\left(t, t^{\prime}, n^{\prime}\right) \bar{\epsilon}_{\bar{c}}{ }^{\prime} \gamma^{\prime \prime \prime}:\right.\right.$ Assume $\exists \underline{i}>c \xrightarrow{n} t:\left\{c \xi_{t(i)}\right.$. Thus, since $\left(\Pi_{c}(t) t^{\prime}, \not \#_{c}^{n}(t)\right) \models$ "○ $\gamma^{\prime \prime}$ conclude $\left(\Pi_{c}(t)^{\prime} t^{\prime}, \#_{c}^{n}(t)+1\right) \models$ " $\gamma^{\prime \prime}$. Moreover, since $\exists i>c \xrightarrow{n} t$ have $\exists n^{\prime} \geq n:(\exists!n \leq$ $i<n^{\prime}:\left\{c_{t+(i)}\right)$ ". Thus, $\#_{c}^{n^{\prime}}(t)=\#_{c}^{n}(t)+1$ and since $\left.\left(\Pi_{c}(t)\right)^{\wedge} t^{\prime}, \#_{c}^{n}(t)+1\right) \models$ " $\gamma^{\prime \prime}$ " conclude $\left(\Pi_{c}(t)^{\wedge} t^{\prime}, \#_{c}^{n^{\prime}}(t)\right) \models$ " $\gamma^{\prime \prime}$. Moreover, since $\exists \underline{i}>c \xrightarrow{n} t$ and $\exists!n \leq \dot{i}<n^{\prime}:\left\{c_{t+(i)}\right.$ conclude $\exists i \geq n^{\prime}$. Thus, since $\left(\Pi_{c}(t){ }^{-} t^{\prime}, \#_{c}^{n^{\prime}}(t)\right) \models " \gamma^{\prime} "$ conclude $\left(t, t^{\prime}, n^{\prime}\right) \overline{\bar{c}} \gamma$ by Def. 15.
 t : $\left\{c_{t+(i)}\right.$. Thus, since $\exists i \geq n$: $\left\{c_{c t(i)}\right.$ and $\left(\Pi_{c}(t)^{\wedge} t^{\prime}, \#_{c}^{n}(t)\right) \models$ "○ $\gamma^{\prime \prime}$ conclude $\left(\Pi_{c}(t)^{\prime} t^{\prime},{ }_{c} \Downarrow_{t}(n)+1\right) \models$ " γ^{\prime}. Thus, $\left(\Pi_{c}(t) t^{\prime}, c \xrightarrow{n} t+1\right) \models$ " $\gamma^{\prime \prime}$. Moreover,
since $\nexists i>c \xrightarrow{n} t$ have $\nexists i \geq c \xrightarrow{n} t+1:\left\{c c_{t(i)}\right.$. Thus, since $\exists i \geq n:\left\{c \xi_{t(i)}\right.$ and $\left(\Pi_{c}(t)^{\prime} t^{\prime}, c \xrightarrow{n} t+1\right) \models$ " $\gamma^{\prime \prime}$ conclude $\left(t, t^{\prime}, c \xrightarrow{n} t+1\right) \mid \overline{\bar{c}}^{\prime \prime} \gamma^{\prime \prime}$ by Def. 15.
- Case $\exists i:\left\{c \xi_{t(i)} \wedge\left(\nexists i \geq n:\left\{c \xi_{t(i)}\right) \wedge\left(\Pi_{c}(t)\right)^{\prime},{ }_{c} \Downarrow_{t}(n)\right) \vDash\right.$ "○ $\gamma^{\prime \prime}$: Thus, $\left(\Pi_{c}(t) t^{\prime},{ }_{c} \Downarrow_{t}(n)+1\right) \models$ " γ^{\prime} " and hence $\left(\Pi_{c}(t)^{\prime} t^{\prime},{ }_{c} \Downarrow_{t}(n+1)\right) \models$ " γ^{\prime} ". Thus, since $\exists i:\left\{c c_{t(i)} \wedge\left(\nexists i \geq n:\left\{c \xi_{t(i)}\right)\right.\right.$ conclude $\left(t, t^{\prime}, n+1\right) \xi_{c}{ }^{\prime \prime} \gamma^{\prime \prime \prime}$ by Def. 15. Thus, since $\nexists i \geq n:\left\{c_{t(i)}\right.$ we can apply $\operatorname{NxtI}_{\mathrm{n}}$ to have $\left(t, t^{\prime}, n\right) \overline{\bar{c}}^{\prime \prime} \gamma$ ".
- Case $\nexists i:\left\{c_{t}^{3}(i) \wedge\left(t^{\prime}, n\right) \models " \bigcirc \gamma^{\prime} ":\right.$ Thus, $\left(t^{\prime}, n+1\right) \models " \gamma^{\prime \prime}$ and since $\nexists i:\left\{c \xi_{t(i)}\right.$ conclude $\left(t, t^{\prime}, n+1\right) \models$ " γ^{\prime} " by Def. 15 . Thus, since $\nexists i$: $\left\{c_{t+(i)}^{\prime}\right.$ we can apply $\mathrm{NxtI}_{\mathrm{n}}$ to have $\left(t, t^{\prime}, n\right) \models_{\bar{c}} " \gamma$ ".

Case $\gamma=" \diamond \gamma^{\prime \prime}$: Since $\left(t, t^{\prime}, n\right) \overline{\bar{c}}_{\bar{c}} \gamma$ conclude $\left(\exists i \geq n:\left\{c c_{t+(i)} \wedge\left(\Pi_{c}(t) t^{\prime}, \#_{c}^{n}(t)\right) \models\right.\right.$ " $\left.\diamond \gamma^{\prime \prime}\right) \vee\left(\exists i:\left\{c c_{t(i)} \wedge\left(\nexists i \geq n:\left\{c c_{t(i)}\right) \wedge\left(\Pi_{c}(t) t^{\prime}, c \Downarrow_{t}(n)\right) \models " \diamond \gamma^{\prime}\right) \vee\left(\nexists i:\left\{c c_{t+(i)} \wedge\left(t^{\prime}, n\right) \models\right.\right.\right.\right.$ " $\Delta \gamma^{\prime \prime}$ ") by Def. 15 .

- Case $\exists i \geq n:\left\{c \xi_{t(i)} \wedge\left(\Pi_{c}(t)\right)^{\prime}, \#_{c}^{n}(t)\right) \models$ " $\diamond \gamma^{\prime \prime}:$ From $\left(\Pi_{c}(t)^{\wedge} t^{\prime}, \#_{c}^{n}(t)\right) \models$ " $\diamond \gamma^{\prime \prime}$ have $\exists x \geq \#_{c}^{n}(t):\left(\Pi_{c}(t)^{\wedge} t^{\prime}, x\right) \models{ }^{\prime \prime} \gamma^{\prime \prime}$.
- Case $\exists n^{\prime}: \#_{c}^{n^{\prime}}(t)=x$: Since $x \geq \#_{c}^{n}(t)$ it follows that $\#_{c}^{n}(t) \leq \#_{c}^{n^{\prime}}(t)$ and thus $c \stackrel{n}{\models} t \leq n^{\prime}$. Thus, we show $\exists i \geq n^{\prime}:\left\{c \xi_{t(i)} \Longrightarrow \exists c \stackrel{n^{\prime}}{\Leftarrow} t \leq n^{\prime \prime} \leq\right.$ $c \xrightarrow{n^{\prime}} t:\left(t, t^{\prime}, n^{\prime \prime}\right) \bar{c}_{c} \gamma^{\prime \prime \prime}$ and $\nexists i \geq n^{\prime}:\left\{c_{c} \xi_{t(i)} \Longrightarrow \quad\left(t, t^{\prime}, n^{\prime}\right) \bar{c}_{c} \gamma^{\prime \prime \prime}\right.$ to conclude $\left(t, t^{\prime}, n\right) \overline{\bar{c}}^{\prime} \gamma$ by rule EvtI $_{\mathrm{a}}$.
* $\exists i \geq n^{\prime}:\left\{c_{t} \xi_{t(i)} \Longrightarrow \exists c \stackrel{n^{\prime}}{\Leftarrow} t \leq n^{\prime \prime} \leq c \xrightarrow{n^{\prime}} t:\left(t, t^{\prime}, n^{\prime \prime}\right) \mid \overline{\bar{c}}^{"} \gamma^{\prime \prime \prime}:\right.$ Assume $\exists i \geq n^{\prime}:\left\{c_{s+(i)}^{3}\right.$. Thus, since $\left(\Pi_{c}(t)^{\prime} t^{\prime}, x\right) \models$ " γ^{\prime} " and $\#_{c}^{n^{\prime}}(t)=x$ conclude $\left(t, t^{\prime}, n^{\prime}\right) \mid \overline{\bar{c}}{ }^{"} \gamma^{\prime \prime \prime}$ by Def. 15. Moreover, have $c \stackrel{n^{\prime}}{\Leftarrow} t \leq n^{\prime}$ and $n^{\prime} \leq c \stackrel{n^{\prime}}{\rightarrow} t$ to conclude $\exists c \stackrel{n^{\prime}}{\Leftarrow} t \leq n^{\prime \prime} \leq c \stackrel{n^{\prime}}{\rightarrow} t:\left(t, t^{\prime}, n^{\prime \prime}\right) \bar{c}_{c} " \gamma^{\prime \prime}$.
* $\nexists i \geq n^{\prime}:\left\{c_{t(i)} \Longrightarrow \quad\left(t, t^{\prime}, n^{\prime}\right) \mid \bar{c}^{"} \gamma^{\prime \prime \prime}:\right.$ Assume $\nexists i \geq n^{\prime}:\left\{c c_{t(i)}\right.$. Hence, since $x=\#_{c}^{n^{\prime}}(t)$ conclude $x={ }_{c} \Downarrow_{t}\left(n^{\prime}\right)$. Thus, since $\left.\left(\Pi_{c}(t)\right)^{\prime} t^{\prime}, x\right) \models$ " $\gamma^{\prime \prime}$ conclude $\left(\Pi_{c}(t) t^{\prime},{ }_{c} \Downarrow_{t}\left(n^{\prime}\right)\right) \models$ " γ^{\prime} ". Thus, since $\exists i \geq n$: $\left\langle c c_{t+(i)}\right.$ and $\nexists i \geq$ $n^{\prime}:\left\{c_{t(i)}^{3}\right.$ conclude $\left(t, t^{\prime}, n^{\prime}\right) \overline{c_{c}} \gamma^{\prime \prime} "$ by Def. 15.
- Case $\neg \exists n^{\prime}: \#_{c}^{n^{\prime}}(t)=x$: Hence $\exists n^{\prime}: x={ }_{c} \Downarrow_{t}\left(n^{\prime}\right)$. Hence, $n^{\prime} \geq$ last (c, t) and thus $c \stackrel{n}{=} t \leq n^{\prime}$. Moreover, since $\neg \exists n^{\prime}: \#_{c}^{n^{\prime}}(t)=x$ conclude $\nexists i \geq n^{\prime}:\left\{c_{c t(i)}\right.$. Thus, we show $\left(t, t^{\prime}, n^{\prime}\right) \mid \overline{\bar{c}}{ }^{"} \gamma^{\prime \prime}$ " to conclude $\left(t, t^{\prime}, n\right) \equiv \overline{\bar{c}} \gamma$ by rule $\operatorname{EvtI}_{\mathrm{a}}$: Since $\left(\Pi_{c}(t)^{\wedge} t^{\prime}, x\right) \models$ " $\gamma^{\prime \prime}$ " and $x={ }_{c} \Downarrow_{t}\left(n^{\prime}\right)$ conclude $\left(\Pi_{c}(t)^{\wedge} t^{\prime},{ }_{c} \Downarrow_{t}\left(n^{\prime}\right)\right) \models$ " $\gamma^{\prime \prime}$. Thus, since $\exists i \geq n:\left\{c \xi_{t(i)}\right.$ and $\nexists i \geq n^{\prime}:\left\{c_{t(i)}\right.$ conclude $\left(t, t^{\prime}, n^{\prime}\right) \mid \overline{\bar{c}}{ }^{"} \gamma^{\prime \prime \prime}$ by Def. 15.
 $\left(\Pi_{c}(t)^{\wedge} t^{\prime},{ }_{c} \Downarrow_{t}(n)\right) \models$ " $\diamond \gamma^{\prime}$ " have $\left.\exists x \geq{ }_{c} \Downarrow_{t}(n):\left(\Pi_{c}(t)\right)^{\prime}, x\right) \models$ " γ^{\prime} ". Thus, $\exists n^{\prime} \geq$ $n: x={ }_{c} \Downarrow_{t}\left(n^{\prime}\right)$. Since $\nexists i \geq n:\left\{c_{t+(i)}\right.$ and $n^{\prime} \geq n$, we show $\left.\left(t, t^{\prime}, n^{\prime}\right)\right|_{c}{ }^{\prime \prime} \gamma^{\prime \prime}$ " to conclude $\left(t, t^{\prime}, n\right) \overline{\bar{c}}^{"} \gamma$ " by rule $\mathrm{EvtI}_{\mathrm{n}}$: Since $\left.\left(\Pi_{c}(t)\right)^{-} t^{\prime}, x\right) \models$ " $\gamma^{\prime \prime}$ and $x={ }_{c} \Downarrow_{t}\left(n^{\prime}\right)$ conclude
$\left.\left(\Pi_{c}(t)\right)^{\prime} t^{\prime},{ }_{c} \Downarrow_{t}\left(n^{\prime}\right)\right) \models$ " $\gamma^{\prime \prime}$. Thus, since $\exists i \geq n:\left\{c \xi_{t(i)}\right.$ and $\nexists i \geq n^{\prime}:\left\{c \xi_{t(i)}\right.$ conclude $\left(t, t^{\prime}, n^{\prime}\right) \bar{c}_{\bar{c}} \gamma^{\prime \prime \prime}$ by Def. 15 .
- Case $\nexists i:\left\{c \xi_{t(i)} \wedge\left(t^{\prime}, n\right) \models\right.$ " $\diamond \gamma^{\prime} ":$ Thus, $\exists n^{\prime} \geq n:\left(t^{\prime}, n^{\prime}\right) \models$ " $\gamma^{\prime \prime}$. Since $\nexists i \geq n:\left\{c \xi_{t(i)}\right.$ and $n^{\prime} \geq n$, we show $\left.\left(t, t^{\prime}, n^{\prime}\right)\right|_{\bar{c}}{ }^{\prime} \gamma^{\prime \prime}$ " to conclude $\left.\left(t, t^{\prime}, n\right)\right|_{\bar{c}}$ " γ " by rule EvtI I_{n} : Since $\nexists i$: $\left\{c_{\xi_{t(i)}}\right.$ and $\left(t^{\prime}, n^{\prime}\right) \models$ " $\gamma^{\prime \prime}$ conclude $\left(t, t^{\prime}, n^{\prime}\right) \mid \bar{c} " \gamma^{\prime \prime}$ " by Def. 15 .

Case $\gamma=$ " $\square \gamma^{\prime}$ ": Since $\left.\left(t, t^{\prime}, n\right)\right|_{\bar{c}} \gamma$ conclude $\left(\exists i \geq n:\left\{c_{c t(i)} \wedge\left(\Pi_{c}(t) t^{\prime}, \not \#_{c}^{n}(t)\right) \models\right.\right.$ $\left." \square \gamma^{\prime \prime}\right) \vee\left(\exists i:\left\{c_{t+(i)} \wedge\left(\nexists i \geq n:\left\{c \xi_{t(i)}\right) \wedge\left(\Pi_{c}(t) t^{\prime}, c \Downarrow_{t}(n)\right) \models " \square \gamma^{\prime \prime}\right) \vee\left(\nexists i:\left\{c c_{t+(i)} \wedge\left(t^{\prime}, n\right) \models\right.\right.\right.\right.$ " $\square \gamma^{\prime \prime}$ ") by Def. 15 .

- Case $\exists i \geq n:\left\{c_{c}^{3}(t) \wedge\left(\Pi_{c}(t)^{\wedge} t^{\prime}, \#_{c}^{n}(t)\right) \models\right.$ " $\square \gamma^{\prime}$ ": From $\left.\left(\Pi_{c}(t)\right)^{\prime}, \#_{c}^{n}(t)\right) \models$ " $\square \gamma^{\prime \prime}$ have $\forall x \geq \#_{c}^{n}(t):\left(\Pi_{c}(t)^{\wedge} t^{\prime}, x\right) \models$ " $\gamma^{\prime \prime}$. We show that for all $n^{\prime}, \exists \underline{i} \geq n^{\prime}:\left\{c \xi_{t(i)} \wedge c \xrightarrow{n}\right.$ $t \leq n^{\prime} \Longrightarrow \exists c \stackrel{n^{\prime}}{\Leftarrow} t \leq n^{\prime \prime} \leq c \xrightarrow{n^{\prime}} t:\left(t, t^{\prime}, n^{\prime \prime}\right) \bar{c}_{c}^{"} \gamma^{\prime \prime \prime}$ and $\nexists i \geq n^{\prime}:\left\{c c_{t(i)}^{3} \wedge c \xrightarrow{n} t \leq\right.$ $n^{\prime} \Longrightarrow\left(t, t^{\prime}, n^{\prime}\right) \overline{\bar{c}}^{"} \gamma^{\prime \prime}$ " to conclude $\left(t, t^{\prime}, n\right) \overline{\bar{c}}^{\prime} \quad \square \gamma$ " by rule GlobI $_{\mathrm{a}}$.
$-\exists \underset{i}{\geq} n^{\prime}:\left\{c \xi_{t+(i)} \wedge c \xrightarrow{n} t \leq n^{\prime} \Longrightarrow \exists c \stackrel{n^{\prime}}{\Leftarrow} t \leq n^{\prime \prime} \leq c \xrightarrow{n^{\prime}} t:\left(t, t^{\prime}, n^{\prime \prime}\right) \bar{\epsilon}_{c}{ }^{\prime} \gamma^{\prime \prime}::\right.$ Assume $\exists \underset{i}{\geq} \geq n^{\prime}:\left\{c c_{t(i)} \wedge c \xrightarrow{n} t \leq n^{\prime}\right.$. Since $c \xrightarrow{n} t \leq n^{\prime}$ conclude $\#_{c}^{n^{\prime}}(t) \geq \#_{c}^{n}(t)$ and since $\forall x \geq \#_{c}^{n}(t):\left(\Pi_{c}(t)^{\prime} t^{\prime}, x\right) \models$ " γ^{\prime} " conclude $\left(\Pi_{c}(t)^{\prime} t^{\prime}, \#_{c}^{n^{\prime}}(t)\right) \models$ " γ^{\prime} ". Thus, since $\exists i \geq n^{\prime}:\left\{c_{t}^{\prime} \xi_{(i)}\right.$ conclude $\left(t, t^{\prime}, n^{\prime}\right) \bar{c}_{\bar{c}}^{"} \gamma^{\prime \prime \prime}$ by Def. 15. Moreover, have $c \stackrel{n^{\prime}}{\Leftarrow} t \leq n^{\prime}$ and since $\exists i \geq n^{\prime}:\left\{c_{t}{ }_{t(i)}\right.$ conclude $n^{\prime} \leq c \stackrel{n^{\prime}}{\rightarrow} t$.
 Assume $\nexists i \geq n^{\prime}:\left\{c_{t}^{3}(i) \wedge c \xrightarrow{n} t \leq n^{\prime}\right.$. Since $c \xrightarrow{n} t \leq n^{\prime}$ conclude ${ }_{c} \Downarrow_{t}\left(n^{\prime}\right) \geq \#_{c}^{n}(t)$ and since $\forall x \geq \#_{c}^{n}(t):\left(\Pi_{c}(t)^{\wedge} t^{\prime}, x\right) \models$ " $\gamma^{\prime \prime}$ conclude $\left(\Pi_{c}(t) t^{\prime} t^{\prime},{ }_{c} \Downarrow_{t}\left(n^{\prime}\right)\right) \models$
 Def. 15.
- Case $\exists i:\left\{c \xi_{t(i)} \wedge\left(\nexists i \geq n:\left\{c_{t(i)}\right) \wedge\left(\Pi_{c}(t)\right)^{\wedge} t^{\prime},{ }_{c} \Downarrow_{t}(n)\right) \vDash\right.$ " $\square \gamma^{\prime}$ ": From $\left(\Pi_{c}(t)^{\prime} t^{\prime},{ }_{c} \Downarrow_{t}(n)\right) \models$ " $\square \gamma^{\prime \prime}$ have $\forall x \geq{ }_{c} \Downarrow_{t}(n):\left(\Pi_{c}(t)^{\prime} t^{\prime}, x\right) \models$ " $\gamma^{\prime \prime}$. Since $\nexists i \geq$ $n:\left\{c_{t}^{3_{t(i)}}\right.$ we show that for all $n^{\prime}, \nexists i \geq n^{\prime}:\left\{c \xi_{t(i)} \wedge c \xrightarrow{n} t \leq n^{\prime} \Longrightarrow\left(t, t^{\prime}, n^{\prime}\right) \mid \bar{c}{ }^{"} \gamma^{\prime \prime \prime}\right.$ to conclude $\left(t, t^{\prime}, n\right) \overline{\bar{c}}^{"} \square \gamma^{\prime \prime}$ by rule $\mathrm{GlobI}_{\mathrm{a}}$: Assume $\nexists i \geq n^{\prime}:\left\{c_{t(i)} \wedge c \xrightarrow{n} t \leq n^{\prime}\right.$. Thus, ${ }_{c} \Downarrow_{t}\left(n^{\prime}\right) \geq{ }_{c} \Downarrow_{t}(n)$ and since $\left.\forall x \geq{ }_{c} \Downarrow_{t}(n):\left(\Pi_{c}(t)\right)^{\prime} t^{\prime}, x\right) \models$ " $\gamma^{\prime \prime}$ conclude $\left.\left(\Pi_{c}(t)\right)^{\prime} t^{\prime}{ }_{c} \Downarrow_{t}\left(n^{\prime}\right)\right) \models$ " $\gamma^{\prime \prime}$. Thus, since $\exists \underline{i} \geq n$: $\left\{c_{t(i)}\right.$ and $\nexists \underline{i} \geq n^{\prime}:\left\{c \xi_{t(i)}\right.$ conclude $\left(t, t^{\prime}, n^{\prime}\right) \bar{c}_{c}{ }^{\prime} \gamma^{\prime \prime \prime}$ by Def. 15.
- Case $\nexists i:\left\{c c_{t+(i)} \wedge\left(t^{\prime}, n\right) \models\right.$ " $\square \gamma^{\prime \prime}$ ": From $\left(t^{\prime}, n\right) \models$ " $\square \gamma^{\prime \prime}$ " have $\forall n^{\prime} \geq n:\left(t^{\prime}, n^{\prime}\right) \models$ " $\gamma^{\prime \prime}$. Since $\nexists i$: $\left\{c_{c}^{3} t(i)\right.$, we show $\forall n^{\prime} \geq n:\left(t, t^{\prime}, n^{\prime}\right) \mid \bar{c} " \gamma^{\prime \prime}$ " to conclude $\left.\left(t, t^{\prime}, n\right)\right|_{\bar{c}} " \square \gamma$ " by rule GlobI $_{\mathrm{n}}$. Thus, assume $n^{\prime} \geq n$ and since $\forall n^{\prime} \geq n$: $\left(t^{\prime}, n^{\prime}\right) \models$ " $\gamma^{\prime \prime}$ " conclude $\left(t^{\prime}, n^{\prime}\right) \models$ " $\gamma^{\prime \prime}$. Thus, since $\nexists i$: $\xi c_{\epsilon t(i)}^{\prime}$ conclude $\left(t, t^{\prime}, n^{\prime}\right) \mid \overline{\bar{c}}{ }^{"} \gamma^{\prime \prime}$ by Def. 15.

The case for $\gamma=$ " $\gamma^{\prime} \mathcal{U} \gamma^{\prime \prime}$ " can be obtained by a combination of the proof of eventually and globally and is omitted here.

E Soundness of Algorithm 1

In the following, we provide an argument of why Alg. 1 preserves the semantics of a FACTum specification. The following diagram provides an overview of our reasoning:

We need to show that a set of architecture traces $A T$ satisfies a FACTum specification iff it satisfies the Isabelle/HOL theory generated from the specification by algorithm 1 .
To this end, we assume the existence of a FACTum specification $P S=(D S, C S, A S)$, consisting of an algebraic specification of datatypes $D S$, a specification of component types $C T$, and an architecture specification $A S$.

E. 1 Case \Longrightarrow

We fix a set of architecture traces $A T$ and assume that it satisfies $P S$. We show that $A T$ also satisfies the Isabelle theory generated from $P S$ by algorithm 1. To this end, we fix an architecture trace $t \in A T$ and show that t satisfies the corresponding Isabelle theory. Again, the idea of the argument is depicted by the following diagram:

Since $A T$ satisfies $P S$, the semantics of FACTum (discussed in Sect. 3) requires the existence of an architecture specification $A S^{\prime}$ which satisfies $A S$, such that $t \in A S^{\prime}$. Thus, t also satisfies the locale assumptions generated from $A S$ by lines $25-27$ of algorithm 1 .

E Soundness of Algorithm 1

Similarly, since $A T$ satisfies $P S$, the semantics of FACTUM requires the existence of a behavior $C T_{c}$, for each component c, which satisfies the corresponding behavior specification $C S_{c}$. Moreover, the semantics of FACTUM also requires the existence of a behavior trace t^{\prime}, such that $\Pi_{c}(t)^{\wedge} t^{\prime} \in C T_{c}$. Thus, according to the definition of eval (discussed in Sect. 6.4.2) we have $\operatorname{eval}\left(c, t, t^{\prime}, \gamma\right)$ for each component c and locale assumption γ (generated by lines $25-27$ of Alg. 1).

Thus, t^{\prime} fulfills all locale assumptions generated by Alg. 1 and thus it satisfies the the Isabelle theory generated from $P S$.

E. 2 Case

We may use a symmetric argument as the one presented in case E. 1 for the reverse direction.

F Pattern Hierarchy

F. 1 A Theory of Singletons

In the following, we formalize the specification of the singleton pattern as described in [Mar18b].
theory Singleton
imports Dynamic-Architecture-Calculus
begin
In the following we formalize a variant of the Singleton pattern.

```
locale singleton = dynamic-component cmp active
    for active :: 'id => cnf => bool ( }}-}-[0,110]60
    and cmp :: 'id => cnf }=>\mp@subsup{}{}{\prime}'cmp (\sigma-(-) [0,110]60) +
assumes alwaysActive: \k. \existsid.{id\mp@subsup{\xi}{k}{}
    and unique: }\existsid..\forallk.\foralli\mp@subsup{d}{}{\prime}.(\xii\mp@subsup{d}{}{\prime}\mp@subsup{\xi}{k}{}\longrightarrowid=id'
begin
```


F.1.1 Calculus Interpretation

baIA: $\llbracket \exists i \geq n$. $\left\{c \xi_{t} i ; \varphi\left(\sigma_{c} t\langle c \rightarrow t\rangle_{n}\right) \rrbracket \Longrightarrow\right.$ eval $c t t^{\prime} n(b a \varphi)$
baIN1: $\llbracket \exists i$. $\left\langle c \xi_{t}^{3} i ; \neg\left(\exists i \geq n\right.\right.$. $\left.\xi_{c} \xi_{t}\right) ; \varphi\left(t^{\prime}(n-\langle c \wedge t\rangle-1)\right) \rrbracket \Longrightarrow$ eval $c t t^{\prime} n(b a \varphi)$
baIN2: 【\# i. $\} c \xi t i ; \varphi\left(t^{\prime} n\right) \rrbracket \Longrightarrow$ eval c $t t^{\prime} n(b a \varphi)$

F.1.2 Architectural Guarantees

```
definition the-singleton \equivTHE id. }\forallk.\foralli\mp@subsup{d}{}{\prime}.{id\mp@subsup{|}{k}{\prime}\longrightarrowi\mp@subsup{d}{}{\prime}=i
theorem ts-prop:
    fixes k::cnf
    shows \bigwedgeid. {id\mp@subsup{}}{k}{}\Longrightarrowid= the-singleton
        and {the-singleton }\mp@subsup{\xi}{k}{
proof -
    { fix id
        assume a1: {id}k
        have (THE id..}\forallk.\forallid'.{id\mp@subsup{|}{k}{}\longrightarrowi\mp@subsup{d}{}{\prime}=id)=i
        proof (rule the-equality)
            show }\forallki\mp@subsup{d}{}{\prime}.{id\mp@subsup{|}{k}{\prime}\longrightarrowid'=i
        proof
            fix k show }\foralli\mp@subsup{d}{}{\prime}.{id\mp@subsup{|}{k}{\prime}\longrightarrowi\mp@subsup{d}{}{\prime}=i
            proof
```

```
            fix id' show {id畽}\longrightarrow\longrightarrowi\mp@subsup{d}{}{\prime}=i
            proof
                    assume {id多
```



```
                    then obtain }\mp@subsup{i}{}{\prime\prime}\mathrm{ where }\forallk.\foralli\mp@subsup{d}{}{\prime}.({id\mp@subsup{|}{k}{\prime}\longrightarrow\mp@subsup{i}{}{\prime\prime}=i\mp@subsup{d}{}{\prime})\mathrm{ by auto
```



```
                    thus id' = id by simp
                qed
                qed
        qed
    next
        fix }\mp@subsup{i}{}{\prime\prime}\mathrm{ show }\forallki\mp@subsup{d}{}{\prime}.{id\mp@subsup{|}{k}{\prime}\longrightarrowi\mp@subsup{d}{}{\prime}=\mp@subsup{i}{}{\prime\prime}\Longrightarrow\mp@subsup{i}{}{\prime\prime}=id\mathrm{ using a1 by auto
    qed
    hence {id\mp@subsup{}}{k}{}\Longrightarrowid=the-singleton by (simp add: the-singleton-def)
    } note g1 = this
    thus }\id.{id\mp@subsup{\xi}{k}{}\Longrightarrowid=the-singleton by simp
    from alwaysActive obtain id where {id\mp@subsup{}}{k}{}}\mathrm{ by blast
    with g1 have id = the-singleton by simp
    with \{id\mp@subsup{}}{k}{\prime}\rangle\mathrm{ show {the-singleton }\mp@subsup{}}{k}{}\mathrm{ by simp}
qed
declare ts-prop(2)[simp]
lemma lNact-active[simp]:
    fixes cid t n
    shows }\langle\mathrm{ the-singleton }\Leftarrowt\ranglen=
    using lNact-active ts-prop(2) by auto
lemma lNxt-active[simp]:
    fixes cid t n
    shows }\langle\mathrm{ the-singleton }->t\mp@subsup{\rangle}{n}{}=
by (simp add: nxtAct-active)
lemma baI[intro]:
    fixes t n a
    assumes \varphi ( }\mp@subsup{\sigma}{\mathrm{ the-singleton }}{}(tn)
    shows eval the-singleton t t' n (ba \varphi) using assms by (simp add: baIANow)
lemma baE[elim]:
    fixes tna
    assumes eval the-singleton t t' n (ba \varphi)
    shows }\varphi(\mp@subsup{\sigma}{\mathrm{ the-singleton }}{}(tn))\mathrm{ using assms by (simp add: baEANow)
lemma evtE[elim]:
    fixes tid n a
    assumes eval the-singleton t t' n (evt \gamma)
    shows \exists}\mp@subsup{n}{}{\prime}\geqn\mathrm{ . eval the-singleton }t\mp@subsup{t}{}{\prime}\mp@subsup{n}{}{\prime}
proof -
```

have $\left\{{\text { the-singleton } \xi_{t}}\right.$ by simp
with assms obtain n^{\prime} where $n^{\prime} \geq\langle\text { the-singleton } \rightarrow t\rangle_{n}$ and $\left(\exists i \geq n^{\prime}\right.$. \}the-singleton $\xi_{t} i \wedge$ $\left(\forall n^{\prime \prime} \geq\langle\text { the-singleton } \Leftarrow t\rangle_{n^{\prime}} . n^{\prime \prime} \leq\langle\text { the-singleton } \rightarrow t\rangle_{n^{\prime}} \longrightarrow\right.$ eval the-singleton $\left.\left.t t^{\prime} n^{\prime \prime} \gamma\right)\right) \vee$ $\neg\left(\exists i \geq n^{\prime}\right.$. Sthe-singleton $\left.\xi_{t} i\right) \wedge$ eval the-singleton $t t^{\prime} n^{\prime} \gamma$ using evtEA[of n the-singleton $\left.t\right]$ by blast
moreover have $\left\{\right.$ the-singleton $\xi_{t n^{\prime}}$ by simp
ultimately have
$\forall n^{\prime \prime} \geq\langle\text { the-singleton } \Leftarrow t\rangle_{n^{\prime}} \cdot n^{\prime \prime} \leq\langle\text { the-singleton } \rightarrow t\rangle_{n^{\prime}} \longrightarrow$ eval the-singleton $t t^{\prime} n^{\prime \prime} \gamma$ by auto
hence eval the-singleton $t t^{\prime} n^{\prime} \gamma$ by simp
moreover from $\left\langle n^{\prime} \geq\langle\text { the-singleton } \rightarrow t\rangle_{n}\right\rangle$ have $n^{\prime} \geq n$ by (simp add: nxtAct-active)
ultimately show ?thesis by auto
qed
lemma globE[elim]:
fixes $t i d n a$
assumes eval the-singleton $t t^{\prime} n(g l o b \gamma)$
shows $\forall n^{\prime} \geq n$. eval the-singleton $t t^{\prime} n^{\prime} \gamma$
proof
fix n^{\prime} show $n \leq n^{\prime} \longrightarrow$ eval the-singleton $t t^{\prime} n^{\prime} \gamma$
proof
assume $n \leq n^{\prime}$
hence $\langle\text { the-singleton } \Leftarrow t\rangle_{n} \leq n^{\prime}$ by simp
moreover have $\left\{\right.$ the-singleton $\xi_{t}{ }_{n}$ by simp
ultimately show eval the-singleton $t t^{\prime} n^{\prime} \gamma$
using «eval the-singleton $t t^{\prime} n(g l o b \gamma)$ 〉 globEA by blast
qed
qed
lemma untilI[intro]:
fixes $t:: n a t \Rightarrow c n f$
and $t^{\prime}:: n a t \Rightarrow{ }^{\prime} \mathrm{cmp}$
and $n:: n a t$
and $n^{\prime}:: n a t$
assumes $n^{\prime} \geq n$
and eval the-singleton $t t^{\prime} n^{\prime} \gamma$
and $\bigwedge n^{\prime \prime} . \llbracket n \leq n^{\prime \prime} ; n^{\prime \prime}<n \rrbracket \Longrightarrow$ eval the-singleton $t t^{\prime} n^{\prime \prime} \gamma^{\prime}$
shows eval the-singleton $t t^{\prime} n\left(\gamma^{\prime} \mathfrak{U}_{b} \gamma\right)$
proof -

moreover from $\left\langle n^{\prime} \geq n\right\rangle$ have $\langle\text { the-singleton } \Leftarrow t\rangle_{n} \leq n^{\prime}$ by simp
moreover have $\left\{\right.$ the-singleton ${ }_{t n^{\prime}}$ by simp
moreover have
$\exists n^{\prime \prime} \geq\langle\text { the-singleton } \Leftarrow t\rangle_{n^{\prime}} \cdot n^{\prime \prime} \leq\langle\text { the-singleton } \rightarrow t\rangle_{n^{\prime}} \wedge$ eval the-singleton $t t^{\prime} n^{\prime \prime} \gamma \wedge$
$\left(\forall n^{\prime \prime \prime} \geq\langle\text { the-singleton } \rightarrow t\rangle_{n} . n^{\prime \prime \prime}<\langle\text { the-singleton } \Leftarrow t\rangle_{n^{\prime \prime}} \longrightarrow\right.$
$\left(\exists n^{\prime \prime \prime \prime} \geq\langle\text { the-singleton } \Leftarrow t\rangle_{n^{\prime \prime \prime}} . n^{\prime \prime \prime \prime} \leq\langle\text { the-singleton } \rightarrow t\rangle_{n^{\prime \prime \prime}}\right.$
\wedge eval the-singleton $\left.\left.t t^{\prime} n^{\prime \prime \prime \prime} \gamma^{\prime}\right)\right)$
proof -
have $n^{\prime} \geq\langle\text { the-singleton } \Leftarrow t\rangle_{n^{\prime}}$ by simp
moreover have $n^{\prime} \leq\langle\text { the-singleton } \rightarrow t\rangle_{n^{\prime}}$ by simp moreover from assms(3) have
$\left(\forall n^{\prime \prime} \geq\langle\text { the-singleton } \rightarrow t\rangle_{n} . n^{\prime \prime}<\langle\text { the-singleton } \Leftarrow t\rangle_{n^{\prime}} \longrightarrow\right.$
$\left(\exists n^{\prime \prime \prime} \geq\langle\text { the-singleto } \leqslant t\rangle_{n^{\prime \prime}} . n^{\prime \prime \prime} \leq\langle\text { the-singleton } \rightarrow t\rangle_{n^{\prime \prime}}\right.$
\wedge eval the-singleton $\left.\left.t t^{\prime} n^{\prime \prime \prime} \gamma^{\prime}\right)\right)$
by auto
ultimately show ?thesis using <eval the-singleton $t t^{\prime} n^{\prime} \gamma$) by auto
qed
ultimately show ?thesis using untilIA[of n the-singleton $\left.t n^{\prime} t^{\prime} \gamma \gamma^{\prime}\right]$ by blast
qed
lemma untilE[elim]:
fixes $t i d n \gamma^{\prime} \gamma$
assumes eval the-singleton $t t^{\prime} n$ (until $\gamma^{\prime} \gamma$)
shows
$\exists n^{\prime} \geq n$. eval the-singleton $t t^{\prime} n^{\prime} \gamma \wedge\left(\forall n^{\prime \prime} \geq n . n^{\prime \prime}<n^{\prime} \longrightarrow\right.$ eval the-singleton $\left.t t^{\prime} n^{\prime \prime} \gamma^{\prime}\right)$
proof -

with 〈eval the-singleton $t t^{\prime} n\left(\right.$ until $\left.\left.\gamma^{\prime} \gamma\right)\right\rangle$ obtain n^{\prime} where $n^{\prime} \geq\langle\text { the-singleton } \rightarrow t\rangle_{n}$ and
$\left(\exists i \geq n^{\prime} .\left\{\right.\right.$ the-singleton $\left._{t} i\right) \wedge$
$\left(\forall n^{\prime \prime} \geq\langle\text { the-singleton } \Leftarrow t\rangle_{n^{\prime}} . n^{\prime \prime} \leq\langle\text { the-singleton } \rightarrow t\rangle_{n^{\prime}} \longrightarrow\right.$ eval the-singleton $\left.t t^{\prime} n^{\prime \prime} \gamma\right) \wedge$ $\left(\forall n^{\prime \prime} \geq\langle\text { the-singleton } \Leftarrow t\rangle_{n}\right.$. $n^{\prime \prime}<\langle\text { the-singleton } \Leftarrow t\rangle_{n^{\prime}} \longrightarrow$ eval the-singleton $\left.t t^{\prime} n^{\prime \prime} \gamma^{\prime}\right) \vee$ $\neg\left(\exists i \geq n^{\prime}\right.$. the-singleton $\left.\xi_{t} i\right) \wedge$
eval the-singleton $t t^{\prime} n^{\prime} \gamma \wedge$
$\left(\forall n^{\prime \prime} \geq\langle\text { the-singleton } \Leftarrow t\rangle_{n} . n^{\prime \prime}<n^{\prime} \longrightarrow\right.$ eval the-singleton $\left.t t^{\prime} n^{\prime \prime} \gamma^{\prime}\right)$
using untilEA[of n the-singleton $\left.t t^{\prime} \gamma^{\prime} \gamma\right]$ by auto
moreover have $\left\{\right.$ the-singleton $\xi_{t n^{\prime}}$ by simp
ultimately have
$\left(\forall n^{\prime \prime} \geq\langle\text { the-singleton } \Leftarrow t\rangle_{n^{\prime}} \cdot n^{\prime \prime} \leq\langle\text { the-singleton } \rightarrow t\rangle_{n^{\prime}} \longrightarrow\right.$ eval the-singleton $\left.t t^{\prime} n^{\prime \prime} \gamma\right) \wedge$
$\left(\forall n^{\prime \prime} \geq\langle\text { the-singleton } \Leftarrow t\rangle_{n} . n^{\prime \prime}<\langle\text { the-singleton } \Leftarrow t\rangle_{n^{\prime}} \longrightarrow\right.$ eval the-singleton $\left.t t^{\prime} n^{\prime \prime} \gamma^{\prime}\right)$
by auto
hence eval the-singleton $t t^{\prime} n^{\prime} \gamma$ and $\left(\forall n^{\prime \prime} \geq n . n^{\prime \prime}<n^{\prime} \longrightarrow\right.$ eval the-singleton $\left.t t^{\prime} n^{\prime \prime} \gamma^{\prime}\right)$
by auto
with $\left\langle e v a l\right.$ the-singleton $\left.t t^{\prime} n^{\prime} \gamma\right\rangle\left\langle n^{\prime} \geq\langle t h e \text {-singleton } \rightarrow t\rangle_{n}\right\rangle$ show ?thesis by auto
qed
end
end

F. 2 A Theory of Publisher-Subscriber Architectures

In the following, we formalize the specification of the publisher subscriber pattern as described in [Mar18b].
theory Publisher-Subscriber
imports Singleton
begin

F.2.1 Subscriptions

datatype 'evt subscription $=$ sub 'evt | unsub 'evt

F.2.2 Publisher-Subscriber Architectures

locale publisher-subscriber $=$
pb: singleton pbactive pbcmp + sb: dynamic-component sbcmp sbactive
for pbactive :: 'pid \Rightarrow cnf \Rightarrow bool
and pbcmp :: 'pid $\Rightarrow c n f \Rightarrow{ }^{\prime} P B$
and sbactive $::$ 'sid $\Rightarrow c n f \Rightarrow$ bool
and sbcmp :: 'sid $\Rightarrow c n f \Rightarrow{ }^{\prime} S B+$
fixes $p b s b::{ }^{\prime} P B \Rightarrow($ 'evt set) subscription set
and pbnt :: 'PB $\Rightarrow\left({ }^{\prime}\right.$ evt \times 'msg)
and sbnt $::$ 'SB \Rightarrow ('evt \times 'msg) set
and sbsb :: 'SB \Rightarrow ('evt set) subscription
assumes conn1: $\bigwedge k$ pid. pbactive pid k
$\Longrightarrow p b s b($ pbcmp pid $k)=(\bigcup$ sid $\in\{$ sid. sbactive sid $k\} .\{$ sbsb (sbcmp sid $k)\})$
and conn2: $\bigwedge t n n^{\prime \prime}$ sid pid E e m.
$\llbracket t \in$ arch; pbactive pid $(t n)$; sbactive sid $(t n)$;
sub $E=$ sbsb (sbcmp sid $(t n)) ; n^{\prime \prime} \geq n ; e \in E$;
$\nexists n^{\prime} E^{\prime} \cdot n^{\prime} \geq n \wedge n^{\prime} \leq n^{\prime \prime} \wedge$ sbactive sid $\left(t n^{\prime}\right) \wedge$
unsub $E^{\prime}=s b s b\left(s b c m p\right.$ sid $\left.\left(t n^{\prime}\right)\right) \wedge e \in E^{\prime} ;$
$(e, m)=p b n t\left(p b c m p\right.$ pid $\left.\left(t n^{\prime \prime}\right)\right)$; sbactive sid $\left(t n^{\prime \prime}\right) \rrbracket$
\Longrightarrow pbnt $\left(\right.$ pbcmp pid $\left.\left(t n^{\prime \prime}\right)\right) \in \operatorname{sbnt}\left(\operatorname{sbcmp}\right.$ sid $\left.\left(t n^{\prime \prime}\right)\right)$
begin
notation pb.imp (infixl $\longrightarrow{ }^{p}$ 10)
notation $p b$.disj (infixl $\vee^{p} 15$)
notation pb.conj (infixl $\left.\wedge^{p} 20\right)$
notation pb.not ($\left.\neg^{p}-[19] 19\right)$
no-notation pb.all (binder $\forall_{b} 10$)
no-notation $p b$.ex (binder \exists_{b} 10)
notation pb.all (binder \forall_{p} 10)
notation p b.ex (binder $\exists p$ 10)
notation sb.imp (infixl $\longrightarrow^{s} 10$)
notation sb.disj (infixl $\vee^{s} 15$)
notation sb.conj (infixl $\left.\wedge^{s} 20\right)$
notation sb.not ($\left.\neg^{s}-[19] 19\right)$
no-notation sb.all (binder $\forall_{b} 10$)
no-notation sb.ex (binder \exists_{b} 10)
notation sb.all (binder \forall_{s} 10)
notation sb.ex (binder $\exists s$ 10)

F.2.2.1 Calculus Interpretation

pb.nxtEA1: $\llbracket \exists i>p b . n x t A c t ~ c ~ t n . p b a c t i v e ~ c(t i) ; p b . e v a l$ c $t t^{\prime} n\left(O_{b} \gamma\right) ; n \leq n^{\prime} ; \exists!i$. n $\leq i \wedge p b$.latestAct-cond ct $n^{\prime} i \rrbracket \Longrightarrow p b . e v a l c t t^{\prime} n^{\prime} \gamma$

F Pattern Hierarchy
sb.nxtEA 1: $\llbracket \exists i>s b . n x t A c t$ c t n. sbactive $c(t i) ;$ sb.eval c $t t^{\prime} n\left(\bigcirc_{b} \gamma\right) ; n \leq n^{\prime} ; \exists!i$. n $\leq i \wedge$ sb.latestAct-cond ct $n^{\prime} i \rrbracket \Longrightarrow s b . e v a l c t t^{\prime} n^{\prime} \gamma$

F.2.2.2 Results from Singleton

abbreviation the-pb :: 'pid where
the-pb \equiv pb.the-singleton
pb.ts-prop (1): pbactive id $k \Longrightarrow i d=$ the-pb
pb.ts-prop (2) : pbactive the-pb k

F.2.2.3 Architectural Guarantees

The following theorem ensures that a subscriber indeed receives all messages associated with an event for which he is subscribed.

```
theorem msgDelivery:
    fixes \(t n n^{\prime \prime}\) sid \(E\) e \(m\)
    assumes \(t \in\) arch
        and sbactive sid ( \(t n\) )
        and sub \(E=s b s b(s b c m p\) sid \((t n))\)
        and \(n^{\prime \prime} \geq n\)
        and \(\nexists n^{\prime} E^{\prime} \cdot n^{\prime} \geq n \wedge n^{\prime} \leq n^{\prime \prime}\)
            \(\wedge\) sbactive sid ( \(t n^{\prime}\) )
            \(\wedge\) unsub \(E^{\prime}=\operatorname{sbsb}\left(\operatorname{sbcmp} \operatorname{sid}\left(t n^{\prime}\right)\right)\)
            \(\wedge e \in E^{\prime}\)
    and \(e \in E\)
    and \((e, m)=p b n t\left(p b c m p\right.\) the-pb \(\left.\left(t n^{\prime \prime}\right)\right)\)
    and sbactive sid ( \(t n^{\prime \prime}\) )
    shows \((e, m) \in \operatorname{sbnt}\left(s b c m p\right.\) sid \(\left.\left(t n^{\prime \prime}\right)\right)\)
    using assms conn2 pb.ts-prop(2) by simp
```

Since a publisher is actually a singleton, we can provide an alternative version of constraint conn1.

```
lemma conn1A:
    fixes }
    shows pbsb (pbcmp the-pb k)=(\bigcup sid\in{sid. sbactive sid k}.{sbsb (sbcmp sid k)})
    using conn1[OF pb.ts-prop(2)].
end
end
```


F. 3 A Theory of Blackboard Architectures

In the following, we formalize the specification of the blackboard pattern as described in [Mar18b].
theory Blackboard

imports Publisher-Subscriber
 begin

F.3.1 Problems and Solutions

Blackboards work with problems and solutions for them.

typedecl $P R O B$

consts $s b::(P R O B \times P R O B)$ set
axiomatization where $s b W F: w f s b$
typedecl $S O L$
consts solve:: $P R O B \Rightarrow S O L$

F.3.2 Blackboard Architectures

In the following, we describe the locale for the blackboard pattern.
locale blackboard $=$ publisher-subscriber bbactive bbcmp ksactive kscmp bbrp bbcs kscs ksrp
for bbactive :: 'bid $\Rightarrow c n f \Rightarrow$ bool $(\xi-\xi-[0,110] 60)$
and bbcmp :: 'bid $\Rightarrow c n f \Rightarrow{ }^{\prime} B B\left(\sigma_{-}(-)[0,110] 60\right)$
and ksactive $::{ }^{\prime} k i d \Rightarrow c n f \Rightarrow$ bool $(\xi-\xi-[0,110] 60)$
and kscmp :: 'kid $\Rightarrow \mathrm{cnf} \Rightarrow{ }^{\prime} K S\left(\sigma_{-}(-)[0,110] 60\right)$
and bbrp $::{ }^{\prime} B B \Rightarrow(P R O B$ set $)$ subscription set
and bbcs $::{ }^{\prime} B B \Rightarrow(P R O B \times S O L)$
and kscs $::{ }^{\prime} K S \Rightarrow(P R O B \times S O L)$ set
and ksrp :: 'KS \Rightarrow (PROB set) subscription +
fixes bbns :: 'BB $\Rightarrow(P R O B \times S O L)$ set
and ksns :: 'KS $\Rightarrow(P R O B \times S O L)$
and bbop $::{ }^{\prime} B B \Rightarrow$ PROB
and ksop $::$ ' $K S \Rightarrow P R O B$ set
and prob $:$: ${ }^{\prime} k i d \Rightarrow P R O B$
assumes
ks1: $\forall p . \exists k s . p=p r o b k s-C o m p o n e n t$ Parameter

- Assertions about component behavior.
and bhvbb1: $\wedge t t^{\prime}$ bId p s. $\llbracket t \in \operatorname{arch} \rrbracket \Longrightarrow p b . e v a l$ bId $t t^{\prime} 0$ ($p b . g l o b$ ($p b . b a(\lambda b b .(p, s) \in b b n s b b)$ $\left.\left.\longrightarrow^{p}(p b . e v t(p b . b a(\lambda b b .(p, s)=b b c s b b)))\right)\right)$
and bhvbb2: $\wedge t t^{\prime}$ bId P $q . \llbracket t \in$ arch \Longrightarrow pb.eval bId $t t^{\prime} 0$ (pb.glob $\left(p b . b a(\lambda b b\right.$. sub $P \in b b r p b b \wedge q \in P) \longrightarrow \longrightarrow^{p}$ $(p b . e v t(p b . b a(\lambda b b . q=b b o p b b)))))$
and bhvbb3: $\wedge t t^{\prime}$ bId $p . \llbracket t \in$ arch $\rrbracket \Longrightarrow$ pb.eval bId $t t^{\prime} 0$
$\left(p b . g l o b\left(p b . b a(\lambda b b . p=b b o p(b b)) \longrightarrow^{p}\right.\right.$
$(p b . w u n t i l(p b . b a(\lambda b b . p=b b o p(b b)))(p b . b a(\lambda b b .(p, \operatorname{solve}(p))=b b c s(b b))))))$
and bhvks1: $\bigwedge t t^{\prime} k I d p P . \llbracket t \in \operatorname{arch} ; p=\operatorname{prob} k I d \rrbracket \Longrightarrow$ sb.eval kId $t t^{\prime} 0$
(sb.glob $\left((s b . b a(\lambda k s . s u b P=k s r p k s)) \wedge^{s}\right.$
(sb.all $\left(\lambda q .(\right.$ sb.pred $(q \in P)) \longrightarrow^{s}($ sb.evt $($ sb.ba $(\lambda k s . ~(q$, solve $(q)) \in$ kscs $\left.\left.k s)))\right)\right)$ $\longrightarrow^{s}($ sb.evt $(s b . b a(\lambda k s .(p$, solve $\left.\left.p)=k s n s k s)))\right)\right)$
and bhvks2: $\bigwedge t t^{\prime} k I d p P q . \llbracket t \in \operatorname{arch} ; p=\operatorname{prob} k I d \rrbracket \Longrightarrow$ sb.eval kId $t t^{\prime} 0$ (sb.glob $(s b . b a(\lambda k s . s u b P=k s r p k s \wedge q \in P \longrightarrow(q, p) \in s b)))$
and bhvks3: $\wedge t t^{\prime} k I d p . \llbracket t \in$ arch $; p=p r o b k I d \rrbracket \Longrightarrow$ sb.eval kId $t t^{\prime} 0$
$\left(\operatorname{sb} . g l o b\left((s b . b a(\lambda k s . p \in k s o p k s)) \longrightarrow^{s}(\operatorname{sb} . \operatorname{evt}(s b . b a(\lambda k s .(\exists P . s u b P=k s r p k s))))\right)\right)$

F Pattern Hierarchy
and bhvks4: $\wedge t t^{\prime} k I d p P . \llbracket t \in \operatorname{arch} ; p \in P \rrbracket \Longrightarrow$ sb.eval kId $t t^{\prime} 0$
(sb.glob $\left((s b . b a(\lambda k s\right.$. sub $P=k s r p k s)) \longrightarrow^{s}$
(sb.wuntil $\left(\neg^{s}\left(\exists_{s} P^{\prime}\right.\right.$. $\left(\right.$ sb.pred $\left(p \in P^{\prime}\right) \wedge^{s}\left(\right.$ sb.ba $\left(\lambda k s\right.$. unsub $\left.\left.\left.\left.\left.P^{\prime}=k s r p k s\right)\right)\right)\right)\right)$
$(s b . b a(\lambda k s .(p$, solve $p) \in k s c s k s)))))$

- Assertions about component activation.
and actks:
$\bigwedge t n$ kid $p . \llbracket t \in$ arch; ksactive kid $(t n) ; p=p r o b k i d ; p \in k s o p(k s c m p$ kid $(t n)) \rrbracket$
$\Longrightarrow\left(\exists n^{\prime} \geq n\right.$. ksactive kid $\left(t n^{\prime}\right) \wedge(p$, solve $p)=k s n s\left(\operatorname{kscmp}\right.$ kid $\left.\left(t n^{\prime}\right)\right) \wedge$ $\left(\forall n^{\prime \prime} \geq n . n^{\prime \prime}<n^{\prime} \longrightarrow\right.$ ksactive kid $\left.\left.\left(t n^{\prime \prime}\right)\right)\right)$ $\vee\left(\forall n^{\prime} \geq n\right.$. $\left(\right.$ ksactive kid $\left(t n^{\prime}\right) \wedge\left(\neg(p\right.$, solve $p)=k s n s\left(k s c m p\right.$ kid $\left.\left.\left.\left.\left(t n^{\prime}\right)\right)\right)\right)\right)$
- Assertions about connections.
and conn1: $\bigwedge k$ bid. bbactive bid k
$\Longrightarrow b b n s(b b c m p$ bid $k)=(\bigcup$ kid $\in\{$ kid. ksactive kid $k\} .\{$ ksns (kscmp kid $k)\})$
and conn2: $\bigwedge k$ kid. ksactive kid k
\Longrightarrow ksop $($ kscmp kid $k)=(\bigcup$ bid $\in\{$ bid. bbactive bid $k\}$. $\{$ bbop (bbcmp bid $k)\})$
begin
notation pb.lNAct $\left(\langle-\Leftarrow-\rangle_{-}\right)$
notation pb.nxtAct $\left(\langle-\rightarrow-\rangle_{-}\right)$

F.3.2.1 Calculus Interpretation

pb.baIA: $\llbracket \exists i \geq n$. $\} c<{ }^{3} t ~ i ; ~ \varphi\left(\sigma_{c} t\langle c \rightarrow t\rangle n\right) \rrbracket \Longrightarrow$ pb.eval $c t t^{\prime} n(p b . b a \varphi)$
sb.baIA: $\llbracket \exists i \geq n$. $\xi_{c} \xi_{t} i ; \varphi\left(\sigma_{c} t(s b . n x t A c t c t n)\right) \rrbracket \Longrightarrow$ sb.eval $c t t^{\prime} n(s b . b a \varphi)$

F.3.2.2 Results from Singleton

abbreviation the- $b b \equiv$ the- $p b$
pb.ts-prop (1): $\left\{i d \xi_{k} \Longrightarrow i d=\right.$ the-bb
pb.ts-prop (2) : $\left\{t h e-b b \xi_{k}\right.$

F.3.2.3 Results from Publisher Subscriber

msgDelivery: $\llbracket t \in$ arch; $\left\{s i d \xi_{t} n ;\right.$ sub $E=k s r p\left(\sigma_{\text {sid }} t n\right) ; n \leq n^{\prime \prime} ; \nexists n^{\prime} E^{\prime} . n \leq n^{\prime} \wedge n^{\prime}$
 $\left.n^{\prime \prime}\right) ;\left\{s i d \xi_{t n^{\prime \prime}} \rrbracket \Longrightarrow(e, m) \in k s c s\left(\sigma_{s i d} t n^{\prime \prime}\right)\right.$
lemma conn2-bb:
fixes k kid
assumes ksactive kid k
shows bbop (bbcmp the-bb k))ksop (kscmp kid k)
proof -
from assms have ksop (kscmp kid $k)=(\bigcup$ bid $\in\{$ bid. bbactive bid $k\}$. $\{$ bbop (bbcmp bid $k)\}$) using conn2 by simp
moreover have (\cup bid. $\{$ bid. bbactive bid $k\}$) $=\{$ the-bb\} using pb.ts-prop(1) by auto
hence $(\bigcup$ bid $\in\{$ bid. bbactive bid $k\}$. $\{$ bbop (bbcmp bid $k)\})=\{$ bbop (bbcmp the-bb $k)\}$
by auto
ultimately show ?thesis by simp qed

F.3.2.4 Knowledge Sources

In the following we introduce an abbreviation for knowledge sources which are able to solve a specific problem.

```
definition \(s K s:: ~ P R O B \Rightarrow{ }^{\prime} k i d\) where
    sKs \(p \equiv\) (SOME kid. \(p=\) prob kid)
lemma sks-prob:
    \(p=\operatorname{prob}(s K s p)\)
using sKs-def someI-ex[of \(\lambda\) kid. \(p=\) prob kid] ks1 by auto
```


F.3.3 Architectural Guarantees

The following theorem verifies that a problem is eventually solved by the pattern even if no knowledge source exist which can solve the problem on its own. It assumes, however, that for every open sub problem, a corresponding knowledge source able to solve the problem will be eventually activated.

```
lemma pSolved-Ind:
    fixes \(t\) and \(t^{\prime}:: n a t \Rightarrow^{\prime} B B\) and \(p\) and \(t^{\prime \prime}:: n a t \Rightarrow^{\prime} K S\)
    assumes \(t \in\) arch and
        \(\forall n .\left(\exists n^{\prime} \geq n\right.\). ksactive (sKs (bbop(bbcmp the-bb \(\left.\left.\left.\left.(t n)\right)\right)\right)\left(t n^{\prime}\right)\right)\)
    shows
        \(\forall n .(\exists P\). sub \(P \in \operatorname{bbrp}(b b c m p\) the-bb \((t n)) \wedge p \in P) \longrightarrow\)
        \((\exists m \geq n .(p, \operatorname{solve}(p))=b b c s(b b c m p\) the-bb \((t m)))\)
- The proof is by well-founded induction over the subproblem relation \(s b\)
proof (rule wf-induct[where \(r=s b]\) )
    - We first show that the subproblem relation is indeed well-founded ...
    show \(w f\) sb by (simp add: \(s b W F\) )
next
    - ... then we show that a problem \(p\) is indeed solved
    - if all its sub-problems \(p^{\prime}\) are eventually solved
    fix \(p\) assume
        indH: \(\forall p^{\prime} .\left(p^{\prime}, p\right) \in s b \longrightarrow\left(\forall n .\left(\exists P\right.\right.\). sub \(P \in b b r p(b b c m p\) the-bb \(\left.(t n)) \wedge p^{\prime} \in P\right)\)
        \(\longrightarrow\left(\exists m \geq n .\left(p^{\prime}, \operatorname{solve}\left(p^{\prime}\right)\right)=b b c s(b b c m p\right.\) the-bb \(\left.\left.(t m))\right)\right)\)
        show \(\forall n .(\exists P\). sub \(P \in \operatorname{bbrp}(b b c m p\) the-bb \((t n)) \wedge p \in P)\)
        \(\longrightarrow(\exists m \geq n .(p\), solve \((p))=\) bbcs \((b b c m p\) the-bb \((t m)))\)
        proof
            fix \(n_{0}\) show \(\left(\exists P\right.\). sub \(P \in \operatorname{bbrp}\left(b b c m p\right.\) the-bb \(\left.\left.\left(t n_{0}\right)\right) \wedge p \in P\right) \longrightarrow\)
            \(\left(\exists m \geq n_{0} .(p, \operatorname{solve}(p))=b b c s(b b c m p\right.\) the-bb \(\left.(t m))\right)\)
            proof
            assume \(\exists P\). sub \(P \in b b r p\left(b b c m p\right.\) the-bb \(\left.\left(t n_{0}\right)\right) \wedge p \in P\)
            moreover have \(\left(\exists P\right.\). sub \(P \in b b r p\left(b b c m p\right.\) the-bb \(\left.\left.\left(t n_{0}\right)\right) \wedge p \in P\right) \longrightarrow\)
                \(\left(\exists n^{\prime} \geq n_{0} \cdot p=b b o p\left(b b c m p\right.\right.\) the-bb \(\left.\left.\left(t n^{\prime}\right)\right)\right)\)
            proof
```


F Pattern Hierarchy

assume $\exists P$. sub $P \in \operatorname{bbrp}\left(b b c m p\right.$ the-bb $\left.\left(t n_{0}\right)\right) \wedge p \in P$
then obtain P where sub $P \in \operatorname{bbrp}$ (bbcmp the-bb $\left(t n_{0}\right)$) and $p \in P$ by auto
hence p b.eval the-bb $t t^{\prime} n_{0}(p b . b a(\lambda b b$. sub $P \in b b r p b b \wedge p \in P))$
using $p b . b a I$ by simp
moreover from pb.globE[OF bhvbb2] have
$p b$.eval the-bb $t t^{\prime} n_{0}\left(p b . b a(\lambda b b\right.$. sub $P \in b b r p b b \wedge p \in P) \longrightarrow^{p}$
$\left.\diamond_{b} p b . b a(\lambda b b . p=b b o p b b)\right)$
using $\langle t \in$ arch \rangle by simp
ultimately have $p b . e v a l$ the- $b b t t^{\prime} n_{0}\left(\diamond_{b} p b . b a(\lambda b b . p=b b o p b b)\right)$
using pb.impE by blast
then obtain n^{\prime} where $n^{\prime} \geq n_{0}$ and pb.eval the-bb $t t^{\prime} n^{\prime}(p b . b a(\lambda b b . p=b b o p b b))$
using pb.evtE by blast
hence $p=b b o p\left(b b c m p\right.$ the-bb ($t n^{\prime}$)) using $p b . b a E$ by auto
with $\left\langle n^{\prime} \geq n_{0}\right\rangle$ show $\exists n^{\prime} \geq n_{0}$. $p=b b o p\left(b b c m p\right.$ the-bb $\left(t n^{\prime}\right)$) by auto
qed
ultimately obtain n where $n \geq n_{0}$ and $p=b b o p(b b c m p$ the $-b b(t n))$ by auto

- Problem p is provided at the output of the blackboard until it is solved
- or forever...
from pb.globE[OF bhvbb3] have
$p b . e v a l$ the-bb $t t^{\prime} n(p b . b a(\lambda b b . p=b b o p(b b)) \longrightarrow p$
(pb.wuntil (pb.ba (λ bb. $p=b b o p(b b))$)
$(p b . b a(\lambda b b .(p, \operatorname{solve}(p))=b b c s(b b)))))$
using $\langle t \in$ arch \rangle by auto
moreover from $\langle p=b b o p$ ($b b c m p$ the- $b b(t n)$) \rangle have
$p b . e v a l$ the-bb $t t^{\prime} n(p b . b a(\lambda b b . p=b b o p b b))$
using 〈t arch 〉pb.baI by simp
ultimately have p b.eval the-bb $t t^{\prime} n$
(pb.wuntil (pb.ba (λ bb. $p=b b o p(b b))$)
$(p b . b a(\lambda b b .(p, \operatorname{solve}(p))=b b c s(b b))))$
using p b.impE by blast
hence pb.eval the-bb $t t^{\prime} n((p b . u n t i l)(p b . b a(\lambda b b . p=b b o p b b))$
$\left.(p b . b a(\lambda b b .(p, \operatorname{solve}(p))=b b c s b b))) \vee^{p}(p b . g l o b(p b . b a(\lambda b b . p=b b o p b b)))\right)$
using pb.wuntil-def by simp
hence $p b$.eval the-bb $t t^{\prime} n$
(pb.until (pb.ba ($\lambda b b . p=b b o p b b))$
$(p b . b a(\lambda b b .(p$, solve $(p))=b b c s b b))) \vee$
(pb.eval the-bb $\left.t t^{\prime} n(p b . g l o b(p b . b a(\lambda b b . p=b b o p b b)))\right)$
using p b.disjE by simp
thus $\exists m \geq n_{0} .(p$, solve $p)=b b c s(b b c m p$ the-bb $(t m))$
- We need to consider both cases, the case in which the problem is eventually
- solved and the case in which the problem is always provided as an output

proof

- First we consider the case in which the problem is eventually solved:
assume pb.eval the-bb $t t^{\prime} n$
(pb.until (pb.ba ($\lambda b b . p=b b o p b b)$)
$(p b . b a(\lambda b b .(p, \operatorname{solve}(p))=b b c s b b)))$
hence $\exists i \geq n$. (pb.eval the-bb $t t^{\prime} i$
$(p b . b a(\lambda b b .(p$, solve $(p))=b b c s b b)) \wedge$
$\left(\forall k \geq n . k<i \longrightarrow p b . e v a l\right.$ the－bb $\left.\left.t t^{\prime} k(p b . b a(\lambda b b . p=b b o p b b))\right)\right)$
using 〈t arch〉pb．untilE by simp
then obtain i where $i \geq n$ and $p b . e v a l$ the－$b b t t^{\prime} i(p b . b a(\lambda b b .(p$, solve $(p))=b b c s b b))$ by auto
hence $(p, \operatorname{solve}(p))=b b c s(b b c m p$ the－bb $(t i))$
using $\langle t \in \operatorname{arch}\rangle p b . b a E A$ by auto
moreover from $\langle i \geq n\rangle\left\langle n \geq n_{0}\right\rangle$ have $i \geq n_{0}$ by simp
ultimately show ？thesis by auto
next
－Now we consider the case in which p is always provided at the output
－of the blackboard：
assume pb．eval the－bb $t t^{\prime} n$ （pb．glob（pb．ba（ λ bb．p＝bbop bb）））
hence $\forall n^{\prime} \geq n$ ．（pb．eval the－bb $\left.t t^{\prime} n^{\prime}(p b . b a(\lambda b b . p=b b o p b b))\right)$ using $\langle t \in$ arch \rangle pb．globE by auto
hence outp：$\forall n^{\prime} \geq n$ ．（ $p=$ bbop（bbcmp the－bb $\left.\left(t n^{\prime}\right)\right)$ ） using 〈t arch〉pb．baE by blast
－thus，by assumption there exists a KS which is able to solve p and which
－is active at n^{\prime} ．．．
with $\operatorname{assms}(2)$ have $\exists n^{\prime} \geq n$ ．ksactive（ $s K s p$ ）（ $t n^{\prime}$ ）by auto
then obtain n_{k} where $n_{k} \geq n$ and ksactive（sKs p ）（ $t n_{k}$ ）by auto
－．．．and get the problem as its input．
moreover from $\left\langle n_{k} \geq n\right\rangle$ have $p=b b o p$（bbcmp the－bb $\left(t n_{k}\right)$ ） using outp by simp
ultimately have $p \in k s o p\left(k s c m p(s K s p)\left(t n_{k}\right)\right)$ using conn2－bb［of sKs $\left.p t n_{k}\right]$ by simp
－thus the ks will either solve the problem or not solve it and
－be activated forever
hence $\left(\exists n^{\prime} \geq n_{k}\right.$ ．ksactive（sKs p）$\left(t n^{\prime}\right) \wedge$
$(p$ solve $p)=k s n s\left(\right.$ kscmp（sKs p）$\left.\left(t n^{\prime}\right)\right) \wedge$
$\left(\forall n^{\prime \prime} \geq n_{k} \cdot n^{\prime \prime}<n^{\prime} \longrightarrow\right.$ ksactive $\left.\left.(s K s p)\left(t n^{\prime \prime}\right)\right)\right) \vee$
$\left(\forall n^{\prime} \geq n_{k}\right.$ ．（ksactive（sKsp）$\left(t n^{\prime}\right) \wedge$
$\left(\neg(p\right.$ ，solve $\left.\left.\left.p)=k s n s\left(k s c m p(s K s p)\left(t n^{\prime}\right)\right)\right)\right)\right)$
using 〈ksactive（sKs p）（ $t n_{k}$ ）〉 actks［of t sKs $\left.p\right]\langle t \in \operatorname{arch}\rangle$ sks－prob by simp
thus ？thesis
proof
－if the ks solves it
assume $\exists n^{\prime} \geq n_{k}$ ．$\left\{s K s p \xi_{t n^{\prime}} \wedge(p\right.$ ，solve $p)=k s n s\left(\sigma_{s K s} p t n^{\prime}\right)$ $\wedge\left(\forall n^{\prime \prime} \geq n_{k} . n^{\prime \prime}<n^{\prime} \longrightarrow\left\{s K s p \xi_{t n^{\prime \prime}}\right)\right.$
－it is forwarded to the blackboard
then obtain n_{s} where $n_{s} \geq n_{k}$ and $\xi s K s p \xi_{t} n_{s}$ and $(p$ ，solve $p)=k s n s\left(\sigma_{s K s} p^{t} n_{s}\right)$ by auto
moreover have sb．nxtAct（sKs p）t $n_{s}=n_{s}$ by（simp add：
｛sKs $\left.p \xi_{t} n_{s}\right\rangle$ sb．nxtAct－active）
ultimately have $(p$, solve $(p)) \in b b n s\left(b b c m p\right.$ the－bb $\left(t\right.$（sb．nxtAct $\left.\left.\left.(s K s p) t n_{s}\right)\right)\right)$ using conn1［OF pb．ts－prop（2）］$\left\langle\left\{s K s ~ p \xi_{t} n_{s}\right\rangle\right.$ by auto

F Pattern Hierarchy

－finally，the blackboard will forward the solution which finishes the proof．
with bhvbb1 have ph．eval the－bb $t t^{\prime}$（sb．nxtAct（sKs p）t n_{s} ）
$(p b . e v t(p b . b a(\lambda b b .(p$, solve $p)=b b c s b b)))$
using 〈tearch pb．globE pb．impE［of the－bb t t］by blast
then obtain n_{f} where $n_{f} \geq s b . n x t A c t(s K s p) t n_{s}$ and
$p b . e v a l$ the－bb $t t^{\prime} n_{f}(p b . b a(\lambda b b .(p$ ，solve $p)=b b c s b b))$
using 〈tearch＞pb．evtE［of $t t^{\prime}$ sb．nxtAct（sKs p）$\left.t n_{s}\right]$ by auto
hence $(p$ ，solve $p)=b b c s$（bbcmp the－bb $\left(t n_{f}\right)$ ）
using $\langle t \in$ arch $p b . b a E A$ by auto
moreover have $n_{f} \geq n_{0}$
proof－
from 〈ksactive（sKs p）$\left.\left(t n_{k}\right)\right\rangle$ have $s b . n x t A c t(s K s p) t n_{k} \geq n_{k}$ using sb．nxtActI by blast
with 〈sb．nxtAct（sKs p）$t n_{s}=n_{s}$ ）show ？thesis using $\left\langle n_{f} \geq s b\right.$ ．nxtAct（sKs p）t $\left.n_{s}\right\rangle\left\langle n_{s} \geq n_{k}\right\rangle\left\langle n_{k} \geq n\right\rangle\left\langle n \geq n_{0}\right\rangle$ by arith
qed
ultimately show ？thesis by auto
next
－otherwise，we derive a contradiction
assume case－ass：$\forall n^{\prime} \geq n_{k} .\{s K s p\}_{t n^{\prime}} \wedge \neg(p$ ，solve $p)=k s n s\left(\sigma_{s K s} p^{t} n^{\prime}\right)$
－first，the KS will eventually register for the subproblems P it requires to solve $\mathrm{p} . .$.
from $\left\langle k s a c t i v e(s K s p)\left(t n_{k}\right)\right\rangle$ have $\exists i \geq 0$ ．ksactive（sKs p）（ $t i$ ）by auto
moreover have sb．lNAct（sKs p）t $0 \leq n_{k}$ by simp
ultimately have sb．eval（sKs p）$t t^{\prime \prime} n_{k}$
$\left((s b . b a(\lambda k s . p \in k s o p k s)) \longrightarrow^{s}\right.$
（sb．evt（sb．ba（ $\lambda k s . \exists P$ ．sub $P=k s r p k s)))$ ）
using sb．globEA［OF－bhvks3［of t p sKs p $\left.\left.t^{\prime \prime}\right]\right]\langle t \in a r c h\rangle s k s-p r o b ~ b y ~ s i m p ~$
moreover have sb．eval（sKs p）$t t^{\prime \prime} n_{k}$（sb．ba（ $\left.\lambda k s . p \in k s o p k s\right)$ ）
proof－
from 〈ksactive（sKs p）$\left.\left(t n_{k}\right)\right\rangle$ have $\exists n^{\prime} \geq n_{k}$ ．ksactive（sKs p）（ $t n^{\prime}$ ）by auto
moreover have $p \in \operatorname{ksop}\left(k s c m p(s K s p)\left(t\left(s b . n x t A c t(s K s p) t n_{k}\right)\right)\right)$
proof－
from 〈ksactive（sKs p）$\left.\left(t n_{k}\right)\right\rangle$ have $s b . n x t A c t(s K s p) t n_{k}=n_{k}$
using sb．nxtAct－active by blast
with $\left\langle p \in k s o p\left(k s c m p(s K s p)\left(t n_{k}\right)\right)\right\rangle$ show ？thesis by simp
qed
ultimately show ？thesis using sb．baIA［of n_{k} sKs $\left.p t\right]$ by blast
qed
ultimately have sb．eval（sKsp）$t t^{\prime \prime} n_{k}$（sb．evt（sb．ba（ $\lambda k s . \exists P$ ．sub $\left.P=k s r p k s\right)$ ） using sb．impE by blast
then obtain n_{r} where $n_{r} \geq s b . n x t A c t(s K s p) t n_{k}$ and
$\exists i \geq n_{r}$ ．ksactive（sKs p）（ $\left.t i\right) \wedge$
$\left(\forall n^{\prime \prime} \geq\right.$ sb．lNAct $(s K s p) t n_{r} . n^{\prime \prime} \leq s b . n x t A c t(s K s p) t n_{r}$
\longrightarrow sb．eval（sKsp）$t t^{\prime \prime} n^{\prime \prime}(s b . b a(\lambda k s . \exists P$ ．sub $\left.P=k s r p k s))\right) \vee$
$\neg\left(\exists i \geq n_{r}\right.$ ．ksactive $\left.(s K s p)(t i)\right) \wedge$
sb．eval（sKs p）$t t^{\prime \prime} n_{r}(s b . b a(\lambda k s . \exists P$ ．sub $P=k s r p k s))$
using 〈ksactive（sKs p ）$\left(t n_{k}\right)$ 〉 sb．evtEA［of n_{k} sKs $\left.p t\right]$ by blast
moreover from case－ass have sb．nxtAct（sKs p）$t n_{k} \geq n_{k}$ using sb．nxtActI by blast

```
with \(\left\langle n_{r} \geq s b . n x t A c t(s K s p) t n_{k}\right\rangle\) have \(n_{r} \geq n_{k}\) by arith
hence \(\exists i \geq n_{r}\). ksactive (sKs \(p\) ) ( \(t i\) ) using case-ass by auto
hence \(n_{r} \leq s b . n x t A c t\) (sKs p) t \(n_{r}\) using sb.nxtActLe by simp
moreover have \(n_{r} \geq\) sb.lNAct (sKs p) t \(n_{r}\) by simp
ultimately have
    sb.eval (sKsp) t t' \(n_{r}(s b . b a(\lambda k s . \exists P\). sub \(P=k s r p k s))\) by blast
with \(\left\langle\exists i \geq n_{r}\right.\). ksactive (sKs \(p\) ) ( \(t i\) ) 〉obtain \(P\) where
    sub \(P=k s r p\left(k s c m p(s K s p)\left(t\left(s b . n x t A c t(s K s p) t n_{r}\right)\right)\right)\)
    using sb.baEA by blast
hence \(s b . e v a l(s K s p) t t^{\prime \prime} n_{r}(s b . b a(\lambda k s . s u b P=k s r p k s))\)
    using \(\exists i \geq n_{r}\). ksactive \(\left.(s K s p)(t i)\right\rangle\) sb.baIA sks-prob by blast
```

- the knowledgesource will eventually get a solution for each required subproblem:
moreover have sb.eval (sKs p) $t t^{\prime \prime} n_{r}(s b . a l l)\left(\lambda p^{\prime}\right.$. sb.pred $\left(p^{\prime} \in P\right) \longrightarrow{ }^{s}$
$\left(\right.$ sb.evt $\left(s b . b a\left(\lambda k s .\left(p^{\prime}\right.\right.\right.$, solve $\left.\left.\left.\left.\left.\left.p^{\prime}\right) \in k s c s k s\right)\right)\right)\right)\right)$
proof -
have $\forall p^{\prime}$. sb.eval $($ sKs $p) t t^{\prime \prime} n_{r}\left(\right.$ sb.pred $\left(p^{\prime} \in P\right) \longrightarrow{ }^{s}$
(sb.evt $\left(s b . b a\left(\lambda k s .\left(p^{\prime}\right.\right.\right.$, solve $\left.\left.\left.\left.\left.p^{\prime}\right) \in k s c s k s\right)\right)\right)\right)$
proof
- by induction hypothesis,
- the blackboard will eventually provide solutions for subproblems
fix p^{\prime}
have sb.eval (sKs p) $t t^{\prime \prime} n_{r}\left(s b . p r e d ~\left(p^{\prime} \in P\right)\right) \longrightarrow$
(sb.eval (sKs p) $t t^{\prime \prime} n_{r}$
$\left(\operatorname{sb.evt}\left(s b . b a\left(\lambda k s .\left(p^{\prime}\right.\right.\right.\right.$, solve $\left.\left.\left.\left.\left.p^{\prime}\right) \in k s c s k s\right)\right)\right)\right)$
proof
assume sb.eval (sKs p) $t t^{\prime \prime} n_{r}\left(s b . p r e d ~\left(p^{\prime} \in P\right)\right)$
hence $p^{\prime} \in P$ using sb.predE by blast
thus (sb.eval (sKs p)t $t^{\prime \prime} n_{r}\left(\right.$ sb.evt $\left(s b . b a\left(\lambda k s .\left(p^{\prime}\right.\right.\right.$, solve $\left.\left.\left.\left.\left.p^{\prime}\right) \in k s c s k s\right)\right)\right)\right)$
proof -
have sb.lNAct (sKs p) t $0 \leq n_{r}$ by simp
moreover from 〈ksactive (sKs p) $\left.\left(t n_{k}\right)\right\rangle$ have $\exists i \geq 0$. ksactive (sKsp) (ti)
by auto
ultimately have sb.eval (sKsp) $t t^{\prime \prime} n_{r}((s b . b a(\lambda k s . \operatorname{sub} P=k s r p k s))$
\longrightarrow^{s} (sb.wuntil $\left(\neg^{s}\left(\exists_{s} P^{\prime}\right.\right.$. (sb.pred $\left(p^{\prime} \in P^{\prime}\right) \wedge^{s}$
$\left.\left.\left.\left(s b . b a\left(\lambda k s . u n s u b P^{\prime}=k s r p k s\right)\right)\right)\right)\right)$
$\left(s b . b a\left(\lambda k s .\left(p^{\prime}\right.\right.\right.$, solve $\left.\left.\left.\left.\left.p^{\prime}\right) \in k s c s k s\right)\right)\right)\right)$
using sb.globEA[OF - bhvks4 [of $t p^{\prime} P$ sKs $\left.\left.p t^{\prime \prime}\right]\right]$
$\langle t \in$ arch $\rangle\left\langle k s a c t i v e(s K s p)\left(t n_{k}\right)\right\rangle\left\langle p^{\prime} \in P\right\rangle$ by simp
with 〈sb.eval (sKs p) $t t^{\prime \prime} n_{r}(s b . b a(\lambda k s$. sub $\left.P=k s r p k s))\right\rangle$ have
sb.eval (sKs p) $t t^{\prime \prime} n_{r}$ (sb.wuntil $\left(\neg^{s}\left(\exists{ }_{s} P^{\prime}\right.\right.$. (sb.pred $\left(p^{\prime} \in P^{\prime}\right) \wedge^{s}$
$\left(s b . b a\left(\lambda k s\right.\right.$. unsub $\left.\left.\left.\left.\left.P^{\prime}=k s r p k s\right)\right)\right)\right)\right)\left(s b . b a\left(\lambda k s .\left(p^{\prime}\right.\right.\right.$, solve $\left.\left.\left.\left.p^{\prime}\right) \in k s c s k s\right)\right)\right)$
using sb.impE[of (sKsp) $t t^{\prime \prime} n_{r}$ sb.ba $(\lambda k s$ sub $\left.P=k s r p k s)\right]$ by blast
hence sb.eval (sKs p) $t t^{\prime \prime} n_{r}\left(\right.$ sb.until $\left(\neg^{s}\left(\exists s P^{\prime}\right.\right.$. (sb.pred $\left(p^{\prime} \in P^{\prime}\right) \wedge^{s}$
$\left(s b . b a\left(\lambda k s\right.\right.$. unsub $\left.\left.\left.\left.\left.P^{\prime}=k s r p k s\right)\right)\right)\right)\right)\left(\right.$ sb.ba $\left(\lambda k s .\left(p^{\prime}\right.\right.$, solve $\left.\left.\left.\left.p^{\prime}\right) \in k s c s k s\right)\right)\right) \vee$
sb.eval (sKs p) $t t^{\prime \prime} n_{r}$ (sb.glob $\left(\neg^{s}\left(\exists\right.\right.$ s P^{\prime}. (sb.pred $\left(p^{\prime} \in P^{\prime}\right) \wedge^{s}$
sb.ba ($\lambda k s$. unsub $\left.\left.P^{\prime}=k s r p k s\right)\right)$))) using sb.wuntil-def by auto
thus $\left(s b . e v a l(s K s p) t t^{\prime \prime} n_{r}\left(s b . e v t\left(s b . b a\left(\lambda k s .\left(p^{\prime}\right.\right.\right.\right.\right.$, solve $\left.\left.\left.\left.\left.p^{\prime}\right) \in k s c s k s\right)\right)\right)\right)$
proof
let ？$\gamma^{\prime}=\neg^{s}\left(\exists_{s} P^{\prime}\right.$ ．（sb．pred $\left(p^{\prime} \in P^{\prime}\right) \wedge^{s}\left(\right.$ sb．ba $\left(\lambda k s\right.$ ．unsub $\left.\left.\left.\left.P^{\prime}=k s r p k s\right)\right)\right)\right)$
let $? \gamma=s b . b a\left(\lambda k s .\left(p^{\prime}\right.\right.$ ，solve $\left.\left.p^{\prime}\right) \in k s c s k s\right)$
assume sb．eval（sKs p）$t t^{\prime \prime} n_{r}$（sb．until ？$\gamma^{\prime}$ ？γ ）
with $\exists i \geq n_{r}$ ．$\}_{s K s} p \xi_{t} i^{\rangle}$obtain n^{\prime} where $n^{\prime} \geq s b$ ．nxtAct（sKs p）t n_{r} and lass：$\left.\left.\left(\exists i \geq n^{\prime}.\right\} s K s p\right\}_{t} i\right) \wedge$
（ $\forall n^{\prime \prime} \geq$ sb．lNAct（sKs p）$t n^{\prime} . n^{\prime \prime} \leq s b . n x t A c t(s K s p) t n^{\prime}$
\longrightarrow sb．eval（sKs p）$t t^{\prime \prime} n^{\prime \prime}$ ？$\left.\gamma\right) \wedge$
$\left(\forall n^{\prime \prime} \geq s b . l N A c t(s K s p) t n_{r} . n^{\prime \prime}<s b . l N A c t(s K s p) t n^{\prime}\right.$
\longrightarrow sb．eval（sKs p）$t t^{\prime \prime} n^{\prime \prime}$ ？γ^{\prime} ）\vee
$\neg\left(\exists i \geq n^{\prime}\right.$ ．$\left.\xi_{s} K s p \xi_{t} i\right) \wedge$ sb．eval $(s K s p) t t^{\prime \prime} n^{\prime} ? \gamma \wedge$
$\left(\forall n^{\prime \prime} \geq s b . l N A c t(s K s p) t n_{r} . n^{\prime \prime}<n^{\prime} \longrightarrow\right.$ sb．eval（sKs p）$t t^{\prime \prime} n^{\prime \prime}$ ？γ^{\prime} ）
using sb．untilEA［of n_{r} sKs pt $\left.t^{\prime}\right]\left\langle\exists i \geq n_{r}\right.$ ．ksactive（sKs p）$\left.(t i)\right\rangle$ by blast
thus ？thesis
proof cases
assume $\exists i \geq n^{\prime}$ ．$\xi s K s p \xi_{t} i$
with lass have $\forall n^{\prime \prime} \geq$ sb．lNAct（sKsp）$t n^{\prime} . n^{\prime \prime} \leq s b . n x t A c t(s K s p) t n^{\prime}$ \longrightarrow sb．eval（sKs p）$t t^{\prime \prime} n^{\prime \prime}$ ？γ by auto
moreover have $n^{\prime} \geq s b$ ．lNAct（sKs p）$t n^{\prime}$ by simp
moreover have $n^{\prime} \leq s b . n x t A c t(s K s p) t n^{\prime}$
using $\left.\left.\left\langle\exists i \geq n^{\prime} \text { ．}\right\}_{s K s} p\right\}_{t} i\right\rangle$ sb．nxtActLe by simp
ultimately have sb．eval（sKs p）$t t^{\prime \prime} n^{\prime}$ ？γ by simp
moreover have sb．lNAct（sKs p）t $n_{r} \leq n^{\prime}$
using $\left\langle n_{r} \leq s b . n x t A c t(s K s p) t n_{r}\right\rangle$
〈sb．lNAct（sKsp）t $\left.n_{r} \leq n_{r}\right\rangle\left\langle s b . n x t A c t(s K s p) t n_{r} \leq n\right.$＇〉 by linarith
ultimately show ？thesis using $\exists \exists i \geq n_{r} .\left\{s K s p \xi_{t} i^{〉}\left\langle\exists i \geq n^{\prime}.\right\} s K s p \xi_{t} i\right.$ $\left\langle n^{\prime} \geq s b . l N A c t(s K s p) t n^{\prime}\right\rangle\left\langle n^{\prime} \leq s b . n x t A c t(s K s p) t n^{\prime}\right\rangle$
sb．evtIA［of n_{r} sKs $p t n^{\prime} t^{\prime \prime}$ ？$\left.\gamma\right]$ by blast
next
assume $\left.\neg\left(\exists i \geq n^{\prime}.\right\} s K s p \xi_{t} i\right)$
with lass have sb．eval（sKs p）$t t^{\prime \prime} n^{\prime}$ ？$\gamma \wedge$ $\left(\forall n^{\prime \prime} \geq s b . l N A c t(s K s p) t n_{r} . n^{\prime \prime}<n^{\prime} \longrightarrow\right.$ sb．eval（sKs p）$t t^{\prime \prime} n^{\prime \prime}$ ？γ^{\prime} ） by auto
moreover have sb．lNAct（sKsp）t $n_{r} \leq n^{\prime}$ using $\left\langle n_{r} \leq s b . n x t A c t(s K s p) t n_{r}\right\rangle\left\langle s b . l N A c t(s K s p) t n_{r} \leq n_{r}\right\rangle$ ＜sb．nxtAct（sKs p）t $n_{r} \leq n$ 〉 by linarith
ultimately show ？thesis using $\left.\left\langle\exists i \geq n_{r}.\right\} s K s p \xi_{t} i\right\rangle \neg\left(\exists i \geq n^{\prime}\right.$ ．$\left.\left.\xi_{s} K s p \xi_{t} i\right)\right\rangle$ sb．evtIA［of n_{r} sKs pt $n^{\prime} t^{\prime \prime}$ ？$\left.\gamma\right]$ by blast
qed
next
assume cass：sb．eval（sKs p）$t t^{\prime \prime} n_{r}$ $\left(\right.$ sb．glob $\left(\neg^{s}\left(\exists_{s} P^{\prime} .\left(s b . p r e d ~\left(p^{\prime} \in P^{\prime}\right) \wedge^{s}\right.\right.\right.$ sb．ba $\left(\lambda k s\right.$. unsub $\left.\left.\left.\left.\left.P^{\prime}=k s r p k s\right)\right)\right)\right)\right)$
have sub $P=k s r p\left(k s c m p(s K s p)\left(t\left(s b . n x t A c t(s K s p) t n_{r}\right)\right)\right) \wedge$ $p^{\prime} \in P \longrightarrow\left(p^{\prime}, p\right) \in s b$
proof－
have $\exists i \geq 0$ ．ksactive（sKs p）（ $t i$ ）using $₫ \exists i \geq 0$ ．ksactive $(s K s p)(t i)\rangle$ by auto
moreover have $s b . l N A c t(s K s p) t 0 \leq\left(s b . n x t A c t(s K s p) t n_{r}\right)$ by simp
ultimately have sb．eval（sKs p）$t t^{\prime \prime}\left(\right.$ sb．nxtAct（sKs p）$\left.t n_{r}\right)$
$\left(\right.$ sb.ba $\left(\lambda k s\right.$. sub $\left.\left.P=k s r p k s \wedge p^{\prime} \in P \longrightarrow\left(p^{\prime}, p\right) \in s b\right)\right)$
using sb.globEA[OF - bhvks2[of t p sKs p $\left.\left.t^{\prime \prime} P\right]\right]\langle t \in \operatorname{arch}\rangle$ sks-prob by blast moreover from $\left\langle\exists i \geq n_{r}\right.$. ksactive (sKs p) $\left.(t i)\right\rangle$ have ksactive (sKs p) (t (sb.nxtAct (sKs p)t n_{r})) using sb.nxtActI by blast ultimately show ?thesis
using sb.baEANow[of sKs pt $t^{\prime \prime}$ sb.nxtAct (sKs p) $\left.t n_{r}\right]$ by simp
qed
with $\left\langle p^{\prime} \in P\right\rangle$ have $\left(p^{\prime}, p\right) \in s b$
using $\left\langle s u b P=k s r p\left(k s c m p(s K s p)\left(t\left(s b . n x t A c t(s K s p) t n_{r}\right)\right)\right)\right.$ 〉
sks-prob by simp
moreover from $\left\langle\exists i \geq n_{r}\right.$. ksactive (sKsp) $\left.(t i)\right\rangle$ have
ksactive (sKs p) (t (sb.nxtAct (sKsp) $t n_{r}$)) using sb.nxtActI by blast
with $\left\langle s u b P=k s r p\left(k s c m p(s K s p)\left(t\left(s b . n x t A c t(s K s p) t n_{r}\right)\right)\right)\right\rangle$
have sub $P \in \operatorname{bbrp}\left(b b c m p\right.$ the-bb $\left.\left(t\left(s b . n x t A c t(s K s p) t n_{r}\right)\right)\right)$
using conn $1 A$ by auto
with $\left\langle p^{\prime} \in P\right\rangle$ have
sub $P \in \operatorname{bbrp}\left(\sigma_{\text {the-bb }} t\left(s b . n x t A c t(s K s p) t n_{r}\right)\right) \wedge p^{\prime} \in P$ by auto
ultimately obtain m where $m \geq s b . n x t A c t(s K s p) t n_{r}$ and
$\left(p^{\prime}\right.$, solve $\left.p^{\prime}\right)=b b c s(b b c m p$ the-bb $(t m))$
using indH by auto
- and due to the publisher subscriber property,
- the knowledge source will receive them

moreover have

```
    \(\nexists n P\).sb.nxtAct \((s K s p) t n_{r} \leq n \wedge n \leq m \wedge k s a c t i v e(s K s p)(t n) \wedge\)
```

 unsub \(P=k s r p(k s c m p(s K s p)(t n)) \wedge p^{\prime} \in P\)
 proof
assume $\exists n P^{\prime}$. sb.nxtAct (sKsp)t $n_{r} \leq n \wedge n \leq m \wedge$
ksactive (sKs p) ($t n$) \wedge
unsub $P^{\prime}=k s r p(k s c m p(s K s p)(t n)) \wedge p^{\prime} \in P^{\prime}$
then obtain $n P^{\prime}$ where
$k s a c t i v e(s K s p)(t n)$ and sb.nxtAct (sKsp)t $n_{r} \leq n$ and $n \leq m$ and unsub $P^{\prime}=k s r p(k s c m p(s K s p)(t n))$ and $p^{\prime} \in P^{\prime}$ by auto
hence sb.eval (sKs p) $t t^{\prime \prime} n\left(\exists{ }_{s} P^{\prime}\right.$. sb.pred $\left(p^{\prime} \in P^{\prime}\right) \wedge^{s}$ sb.ba $\left(\lambda k s\right.$. unsub $\left.\left.P^{\prime}=k s r p k s\right)\right)$ by blast
moreover have sb.lNAct (sKs p) t $n_{r} \leq n$
using $\left\langle n_{r} \leq s b . n x t A c t(s K s p) t n_{r}\right\rangle\left\langle s b . l N A c t(s K s p) t n_{r} \leq n_{r}\right\rangle$ $\left\langle s b . n x t A c t(s K s p) t n_{r} \leq n\right\rangle$ by linarith
with cass have sh.eval (sKs p) $t t^{\prime \prime} n\left(\neg^{s}\left(\exists s P^{\prime}\right.\right.$. (sb.pred ($\left.p^{\prime} \in P^{\prime}\right)$ $\wedge^{s} \operatorname{sb} . b a\left(\lambda k s\right.$. unsub $\left.\left.\left.\left.P^{\prime}=k s r p k s\right)\right)\right)\right)$ using sb.globEA[of n_{r} sKs $p t t^{\prime \prime}$
$\neg^{s}\left(\exists{ }_{s} P^{\prime}\right.$. sb.pred $\left(p^{\prime} \in P^{\prime}\right) \wedge^{s}$ sb.ba $\left(\lambda k s\right.$. unsub $\left.\left.\left.P^{\prime}=k s r p k s\right)\right) n\right]$ $\exists i \geq n_{r}$. ksactive $\left.(s K s p)(t i)\right\rangle$ by auto
ultimately show False using sb.notE by auto
qed
moreover from $\left\langle\exists i \geq n_{r}\right.$. ksactive (sKs p) $\left.(t i)\right\rangle$ have
ksactive (sKs p) ($\left.t\left(s b . n x t A c t(s K s p) t n_{r}\right)\right)$ using sb.nxtActI by blast
moreover have sub $P=k s r p$ ($k s c m p$ (sKs p) $\left.\left(t\left(s b . n x t A c t(s K s p) t n_{r}\right)\right)\right)$
using $\left\langle s u b P=k s r p\left(k s c m p(s K s p)\left(t\left(s b . n x t A c t(s K s p) t n_{r}\right)\right)\right)\right\rangle$.

```
            moreover from \(\left\langle m \geq s b . n x t A c t(s K s p) t n_{r}\right\rangle\) have sb.nxtAct (sKs p) \(t n_{r} \leq m\)
                by \(\operatorname{simp}\)
            moreover from \(\left\langle\exists i \geq n_{r}\right.\). ksactive (sKs p) ( \(t i\) ) 〉
                    have sb.nxtAct (sKs p) t \(n_{r} \geq n_{r}\) using sb.nxtActI by blast
        hence \(m \geq n_{k}\) using 〈sb.nxtAct (sKsp) \(\left.t n_{r} \leq m\right\rangle\left\langle s b . n x t A c t\right.\) (sKsp) \(\left.t n_{k} \leq n_{r}\right\rangle\)
            〈sb.nxtAct (sKsp) t \(n_{k} \geq n_{k}\) by simp
            with case-ass have ksactive (sKs p) ( \(t\) m) by simp
            ultimately have \(\left(p^{\prime}\right.\), solve \(\left.p^{\prime}\right) \in k s c s(k s c m p(s K s p)(t m))\)
                and ksactive (sKs p) ( \(t m\) )
                using \(\langle t \in\) arch \(\rangle\)
                msgDelivery[of \(t\) sKs \(p\) sb.nxtAct (sKs \(p\) ) \(t n_{r} P m p^{\prime}\) solve \(\left.p^{\prime}\right]\)
                \(\left\langle p^{\prime} \in P\right\rangle\) by auto
            hence sb.eval (sKs p) \(t t^{\prime \prime} m\left(s b . b a\left(\lambda k s .\left(p^{\prime}\right.\right.\right.\), solve \(\left.\left.\left.p^{\prime}\right) \in k s c s k s\right)\right)\)
                using \(s b . b a I A N o w\) by simp
            moreover have \(m \geq s b . l N A c t(s K s p) t m\) by simp
            moreover from 〈ksactive (sKsp) \((t m)\rangle\) have \(m \leq s b . n x t A c t\) (sKsp) t m
                    using sb.nxtActLe by auto
            moreover from \(\left\langle\exists i \geq n_{r}\right.\). ksactive (sKs p) \(\left.(t i)\right\rangle\) have
                sb.lNAct (sKs p) \(t n_{r} \leq s b . n x t A c t(s K s p) t n_{r}\) by simp
            with \(\left\langle s b . n x t A c t(s K s p) t n_{r} \leq m\right\rangle\) have \(s b . l N A c t(s K s p) t n_{r} \leq m\) by arith
            ultimately show sb.eval ( \(s K s p\) ) \(t t^{\prime \prime} n_{r}\)
                (sb.evt (sb.ba ( \(\lambda k s .\left(p^{\prime}\right.\), solve \(\left.\left.\left.\left.p^{\prime}\right) \in k s c s k s\right)\right)\right)\)
            using \(\left\langle\exists i \geq n_{r}\right.\). ksactive (sKs \(p\) ) ( \(t i\) ) sb.evtIA by blast
        qed
        qed
    qed
    thus sb.eval (sKsp) \(t t^{\prime \prime} n_{r}\) (sb.pred \(\left(p^{\prime} \in P\right) \longrightarrow{ }^{s}\)
        (sb.evt (sb.ba ( \(\lambda k s .\left(p^{\prime}\right.\), solve \(\left.\left.\left.\left.\left.p^{\prime}\right) \in k s c s k s\right)\right)\right)\right)\)
        using sb.impI by auto
    qed
    thus ?thesis using sb.allI by blast
qed
－Thus，the knowlege source will eventually solve the problem at hand．．．
ultimately have sb．eval（sKs p）\(t t^{\prime \prime} n_{r}\)
（sb．ba（ \(\lambda k s\) s．sub \(P=k s r p k s) \wedge^{s}\)
\(\left(\forall_{s} q .\left(\right.\right.\) sb．pred \((q \in P) \longrightarrow^{s}\) sb．evt \((\) sb．ba \((\lambda k s .(q\), solve \(\left.\left.\left.q) \in k s c s k s))\right)\right)\right)\)
using sb．conjI by simp
moreover from \(\left\langle\exists i \geq n_{r}\right.\) ．ksactive（sKs p）（ \(\left.\left.t i\right)\right\rangle\) have \(\exists i \geq 0\) ．ksactive（sKs p）（ \(t i\) ） by blast
hence sb．eval（sKs p）\(t t^{\prime \prime} n_{r}\)
\(\left(\left(s b . b a(\lambda k s . s u b P=k s r p k s) \wedge^{s}\right.\right.\)
\(\left(\forall_{s} q .\left(\right.\right.\) sb．pred \((q \in P) \longrightarrow^{s}\)
sb．evt \((\) sb．ba \((\lambda k s .(q\) ，solve \(q) \in k s c s k s))))) \longrightarrow^{s}\)
（sb．evt（sb．ba（ \(\lambda k s .(p\) ，solve \(p)=k s n s k s)))\) ）using \(\langle t \in \operatorname{arch}\rangle\)
sb．globEA［OF－bhvks1［of t p sKs p \(\left.t^{\prime \prime} P\right]\) ］sks－prob by simp
ultimately have sb．eval（sKs p）\(t t^{\prime \prime} n_{r}\)
\((s b . e v t(s b . b a(\lambda k s .(p, \operatorname{solve}(p))=k s n s(k s))))\)
using sb．impE［of sKs pt \(t^{\prime \prime} n_{r}\) ］by blast
```

－and forward it to the blackboard
then obtain n_{s} where $n_{s} \geq s b . n x t A c t(s K s p) t n_{r}$ and
$\left(\exists i \geq n_{s}\right.$ ．ksactive $(s K s p)(t i) \wedge$
$\left(\forall n^{\prime \prime} \geq s b . l N A c t(s K s p) t n_{s} . n^{\prime \prime} \leq s b . n x t A c t(s K s p) t n_{s} \longrightarrow\right.$
sb．eval（sKs p）$t t^{\prime \prime} n^{\prime \prime}(s b . b a(\lambda k s .(p$, solve $\left.\left.(p))=k s n s(k s)))\right)\right) \vee$
$\neg\left(\exists i \geq n_{s}\right.$ ．ksactive $\left.(s K s p)(t i)\right) \wedge$
sb．eval（sKs p）$t t^{\prime \prime} n_{s}(s b . b a(\lambda k s .(p$, solve $(p))=k s n s(k s)))$
using sb．evtEA［of n_{r} sKs pt］$\exists i \geq n_{r}$ ．ksactive（sKs p）（ $t i$ ）＞by blast
moreover from 〈sb．nxtAct（sKs p）t $\left.n_{r} \geq n_{r}\right\rangle\left\langle n_{r} \geq n_{k}\right\rangle\left\langle n_{s} \geq s b . n x t A c t\right.$（sKs p）t $\left.n_{r}\right\rangle$
have $n_{s} \geq n_{k}$ by arith
with case－ass have $\exists i \geq n_{s}$ ．ksactive（sKs p）（ $t i$ ）by auto
moreover have $n_{s} \geq s b$ ．lNAct（ $s K s p$ ）$t n_{s}$ by simp
moreover from $\exists \exists i \geq n_{s}$ ．ksactive（sKs p）（ $t i$ ）＞have $n_{s} \leq s b . n x t A c t(s K s p) t n_{s}$ using sb．nxtActLe by simp
ultimately have sb．eval（sKs p）$t t^{\prime \prime} n_{s}(s b . b a(\lambda k s .(p, \operatorname{solve}(p))=k s n s(k s)))$ using sb．evtEA［of n_{r} sKs $\left.p t\right]\left\langle\exists i \geq n_{r}\right.$ ．ksactive（sKs p）$\left.(t i)\right\rangle$ by blast
with $\left\langle\exists i \geq n_{s}\right.$ ．ksactive（ $s K s p$ ）（ $t i$ ）＞have
$(p, \operatorname{solve}(p))=k s n s\left(k s c m p(s K s p)\left(t\left(s b . n x t A c t(s K s p) t n_{s}\right)\right)\right)$
using sb．baEA［of n_{s} sKs $p t t^{\prime \prime} \lambda k s$ ．$(p$ ，solve $\left.p)=k s n s k s\right]$ by auto
moreover from $\left\langle\exists i \geq n_{s}\right.$ ．ksactive（sKs p）（ $t i$ ）〉
have ksactive $(s K s p)\left(t\left(s b . n x t A c t(s K s p) t n_{s}\right)\right)$ using $s b . n x t A c t I$ by simp
ultimately have $(p, \operatorname{solve}(p)) \in b b n s\left(b b c m p\right.$ the－bb $\left.\left(t\left(s b . n x t A c t(s K s p) t n_{s}\right)\right)\right)$
using conn1［OF pb．ts－prop（2）［of $\left.t\left(s b . n x t A c t(s K s p) t n_{s}\right)\right]$ by auto
hence p b．eval the－bb $t t^{\prime}$
$\left(s b . n x t A c t(s K s p) t n_{s}\right)(p b . b a(\lambda b b .(p, \operatorname{solve}(p)) \in b b n s b b))$
using $\langle t \in$ arch $\rangle p b . b a I$ by simp
－finally，the blackboard will forward the solution which finishes the proof．
with $b h v b b 1$ have $p b . e v a l ~ t h e-b b ~ t t^{\prime}\left(s b . n x t A c t(s K s p) t n_{s}\right)$
$(p b . e v t(p b . b a(\lambda b b .(p$, solve $p)=b b c s b b)))$
using 〈t arch〉pb．globE pb．impE［of the－bb $t t^{\prime}$ ］by blast
then obtain n_{f} where $n_{f} \geq s b . n x t A c t(s K s p) t n_{s}$ and
$p b . e v a l$ the－bb $t t^{\prime} n_{f}(p b . b a(\lambda b b .(p$ ，solve $p)=b b c s b b))$
using 〈 $t \in$ arch $\rangle p$ b．evtE［of $t t^{\prime}$ sb．nxtAct（sKs p）$t n_{s}$ ］by auto
hence $(p$ ，solve $p)=b b c s$（ $b b c m p$ the－bb $\left(t n_{f}\right)$ ）
using $\langle t \in$ arch \rangle pb．baEA by auto
moreover have $n_{f} \geq n_{0}$
proof－
from $\left\langle\exists n^{\prime \prime \prime} \geq n_{s}\right.$ ．ksactive（sKs p）（ $t n^{\prime \prime \prime}$ ）〉 have sb．nxtAct（sKs p）t $n_{s} \geq n_{s}$ using sb．nxtActLe by simp
moreover from $\left\langle n_{k} \geq n\right\rangle$ and 〈ksactive（sKs p）$\left(t n_{k}\right)$ 〉 have sb．nxtAct（sKs p）t $n_{k} \geq n_{k}$ using sb．nxtActI by blast
ultimately show ？thesis using $\left\langle n_{f} \geq s b . n x t A c t(s K s p) t n_{s}\right\rangle\left\langle n_{s} \geq s b . n x t A c t(s K s p) t n_{r}\right\rangle$ $\left\langle s b . n x t A c t(s K s p) t n_{r} \geq n_{r}\right\rangle\left\langle n_{r} \geq s b . n x t A c t(s K s p) t n_{k}\right\rangle\left\langle n_{k} \geq n\right\rangle\left\langle n \geq n_{0}\right\rangle$ by arith
qed
ultimately show ？thesis by auto

F Pattern Hierarchy

```
                qed
            qed
            qed
        qed
qed
theorem pSolved:
    fixes t and t'::nat 质BB and t'\prime::nat }\mp@subsup{=>}{}{\prime}K
    assumes t\inarch and
        \foralln.(\exists\mp@subsup{n}{}{\prime}\geqn.ksactive (sKs (bbop(bbcmp the-bb (t n)))) (t n'))
    shows
        \foralln.(\forallP.(sub P G bbrp(bbcmp the-bb (t n))
            \longrightarrow(\forallp\inP.(\existsm\geqn. (p,solve (p))=bbcs (bbcmp the-bb (t m))))))
    using assms pSolved-Ind by blast
end
end
```


G Verification of Blockchain Architectures

G. 1 Some Auxiliary Results

```
theory Auxiliary imports Main
begin
lemma disjE3: P\veeQ\veeR\Longrightarrow(P\LongrightarrowS)\Longrightarrow(Q\LongrightarrowS)\Longrightarrow(R\LongrightarrowS)\LongrightarrowS by auto
lemma ge-induct[consumes 1, case-names step]:
    fixes i::nat and j::nat and P::nat }=>\mathrm{ bool
    shows }i\leqj\Longrightarrow(\bigwedgen.i\leqn\Longrightarrow((\forallm\geqi. m<n\longrightarrowPm)\LongrightarrowPn))\LongrightarrowP
proof -
    assume a0:i\leqj and a1:(\n.i\leqn\Longrightarrow((\forallm\geqi. m<n\longrightarrowPm)\LongrightarrowPn))
    have (\bigwedgen.\forallm<n.i\leqm\longrightarrowPm\Longrightarrowi\leqn\longrightarrowPn)
    proof
        fix n
        assume a2: }\forallm<n.i\leqm\longrightarrowP
        show i\leqn\LongrightarrowPn
        proof -
            assume i\leqn
            with a1 have ( }\forallm\geqi.\quadm<n\longrightarrowPm)\LongrightarrowPn\mathrm{ by simp
            moreover from a2 have }\forallm\geqi. m<n\longrightarrowPm by sim
            ultimately show P n by simp
        qed
    qed
    with nat-less-induct[of \lambdaj. i\leqj\longrightarrowPjj] have i\leqj\longrightarrowPj.
    with a0 show ?thesis by simp
qed
lemma my-induct[consumes 1, case-names base step]:
    fixes P::nat}=>\mathrm{ bool
assumes less: i\leqj
    and base: P j
```



```
    shows P i
proof cases
    assume j=0
    thus ?thesis using less base by simp
next
    assume }\negj=
    have j-(j-i)\geqi\longrightarrowP(j-(j-i))
    proof (rule less-induct[of \lambdan::nat. j-n\geqi\longrightarrowP(j-n)j-i])
```

```
    fix \(x\) assume asmp: \(\wedge y . y<x \Longrightarrow i \leq j-y \longrightarrow P(j-y)\)
    show \(i \leq j-x \longrightarrow P(j-x)\)
    proof cases
        assume \(x=0\)
        with base show ?thesis by simp
    next
        assume \(\neg x=0\)
        with \(\langle j \neq 0\rangle\) have \(j-x<j\) by simp
        show ?thesis
        proof
            assume \(i \leq j-x\)
            moreover have \(\forall n^{\prime}>j-x . n^{\prime} \leq j \longrightarrow P n^{\prime}\)
            proof
            fix \(n^{\prime}\)
            show \(n^{\prime}>j-x \longrightarrow n^{\prime} \leq j \longrightarrow P n^{\prime}\)
            proof (rule HOL.impI[OF HOL.impI])
            assume \(j-x<n^{\prime}\) and \(n^{\prime} \leq j\)
            hence \(j-n^{\prime}<x\) by simp
            moreover from \(\langle i \leq j-x\rangle\left\langle j-x<n^{\prime}\right\rangle\) have \(i \leq n^{\prime}\)
                    using le-less-trans less-imp-le-nat by blast
            with \(\left\langle n^{\prime} \leq j\right.\) have \(i \leq j-\left(j-n^{\prime}\right)\) by simp
            ultimately have \(P\left(j-\left(j-n^{\prime}\right)\right)\) using asmp by simp
            moreover from \(\left\langle n^{\prime} \leq j\right\rangle\) have \(j-\left(j-n^{\prime}\right)=n^{\prime}\) by simp
            ultimately show \(P n^{\prime}\) by simp
            qed
        qed
        ultimately show \(P(j-x)\) using \(\langle j-x<j\rangle\) step \([o f j-x]\) by simp
        qed
    qed
    qed
    moreover from less have \(j-(j-i)=i\) by simp
    ultimately show ?thesis by simp
qed
```

lemma Greatest-ex-le-nat: assumes $\exists k . P k \wedge\left(\forall k^{\prime} . P k^{\prime} \longrightarrow k^{\prime} \leq k\right)$ shows $\neg\left(\exists n^{\prime}>\right.$ Greatest P. P n^{\prime})
by (metis Greatest-equality assms less-le-not-le)
lemma cardEx: assumes finite A and finite B and card $A>\operatorname{card} B$ shows $\exists x \in A . \neg x \in B$
proof cases
assume $A \subseteq B$
with assms have card $A \leq$ card B using card-mono by blast
with assms have False by simp
thus ?thesis by simp
next
assume $\neg A \subseteq B$
thus?thesis by auto
qed

```
lemma cardshift:
card \(\left\{i::\right.\) nat. \(\left.i>n \wedge i \leq n^{\prime} \wedge p\left(n^{\prime \prime}+i\right)\right\}=\operatorname{card}\left\{i . i>\left(n+n^{\prime \prime}\right) \wedge i \leq\left(n^{\prime}+n^{\prime \prime}\right) \wedge p i\right\}\)
proof -
    let \(? f=\lambda i . i+n^{\prime \prime}\)
    have bij-betw ?f \(\left\{i::\right.\) nat. \(\left.i>n \wedge i \leq n^{\prime} \wedge p\left(n^{\prime \prime}+i\right)\right\}\left\{i . i>\left(n+n^{\prime \prime}\right) \wedge i \leq\left(n^{\prime}+n^{\prime \prime}\right) \wedge p i\right\}\)
    proof (rule bij-betwI')
        fix \(x y\) assume \(x \in\left\{i . n<i \wedge i \leq n^{\prime} \wedge p\left(n^{\prime \prime}+i\right)\right\}\)
            and \(y \in\left\{i . n<i \wedge i \leq n^{\prime} \wedge p\left(n^{\prime \prime}+i\right)\right\}\)
        show \(\left(x+n^{\prime \prime}=y+n^{\prime \prime}\right)=(x=y)\) by simp
    next
        fix \(x::\) :nat assume \(x \in\left\{i . n<i \wedge i \leq n^{\prime} \wedge p\left(n^{\prime \prime}+i\right)\right\}\)
        hence \(n<x\) and \(x \leq n^{\prime}\) and \(p\left(n^{\prime \prime}+x\right)\) by auto
        moreover have \(n^{\prime \prime}+x=x+n^{\prime \prime}\) by simp
        ultimately have \(n+n^{\prime \prime}<x+n^{\prime \prime}\) and \(x+n^{\prime \prime} \leq n^{\prime}+n^{\prime \prime}\) and \(p\left(x+n^{\prime \prime}\right)\) by auto
        thus \(x+n^{\prime \prime} \in\left\{i . n+n^{\prime \prime}<i \wedge i \leq n^{\prime}+n^{\prime \prime} \wedge p i\right\}\) by auto
    next
        fix \(y\) ::nat assume \(y \in\left\{i . n+n^{\prime \prime}<i \wedge i \leq n^{\prime}+n^{\prime \prime} \wedge p i\right\}\)
        hence \(n+n^{\prime \prime}<y\) and \(y \leq n^{\prime}+n^{\prime \prime}\) and \(p y\) by auto
        then obtain \(x\) where \(x=y-n^{\prime \prime}\) by simp
        with \(\left\langle n+n^{\prime \prime}<y\right\rangle\) have \(y=x+n^{\prime \prime}\) by simp
        moreover from \(\left\langle x=y-n^{\prime \prime}\right\rangle\left\langle n+n^{\prime \prime}<y\right\rangle\) have \(\left.x\right\rangle n\) by simp
        moreover from \(\left\langle x=y-n^{\prime \prime}\right\rangle\left\langle y \leq n^{\prime}+n^{\prime \prime}\right\rangle\) have \(x \leq n^{\prime}\) by simp
        moreover from \(\left(y=x+n^{\prime \prime}\right.\) ) have \(y=n^{\prime \prime}+x\) by simp
        with \(\langle p y\rangle\) have \(p\left(n^{\prime \prime}+x\right)\) by simp
        ultimately show \(\exists x \in\left\{i . n<i \wedge i \leq n^{\prime} \wedge p\left(n^{\prime \prime}+i\right)\right\} . y=x+n^{\prime \prime}\) by auto
    qed
    thus ?thesis using bij-betw-same-card by auto
qed
end
```


G. 2 Relative Frequency LTL

theory $R F-L T L$
imports Main HOL-Library.Sublist Auxiliary Dynamic-Architecture-Calculus
begin
type-synonym 's seq $=n a t \Rightarrow$'s
abbreviation ccard $n n^{\prime} p \equiv \operatorname{card}\left\{i . i>n \wedge i \leq n^{\prime} \wedge p i\right\}$
lemma ccard-same:
assumes $\neg p$ (Suc n^{\prime})
shows ccard $n n^{\prime} p=\operatorname{ccard} n\left(S u c n^{\prime}\right) p$
proof -
have $\left\{i . i>n \wedge i \leq S u c n^{\prime} \wedge p i\right\}=\left\{i . i>n \wedge i \leq n^{\prime} \wedge p i\right\}$
proof
show $\left\{i . n<i \wedge i \leq S u c n^{\prime} \wedge p i\right\} \subseteq\left\{i . n<i \wedge i \leq n^{\prime} \wedge p i\right\}$
proof

G Verification of Blockchain Architectures

```
            fix }x\mathrm{ assume }x\in{i.n<i\wedgei\leqSuc n'^pi
            hence }n<x\mathrm{ and }x\leqSuc n' and px by aut
            with assms (1) have }x\not=Suc \mp@subsup{n}{}{\prime}\mathrm{ by auto
            with <x\leqSuc n'\rangle have }x\leq\mp@subsup{n}{}{\prime}\mathrm{ by simp
            with }\langlen<x\rangle\langlepx\rangle\mathrm{ show }x\in{i.n<i\wedgei\leqn'n'^pi} by sim
        qed
next
                            show {i.n<i\wedge i\leq n'^pi}\subseteq{i.n<i\wedgei\leqSuc n'^pi} by auto
qed
    thus ?thesis by simp
qed
lemma ccard-zero[simp]:
    fixes n::nat
    shows ccard n n p=0
    by auto
lemma ccard-inc:
    assumes p (Suc n')
        and }\mp@subsup{n}{}{\prime}\geq
    shows ccard n (Suc n') p=Suc (ccard n n'p)
proof -
    let ?A = {i. i>n\wedge i\leq n'^pi}
    have finite ?A by simp
    moreover have Suc n' }\not=
    ultimately have card (insert (Suc n') ?A) = Suc (card ?A)
        using card-insert-disjoint[of ?A] by simp
    moreover have insert (Suc n') ?A={i. i>n ^i\leq(Suc n)
    proof
        show insert (Suc n') ?A }\subseteq{i.n<i\wedgei\leqSuc n'^pi
        proof
            fix x assume x insert (Suc n') {i.n<i\wedgei\leq n'^ ^pi}
            hence }x=\mathrm{ Suc n' }\mp@subsup{n}{}{\prime}\veen<x\wedgex\leq\mp@subsup{n}{}{\prime}\wedgepx by sim
            thus }x\in{i.n<i\wedgei\leqSuc n'^pi
            proof
                    assume x = Suc n'
                    with assms (1) assms (2) show ?thesis by simp
            next
                    assume n<x^x\leq n'^ px
                thus ?thesis by simp
            qed
        qed
    next
        show {i.n<i^i\leqSuc n'^pi}\subseteqinsert (Suc n') ?A by auto
    qed
    ultimately show ?thesis by simp
qed
lemma ccard-mono:
```

```
    assumes n}\mp@subsup{n}{}{\prime}\geq
    shows }\mp@subsup{n}{}{\prime\prime}\geq\mp@subsup{n}{}{\prime}\Longrightarrow\mathrm{ ccard n (n'!::nat) p }\geq\mathrm{ ccard n n'p
proof (induction n'" rule: dec-induct)
    case base
    then show ?case ..
next
    case (step n')
    then show ?case
    proof cases
        assume p (Suc n')
        moreover from step.hyps assms have n\leqn' by simp
        ultimately have ccard n(Suc n')}p=Suc (ccard n n't p
            using ccard-inc[of p n' n] by simp
        also have ... \geqccard n n'p using step.IH by simp
        finally show ?case.
    next
        assume }\negp(Suc n'
        moreover from step.hyps assms have n\leqn'\prime by simp
        ultimately have ccard n (Suc n') p=ccard n n" p
            using ccard-same[of p n'" n] by simp
        also have ...\geq ccard n n' 
        finally show ?case by simp
    qed
qed
lemma ccard-ub[simp]:
    ccard n n' p SSuc n' - n
proof -
    have {i. i>n\wedgei\leqn'^ ^pi}\subseteq{i.i\geqn\wedgei\leqn'} by auto
    hence ccard n n'p\leqcard {i. i\geqn\wedgei\leq n'} by (simp add: card-mono)
    moreover have {i.i\geqn\wedgei\leqn'}={n..n'} by auto
    hence card {i. i\geqn\wedgei\leqn'}=Suc n' - n by simp
    ultimately show ?thesis by simp
qed
lemma ccard-sum:
    fixes n::nat
    assumes n'\geqn'\prime
        and }\mp@subsup{n}{}{\prime\prime}\geq
    shows ccard n n' P = ccard n n'\prime}P+ccard n'\prime n' P
proof -
    have ccard n n' P = card {i. i>n\wedge i\leq n'^ P i} by simp
    moreover have {i. i>n ^i\leq n'^ ^ i} =
```



```
    proof
    show ?LHS \subseteq?RHS by auto
    next
    show ?RHS \subseteq?LHS
    proof
```

fix x assume $x \in$?RHS
hence $x>n \wedge x \leq n^{\prime \prime} \wedge P x \vee x>n^{\prime \prime} \wedge x \leq n^{\prime} \wedge P x$ by auto
thus $x \in$? LHS
proof
assume $n<x \wedge x \leq n^{\prime \prime} \wedge P x$
with assms show ?thesis by simp
next
assume $n^{\prime \prime}<x \wedge x \leq n^{\prime} \wedge P x$
with assms show ?thesis by simp
qed
qed
qed
hence card ? LHS $=$ card ? RHS by simp
ultimately have ccard $n n^{\prime} P=$ card ? RHS by simp
moreover have
card ? RHS $=\operatorname{card}\left\{i . i>n \wedge i \leq n^{\prime \prime} \wedge P i\right\}+\operatorname{card}\left\{i . i>n^{\prime \prime} \wedge i \leq n^{\prime} \wedge P i\right\}$
proof (rule card-Un-disjoint)
show finite $\left\{i . n<i \wedge i \leq n^{\prime \prime} \wedge P i\right\}$ by simp
show finite $\left\{i . n^{\prime \prime}<i \wedge i \leq n^{\prime} \wedge P i\right\}$ by simp
show $\left\{i . n<i \wedge i \leq n^{\prime \prime} \wedge P i\right\} \cap\left\{i . n^{\prime \prime}<i \wedge i \leq n^{\prime} \wedge P i\right\}=\{ \}$ by auto
qed
moreover have ccard $n n^{\prime \prime} P=\operatorname{card}\left\{i . i>n \wedge i \leq n^{\prime \prime} \wedge P i\right\}$ by simp
moreover have ccard $n^{\prime \prime} n^{\prime} P=\operatorname{card}\left\{i . i>n^{\prime \prime} \wedge i \leq n^{\prime} \wedge P i\right\}$ by simp
ultimately show ?thesis by simp
qed
lemma ccard-ex:
fixes $n:: n a t$
shows $c \geq 1 \Longrightarrow c<c c a r d n n^{\prime \prime} P \Longrightarrow \exists n^{\prime}<n^{\prime \prime} . n^{\prime}>n \wedge$ ccard $n n^{\prime} P=c$
proof (induction c rule: dec-induct)
let ?l $=L E A S T i:: n a t . n<i \wedge i<n^{\prime \prime} \wedge P i$
case base
moreover have ccard $n n^{\prime \prime} P \leq \operatorname{Suc}\left(\operatorname{card}\left\{i . n<i \wedge i<n^{\prime \prime} \wedge P i\right\}\right)$
proof -
from 〈ccard $n n^{\prime \prime} P>1$ 〉 have $n^{\prime \prime}>n$ using less-le-trans by force
then obtain n^{\prime} where Suc $n^{\prime}=n^{\prime \prime}$ and Suc $n^{\prime} \geq n$ by (metis lessE less-imp-le-nat) moreover have $\left\{i . n<i \wedge i<S u c n^{\prime} \wedge P i\right\}=\left\{i . n<i \wedge i \leq n^{\prime} \wedge P i\right\}$ by auto
hence card $\left\{i . n<i \wedge i<S u c n^{\prime} \wedge P i\right\}=\operatorname{card}\left\{i . n<i \wedge i \leq n^{\prime} \wedge P i\right\}$ by simp
moreover have
card $\left\{i . n<i \wedge i \leq S u c n^{\prime} \wedge P i\right\} \leq \operatorname{Suc}\left(\right.$ card $\left.\left\{i . n<i \wedge i \leq n^{\prime} \wedge P i\right\}\right)$
proof cases
assume P (Suc n^{\prime})
moreover from $\left\langle n^{\prime \prime}>n\right\rangle\left\langle\right.$ Suc $\left.n^{\prime}=n^{\prime \prime}\right\rangle$ have $n^{\prime} \geq n$ by simp ultimately show ?thesis using ccard-inc[of $\left.P n^{\prime} n\right]$ by simp
next
assume $\neg P\left(\right.$ Suc $\left.n^{\prime}\right)$
moreover from $\left\langle n^{\prime \prime}>n\right\rangle\left\langle\right.$ Suc $\left.n^{\prime}=n^{\prime \prime}\right\rangle$ have $n^{\prime} \geq n$ by simp ultimately show ?thesis using ccard-same $\left[\right.$ of $\left.P n^{\prime} n\right]$ by simp

```
    qed
    ultimately show ?thesis by simp
qed
ultimately have card \(\left\{i . n<i \wedge i<n^{\prime \prime} \wedge P i\right\} \geq 1\) by simp
hence \(\left\{i . n<i \wedge i<n^{\prime \prime} \wedge P i\right\} \neq\{ \}\) by fastforce
hence \(\exists i . n<i \wedge i<n^{\prime \prime} \wedge P i\) by auto
hence ?l>n and ?l<n" and \(P\) ?l using LeastI-ex[of \(\left.\lambda i:: n a t . n<i \wedge i<n^{\prime \prime} \wedge P i\right]\) by auto
moreover have \(\{i . n<i \wedge i \leq ? l \wedge P i\}=\{? l\}\)
proof
    show \(\{i . n<i \wedge i \leq ? l \wedge P i\} \subseteq\{? l\}\)
    proof
        fix \(i\)
        assume \(i \in\{i . n<i \wedge i \leq ? l \wedge P i\}\)
        hence \(n<i\) and \(i \leq ? l\) and \(P i\) by auto
        with \(« \exists i . n<i \wedge i<n^{\prime \prime} \wedge P i\) have \(i=\) ? l
            using Least-le \(\left[\right.\) of \(\left.\lambda i . n<i \wedge i<n^{\prime \prime} \wedge P i\right]\) by (meson antisym le-less-trans)
        thus \(i \in\{? l\}\) by simp
    qed
next
    show \(\{? l\} \subseteq\{i . n<i \wedge i \leq ? l \wedge P i\}\)
    proof
        fix \(i\)
        assume \(i \in\{? l\}\)
        hence \(i=\) ? \(l\) by \(\operatorname{simp}\)
        with \(\langle ? l>n\rangle\left\langle ? l<n^{\prime \prime}\right\rangle\langle P ? l\rangle\) show \(i \in\{i . n<i \wedge i \leq ? l \wedge P i\}\) by simp
    qed
qed
hence ccard \(n\) ?l \(P=1\) by simp
ultimately show ?case by auto
next
case (step c)
moreover from step.prems have Suc \(c<c c a r d n n^{\prime \prime} P\) by simp
ultimately obtain \(n^{\prime}\) where \(n^{\prime}<n^{\prime \prime}\) and \(n<n^{\prime}\) and ccard \(n n^{\prime} P=c\) by auto
hence ccard \(n n^{\prime \prime} P=\) ccard \(n n^{\prime} P+\) ccard \(n^{\prime} n^{\prime \prime} P\) using ccard-sum \(\left[\right.\) of \(\left.n^{\prime} n^{\prime \prime} n\right]\) by simp
with \(\left\langle S u c c<c c a r d n n^{\prime \prime} P\right\rangle\left\langle c c a r d n n^{\prime} P=c\right\rangle\) have ccard \(n^{\prime} n^{\prime \prime} P>1\) by simp
moreover have ccard \(n^{\prime} n^{\prime \prime} P \leq \operatorname{Suc}\left(\operatorname{card}\left\{i . n^{\prime}<i \wedge i<n^{\prime \prime} \wedge P i\right\}\right)\)
proof -
    from 〈ccard \(n^{\prime} n^{\prime \prime} P>1\) 〉 have \(n^{\prime \prime}>n^{\prime}\) using less-le-trans by force
    then obtain \(n^{\prime \prime \prime}\) where Suc \(n^{\prime \prime \prime}=n^{\prime \prime}\) and Suc \(n^{\prime \prime \prime} \geq n^{\prime}\) by (metis lessE less-imp-le-nat)
    moreover have \(\left\{i . n^{\prime}<i \wedge i<S u c n^{\prime \prime \prime} \wedge P i\right\}=\left\{i . n^{\prime}<i \wedge i \leq n^{\prime \prime \prime} \wedge P i\right\}\) by auto
    hence card \(\left\{i . n^{\prime}<i \wedge i<S u c n^{\prime \prime \prime} \wedge P i\right\}=\operatorname{card}\left\{i . n^{\prime}<i \wedge i \leq n^{\prime \prime \prime} \wedge P i\right\}\) by simp
    moreover have
        card \(\left\{i . n^{\prime}<i \wedge i \leq S u c n^{\prime \prime \prime} \wedge P i\right\} \leq S u c\left(\operatorname{card}\left\{i . n^{\prime}<i \wedge i \leq n^{\prime \prime \prime} \wedge P i\right\}\right)\)
    proof cases
        assume \(P\) (Suc \(\left.n^{\prime \prime \prime}\right)\)
        moreover from \(\left\langle n^{\prime \prime}>n^{\prime}\right\rangle\left\langle\right.\) Suc \(\left.n^{\prime \prime \prime}=n^{\prime \prime}\right\rangle\) have \(n^{\prime \prime \prime} \geq n^{\prime}\) by simp
        ultimately show ?thesis using ccard-inc[of \(P n^{\prime \prime \prime} n\) '] by simp
    next
        assume \(\neg P\left(\right.\) Suc \(\left.n^{\prime \prime \prime}\right)\)
```


G Verification of Blockchain Architectures


```
            ultimately show ?thesis using ccard-same[of P n'\prime\prime n] by simp
qed
ultimately show ?thesis by simp
qed
    ultimately have card {i.n' 
    hence {i. n'<i\wedgei< n'\prime^Pi}\not={} by fastforce
    hence }\existsi.\mp@subsup{n}{}{\prime}<i\wedgei<\mp@subsup{n}{}{\prime\prime}\wedgePi\mathrm{ by auto
    let ?l = LEAST i::nat. n'< }\mp@subsup{n}{}{\prime}\wedgei<\mp@subsup{n}{}{\prime\prime}\wedgeP
    from }\exists\existsi.\mp@subsup{n}{}{\prime}<i\wedgei<\mp@subsup{n}{}{\prime\prime}\wedgePi\rangle have n'< ?l 
    using LeastI-ex[of \lambdai::nat. n' < i}^i<\mp@subsup{n}{}{\prime\prime}\wedgePi] by aut
    with {n< n'` have ccard n ?l P = ccard n n' P + ccard n' ?l P using ccard-sum[of n' ?l n]
by simp
    moreover have {i.n'<i}^\mp@code{|}\leq?l\wedgeP P i}={?l
    proof
    show {i. n'<i^i\leq?l ^Pi}\subseteq{?l}
    proof
            fix }
            assume i\in{i.n'< < i^i\leq?l ^Pi}
            hence }\mp@subsup{n}{}{\prime}<i\mathrm{ and }i\leq?l and Pi by aut
            with }{\existsi.,\mp@subsup{n}{}{\prime}<i\wedgei<\mp@subsup{n}{}{\prime\prime}\wedgeP i> have i=?
            using Least-le[of \lambdai. n'<i^i< n'\prime}\wedgePi] by (meson antisym le-less-trans
            thus i\in{?l} by simp
    qed
    next
        show {?l}\subseteq{i. n'<i\wedgei\leq?l ^Pi}
        proof
            fix }
            assume i\in{?l}
            hence i=?l by simp
            moreover from {\existsi. n'<i^i< n'\prime}\wedgePi\rangle\mathrm{ have ?l<n'| and P?l
            using LeastI-ex[of \lambdai. n' < i}^i<\mp@subsup{n}{}{\prime\prime}\wedgePi] by aut
            ultimately show }i\in{i.n'\mp@subsup{n}{}{\prime}<i\wedgei\leq?l\wedgePi}\mathrm{ using <?l>n'\ by simp
        qed
    qed
    hence ccard n' ?l P = 1 by simp
    ultimately have card {i.n<i\wedgei\leq?l ^P i} = Suc c using <ccard n n' P = c` by simp
    moreover from }\existsi.\mp@subsup{n}{}{\prime}<i\wedgei<\mp@subsup{n}{}{\prime\prime}\wedgePi\rangle\mathrm{ have }\mp@subsup{n}{}{\prime}<?l\mathrm{ and ?l < n'। and P ?l
        using LeastI-ex[of \lambdai::nat. n' < i^i< n'^^Pi] by auto
    with \langlen< n'\rangle have n<?l and ?l<n'\prime by auto
    ultimately show ?case by auto
qed
lemma ccard-freq:
    assumes ( }n\mathrm{ '::nat) }\geq
        and ccard n n' P> ccard n n' Q + cnf
    shows \existsn' n'\prime. ccard n' n'\prime P > cnf ^ccard n' n'\prime Q \leqcnf
proof cases
    assume cnf = 0
```

with $\operatorname{assms}(2)$ have $c c a r d n n^{\prime} P>\operatorname{ccard} n n^{\prime} Q$ by simp
hence card $\left\{i . n<i \wedge i \leq n^{\prime} \wedge P i\right\}>c a r d\left\{i . n<i \wedge i \leq n^{\prime} \wedge Q i\right\}$
(is card?LHS>card ?RHS) by simp
then obtain i where $i \in ? L H S$ and $\neg i \in ? R H S$ and $i>0$ using cardEx[of ?LHS ?RHS] by auto
hence $P i$ and $\neg Q i$ by auto
with $\langle i>0\rangle$ obtain $n^{\prime \prime}$ where $P\left(\right.$ Suc $\left.n^{\prime \prime}\right)$ and $\neg Q$ (Suc $n^{\prime \prime}$) using gr0-implies-Suc by auto
hence ccard $n^{\prime \prime}\left(\right.$ Suc $\left.n^{\prime \prime}\right) P=1$ using ccard-inc by auto
with $\langle c n f=0\rangle$ have ccard $n^{\prime \prime}\left(\right.$ Suc $\left.n^{\prime \prime}\right) P>c n f$ by simp
moreover from $\left\langle\neg Q\left(\right.\right.$ Suc $\left.\left.n^{\prime \prime}\right)\right\rangle$ have ccard $n^{\prime \prime}\left(\right.$ Suc $\left.n^{\prime \prime}\right) Q=0$
using ccard-same $\left[\right.$ of $\left.Q n^{\prime \prime} n^{\prime \prime}\right]$ by auto
with $\langle c n f=0\rangle$ have $c c a r d n^{\prime \prime}\left(\right.$ Suc $\left.n^{\prime \prime}\right) ~ Q \leq c n f$ by simp
ultimately show ?thesis by auto
next
assume $\neg c n f=0$
show ?thesis
proof (rule ccontr)
assume $\neg\left(\exists n^{\prime} n^{\prime \prime}\right.$. ccard $n^{\prime} n^{\prime \prime} P>c n f \wedge$ ccard $\left.n^{\prime} n^{\prime \prime} Q \leq c n f\right)$
hence hyp: $\forall n^{\prime} n^{\prime \prime}$. ccard $n^{\prime} n^{\prime \prime} Q \leq c n f \longrightarrow$ ccard $n^{\prime} n^{\prime \prime} P \leq c n f$
using leI less-imp-le-nat by blast
show False
proof cases
assume ccard $n n^{\prime} Q \leq c n f$
with hyp have ccard $n n^{\prime} P \leq \operatorname{cnf}$ by simp
with assms show False by simp
next
let ? gcond $=\lambda n^{\prime \prime}$. $n^{\prime \prime} \geq n \wedge n^{\prime \prime} \leq n^{\prime} \wedge\left(\exists x \geq 1\right.$. ccard $\left.n n^{\prime \prime} Q=x * c n f\right)$
let ? $g=$ GREATEST $n^{\prime \prime}$. ?gcond $n^{\prime \prime}$
assume \neg ccard $n n^{\prime} Q \leq c n f$
hence ccard $n n^{\prime} Q>$ cnf by simp
hence $\exists n^{\prime \prime}$. ?gcond $n^{\prime \prime}$
proof -
from 〈ccard $\left.n n^{\prime} Q>c n f\right\rangle\langle\neg c n f=0\rangle$ obtain $n^{\prime \prime}$
where $n^{\prime \prime}>n$ and $n^{\prime \prime} \leq n^{\prime}$ and ccard $n n^{\prime \prime} Q=c n f$
using ccard-ex[of cnf $\left.n n^{\prime} Q\right]$ by auto
moreover from 〈ccard $\left.n n^{\prime \prime} Q=c n f\right\rangle$ have $\exists x \geq 1$. ccard $n n^{\prime \prime} Q=x *$ cnf by auto ultimately show ?thesis using less-imp-le-nat by blast
qed
moreover have $\forall n^{\prime \prime}>n^{\prime}$. \neg ? gcond $n^{\prime \prime}$ by simp
ultimately have gex: $\exists n^{\prime \prime}$. ?gcond $n^{\prime \prime} \wedge\left(\forall n^{\prime \prime \prime}\right.$. ?gcond $\left.n^{\prime \prime \prime} \longrightarrow n^{\prime \prime \prime} \leq n^{\prime \prime}\right)$
using boundedGreatest[of ?gcond - $n\rceil$ by blast
hence $\exists x \geq 1$. ccard n ? $g Q=x *$ cnf and ? $g \geq n$
using GreatestI-ex-nat[of ?gcond] by auto
moreover \{fix $n^{\prime \prime}$
have $n^{\prime \prime} \geq n \Longrightarrow \exists x \geq 1$. ccard $n n^{\prime \prime} Q=x *$ cnf \Longrightarrow ccard $n n^{\prime \prime} P \leq \operatorname{ccard} n n^{\prime \prime} Q$
proof (induction $n^{\prime \prime}$ rule: ge-induct)
case (step n^{\prime})
from step.prems obtain x where $x \geq 1$ and cas: ccard $n n^{\prime} Q=x *$ cnf by auto then show ?case

```
    proof cases
    assume \(x=1\)
    with cas have ccard \(n n^{\prime} Q=\) cnf by simp
    with hyp have ccard \(n n^{\prime} P \leq c n f\) by simp
    with 〈ccard \(n n^{\prime} Q=\) cnf〉 show ?thesis by simp
    next
    assume \(\neg x=1\)
    with \(\langle x \geq 1\rangle\) have \(x>1\) by simp
    hence \(x-1 \geq 1\) by simp
    moreover from \(\langle c n f \neq 0\rangle\langle x-1 \geq 1\rangle\)
        have \((x-1) * \operatorname{cnf}<x * \operatorname{cnf} \wedge(x-1) * c n f \neq 0\) by auto
    with \(\langle x-1 \geq 1\rangle\langle c n f \neq 0\rangle\left\langle c c a r d n n^{\prime} Q=x * c n f\right\rangle\) obtain \(n^{\prime \prime}\)
        where \(n^{\prime \prime}>n\) and \(n^{\prime \prime}<n^{\prime}\) and ccard \(n n^{\prime \prime} Q=(x-1) * c n f\)
        using ccard-ex[of \((x-1) *\) cnf \(n n^{\prime} Q\) ] by auto
    ultimately have \(\exists x \geq 1\). ccard \(n n^{\prime \prime} Q=x * c n f\) and \(n^{\prime \prime} \geq n\) by auto
    with \(\left\langle n^{\prime \prime} \geq n\right\rangle\left\langle n^{\prime \prime}<n\right\rangle\) have ccard \(n n^{\prime \prime} P \leq\) ccard \(n n^{\prime \prime} Q\) using step.IH by simp
    moreover have ccard \(n^{\prime \prime} n^{\prime} Q=c n f\)
    proof -
        from \(\langle x-1 \geq 1\rangle\) have \(x * c n f=((x-1) * c n f)+c n f\)
            using semiring-normalization-rules(2)[of \((x-1)\) cnf \(]\) by simp
        with 〈ccard \(n n^{\prime \prime} Q=(x-1) *\) cnf〉〈ccard \(n n^{\prime} Q=x * c n f\) 〉
        have ccard \(n n^{\prime} Q=\) ccard \(n n^{\prime \prime} Q+c n f\) by simp
        moreover from \(\left\langle n^{\prime \prime} \geq n\right\rangle\left\langle n^{\prime \prime}<n^{\prime}\right\rangle\) have ccard \(n n^{\prime} Q=\operatorname{ccard} n n^{\prime \prime} Q+\operatorname{ccard} n^{\prime \prime} n^{\prime} Q\)
            using ccard-sum [of \(n^{\prime \prime} n^{\prime} n\) ] by simp
        ultimately show ?thesis by simp
    qed
    moreover from 〈ccard \(\left.n^{\prime \prime} n^{\prime} Q=c n f\right\rangle\) have ccard \(n^{\prime \prime} n^{\prime} P \leq c n f\) using hyp by simp
    ultimately show ?thesis using \(\left\langle n^{\prime \prime} \geq n\right\rangle\left\langle n^{\prime \prime}<n^{\prime}\right\rangle\) ccard-sum \(\left[\right.\) of \(\left.n^{\prime \prime} n^{\prime} n\right]\) by simp
    qed
qed \(\}\) note geq \(=\) this
ultimately have ccard \(n\) ? g \(P \leq\) ccard \(n\) ?g \(Q\) by simp
moreover have ccard ? \(g n^{\prime} P \leq c n f\)
proof (rule ccontr)
    assume \(\neg\) ccard ? \(g n^{\prime} P \leq c n f\)
    hence ccard ?g \(n^{\prime} P>\) cnf by simp
    have ccard ? g \(n^{\prime} Q>c n f\)
    proof (rule ccontr)
        assume \(\neg\) ccard \(? g n^{\prime} Q>c n f\)
    hence ccard? \(n^{\prime} Q \leq c n f\) by \(\operatorname{simp}\)
    with 〈ccard ? g n' \(P>c n f\rangle\) show False
        using \(\left\langle\neg\left(\exists n^{\prime} n^{\prime \prime}\right.\right.\). ccard \(n^{\prime} n^{\prime \prime} P>c n f \wedge\) ccard \(\left.\left.n^{\prime} n^{\prime \prime} Q \leq c n f\right)\right\rangle\) by simp
    qed
    with \(\langle c n f=0\rangle\) obtain \(n^{\prime \prime}\) where \(n^{\prime \prime}>? g\) and \(n^{\prime \prime}<n^{\prime}\) and ccard ?g \(n^{\prime \prime} Q=c n f\)
        using ccard-ex[of cnf ? g \(\left.n^{\prime} Q\right]\) by auto
    moreover have \(\exists x \geq 1\). ccard \(n n^{\prime \prime} Q=x * c n f\)
    proof -
    from \(\langle\exists x \geq 1\). ccard \(n\) ? \(g Q=x *\) cnf \(\rangle\) obtain \(x\)
        where \(x \geq 1\) and ccard \(n\) ?g \(Q=x * c n f\) by auto
    from \(\left.\left\langle n^{\prime \prime}\right\rangle ? g\right\rangle\langle ? g \geq n\rangle\) have ccard \(n n^{\prime \prime} Q=\) ccard \(n ? g Q+\) ccard ? g \(n^{\prime \prime} Q\)
```

```
                using ccard-sum[of ?g n n' n Q ] by simp
            with \ccard n?g Q =x* cnf` have ccard n n' Q =x* cnf + ccard ?g n" Q by simp
            with \ccard ?g n" }Q=cnf\mathrm{ ) have ccard n n n' Q = Suc x * cnf by simp
            thus ?thesis by auto
            qed
            moreover from \langlen'> \?g\rangle\?g\geqn\rangle have }\mp@subsup{n}{}{\prime\prime}\geqn\mathrm{ by simp
            ultimately have }\exists\mp@subsup{n}{}{\prime\prime}>\mathrm{ ? g. ?gcond n" by auto
            moreover from gex have \foralln'\prime\prime. ?gcond n'\prime\prime}\longrightarrow\mp@subsup{n}{}{\prime\prime\prime}\leq?
            using Greatest-le-nat[of ?gcond] by auto
            ultimately show False by auto
        qed
        moreover from gex have n'\geq?g
            using GreatestI-ex-nat[of ?gcond] by auto
            ultimately have ccard n n' P\leqccard n n n}Q+cn
            using ccard-sum[of ?g n n' n] using <?g \geqn> by simp
        with assms show False by simp
        qed
    qed
qed
locale trusted =
    fixes bc:: ('a list) seq
        and n::nat
    assumes growth: }\mp@subsup{n}{}{\prime}\not=0\Longrightarrow\mp@subsup{n}{}{\prime}\leqn\Longrightarrowbc \mp@subsup{n}{}{\prime}=bc(\mp@subsup{n}{}{\prime}-1)\vee(\existsb.bc \mp@subsup{n}{}{\prime}=bc(\mp@subsup{n}{}{\prime}-1)@ b
begin
end
locale untrusted =
    fixes bc:: ('a list) seq
        and mining::bool seq
    assumes growth:
        \n::nat.prefix (bc (Suc n)) (bc n)\vee (\existsb::'a.bc (Suc n)=bc n @ [b])^ mining (Suc n)
begin
lemma prefix-save:
    assumes prefix sbc (bc n)
```



```
    shows }\mp@subsup{n}{}{\prime\prime}\geq\mp@subsup{n}{}{\prime}\Longrightarrow\mathrm{ prefix sbc (bc n')
proof (induction n" rule: dec-induct)
    case base
    with assms(1) show ?case by simp
next
    case (step n)
    from growth[of n] show ?case
    proof
        assume prefix (bc (Suc n)) (bc n)
        moreover from step.hyps have length (bc (Suc n)) \geq length sbc using assms(2) by simp
        ultimately show ?thesis using step.IH using prefix-length-prefix by auto
    next
```


G Verification of Blockchain Architectures

```
    assume (\existsb.bc (Suc n)=bc n@ [b]) ^ mining (Suc n)
    with step.IH show ?thesis by auto
    qed
qed
theorem prefix-length:
    assumes prefix sbc (bc n) and }\neg\mathrm{ prefix sbc (bc n') and n' n n'|
    shows \existsn'\prime\prime}>\mp@subsup{n}{}{\prime}.\mp@subsup{n}{}{\prime\prime\prime}\leq\mp@subsup{n}{}{\prime\prime}\wedge length (bc n'"\prime) < length sb
proof (rule ccontr)
    assume }\neg(\exists\mp@subsup{n}{}{\prime\prime\prime}>\mp@subsup{n}{}{\prime}.\mp@subsup{n}{}{\prime\prime\prime}\leq\mp@subsup{n}{}{\prime\prime}\wedge length (bc n ''\prime) < length sbc
    hence }\forall\mp@subsup{n}{}{\prime\prime\prime}>\mp@subsup{n}{}{\prime}.\mp@subsup{n}{}{\prime\prime\prime}\leq\mp@subsup{n}{}{\prime\prime}\longrightarrow\mathrm{ length (bc n''') }\geq\mathrm{ length sbc by auto
    with assms have prefix sbc (bc n')}\mathrm{ ) using prefix-save[of sbc n' n'| by simp
    with assms (2) show False by simp
qed
theorem grow-mining:
    assumes length (bc n) < length (bc (Suc n))
    shows mining (Suc n)
    using assms growth leD prefix-length-le by blast
lemma length-suc-length:
    length (bc (Suc n)) \leqSuc (length (bc n))
    by (metis eq-iff growth le-SucI length-append-singleton prefix-length-le)
end
locale untrusted-growth =
    fixes bc:: nat seq
        and mining:: nat }=>\mathrm{ bool
    assumes as1: \bigwedgen::nat. bc (Suc n) \leqSuc (bc n)
        and as2: \n::nat. bc (Suc n) > bc n\Longrightarrow mining (Suc n)
begin
end
```

sublocale untrusted \subseteq untrusted-growth λn. length (bc n) using grow-mining length-suc-length by unfold-locales auto

context untrusted-growth

begin

theorem ccard-diff-lgth:
$n^{\prime} \geq n \Longrightarrow$ ccard $n n^{\prime}(\lambda n$. mining $n) \geq\left(b c n^{\prime}-b c n\right)$
proof (induction n^{\prime} rule: dec-induct)
case base
then show? case by simp
next
case (step n^{\prime})
from $a s 1$ have $b c\left(S u c n^{\prime}\right)<S u c\left(b c n^{\prime}\right) \vee b c\left(S u c n^{\prime}\right)=S u c\left(b c n^{\prime}\right)$ using le-neq-implies-less by blast

```
    then show ?case
    proof
        assume bc (Suc n') < Suc (bc n')
        hence bc (Suc n') - bc n \leqbc n' - bc n by simp
        moreover from step.hyps have
            ccard n (Suc n) ( }\lambdan.m\mathrm{ mining }n)\geq\operatorname{ccard n n' ( }\lambdan\mathrm{ .mining n)
            using ccard-mono[of n n' Suc n'] by simp
        ultimately show ?thesis using step.IH by simp
    next
        assume bc (Suc n') = Suc (bc n')
        hence bc (Suc n') - bc n\leqSuc (bc n' - bc n) by simp
        moreover from <bc (Suc n') = Suc (bc n')> have mining (Suc n') using as2 by simp
        with step.hyps have ccard n (Suc n') (\lambdan. mining n) \geqSuc (ccard n n' (\lambdan. mining n))
            using ccard-inc by simp
        ultimately show ?thesis using step.IH by simp
    qed
qed
end
locale trusted-growth =
    fixes bc:: nat seq
        and mining:: nat }=>\mathrm{ bool
    and init:: nat
    assumes as1: \bigwedgen::nat. bc (Suc n)\geqbc n
    and as2: \n::nat. mining (Suc n)\Longrightarrowbc (Suc n) > bc n
begin
    lemma grow-mono: n}\mp@subsup{n}{}{\prime}\geqn\Longrightarrowbc n'\geqbc 
    proof (induction n' rule: dec-induct)
    case base
    then show ?case by simp
    next
        case (step n')
        then show ?case using as1[of n] by simp
qed
theorem ccard-diff-lgth:
    shows }\mp@subsup{n}{}{\prime}\geqn\Longrightarrowbc \mp@subsup{n}{}{\prime}-bcn\geqccard n n' (\lambdan.mining n)
proof (induction n' rule: dec-induct)
    case base
    then show ?case by simp
next
    case (step n')
    then show ?case
    proof cases
        assume mining (Suc n')
        with as2 have bc (Suc n') > bc n' by simp
        moreover from step.hyps have bc n'\geqbc n using grow-mono by simp
        ultimately have bc (Suc n') - bc n>bc n' - bc n by simp
        moreover from as1 have bc (Suc n') - bc n\geqbc n' - bc n by (simp add:diff-le-mono)
```

```
        moreover from <mining (Suc n')> step.hyps
            have ccard n (Suc n') (\lambdan. mining n) \leqSuc (ccard n n' (\lambdan. mining n))
            using ccard-inc by simp
        ultimately show ?thesis using step.IH by simp
    next
        assume }\neg\mathrm{ mining (Suc n')
        hence ccard n (Suc n')(\lambdan. mining n) \leq (ccard n n' (\lambdan. mining n))
            using ccard-same by simp
        moreover from as1 have bc (Suc n') - bc n \geqbc n' - bc n by (simp add: diff-le-mono)
        ultimately show ?thesis using step.IH by simp
        qed
    qed
end
```

locale bounded-growth $=t g$: trusted-growth tbc tmining $+u g$: untrusted-growth ubc umining
for $t b c::$ nat seq
and $u b c::$ nat seq
and tmining:: nat \Rightarrow bool
and umining:: nat \Rightarrow bool
and $s b c:: n a t$
and cnf::nat +
assumes fair: $\bigwedge n n^{\prime}$. ccard $n n^{\prime}(\lambda n$. umining $n)>c n f \Longrightarrow c c a r d n n^{\prime}(\lambda n$. tmining $n)>c n f$
and $a 2: t b c 0 \geq s b c+c n f$
and $a 3$: ubc $0<s b c$
begin

```
theorem tr-upper-bound: shows \(u b c n<t b c n\)
proof (rule ccontr)
    assume \(\neg u b c n<t b c n\)
    hence ubc \(n \geq t b c n\) by simp
    moreover from \(a 2 a 3\) have \(t b c 0>u b c 0+c n f\) by simp
    moreover have tbc \(n \geq t b c 0\) using tg.grow-mono by simp
    ultimately have \(u b c n-u b c 0>t b c n-t b c 0+c n f\) by simp
    moreover have ccard \(0 n(\lambda n\). tmining \(n) \leq t b c n-t b c 0\) using tg.ccard-diff-lgth by simp
    moreover have ubc \(n-u b c 0 \leq\) ccard \(0 n(\lambda n\). umining \(n\) ) using ug.ccard-diff-lgth by simp
    ultimately have ccard \(0 n(\lambda n\). umining \(n)>\operatorname{ccard} 0 n(\lambda n\). tmining \(n)+c n f\) by simp
    hence \(\exists n^{\prime} n^{\prime \prime}\). ccard \(n^{\prime} n^{\prime \prime}(\lambda n\). umining \(n)>\operatorname{cnf} \wedge \operatorname{ccard} n^{\prime} n^{\prime \prime}(\lambda n\). tmining \(n) \leq c n f\)
    using ccard-freq by blast
    with fair show False using leD by blast
qed
end
end
```


G. 3 A Theory of Blockchain Architectures

theory Blockchain imports Auxiliary Dynamic-Architecture-Calculus RF-LTL begin

G.3.1 Blockchains

A blockchain itself is modeled as a simple list.

```
type-synonym ' \(a B C=\) 'a list
abbreviation max-cond:: ('a \(B C\) ) set \(\Rightarrow{ }^{\prime} a B C \Rightarrow\) bool
    where max-cond \(B b \equiv b \in B \wedge\left(\forall b^{\prime} \in B\right.\). length \(b^{\prime} \leq\) length \(\left.b\right)\)
no-syntax
    -MAX1 \(\quad::\) pttrns \(\Rightarrow\) ' \(b \Rightarrow{ }^{\prime} b \quad((3 M A X-. /-)[0,10] 10)\)
    \(-M A X \quad:: p t t r n \Rightarrow\) 'a set \(\Rightarrow ' b \Rightarrow{ }^{\prime} b((3 M A X-:-. /-)[0,0,10] 10)\)
    - MAX1 \(\quad::\) pttrns \(\Rightarrow ' b \Rightarrow{ }^{\prime} b \quad((3 M A X-. /-)[0,10] 10)\)
    \(-M A X \quad::\) pttrn \(\Rightarrow{ }^{\prime} a\) set \(\Rightarrow{ }^{\prime} b \Rightarrow{ }^{\prime} b((3 M A X-\in-. /-)[0,0,10] 10)\)
definition MAX:: ('a BC) set \(\Rightarrow\) ' \(a B C\)
    where \(M A X B=(S O M E\) b. max-cond \(B b)\)
lemma max-ex:
    fixes \(X S\) ::('a \(B C\) ) set
    assumes \(X S \neq\{ \}\)
        and finite \(X S\)
    shows \(\exists x s \in X S .(\forall y s \in X S\). length ys \(\leq\) length \(x s)\)
proof (rule Finite-Set.finite-ne-induct)
    show finite \(X S\) using assms by simp
next
    from assms show \(X S \neq\{ \}\) by simp
next
    fix \(x::^{\prime} a B C\)
    show \(\exists x s \in\{x\} . \forall y s \in\{x\}\). length ys \(\leq\) length \(x\) s by simp
next
    fix \(z s::^{\prime} a B C\) and \(F::\left({ }^{\prime} a B C\right)\) set
    assume finite \(F\) and \(F \neq\{ \}\) and \(z s \notin F\) and \(\exists x s \in F . \forall y s \in F\). length ys \(\leq\) length \(x s\)
    then obtain \(x s\) where \(x s \in F\) and \(\forall y s \in F\). length \(y s \leq\) length \(x s\) by auto
    show \(\exists x s \in\) insert zs \(F\). \(\forall y s \in\) insert zs \(F\). length ys \(\leq\) length \(x s\)
    proof (cases)
        assume length \(z s \geq\) length \(x s\)
        with \(\langle\forall y s \in F\). length \(y s \leq\) length \(x s\rangle\) show ?thesis by auto
    next
        assume \(\neg\) length \(z s \geq\) length \(x s\)
        hence length \(z s \leq\) length xs by simp
        with \(\langle x s \in F\rangle\) show ?thesis using \(\langle\forall y s \in F\). length \(y s \leq\) length \(x s\rangle\) by auto
    qed
qed
lemma max-prop:
    fixes \(X S\) :: ('a \(B C\) ) set
    assumes \(X S \neq\{ \}\)
        and finite \(X S\)
    shows \(M A X X S \in X S\)
```

and $\forall b^{\prime} \in X S$. length $b^{\prime} \leq$ length $(M A X X S)$
proof -
from assms have $\exists x s \in X S . \forall y s \in X S$. length ys length $x s$ using max-ex[of $X S]$ by auto
with $M A X$-def $[$ of $X S]$ show $M A X X S \in X S$ and $\forall b^{\prime} \in X S$. length $b^{\prime} \leq$ length $(M A X X S)$
using someI-ex[of $\lambda b . b \in X S \wedge\left(\forall b^{\prime} \in X S\right.$. length $b^{\prime} \leq$ length $\left.\left.b\right)\right]$ by auto
qed
lemma max-less:
fixes $b::^{\prime} a B C$ and $b^{\prime}::^{\prime} a B C$ and $B::\left({ }^{\prime} a B C\right)$ set
assumes $b \in B$
and finite B
and length $b>$ length b^{\prime}
shows length $(M A X B)>$ length b^{\prime}
proof -
from assms have $\exists x s \in B . \forall y s \in B$. length ys \leq length $x s$ using max-ex $[o f B]$ by auto
with $M A X$-def $[$ of $B]$ have $\forall b^{\prime} \in B$. length $b^{\prime} \leq$ length $(M A X B)$
using someI-ex $\left[\right.$ of $\lambda b . b \in B \wedge\left(\forall b^{\prime} \in B\right.$. length $b^{\prime} \leq$ length $\left.\left.b\right)\right]$ by auto
with $\langle b \in B\rangle$ have length $b \leq$ length $(M A X B)$ by simp
with 〈length $b>$ length b^{\prime} 〉 show ?thesis by simp
qed

G.3.2 Blockchain Architectures

In the following we describe the locale for blockchain architectures.

```
locale Blockchain \(=\) dynamic-component cmp active
    for active :: 'nid \(\Rightarrow\) cnf \(\Rightarrow\) bool ( \((\xi-\xi-[0,110] 60)\)
        and \(c m p::\) 'nid \(\Rightarrow c n f \Rightarrow{ }^{\prime} N D\left(\sigma_{-}(-)[0,110] 60\right)+\)
    fixes \(\operatorname{pin}::{ }^{\prime} N D \Rightarrow\left({ }^{\prime} n i d B C\right)\) set
        and pout :: 'ND \(\Rightarrow\) 'nid \(B C\)
        and \(b c::{ }^{\prime} N D \Rightarrow\) 'nid \(B C\)
        and mining \(::{ }^{\prime} N D \Rightarrow\) bool
        and trusted \(::\) 'nid \(\Rightarrow\) bool
        and actTr :: cnf \(\Rightarrow\) 'nid set
        and actUt :: cnf \(\Rightarrow\) 'nid set
        and PoW:: trace \(\Rightarrow\) nat \(\Rightarrow\) nat
        and tmining:: trace \(\Rightarrow\) nat \(\Rightarrow\) bool
        and umining:: trace \(\Rightarrow\) nat \(\Rightarrow\) bool
        and \(c b::\) nat
    defines act Tr \(k \equiv\left\{\right.\) nid. \(\{n i d\}_{k} \wedge\) trusted nid \(\}\)
        and actUt \(k \equiv\left\{\right.\) nid. \(\left\{_{n i d\}_{k} \wedge} \wedge\right.\) trusted nid \(\}\)
        and PoW \(t n \equiv\left(L E A S T x\right.\). \(\forall\) nid \(\in \operatorname{actTr}(t n)\).length \(\left.\left(b c\left(\sigma_{n i d}(t n)\right)\right) \leq x\right)\)
        and tmining \(t \equiv\left(\lambda n . \exists\right.\) nid \(\left.\in \operatorname{actTr}(t n) . \operatorname{mining}\left(\sigma_{n i d}(t n)\right)\right)\)
        and umining \(t \equiv\left(\lambda n . \exists\right.\) nid \(\in \operatorname{actUt}(t n)\). mining \(\left.\left(\sigma_{n i d}(t n)\right)\right)\)
    assumes consensus: \(\bigwedge\) nid \(t t^{\prime} b c^{\prime}::(\) 'nid \(B C) . \llbracket t r u s t e d ~ n i d \rrbracket \Longrightarrow\) eval nid \(t t^{\prime} 0\)
        \(\left(\square_{b}(b a)\left(\lambda n d . b c^{\prime}=\right.\right.\)
            (if \((\exists b \in\) pin nd. length \(b>\) length \((b c n d))\) then \((M A X(p i n n d))\) else \((b c n d)))\)
            \(\rightarrow^{b} \bigcirc_{b}\left(b a\left(\lambda n d .\left(\neg\right.\right.\right.\) mining \(\left.\left.\left.\left.\left.n d \wedge b c n d=b c^{\prime} \vee \operatorname{mining} n d \wedge\left(\exists b . b c n d=b c^{\prime} @[b]\right)\right)\right)\right)\right)\right)\)
        and attacker: \(\bigwedge\) nid \(t t^{\prime} b c^{\prime} . \llbracket \neg\) trusted nid \(\Longrightarrow\) eval nid \(t t^{\prime} 0\)
        \(\left(\square_{b}\left(b a\left(\lambda n d . b c^{\prime}=(S O M E b . b \in(p i n n d \cup\{b c n d\}))\right) \longrightarrow^{b}\right.\right.\)
```

$\left.\left.\bigcirc_{b}\left(b a\left(\lambda n d .\left(\neg \operatorname{mining} n d \wedge \operatorname{prefix}(b c n d) b c^{\prime} \vee \operatorname{mining} n d \wedge\left(\exists b . b c n d=b c^{\prime} @[b]\right)\right)\right)\right)\right)\right)$ and forward: \bigwedge nid $t t^{\prime}$. eval nid $t t^{\prime} 0\left(\square_{b}(b a(\lambda n d\right.$. pout $\left.n d=b c n d))\right)$

- At each time point a node will forward its blockchain to the network
and init: $\bigwedge n i d t t^{\prime}$. eval nid $t t^{\prime} 0(b a(\lambda n d . b c n d=[]))$
and conn: $\bigwedge k$ nid. \llbracket active nid k; trusted nid】
$\Longrightarrow \operatorname{pin}(c m p$ nid $k)=\left(\bigcup\right.$ nid $^{\prime} \in \operatorname{actTr} k$. $\{$ pout $(c m p$ nid $\left.k)\}\right)$
and act: $\wedge t n:: n a t$. finite $\left\{\right.$ nid::'nid. $\left\{_{\left.n i d \xi_{t} n\right\}}\right\}$
and actTr: $\wedge t n::$ nat. \exists nid. trusted nid $\wedge \xi_{n i d \xi_{t} n} \wedge \xi_{n i d \xi_{t}(S u c ~ n)}$
and fair: $\bigwedge n n^{\prime}$. ccard $n n^{\prime}($ umining $t)>c b \Longrightarrow c c a r d n n^{\prime}($ tmining $t)>c b$
and closed: $\wedge t$ nid $b n:: n a t . \llbracket \xi_{n i d} \xi_{t} n ; b \in \operatorname{pin}\left(\sigma_{n i d}(t n)\right) \rrbracket \Longrightarrow$
$\exists n i d^{\prime}$. nnid's $_{t} n \wedge b c\left(\sigma_{n i d^{\prime}}(t n)\right)=b$
and mine: $\wedge t$ nid $n:: n a t$. $\mathbb{\text { trusted }}$ nid; $\xi_{\left.n i d \xi_{t(S u c ~}\right)} ;$ mining $\left(\sigma_{\text {nid }}(t(\right.$ Suc $\left.n))\right) \rrbracket \Longrightarrow$ nid $\xi_{t} n$ begin
lemma init-model:
assumes $\neg\left(\exists n^{\prime}\right.$. latestAct-cond nid $\left.t n n^{\prime}\right)$
and $\xi_{n i d \xi_{t} n}$
shows $b c\left(\sigma_{n i d} t n\right)=[]$
proof -
from $\operatorname{assms}(2)$ have $\exists i \geq 0$. nnid $_{t} i$ by auto
with init have $b c\left(\sigma_{n i d} t\langle n i d \rightarrow t\rangle_{0}\right)=[]$ using baEA[of 0 nid $\left.t\right]$ by blast
moreover from assms have $n=\langle\text { nid } \rightarrow t\rangle_{0}$ using nxtAct-eq by simp
ultimately show?thesis by simp
qed
lemma $f w d-b c$:
fixes nid and $t:: n a t \Rightarrow c n f$ and $t^{\prime}:: n a t \Rightarrow{ }^{\prime} N D$
assumes nnid $_{t} n$
shows pout $\left(\sigma_{n i d}{ }^{t} n\right)=b c\left(\sigma_{n i d} t n\right)$
using assms forward globEANow[THEN baEANow[of nid $\left.t t^{\prime} n\right]$] by blast
lemma finite-input:
fixes $t n$ nid
assumes $\left\{_{n i d \xi_{t} n}\right.$
defines dep nid' \equiv pout $\left(\sigma_{\text {nid }}(t n)\right)$
shows finite (pin (cmp nid (t n)))
proof -
have finite $\left\{\right.$ nid $^{\prime} .\left\{_{n i d} \xi_{t} n\right\}$ using act by auto
moreover have pin $(c m p$ nid $(t n)) \subseteq$ dep ' $\left.\left\{n i d^{\prime} .\right\}_{n i d} \xi_{t} n\right\}$
proof
fix x assume $x \in \operatorname{pin}(c m p$ nid $(t n)$)
show $x \in \operatorname{dep}$ ' \{nid'. \{nid'st $n\}$
proof -

using closed $\langle x \in \operatorname{pin}(c m p$ nid $(t n))\rangle$ by blast
hence pout $\left(\sigma_{n i d^{\prime}}(t n)\right)=x$ using $f w d-b c$ by auto
hence $x=$ dep nid' using dep-def by simp
moreover from $\left\{\xi_{n i d} \xi_{t} n^{\prime}\right.$ have nid ${ }^{\prime} \in\left\{\right.$ nid $^{\prime}$. $\left.\xi_{n i d} \xi_{t n}\right\}$ by simp
ultimately show ?thesis using image-eqI by simp

G Verification of Blockchain Architectures

qed
qed
ultimately show ?thesis using finite-surj by metis
qed
lemma nempty-input:
fixes $t n$ nid
assumes $\left\{_{n i d \xi_{t} n}\right.$
and trusted nid
shows pin (cmp nid $(t n)) \neq\{ \}$ using conn[of nid $t n]$ act assms actTr-def by auto
lemma onlyone:

```
    assumes \(\exists n^{\prime} \geq n\). \(\left\{_{t i d \xi_{t} n^{\prime}}\right.\)
        and \(\exists n^{\prime}<n\). tit \(^{\prime} \xi^{t}{ }_{n}{ }^{\prime}\)
    shows \(\exists\) ! \(i .\langle\text { tid } \leftarrow t\rangle_{n} \leq i \wedge i<\langle\text { tid } \rightarrow t\rangle_{n} \wedge \xi_{t i d} \xi_{t} i\)
proof
    show \(\langle\text { tid } \leftarrow t\rangle_{n} \leq\langle\text { tid } \leftarrow t\rangle_{n} \wedge\langle\text { tid } \leftarrow t\rangle_{n}<\langle\text { tid } \rightarrow t\rangle_{n} \wedge \xi_{\text {tid }} \xi_{t}\langle\text { tid } \leftarrow t\rangle_{n}\)
```

 by (metis assms dynamic-component.nxtActI latestAct-prop(1) latestAct-prop(2) less-le-trans
 order-refl)
next
fix i
show $\langle\text { tid } \leftarrow t\rangle_{n} \leq i \wedge i<\langle\text { tid } \rightarrow t\rangle_{n} \wedge \xi_{\text {tid }} \xi_{t} i \Longrightarrow i=\langle\text { tid } \leftarrow t\rangle_{n}$
by (metis latestActless(1) leI le-less-Suc-eq le-less-trans nxtActI order-refl)
qed

G.3.2.1 Component Behavior

lemma bhv-tr-ex:
fixes t and $t^{\prime}:: n a t \Rightarrow{ }^{\prime} N D$ and $t i d$
assumes trusted tid
and $\exists n^{\prime} \geq n$. tid $_{t}{ }_{n}$
and $\exists n^{\prime}<n$. $\left\{t i d \xi_{t n^{\prime}}\right.$
and $\exists b \in \operatorname{pin}\left(\sigma_{t i d} t\langle t i d \leftarrow t\rangle_{n}\right)$. length $b>$ length $\left(b c\left(\sigma_{t i d} t\langle t i d \leftarrow t\rangle_{n}\right)\right)$
shows \neg mining $\left(\sigma_{\text {tid }} t\langle t i d \rightarrow t\rangle_{n}\right) \wedge b c\left(\sigma_{\text {tid }} t\langle t i d \rightarrow t\rangle_{n}\right)=$
Blockchain.MAX $\left(\right.$ pin $\left.\left(\sigma_{\text {tid }} t\langle\text { tid } \leftarrow t\rangle_{n}\right)\right) \vee \operatorname{mining}\left(\sigma_{\text {tid }} t\langle\text { tid } \rightarrow t\rangle_{n}\right) \wedge$
$\left(\exists b . b c\left(\sigma_{t i d} t\langle t i d \rightarrow t\rangle_{n}\right)=\right.$ Blockchain.MAX $\left.\left(\operatorname{pin}\left(\sigma_{t i d} t\langle t i d \leftarrow t\rangle_{n}\right)\right) @[b]\right)$
proof -
let ?cond $=\lambda n d . \operatorname{MAX}\left(\operatorname{pin}\left(\sigma_{t i d} t\langle t i d \leftarrow t\rangle n\right)\right)=$
(if $(\exists b \in$ pin $n d$. length $b>$ length $(b c n d))$ then $(M A X($ pin nd)) else (bc nd))
let ?check $=\lambda n d$. $\neg \operatorname{mining} n d \wedge b c n d=M A X\left(\operatorname{pin}\left(\sigma_{\text {tid }} t\langle\right.\right.$ tid $\left.\left.\leftarrow t\rangle n\right)\right) \vee \operatorname{mining} n d \wedge$
$\left(\exists b . b c n d=M A X\left(p i n\left(\sigma_{t i d} t\langle t i d \leftarrow t\rangle_{n}\right)\right) @[b]\right)$
from 〈trusted tid〉 have eval tid $t t^{\prime} 0\left(\left(\square_{b}\left((b a\right.\right.\right.$?cond $) \longrightarrow^{b} \bigcirc_{b}(b a$?check $\left.\left.\left.)\right)\right)\right)$
using consensus[of tid - MAX (pin $\left.\left(\sigma_{t i d} t\langle t i d \leftarrow t\rangle_{n}\right)\right)$ by simp
moreover from assms have $\exists i \geq 0$. $\xi_{\text {tid }} \xi_{t} i$ by auto
moreover have $\langle\text { tid } \Leftarrow t\rangle_{0} \leq\langle\text { tid } \leftarrow t\rangle_{n}$ by simp
ultimately have eval tid $t t^{\prime}\langle\text { tid } \leftarrow t\rangle_{n}\left(b a(? c o n d) \longrightarrow^{b} \bigcirc_{b}(b a\right.$?check $\left.)\right)$
using globEA[of 0 tid $t t^{\prime}\left((b a\right.$?cond $) \longrightarrow^{b} O_{b}(b a$? check $\left.\left.)\right)\langle t i d \leftarrow t\rangle_{n}\right]$ by fastforce
moreover have eval tid $t t^{\prime}\langle t i d \leftarrow t\rangle_{n}(b a(? c o n d))$
proof (rule baIA)
from $\left\langle\exists n^{\prime}<n .\left\{_{\text {tid }}{ }_{t} n^{\prime}\right.\right.$ show $\exists i \geq\langle t i d \leftarrow t\rangle_{n}$ ．${ }^{3}$ tid $\xi_{t} i$ using latestAct－prop (1) by blast from $\operatorname{assms}(3) \operatorname{assms}(4)$ show ？cond $\left(\sigma_{t i d} t\langle t i d \rightarrow t\rangle\langle t i d \leftarrow t\rangle_{n}\right)$
using latestActNxt by simp
qed
ultimately have eval tid $t t^{\prime}\langle t i d \leftarrow t\rangle_{n}\left(O_{b}(b a\right.$ ？check $\left.)\right)$
using impE［of tid $t t^{\prime}-b a(? c o n d) O_{b}(b a$ ？check）］by simp
moreover have $\left.\exists i>\langle t i d \rightarrow t\rangle_{\langle t i d} \leftarrow t\right\rangle_{n} .\left\langle t i d \xi_{t} i\right.$
proof－
from assms have $\left.\langle\text { tid } \rightarrow t\rangle_{n}\right\rangle\langle t i d \leftarrow t\rangle_{n}$ using latestActNxtAct by simp
with $\operatorname{assms}(3)$ have $\left.\left.\langle t i d \rightarrow t\rangle_{n}\right\rangle\langle t i d \rightarrow t\rangle_{\langle t i d} \leftarrow t\right\rangle_{n}$ using latestActNxt by simp
moreover from $\left\langle\exists n^{\prime} \geq n\right.$ ．$\left\{_{t i d \xi_{t}} n^{\prime\rangle}\right.$ have $\hat{\xi}^{t} i d \xi_{t}\langle t i d \rightarrow t\rangle n$ using nxtActI by simp
ultimately show ？thesis by auto
qed
moreover from assms have $\langle t i d \leftarrow t\rangle_{n} \leq\langle t i d \rightarrow t\rangle_{n}$
using latestActNxtAct by（simp add：order．strict－implies－order）
moreover from assms have \exists ！i．$\langle\text { tid } \leftarrow t\rangle_{n} \leq i \wedge i<\langle t i d \rightarrow t\rangle_{n} \wedge \xi_{t i d \xi_{t}} i$ using onlyone by simp
ultimately have eval tid $t t^{\prime}\langle t i d \rightarrow t\rangle_{n}$（ba ？check）
using $n x t E A 1$［of tid $t\langle\text { tid } \leftarrow t\rangle_{n} t^{\prime}$ ba ？check $\left.\langle\text { tid } \rightarrow t\rangle_{n}\right]$ by simp
moreover from $\left\{\exists n^{\prime} \geq n \text { ．}\right\}_{\left.t i d \xi_{t} n^{\prime}\right\rangle}$ have ${ }^{〔} t i d \xi_{t}\langle t i d \rightarrow t\rangle n$ using $n x t A c t I$ by simp
ultimately show ？thesis using baEANow［of tid $t t^{\prime}\langle\text { tid } \rightarrow t\rangle_{n}$ ？check］by simp
qed
lemma bhv－tr－in：
fixes t and $t^{\prime}:: n a t \Rightarrow{ }^{\prime} N D$ and tid
assumes trusted tid
and $\exists n^{\prime} \geq n$ ．$\left\{\begin{array}{c}\text { tid } \\ t\end{array} n^{\prime}\right.$ and $\exists n^{\prime}<n$ ．$\left\{t i d \xi_{t} n^{\prime}\right.$ and $\neg\left(\exists b \in \operatorname{pin}\left(\sigma_{\text {tid }} t\langle\text { tid } \leftarrow t\rangle_{n}\right)\right.$ ．length $b>$ length $\left.\left(b c\left(\sigma_{\text {tid }} t\langle\text { tid } \leftarrow t\rangle_{n}\right)\right)\right)$
shows $\neg \operatorname{mining}\left(\sigma_{\text {tid }} t\langle t i d \rightarrow t\rangle_{n}\right) \wedge b c\left(\sigma_{\text {tid }} t\langle t i d \rightarrow t\rangle_{n}\right)=b c\left(\sigma_{\text {tid }} t\langle t i d \leftarrow t\rangle_{n}\right) \vee$ mining $\left(\sigma_{\text {tid }}\left\langle\langle t i d \rightarrow t\rangle_{n}\right) \wedge\right.$ $\left(\exists b . b c\left(\sigma_{t i d} t\langle t i d \rightarrow t\rangle_{n}\right)=b c\left(\sigma_{t i d} t\langle t i d \leftarrow t\rangle_{n}\right) @[b]\right)$
proof－
let ？cond $=\lambda n d . b c\left(\sigma_{t i d} t\langle t i d \leftarrow t\rangle_{n}\right)=$
（if $(\exists b \in$ pin $n d$ ．length $b>$ length $(b c n d))$ then $(M A X(p i n n d))$ else（bc nd））
let ？check $=\lambda n d . \neg$ mining $n d \wedge b c n d=b c\left(\sigma_{\text {tid }} t\langle\text { tid } \leftarrow t\rangle_{n}\right) \vee$ mining $n d \wedge\left(\exists b . b c n d=b c\left(\sigma_{t i d} t\langle t i d \leftarrow t\rangle_{n}\right) @[b]\right)$
from 〈trusted tid〉 have eval tid $t t^{\prime} 0\left(\left(\square_{b}\left((b a\right.\right.\right.$ ？cond $) \longrightarrow^{b} \bigcirc_{b}(b a$ ？check $\left.\left.\left.)\right)\right)\right)$
using consensus $\left[\right.$ of tid - bc $\left.\left(\sigma_{\text {tid }}{ }^{t}\langle\text { tid } \leftarrow t\rangle_{n}\right)\right]$ by simp
moreover from assms have $\exists i \geq 0$ ．$\xi_{\text {tid }}^{t}{ }_{t}$ by auto
moreover have $\langle\text { tid } \Leftarrow t\rangle_{0} \leq\langle\text { tid } \leftarrow t\rangle_{n}$ by simp
ultimately have eval tid $t t^{\prime}\langle t i d \leftarrow t\rangle_{n}\left(b a(? c o n d) \longrightarrow{ }^{b} \bigcirc_{b}(b a\right.$ ？check）$)$
using globEA［of 0 tid $t t^{\prime}(b a$ ？cond $) \longrightarrow^{b} \bigcirc_{b}(b a$ ？check $\left.)\langle\text { tid } \leftarrow t\rangle_{n}\right]$ by fastforce
moreover have eval tid $t t^{\prime}\langle t i d \leftarrow t\rangle_{n}(b a$（？cond $\left.)\right)$
proof（rule baIA）

from $\operatorname{assms}(3) \operatorname{assms}(4)$ show ？cond $\left(\sigma_{t i d} t\langle t i d \rightarrow t\rangle\langle t i d \leftarrow t\rangle n\right)$
using latestActNxt by simp
qed
ultimately have eval tid $t t^{\prime}\langle t i d \leftarrow t\rangle_{n}\left(O_{b}(b a\right.$?check $\left.)\right)$
using impE[of tid $t t^{\prime}-b a$ (?cond) $\bigcirc_{b}(b a$?check $\left.)\right]$ by simp
moreover have $\left.\exists i>\langle t i d \rightarrow t\rangle_{\langle t i d} \leftarrow t\right\rangle_{n} .\left\{t i d \xi_{t} i\right.$
proof -
from assms have $\left.\langle\text { tid } \rightarrow t\rangle_{n}\right\rangle\langle t i d \leftarrow t\rangle_{n}$ using latestActNxtAct by simp
with $\operatorname{assms}(3)$ have $\left.\left.\langle t i d \rightarrow t\rangle_{n}\right\rangle\langle t i d \rightarrow t\rangle_{\langle t i d} \leftarrow t\right\rangle_{n}$ using latestActNxt by simp
moreover from $\left\langle\exists n^{\prime} \geq n\right.$. $\}$ tid $\xi_{t n^{\prime}}$ have $\left\{t i d \xi_{t}\langle\text { tid } \rightarrow t\rangle_{n}\right.$ using nxtActI by simp
ultimately show ?thesis by auto
qed
moreover from assms have $\langle t i d \leftarrow t\rangle_{n} \leq\langle t i d \rightarrow t\rangle_{n}$
using latestActNxtAct by (simp add: order.strict-implies-order)
moreover from assms have \exists ! $i .\langle\text { tid } \leftarrow t\rangle_{n} \leq i \wedge i<\langle t i d \rightarrow t\rangle_{n} \wedge \xi_{t i d \xi_{t}}{ }_{i}$ using onlyone by simp
ultimately have eval tid $t t^{\prime}\langle t i d \rightarrow t\rangle_{n}(b a$?check)
using $n x t E A 1$ [of tid $t\langle\text { tid } \leftarrow t\rangle_{n} t^{\prime}$ ba ? check $\langle\text { tid } \rightarrow t\rangle_{n}$] by simp

ultimately show ?thesis using baEANow[of tid $t t^{\prime}\langle\text { tid } \rightarrow t\rangle_{n}$? check $]$ by simp qed
lemma bhv-tr-context:
assumes trusted tid
and $\xi_{t i d \xi_{t}} n$
and $\exists n^{\prime}<n$. $\left\{_{t i d \xi_{t} n^{\prime}}\right.$
shows \exists nid ${ }^{\prime}$. nid $^{\prime} \xi_{t}\langle\text { tid } \leftarrow t\rangle_{n} \wedge$
$\left(\right.$ mining $\left(\sigma_{t i d}{ }^{t} n\right) \wedge\left(\exists b . b c\left(\sigma_{t i d} t n\right)=b c\left(\sigma_{n i d^{\prime}}\left\langle\langle t i d \leftarrow t\rangle_{n}\right) @[b]\right) \vee\right.$
$\left.\neg \operatorname{mining}\left(\sigma_{\text {tid }} t n\right) \wedge b c\left(\sigma_{\text {tid }} t n\right)=b c\left(\sigma_{n i d^{\prime} t}\langle t i d \leftarrow t\rangle n\right)\right)$
proof cases
assume casmp: $\exists b \in \operatorname{pin}\left(\sigma_{\text {tid }} t\langle t i d \leftarrow t\rangle_{n}\right)$. length $b>$ length $\left(b c\left(\sigma_{\text {tid }} t\langle t i d \leftarrow t\rangle_{n}\right)\right)$
moreover from assms(2) have $\exists n^{\prime} \geq n$. $\left\{t i d \xi_{t} n^{\prime}\right.$ by auto
moreover from $\operatorname{assms}(3)$ have $\exists n^{\prime}<n$. $\left\{t i d \xi_{t} n^{\prime}\right.$ by auto
ultimately have $\neg \operatorname{mining}\left(\sigma_{t i d} t\langle t i d \rightarrow t\rangle_{n}\right) \wedge$
$b c\left(\sigma_{t i d}{ }^{t}\langle t i d \rightarrow t\rangle_{n}\right)=$ Blockchain.MAX $\left(\operatorname{pin}\left(\sigma_{t i d} t\langle t i d \leftarrow t\rangle_{n}\right)\right) \vee$
mining $\left(\sigma_{\text {tid }} t\langle t i d \rightarrow t\rangle_{n}\right) \wedge$
$\left(\exists b . b c\left(\sigma_{t i d}{ }^{t}\langle\text { tid } \rightarrow t\rangle_{n}\right)=\right.$ Blockchain.MAX $\left.\left(\operatorname{pin}\left(\sigma_{t i d} t\langle t i d \leftarrow t\rangle_{n}\right)\right) @[b]\right)$
using assms(1) bhv-tr-ex by auto
moreover from $\operatorname{assms}(2)$ have $\langle t i d \rightarrow t\rangle_{n}=n$ using $n x t A c t$-active by simp
ultimately have

```
\(\neg\) mining \(\left(\sigma_{\text {tid }}{ }^{t}\langle\text { tid } \rightarrow t\rangle_{n}\right) \wedge b c\left(\sigma_{t i d} t n\right)=\)
        Blockchain.MAX \(\left(\right.\) pin \(\left.\left(\sigma_{\text {tid }} t\langle t i d \leftarrow t\rangle_{n}\right)\right) \vee\)
    mining \(\left.\left(\sigma_{\text {tid }} t\langle t i d \rightarrow t\rangle\right\rangle_{n}\right) \wedge\left(\exists b . b c\left(\sigma_{\text {tid }} t n\right)=\right.\)
        Blockchain.MAX \(\left.\left.\left(\operatorname{pin}^{\left(\sigma_{t i d} t\right.}\langle t i d \leftarrow t\rangle_{n}\right)\right) @[b]\right)\)
```

 by \(\operatorname{simp}\)
 moreover from \(\operatorname{assms}\) (2) have \(\langle t i d \rightarrow t\rangle_{n}=n\) using \(n x t A c t-a c t i v e\) by simp
 ultimately have \(\neg \operatorname{mining}\left(\sigma_{t i d} t n\right) \wedge\)
 bc \(\left(\sigma_{\text {tid }} t n\right)=\) Blockchain.MAX \(\left(\right.\) pin \(\left.\left(\sigma_{t i d} t\langle t i d \leftarrow t\rangle_{n}\right)\right) \vee\)
 \(\operatorname{mining}\left(\sigma_{\text {tid }} n\right) \wedge\left(\exists b . b c\left(\sigma_{\text {tid }} t n\right)=\right.\) Blockchain.MAX \(\left.\left(p i n\left(\sigma_{t i d} t\langle t i d \leftarrow t\rangle_{n}\right)\right) @[b]\right)\)
 by \(\operatorname{simp}\)
    ```
moreover have Blockchain.MAX \(\left(\operatorname{pin}\left(\sigma_{t i d} t\langle t i d \leftarrow t\rangle_{n}\right)\right) \in \operatorname{pin}\left(\sigma_{t i d} t\langle t i d \leftarrow t\rangle_{n}\right)\)
proof -
    from \(\left.\left\langle\exists n^{\prime}<n .\right\}_{\text {tid }}^{t}{ }_{n}\right\rangle\) have \(\xi_{\text {tid }}{ }_{t}\langle\text { tid } \leftarrow t\rangle_{n}\) using latestAct-prop(1) by simp
    hence finite \(\left(\operatorname{pin}\left(\sigma_{\text {tid }}\left(t\langle t i d \leftarrow t\rangle_{n}\right)\right)\right.\) ) using finite-input[of tid \(\left.t\langle\text { tid } \leftarrow t\rangle_{n}\right]\) by simp
    moreover from casmp obtain \(b\) where
        \(b \in \operatorname{pin}\left(\sigma_{t i d} t\langle t i d \leftarrow t\rangle_{n}\right)\) and length \(b>\) length \(\left(b c\left(\sigma_{\text {tid }} t\langle t i d \leftarrow t\rangle_{n}\right)\right)\) by auto
    ultimately show ?thesis using max-prop (1) by auto
qed
```



```
    and \(b c\left(\sigma_{n i d} t\langle t i d \leftarrow t\rangle_{n}\right)=\) Blockchain.MAX \(\left(\right.\) pin \(\left.\left(\sigma_{t i d} t\langle t i d \leftarrow t\rangle_{n}\right)\right)\) using
    closed[of tid \(t\langle\text { tid } \leftarrow t\rangle_{n} M A X\left(\operatorname{pin}\left(\sigma_{\text {tid }} t\langle\text { tid } \leftarrow t\rangle_{n}\right)\right)\) ] latestAct-prop(1) by auto
    ultimately show ?thesis by auto
next
    assume \(\neg\left(\exists b \in \operatorname{pin}\left(\sigma_{\text {tid }} t\langle t i d \leftarrow t\rangle_{n}\right)\right.\). length \(b>\) length \(\left.\left(b c\left(\sigma_{t i d} t\langle t i d \leftarrow t\rangle_{n}\right)\right)\right)\)
    moreover from assms(2) have \(\exists n^{\prime} \geq n\). \(\left\{\right.\) tid \(\xi_{t n^{\prime}}\) by auto
    moreover from assms(3) have \(\exists n^{\prime}<n\). \(\left\{\right.\) tid \(\xi_{t} n^{\prime}\) by auto
    ultimately have \(\neg\) mining \(\left(\sigma_{t i d} t\langle t i d \rightarrow t\rangle_{n}\right) \wedge b c\left(\sigma_{t i d} t\langle t i d \rightarrow t\rangle_{n}\right)=b c\left(\sigma_{t i d} t\langle t i d \leftarrow t\rangle_{n}\right)\)
        \(\vee \operatorname{mining}\left(\sigma_{t i d} t\langle t i d \rightarrow t\rangle_{n}\right) \wedge\left(\exists b . b c\left(\sigma_{t i d} t\langle t i d \rightarrow t\rangle_{n}\right)=b c\left(\sigma_{t i d} t\langle t i d \leftarrow t\rangle_{n}\right) @[b]\right)\)
        using assms(1) bhv-tr-in[of tid \(n t\) ] by auto
    moreover from \(\operatorname{assms}(2)\) have \(\langle t i d \rightarrow t\rangle_{n}=n\) using nxtAct-active by simp
    ultimately have \(\neg \operatorname{mining}\left(\sigma_{t i d}^{t} n\right) \wedge b c\left(\sigma_{t i d} t n\right)=b c\left(\sigma_{t i d} t\langle t i d \leftarrow t\rangle n\right) \vee\)
    mining \(\left(\sigma_{t i d} t n\right) \wedge\left(\exists b . b c\left(\sigma_{t i d} t n\right)=b c\left(\sigma_{t i d} t\langle t i d \leftarrow t\rangle_{n}\right) @[b]\right)\) by simp
    moreover from \(\left\langle\exists n^{\prime}\right.\). latestAct-cond tid \(\left.t n n^{\prime}\right\rangle\) have \(\}_{\text {tid }}^{t}{ }_{t}\langle\) tid \(\leftarrow t\rangle n\)
        using latestAct-prop(1) by simp
    ultimately show? ?thesis by auto
qed
lemma bhv-ut:
    fixes \(t\) and \(t^{\prime}::\) nat \(\Rightarrow{ }^{\prime} N D\) and uid
    assumes \(\neg\) trusted uid
        and \(\exists n^{\prime} \geq n\). \(\left\{u i d \xi_{t} n^{\prime}\right.\)
        and \(\exists n^{\prime}<n\). \(\left\{\right.\) uid \(\xi_{t} n^{\prime}\)
    shows \(\neg\) mining \(\left(\sigma_{\text {uid }} t\langle\text { uid } \rightarrow t\rangle_{n}\right) \wedge\)
        prefix \(\left(b c\left(\sigma_{u i d} t\langle\text { uid } \rightarrow t\rangle_{n}\right)\right)\)
        \(\left(S O M E b . b \in \operatorname{pin}\left(\sigma_{u i d} t\langle u i d \leftarrow t\rangle n\right) \cup\left\{b c\left(\sigma_{u i d} t\langle u i d \leftarrow t\rangle_{n}\right)\right\}\right)\)
        \(\vee\) mining \(\left(\sigma_{\text {uid }} t\langle\text { uid } \rightarrow t\rangle_{n}\right) \wedge\)
            \(\left(\exists b . b c\left(\sigma_{u i d} t\langle u i d \rightarrow t\rangle_{n}\right)=\right.\)
        \(\left.\left(S O M E b . b \in \operatorname{pin}\left(\sigma_{u i d} t\langle u i d \leftarrow t\rangle_{n}\right) \cup\left\{b c\left(\sigma_{u i d} t\langle u i d \leftarrow t\rangle_{n}\right)\right\}\right) @[b]\right)\)
proof -
    let ?cond \(=\lambda n d .\left(S O M E\right.\) b. \(b \in\left(\operatorname{pin}\left(\sigma_{u i d} t\langle u i d \leftarrow t\rangle_{n}\right) \cup\right.\)
        \(\left.\left.\left\{b c\left(\sigma_{u i d} t\langle u i d \leftarrow t\rangle_{n}\right)\right\}\right)\right)=(S O M E b . b \in \operatorname{pin} n d \cup\{b c n d\})\)
    let ?check \(=\lambda n d\). \(\neg\) mining \(n d \wedge\) prefix (bc nd)
        \(\left(S O M E b . b \in \operatorname{pin}\left(\sigma_{u i d} t\langle u i d \leftarrow t\rangle_{n}\right) \cup\left\{b c\left(\sigma_{\text {uid }} t\langle u i d \leftarrow t\rangle_{n}\right)\right\}\right)\)
        \(\vee\) mining nd \(\wedge\left(\exists b . b c n d=\left(S O M E b . b \in \operatorname{pin}\left(\sigma_{u i d} t\langle u i d \leftarrow t\rangle_{n}\right) \cup\right.\right.\)
        \(\left.\left.\left\{b c\left(\sigma_{u i d} t\langle u i d \leftarrow t\rangle_{n}\right)\right\}\right) @[b]\right)\)
    from «ᄀ trusted uid〉 have eval uid \(t t^{\prime} 0\left(\left(\square_{b}\left((b a\right.\right.\right.\) ?cond \() \longrightarrow^{b} \bigcirc_{b}(b a\) ?check \(\left.\left.\left.)\right)\right)\right)\)
        using attacker[of uid \(\left.-\left(S O M E b . b \in \operatorname{pin}\left(\sigma_{u i d} t\langle u i d \leftarrow t\rangle_{n}\right) \cup\left\{b c\left(\sigma_{u i d} t\langle u i d \leftarrow t\rangle_{n}\right)\right\}\right)\right]\)
        by \(\operatorname{simp}\)
    moreover from assms have \(\exists i \geq 0\). \(\left\{u i d \xi_{t} i\right.\) by auto
```

moreover have $\langle u i d \Leftarrow t\rangle_{0} \leq\langle u i d \leftarrow t\rangle_{n}$ by simp
ultimately have eval uid $t t^{\prime}\langle u i d \leftarrow t\rangle_{n}\left(b a(? c o n d) \longrightarrow^{b} \bigcirc_{b}(b a\right.$?check) $)$
using globEA[of 0 uid $t t^{\prime}\left((b a\right.$?cond $) \longrightarrow^{b} \bigcirc_{b}(b a$?check $\left.\left.)\right)\langle\text { uid } \leftarrow t\rangle_{n}\right]$ by fastforce
moreover have eval uid $t t^{\prime}\langle u i d \leftarrow t\rangle_{n}(b a(? c o n d))$
proof (rule baIA)
from $\exists \exists n^{\prime}<n$. $\left\{\right.$ uid $\xi_{t n^{\prime}}$ show $\exists i \geq\langle\text { uid } \leftarrow t\rangle_{n}$. $\left\{_{u i d \xi_{t} i}\right.$ using latestAct-prop(1) by blast
with $\operatorname{assms}(3)$ show ?cond ($\left.\sigma_{\text {uid }} t\langle u i d \rightarrow t\rangle_{\langle u i d} \leftarrow t\right\rangle_{n}$) using latestActNxt by simp
qed
ultimately have eval uid $t t^{\prime}\langle\text { uid } \leftarrow t\rangle_{n}\left(\bigcirc_{b}(b a\right.$?check $\left.)\right)$
using impE[of uid $t t^{\prime}-b a(? c o n d) \bigcirc_{b}(b a$?check $\left.)\right]$ by simp
moreover have $\left.\exists i>\langle\text { uid } \rightarrow t\rangle_{\langle\text {uid }} \leftarrow t\right\rangle_{n} .\left\{\right.$ uid $\xi_{t} i$
proof -
from assms have $\left.\langle\text { uid } \rightarrow t\rangle_{n}\right\rangle\langle\text { uid } \leftarrow t\rangle_{n}$ using latestActNxtAct by simp
with $\operatorname{assms}(3)$ have $\left.\left.\langle u i d \rightarrow t\rangle_{n}\right\rangle\langle u i d \rightarrow t\rangle_{\langle u i d} \leftarrow t\right\rangle_{n}$ using latestActNxt by simp
moreover from $\left\langle\exists n^{\prime} \geq n\right.$. $\left\{u i d \xi_{t} n^{\prime\rangle}\right.$ have $\left\{\right.$ uid $\xi_{t}\langle\text { uid } \rightarrow t\rangle_{n}$ using nxtActI by simp
ultimately show ?thesis by auto
qed
moreover from assms have $\langle\text { uid } \leftarrow t\rangle_{n} \leq\langle u i d \rightarrow t\rangle_{n}$
using latestActNxtAct by (simp add: order.strict-implies-order)
moreover from assms have \exists ! $i .\langle\text { uid } \leftarrow t\rangle_{n} \leq i \wedge i<\langle\text { uid } \rightarrow t\rangle_{n} \wedge \xi_{\text {uid }}^{t_{t}}{ }_{i}$
using onlyone by simp
ultimately have eval uid $t t^{\prime}\langle\text { uid } \rightarrow t\rangle_{n}$ (ba ? check)
using $n x t E A 1$ [of uid $t\langle\text { uid } \leftarrow t\rangle_{n} t^{\prime}$ ba ? eheck $\langle\text { uid } \rightarrow t\rangle_{n}$] by simp
moreover from $\left\{\exists n^{\prime} \geq n\right.$. $\left\{u i d \xi_{t} n^{\prime\rangle}\right.$ have $\left\{u i d \xi_{t}\langle\text { uid } \rightarrow t\rangle\right\rangle_{n}$ using $n x t A c t I$ by simp
ultimately show ?thesis using baEANow[of uid $t t^{\prime}\langle\text { uid } \rightarrow t\rangle_{n}$? check] by simp qed
lemma bhv-ut-context:
assumes \neg trusted uid
and $\left\{u i d \xi_{t} n\right.$
and $\exists n^{\prime}<n .\left\{\right.$ uid $\xi_{t n^{\prime}}$
shows \exists nid $^{\prime} . \xi_{\text {nid }}{ }^{\prime \prime}{ }_{t}\langle$ uid $\leftarrow t\rangle{ }_{n} \wedge\left(\right.$ mining $\left(\sigma_{\text {uid }}{ }^{t} n\right) \wedge$
$\left(\exists b\right.$. prefix $\left.\left(b c\left(\sigma_{u i d} t n\right)\right)\left(b c\left(\sigma_{n i d^{\prime}} t\langle u i d \leftarrow t\rangle_{n}\right) @[b]\right)\right)$
$\vee \neg \operatorname{mining}\left(\sigma_{u i d} t^{t} n\right) \wedge \operatorname{prefix}\left(b c\left(\sigma_{u i d} t n\right)\right)\left(b c\left(\sigma_{n i d^{\prime}}\left\langle\langle u i d \leftarrow t\rangle_{n}\right)\right)\right)$
proof -
let $? b c=S O M E b . b \in \operatorname{pin}\left(\sigma_{u i d} t\langle u i d \leftarrow t\rangle_{n}\right) \cup\left\{b c\left(\sigma_{u i d} t\langle u i d \leftarrow t\rangle_{n}\right)\right\}$
have $b c-e x: ? b c \in \operatorname{pin}\left(\sigma_{u i d} t\langle u i d \leftarrow t\rangle_{n}\right) \vee ? b c \in\left\{b c\left(\sigma_{u i d} t\langle u i d \leftarrow t\rangle_{n}\right)\right\}$
proof -
have $\exists b$. $b \in \operatorname{pin}\left(\sigma_{u i d} t\langle u i d \leftarrow t\rangle_{n}\right) \cup\left\{b c\left(\sigma_{u i d} t\langle u i d \leftarrow t\rangle_{n}\right)\right\}$ by auto
hence ?bc $\in \operatorname{pin}\left(\sigma_{u i d} t\langle u i d \leftarrow t\rangle_{n}\right) \cup\left\{b c\left(\sigma_{\text {uid }} t\langle u i d \leftarrow t\rangle_{n}\right)\right\}$ using someI-ex by simp
thus?thesis by auto
qed
from assms(2) have $\exists n^{\prime} \geq n$. $\left\{\right.$ uid $\xi_{t n^{\prime}}$ by auto
moreover from assms(3) have $\exists n^{\prime}<n$. $\left\{u i d \xi_{t n^{\prime}}\right.$ by auto
ultimately have \neg mining $\left(\sigma_{\text {uid }} t\langle\text { uid } \rightarrow t\rangle_{n}\right) \wedge \operatorname{prefix}\left(b c\left(\sigma_{\text {uid }} t\langle u i d \rightarrow t\rangle_{n}\right)\right) ? b c \vee$
mining $\left(\sigma_{u i d} t\langle u i d \rightarrow t\rangle_{n}\right) \wedge\left(\exists b . b c\left(\sigma_{u i d} t\langle u i d \rightarrow t\rangle_{n}\right)=? b c @[b]\right)$
using bhv-ut [of uid $n t] \operatorname{assms}(1)$ by simp
moreover from assms(2) have $\langle u i d \rightarrow t\rangle_{n}=n$ using nxtAct-active by simp ultimately have casmp: \neg mining $\left(\sigma_{\text {uid }} t n\right) \wedge$ prefix $\left(b c\left(\sigma_{u i d} t n\right)\right) ? b c \vee$ $\operatorname{mining}\left(\sigma_{u i d} t n\right) \wedge\left(\exists b . b c\left(\sigma_{u i d} t n\right)=? b c @[b]\right)$ by simp

```
from \(b c\)-ex have \(? b c \in \operatorname{pin}\left(\sigma_{u i d} t\langle u i d \leftarrow t\rangle_{n}\right) \vee ? b c \in\left\{b c\left(\sigma_{u i d} t\langle u i d \leftarrow t\rangle_{n}\right)\right\}\).
thus ?thesis
proof
    assume \(? b c \in \operatorname{pin}\left(\sigma_{u i d} t\langle u i d \leftarrow t\rangle_{n}\right)\)
    moreover from \(\left\langle\exists n^{\prime}<n\right.\). \{uid \(\xi_{t} n^{\prime}\) have \(\left\{_{\text {uid }}^{t}{ }_{t}\langle\text { uid } \leftarrow t\rangle_{n}\right.\)
        using latestAct-prop(1) by simp
    ultimately obtain nid where \(\xi_{n i d \xi_{t}}\left\langle\text { uid }^{\leftarrow}\right)_{t\rangle_{n}}\) and \(b c\left(\sigma_{\text {nid }}\left\langle\langle\text { uid } \leftarrow t\rangle_{n}\right)=? b c\right.\)
        using closed by blast
    with casmp have \(\neg \operatorname{mining}\left(\sigma_{\text {uid }} t n\right) \wedge \operatorname{prefix}\left(b c\left(\sigma_{u i d} t n\right)\right)\left(b c\left(\sigma_{n i d} t\langle u i d \leftarrow t\rangle_{n}\right)\right) \vee\)
        \(\operatorname{mining}\left(\sigma_{u i d} t n\right) \wedge\left(\exists b . b c\left(\sigma_{u i d} t n\right)=\left(b c\left(\sigma_{n i d} t\langle u i d \leftarrow t\rangle_{n}\right)\right) @[b]\right)\) by simp
    with \(\left\langle\xi n i d \xi_{t}\langle\right.\) uid \(\left.\leftarrow t\rangle{ }_{n}\right\rangle\) show ?thesis by auto
next
    assume \(? b c \in\left\{b c\left(\sigma_{u i d} t\langle u i d \leftarrow t\rangle_{n}\right)\right\}\)
    hence ? \(b c=b c\left(\sigma_{u i d} t\langle u i d \leftarrow t\rangle_{n}\right)\) by simp
    moreover from \(\left\{\exists n^{\prime}\right.\). latestAct-cond uid \(\left.t n n^{\prime}\right\rangle\) have \(\}\) uid \(\xi_{t}\langle\) uid \(\leftarrow t\rangle n\)
        using latestAct-prop(1) by simp
    ultimately show ?thesis using casmp by auto
    qed
qed
```


G.3.2.2 Maximal Trusted Blockchains

abbreviation mbc-cond:: trace \Rightarrow nat $\Rightarrow{ }^{\prime}$ nid \Rightarrow bool
where mbc-cond $t n$ nid \equiv nid $\in \operatorname{actTr}(t n) \wedge\left(\forall \operatorname{nid}^{\prime} \in \operatorname{actTr}(t n)\right.$. length $\left(b c\left(\sigma_{n i d^{\prime}}(t n)\right)\right) \leq$ length $\left.\left(b c\left(\sigma_{n i d}(t n)\right)\right)\right)$
lemma mbc-ex:
fixes $t n$
shows $\exists x$. mbc-cond $t n x$
proof -
let ? $A L L=\left\{b . \exists n i d \in \operatorname{actTr}(t n) . b=b c\left(\sigma_{n i d}(t n)\right)\right\}$
have MAX ?ALL \in ? ALL
proof (rule max-prop)
from actTr have actTr $(t n) \neq\{ \}$ using actTr-def by blast
thus ? $A L L \neq\{ \}$ by auto
from act have finite (actTr $(t n)$) using actTr-def by simp
thus finite? ALL by simp
qed
then obtain nid where nid $\in \operatorname{actTr}(t n) \wedge b c\left(\sigma_{n i d}(t n)\right)=M A X ? A L L$ by auto
moreover have \forall nid' $\in \operatorname{actTr}(t n)$. length $\left(b c\left(\sigma_{n i d^{\prime}}(t n)\right)\right) \leq$ length $(M A X$?ALL) proof
fix nid
assume nid $\in \operatorname{actTr}(t n)$
hence $b c\left(\sigma_{n i d}(t n)\right) \in$?ALL by auto
moreover have $\forall b^{\prime} \in$? ALL. length $b^{\prime} \leq$ length (MAX ?ALL)

G Verification of Blockchain Architectures

```
proof (rule max-prop)
        from \(\left\langle b c\left(\sigma_{n i d}(t n)\right) \in ? A L L\right\rangle\) show ? \(A L L \neq\{ \}\) by auto
        from act have finite (actTr \((t n)\) ) using actTr-def by simp
        thus finite? ALL by simp
    qed
ultimately show
        length \(\left(b c\left(\sigma_{n i d} t n\right)\right) \leq\) length (Blockchain.MAX \(\left\{b . \exists\right.\) nid \(\left.\left.\in \operatorname{actTr}(t n) . b=b c\left(\sigma_{n i d} t n\right)\right\}\right)\)
by \(\operatorname{simp}\)
    qed
    ultimately show ?thesis by auto
qed
definition \(M B C:\) trace \(\Rightarrow\) nat \(\Rightarrow\) 'nid
    where \(M B C\) t \(n=(S O M E b\). mbc-cond \(t n b)\)
lemma mbc-prop [simp]:
    shows mbc-cond \(t n(M B C t n)\)
    using someI-ex[OF mbc-ex] MBC-def by simp
```


G.3.2.3 Trusted Proof of Work

An important construction is the maximal proof of work available in the trusted community. The construction was already introduces in the locale itself since it was used to express some of the locale assumptions.
abbreviation pow-cond:: trace \Rightarrow nat \Rightarrow nat \Rightarrow bool
where pow-cond $t n n^{\prime} \equiv \forall$ nid $\in \operatorname{actTr}(t n)$. length $\left(b c\left(\sigma_{n i d}(t n)\right)\right) \leq n^{\prime}$

```
lemma pow-ex:
    fixes \(t n\)
    shows pow-cond \(t n\left(\right.\) length \(\left.\left(b c\left(\sigma_{M B C} t{ }_{n}(t n)\right)\right)\right)\)
        and \(\forall x^{\prime}\). pow-cond \(t n x^{\prime} \longrightarrow x^{\prime} \geq\) length \(\left(b c\left(\sigma_{M B C}{ }_{n}(t n)\right)\right)\)
    using mbc-prop by auto
lemma pow-prop:
    pow-cond \(t n(\) PoW \(t n)\)
proof -
    from pow-ex have pow-cond \(t n(L E A S T\) x. pow-cond \(t n x)\)
        using LeastI-ex[of pow-cond \(t n\) ] by blast
    thus ?thesis using PoW-def by simp
qed
lemma pow-eq:
    fixes \(n\)
    assumes \(\exists\) tid \(\in \operatorname{actTr}(t n)\). length \(\left(b c\left(\sigma_{t i d}(t n)\right)\right)=x\)
            and \(\forall\) tid \(\in \operatorname{actTr}(t n)\). length \(\left(b c\left(\sigma_{t i d}(t n)\right)\right) \leq x\)
    shows PoW tn \(n=x\)
proof -
    have (LEAST x. pow-cond t \(n x)=x\)
    proof (rule Least-equality)
```

from $\operatorname{assms}(2)$ show \forall nid $\in \operatorname{actTr}(t n)$. length $\left(b c\left(\sigma_{n i d} t n\right)\right) \leq x$ by simp next
fix y
assume $\forall n i d \in \operatorname{actTr}(t n)$. length $\left(b c\left(\sigma_{n i d} t n\right)\right) \leq y$
thus $x \leq y$ using assms(1) by auto
qed
with PoW-def show?thesis by simp
qed
lemma pow-mbc:
shows length $\left(b c\left(\sigma_{M B C}{ }_{n} t n\right)\right)=P o W t n$
by (metis mbc-prop pow-eq)
lemma pow-less:
fixes $t n$ nid
assumes pow-cond $t n x$
shows PoW t $n \leq x$
proof -
from pow-ex assms have (LEAST x. pow-cond $t n x) \leq x$ using Least-le[of pow-cond $t n]$ by blast
thus ?thesis using PoW-def by simp
qed
lemma pow-le-max:
assumes trusted tid
and ${ }^{2} t i d \xi_{t} n$
shows PoW $t n \leq$ length $\left(M A X\left(\operatorname{pin}\left(\sigma_{\text {tid }} t n\right)\right)\right)$
proof -
from mbc-prop have trusted $(M B C t n)$ and $\xi M B C$ t $n \xi_{t}{ }_{n}$ using actTr-def by auto
hence pout $\left(\sigma_{M B C} t{ }_{n}{ }^{t} n\right)=b c\left(\sigma_{M B C} t{ }_{n}{ }^{t} n\right)$
using forward globEANow[THEN baEANow[of MBC tnt n t $n \lambda n d$. pout $n d=b c n d]]$
by auto
with assms $\left\{\xi M B C t n \xi_{t} n^{〉}\langle t r u s t e d ~(M B C t n)\rangle\right.$ have $b c\left(\sigma_{M B C t}{ }_{n} t n\right) \in \operatorname{pin}\left(\sigma_{t i d} t n\right)$
using conn actTr-def by auto
moreover from assms (2) have finite ($\operatorname{pin}\left(\sigma_{t i d} t^{t}\right)$) using finite-input[of tid $\left.t n\right]$ by simp
ultimately have length $\left(b c\left(\sigma_{M B C} t{ }_{n} t n\right)\right) \leq$ length $\left(M A X\left(p i n\left(\sigma_{t i d} t n\right)\right)\right)$
using max-prop(2) by auto
with pow-mbc show?thesis by simp
qed
lemma pow-ge-lgth:
assumes trusted tid
and $\left\{t i d \xi_{t} n\right.$
shows length $\left(b c\left(\sigma_{\text {tid }} n\right)\right) \leq$ PoW $t n$
proof -
from assms have tid $\in \operatorname{actTr}(t n)$ using actTr-def by simp
thus ?thesis using pow-prop by simp
qed

```
lemma pow-le-lgth:
    assumes trusted tid
        and \(\xi_{t i d \xi_{t}}^{n}\)
        and \(\neg\left(\exists b \in\right.\) pin \(\left(\sigma_{\text {tid }} t n\right)\). length \(b>\) length \(\left.\left(b c\left(\sigma_{\text {tid }} t n\right)\right)\right)\)
    shows length \(\left(b c\left(\sigma_{\text {tid }} n\right)\right) \geq\) PoW \(t n\)
proof -
    from assms (3) have \(\forall b \in \operatorname{pin}\left(\sigma_{t i d} t n\right)\). length \(b \leq\) length \(\left(b c\left(\sigma_{t i d} t n\right)\right.\) ) by auto
    moreover from assms nempty-input \([\) of tid \(t n]\) finite-input \([\) of tid \(t n]\)
    have MAX \(\left(\operatorname{pin}\left(\sigma_{t i d} t n\right)\right) \in \operatorname{pin}\left(\sigma_{t i d} t n\right)\) using max-prop(1)[of pin \(\left.\left(\sigma_{t i d}^{t} n\right)\right]\) by simp
    ultimately have length \(\left(\operatorname{MAX}\left(\operatorname{pin}\left(\sigma_{\text {tid }} t n\right)\right)\right) \leq\) length \(\left(b c\left(\sigma_{\text {tid }} t n\right)\right)\) by simp
    moreover from assms have PoWt \(n \leq\) length \(\left(\operatorname{MAX}\left(\operatorname{pin}^{\left.\left.\left(\sigma_{\text {tid }} t n\right)\right)\right)}\right.\right.\)
        using pow-le-max by simp
    ultimately show ?thesis by simp
qed
lemma pow-mono:
    shows \(n^{\prime} \geq n \Longrightarrow\) PoW \(t n^{\prime} \geq\) PoW \(t n\)
proof (induction \(n^{\prime}\) rule: dec-induct)
    case base
    then show? case by simp
next
    case (step \(n^{\prime}\) )
    hence PoWt \(n \leq\) PoW \(t n^{\prime}\) by simp
    moreover have PoWt (Suc \(\left.n^{\prime}\right) \geq\) PoW \(t n^{\prime}\)
    proof -
        from act \(T r\) obtain tid where trusted tid and \(\xi_{t i d \xi_{t}}^{n^{\prime}}\) and \(\left.\xi_{t i d \xi_{t}(S u c} n^{\prime}\right)\) by auto
        show ?thesis
        proof cases
        assume \(\exists b \in \operatorname{pin}\left(\sigma_{t i d} t n^{\prime}\right)\). length \(b>\) length \(\left(b c\left(\sigma_{t i d} t n^{\prime}\right)\right)\)
        moreover from \(\left\langle\left\langle\right.\right.\) tid \(\xi_{t}\left(\text { Suc } n^{\prime}\right)^{\prime}\) have \(\langle\text { tid } \rightarrow t\rangle_{\text {Suc } n^{\prime}}=\) Suc \(n^{\prime}\)
            using nxtAct-active by simp
        moreover from \(\leqslant\left\langle t i d \xi_{t} n^{\prime}\right\rangle\) have \(\langle t i d \leftarrow t\rangle_{\text {Suc } n^{\prime}}=n^{\prime}\)
            using latestAct-prop(2) latestActless le-less-Suc-eq by blast
        moreover from \({ }^{〔} t i d \xi_{t} n^{\prime}\) have \(\exists n^{\prime \prime}<S u c n^{\prime}\). \(\left\{t i d \xi_{t} n^{\prime \prime}\right.\) by blast
        moreover from \({ }^{\{ } \xi_{\text {tid }}^{t}{ }_{\left.\left(\text {Suc } n^{\prime}\right)^{\prime}\right)}\) have \(\exists n^{\prime \prime} \geq\) Suc \(n^{\prime}\). stid \(_{t} n^{\prime \prime}\) by auto
        ultimately have \(b c\left(\sigma_{\text {tid }} t\left(\right.\right.\) Suc \(\left.\left.n^{\prime}\right)\right)=\) Blockchain.MAX \(\left(\right.\) pin \(\left.\left(\sigma_{\text {tid }} n^{\prime}\right)\right) \vee\)
            \(\left(\exists b . b c\left(\sigma_{t i d} t\left(S u c n^{\prime}\right)\right)=\right.\) Blockchain.MAX \(\left.\left(p i n\left(\sigma_{t i d} t n^{\prime}\right)\right) @ b\right)\)
            using 〈trusted tid〉 bhv-tr-ex[of tid Suc \(\left.n^{\prime} t\right]\) by auto
        hence length \(\left(b c\left(\sigma_{\text {tid }} t\left(S u c ~ n^{\prime}\right)\right)\right) \geq\) length (Blockchain.MAX \(\left.\left(\operatorname{pin}\left(\sigma_{t i d} n^{\prime}\right)\right)\right)\) by auto
        moreover from 〈trusted tid〉《\{tid \({ }_{t} n^{\prime \prime}\)
            have length (Blockchain.MAX (pin \(\left.\left.\left(\sigma_{\text {tid }} t^{\prime}\right)\right)\right) \geq\) PoW \(t n^{\prime}\) using pow-le-max by simp
        ultimately have PoWt \(n^{\prime} \leq\) length (bc ( \(\sigma_{\text {tid }} t\) (Suc \(\left.n^{\prime}\right)\) )) by simp
        moreover from <trusted tid〉 \(\left\langle\left\langle_{\text {tid }} \xi_{t}\left(\text { Suc } n^{\prime}\right)^{\prime}\right.\right.\)
            have length \(\left(b c\left(\sigma_{\text {tid }} t\left(S u c n^{\prime}\right)\right)\right) \leq \operatorname{PoW} t\left(S u c n^{\prime}\right)\) using pow-ge-lgth by simp
        ultimately show ?thesis by simp
    next
        assume asmp: \(\neg\left(\exists b \in\right.\) pin \(\left(\sigma_{t i d} n^{\prime}\right)\). length \(b>\) length \(\left.\left(b c\left(\sigma_{t i d}{ }^{t} n^{\prime}\right)\right)\right)\)
```



```
        using nxtAct-active by simp
        moreover from \(\left\langle\right.\) stid \(_{\xi_{t}} n^{\prime \prime}\) ) have \(\langle\text { tid } \leftarrow t\rangle_{\text {Suc } n^{\prime}}=n^{\prime}\)
            using latestAct-prop(2) latestActless le-less-Suc-eq by blast
    moreover from \(\left\langle\left\{t i d \xi_{t} n^{\prime \prime}\right.\right.\) have \(\exists n^{\prime \prime}<\) Suc \(n^{\prime}\). \{tid \(\xi_{t} n^{\prime \prime}\) by blast
    moreover from \(\left\langle\left\{t i d \xi_{t}\right.\right.\) Suc \(\left.^{\prime} n^{\prime}\right)\) have \(\exists n^{\prime \prime} \geq\) Suc \(n^{\prime}\). \({ }^{\prime}\) tid \(\xi_{t} n^{\prime \prime}\) by auto
    ultimately have \(b c\left(\sigma_{t i d} t\left(S u c n^{\prime}\right)\right)=b c\left(\sigma_{t i d} t n^{\prime}\right) \vee\)
        \(\left(\exists b . b c\left(\sigma_{t i d}{ }^{t}\left(S u c n^{\prime}\right)\right)=b c\left(\sigma_{t i d} n^{\prime}\right) @ b\right)\)
        using 〈trusted tid〉 bhv-tr-in[of tid Suc \(\left.n^{\prime} t\right]\) by auto
        hence length \(\left(b c\left(\sigma_{t i d}{ }^{t}\left(\operatorname{Suc} n^{\prime}\right)\right)\right) \geq\) length \(\left(b c\left(\sigma_{\text {tid }} t n^{\prime}\right)\right)\) by auto
```



```
            using pow-le-lgth by simp
            moreover from (trusted tid) \(\left\langle\left\{\begin{array}{l}\text { tidid } \xi_{t} \\ \left(\text { Suc } n^{\prime}\right)^{\prime}\end{array}\right.\right.\)
            have length \(\left(b c\left(\sigma_{\text {tid }} t\left(S u c n^{\prime}\right)\right)\right) \leq P o W t\left(\right.\) Suc \(\left.n^{\prime}\right)\) using pow-ge-lgth by simp
            ultimately show ?thesis by simp
        qed
    qed
    ultimately show ?case by auto
qed
lemma pow-equals:
    assumes PoWt \(n=\) PoW \(t n^{\prime}\)
    and \(n^{\prime} \geq n\)
    and \(n^{\prime \prime} \geq n\)
    and \(n^{\prime \prime} \leq n^{\prime}\)
shows PoWt \(n=P o W t n^{\prime \prime}\) by (metis pow-mono \(\operatorname{assms(1)} \operatorname{assms(3)} \operatorname{assms}(4)\) eq-iff)
lemma pow-mining-suc:
    assumes tmining \(t\) (Suc n)
    shows PoWt \(n<\operatorname{PoW} t\) (Suc n)
proof -
    from assms obtain nid where nid \(\in \operatorname{actTr}(t(S u c n))\) and mining \(\left(\sigma_{n i d}(t(S u c n))\right)\)
        using tmining-def by auto
    show ?thesis
    proof cases
        assume asmp: \(\left(\exists b \in \operatorname{pin}\left(\sigma_{n i d}{ }^{t}\langle n i d \leftarrow t\rangle_{S u c ~}\right)\right.\) ).
        length \(b>\) length \(\left(b c\left(\sigma_{\text {nid }} t\langle\text { nid } \leftarrow t\rangle_{\text {Suc } n)}\right)\right)\)
        moreover from \(\langle n i d \in \operatorname{actTr}(t(S u c n))\rangle\) have trusted nid and \(\xi_{n i d \xi_{t}}^{(\text {Suc } n \text { ) }}\)
        using actTr-def by auto
        moreover from 〈trusted nid〉〈mining \(\left(\sigma_{\text {nid }}(t(\right.\) Suc \(\left.\left.n))\right)\right\rangle\left\langle\left\{n i d \xi_{t} \text { Suc } n\right)^{>}\right.\)have nnid \(_{t}{ }_{n}\)
        using mine by simp
    hence \(\exists n^{\prime}\). latestAct-cond nid \(t\) (Suc \(n\) ) \(n^{\prime}\) by auto
    ultimately have \(\neg \operatorname{mining}\left(\sigma_{\text {nid }}{ }^{t}\langle\text { nid } \rightarrow t\rangle_{\text {Suc } n}\right) \wedge\)
        \(b c\left(\sigma_{n i d} t\langle n i d \rightarrow t\rangle_{S u c ~ n}\right)=\operatorname{MAX}\left(\operatorname{pin}\left(\sigma_{\text {nid }}{ }^{t}\langle\text { nid } \leftarrow t\rangle_{\text {Suc } n}\right)\right) \vee\)
        mining \(\left(\sigma_{\text {nid }} t\langle\text { nid } \rightarrow t\rangle_{\text {Suc n }}\right) \wedge\)
        \(\left(\exists b . b c\left(\sigma_{n i d} t\langle n i d \rightarrow t\rangle_{\text {Suc } n}\right)=\operatorname{MAX}\left(\operatorname{pin}\left(\sigma_{n i d} t\langle n i d \leftarrow t\rangle_{S u c ~ n}\right)\right) @[b]\right)\)
        using bhv-tr-ex[of nid Suc n] by auto
    moreover from \(\left\langle\xi n i d \xi_{t}{ }_{(\text {Suc } n)}\right\rangle^{\rangle}\)have \(\langle\text {nid } \rightarrow t\rangle_{\text {Suc } n}=\) Suc \(n\) using nxtAct-active by simp
    moreover have \(\langle\text { nid } \leftarrow t\rangle_{\text {Suc } n}=n\)
```

proof（rule latestActEq）
from $\left\{\xi_{n i d} \xi_{t}{ }_{n}\right\rangle$ show $\xi_{n i d \xi_{t}}{ }_{n}$ by simp
show $\neg\left(\exists n^{\prime \prime}>n\right.$ ．$n^{\prime \prime}<$ Suc $n \wedge\left\{n i d \xi_{t} n\right)$ by simp
show $n<$ Suc n by simp
qed
hence $\langle n i d \leftarrow t\rangle_{\text {Suc } n}=n$ using latestAct－def by simp
ultimately have $\neg \operatorname{mining}\left(\sigma_{n i d} t(\right.$ Suc $\left.n)\right) \wedge b c\left(\sigma_{\text {nid }} t(\right.$ Suc $\left.n)\right)=M A X\left(\right.$ pin $\left.\left(\sigma_{n i d} t n\right)\right) \vee$
$\operatorname{mining}\left(\sigma_{n i d} t(\right.$ Suc $\left.n)\right) \wedge\left(\exists b . b c\left(\sigma_{n i d} t(S u c n)\right)=M A X\left(p i n\left(\sigma_{n i d} t n\right)\right) @[b]\right)$ by simp
with $\left\langle\right.$ mining $\left(\sigma_{n i d}(t(\right.$ Suc $\left.\left.n))\right)\right\rangle$
have $\exists b . b c\left(\sigma_{n i d} t(\right.$ Suc $\left.n)\right)=\operatorname{MAX}\left(\operatorname{pin}\left(\sigma_{n i d} t n\right)\right) @[b]$ by auto
moreover from 〈trusted nid〉〈\｛nid ${ }_{t}$（Suc n）$^{\text {〉 }}$
have length $\left(b c\left(\sigma_{n i d} t(S u c ~ n)\right)\right) \leq \operatorname{PoWt}(S u c n)$
using pow－ge－lgth［of nid t Suc $n]$ by simp
ultimately have length $\left(\operatorname{MAX}\left(\operatorname{pin}\left(\sigma_{n i d} t n\right)\right)\right)<\operatorname{PoW} t(S u c n)$ by auto
moreover from 〈trusted nid〉〈\｛nid $\xi_{t} n^{\rangle}$have length $\left(M A X\left(\operatorname{pin}^{\prime}\left(\sigma_{\text {nid }}{ }^{t} n\right)\right)\right) \geq$ PoWt n using pow－le－max by simp
ultimately show ？thesis by simp
next
assume asmp：
$\neg\left(\exists b \in \operatorname{pin}\left(\sigma_{n i d} t\langle n i d \leftarrow t\rangle_{\text {Suc } n}\right)\right.$ ．length $b>$ length $\left.\left(b c\left(\sigma_{n i d} t\langle n i d \leftarrow t\rangle_{\text {Suc } n}\right)\right)\right)$
moreover from $\left\langle n i d \in \operatorname{actTr}(t\right.$（Suc n））$\rangle$ have trusted nid and $\left\{n i d \xi_{t}\right.$（Suc n） using actTr－def by auto
 using mine by simp
hence $\exists n^{\prime}$ ．latestAct－cond nid t（Suc n ）n^{\prime} by auto
ultimately have $\neg \operatorname{mining}\left(\sigma_{n i d} t\langle n i d \rightarrow t\rangle_{\text {Suc } n}\right) \wedge$
$b c\left(\sigma_{n i d} t\langle n i d \rightarrow t\rangle_{\text {Suc } n}\right)=b c\left(\sigma_{\text {nid }} t\langle n i d \leftarrow t\rangle_{\text {Suc } n}\right) \vee$
mining $\left(\sigma_{\text {nid }} t\langle\text { nid } \rightarrow t\rangle_{\text {Suc } n}\right) \wedge$
$\left(\exists b . b c\left(\sigma_{n i d}{ }^{t}\langle n i d \rightarrow t\rangle_{S u c ~ n}\right)=b c\left(\sigma_{n i d} t\langle n i d \leftarrow t\rangle_{S u c ~ n}\right) @[b]\right)$
using bhv－tr－in［of nid Suc n］by auto
moreover from $\left\langle\xi n i d \xi_{t}{ }_{(\text {Suc } n)}\right\rangle$ have $\langle\text { nid } \rightarrow t\rangle_{\text {Suc } n}=$ Suc n using nxtAct－active by simp
moreover have $\langle n i d \leftarrow t\rangle_{\text {Suc } n}=n$
proof（rule latestActEq）
from $\left\langle\left\{{ }^{n}\right.\right.$ nid $\xi_{t} n^{\rangle}$show $\xi_{n i d \xi_{t}}{ }_{n}$ by simp
show $\neg\left(\exists n^{\prime \prime}>n\right.$ ．$n^{\prime \prime}<$ Suc $\left.n \wedge \xi n i d \xi_{t} n\right)$ by simp
show $n<$ Suc n by simp
qed
hence $\langle n i d \leftarrow t\rangle_{\text {Suc } n}=n$ using latestAct－def by simp
ultimately have $\neg \operatorname{mining}\left(\sigma_{n i d} t(\right.$ Suc $\left.n)\right) \wedge b c\left(\sigma_{n i d} t(\right.$ Suc $\left.n)\right)=b c\left(\sigma_{n i d} t n\right) \vee$
$\operatorname{mining}\left(\sigma_{n i d} t(\right.$ Suc $\left.n)\right) \wedge\left(\exists b\right.$ ．bc $\left.\left(\sigma_{n i d} t(S u c n)\right)=b c\left(\sigma_{n i d} t n\right) @[b]\right)$ by simp
with $\left\langle\operatorname{mining}\left(\sigma_{n i d}(t(\right.\right.$ Suc $\left.\left.n))\right)\right\rangle$ have $\exists b$ ．bc $\left(\sigma_{n i d} t(S u c n)\right)=b c\left(\sigma_{n i d} t n\right) @[b]$ by simp
moreover from $\left\langle\langle n i d \leftarrow t\rangle_{\text {Suc } n}=n\right\rangle$
have $\neg\left(\exists b \in \operatorname{pin}\left(\sigma_{n i d} t n\right)\right.$ ．length $\left(b c\left(\sigma_{n i d} t n\right)\right)<$ length $\left.b\right)$
using asmp by simp
with $\left\langle\right.$ trusted nid〉 $\left\langle\left\{n i d \xi_{t} n^{\rangle}\right.\right.$have length $\left(b c\left(\sigma_{\text {nid }} t n\right)\right) \geq$ PoW $t n$
using pow－le－lgth［of nid $t n$ ］by simp
moreover from 〈trusted nid〉 $\left\langle\left\{n i d \xi_{t}(\text { Suc } n)^{\rangle}\right.\right.$have
length $\left(b c\left(\sigma_{n i d} t(\right.\right.$ Suc $\left.\left.n)\right)\right) \leq$ PoW $t($ Suc $n)$
using pow-ge-lgth[of nid t Suc n] by simp
ultimately show ?thesis by auto
qed
qed

G.3.2.4 History

In the following we introduce an operator which extracts the development of a blockchain up to a time point n.
abbreviation his-prop $t n$ nid n^{\prime} nid' $x \equiv$

$$
\begin{aligned}
& \left(\exists n \text { latestAct-cond nid' } t n^{\prime} n\right) \wedge \xi \text { snd } x \xi_{t}\left(f_{s t} x\right) \wedge f s t x=\left\langle n i d^{\prime} \leftarrow t\right\rangle_{n^{\prime}} \wedge \\
& \left(\text { prefix }\left(b c\left(\sigma_{\text {nid }}(t n)\right)\right)\left(b c\left(\sigma_{\text {snd }}(t(f s t x))\right)\right) \vee\right. \\
& \left.\quad\left(\exists b . b c\left(\sigma_{n i d^{\prime}}\left(t n^{\prime}\right)\right)=\left(b c\left(\sigma_{\text {snd }} x(t(f s t x))\right)\right) @[b] \wedge \operatorname{mining}\left(\sigma_{n i d^{\prime}}\left(t n^{\prime}\right)\right)\right)\right)
\end{aligned}
$$

inductive-set

his:: trace \Rightarrow nat \Rightarrow 'nid \Rightarrow (nat \times 'nid) set
for $t::$ trace and $n::$ nat and nid $::$ 'nid
where $\llbracket \xi_{n i d \xi_{t} n \rrbracket \Longrightarrow(n, n i d) \in \text { his } t n \text { nid }}^{n}$
$\mid \llbracket\left(n^{\prime}, n i d^{\prime}\right) \in$ his $t n$ nid; $\exists x$. his-prop $t n$ nid n^{\prime} nid $^{\prime} x \rrbracket \Longrightarrow$ (SOME x. his-prop $t n$ nid n^{\prime} nid $\left.^{\prime} x\right) \in$ his $t n$ nid
lemma his-act:
assumes $\left(n^{\prime}, n i d^{\prime}\right) \in$ his $t n$ nid
shows nnid $^{\prime \prime}{ }_{t} n^{\prime}$
using assms
proof (rule his.cases)
assume $\left(n^{\prime}, n i d^{\prime}\right)=(n, n i d)$ and $\left\{n i d \xi_{t} n\right.$
thus $\xi_{n i d}{ }^{\prime}{ }_{t n^{\prime}}$ by simp
next
fix $n^{\prime \prime}$ nid" assume asmp: $\left(n^{\prime}\right.$, nid $)=\left(\right.$ SOME x. his-prop $t n$ nid $n^{\prime \prime}$ nid $\left.{ }^{\prime \prime} x\right)$
and $\left(n^{\prime \prime}\right.$, nid $\left.^{\prime \prime}\right) \in$ his $t n$ nid and $\exists x$. his-prop $t n$ nid $n^{\prime \prime}$ nid ${ }^{\prime \prime} x$
hence his-prop $t n$ nid $n^{\prime \prime}$ nid" (SOME x. his-prop t nid $n^{\prime \prime}$ nid $\left.{ }^{\prime \prime} x\right)$
using someI-ex[of λx. his-prop $t n$ nid $n^{\prime \prime}$ nid $\left.{ }^{\prime \prime} x\right]$ by auto
hence $\xi_{\text {snd }}\left(S O M E\right.$ x. his-prop $t n$ nid $\left.n^{\prime \prime} n i d^{\prime \prime} x\right) \xi_{t}\left(f_{s t}\left(S O M E x\right.\right.$. his-prop $t n$ nid $\left.\left.n^{\prime \prime} n i d^{\prime \prime} x\right)\right)$ by blast
moreover from asmp have $f s t\left(S O M E\right.$ x. his-prop t n nid $\left.n^{\prime \prime} n i d^{\prime \prime} x\right)=f s t\left(n^{\prime}, n i d^{\prime}\right)$ by simp
moreover from asmp have snd (SOME x. his-prop $t n$ nid $\left.n^{\prime \prime} n i d^{\prime \prime} x\right)=$ snd (n^{\prime}, nid') by simp
ultimately show ?thesis by simp
qed
In addition we also introduce an operator to obtain the predecessor of a blockchains development.

definition hisPred

where hisPred $t n$ nid $n^{\prime} \equiv\left(\right.$ GREATEST $n^{\prime \prime} . \exists$ nid ${ }^{\prime} .\left(n^{\prime \prime}\right.$, nid $) \in$ his $t n$ nid $\left.\wedge n^{\prime \prime}<n^{\prime}\right)$
lemma hisPrev-prop:
assumes $\exists n^{\prime \prime}<n^{\prime} . \exists n i d^{\prime} .\left(n^{\prime \prime}, n i d^{\prime}\right) \in$ his $t n$ nid
shows hisPred $t n$ nid $n^{\prime}<n^{\prime}$ and \exists nid ${ }^{\prime}$. (hisPred $t n$ nid n^{\prime}, nid $\left.{ }^{\prime}\right) \in$ his $t n$ nid
proof -
from assms obtain $n^{\prime \prime}$ where $\exists n i d^{\prime} .\left(n^{\prime \prime}\right.$, nid $) \in$ his $t n$ nid $\wedge n^{\prime \prime}<n^{\prime}$ by auto
moreover from $\left\langle\exists\right.$ nid ${ }^{\prime} .\left(n^{\prime \prime}\right.$, nid $) \in$ his $t n$ nid $\left.\wedge n^{\prime \prime}<n^{\prime}\right\rangle$
have $\exists i^{\prime} \leq n^{\prime} .\left(\exists n i d^{\prime} .\left(i^{\prime}, n i d^{\prime}\right) \in\right.$ his $t n$ nid $\left.\wedge i^{\prime}<n^{\prime}\right) \wedge$
$\left(\forall n^{\prime} a .\left(\exists n i d^{\prime} .\left(n^{\prime} a, n i d^{\prime}\right) \in\right.\right.$ his $t n$ nid $\left.\left.\wedge n^{\prime} a<n^{\prime}\right) \longrightarrow n^{\prime} a \leq i^{\prime}\right)$
using boundedGreatest $\left[\right.$ of $\lambda n^{\prime \prime} . \exists n i d^{\prime} .\left(n^{\prime \prime}\right.$, nid $) \in$ his $t n$ nid $\left.\wedge n^{\prime \prime}<n^{\prime} n^{\prime \prime} n\right\rceil$ by simp
then obtain i^{\prime} where $\forall n^{\prime} a$. $\left(\exists\right.$ nid ${ }^{\prime} .\left(n^{\prime} a, n i d^{\prime}\right) \in$ his $t n$ nid $\left.\wedge n^{\prime} a<n^{\prime}\right) \longrightarrow n^{\prime} a \leq i^{\prime}$ by auto
ultimately show hisPred $t n$ nid $n^{\prime}<n^{\prime}$ and \exists nid ${ }^{\prime}$. (hisPred $t n$ nid n^{\prime}, nid $\left.{ }^{\prime}\right) \in$ his $t n$ nid using GreatestI-nat[of $\lambda n^{\prime \prime}$. \exists nid ${ }^{\prime}$. $\left(n^{\prime \prime}\right.$, nid $) \in$ his t n nid $\left.\wedge n^{\prime \prime}<n^{\prime} n^{\prime \prime} i\right\rceil$ hisPred-def by auto
qed
lemma hisPrev-nex-less:
assumes $\exists n^{\prime \prime}<n^{\prime} . \exists$ nid ${ }^{\prime} .\left(n^{\prime \prime}\right.$, nid $) \in$ his $t n$ nid
shows $\neg\left(\exists x \in\right.$ his $t n$ nid. fst $x<n^{\prime} \wedge$ fst $x>$ hisPred $t n$ nid $\left.n^{\prime}\right)$
proof (rule ccontr)
assume $\neg \neg\left(\exists x \in\right.$ his $t n$ nid. fst $x<n^{\prime} \wedge$ fst $x>$ hisPred $t n$ nid $\left.n^{\prime}\right)$
then obtain $n^{\prime \prime}$ nid ${ }^{\prime \prime}$ where $\left(n^{\prime \prime}\right.$, nid $\left.{ }^{\prime \prime}\right) \in$ his $t n$ nid and $n^{\prime \prime}<n^{\prime}$
and $n^{\prime \prime}>$ hisPred $t n$ nid n^{\prime} by auto
moreover have $n^{\prime \prime} \leq h i s P r e d t n$ nid n^{\prime}
proof -
from $\left\langle\left(n^{\prime \prime}\right.\right.$, nid $\left.{ }^{\prime \prime}\right) \in$ his $t n$ nid $\rangle\left\langle n^{\prime \prime}<n^{\prime}\right\rangle$ have \exists nid ${ }^{\prime} .\left(n^{\prime \prime}\right.$, nid $) \in$ his $t n$ nid $\wedge n^{\prime \prime}<n^{\prime}$ by auto moreover from $\left\langle\exists\right.$ nid ${ }^{\prime}$. $\left(n^{\prime \prime}\right.$, nid $) \in$ his $t n$ nid $\left.\wedge n^{\prime \prime}<n^{\prime}\right\rangle$ have $\exists i^{\prime} \leq n^{\prime} .\left(\exists n i d^{\prime} .\left(i^{\prime}, n i d^{\prime}\right) \in\right.$ his $t n$ nid $\left.\wedge i^{\prime}<n^{\prime}\right) \wedge$
$\left(\forall n^{\prime} a .\left(\exists n i d^{\prime} .\left(n^{\prime} a, n i d^{\prime}\right) \in\right.\right.$ his $t n$ nid $\left.\left.\wedge n^{\prime} a<n^{\prime}\right) \longrightarrow n^{\prime} a \leq i^{\prime}\right)$
using boundedGreatest[of $\lambda n^{\prime \prime} . \exists$ nid ${ }^{\prime} .\left(n^{\prime \prime}\right.$, nid $) \in$ his $t n$ nid $\wedge n^{\prime \prime}<n^{\prime} n^{\prime \prime} n \jmath$ by simp
then obtain i^{\prime} where $\forall n^{\prime} a$. $\left(\exists n i d^{\prime} .\left(n^{\prime} a, n i d^{\prime}\right) \in\right.$ his $t n$ nid $\left.\wedge n^{\prime} a<n^{\prime}\right) \longrightarrow n^{\prime} a \leq i^{\prime}$ by auto
ultimately show ?thesis using
Greatest-le-nat $\left[\right.$ of $\lambda n^{\prime \prime} . \exists n i d^{\prime} .\left(n^{\prime \prime}\right.$, nid $) \in$ his $t n$ nid $\left.\wedge n^{\prime \prime}<n^{\prime} n^{\prime \prime} i^{\prime}\right]$ hisPred-def by simp qed
ultimately show False by simp
qed
lemma his-le:
assumes $x \in$ his $t n$ nid
shows f st $x \leq n$
using assms
proof (induction rule: his.induct)
case 1
then show? case by simp
next
case (2 $n^{\prime} n i d^{\prime}$)
moreover have fst (SOME x. his-prop $t n$ nid $\left.n^{\prime} n i d^{\prime} x\right) \leq n^{\prime}$
proof -
from 2.hyps have $\exists x$. his-prop $t n$ nid $n^{\prime} n i d^{\prime} x$ by simp
hence his－prop $t n$ nid n^{\prime} nid＇（SOME x ．his－prop $t n$ nid n^{\prime} nid $\left.^{\prime} x\right)$
using someI－ex［of λx ．his－prop $t n$ nid $\left.n^{\prime} n i d^{\prime} x\right]$ by auto
hence f st（SOME x ．his－prop $t n$ nid $\left.n^{\prime} n i d^{\prime} x\right)=\left\langle n i d^{\prime} \leftarrow t\right\rangle_{n^{\prime}}$ by force
moreover from 〈his－prop $t n$ nid n^{\prime} nid $^{\prime}\left(S O M E\right.$ x．his－prop $t n$ nid $\left.n^{\prime} n i d^{\prime} x\right)$ 〉
have $\exists n$ ．latestAct－cond nid＇$t n^{\prime} n$ by simp
ultimately show ？thesis using latestAct－prop（2）［of $\left.n^{\prime} n i d^{\prime} t\right]$ by simp
qed
ultimately show？case by simp
qed
lemma his－determ－base：
shows $\left(n, n i d{ }^{\prime}\right) \in$ his $t n$ nid \Longrightarrow nid $^{\prime}=$ nid
proof（rule his．cases）
assume $\left(n, n i d^{\prime}\right)=(n, n i d)$
thus ？thesis by simp
next
fix $n^{\prime} n i d^{\prime} a$
assume $\left(n, n i d^{\prime}\right) \in$ his $t n$ nid and $\left(n, n i d^{\prime}\right)=\left(S O M E\right.$ ．his－prop $t n$ nid $\left.n^{\prime} n i d^{\prime} a x\right)$ and $\left(n^{\prime}\right.$, nid＇a $) \in$ his $t n$ nid and $\exists x$ ．his－prop $t n$ nid n^{\prime} nid＇a $^{\prime} x$
hence his－prop $t n$ nid n^{\prime} nid＇a（SOME x ．his－prop $t n$ nid $n^{\prime} n i d^{\prime} a x$ ）
using someI－ex［of λx ．his－prop $t n$ nid $\left.n^{\prime} n i d^{\prime} a x\right]$ by auto
hence fst（SOME x ．his－prop $t n$ nid $\left.n^{\prime} n i d^{\prime} a x\right)=\left\langle n i d^{\prime} a \leftarrow t\right\rangle_{n^{\prime}}$ by force
moreover from 〈his－prop $t n$ nid $n^{\prime} n^{\prime} d^{\prime} a\left(S O M E x\right.$ ．his－prop $t n$ nid $\left.n^{\prime} n i d^{\prime} a x\right)$ 〉
have $\exists n$ ．latestAct－cond nid＇a $t n^{\prime} n$ by simp
ultimately have $f s t$（SOME x ．his－prop $t n$ nid $\left.n^{\prime} n i d^{\prime} a x\right)<n^{\prime}$
using latestAct－prop（2）［of $n^{\prime} n i d^{\prime}$ a t ］by simp
with $\left\langle\left(n, n i d^{\prime}\right)=\left(\right.\right.$ SOME x ．his－prop $t n$ nid $\left.\left.n^{\prime} n i d^{\prime} a x\right)\right\rangle$ have $f s t\left(n, n i d^{\prime}\right)<n^{\prime}$ by simp hence $n<n^{\prime}$ by simp
moreover from $\left\langle\left(n^{\prime}, n i d^{\prime} a\right) \in\right.$ his $t n$ nid \rangle have $n^{\prime} \leq n$ using his－le by auto
ultimately show $n i d^{\prime}=$ nid by simp
qed
lemma hisPrev－same：
assumes $\exists n^{\prime}<n^{\prime \prime} . \exists n i d^{\prime} .\left(n^{\prime}, n i d^{\prime}\right) \in$ his $t n$ nid
and $\exists n^{\prime \prime}<n^{\prime}$ ．\exists nid ${ }^{\prime} .\left(n^{\prime \prime}, n i d^{\prime}\right) \in$ his $t n$ nid
and $\left.\left(n^{\prime}, \text { nid }\right)^{\prime}\right) \in$ his $t n$ nid
and $\left(n^{\prime \prime}, n i d^{\prime \prime}\right) \in$ his $t n$ nid
and hisPred $t n$ nid $n^{\prime}=$ hisPred $t n$ nid $n^{\prime \prime}$
shows $n^{\prime}=n^{\prime \prime}$
proof（rule ccontr）
assume $\neg n^{\prime}=n^{\prime \prime}$
hence $n^{\prime}>n^{\prime \prime} \vee n^{\prime}<n^{\prime \prime}$ by auto
thus False
proof
assume $n^{\prime}<n^{\prime \prime}$
hence $f s t\left(n^{\prime}, n i d^{\prime}\right)<n^{\prime \prime}$ by simp
moreover from assms（2）have hisPred $t n$ nid $n^{\prime}<n^{\prime}$ using hisPrev－prop（1）by simp
with assms have hisPred $t n$ nid $n^{\prime \prime}<n^{\prime}$ by simp
hence hisPred $t n$ nid $n^{\prime \prime}<f s t\left(n^{\prime}, n i d^{\prime}\right)$ by simp
ultimately show False using hisPrev-nex-less[of $\left.n^{\prime \prime} t n n i d\right]$ assms by auto next
assume $n^{\prime}>n^{\prime \prime}$
hence $f s t\left(n^{\prime \prime}, n i d^{\prime}\right)<n^{\prime}$ by simp
moreover from $\operatorname{assms}(1)$ have hisPred $t n$ nid $n^{\prime \prime}<n^{\prime \prime}$ using hisPrev-prop(1) by simp
with assms have hisPred $t n$ nid $n^{\prime}<n^{\prime \prime}$ by simp
hence hisPred $t n$ nid $n^{\prime}<f s t\left(n^{\prime \prime}\right.$, nid $\left.{ }^{\prime}\right)$ by simp
ultimately show False using hisPrev-nex-less[of n ' $t n$ nid] assms by auto
qed
qed
lemma his-determ-ext:
shows $n^{\prime} \leq n \Longrightarrow\left(\exists\right.$ nid $^{\prime} .\left(n^{\prime}, n i d^{\prime}\right) \in$ his $t n$ nid $) \Longrightarrow\left(\exists!\right.$ nid $^{\prime} .\left(n^{\prime}, n i d^{\prime}\right) \in h i s t n$ nid $) \wedge$
$\left(\left(\exists n^{\prime \prime}<n^{\prime} . \exists\right.\right.$ nid ${ }^{\prime} .\left(n^{\prime \prime}, n i d^{\prime}\right) \in$ his $t n$ nid $) \longrightarrow$
(\exists x. his-prop $t n$ nid $n^{\prime}\left(\right.$ THE nid ${ }^{\prime} .\left(n^{\prime}\right.$, nid $) \in$ his $t n$ nid) $\left.x\right) \wedge$
(hisPred $t n$ nid n^{\prime}, (SOME nid' . (hisPred $t n$ nid n^{\prime}, nid' $) \in$ his $t n$ nid $)$) $=$
(SOME x. his-prop $t n$ nid $n^{\prime}\left(\right.$ THE nid ${ }^{\prime} .\left(n^{\prime}\right.$, nid $\left.{ }^{\prime}\right) \in$ his $t n$ nid) $\left.x\right)$)
proof (induction n^{\prime} rule: my-induct)
case base
then obtain nid' where ($n, n i d^{\prime}$) \in his $t n$ nid by auto
hence $\exists!$ nid $^{\prime} .\left(n\right.$, nid $\left.{ }^{\prime}\right) \in$ his t nid
proof
fix $n i d^{\prime \prime}$ assume (n, nid ${ }^{\prime \prime}$) \in his $t n$ nid
with his-determ-base have nid ${ }^{\prime \prime}=$ nid by simp
moreover from $\left\langle\left(n, n i d^{\prime}\right) \in\right.$ his $t n$ nid \rangle have nid'=nid using his-determ-base by simp
ultimately show $n i d^{\prime \prime}=n i d^{\prime}$ by simp
qed
moreover have $\left(\exists n^{\prime \prime}<n . \exists\right.$ nid ${ }^{\prime} .\left(n^{\prime \prime}\right.$, nid $) \in$ his $t n$ nid $) \longrightarrow$
$\left(\exists\right.$ x. his-prop $t n$ nid $n\left(\right.$ THE nid'.$\left(n\right.$, nid $\left.{ }^{\prime}\right) \in$ his $\left.\left.t n n i d\right) x\right) \wedge$
(hisPred $t n$ nid n, (SOME nid'. (hisPred $t n$ nid n, nid $) \in$ his $t n$ nid $)$) $=$
(SOME x. his-prop $t n$ nid $n\left(\right.$ THE nid'. $\left(n, n i d^{\prime}\right) \in h i s t n$ nid) $\left.x\right)$
proof
assume $\exists n^{\prime \prime}<n$. $\exists n i d^{\prime} .\left(n^{\prime \prime}, n i d^{\prime}\right) \in$ his $t n$ nid
hence \exists nid ${ }^{\prime}$. (hisPred $t n$ nid n, nid $\left.{ }^{\prime}\right) \in$ his $t n$ nid using hisPrev-prop (2) by simp
hence (hisPred $t n$ nid n, (SOME nid'. (hisPred $t n$ nid n, nid' $) \in$ his $t n$ nid $)$) \in his $t n$ nid using someI-ex[of λ nid'. (hisPred $t n$ nid n, nid') \in his $t n$ nid] by simp
thus $\left(\exists x\right.$. his-prop $t n$ nid $n\left(T H E\right.$ nid'. $\left(n, n i d^{\prime}\right) \in h i s t n$ nid $\left.) x\right) \wedge$
(hisPred $t n$ nid n, (SOME nid'. (hisPred $t n$ nid n, nid $) \in$ his $t n$ nid $)$) $=$
(SOME x. his-prop $t n$ nid $n\left(\right.$ THE nid ${ }^{\prime} .\left(n, n i d^{\prime}\right) \in$ his $\left.\left.t n n i d\right) x\right)$
proof (rule his.cases)
assume (hisPred $t n$ nid n, SOME nid'. (hisPred $t n$ nid n, nid $\left.{ }^{\prime}\right) \in$ his $t n$ nid $)=(n$, nid)
hence hisPred $t n$ nid $n=n$ by simp
with $\left\langle\exists n^{\prime \prime}<n\right.$. $\exists n i d^{\prime} .\left(n^{\prime \prime}, n i d^{\prime}\right) \in$ his $t n$ nid \rangle show ?thesis
using hisPrev-prop(1)[of $n t n$ nid] by force
next
fix $n^{\prime \prime} n i d^{\prime \prime}$ assume $a s m p$:
(hisPred $t n$ nid n, SOME nid'. (hisPred $t n$ nid n, nid $\left.{ }^{\prime}\right) \in$ his $t n$ nid $)=$ (SOME x. his-prop $t n$ nid $n^{\prime \prime} n i d^{\prime \prime} x$)
and $\left(n^{\prime \prime}\right.$, nid $\left.{ }^{\prime \prime}\right) \in$ his $t n$ nid and $\exists x$. his-prop $t n$ nid $n^{\prime \prime}$ nid ${ }^{\prime \prime} x$

```
    moreover have \(n^{\prime \prime}=n\)
    proof (rule antisym)
        show \(n^{\prime \prime} \geq n\)
    proof (rule ccontr)
        assume \(\left(\neg n^{\prime \prime} \geq n\right)\)
        hence \(n^{\prime \prime}<n\) by simp
        moreover have \(n^{\prime \prime}>\) hisPred \(t n\) nid \(n\)
        proof -
            let ? \(x=\lambda x\). his-prop \(t n\) nid \(n^{\prime \prime} n i d^{\prime \prime} x\)
            from \(\exists \exists x\). his-prop \(t n\) nid \(n^{\prime \prime}\) nid" \(\left.x\right\rangle\) have his-prop \(t n\) nid \(n^{\prime \prime}\) nid" (SOME \(x\). ? \(x\) x)
                using someI-ex \([\) of ? \(x\) ] by auto
            hence \(n^{\prime \prime}>f s t\) (SOME x. ? \(x\) x) using latestAct-prop(2) \(\left[\right.\) of \(\left.n^{\prime \prime} n i d^{\prime \prime} t\right]\) by force
            moreover from asmp have
                fst (hisPred \(t n\) nid \(n\), SOME nid'. (hisPred \(t n\) nid \(n\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid \()=\)
                fst (SOME \(x\). ? \(x\) x) by simp
            ultimately show? ?thesis by simp
        qed
        moreover from \(\exists \exists n^{\prime \prime}<n . \exists n i d^{\prime} .\left(n^{\prime \prime}\right.\), nid \() \in\) his \(t n\) nid \(\rangle\)
            have \(\neg(\exists x \in\) his \(t n\) nid. fst \(x<n \wedge\) fst \(x>\) hisPred \(t n\) nid \(n)\)
            using hisPrev-nex-less by simp
        ultimately show False using \(\left\langle\left(n^{\prime \prime}\right.\right.\), nid \(\left.{ }^{\prime \prime}\right) \in\) his \(t n\) nid \(\rangle\) by auto
        qed
    next
        from \(\left\langle\left(n^{\prime \prime}\right.\right.\), nid \(\left.{ }^{\prime \prime}\right) \in\) his \(t n\) nid \(\rangle\) show \(n^{\prime \prime} \leq n\) using his-le by auto
    qed
        ultimately have (hisPred \(t n\) nid \(n\), SOME nid'. (hisPred \(t n\) nid \(n\), nid' \() \in\) his \(t n\) nid \()=\)
        (SOME x. his-prop \(t n\) nid \(n\) nid \({ }^{\prime \prime} x\) ) by simp
        moreover from \(\left\langle n^{\prime \prime}=n\right\rangle\left\langle\left(n^{\prime \prime}\right.\right.\), nid \(\left.{ }^{\prime \prime}\right) \in\) his \(t n\) nid \(\rangle\) have \(\left(n\right.\), nid \(\left.{ }^{\prime \prime}\right) \in\) his \(t n\) nid by simp
        with \(\left\langle\exists!n i d^{\prime} .\left(n, n i d^{\prime}\right) \in\right.\) his \(t n\) nid \(\rangle\) have \(n i d^{\prime \prime}=\left(\right.\) THE nid'. \(\left(n, n i d^{\prime}\right) \in\) his \(t n\) nid \()\)
            using the1-equality[of \(\left.\lambda_{n i d^{\prime} .}(n, \text { nid })^{\prime}\right) \in\) his \(t\) n nid] by simp
        moreover from \(\left\langle\exists x\right.\). his-prop \(t n\) nid \(\left.n^{\prime \prime} n i d^{\prime \prime} x\right\rangle\left\langle n^{\prime \prime}=n\right\rangle\)
            \(\left\langle\right.\) nid \(^{\prime \prime}=\left(\right.\) THE nid \({ }^{\prime} .\left(n\right.\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid \(\left.)\right\rangle\)
            have \(\exists x\). his-prop \(t n\) nid \(n\left(\right.\) THE nid \({ }^{\prime} .\left(n, n i d^{\prime}\right) \in\) his \(t n\) nid) \(x\) by simp
            ultimately show?thesis by simp
        qed
    qed
    ultimately show ? case by simp
next
    case (step \(n^{\prime}\) )
    then obtain nid' where \(\left(n^{\prime}, n i d^{\prime}\right) \in\) his \(t n\) nid by auto
    hence \(\exists\) !nid \(\left.{ }^{\prime} .\left(n^{\prime}, \text { nid }\right)^{\prime}\right) \in\) his \(t n\) nid
    proof (rule his.cases)
        assume \(\left(n^{\prime}, n i d^{\prime}\right)=(n, n i d)\)
        hence \(n^{\prime}=n\) by simp
        with step.hyps show ?thesis by simp
next
        fix \(n^{\prime \prime \prime \prime} n i d^{\prime \prime \prime \prime}\)
    assume \(\left(n^{\prime \prime \prime \prime}\right.\), nid \(\left.{ }^{\prime \prime \prime \prime}\right) \in\) his \(t\) n nid
        and \(n^{\prime} n i d^{\prime}:\left(n^{\prime}\right.\), nid \()=\left(\right.\) SOME \(x\). his-prop \(t n\) nid \(n^{\prime \prime \prime \prime}\) nid \(\left.^{\prime \prime \prime \prime} x\right)\)
```

```
    and \(\left(n^{\prime \prime \prime \prime}\right.\), nid \(\left.{ }^{\prime \prime \prime \prime}\right) \in\) his \(t n\) nid and \(\exists x\). his-prop \(t n\) nid \(n^{\prime \prime \prime \prime}\) nid \({ }^{\prime \prime \prime \prime} x\)
from \(\left\langle\left(n^{\prime}, n i d\right) \in\right.\) his \(t n\) nid \(\rangle\) show ?thesis
proof
    fix \(n i d^{\prime \prime}\) assume \(\left(n^{\prime}, n i d^{\prime \prime}\right) \in\) his \(t n\) nid
    thus id \(^{\prime \prime}=\) nid \(^{\prime}\)
    proof (rule his.cases)
        assume \(\left(n^{\prime}, n i d^{\prime \prime}\right)=(n, n i d)\)
        hence \(n^{\prime}=n\) by simp
        with step.hyps show? ?thesis by simp
    next
        fix \(n^{\prime \prime \prime} n i d^{\prime \prime \prime}\)
        assume ( \(n^{\prime \prime \prime}\), nid \({ }^{\prime \prime \prime}\) ) \(\in\) his \(t n\) nid
        and \(n^{\prime} n i d^{\prime \prime}:\left(n^{\prime}\right.\), nid \(\left.^{\prime}\right)=\left(\right.\) SOME \(x\). his-prop \(t n\) nid \(n^{\prime \prime \prime}\) nid \(\left.{ }^{\prime \prime \prime} x\right)\)
        and \(\left(n^{\prime \prime \prime}\right.\), nid \(\left.{ }^{\prime \prime}\right) \in\) his \(t n\) nid and \(\exists x\). his-prop \(t n\) nid \(n^{\prime \prime \prime}\) nid \({ }^{\prime \prime \prime} x\)
    moreover have \(n^{\prime \prime \prime}=n^{\prime \prime \prime \prime}\)
    proof -
        have hisPred \(t n\) nid \(n^{\prime \prime \prime}=n^{\prime}\)
        proof -
            from \(n^{\prime} n i d^{\prime \prime}\left\langle\exists x\right.\). his-prop \(t n\) nid \(\left.n^{\prime \prime \prime} n i d^{\prime \prime \prime} x\right\rangle\)
                have his-prop \(t n\) nid \(n^{\prime \prime \prime}\) nid \({ }^{\prime \prime \prime}\left(n^{\prime}\right.\), nid \({ }^{\prime}\) )
                using someI-ex[of \(\lambda x\). his-prop \(t n\) nid \(n^{\prime \prime \prime}\) nid \(\left.{ }^{\prime \prime \prime} x\right]\) by auto
            hence \(n^{\prime \prime \prime}>n^{\prime}\) using latestAct-prop(2) by simp
            moreover from \(\left\langle\left(n^{\prime \prime \prime}\right.\right.\), nid \(\left.{ }^{\prime \prime \prime}\right) \in\) his \(t n\) nid \(\rangle\) have \(n^{\prime \prime \prime} \leq n\) using his-le by auto
            moreover from ( \(\left(n^{\prime \prime \prime}\right.\), nid \(\left.{ }^{\prime \prime \prime}\right) \in\) his \(t n\) nid \()\)
                have \(\exists\) nid \({ }^{\prime} .\left(n^{\prime \prime \prime}, n i d^{\prime}\right) \in\) his \(t n\) nid by auto
            ultimately have \(\left(\exists n^{\prime}<n^{\prime \prime \prime} . \exists\right.\) nid \({ }^{\prime} .\left(n^{\prime}\right.\), nid \() \in\) his \(t n\) nid \() \longrightarrow\)
                \(\left(\exists!\right.\) nid'. \(\left(n^{\prime \prime \prime}, n i d^{\prime}\right) \in\) his \(t n\) nid \() \wedge\)
                    (hisPred \(t n\) nid \(n^{\prime \prime \prime}\), (SOME nid'. (hisPred \(t n\) nid \(n^{\prime \prime \prime}\), nid \() \in\) his \(t n\) nid \(\left.)\right)=\)
                    (SOME x. his-prop \(t n\) nid \(n^{\prime \prime \prime}\left(\right.\) THE nid \({ }^{\prime} .\left(n^{\prime \prime \prime}\right.\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid) \(\left.x\right)\)
                using step.IH by auto
            with \(\left\langle n^{\prime \prime \prime}>n^{\prime}\right\rangle\left\langle\left(n^{\prime}\right.\right.\), nid \() \in\) his \(t n\) nid \(\rangle\) have \(\exists!\) nid \({ }^{\prime} .\left(n^{\prime \prime \prime}\right.\), nid \() \in\) his \(t n\) nid and
                    \(\left(\right.\) hisPred \(t n\) nid \(\left.n^{\prime \prime \prime},\left(\text { SOME nid'. (hisPred } t n \text { nid } n^{\prime \prime \prime}, \text { nid }\right)^{\prime}\right) \in\) his \(t n\) nid \(\left.)\right)=\)
                    (SOME x. his-prop \(t n\) nid \(n^{\prime \prime \prime}\left(\right.\) THE nid'. ( \(n^{\prime \prime \prime}\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid) \(\left.x\right)\) by auto
            moreover from \(\exists\) ! nid \(\left.{ }^{\prime} .\left(n^{\prime \prime \prime}, \text { nid }\right)^{\prime}\right) \in\) his \(t n\) nid \(\rangle\left(n^{\prime \prime \prime}\right.\), nid \(\left.{ }^{\prime \prime \prime}\right) \in\) his \(t n\) nid \(\rangle\) have
                nid \(^{\prime \prime \prime}=\left(\right.\) THE nid \({ }^{\prime} .\left(n^{\prime \prime \prime}\right.\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid \()\)
                using the1-equality \(\left[\right.\) of \(\lambda\) nid \({ }^{\prime} .\left(n^{\prime \prime \prime}\right.\), nid \() \in\) his \(t n\) nid] by simp
            ultimately have
                (hisPred \(t n\) nid \(n^{\prime \prime \prime},\left(\right.\) SOME nid'. (hisPred \(t n\) nid \(n^{\prime \prime \prime}\), nid \() \in\) his \(t n\) nid \(\left.)\right)=\)
                    (SOME \(x\). his-prop \(t n\) nid \(n^{\prime \prime \prime}\) nid \({ }^{\prime \prime \prime} x\) ) by simp
            with \(n^{\prime} n i d^{\prime \prime}\) have ( \(n^{\prime}\), nid \({ }^{\prime}\) ) \(=\)
            (hisPred \(t n\) nid \(n^{\prime \prime \prime},\left(\right.\) SOME nid' . (hisPred \(t n\) nid \(n^{\prime \prime \prime}\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid)) by simp
            thus? ?thesis by simp
        qed
        moreover have hisPred \(t n\) nid \(n^{\prime \prime \prime \prime}=n^{\prime}\)
        proof -
            from \(n^{\prime}\) nid \({ }^{\prime}\left(\exists x\right.\). his-prop \(t n\) nid \(n^{\prime \prime \prime \prime}\) nid \(\left.{ }^{\prime \prime \prime \prime} x\right)\)
                have his-prop \(t n\) nid \(n^{\prime \prime \prime \prime}\) nid \({ }^{\prime \prime \prime \prime}\left(n^{\prime}\right.\), nid \()\)
                using someI-ex \(\left[\right.\) of \(\lambda x\). his-prop \(t n\) nid \(n^{\prime \prime \prime \prime}\) nid \(\left.{ }^{\prime \prime \prime \prime} x\right]\) by auto
            hence \(n^{\prime \prime \prime \prime \prime}>n^{\prime}\) using latestAct-prop(2) by simp
```

```
    moreover from \(\left\langle\left(n^{\prime \prime \prime \prime}\right.\right.\), nid \(\left.{ }^{\prime \prime \prime \prime}\right) \in\) his \(t n\) nid \(\rangle\) have \(n^{\prime \prime \prime \prime} \leq n\) using his-le by auto
    moreover from \(\left\langle\left(n^{\prime \prime \prime \prime}\right.\right.\), nid \(\left.{ }^{\prime \prime \prime \prime}\right) \in\) his \(t n\) nid \(\rangle\)
    have \(\exists\) nid \({ }^{\prime} .\left(n^{\prime \prime \prime \prime}, n^{\prime} d^{\prime}\right) \in\) his \(t n\) nid by auto
    ultimately have \(\left(\exists n^{\prime}<n^{\prime \prime \prime \prime} . \exists\right.\) nid \({ }^{\prime} .\left(n^{\prime}, n i d^{\prime}\right) \in\) his \(t n\) nid \() \longrightarrow\)
    \(\left(\exists\right.\) !nid'. ( \(n^{\prime \prime \prime \prime}\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid \() \wedge\)
    (hisPred \(t n\) nid \(n^{\prime \prime \prime \prime}\), (SOME nid'. (hisPred \(t\) n nid \(n^{\prime \prime \prime \prime}\), nid \() \in\) his \(t n\) nid \()\) ) \(=\)
    (SOME x. his-prop \(t n\) nid \(n^{\prime \prime \prime \prime}\left(\right.\) THE nid \({ }^{\prime} .\left(n^{\prime \prime \prime \prime}\right.\), nid \() \in\) his \(\left.\left.t n n i d\right) x\right)\)
        using step.IH by auto
    with \(\left\langle n^{\prime \prime \prime \prime}>n^{\prime}\right\rangle\left\langle\left(n^{\prime}, \text { nid }\right)^{\prime}\right) \in\) his \(t\) nid have \(\exists\) !nid \({ }^{\prime}\). ( \(n^{\prime \prime \prime \prime}\), nid \() \in\) his \(t n\) nid and
        (hisPred \(t n\) nid \(n^{\prime \prime \prime \prime}\), (SOME nid'. (hisPred \(t\) n nid \(n^{\prime \prime \prime \prime}\), nid') \(\in\) his \(t\) nid nid) \(=\)
        (SOME x. his-prop \(t n\) nid \(n^{\prime \prime \prime \prime}\left(\right.\) THE nid \({ }^{\prime} .\left(n^{\prime \prime \prime \prime}\right.\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid) \(x\) ) by auto
    moreover from \(\left\langle\exists!\right.\) nid \({ }^{\prime}\). \(\left.\left(n^{\prime \prime \prime \prime}, \text { nid }\right)^{\prime}\right) \in\) his \(t\) n nid \(\rangle\left\langle\left(n^{\prime \prime \prime \prime}\right.\right.\), nid \(\left.^{\prime \prime \prime \prime}\right) \in\) his t n nid \(\rangle\)
    have nid \(^{\prime \prime \prime \prime}=\left(\right.\) THE nid'. \(\left(n^{\prime \prime \prime \prime}\right.\), nid \() \in\) his \(t n\) nid \()\)
    using the1-equality[of \(\lambda\) nid \({ }^{\prime} .\left(n^{\prime \prime \prime \prime}\right.\), nid \() \in\) his \(t\) n nid] by \(\operatorname{simp}\)
    ultimately have
    (hisPred \(t n\) nid \(n^{\prime \prime \prime \prime}\), (SOME nid'. (hisPred \(t n\) nid \(n^{\prime \prime \prime \prime}\), nid \() \in\) his \(t n\) nid) )
    \(=\left(\right.\) SOME \(x\). his-prop \(t n\) nid \(n^{\prime \prime \prime \prime}\) nid \(\left.{ }^{\prime \prime \prime \prime} x\right)\) by simp
    with \(n^{\prime}\) nid \({ }^{\prime}\) have ( \(n^{\prime}, n i d{ }^{\prime}\) ) =
        (hisPred t n nid \(n^{\prime \prime \prime \prime}\), (SOME nid'. (hisPred t n nid \(n^{\prime \prime \prime \prime}\), nid \() \in\) his \(t n\) nid \()\) )
        by simp
    thus ?thesis by simp
qed
ultimately have hisPred \(t\) n nid \(n^{\prime \prime \prime}=h i s P r e d t n\) nid \(n^{\prime \prime \prime \prime}\). .
moreover have \(\exists n^{\prime}<n^{\prime \prime \prime} . \exists\) nid \({ }^{\prime} .\left(n^{\prime}\right.\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid
proof -
    from \(n^{\prime} n i d^{\prime \prime}\left\langle\exists x\right.\). his-prop \(t n\) nid \(n^{\prime \prime \prime}\) nid \(\left.^{\prime \prime \prime} x\right\rangle\)
        have his-prop \(t n\) nid \(n^{\prime \prime \prime}\) nid \({ }^{\prime \prime \prime}\left(n^{\prime}, n i d^{\prime \prime}\right)\)
        using someI-ex[of \(\lambda x\). his-prop \(t n\) nid \(n^{\prime \prime \prime}\) nid \(\left.{ }^{\prime \prime \prime} x\right]\) by auto
    hence \(n^{\prime \prime \prime}>n^{\prime}\) using latestAct-prop(2) by simp
    with \(\left\langle\left(n^{\prime}\right.\right.\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid show ?thesis by auto
    qed
    moreover have \(\exists n^{\prime}<n^{\prime \prime \prime \prime} . \exists\) nid \({ }^{\prime} .\left(n^{\prime}\right.\), nid \() \in\) his \(t\) nid
    proof -
    from \(n^{\prime}{ }^{n i d}{ }^{\prime}{ }^{〔} \exists x\). his-prop \(t n\) nid \(n^{\prime \prime \prime \prime}\) nid \(\left.{ }^{\prime \prime \prime \prime} x\right\rangle\)
        have his-prop \(t n\) nid \(n^{\prime \prime \prime \prime}\) nid \({ }^{\prime \prime \prime \prime}\left(n^{\prime}\right.\), nid \()\)
        using someI-ex[of \(\lambda x\). his-prop \(t n\) nid \(n^{\prime \prime \prime \prime}\) nid \(\left.{ }^{\prime \prime \prime \prime} x\right]\) by auto
    hence \(n^{\prime \prime \prime \prime}>n^{\prime}\) using latestAct-prop(2) by simp
    with \(\left\langle\left(n^{\prime}, n i d^{\prime}\right) \in\right.\) his \(t n\) nid \(\rangle\) show ?thesis by auto
    qed
    ultimately show ?thesis
    using hisPrev-same \(\left\langle\left(n^{\prime \prime \prime}\right.\right.\), nid \(\left.{ }^{\prime \prime \prime}\right) \in\) his \(t\) n nid \(\left\langle\left(n^{\prime \prime \prime \prime}\right.\right.\), nid \(\left.{ }^{\prime \prime \prime \prime}\right) \in\) his \(t\) n nid \(\rangle\)
    by blast
qed
moreover have \(n i d^{\prime \prime \prime}=n i d^{\prime \prime \prime \prime}\)
proof -
    from \(n^{\prime} n i d^{\prime \prime}{ }^{\prime} \exists x\). his-prop \(t n\) nid \(n^{\prime \prime \prime}\) nid \(\left.^{\prime \prime \prime} x\right\rangle\)
    have his-prop \(t n\) nid \(n^{\prime \prime \prime}\) nid \({ }^{\prime \prime \prime}\left(n^{\prime}, n i d^{\prime \prime}\right)\)
    using someI-ex \(\left[\right.\) of \(\lambda x\). his-prop \(t n\) nid \(n^{\prime \prime \prime}\) nid \(\left.{ }^{\prime \prime \prime} x\right]\) by auto
hence \(n^{\prime \prime \prime}>n^{\prime}\) using latestAct-prop(2) by simp
```

```
            moreover from }\langle(\mp@subsup{n}{}{\prime\prime\prime},ni\mp@subsup{|}{}{\prime\prime\prime})\in\mathrm{ his t n nid> have }\mp@subsup{n}{}{\prime\prime\prime}\leqn\mathrm{ using his-le by auto
            moreover from <(n''\prime\prime},nid\mp@subsup{|}{}{\prime\prime\prime})\in his t n nid>
            have \existsnid'. ( n''\prime, nid') \in his t n nid by auto
            ultimately have }\exists\mathrm{ !nid'. ( }\mp@subsup{n}{}{\prime\prime\prime},\mathrm{ nid') }\in\mathrm{ his t n nid using step.IH by auto
            with 〈(n'\prime\prime},ni\mp@subsup{d}{}{\prime\prime\prime})\inhis t n nid\rangle\langle( n'\prime\prime\prime, nid ''\prime\prime) \in his t n nid\rangle\langlen'\prime\prime= = ''\prime\prime\prime>
            show ?thesis by auto
        qed
        ultimately have ( }\mp@subsup{n}{}{\prime},ni\mp@subsup{d}{}{\prime})=(\mp@subsup{n}{}{\prime},ni\mp@subsup{d}{}{\prime\prime})\mathrm{ using n'nid' by simp
        thus nid" = nid' by simp
    qed
    qed
qed
moreover have ( \exists\mp@subsup{n}{}{\prime\prime}<\mp@subsup{n}{}{\prime}.\existsni\mp@subsup{d}{}{\prime}.(\mp@subsup{n}{}{\prime\prime},nid
    ( \existsx. his-prop t n nid n' (THE nid'. (n',nid')\inhis t n nid) x) ^
    (hisPred t n nid n',(SOME nid'.(hisPred t n nid n', nid') \in his t n nid))}
    (SOME x. his-prop t n nid n' (THE nid'. ( n',nid')\inhis t n nid) x)
proof
    assume }\exists\mp@subsup{n}{}{\prime\prime}<\mp@subsup{n}{}{\prime}.\existsni\mp@subsup{|}{}{\prime}.(\mp@subsup{n}{}{\prime\prime},nid')\in his t n nid
    hence \exists nid'..(hisPred t n nid n', nid')\in his t n nid using hisPrev-prop(2) by simp
    hence (hisPred t n nid n',
        (SOME nid'.(hisPred t n nid n', nid') \in his t n nid)) \in his t n nid
        using someI-ex[of \lambdanid'.(hisPred t n nid n', nid') \in his t n nid] by simp
    thus (\existsx.his-prop t n nid n' (THE nid'. ( }\mp@subsup{n}{}{\prime},\mathrm{ nid '})\inhis t n nid) x)^
        (hisPred t n nid n',(SOME nid'.(hisPred t n nid n', nid') \in his t n nid)) =
        (SOME x. his-prop t n nid n' (THE nid'. (n',nid')\inhis t n nid) x)
    proof (rule his.cases)
        assume (hisPred t n nid n',
        SOME nid'. (hisPred t n nid n', nid}\mp@subsup{)}{}{\prime})\in\mathrm{ his t n nid) = (n, nid)
        hence hisPred t n nid n'=n by simp
```



```
            using hisPrev-prop(1)[of n\rceil by force
        ultimately show ?thesis using step.hyps by simp
    next
        fix n' nid" assume asmp:
            (hisPred t n nid n', SOME nid'.(hisPred t n nid n', nid}\mp@subsup{|}{}{\prime})\inhist n nid) =
            (SOME x. his-prop t n nid n' nid" x)
    and ( }\mp@subsup{n}{}{\prime\prime}\mathrm{ , nid'') }\in\mathrm{ his t n nid and }\existsx\mathrm{ . his-prop t n nid n'" nid'' }
    moreover have }\mp@subsup{n}{}{\prime\prime}=\mp@subsup{n}{}{\prime
    proof (rule antisym)
        show }\mp@subsup{n}{}{\prime\prime}\geq\mp@subsup{n}{}{\prime
        proof (rule ccontr)
            assume ( }\neg\mp@subsup{n}{}{\prime\prime}\geq\mp@subsup{n}{}{\prime}
            hence }\mp@subsup{n}{}{\prime\prime}<\mp@subsup{n}{}{\prime}\mathrm{ by simp
            moreover have }\mp@subsup{n}{}{\prime\prime}>\mathrm{ hisPred t n nid n'
            proof -
                let ? }x=\lambdax\mathrm{ . his-prop t n nid n" nid" }
            from }\exists\textrm{G}\mathrm{ . his-prop t n nid n" nid" x〉 have his-prop t n nid n" nid" (SOME x. ?x x)
                        using someI-ex[of ?x] by auto
            hence n'> fst (SOME x. ?x x) using latestAct-prop(2)[of n" nid" t] by force
```

```
        moreover from asmp have
            fst (hisPred \(t n\) nid \(n^{\prime}\), SOME nid'. (hisPred \(t n\) nid \(n^{\prime}\), nid') \(\in\) his \(t n\) nid)
            \(=f s t\) (SOME \(x\). ? \(x\) x) by simp
            ultimately show ?thesis by simp
    qed
    moreover from \(\left\langle\exists n^{\prime \prime}<n^{\prime} . \exists n i d^{\prime} .\left(n^{\prime \prime}, n i d^{\prime}\right) \in\right.\) his \(t n\) nid \(\rangle\)
        have \(\neg\left(\exists x \in\right.\) his \(t n\) nid. fst \(x<n^{\prime} \wedge\) fst \(x>\) hisPred \(t n\) nid \(\left.n^{\prime}\right)\)
        using hisPrev-nex-less by simp
    ultimately show False using \(\left\langle\left(n^{\prime \prime}\right.\right.\), nid \(\left.{ }^{\prime \prime}\right) \in\) his \(t\) n nid \(\rangle\) by auto
    qed
next
    show \(n^{\prime} \geq n^{\prime \prime}\)
    proof (rule ccontr)
        assume ( \(\left.\neg n^{\prime} \geq n^{\prime \prime}\right)\)
        hence \(n^{\prime}<n^{\prime \prime}\) by simp
        moreover from \(\left\langle\left(n^{\prime \prime}, n i d^{\prime \prime}\right) \in\right.\) his \(t n\) nid \(\rangle\) have \(n^{\prime \prime} \leq n\) using his-le by auto
        moreover from \(\left\langle\left(n^{\prime \prime}\right.\right.\), nid \(\left.^{\prime \prime}\right) \in\) his \(t n\) nid \(\rangle\) have \(\exists\) nid \({ }^{\prime} .\left(n^{\prime \prime}\right.\), nid \() \in\) his \(t n\) nid
        by auto
    ultimately have \(\left(\exists n^{\prime}<n^{\prime \prime} . \exists n i d^{\prime} .\left(n^{\prime}, n i d^{\prime}\right) \in\right.\) his \(t n\) nid \()\)
        \(\longrightarrow\left(\exists!\right.\) nid \(^{\prime} .\left(n^{\prime \prime}\right.\), nid \() \in\) his t n nid \() \wedge\)
            (hisPred \(t n\) nid \(n^{\prime \prime}\), (SOME nid'. (hisPred \(t n\) nid \(n^{\prime \prime}\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid \()\) ) \(=\)
            (SOME \(x\). his-prop \(t\) nid \(n^{\prime \prime}\left(\right.\) THE nid \({ }^{\prime} .\left(n^{\prime \prime}\right.\), nid \() \in\) his \(t n\) nid) \(\left.x\right)\)
        using step.IH by auto
    with \(\left\langle n^{\prime}<n^{\prime \prime}\right\rangle\left\langle\left(n^{\prime}\right.\right.\), nid \() \in\) his \(t n\) nid \(\rangle\) have \(\exists!n i d^{\prime} .\left(n^{\prime \prime}\right.\), nid \() \in\) his \(t n\) nid and
        (hisPred \(t n\) nid \(n^{\prime \prime}\), (SOME nid'. (hisPred \(t n\) nid \(n^{\prime \prime}\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid \()\) ) \(=\)
        (SOME x. his-prop \(t n\) nid \(n^{\prime \prime}\left(\right.\) THE nid \({ }^{\prime} .\left(n^{\prime \prime}\right.\), nid \() \in\) his \(t n\) nid) \(\left.x\right)\) by auto
        moreover from \(\left\langle\exists!\right.\) nid \(\left.^{\prime} .\left(n^{\prime \prime}, \text { nid }\right)^{\prime}\right) \in\) his \(t n\) nid \(\rangle\left\langle\left(n^{\prime \prime}\right.\right.\), nid \(\left.{ }^{\prime \prime}\right) \in\) his \(t n\) nid \(\rangle\)
        have nid \(^{\prime \prime}=\left(\right.\) THE nid \({ }^{\prime} .\left(n^{\prime \prime}\right.\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid \()\)
        using the1-equality[of \(\lambda\) nid \({ }^{\prime}\). ( \(n^{\prime \prime}\), nid \(\left.{ }^{\prime}\right) \in\) his \(t\) n nid] by simp
    ultimately have (hisPred \(t n\) nid \(n^{\prime \prime}\),
        (SOME nid' . (hisPred \(t n\) nid \(n^{\prime \prime}\), nid \(\left.{ }^{\prime}\right) \in\) his \(t\) nid))
        \(=\left(\right.\) SOME \(x\). his-prop \(t n\) nid \(\left.n^{\prime \prime} n i d^{\prime \prime} x\right)\) by simp
    with asmp have (hisPred \(t n\) nid \(n^{\prime}\),
        SOME nid'. (hisPred \(t n\) nid \(n^{\prime}\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid \()=\)
        (hisPred \(t n\) nid \(n^{\prime \prime}\), SOME nid \({ }^{\prime}\). (hisPred \(t n\) nid \(n^{\prime \prime}\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid) by simp
    hence hisPred \(t n\) nid \(n^{\prime}=\) hisPred \(t n\) nid \(n^{\prime \prime}\) by simp
    with \(\left\langle\exists n^{\prime \prime}<n^{\prime} . \exists n i d^{\prime} .\left(n^{\prime \prime}\right.\right.\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid \(\left\langle n^{\prime}<n^{\prime \prime}\right\rangle\left\langle\left(n^{\prime}\right.\right.\), nid \() \in\) his \(t n\) nid \(\rangle\)
        \(\left\langle\left(n^{\prime \prime}\right.\right.\), nid \(\left.{ }^{\prime \prime}\right) \in\) his \(t n\) nid \(\left\langle\left(n^{\prime}\right.\right.\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid \(\rangle\) have \(n^{\prime}=n^{\prime \prime}\)
        using hisPrev-same by blast
    with \(\left\langle n^{\prime}<n^{\prime \prime}\right\rangle\) show False by simp
    qed
qed
ultimately have (hisPred \(t n\) nid \(n^{\prime}\),
    SOME nid' . (hisPred \(t n\) nid \(n^{\prime}\), nid \() \in\) his \(t n\) nid \()=\)
    (SOME x. his-prop \(t n\) nid \(n^{\prime}\) nid \({ }^{\prime \prime} x\) ) by simp
moreover from \(\left\langle\left(n^{\prime \prime}\right.\right.\), nid \(\left.{ }^{\prime}\right) \in\) his t n nid \(\left\langle\left\langle n^{\prime \prime}=n^{\prime}\right\rangle\right.\) have \(\left(n^{\prime}\right.\), nid \(\left.{ }^{\prime \prime}\right) \in\) his \(t n\) nid by simp
with \(\left\langle\exists!\right.\) nid \(^{\prime} .\left(n^{\prime}, n i d^{\prime}\right) \in\) his \(t n\) nid \(\rangle\) have nid \({ }^{\prime \prime}=\left(\right.\) THE nid \({ }^{\prime} .\left(n^{\prime}\right.\), nid \() \in\) his \(t n\) nid)
    using the1-equality[of \(\lambda\) nid \({ }^{\prime} .\left(n^{\prime}\right.\), nid \() \in\) his \(t n\) nid] by simp
moreover from \(\left\langle\exists x\right.\). his-prop \(t n\) nid \(\left.n^{\prime \prime} n i d^{\prime \prime} x\right\rangle\left\langle n^{\prime \prime}=n^{\prime}\right\rangle\)
```


G Verification of Blockchain Architectures

```
            <nid" =( THE nid'. (n',nid})\inhis t n nid)
            have \existsx. his-prop t n nid n' (THE nid'. ( n',nid')\inhis t n nid) x by simp
            ultimately show ?thesis by simp
        qed
    qed
    ultimately show ?case by simp
qed
corollary his-determ-ex:
    assumes ( }\mp@subsup{n}{}{\prime},nid')\inhist n nid
    shows }\exists\mathrm{ !nid'. ( n',nid}\mp@subsup{)}{}{\prime})\inhis t n nid
    using assms his-le his-determ-ext[of n' n t nid] by force
corollary his-determ:
    assumes ( }\mp@subsup{n}{}{\prime},nid\mp@subsup{|}{}{\prime})\inhis t n nid
    and ( }\mp@subsup{n}{}{\prime},ni\mp@subsup{|}{}{\prime\prime})\inhis t n nid
    shows nid'=nid'' using assms his-le his-determ-ext[of n' n t nid] by force
corollary his-determ-the:
    assumes ( }\mp@subsup{n}{}{\prime},nid\prime)\inhis t n nid
    shows (THE nid'. (n', nid})\inhis t n nid) = nid'
    using assms his-determ theI' [of \lambdanid'. ( n', nid')\inhis t n nid] his-determ-ex by simp
```


G.3.2.5 Blockchain Development

```
definition devBC::trace \(\Rightarrow\) nat \(\Rightarrow\) 'nid \(\Rightarrow\) nat \(\Rightarrow\) 'nid option
    where \(\operatorname{dev} B C t n\) nid \(n^{\prime} \equiv\)
        (if \(\left(\exists\right.\) nid \({ }^{\prime} .\left(n^{\prime}, n^{\prime} d^{\prime}\right) \in\) his \(t n\) nid) then (Some (THE nid'.\(\left(n^{\prime}\right.\), nid \() \in h i s t n\) nid \()\) )
        else Option.None)
```



```
proof -
    from assms have ( \(n\), nid) \(\in\) his \(t n\) nid using his.intros(1) by simp
    hence \(\operatorname{devBC} t n\) nid \(n=(\) Some (THE nid'. ( \(n\), nid') \(\in\) his \(t n\) nid \()\) ) using devBC-def by auto
    moreover have \(\left(T H E n i d^{\prime} .(n\right.\), nid \() \in\) his \(t\) nid \()=\) nid
    proof
        from \(\langle(n, n i d) \in\) his \(t n\) nid show \((n, n i d) \in\) his \(t n\) nid .
    next
        fix nid' assume ( \(n\), nid \({ }^{\prime}\) ) \(\in\) his \(t n\) nid
        thus nid' \(=\) nid using his-determ-base by simp
    qed
    ultimately show ?thesis by simp
qed
lemma devBC-act: assumes \(\neg\) Option.is-none (devBC t nid n')
    shows \(\}_{\text {the }}\left(\operatorname{devBC} t n\right.\) nid \(\left.n^{\prime}\right) \xi_{t} n^{\prime}\)
proof -
```



```
    then obtain \(n i d^{\prime}\) where \(\left(n^{\prime}, n i d^{\prime}\right) \in\) his \(t n\) nid and
```

```
    devBC t n nid n' = (Some (THE nid'. ( }\mp@subsup{n}{}{\prime},\mathrm{ nid}\mp@subsup{|}{}{\prime})\in\mathrm{ his t n nid))
    using devBC-def[of tn nid] by metis
    hence nid'= (THE nid'. (n', nid})\inhist n nid) using his-determ-the by simp
    with \devBC t n nid n' = (Some (THE nid'.( ( n', nid ) ¢his t n nid))>
    have the (devBCttn nid n) = nid' by simp
    with}«(n', nid')\in his t n nid» show ?thesis using his-act by sim
qed
lemma his-ex:
    assumes }\neg\mathrm{ Option.is-none(devBC tn nid n')
    shows \existsnid}\mp@subsup{}{}{\prime}.(\mp@subsup{n}{}{\prime},nid)\inhis t n nid
proof (rule ccontr)
    assume }\neg(\exists\mathrm{ nid'.. (n',nid}\mp@subsup{|}{}{\prime})\inhis t n nid
    with devBC-def have Option.is-none (devBC t n nid n') by simp
    with assms show False by simp
qed
lemma devExt-nopt-leq:
    assumes }\neg\mathrm{ Option.is-none (devBC t n nid n')
    shows n'\leqn
proof -
    from assms have \exists nid'. ( n',nid}\mp@subsup{}{}{\prime})\inhistn nid using his-ex by simp
    then obtain nid' where ( }\mp@subsup{n}{}{\prime},\mathrm{ ,nid )}\in\mathrm{ Gis t n nid by auto
    with his-le[of ( n',nid')] show ?thesis by simp
qed
```

An extended version of the development in which deactivations are filled with the last value.
function devExt::trace \Rightarrow nat $\Rightarrow{ }^{\prime}$ nid \Rightarrow nat \Rightarrow nat $\Rightarrow{ }^{\prime}$ nid BC
where $\llbracket \exists n^{\prime}<n_{s} . \neg$ Option.is-none (devBC $t n$ nid $\left.n^{\prime}\right)$; Option.is-none (devBC $t n$ nid $\left.n_{s}\right) \rrbracket \Longrightarrow$ devExt $t n$ nid $n_{s} 0=b c$
($\sigma_{\text {the }}\left(\right.$ devBC $t n$ nid (GREATEST $n^{\prime} . n^{\prime}<n_{s} \wedge \neg$ Option.is-none (devBC $t n$ nid $\left.n^{\prime}\right)$)) (t (GREATEST $n^{\prime} . n^{\prime}<n_{s} \wedge \neg$ Option.is-none (devBC $t n$ nid n '))))
$\mid \llbracket \neg\left(\exists n^{\prime}<n_{s} . \neg\right.$ Option.is-none (devBC $t n$ nid $\left.n^{\prime}\right)$); Option.is-none (devBC $t n$ nid $\left.n_{s}\right) \rrbracket \Longrightarrow$ devExt $t n$ nid $n_{s} 0=[]$
$\mid \neg$ Option.is-none (devBC $t n$ nid $\left.n_{s}\right) \Longrightarrow$
devExt $t n$ nid $n_{s} 0=b c\left(\sigma_{\text {the }}\left(\right.\right.$ devBC $t n$ nid $\left.\left.n_{s}\right)\left(t n_{s}\right)\right)$
$\mid \neg$ Option.is-none $\left(\operatorname{devBC} t n\right.$ nid $\left(n_{s}+\right.$ Suc $\left.\left.n\right)\right) \Longrightarrow$
devExt $t n$ nid $n_{s}\left(\right.$ Suc $\left.n^{\prime}\right)=b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} t n\right.\right.$ nid $\left.\left.\left(n_{s}+\operatorname{Suc} n^{\prime}\right)\right)\left(t\left(n_{s}+\operatorname{Suc} n^{\prime}\right)\right)\right)$
\mid Option.is-none (devBC $t n$ nid $\left(n_{s}+\right.$ Suc $\left.\left.n\right)\right) \Longrightarrow$
devExt $t n$ nid $n_{s}\left(\right.$ Suc $\left.n^{\prime}\right)=\operatorname{devExt} t n$ nid $n_{s} n^{\prime}$
proof -
show $\bigwedge n_{s}$ t n nid $n_{s}{ }^{\prime}$ ta na nida.
$\exists n^{\prime}<n_{s} . \neg$ Option.is-none (devBC tn nid $\left.n^{\prime}\right) \Longrightarrow$
Option.is-none (devBC $t n$ nid $\left.n_{s}\right) \Longrightarrow$
$\exists n^{\prime}<n_{s}{ }^{\prime} . \neg$ Option.is-none (devBC ta na nida $\left.n^{\prime}\right) \Longrightarrow$
Option.is-none (devBC ta na nida $\left.n_{s}{ }^{\prime}\right) \Longrightarrow$
$\left(t, n\right.$, nid, $\left.n_{s}, 0\right)=\left(t a, n a\right.$, nida $\left., n_{s}^{\prime}, 0\right) \Longrightarrow$
bc ($\sigma_{\text {the }}\left(\right.$ devBC $t n$ nid (GREATEST $n^{\prime} . n^{\prime}<n_{s} \wedge \neg$ Option.is-none (devBC $t n$ nid $\left.\left.n n^{\prime}\right)\right)$)

```
        \(t\left(\right.\) GREATEST \(n^{\prime} . n^{\prime}<n_{s} \wedge \neg\) Option.is-none \(\left(\operatorname{devBC} t n\right.\) nid \(\left.\left.\left.n^{\prime}\right)\right)\right)=\)
    \(b c\left(\sigma_{\text {the ( }}\right.\) devBC ta na nida (GREATEST \(n^{\prime} . n^{\prime}<n_{s}{ }^{\prime} \wedge \neg\) Option.is-none (devBC ta na nida \(\left.n^{\prime}\right)\) ))
    ta (GREATEST \(n^{\prime} . n^{\prime}<n_{s}{ }^{\prime} \wedge \neg\) Option.is-none \(\left(\operatorname{devBC}\right.\) ta na nida \(\left.\left.n^{\prime}\right)\right)\) ) by auto
show \(\bigwedge n_{s} t n\) nid \(n_{s}{ }^{\prime}\) ta na nida.
\(\exists n^{\prime}<n_{s} . \neg\) Option.is-none (devBC \(t n\) nid \(\left.n^{\prime}\right) \Longrightarrow\)
Option.is-none (devBC t \(n\) nid \(\left.n_{s}\right) \Longrightarrow\)
\(\neg\left(\exists n^{\prime}<n_{s}{ }^{\prime} . \neg\right.\) Option.is-none \(\left(\operatorname{devBC}\right.\) ta na nida \(\left.\left.n^{\prime}\right)\right) \Longrightarrow\)
Option.is-none (devBC ta na nida \(n_{s}{ }^{\prime}\) ) \(\Longrightarrow\)
\(\left(t, n, n i d, n_{s}, 0\right)=\left(t a, n a, n i d a, n_{s}{ }^{\prime}, 0\right) \Longrightarrow\)
\(b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} t n \operatorname{nid}\left(\text { GREATEST } n^{\prime} . n^{\prime}<n_{s} \wedge \neg \text { Option.is-none }\left(\operatorname{devBC} t n \text { nid } n^{\prime}\right)\right)\right)^{t}\right.\)
(GREATEST \(n^{\prime} . n^{\prime}<n_{s} \wedge \neg\) Option.is-none \(\left(\operatorname{devBC} t n\right.\) nid \(\left.\left.\left.n^{\prime}\right)\right)\right)=[]\) by auto
```

show $\wedge n_{s} t n$ nid ta na nida $n_{s}{ }^{\prime}$.
$\exists n^{\prime}<n_{s} . \neg$ Option.is-none (devBC $t n$ nid $\left.n^{\prime}\right) \Longrightarrow$
Option.is-none (devBCt n nid $\left.n_{s}\right) \Longrightarrow$
\neg Option.is-none (devBC ta na nida $\left.n_{s}{ }^{\prime}\right) \Longrightarrow$
$\left(t, n, n i d, n_{s}, 0\right)=\left(t a, n a, n i d a, n_{s}{ }^{\prime}, 0\right) \Longrightarrow$
bc $\left(\sigma_{\text {the }}\left(\operatorname{devBC} t n \operatorname{nid}\left(\text { GREATEST } n^{\prime} . n^{\prime}<n_{s} \wedge \neg \text { Option.is-none }\left(\operatorname{devBC} t n \text { nid } n^{\prime}\right)\right)\right)^{t}\right.$
$\left(\right.$ GREATEST $n^{\prime} . n^{\prime}<n_{s} \wedge \neg$ Option.is-none $\left(\operatorname{devBC}\right.$ t n nid $\left.\left.\left.n^{\prime}\right)\right)\right)=$
$b c\left(\sigma_{\text {the }}\left(\operatorname{dev} B C\right.\right.$ ta na nida $\left.n_{s}{ }^{\prime}\right)$ ta $\left.n_{s}{ }^{\prime}\right)$ by auto
show $\bigwedge n_{s} t n$ nid ta na nida $n_{s}{ }^{\prime} n^{\prime}$.
$\exists n^{\prime}<n_{s} . \neg$ Option.is-none (devBC t n nid $\left.n^{\prime}\right) \Longrightarrow$
Option.is-none (devBC $t n$ nid $\left.n_{s}\right) \Longrightarrow$
\neg Option.is-none $\left(\operatorname{devBC}\right.$ ta na nida $\left(n_{s}{ }^{\prime}+\right.$ Suc $\left.\left.n^{\prime}\right)\right) \Longrightarrow$
$\left(t, n\right.$, nid $\left., n_{s}, 0\right)=\left(\right.$ ta, na, nida,n_{s}^{\prime}, Suc $\left.n\right) \Longrightarrow$
bc $\left(\sigma_{\text {the }}\left(\operatorname{devBC} t n \operatorname{nid}\left(\operatorname{GREATEST} n^{\prime} . n^{\prime}<n_{s} \wedge \neg \text { Option.is-none }\left(\operatorname{devBC} t n \text { nid } n^{\prime}\right)\right)\right)^{t}\right.$
$\left(\right.$ GREATEST $n^{\prime} . n^{\prime}<n_{s} \wedge \neg$ Option.is-none $\left(\operatorname{devBC} t n\right.$ nid $\left.\left.\left.n^{\prime}\right)\right)\right)=$
bc $\left(\sigma_{\text {the }}\left(\text { devBC ta na nida }\left(n_{s}{ }^{\prime}+\text { Suc } n^{\prime}\right)\right)^{t a}\left(n_{s}{ }^{\prime}+\right.\right.$ Suc $\left.\left.n^{\prime}\right)\right)$ by auto
show $\bigwedge n_{s} t n$ nid ta na nida $n_{s}{ }^{\prime} n^{\prime}$.
$\exists n^{\prime}<n_{s} . \neg$ Option.is-none (devBC t n nid $\left.n^{\prime}\right) \Longrightarrow$
Option.is-none (devBC $t n$ nid $\left.n_{s}\right) \Longrightarrow$
Option.is-none (devBC ta na nida $\left.\left(n_{s}{ }^{\prime}+S u c n^{\prime}\right)\right) \Longrightarrow$
$\left(t, n\right.$, nid, $\left.n_{s}, 0\right)=\left(t a, n a\right.$, nida, $n_{s}{ }^{\prime}$, Suc $\left.n^{\prime}\right) \Longrightarrow$
$b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} t n \operatorname{nid}\left(\text { GREATEST } n^{\prime} . n^{\prime}<n_{s} \wedge \neg \text { Option.is-none }\left(\operatorname{devBC} t n \text { nid } n^{\prime}\right)\right)\right)^{t}\right.$
$\left(\right.$ GREATEST $n^{\prime} . n^{\prime}<n_{s} \wedge \neg$ Option.is-none $\left.\left.\left(\operatorname{devBC} t \operatorname{nid} n^{\prime}\right)\right)\right)=$
devExt-sumC (ta, na, nida, $n_{s}{ }^{\prime}, n^{\prime}$) by auto
show $\wedge n_{s} t n$ nid $n_{s}{ }^{\prime}$ ta na nida.
$\neg\left(\exists n^{\prime}<n_{s} . \neg\right.$ Option.is-none $\left(\operatorname{devBC} t n\right.$ nid $\left.\left.n^{\prime}\right)\right) \Longrightarrow$
Option.is-none (devBC $t n$ nid $\left.n_{s}\right) \Longrightarrow$
$\neg\left(\exists n^{\prime}<n_{s}{ }^{\prime} . \neg\right.$ Option.is-none $\left(\right.$ devBC ta na nida $\left.\left.n^{\prime}\right)\right) \Longrightarrow$
Option.is-none (devBC ta na nida $\left.n_{s}{ }^{\prime}\right) \Longrightarrow$
$\left(t, n\right.$, nid $\left., n_{s}, 0\right)=\left(t a, n a\right.$, nida, $\left.n_{s}{ }^{\prime}, 0\right) \Longrightarrow[]=[]$ by auto
show $\bigwedge n_{s} t n$ nid ta na nida $n_{s}{ }^{\prime}$.
$\neg\left(\exists n^{\prime}<n_{s} . \neg\right.$ Option.is-none $\left(\operatorname{devBC} t n\right.$ nid $\left.\left.n^{\prime}\right)\right) \Longrightarrow$
Option.is-none (devBC t n nid n_{s}) \Longrightarrow
\neg Option.is-none (devBC ta na nida $\left.n_{s}{ }^{\prime}\right) \Longrightarrow$
$\left(t, n, n i d, n_{s}, 0\right)=\left(t a, n a, n i d a, n_{s}{ }^{\prime}, 0\right) \Longrightarrow$
[]$=b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} \text { ta na nida } n_{s}{ }^{\prime}\right)^{t a} n_{s}{ }^{\prime}\right)$ by auto
show $\bigwedge n_{s} t n$ nid ta na nida $n_{s}{ }^{\prime} n^{\prime}$.
$\neg\left(\exists n^{\prime}<n_{s} . \neg\right.$ Option.is-none $\left(\operatorname{dev} B C t n\right.$ nid $\left.\left.n^{\prime}\right)\right) \Longrightarrow$
Option.is-none (devBCtn nid $\left.n_{s}\right) \Longrightarrow$
\neg Option.is-none $\left(\operatorname{dev} B C\right.$ ta na nida $\left(n_{s}{ }^{\prime}+\right.$ Suc $\left.\left.n^{\prime}\right)\right) \Longrightarrow$
$\left(t, n\right.$, nid, $\left.n_{s}, 0\right)=\left(t a\right.$, na, nida,$n_{s}^{\prime}$, Suc $\left.n^{\prime}\right) \Longrightarrow$
[]$=b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} \text { ta na nida }\left(n_{s}{ }^{\prime}+S u c n^{\prime}\right)\right)^{t a}\left(n_{s}{ }^{\prime}+\right.\right.$ Suc $\left.\left.n^{\prime}\right)\right)$ by auto
show $\bigwedge n_{s} t n$ nid ta na nida $n_{s}{ }^{\prime} n^{\prime}$.
$\neg\left(\exists n^{\prime}<n_{s} . \neg\right.$ Option.is-none $\left(\operatorname{dev} B C t n\right.$ nid $\left.\left.n^{\prime}\right)\right) \Longrightarrow$
Option.is-none ($\operatorname{devBC} t n$ nid $\left.n_{s}\right) \Longrightarrow$
Option.is-none (devBC ta na nida $\left(n_{s}{ }^{\prime}+\right.$ Suc $\left.\left.n^{\prime}\right)\right) \Longrightarrow$
$\left(t, n, n i d, n_{s}, 0\right)=\left(t a, n a, n i d a, n_{s}{ }^{\prime}\right.$, Suc $\left.n^{\prime}\right) \Longrightarrow$
[]$=\operatorname{devExt-sumC}\left(t a, n a\right.$, nida, $\left.n_{s}{ }^{\prime}, n^{\prime}\right)$ by auto
show $\wedge t n$ nid n_{s} ta na nida $n_{s}{ }^{\prime}$.
\neg Option.is-none $\left(\operatorname{devBC} t n n i d n_{s}\right) \Longrightarrow$
\neg Option.is-none (devBC ta na nida $\left.n_{s}{ }^{\prime}\right) \Longrightarrow$
$\left(t, n, n i d, n_{s}, 0\right)=\left(t a, n a, n i d a, n_{s}{ }^{\prime}, 0\right) \Longrightarrow$
$b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} t n \text { nid } n_{s}\right)^{t} n_{s}\right)=b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} \text { ta na nida } n_{s}\right)^{\prime}\right.$ ta $\left.n_{s}{ }^{\prime}\right)$ by auto
show $\wedge t n$ nid n_{s} ta na nida $n_{s}{ }^{\prime} n^{\prime}$.
\neg Option.is-none $\left(\operatorname{dev} B C t n\right.$ nid $\left.n_{s}\right) \Longrightarrow$
\neg Option.is-none (devBC ta na nida $\left(n_{s}{ }^{\prime}+\right.$ Suc $\left.\left.n^{\prime}\right)\right) \Longrightarrow$
$\left(t, n\right.$, nid, $\left.n_{s}, 0\right)=\left(\right.$ ta, na, nida,$n_{s}{ }^{\prime}$, Suc $\left.n^{\prime}\right) \Longrightarrow$
$b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} t n\right.\right.$ nid $\left.\left.n_{s}\right) t n_{s}\right)=b c$
$\left(\sigma_{\text {the }}\left(\operatorname{devBC} \text { ta na nida }\left(n_{s}{ }^{\prime}+\text { Suc } n^{\prime}\right)\right)^{t a}\left(n_{s}{ }^{\prime}+\right.\right.$ Suc $\left.\left.n^{\prime}\right)\right)$ by auto
show $\bigwedge t n$ nid n_{s} ta na nida $n_{s}{ }^{\prime} n^{\prime}$.
\neg Option.is-none ($\operatorname{devBC} t n$ nid $\left.n_{s}\right) \Longrightarrow$
Option.is-none (devBC ta na nida $\left(n_{s}{ }^{\prime}+\right.$ Suc $\left.\left.n^{\prime}\right)\right) \Longrightarrow$
$\left(t, n\right.$, nid, $\left.n_{s}, 0\right)=\left(t a, n a\right.$, nida,$n_{s}{ }^{\prime}$, Suc $\left.n^{\prime}\right) \Longrightarrow$
bc $\left(\sigma_{\text {the }\left(\operatorname{devBC} t n \text { nid } n_{s}\right)} t^{t} n_{s}\right)=\operatorname{devExt-sumC}\left(t a, n a, n i d a, n_{s}{ }^{\prime}, n^{\prime}\right)$ by auto
show $\wedge t n$ nid $n_{s} n^{\prime}$ ta na nida $n_{s}{ }^{\prime} n^{\prime} a$.
\neg Option.is-none $\left(\operatorname{devBC} t n\right.$ nid $\left(n_{s}+\right.$ Suc $\left.\left.n^{\prime}\right)\right) \Longrightarrow$
\neg Option.is-none (devBC ta na nida $\left(n_{s}{ }^{\prime}+\right.$ Suc $\left.\left.n^{\prime} a\right)\right) \Longrightarrow$
$\left(t, n\right.$, nid, n_{s}, Suc $\left.n^{\prime}\right)=\left(t a, n a\right.$, nida, $n_{s}{ }^{\prime}$, Suc $\left.n^{\prime} a\right) \Longrightarrow$
$b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} \operatorname{tn} \text { nid }\left(n_{s}+\text { Suc } n^{\prime}\right)\right)^{t}\left(n_{s}+\right.\right.$ Suc $\left.\left.n^{\prime}\right)\right)=$
$b c\left(\sigma_{\text {the }}\left(\operatorname{devBC}\right.\right.$ ta na nida $\left(n_{s}{ }^{\prime}+\right.$ Suc $\left.\left.n^{\prime} a\right)\right) t a\left(n_{s}{ }^{\prime}+\right.$ Suc $\left.\left.n^{\prime} a\right)\right)$ by auto
show $\bigwedge t n$ nid $n_{s} n^{\prime}$ ta na nida $n_{s}{ }^{\prime} n^{\prime} a$.
\neg Option.is-none $\left(\operatorname{devBC} t n\right.$ nid $\left.\left(n_{s}+S u c n^{\prime}\right)\right) \Longrightarrow$
Option.is-none (devBC ta na nida $\left.\left(n_{s}{ }^{\prime}+S u c n^{\prime} a\right)\right) \Longrightarrow$
$\left(t, n, n i d, n_{s}\right.$, Suc $\left.n^{\prime}\right)=\left(t a, n a\right.$, nida, $n_{s}{ }^{\prime}$, Suc $\left.n^{\prime} a\right) \Longrightarrow$
$b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} t n\right.\right.$ nid $\left.\left(n_{s}+S u c n^{\prime}\right)\right)$
$t\left(n_{s}+\right.$ Suc $\left.\left.n^{\prime}\right)\right)=\operatorname{devExt-sumC}\left(t a, n a, n i d a, n_{s}{ }^{\prime}, n^{\prime} a\right)$ by auto
show $\bigwedge t n$ nid $n_{s} n^{\prime}$ ta na nida $n_{s}{ }^{\prime} n^{\prime} a$.
Option.is-none $\left(\operatorname{devBC} t \operatorname{nid}\left(n_{s}+S u c n^{\prime}\right)\right) \Longrightarrow$
Option.is-none (devBC ta na nida $\left.\left(n_{s}{ }^{\prime}+S u c n^{\prime} a\right)\right) \Longrightarrow$
$\left(t, n, n i d, n_{s}\right.$, Suc $\left.n^{\prime}\right)=\left(t a, n a, n i d a, n_{s}^{\prime}\right.$, Suc $\left.n^{\prime} a\right) \Longrightarrow$
devExt-sumC $\left(t, n, n i d, n_{s}, n^{\prime}\right)=\operatorname{devExt-sumC}\left(t a, n a\right.$, nida, $\left.n_{s}{ }^{\prime}, n^{\prime} a\right)$ by auto
show $\bigwedge P x$. $\left(\bigwedge n_{s} t n\right.$ nid. $\exists n^{\prime}<n_{s} . \neg$ Option.is-none $\left(\operatorname{devBC} t n\right.$ nid $\left.n^{\prime}\right) \Longrightarrow$
Option.is-none $\left(\operatorname{dev} B C t n\right.$ nid $\left.n_{s}\right) \Longrightarrow x=\left(t, n\right.$, nid, $\left.\left.n_{s}, 0\right) \Longrightarrow P\right) \Longrightarrow$
$\left(\bigwedge n_{s} t n\right.$ nid. $\neg\left(\exists n^{\prime}<n_{s} . \neg\right.$ Option.is-none $\left(\operatorname{devBC} t\right.$ n nid $\left.\left.n^{\prime}\right)\right) \Longrightarrow$
Option.is-none $\left(\operatorname{dev} B C t n\right.$ nid $\left.n_{s}\right) \Longrightarrow x=\left(t, n\right.$, nid, $\left.\left.n_{s}, 0\right) \Longrightarrow P\right) \Longrightarrow$

```
    (\bigwedget n nid ns. ᄀ Option.is-none (devBC t n nid ns) \Longrightarrow
        x=(t,n,nid, ns,0)\LongrightarrowP)\Longrightarrow
    (\bigwedgetn nid ns n'. ᄀ Option.is-none (devBCt n nid ( }ns+Suc n'))
        x = (t, n, nid, ns,Suc n)}\LongrightarrowP)
    (\bigwedgetn nid ns n'. Option.is-none (devBC t n nid ( }ns+Suc n | ) )
    x = (t,n, nid, ns,Suc n')\LongrightarrowP)\LongrightarrowP
proof -
    fix P::bool and x::trace ×nat\times'nid }\timesnat\timesna
    assume a1:(\bigwedgensst n nid. \exists\mp@subsup{n}{}{\prime}<\mp@subsup{n}{s}{}.\neg\mathrm{ Option.is-none (devBC t n nid n') }\Longrightarrow
                Option.is-none (devBC t n nid n}\mp@subsup{n}{s}{})\Longrightarrowx=(t,n,nid, n, 的,0)\LongrightarrowP) and
                a2:(\bigwedgen_s t n nid. }\neg(\exists\mp@subsup{n}{}{\prime}<\mp@subsup{n}{s}{}.\neg\mathrm{ Option.is-none (devBC t n nid n}n))
                Option.is-none (devBC t n nid ns) \Longrightarrowx=(t,n, nid, ns,0)\LongrightarrowP) and
        a3:(\t n nid ns. \neg Option.is-none (devBC t n nid ns) \Longrightarrow
        x=(t,n,nid, ns,0)\LongrightarrowP) and
        a4:(\bigwedget n nid ns n'. ᄀ Option.is-none (devBC t n nid ( }n\mathrm{ s }+\mathrm{ Suc n')) }
        x=(t,n,nid, ns,Suc n')\LongrightarrowP) and
        a5:(\bigwedget n nid ns n'. Option.is-none (devBC t n nid ( }ns+Suc n)) \Longrightarrow
        x=(t,n, nid, ns,Suc n')\LongrightarrowP)
    show P
    proof (cases x)
    case (fields t n nid ns n')
    then show ?thesis
    proof (cases n')
        case 0
        then show ?thesis
        proof cases
            assume Option.is-none ( }\operatorname{devBCttn nid ns)
            thus ?thesis
            proof cases
                assume \existsn'<ns.}\neg\mathrm{ Option.is-none (devBC t n nid n')
                    with \langlex = (t,n, nid, ns, n)\rangle\langleOption.is-none (devBC t n nid ns)\rangle\langlen'=0\rangle
                    show ?thesis using a1 by simp
            next
                    assume }\neg(\exists\mp@subsup{n}{}{\prime}<\mp@subsup{n}{s}{}.\neg\mathrm{ Option.is-none ( devBC t n nid n})
                    with \langlex = (t,n, nid, ns, n')\rangle\langleOption.is-none (devBC t n nid ns)\rangle\langlen'=0\rangle
                    show ?thesis using a2 by simp
            qed
        next
            assume }\neg\mathrm{ Option.is-none (devBC t n nid ns)
            with }\langlex=(t,n,nid,\mp@subsup{n}{s}{},\mp@subsup{n}{}{\prime})\rangle\langle\mp@subsup{n}{}{\prime}=0\rangle\mathrm{ show ?thesis using a3 by simp
        qed
    next
        case (Suc n')
        then show ?thesis
        proof cases
            assume Option.is-none (devBC t n nid ( }ns+Suc n'|)
            with \langlex= (t,n, nid, n}\mp@subsup{n}{s}{},\mp@subsup{n}{}{\prime})\rangle\langle\mp@subsup{n}{}{\prime}=\mathrm{ Suc n'\
            show ?thesis using a5[of t n nid n ns n'] by simp
        next
```

```
            assume \negOption.is-none (devBC t n nid ( }ns+Suc n'\)
            with \langlex = (t,n, nid, ns, n}\mp@subsup{n}{}{\prime})\rangle\langle\mp@subsup{n}{}{\prime}=Suc \mp@subsup{n}{}{\prime\prime}
            show ?thesis using a4[of t n nid ns n'| by simp
                qed
            qed
        qed
    qed
qed
termination by lexicographic-order
lemma devExt-same:
    assumes \foralln'\prime\prime}>\mp@subsup{n}{}{\prime}.\mp@subsup{n}{}{\prime\prime\prime}\leq\mp@subsup{n}{}{\prime\prime}\longrightarrow\mathrm{ Option.is-none (devBC t n nid n'"')
        and n
        and }\mp@subsup{n}{}{\prime\prime\prime}\leqn'
```



```
proof (induction n'"} rule:dec-induct
    case base
    then show ?case by simp
next
    case (step n}\mp@subsup{n}{}{\prime\prime\prime\prime}
    hence Suc n '/\prime\prime}>\mp@subsup{n}{}{\prime}\mathrm{ by simp
    moreover from step.hyps assms(3) have Suc n'\prime\prime\prime}\leqn'\prime by sim
    ultimately have Option.is-none (devBC t n nid (Suc n'/\prime\prime)) using assms(1) by simp
    moreover from assms(2) step.hyps have n'\prime\prime\prime}\geq\mp@subsup{n}{s}{}\mathrm{ by simp
    hence Suc n}\mp@subsup{n}{}{\prime\prime\prime\prime}=\mp@subsup{n}{s}{}+\mathrm{ Suc ( }\mp@subsup{n}{}{\prime\prime\prime\prime}-\mp@subsup{n}{s}{})\mathrm{ by simp
    ultimately have Option.is-none (devBC t n nid ( }\mp@subsup{n}{s}{}+Suc(\mp@subsup{n}{}{\prime\prime\prime\prime}-\mp@subsup{n}{s}{})))\mathrm{ by metis
```



```
    moreover from {n'\prime\prime\prime}\geq\mp@subsup{n}{s}{}\rangle\mathrm{ have Suc ( }\mp@subsup{n}{}{\prime\prime\prime\prime}-\mp@subsup{n}{s}{})=\mathrm{ Suc n n'I'}-\mp@subsup{n}{s}{}\mathrm{ by simp
    ultimately have devExt t n nid ns (Suc n'\prime\prime\prime}-\mp@subsup{n}{s}{})=\mathrm{ devExt t n nid n ns ( }\mp@subsup{n}{}{\prime\prime\prime\prime}-\mp@subsup{n}{s}{})\mathrm{ by simp
    with step.IH show ?case by simp
qed
lemma devExt-bc[simp]:
    assumes \neg Option.is-none (devBC t n nid ( }\mp@subsup{n}{}{\prime}+\mp@subsup{n}{}{\prime\prime})\mathrm{ ) 
    shows devExt t n nid n' n' = bc ( }\mp@subsup{\sigma}{\mathrm{ the (devBC t n nid ( }\mp@subsup{n}{}{\prime}+\mp@subsup{n}{}{\prime\prime}))}{(t(n'+n'\prime}))
proof (cases n')
    case 0
    with assms show ?thesis by simp
next
    case (Suc nat)
    with assms show ?thesis by simp
qed
lemma devExt-greatest:
    assumes \exists}\mp@subsup{n}{}{\prime\prime\prime}<\mp@subsup{n}{}{\prime}+\mp@subsup{n}{}{\prime\prime}.\neg\mathrm{ Option.is-none (devBC t n nid n'")
        and Option.is-none (devBC t n nid ( }\mp@subsup{n}{}{\prime}+\mp@subsup{n}{}{\prime\prime}))\mathrm{ and }\neg\mp@subsup{n}{}{\prime\prime}=
    shows devExt t n nid n' n' =
```



```
        (t (GREATEST }\mp@subsup{n}{}{\prime\prime\prime}.\mp@subsup{n}{}{\prime\prime\prime}<(\mp@subsup{n}{}{\prime}+\mp@subsup{n}{}{\prime\prime})\wedge\neg\mathrm{ Option.is-none (devBC t n nid n}\mp@subsup{n}{}{\prime\prime\prime})))
```

```
proof -
    let ? \(P=\lambda n^{\prime \prime \prime} . n^{\prime \prime \prime}<\left(n^{\prime}+n^{\prime \prime}\right) \wedge \neg\) Option.is-none (devBC \(t n\) nid \(\left.n^{\prime \prime \prime}\right)\)
    let ? \(G=G R E A T E S T n^{\prime \prime \prime}\). ?P \(n^{\prime \prime \prime}\)
    have \(\forall n^{\prime \prime \prime}>n^{\prime}+n^{\prime \prime}\). \(\neg\) ? P \(n^{\prime \prime \prime}\) by simp
    with \(\left\langle\exists n^{\prime \prime \prime}<n^{\prime}+n^{\prime \prime}\right.\). ᄀOption.is-none ( \(\operatorname{devBC} t n\) nid \(n^{\prime \prime \prime}\) ) 〉 have
        \(\exists n^{\prime \prime \prime}\). ?P \(n^{\prime \prime \prime} \wedge\left(\forall n^{\prime \prime \prime \prime}\right.\). ? P \(\left.n^{\prime \prime \prime \prime} \longrightarrow n^{\prime \prime \prime \prime} \leq n^{\prime \prime \prime}\right)\) using boundedGreatest \([\) of ?P] by blast
    hence ?P ?G using GreatestI-ex-nat \([o f ~ ? P]\) by auto
    hence \(\neg\) Option.is-none (devBC \(t n\) nid ? \(G\) ) by simp
    show ?thesis
    proof cases
        assume? \(G>n^{\prime}\)
        hence ? \(G-n^{\prime}+n^{\prime}=? G\) by simp
        with \(\langle\) Option.is-none ( \(\operatorname{devBC} t n\) nid ? \(G\) ) 〉
        have \(\neg\) Option.is-none ( \(\operatorname{devBC} t n\) nid \(\left.\left(? G-n^{\prime}+n^{\prime}\right)\right)\) by simp
        moreover from \(\left\langle ? ~ G>n^{\prime}\right.\) 〉 have ? \(G-n^{\prime} \neq 0\) by auto
        hence \(\exists\) nat. Suc nat \(=\) ? \(G-n^{\prime}\) by presburger
        then obtain nat where Suc nat \(=? G-n^{\prime}\) by auto
        ultimately have \(\neg\) Option.is-none ( \(\operatorname{dev} B C\) t \(n\) nid ( \(n^{\prime}+\) Suc nat) ) by simp
    hence devExt \(t n\) nid \(n^{\prime}(\) Suc nat \()=b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} t n \text { nid }\left(n^{\prime}+\text { Suc nat }\right)\right)^{t}\left(n^{\prime}+\right.\right.\) Suc nat \(\left.)\right)\)
        by \(\operatorname{simp}\)
    with \(\left\langle\right.\) Suc nat \(\left.=? G-n^{\prime}\right\rangle\) have
        devExt \(t n\) nid \(n^{\prime}\left(? G-n^{\prime}\right)=b c\left(\sigma_{\text {the }}\left(\operatorname{dev} B C t \operatorname{nid}\left(? G-n^{\prime}+n^{\prime}\right)\right)\left(t\left(? G-n^{\prime}+n^{\prime}\right)\right)\right)\)
        by \(\operatorname{simp}\)
    with \(\left\langle ? G-n^{\prime}+n^{\prime}=? G\right.\) have
        devExt \(t n\) nid \(n^{\prime}\left(? G-n^{\prime}\right)=b c\left(\sigma_{\text {the }}(\operatorname{devBC} t n\right.\) nid ? \(\left.G)(t ? G)\right)\) by simp
    moreover have devExt \(t n\) nid \(n^{\prime}\left(n^{\prime}+n^{\prime \prime}-n^{\prime}\right)=\operatorname{devExt} t n\) nid \(n^{\prime}\left(? G-n^{\prime}\right)\)
    proof -
        from \(\left\langle\exists n^{\prime \prime \prime}\right.\). ? P \(n^{\prime \prime \prime} \wedge\left(\forall n^{\prime \prime \prime \prime}\right.\). ? \(\left.\left.P n^{\prime \prime \prime \prime} \longrightarrow n^{\prime \prime \prime \prime} \leq n^{\prime \prime \prime}\right)\right\rangle\) have \(\forall n^{\prime \prime \prime}\). ?P \(n^{\prime \prime \prime} \longrightarrow n^{\prime \prime \prime} \leq\) ? \(G\)
            using Greatest-le-nat [of ?P] by blast
        hence \(\forall n^{\prime \prime \prime}>\) ? \(G\). \(n^{\prime \prime \prime}<n^{\prime}+n^{\prime \prime} \longrightarrow\) Option.is-none (devBC \(t n\) nid \(\left.n^{\prime \prime \prime}\right)\) by auto
        with \(\left\langle\right.\) Option.is-none (devBCt \(n\) nid \(\left(n^{\prime}+n^{\prime \prime}\right)\) ) 〉
            have \(\forall n^{\prime \prime \prime}>\) ? \(G\). \(n^{\prime \prime \prime} \leq n^{\prime}+n^{\prime \prime} \longrightarrow\) Option.is-none (devBC \(t n\) nid \(\left.n^{\prime \prime \prime}\right)\) by auto
        moreover from 〈? \(P\) ? \(G\) 〉 have ? \(G \leq n^{\prime}+n^{\prime \prime}\) by simp
        moreover from \(\left\langle ? G>n^{\prime}\right\rangle\) have ? \(G \geq n^{\prime}\) by simp
        ultimately show ?thesis using 〈? \(\left.G>n^{\prime}\right\rangle\) devExt-same[of ? \(G n^{\prime}+n^{\prime \prime} t n\) nid \(\left.n^{\prime} n^{\prime}+n^{\prime \prime}\right]\)
            by blast
qed
    ultimately show?thesis by simp
next
    assume \(\neg\) ? \(G>n^{\prime}\)
    thus ?thesis
    proof cases
        assume \(? G=n^{\prime}\)
        with \(\neg\) Option.is-none (devBCt \(n\) nid ? \(G\) ) 〉 have \(\neg\) Option.is-none (devBCt \(n\) nid \(n^{\prime}\) )
        by \(\operatorname{simp}\)
        with \(\langle\neg\) Option.is-none (devBC t n nid ? G) \(\rangle\) have
            devExt \(t n\) nid \(n^{\prime} 0=b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} t n\right.\right.\) nid \(\left.\left.n^{\prime}\right)\left(t n^{\prime}\right)\right)\) by simp
        moreover have devExt \(t n\) nid \(n^{\prime} n^{\prime \prime}=\operatorname{devExt} t n\) nid \(n^{\prime} 0\)
        proof -
```

```
    from \(\exists n^{\prime \prime \prime}\). ? P \(n^{\prime \prime \prime} \wedge\left(\forall n^{\prime \prime \prime \prime}\right.\). ?P \(\left.n^{\prime \prime \prime \prime} \longrightarrow n^{\prime \prime \prime \prime} \leq n^{\prime \prime \prime}\right)\) )
        have \(\forall n^{\prime \prime \prime}>\) ? \(G\). ?P \(n^{\prime \prime \prime} \longrightarrow n^{\prime \prime \prime} \leq\) ? \(G\)
        using Greatest-le-nat[of ?P] by blast
    with 〈? \(G=n\) ’
        have \(\forall n^{\prime \prime \prime}>n^{\prime} . n^{\prime \prime \prime}<n^{\prime}+n^{\prime \prime} \longrightarrow\) Option.is-none ( \(\operatorname{devBC} t n\) nid \(n^{\prime \prime \prime}\) ) by simp
    with \(\left\langle O p t i o n . i s-n o n e\left(\operatorname{devBC} t n\right.\right.\) nid \(\left.\left.\left(n^{\prime}+n^{\prime \prime}\right)\right)\right\rangle\)
        have \(\forall n^{\prime \prime \prime}>n^{\prime}\). \(n^{\prime \prime \prime} \leq n^{\prime}+n^{\prime \prime} \longrightarrow\) Option.is-none ( \(\operatorname{dev} B C t n\) nid \(n^{\prime \prime \prime}\) ) by auto
    moreover from \(\left\langle\neg n^{\prime \prime}=0\right.\) 〉 have \(n^{\prime}<n^{\prime}+n^{\prime \prime}\) by simp
    ultimately show ?thesis using devExt-same[of \(n^{\prime} n^{\prime}+n^{\prime \prime} t n\) nid \(\left.n^{\prime} n^{\prime}+n^{\prime}\right]\) by simp
qed
    ultimately show ? thesis using 〈? \(\left.G=n^{\prime}\right\rangle\) by simp
next
    assume \(\neg\) ? \(G=n^{\prime}\)
    with \(\langle\neg\) ? \(G>n\rangle\) have ? \(G<n^{\prime}\) by simp
    hence devExt \(t n\) nid \(n^{\prime} n^{\prime \prime}=\operatorname{devExt} t n\) nid \(n^{\prime} 0\)
    proof -
        from \(\left\langle\exists n^{\prime \prime \prime}\right.\). ? \(P n^{\prime \prime \prime} \wedge\left(\forall n^{\prime \prime \prime \prime}\right.\). ? \(\left.P n^{\prime \prime \prime \prime} \longrightarrow n^{\prime \prime \prime \prime} \leq n^{\prime \prime \prime}\right)\) )
        have \(\forall n^{\prime \prime \prime}>\) ? \(G\). ?P \(n^{\prime \prime \prime} \longrightarrow n^{\prime \prime \prime} \leq\) ? \(G\)
        using Greatest-le-nat \([o f ? P]\) by blast
        with \(\neg\) ? \(G>n\rangle\) have \(\forall n^{\prime \prime \prime}>n^{\prime} . n^{\prime \prime \prime}<n^{\prime}+n^{\prime \prime} \longrightarrow\) Option.is-none (devBC t n nid \(n^{\prime \prime \prime}\) )
        by auto
        with \(\left\langle\right.\) Option.is-none (devBCt \(n\) nid \(\left(n^{\prime}+n^{\prime \prime}\right)\) ) 〉
            have \(\forall n^{\prime \prime \prime}>n^{\prime}\). \(n^{\prime \prime \prime} \leq n^{\prime}+n^{\prime \prime} \longrightarrow\) Option.is-none ( \(\operatorname{dev} B C t n\) nid \(n^{\prime \prime \prime}\) ) by auto
    moreover from 〈? \(P\) ? \(G\) 〉 have ? \(G<n^{\prime}+n^{\prime \prime}\) by simp
    moreover from \(\left\langle\neg n^{\prime \prime}=0\right.\) 〉 have \(n^{\prime}<n^{\prime}+n^{\prime \prime}\) by simp
    ultimately show ?thesis using devExt-same \(\left[\right.\) of \(n^{\prime} n^{\prime}+n^{\prime \prime} t n\) nid \(\left.n^{\prime} n^{\prime}+n^{\prime}\right]\) by simp
qed
moreover have devExt \(t n\) nid \(n^{\prime} 0=\)
        bc ( \(\sigma_{\text {the }}\left(\operatorname{devBC} t n\right.\) nid \(\left(\right.\) GREATEST \(n^{\prime \prime \prime} . n^{\prime \prime \prime}<n^{\prime} \wedge \neg\) Option.is-none \(\left(\operatorname{devBC} t n\right.\) nid \(\left.\left.n^{\prime \prime \prime}\right)\right)\) )
        \(\left(t\left(\right.\right.\) GREATEST \(n^{\prime \prime \prime} . n^{\prime \prime \prime}<n^{\prime} \wedge \neg\) Option.is-none \(\left(\operatorname{devBC} t\right.\) n nid \(\left.\left.\left.\left.n^{\prime \prime \prime}\right)\right)\right)\right)\)
proof -
    from \(\left\langle\neg n^{\prime \prime}=0\right\rangle\) have \(n^{\prime}<n^{\prime}+n^{\prime \prime}\) by simp
    moreover from \(\left\langle\exists n^{\prime \prime \prime}\right.\). ? \(P n^{\prime \prime \prime} \wedge\left(\forall n^{\prime \prime \prime \prime}\right.\). ?P \(\left.n^{\prime \prime \prime \prime} \longrightarrow n^{\prime \prime \prime \prime} \leq n^{\prime \prime \prime}\right)\) )
    have \(\forall n^{\prime \prime \prime}>\) ? \(G\). ?P \(n^{\prime \prime \prime} \longrightarrow n^{\prime \prime \prime} \leq\) ? \(G\) using Greatest-le-nat \([o f ~ ? P]\) by blast
    ultimately have Option.is-none ( \(\operatorname{devBC} t n\) nid \(n\) ) using \(\left\langle ? G<n^{\prime}\right\rangle\) by simp
    moreover from \(\left\langle\forall n^{\prime \prime \prime}>\right.\) ? \(G\). ? P \(\left.n^{\prime \prime \prime} \longrightarrow n^{\prime \prime \prime} \leq ? G\right\rangle\left\langle ? G<n^{\prime}\right\rangle\left\langle n^{\prime}<n^{\prime}+n^{\prime \prime}\right\rangle\)
        have \(\forall n^{\prime \prime \prime} \geq n^{\prime} . n^{\prime \prime \prime}<n^{\prime}+n^{\prime \prime} \longrightarrow\) Option.is-none ( \(\operatorname{devBC} t n\) nid \(n^{\prime \prime \prime}\) ) by auto
    have \(\exists n^{\prime \prime \prime}<n^{\prime}\). \(\neg\) Option.is-none ( \(\operatorname{dev} B C\) t \(n\) nid \(n^{\prime \prime \prime}\) )
    proof -
        from \(\left\langle\exists n^{\prime \prime \prime}<n^{\prime}+n^{\prime \prime}\right.\). \(\neg\) Option.is-none (devBC \(t n\) nid \(n^{\prime \prime \prime}\) ) > obtain \(n^{\prime \prime \prime}\)
            where \(n^{\prime \prime \prime}<n^{\prime}+n^{\prime \prime}\) and \(\neg\) Option.is-none (devBC t \(n\) nid \(n^{\prime \prime \prime}\) ) by auto
            moreover have \(n^{\prime \prime \prime}<n^{\prime}\)
            proof (rule ccontr)
            assume \(\neg n^{\prime \prime \prime}<n^{\prime}\)
            hence \(n^{\prime \prime \prime} \geq n^{\prime}\) by simp
            with \(\left\langle\forall n^{\prime \prime \prime} \geq n^{\prime}\right.\). \(n^{\prime \prime \prime}<n^{\prime}+n^{\prime \prime} \longrightarrow\) Option.is-none ( \(\operatorname{devBCtn}\) nid \(n^{\prime \prime \prime}\) ) \(\rangle\left\langle n^{\prime \prime \prime}<n^{\prime}+n^{\prime \prime}\right\rangle\)
                \(\leftrightarrow\) Option.is-none ( \(\operatorname{devBC} t n\) nid \(n^{\prime \prime \prime}\) ) 〉 show False by simp
            qed
            ultimately show ?thesis by auto
```

```
            qed
            ultimately show ?thesis by simp
        qed
        moreover have (GREATEST n'\prime\prime. n'\prime\prime< n'^\negOption.is-none (devBC t n nid n'\prime}))=
        proof(rule Greatest-equality)
            from \?P? ?G) have ?G < n'+n" and }\neg\mathrm{ Option.is-none (devBC t n nid ?G) by auto
            with (?G<n) show ?G < n'^ \neg Option.is-none (devBC t n nid ?G) by simp
        next
            fix y assume y< n
            moreover from 泊'\prime\prime.?P n'\prime\prime}\wedge(\forall\mp@subsup{n}{}{\prime\prime\prime\prime}.?P\mp@subsup{n}{}{\prime\prime\prime\prime}\longrightarrow\mp@subsup{n}{}{\prime\prime\prime}\leq\mp@subsup{n}{}{\prime\prime\prime})
            have \foralln'\prime\prime. ?P n'\prime}\longrightarrow\mp@subsup{n}{}{\prime\prime\prime}\leq?G using Greatest-le-nat[of ?P] by blas
            ultimately show y\leq?G by simp
        qed
        ultimately show ?thesis by simp
    qed
    qed
qed
lemma devExt-shift: devExt t n nid ( }\mp@subsup{n}{}{\prime}+\mp@subsup{n}{}{\prime\prime})0=\operatorname{devExt t n nid n' n'
proof (cases)
    assume n"=0
    thus ?thesis by simp
next
    assume }\neg(\mp@subsup{n}{}{\prime\prime}=0
    thus?thesis
proof (cases)
    assume Option.is-none (devBC t n nid ( }\mp@subsup{n}{}{\prime}+\mp@subsup{n}{}{\prime})\mathrm{ )
    thus?thesis
    proof cases
    assume \existsn'"\prime< n'+n'\prime.\neg Option.is-none (devBC t n nid n'"')
        with <Option.is-none (devBC t n nid ( }n\prime+n\mp@subsup{n}{}{\prime}))\\mathrm{ have
                devExt t n nid ( }n++\mp@subsup{n}{}{\prime\prime})0
```



```
                (t (GREATEST n'\prime\prime. }\mp@subsup{n}{}{\prime\prime\prime}<(\mp@subsup{n}{}{\prime}+\mp@subsup{n}{}{\prime\prime})\wedge\neg\mathrm{ Option.is-none (devBC t n nid n'\}\mp@subsup{n}{}{\prime\prime})))\mathrm{ ) by simp
        moreover from \\neg( (n'=0)\rangle\langleOption.is-none (devBC t n nid ( }\mp@subsup{n}{}{\prime}+\mp@subsup{n}{}{\prime}))\mathrm{ )
```



```
        have devExt tn nid n' n' =
```



```
                (t (GREATEST n'\prime\prime. }\mp@subsup{n}{}{\prime\prime\prime}<(\mp@subsup{n}{}{\prime}+\mp@subsup{n}{}{\prime\prime})\wedge\neg\mathrm{ Option.is-none (devBC t n nid n'"}\mp@subsup{n}{}{\prime\prime}))
                using devExt-greatest by simp
        ultimately show ?thesis by simp
    next
        assume }\neg(\exists\mp@subsup{n}{}{\prime\prime\prime}<\mp@subsup{n}{}{\prime}+\mp@subsup{n}{}{\prime\prime}.\neg\mathrm{ Option.is-none (devBC t n nid n'"))
        with <Option.is-none (devBC t n nid ( }\mp@subsup{n}{}{\prime}+\mp@subsup{n}{}{\prime\prime}))\mathrm{ ) have devExt t n nid ( }\mp@subsup{n}{}{\prime}+\mp@subsup{n}{}{\prime\prime})0=[] by sim
        moreover have devExt t n mid n' n"=[]
        proof -
            from }\neg(\exists\mp@subsup{n}{}{\prime\prime\prime}<\mp@subsup{n}{}{\prime}+\mp@subsup{n}{}{\prime\prime}.\neg\mathrm{ Option.is-none (devBC t n nid n'"}))\rangle\langle\mp@subsup{n}{}{\prime\prime}\not=0
            have Option.is-none (devBC t n nid n') by simp
            moreover from }\neg(\exists\mp@subsup{n}{}{\prime\prime\prime}<\mp@subsup{n}{}{\prime}+\mp@subsup{n}{}{\prime\prime}.\neg\mathrm{ Option.is-none (devBC t n nid n"'))>
```

have $\neg\left(\exists n^{\prime \prime \prime}<n^{\prime} . \neg\right.$ Option．is－none（devBC $t n$ nid $\left.\left.n^{\prime \prime \prime}\right)\right)$ by simp
ultimately have devExt $t n$ nid $n^{\prime} 0=[]$ by simp
moreover have devExt $t n$ nid $n^{\prime} n^{\prime \prime}=\operatorname{devExt} t n$ nid $n^{\prime} 0$
proof－
from $\left\langle\neg\left(\exists n^{\prime \prime \prime}<n^{\prime}+n^{\prime \prime}\right.\right.$ ．\neg Option．is－none（ $\operatorname{devBC} t n$ nid $\left.n^{\prime \prime \prime}\right)$ ）〉
have $\forall n^{\prime \prime \prime}>n^{\prime} . n^{\prime \prime \prime}<n^{\prime}+n^{\prime \prime} \longrightarrow$ Option．is－none（devBC t n nid $n^{\prime \prime \prime}$ ）by simp
with $\left\langle\right.$ Option．is－none（devBC t n nid $\left(n^{\prime}+n^{\prime \prime}\right)$ ）〉
have $\forall n^{\prime \prime \prime}>n^{\prime}$ ．$n^{\prime \prime \prime} \leq n^{\prime}+n^{\prime \prime} \longrightarrow$ Option．is－none（devBC $t n$ nid $n^{\prime \prime \prime}$ ）by auto
moreover from $\left\langle\neg n^{\prime \prime}=0\right.$ 〉 have $n^{\prime}<n^{\prime}+n^{\prime \prime}$ by simp
ultimately show ？thesis using devExt－same［of $n^{\prime} n^{\prime}+n^{\prime \prime} t n$ nid $\left.n^{\prime} n^{\prime}+n^{\prime \prime}\right]$ by simp qed
ultimately show ？thesis by simp
qed
ultimately show ？thesis by simp
qed
next
assume \neg Option．is－none（devBCt n nid $\left.\left(n^{\prime}+n^{\prime \prime}\right)\right)$
hence devExt $t n \operatorname{nid}\left(n^{\prime}+n^{\prime \prime}\right) 0=b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} \operatorname{tnnid}\left(n^{\prime}+n^{\prime \prime}\right)\right)\left(t\left(n^{\prime}+n^{\prime \prime}\right)\right)\right)$ by simp moreover from $\left\langle\neg\right.$ Option．is－none（devBC $t n$ nid $\left(n^{\prime}+n^{\prime \prime}\right)$ ）〉
have devExt $t n$ nid $n^{\prime} n^{\prime \prime}=b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} \operatorname{tanid}\left(n^{\prime}+n^{\prime \prime}\right)\right)\left(t\left(n^{\prime}+n^{\prime \prime}\right)\right)\right)$ by simp
ultimately show ？thesis by simp
qed
qed
lemma devExt－bc－geq：
assumes \neg Option．is－none（devBCt n nid n^{\prime} ）and $n^{\prime} \geq n_{s}$
shows devExt $t n$ nid $n_{s}\left(n^{\prime}-n_{s}\right)=b c\left(\sigma_{\text {the }\left(\operatorname{devBC} t n n i d n^{\prime}\right)}\left(t n^{\prime}\right)\right)($ is ？LHS $=? R H S)$
proof－
have devExt $t n$ nid $n_{s}\left(n^{\prime}-n_{s}\right)=$ devExt $t n$ nid $\left(n_{s}+\left(n^{\prime}-n_{s}\right)\right) 0$ using devExt－shift by auto moreover from $\operatorname{assms}(2)$ have $n_{s}+\left(n^{\prime}-n_{s}\right)=n^{\prime}$ by simp
ultimately have $\operatorname{devExt} t n$ nid $n_{s}\left(n^{\prime}-n_{s}\right)=\operatorname{devExt} t n$ nid $n^{\prime} 0$ by simp
with assms（1）show ？thesis by simp
qed
lemma his－bc－empty：
assumes $\left(n^{\prime}, n i d^{\prime}\right) \in$ his $t n$ nid and $\neg\left(\exists n^{\prime \prime}<n^{\prime} . \exists\right.$ nid ${ }^{\prime \prime} .\left(n^{\prime \prime}, n i d^{\prime \prime}\right) \in$ his $t n$ nid $)$
shows $b c\left(\sigma_{n i d^{\prime}}\left(t n^{\prime}\right)\right)=[]$
proof－
have $\neg\left(\exists x\right.$ ．his－prop $t n$ nid $\left.n^{\prime} n i d^{\prime} x\right)$
proof（rule ccontr）
assume $\neg \neg\left(\exists x\right.$ ．his－prop $t n$ nid n^{\prime} nid $\left.^{\prime} x\right)$
hence $\exists x$ ．his－prop $t n$ nid $n^{\prime} n i d^{\prime} x$ by simp
with $\left\langle\left(n^{\prime}\right.\right.$, nid $\left.{ }^{\prime}\right) \in$ his $t n$ nid \rangle have（SOME x ．his－prop $t n$ nid n^{\prime} nid＇$\left.x\right) \in$ his t nid using his．intros by simp
moreover from $\exists^{\prime} x$ ．his－prop $t n$ nid n^{\prime} nid＇$\left.x\right\rangle$ have his－prop t nid n＇nid＇（SOME x ．his－prop $t n$ nid n^{\prime} nid $\left.^{\prime} x\right)$ using someI－ex［of λx ．his－prop $t n$ nid n^{\prime} nid＇$\left.x\right]$ by auto hence $\left(\exists n\right.$ ．latestAct－cond nid＇$\left.t n^{\prime} n\right) \wedge$ fst（SOME x．his－prop $t n$ nid n^{\prime} nid $\left.^{\prime} x\right)=\left\langle n i d^{\prime} \leftarrow t\right\rangle_{n^{\prime}}$

G Verification of Blockchain Architectures

by force
hence f st (SOME x. his-prop $t n$ nid $\left.n^{\prime} n i d^{\prime} x\right)<n^{\prime}$
using latestAct-prop(2)[of n^{\prime} nid' $\left.t\right]$ by force
ultimately have $f_{s t}$ (SOME x. his-prop $t n$ nid n^{\prime} nid $\left.^{\prime} x\right)<n^{\prime} \wedge$
(fst (SOME x. his-prop $t n$ nid n^{\prime} nid $^{\prime} x$),
snd (SOME x. his-prop $t n$ nid $\left.\left.n^{\prime} n i d^{\prime} x\right)\right) \in$ his $t n$ nid by simp
thus False using assms(2) by blast
qed
hence $\forall x$. $\neg\left(\exists\right.$ n. latestAct-cond nid' $\left.t n^{\prime} n\right) \vee \neg \xi_{\text {snd }} x \xi_{t}($ fst $x) \vee$
\neg fst $x=\left\langle\text { nid }^{\prime} \leftarrow t\right\rangle_{n^{\prime}} \vee \neg\left(\right.$ prefix $\left(b c\left(\sigma_{n i d^{\prime}}(t n)\right)\right)\left(b c\left(\sigma_{\text {snd }}(t(f s t x))\right)\right) \vee$
$\left(\exists b\right.$. bc $\left.\left.\left(\sigma_{n i d^{\prime}}\left(t n^{\prime}\right)\right)=\left(b c\left(\sigma_{\text {snd }}(t(f s t x))\right)\right) @[b] \wedge \operatorname{mining}\left(\sigma_{n i d^{\prime}}\left(t n^{\prime}\right)\right)\right)\right)$
by auto
hence $\neg\left(\exists n\right.$. latestAct-cond nid $\left.{ }^{\prime} t n^{\prime} n\right) \vee\left(\exists n\right.$. latestAct-cond nid' $\left.t n^{\prime} n\right) \wedge$
$\left(\forall x . \neg \xi_{s n d} x_{\xi_{t}}{ }_{\left(\text {fst }^{\prime}\right)} \vee \neg\right.$ fst $x=\left\langle n i d^{\prime} \leftarrow t\right\rangle_{n^{\prime}} \vee$
$\neg\left(\right.$ prefix $\left(b c\left(\sigma_{\text {nid }}\left(t n^{\prime}\right)\right)\right)\left(b c\left(\sigma_{\text {snd } x}(t(f s t x))\right)\right) \vee$
$\left(\exists b\right.$. $\left.\left.\left.b c\left(\sigma_{n i d^{\prime}}\left(t n^{\prime}\right)\right)=\left(b c\left(\sigma_{s n d} x(t(f s t x))\right)\right) @[b] \wedge \operatorname{mining}\left(\sigma_{n i d^{\prime}}\left(t n^{\prime}\right)\right)\right)\right)\right)$
by auto
thus?thesis
proof
assume $\neg\left(\exists n\right.$. latestAct-cond nid $\left.{ }^{\prime} t n^{\prime} n\right)$
moreover from assms(1) have $\xi_{n i d} \boldsymbol{\xi}_{t} n^{\prime}$ using his-act by simp
ultimately show ?thesis using init-model by simp
next
assume $\left(\exists n\right.$. latestAct-cond nid $\left.{ }^{\prime} t n^{\prime} n\right) \wedge\left(\forall x . \neg\left\{\right.\right.$ snd $x \xi_{t}($ fst $x) \vee$
$\neg f$ st $x=\left\langle\text { nid }^{\prime} \leftarrow t\right\rangle_{n^{\prime}} \vee \neg\left(\right.$ prefix $\left(b c\left(\sigma_{n i d^{\prime}}\left(t n^{\prime}\right)\right)\right)\left(b c\left(\sigma_{\text {snd }}\left(t\left(f_{s t} x\right)\right)\right)\right) \vee$
$\left.\left.\left(\exists b . b c\left(\sigma_{n i d^{\prime}}\left(t n^{\prime}\right)\right)=\left(b c\left(\sigma_{s n d x}(t(f s t x))\right)\right) @[b] \wedge \operatorname{mining}\left(\sigma_{n i d^{\prime}}\left(t n^{\prime}\right)\right)\right)\right)\right)$
hence $\exists n$. latestAct-cond nid' $t n^{\prime} n$ and
$\forall x . \neg\left\{\right.$ snd $x \xi_{t}{ }_{(\text {fst } x)} \vee \neg$ fst $x=\left\langle n i d^{\prime} \leftarrow t\right\rangle_{n^{\prime}} \vee$
$\neg\left(\right.$ prefix $\left(b c\left(\sigma_{n i d^{\prime}}\left(t n^{\prime}\right)\right)\right)\left(b c\left(\sigma_{\text {snd } x}(t(f s t x))\right)\right) \vee$
$\left(\exists b\right.$. bc $\left.\left.\left(\sigma_{n i d^{\prime}}\left(t n^{\prime}\right)\right)=\left(b c\left(\sigma_{\text {snd }} x(t(f s t x))\right)\right) @[b] \wedge \operatorname{mining}\left(\sigma_{n i d^{\prime}}\left(t n^{\prime}\right)\right)\right)\right)$
by auto
hence asmp: $\forall x$. ${\text { ssnd } x^{\xi_{t}}{ }_{\left(f_{s t} x\right)} \longrightarrow f s t x=\left\langle\text { nid }^{\prime} \leftarrow t\right\rangle_{n^{\prime}} \longrightarrow}$
$\neg\left(\right.$ prefix $\left(b c\left(\sigma_{n i d^{\prime}}\left(t n^{\prime}\right)\right)\right)\left(b c\left(\sigma_{\text {snd }}(t(f s t x))\right)\right) \vee$
$\left.\left(\exists b . b c\left(\sigma_{n i d^{\prime}}\left(t n^{\prime}\right)\right)=\left(b c\left(\sigma_{s n d x}(t(f s t x))\right)\right) @[b] \wedge \operatorname{mining}\left(\sigma_{n i d^{\prime}}\left(t n^{\prime}\right)\right)\right)\right)$
by auto
show ?thesis
proof cases
assume trusted nid'
moreover from assms(1) have $\xi_{n i d} \boldsymbol{\xi}_{t} n^{\prime}$ using his-act by simp

$\left(\exists b . b c\left(\sigma_{n i d^{\prime}} t n^{\prime}\right)=b c\left(\sigma_{n i d^{\prime \prime}} t\left\langle n i d^{\prime} \leftarrow t\right\rangle_{n^{\prime}}\right) @[b]\right) \vee \neg \operatorname{mining}\left(\sigma_{n i d^{\prime}} t n^{\prime}\right) \wedge$ $b c\left(\sigma_{n i d^{\prime}} n^{\prime}\right)=b c\left(\sigma_{n i d^{\prime \prime}} t\left\langle n i d^{\prime} \leftarrow t\right\rangle_{n^{\prime}}\right)$ using $\left\langle\exists n\right.$. latestAct-cond nid $\left.{ }^{\prime} t n^{\prime} n\right\rangle$ bhv-tr-context[of nid't n] by auto
 $\neg\left(\right.$ prefix $\left(b c\left(\sigma_{n i d^{\prime}}\left(t n^{\prime}\right)\right)\right)\left(b c\left(\sigma_{n i d^{\prime \prime}}\left(t\left(\left\langle\text { nid }^{\prime} \leftarrow t\right\rangle_{n^{\prime}}\right)\right)\right)\right) \vee$ $\left(\exists b . b c\left(\sigma_{n i d^{\prime}}\left(t n^{\prime}\right)\right)=\left(b c\left(\sigma_{n i d^{\prime \prime}}\left(t\left(\left\langle n i d^{\prime} \leftarrow t\right\rangle_{n^{\prime}}\right)\right)\right)\right) @[b] \wedge\right.$ mining $\left.\left(\sigma_{n i d^{\prime}}\left(t n^{\prime}\right)\right)\right)$) using asmp by auto
ultimately have False by auto

```
        thus ?thesis ..
    next
        assume }\neg\mathrm{ trusted nid}\mp@subsup{}{}{\prime
```



```
    ultimately obtain nid "' where {nid'多t \langlenid'
```



```
        \neg mining ( }\mp@subsup{\sigma}{ni\mp@subsup{d}{}{\prime}}{\prime\prime}\mp@subsup{n}{}{\prime})\wedge\operatorname{prefix}(bc(\mp@subsup{\sigma}{ni\mp@subsup{d}{}{\prime}}{\primet}\mp@subsup{n}{}{\prime}))(bc(\mp@subsup{\sigma}{ni\mp@subsup{d}{}{\prime\prime}}{\primet}\langleni\mp@subsup{|}{}{\prime}\leftarrowt\rangle\mp@subsup{\rangle}{n}{\prime}))
        using {\existsn. latestAct-cond nid't n' n> bhv-ut-context[of nid't n\ by auto
```



```
        \neg(prefix (bc ( }\mp@subsup{\sigma}{ni\mp@subsup{d}{}{\prime}}{\prime}(t\mp@subsup{n}{}{\prime})))(bc(\mp@subsup{\sigma}{ni\mp@subsup{d}{}{\prime\prime}}{\prime\prime}(t(\langleni\mp@subsup{d}{}{\prime}\leftarrowt\rangle\mp@subsup{|}{n}{\prime}))))
        (\existsb.bc(\mp@subsup{\sigma}{ni\mp@subsup{d}{}{\prime}}{(tn}))}=(bc(\mp@subsup{\sigma}{ni\mp@subsup{d}{}{\prime\prime}}{}(t(\langleni\mp@subsup{d}{}{\prime}\leftarrowt\rangle\mp@subsup{|}{\mp@subsup{n}{}{\prime}}{\prime}))))@[b]
```



```
        ultimately have False by auto
        thus ?thesis ..
        qed
    qed
qed
lemma devExt-devop:
    prefix (devExt t n nid ns(Suc n')) (devExt t n nid ns n') \vee
    (\existsb.devExt t n nid nss(Suc n') = devExt t n nid ns n' @ [b])^
    \negOption.is-none (devBC t n nid ( }\mp@subsup{n}{s}{}+\mathrm{ Suc n'))}
    }the (devBC t n nid ( }\mp@subsup{n}{s}{}+\mathrm{ Suc n}\mp@subsup{n}{}{\prime}))\mp@subsup{\xi}{t (ns}{*}+\mathrm{ Suc n')}\mp@subsup{n}{}{\prime
    ns}+\mathrm{ Suc n' }\leqn\wedge\operatorname{mining}(\mp@subsup{\sigma}{\mathrm{ the (devBC t n nid ( }ns}{}+\mathrm{ Suc n'))}(t(\mp@subsup{n}{s}{}+\mathrm{ Suc n}\mp@subsup{n}{}{\prime}))
proof cases
    assume }\mp@subsup{n}{s}{}+\mathrm{ Suc n n}>>
    hence }\neg(\exists\mathrm{ nid'. (ns + Suc n', nid') }\in\mathrm{ his t n nid) using his-le by fastforce
    hence Option.is-none (devBC t n nid ( }ns+Suc n')) using devBC-def by sim
    hence devExt t n nid nos(Suc n') = devExt t n nid ns n' by simp
    thus ?thesis by simp
next
    assume }\neg\mp@subsup{n}{s}{}+\mathrm{ Suc n}\mp@subsup{n}{}{\prime}>
    hence }\mp@subsup{n}{s}{}+\mathrm{ Suc n' }\leqn\mathrm{ by simp
    show ?thesis
    proof cases
    assume Option.is-none (devBC t n nid ( }ns+Suc n')
    hence devExt t n nid n (Suc n') = devExt t n nid ns n' by simp
    thus ?thesis by simp
next
    assume }\neg\mathrm{ Option.is-none (devBCt n nid ( }ns+Suc n')
    hence
        devExt t n nid ns (Suc n') = bc (\sigma the (devBC tn nid (ns}+\mathrm{ Suc n'))}(t(\mp@subsup{n}{s}{}+\mathrm{ Suc n')))
        by simp
    moreover have prefix (bc ( }\mp@subsup{\sigma}{\mathrm{ the (devBC t n nid ( }ns}{}+\mathrm{ Suc n'))
        (devExt t n nid n ns n) V
        (\existsb.bc (\sigma⿸⿻一丿⺝丶he (devBC t n nid (ns + Suc n'))
        \neg Option.is-none (devBC t n nid ( }ns+\mathrm{ Suc n')) ^
        }the (devBC t n nid ( }\mp@subsup{n}{s}{}+\mathrm{ Suc n}\mp@subsup{n}{}{\prime}))\mp@subsup{\xi}{t (ns}{(n+Suc n')}\mp@subsup{n}{}{\prime
```

```
    \(\left.n_{s}+\operatorname{Suc} n^{\prime} \leq n \wedge \operatorname{mining}\left(\sigma_{\text {the }\left(\operatorname{devBCt} \operatorname{nnid}\left(n_{s}+\operatorname{Suc} n^{\prime}\right)\right)}\left(t\left(n_{s}+\operatorname{Suc} n^{\prime}\right)\right)\right)\right)\)
proof cases
    assume \(\exists n^{\prime \prime}<n_{s}+\) Suc \(n^{\prime} . \exists\) nid \({ }^{\prime} .\left(n^{\prime \prime}\right.\), nid \() \in\) his \(t n\) nid
    let ? nid=( THE nid'. \(\left(n_{s}+\right.\) Suc \(^{\prime} n^{\prime}\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid \()\)
    let ? \(x=\) SOME \(x\). his-prop \(t n\) nid \(\left(n_{s}+\right.\) Suc \(n\) ) ?nid \(x\)
    from \(\curvearrowleft\) Option.is-none (devBC \(t n\) nid \(\left.\left(n_{s}+S u c n\right)\right)\) )
        have \(n_{s}+\) Suc \(n^{\prime} \leq n\) using devExt-nopt-leq by simp
    moreover from \(\leadsto\) Option.is-none ( \(\operatorname{dev} B C t n\) nid \(\left(n_{s}+\right.\) Suc \(n \prime\) )) )
        have \(\exists\) nid \({ }^{\prime}\). \(\left(n_{s}+\right.\) Suc \(n^{\prime}\), nid \()\) ) his \(t n\) nid using his-ex by simp
    ultimately have \(\exists x\). his-prop \(t n\) nid ( \(n_{s}+\) Suc \(n^{\prime}\) )
        (THE nid'. (( \(n_{s}+\) Suc \(\left.n^{\prime}\right)\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid) \(x\)
        and (hisPred \(t n\) nid \(\left(n_{s}+\right.\) Suc \(\left.n^{\prime}\right)\),
            (SOME nid'. (hisPred \(t n\) nid \(\left(n_{s}+\right.\) Suc \(\left.n '\right)\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid \(\left.)\right)=? x\)
        using \(\nexists n^{\prime \prime}<n_{s}+\) Suc \(n^{\prime} . \exists\) nid \({ }^{\prime} .\left(n^{\prime \prime}\right.\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid \()\)
        his-determ-ext \(\left[\right.\) of \(n_{s}+\) Suc \(n^{\prime} n t\) nid \(]\) by auto
    moreover have \(b c\left(\sigma_{(S O M E ~ n i d}{ }^{\prime}\right.\). (hisPred \(t n\) nid \(\left(n_{s}+\right.\) Suc \(\left.n^{\prime}\right)\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid \() ~(t\)
    \(\left(\right.\) hisPred \(\left.\left.\left.t n \operatorname{nid}\left(n_{s}+\operatorname{Suc} n^{\prime}\right)\right)\right)\right)=\operatorname{devExt} t n \operatorname{nid} n_{s} n^{\prime}\)
proof cases
    assume Option.is-none (devBC \(\left.t n \operatorname{nid}\left(n_{s}+n^{\prime}\right)\right)\)
    have devExt \(t n\) nid \(n_{s} n^{\prime}=\)
    \(b c\left(\sigma_{\text {the }}\left(\right.\right.\) devBC \(t n\) nid (GREATEST \(n^{\prime \prime} . n^{\prime \prime}<n_{s}+n^{\prime} \wedge \neg\) Option.is-none (devBC \(t n\) nid \(\left.\left.n^{\prime \prime}\right)\right)\) )
        \(\left(t\left(\right.\right.\) GREATEST \(n^{\prime \prime} . n^{\prime \prime}<n_{s}+n^{\prime} \wedge \neg\) Option.is-none \(\left(\operatorname{dev} B C t n\right.\) nid \(\left.\left.\left.n^{\prime \prime}\right)\right)\right)\) )
    proof cases
        assume \(n^{\prime}=0\)
        moreover have \(\exists n^{\prime \prime}<n_{s}+n^{\prime}\). \(\neg\) Option.is-none (devBC t n nid \(n^{\prime \prime}\) )
        proof -
            from \(\left\langle\exists n^{\prime \prime}<n_{s}+\right.\) Suc \(n^{\prime} . \exists\) nid \({ }^{\prime} .\left(n^{\prime \prime}\right.\), nid \() \in\) his \(t\) n nid \(\rangle\) obtain \(n^{\prime \prime}\)
                where \(n^{\prime \prime}<\) Suc \(n_{s}+n^{\prime}\) and \(\exists\) nid \({ }^{\prime} .\left(n^{\prime \prime}\right.\), nid \() \in\) his \(t n\) nid by auto
            hence \(\neg\) Option.is-none ( \(\operatorname{devBC} t n\) nid \(n^{\prime \prime}\) ) using devBC-def by simp
            moreover from 〈 \(\neg\) Option.is-none (devBC \(t n\) nid \(\left.\left.n^{\prime \prime}\right)\right\rangle\)
                \(\left\langle\right.\) Option.is-none \(\left(\operatorname{dev} B C t n\right.\) nid \(\left.\left.\left(n_{s}+n^{\prime}\right)\right)\right\rangle\) have \(\neg n^{\prime \prime}=n_{s}+n^{\prime}\) by auto
            with \(\left\langle n^{\prime \prime}<\right.\) Suc \(\left.n_{s}+n^{\prime}\right\rangle\) have \(n^{\prime \prime}<n_{s}+n^{\prime}\) by simp
            ultimately show ?thesis by auto
        qed
        ultimately show ?thesis using 〈Option.is-none (devBC tnnid \(\left(n_{s}+n^{\prime}\right)\) )〉 by simp
    next
        assume \(\neg n^{\prime}=0\)
        moreover have \(\exists n^{\prime \prime}<n_{s}+n^{\prime} . \neg\) Option.is-none (devBC t \(n\) nid \(n^{\prime \prime}\) )
        proof -
            from \(\left\langle\exists n^{\prime \prime}<n_{s}+\right.\) Suc \(n^{\prime} . \exists\) nid \({ }^{\prime} .\left(n^{\prime \prime}, n i d\right) \in\) his \(t n\) nid \(\rangle\) obtain \(n^{\prime \prime}\)
                where \(n^{\prime \prime}<\) Suc \(n_{s}+n^{\prime}\) and \(\exists\) nid \({ }^{\prime}\). \(\left(n^{\prime \prime}\right.\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid by auto
            hence \(\neg\) Option.is-none (devBC \(t\) n nid \(n^{\prime \prime}\) ) using devBC-def by simp
            moreover from \(\left\langle\neg\right.\) Option.is-none ( \(\operatorname{dev} B C t n\) nid \(\left.\left.n^{\prime \prime}\right)\right\rangle\)
                \(\left\langle\right.\) Option.is-none \(\left.\left(\operatorname{dev} B C t n \operatorname{nid}\left(n_{s}+n^{\prime}\right)\right)\right\rangle\)
                have \(\neg n^{\prime \prime}=n_{s}+n^{\prime}\) by auto
            with \(\left\langle n^{\prime \prime}<\right.\) Suc \(\left.n_{s}+n^{\prime}\right\rangle\) have \(n^{\prime \prime}<n_{s}+n^{\prime}\) by simp
            ultimately show ?thesis by auto
        qed
        with \(\left\langle\neg\left(n^{\prime}=0\right)\right\rangle\left\langle\right.\) Option.is-none (devBCtnnid \(\left(n_{s}+n^{\prime}\right)\) ) \(\rangle\) show ?thesis
```

```
    using devExt-greatest[of \(\left.n_{s} n^{\prime} t n n i d\right]\) by simp
qed
moreover have \(\left(\right.\) GREATEST \(n^{\prime \prime} . n^{\prime \prime}<n_{s}+n^{\prime} \wedge \neg\) Option.is-none \(\left(\operatorname{devBC} t n\right.\) nid \(\left.\left.n^{\prime \prime}\right)\right)=\)
    hisPred \(t n \operatorname{nid}\left(n_{s}+S u c n^{\prime}\right)\)
proof -
    have \(\left(\lambda n^{\prime \prime} . n^{\prime \prime}<n_{s}+n^{\prime} \wedge \neg\right.\) Option.is-none \(\left(\operatorname{dev} B C t n\right.\) nid \(\left.\left.n^{\prime \prime}\right)\right)=\)
        \(\left(\lambda n^{\prime \prime} . \exists n i d^{\prime} .\left(n^{\prime \prime}, n i d^{\prime}\right) \in\right.\) his \(t n\) nid \(\wedge n^{\prime \prime}<n_{s}+\) Suc \(\left.n^{\prime}\right)\)
    proof
        fix \(n^{\prime \prime}\)
        show \(\left(n^{\prime \prime}<n_{s}+n^{\prime} \wedge \neg\right.\) Option.is-none \(\left(\operatorname{devBC} t n\right.\) nid \(\left.\left.n^{\prime \prime}\right)\right)=\)
            \(\left(\exists\right.\) nid \({ }^{\prime} .\left(n^{\prime \prime}\right.\), nid \() \in\) his \(t n\) nid \(\wedge n^{\prime \prime}<n_{s}+\) Suc \(\left.n^{\prime}\right)\)
        proof
            assume \(n^{\prime \prime}<n_{s}+n^{\prime} \wedge \neg\) Option.is-none ( \(\operatorname{devBC} t n\) nid \(n^{\prime \prime}\) )
            thus \(\left(\exists\right.\) nid \({ }^{\prime} .\left(n^{\prime \prime}\right.\), nid \(\left.^{\prime}\right) \in\) his \(t n\) nid \(\wedge n^{\prime \prime}<n_{s}+\) Suc \(\left.n^{\prime}\right)\)
                using his-ex by simp
        next
            assume \(\left(\exists\right.\) nid \({ }^{\prime} .\left(n^{\prime \prime}\right.\), nid \() \in\) his \(t n\) nid \(\wedge n^{\prime \prime}<n_{s}+\) Suc \(\left.n^{\prime}\right)\)
            hence \(\exists\) nid \({ }^{\prime} .\left(n^{\prime \prime}\right.\), nid \() \in\) his \(t n\) nid and \(n^{\prime \prime}<n_{s}+\) Suc \(n^{\prime}\) by auto
            hence \(\neg\) Option.is-none (devBC \(t\) n nid \(n^{\prime \prime}\) ) using devBC-def by simp
            moreover from \(\left\langle\neg\right.\) Option.is-none (devBC \(t n\) nid \(\left.n^{\prime \prime}\right)\) )
            \(\left\langle\right.\) Option.is-none \(\left(\operatorname{dev} B C t n\right.\) nid \(\left.\left.\left(n_{s}+n^{\prime}\right)\right)\right\rangle\)
            have \(n^{\prime \prime} \neq n_{s}+n^{\prime}\) by auto
            with \(\left\langle n^{\prime \prime}<n_{s}+\right.\) Suc \(\left.n^{\prime}\right\rangle\) have \(n^{\prime \prime}<n_{s}+n^{\prime}\) by simp
            ultimately show \(n^{\prime \prime}<n_{s}+n^{\prime} \wedge \neg\) Option.is-none (devBC t n nid \(n^{\prime \prime}\) ) by simp
        qed
    qed
    hence (GREATEST \(n^{\prime \prime} . n^{\prime \prime}<n_{s}+n^{\prime} \wedge\)
        \(\neg\) Option.is-none \(\left(\operatorname{dev} B C\right.\) t \(n\) nid \(\left.\left.n^{\prime \prime}\right)\right)=\)
        (GREATEST \(n^{\prime \prime} . \exists\) nid \({ }^{\prime} .\left(n^{\prime \prime}, n i d^{\prime}\right) \in\) his \(t n\) nid \(\wedge n^{\prime \prime}<n_{s}+\) Suc \(\left.n^{\prime}\right)\)
        using arg-cong[of \(\lambda n^{\prime \prime}\). \(n^{\prime \prime}<n_{s}+n^{\prime} \wedge \neg\) Option.is-none (devBC t \(n\) nid \(n^{\prime \prime}\) )
        \(\left(\lambda n^{\prime \prime} . \exists n i d^{\prime} .\left(n^{\prime \prime}, n i d^{\prime}\right) \in\right.\) his \(t n\) nid \(\wedge n^{\prime \prime}<n_{s}+\) Suc \(\left.\left.n^{\prime}\right)\right]\) by simp
    with hisPred-def show ?thesis by simp
qed
moreover have the (devBC tn nid (hisPred \(\left.\left.t n \operatorname{nid}\left(n_{s}+S u c n^{\prime}\right)\right)\right)=\)
    (SOME nid'. (hisPred \(t\) n nid \(\left(n_{s}+S u c n^{\prime}\right)\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid \()\)
proof -
    from \(\left\langle\exists n^{\prime \prime}<n_{s}+\right.\) Suc \(n^{\prime} . \exists n i d^{\prime} .\left(n^{\prime \prime}, n i d{ }^{\prime}\right) \in\) his \(t n\) nid \(\rangle\)
        have \(\exists n i d^{\prime}\). (hisPred \(t n\) nid \(\left(n_{s}+S u c n^{\prime}\right)\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid
        using hisPrev-prop(2) by simp
    hence the (devBC t \(n\) nid (hisPred \(\left.\left.t n \operatorname{nid}\left(n_{s}+S u c n^{\prime}\right)\right)\right)=\)
        (THE nid'. (hisPred \(t n\) nid \(\left(n_{s}+S u c n^{\prime}\right)\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid \()\)
        using devBC-def by simp
    moreover from \(\left\langle\exists\right.\) nid' . (hisPred \(t n\) nid \(\left(n_{s}+S u c n^{\prime}\right)\), nid' \() \in\) his \(t n\) nid \(\rangle\)
        have (hisPred t n nid ( \(n_{s}+S u c n^{\prime}\) ),
        SOME nid'. (hisPred \(t n\) nid \(\left(n_{s}+S u c n^{\prime}\right)\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid \() \in\) his \(t n\) nid
        using someI-ex[of \(\lambda\) nid \({ }^{\prime}\). (hisPred \(t n\) nid ( \(n_{s}+S u c n{ }^{\prime}\) ), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid \(]\) by simp
    hence (THE nid'. (hisPred \(t n\) nid \(\left(n_{s}+S u c n^{\prime}\right)\), nid \(\left.{ }^{\prime}\right) \in\) his \(t\) n nid \()=\)
        (SOME nid'. (hisPred \(t n\) nid \(\left(n_{s}+S u c n\right)\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid)
        using his-determ-the by simp
```

```
        ultimately show? ?thesis by simp
    qed
    ultimately show ?thesis by simp
next
    assume \(\neg\) Option.is-none \(\left(\operatorname{dev} B C t n\right.\) nid \(\left.\left(n_{s}+n^{\prime}\right)\right)\)
    hence devExt \(t n\) nid \(n_{s} n^{\prime}=b c\left(\sigma_{\text {the }\left(\operatorname{devBC} t n \operatorname{nid}\left(n_{s}+n^{\prime}\right)\right)}\left(t\left(n_{s}+n^{\prime}\right)\right)\right)\)
    proof cases
        assume \(n^{\prime}=0\)
        with \(\triangleleft\) Option.is-none (devBC t n nid \(\left(n_{s}+n^{\prime}\right)\) ) 〉show ?thesis by simp
    next
    assume \(\neg n^{\prime}=0\)
    hence \(\exists\) nat. \(n^{\prime}=\) Suc nat by presburger
    then obtain nat where \(n^{\prime}=\) Suc nat by auto
    with \(\left\langle\neg\right.\) Option.is-none ( \(\operatorname{devBC} t n\) nid \(\left(n_{s}+n^{\prime}\right)\) ) 〉 have
        devExt \(t n\) nid \(n_{s}\) (Suc nat) \(=\)
        \(b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} t n \operatorname{nid}\left(n_{s}+\right.\right.\right.\) Suc nat \(\left.)\right)\left(t\left(n_{s}+\right.\right.\) Suc nat \(\left.\left.)\right)\right)\) by simp
    with \(\left\langle n^{\prime}=\right.\) Suc nat \(\rangle\) show ?thesis by simp
qed
moreover have hisPred \(t n \operatorname{nid}\left(n_{s}+\right.\) Suc \(\left.n^{\prime}\right)=n_{s}+n^{\prime}\)
proof -
    have (GREATEST \(n^{\prime \prime} . \exists\) nid \({ }^{\prime} .\left(n^{\prime \prime}\right.\), nid \() \in\) his \(t n\) nid \(\wedge n^{\prime \prime}<\left(n_{s}+\right.\) Suc \(\left.\left.n^{\prime}\right)\right)=n_{s}+n^{\prime}\)
    proof (rule Greatest-equality)
            from \(\swarrow \neg\) Option.is-none (devBC t \(n\) nid \(\left.\left(n_{s}+n^{\prime}\right)\right)\) )
                have \(\exists n i d^{\prime} .\left(n_{s}+n^{\prime}, n i d^{\prime}\right) \in\) his \(t n\) nid
                using his-ex by simp
            thus \(\exists n i d^{\prime} .\left(n_{s}+n^{\prime}, n i d^{\prime}\right) \in\) his \(t n\) nid \(\wedge n_{s}+n^{\prime}<n_{s}+\) Suc \(n^{\prime}\) by simp
    next
            fix \(y\) assume \(\exists n i d^{\prime} .\left(y, n i d^{\prime}\right) \in\) his \(t n\) nid \(\wedge y<n_{s}+\) Suc \(n^{\prime}\)
            thus \(y \leq n_{s}+n^{\prime}\) by \(\operatorname{simp}\)
    qed
    thus ?thesis using hisPred-def by simp
qed
moreover have the \(\left(\operatorname{devBC} t n \operatorname{nid}\left(\right.\right.\) hisPred \(\left.\left.t n \operatorname{nid}\left(n_{s}+S u c n^{\prime}\right)\right)\right)=\)
    (SOME nid'. (hisPred \(t n\) nid \(\left(n_{s}+S u c n '\right)\), nid') \(\in\) his \(t n\) nid \()\)
proof -
    from \(\left\langle\exists n^{\prime \prime}<n_{s}+\right.\) Suc \(n^{\prime} . \exists\) nid \({ }^{\prime} .\left(n^{\prime \prime}\right.\), nid \() \in\) his \(t n\) nid \(\rangle\)
        have \(\exists\) nid \({ }^{\prime}\). (hisPred \(t n\) nid \(\left(n_{s}+\right.\) Suc \(\left.n^{\prime}\right)\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid
        using hisPrev-prop(2) by simp
    hence the (devBC t \(n\) nid (hisPred \(t n\) nid \(\left.\left(n_{s}+S u c n^{\prime}\right)\right)\) ) \(=\)
        (THE nid'. (hisPred \(t n\) nid \(\left(n_{s}+S u c n n^{\prime}\right)\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid \()\)
        using \(\operatorname{dev} B C\)-def by simp
    moreover from \(\left\lfloor\exists\right.\) nid \({ }^{\prime}\). (hisPred \(t n\) nid \(\left(n_{s}+S u c n^{\prime}\right)\), nid \() \in\) his \(t n\) nid \(\rangle\)
        have (hisPred t n nid ( \(n_{s}+S u c n^{\prime}\) ),
        SOME nid'. (hisPred \(t\) n nid ( \(n_{s}+\) Suc \(\left.n^{\prime}\right)\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid \() \in\) his \(t n\) nid
        using someI-ex[of \(\lambda\) nid' \({ }^{\prime}\). (hisPred \(t n\) nid \(\left(n_{s}+S u c n^{\prime}\right)\), nid') \()\) his \(t n\) nid]
            by \(\operatorname{simp}\)
    hence \(\left(\right.\) THE nid \({ }^{\prime}\). (hisPred \(t n\) nid \(\left(n_{s}+S u c n\right)\), nid \() \in\) his \(t n\) nid \()=\)
        (SOME nid'. (hisPred \(t n\) nid \(\left(n_{s}+\right.\) Suc \(\left.n^{\prime}\right)\), nid \(\left.{ }^{\prime}\right) \in\) his \(t n\) nid)
        using his-determ-the by simp
```

ultimately show ?thesis by simp
qed
ultimately show?thesis by simp
qed
ultimately have $b c\left(\sigma_{s n d} ? x(t(f s t ? x))\right)=\operatorname{devExt} t n$ nid $n_{s} n^{\prime}$
using fst-conv[of hisPred t n nid $\left(n_{s}+S u c n^{\prime}\right)$
(SOME nid'. (hisPred $t n$ nid $\left(n_{s}+\right.$ Suc $\left.n^{\prime}\right)$, nid $\left.{ }^{\prime}\right) \in$ his $t n$ nid $)$]
snd-conv[of hisPred $t n$ nid $\left(n_{s}+S u c n^{\prime}\right)$
(SOME nid'. (hisPred $t n$ nid $\left(n_{s}+S u c n^{\prime}\right)$, nid $\left.{ }^{\prime}\right) \in$ his $t n$ nid $\left.)\right]$ by simp
moreover from $\left\langle\exists x\right.$. his-prop $t n$ nid $\left(n_{s}+S u c n^{\prime}\right)$?nid $\left.x\right\rangle$
have his-prop $t n$ nid $\left(n_{s}+\right.$ Suc n) ?nid ? x
using someI-ex[of λx. his-prop $t n$ nid $\left(n_{s}+S u c n^{\prime}\right)$?nid $\left.x\right]$ by blast
hence prefix $\left(b c\left(\sigma_{?_{\text {nid }}}\left(t\left(n_{s}+S u c n^{\prime}\right)\right)\right)\right)\left(b c\left(\sigma_{\text {snd }}{ }_{?}\left(t\left(f_{s t}{ }^{?} x\right)\right)\right)\right) \vee$ $\left(\exists b . b c\left(\sigma_{\text {?nid }}\left(t\left(n_{s}+S u c n^{\prime}\right)\right)\right)=\left(b c\left(\sigma_{s n d}{ }_{? x}\left(t\left(f_{s t} ? x\right)\right)\right)\right) @[b] \wedge\right.$ mining $\left.\left(\sigma_{\text {?nid }}\left(t\left(n_{s}+S u c n^{\prime}\right)\right)\right)\right)$ by blast
ultimately have prefix $\left(b c\left(\sigma_{\text {? nid }}\left(t\left(n_{s}+S u c n^{\prime}\right)\right)\right)\right)\left(\operatorname{devExt} t n\right.$ nid $\left.n_{s} n^{\prime}\right) \vee$
$\left(\exists b . b c\left(\sigma_{? n i d}\left(t\left(n_{s}+S u c n^{\prime}\right)\right)\right)=\left(\operatorname{devExt} t n \operatorname{nid} n_{s} n^{\prime}\right) @[b] \wedge\right.$ $\left.\operatorname{mining}\left(\sigma_{\text {?nid }}\left(t\left(n_{s}+S u c n^{\prime}\right)\right)\right)\right)$ by simp
moreover from $\left\langle\exists\right.$ nid ${ }^{\prime} .\left(n_{s}+\right.$ Suc n^{\prime}, nid $\left.{ }^{\prime}\right) \in$ his $t n$ nid \rangle
have ? nid=the ($\operatorname{dev} B C t n$ nid $\left.\left(n_{s}+S u c n^{\prime}\right)\right)$ using devBC-def by simp
moreover have $\xi_{\text {the }}\left(\operatorname{devBC} t n\right.$ nid $\left(n_{s}+\right.$ Suc $\left.\left.n^{\prime}\right)\right) \xi_{t}\left(n_{s}+\right.$ Suc $\left.n^{\prime}\right)$
proof -
from $\exists \exists n i d^{\prime} .\left(n_{s}+\right.$ Suc $\left.n^{\prime}, n i d^{\prime}\right) \in$ his $t n$ nid \rangle obtain nid ${ }^{\prime}$
where $\left(n_{s}+\right.$ Suc n^{\prime}, nid $\left.{ }^{\prime}\right) \in$ his $t n$ nid by auto
with his-determ-the have nid $=\left(\right.$ THE nid ${ }^{\prime} .\left(n_{s}+S u c n^{\prime}\right.$, nid $\left.^{\prime}\right) \in$ his $t n$ nid $)$ by simp with <? nid $=$ the $\left(\operatorname{dev} B C t n\right.$ nid $\left.\left(n_{s}+S u c n^{\prime}\right)\right)$ 〉
have the $\left(\operatorname{devBC} t n\right.$ nid $\left.\left(n_{s}+S u c n^{\prime}\right)\right)=$ nid' by simp
with $\left\langle\left(n_{s}+S u c n^{\prime}, n i d^{\prime}\right) \in\right.$ his $t n$ nid \rangle show ?thesis using his-act by simp
qed
ultimately show ?thesis
using $\left\langle\neg\right.$ Option.is-none (devBC t n nid $\left(n_{s}+\right.$ Suc $\left.\left.\left.n^{\prime}\right)\right)\right\rangle\left\langle n_{s}+\right.$ Suc $\left.n^{\prime} \leq n\right\rangle$ by simp
next
assume $\neg\left(\exists n^{\prime \prime}<n_{s}+\right.$ Suc $n^{\prime} . \exists$ nid ${ }^{\prime} .\left(n^{\prime \prime}\right.$, nid $) \in$ his t n nid $)$
moreover have $\left(n_{s}+\right.$ Suc n^{\prime}, the $\left(\operatorname{devBC} t \operatorname{nid}\left(n_{s}+\right.\right.$ Suc $\left.\left.\left.n^{\prime}\right)\right)\right) \in$ his $t n$ nid
proof -
from $\left\langle\neg\right.$ Option.is-none ($\operatorname{dev} B C$ t nid $\left(n_{s}+S u c n\right)$) \rangle
have \exists nid ${ }^{\prime} .\left(n_{s}+S u c n^{\prime}, n i d^{\prime}\right) \in h i s t n$ nid using his-ex by simp
hence the $\left(\operatorname{devBC} t \operatorname{nid}\left(n_{s}+\right.\right.$ Suc $\left.\left.n^{\prime}\right)\right)=$
(THE nid ${ }^{\prime} .\left(n_{s}+\right.$ Suc n^{\prime}, nid $\left.^{\prime}\right) \in$ his t n nid)
using devBC-def by simp
moreover from \exists nid ${ }^{\prime} .\left(n_{s}+\right.$ Suc n^{\prime}, nid $\left.{ }^{\prime}\right) \in$ his t n nid \rangle obtain nid ${ }^{\prime}$
where $\left(n_{s}+\right.$ Suc n^{\prime}, nid $\left.{ }^{\prime}\right) \in$ his $t n$ nid by auto
with his-determ-the have nid' $=\left(\right.$ THE nid'. $\left(n_{s}+\right.$ Suc n^{\prime}, nid $\left.{ }^{\prime}\right) \in$ his $t n$ nid $)$ by simp
ultimately have the $\left(\operatorname{devBC} t n\right.$ nid $\left.\left(n_{s}+S u c n^{\prime}\right)\right)=$ nid' by simp
with $\left\langle\left(n_{s}+\right.\right.$ Suc $\left.n^{\prime}, n i d^{\prime}\right) \in$ his $t n$ nid show ?thesis by simp
qed
ultimately have $b c\left(\sigma_{\text {the }\left(\operatorname{devBC} t n \operatorname{nid}\left(n_{s}+\operatorname{Suc} n^{\prime}\right)\right)}\left(t\left(n_{s}+\right.\right.\right.$ Suc $\left.\left.\left.n^{\prime}\right)\right)\right)=[]$ using his-bc-empty by simp
thus ?thesis by simp

G Verification of Blockchain Architectures

qed
ultimately show ？thesis by simp
qed
qed
abbreviation devLgthBC where devLgthBC $t n$ nid $n_{s} \equiv\left(\lambda n^{\prime}\right.$ ．length（devExt $t n$ nid $\left.n_{s} n^{\prime}\right)$ ）

theorem blockchain－save：

fixes $t:: n a t \Rightarrow c n f$ and n_{s} and $s b c$ and n
assumes \forall nid．trusted nid \longrightarrow prefix sbc $\left(b c\left(\sigma_{\text {nid }}\left(t\left(\langle\text { nid } \rightarrow t\rangle_{n_{s}}\right)\right)\right)\right)$
and \forall nid \in actUt $\left(t n_{s}\right)$ ．length $\left(b c\left(\sigma_{n i d}\left(t n_{s}\right)\right)\right)<$ length sbc
and PoWt $n_{s} \geq$ length $s b c+c b$
and $\forall n^{\prime}<n_{s} . \forall$ nid．$\left\{n i d \xi_{t} n^{\prime} \longrightarrow\right.$ length $\left(b c\left(\sigma_{\text {nid }} t n^{\prime}\right)\right)<$ length $s b c \vee$
prefix sbc $\left(b c\left(\sigma_{n i d}\left(t n^{\prime}\right)\right)\right)$
and $n \geq n_{s}$
shows \forall nid $\in \operatorname{actTr}(t n)$ ．prefix sbc $\left(b c\left(\sigma_{n i d}(t n)\right)\right)$
proof（cases）
assume $s b c=[$
thus ？thesis by simp
next
assume $\neg s b c=[]$
have $n \geq n_{s} \Longrightarrow \forall$ nid $\in \operatorname{actTr}(t n)$ ．prefix sbc $\left(b c\left(\sigma_{n i d}(t n)\right)\right)$
proof（induction n rule：ge－induct）
case（step n ）
show ？case
proof
fix nid assume nid $\in \operatorname{act} \operatorname{Tr}(t n)$
hence nnid $_{t}{ }_{n}$ and trusted nid using actTr－def by auto
show prefix sbc（bc（ $\left.\sigma_{n i d} t n\right)$ ）
proof cases
assume lAct：$\exists n^{\prime}<n . n^{\prime} \geq n_{s} \wedge \xi_{n i d \xi_{t} n^{\prime}}$
show ？thesis
proof cases
assume $\exists b \in \operatorname{pin}\left(\sigma_{n i d} t\langle n i d \leftarrow t\rangle_{n}\right)$ ．length $b>$ length $\left(b c\left(\sigma_{n i d} t\langle n i d \leftarrow t\rangle_{n}\right)\right)$
moreover from \｛乡nid $\xi_{t n^{\prime}}$ have $\exists n^{\prime} \geq n$ ．$\left\{n i d \xi_{t n^{\prime}}\right.$ by auto
moreover from lAct have $\exists n^{\prime}$ ．latestAct－cond nid $t n n^{\prime}$ by auto
ultimately have
$\neg \operatorname{mining}\left(\sigma_{n i d} t\langle n i d \rightarrow t\rangle_{n}\right) \wedge b c\left(\sigma_{n i d} t\langle n i d \rightarrow t\rangle_{n}\right)=$ MAX $\left(\right.$ pin $\left(\sigma_{n i d}\left\langle\langle n i d \leftarrow t\rangle_{n}\right)\right) \vee$
mining $\left(\sigma_{n i d} t\langle n i d \rightarrow t\rangle_{n}\right) \wedge\left(\exists b . b c\left(\sigma_{n i d} t\langle n i d \rightarrow t\rangle_{n}\right)=\right.$ $\left.M A X\left(\operatorname{pin}\left(\sigma_{n i d} t\langle n i d \leftarrow t\rangle_{n}\right)\right) @[b]\right)$
using 〈trusted nid〉 bhv－tr－ex［of nid $n t$ ］by simp
moreover have prefix sbc $\left(\operatorname{MAX}\left(\operatorname{pin}\left(\sigma_{\text {nid }} t\langle n i d \leftarrow t\rangle_{n}\right)\right)\right)$
proof－
from $\left\langle\exists n^{\prime}\right.$ ．latestAct－cond nid $\left.t n n^{\prime}\right\rangle$ have $\xi_{n i d \xi_{t}}\langle n i d \leftarrow t\rangle n$ using latestAct－prop（1）by simp
hence $\operatorname{pin}\left(\sigma_{n i d} t\langle n i d \leftarrow t\rangle_{n}\right) \neq\{ \}$ and finite $\left(\operatorname{pin}\left(\sigma_{n i d} t\langle n i d \leftarrow t\rangle_{n}\right)\right)$ using nempty－input［of nid $t\langle\text { nid } \leftarrow t\rangle_{n}$ ］finite－input［of nid $t\langle\text { nid } \leftarrow t\rangle_{n}$ ］〈trusted nid〉 by auto

```
hence \(M A X\left(\operatorname{pin}\left(\sigma_{n i d} t\langle n i d \leftarrow t\rangle_{n}\right)\right) \in \operatorname{pin}\left(\sigma_{n i d} t\langle n i d \leftarrow t\rangle_{n}\right)\)
    using max-prop(1) by auto
with \(\left\langle\xi_{n i d \xi_{t}}\langle n i d \leftarrow t\rangle_{n}\right\rangle\) obtain nid \(^{\prime}\) where \}nid \(^{\prime}{ }_{t}\langle n i d \leftarrow t\rangle_{n}\)
    and \(b c\left(\sigma_{n i d^{\prime}}\left(t\langle n i d \leftarrow t\rangle_{n}\right)\right)=M A X\left(\operatorname{pin}\left(\sigma_{n i d^{t}}\langle n i d \leftarrow t\rangle_{n}\right)\right)\)
    using closed \(\left[\right.\) where \(\left.b=M A X\left(\operatorname{pin}\left(\sigma_{n i d} t\langle n i d \leftarrow t\rangle n\right)\right)\right]\) by blast
moreover have prefix sbc \(\left(b c\left(\sigma_{n i d^{\prime}}\left(t\langle n i d \leftarrow t\rangle_{n}\right)\right)\right)\)
proof cases
    assume trusted nid \({ }^{\prime}\)
    with \(\left.\left\langle\xi_{n i d}\right\rangle_{t}\langle n i d \leftarrow t\rangle_{n}\right\rangle\) have nid \(^{\prime} \in \operatorname{actTr}\left(t\langle n i d \leftarrow t\rangle_{n}\right)\)
        using actTr-def by simp
    moreover from \(\left\langle\exists n^{\prime}\right.\). latestAct-cond nid \(\left.t n n^{\prime}\right\rangle\) have \(\langle\text { nid } \leftarrow t\rangle_{n}<n\)
        using latestAct-prop(2) by simp
    moreover from lAct have \(\langle n i d \leftarrow t\rangle_{n} \geq n_{s}\) using latestActless by blast
    ultimately show ?thesis using \(\left\langle\left\{\text { nid } \xi_{t}\langle n i d \leftarrow t\rangle\right\rangle_{n}\right\rangle\) step.IH by simp
next
    assume \(\neg\) trusted nid \({ }^{\prime}\)
    show ?thesis
    proof (rule ccontr)
        assume \(\neg\) prefix sbc \(\left(b c\left(\sigma_{n i d^{\prime}}\left(t\langle n i d \leftarrow t\rangle_{n}\right)\right)\right)\)
        moreover have
        \(\exists n^{\prime} \leq\langle n i d \leftarrow t\rangle_{n} . n^{\prime} \geq n_{s} \wedge\) length \(\left(\right.\) devExt \(t\langle\text { nid } \leftarrow t\rangle_{n}\) nid \(\left.n^{\prime} 0\right)<\) length sbc \(\wedge\)
        \(\left(\forall n^{\prime \prime}>n^{\prime} . n^{\prime \prime} \leq\langle n i d \leftarrow t\rangle_{n} \wedge \neg\right.\) Option.is-none \(\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime \prime}\right) \longrightarrow\)
        \(\neg\) trusted \(\left(\right.\) the \(\left.\left(\operatorname{dev} B C t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime \prime}\right)\right)\) )
        proof cases
            assume \(\exists n^{\prime} \leq\langle n i d \leftarrow t\rangle n . n^{\prime} \geq n_{s} \wedge\)
                \(\neg\) Option.is-none \(\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\right) \wedge\)
                trusted (the (devBC \(\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\right)\) )
            hence \(\exists n^{\prime} \leq\langle n i d \leftarrow t\rangle_{n} . n^{\prime} \geq n_{s} \wedge\)
                \(\neg\) Option.is-none (devBC \(\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\right) \wedge\)
                trusted (the \(\left(\right.\) devBC \(\left.\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\right)\right) \wedge\left(\forall n^{\prime \prime}>n^{\prime} . n^{\prime \prime} \leq\langle n i d \leftarrow t\rangle_{n} \wedge\right.\)
                \(\neg\) Option.is-none \(\left(\right.\) devBC \(\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime \prime}\right) \longrightarrow\)
                \(\neg\) trusted \(\left(\right.\) the \(\left.\left.\left(\operatorname{dev} B C t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime \prime}\right)\right)\right)\)
        proof -
            let ? \(P=\lambda n^{\prime} . n^{\prime} \leq\langle n i d \leftarrow t\rangle_{n} \wedge n^{\prime} \geq n_{s} \wedge\)
                    \(\neg\) Option.is-none \(\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n}\right.\) nid \(\left.^{\prime} n^{\prime}\right) \wedge\)
                trusted (the (devBC \(\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\right)\) )
            from \(\left\langle\exists n^{\prime} \leq\langle n i d \leftarrow t\rangle_{n} . n^{\prime} \geq n_{s} \wedge\right.\)
                \(\neg\) Option.is-none \(\left(\operatorname{dev} B C t\langle\text { nid } \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\right) \wedge\)
                    trusted (the (devBC \(\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n\right)\) ) \(\rangle\) have \(\exists n^{\prime}\). ?P \(n^{\prime}\) by simp
            moreover have \(\left.\forall n^{\prime}\right\rangle\langle n i d \leftarrow t\rangle_{n}\). \(\neg\) ? \(P n^{\prime}\) by simp
            ultimately obtain \(n^{\prime}\) where ?P \(n^{\prime}\) and \(\forall n^{\prime \prime}\).?P \(n^{\prime \prime} \longrightarrow n^{\prime \prime} \leq n^{\prime}\)
                    using boundedGreatest \(\left[\right.\) of ? P \(\left.-\langle n i d \leftarrow t\rangle_{n}\right]\) by auto
            hence \(\forall n^{\prime \prime}>n^{\prime}\). \(n^{\prime \prime} \leq\langle n i d \leftarrow t\rangle_{n} \wedge\)
                \(\neg\) Option.is-none (devBCt \(\left.\langle\text { nid } \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime \prime}\right)\)
                \(\longrightarrow \neg\) trusted \(\left(\right.\) the \(\left.\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime \prime}\right)\right)\) by auto
            thus ?thesis using 〈? \(P^{\prime}\) 〉 by auto
        qed
        then obtain \(n^{\prime}\) where \(n^{\prime} \leq\langle n i d \leftarrow t\rangle_{n}\) and
            \(\neg\) Option.is-none ( \(\operatorname{devBCt}\langle\text { nid } \leftarrow t\rangle_{n}\) nid \(^{\prime} n^{\prime}\) )
```

```
and \(n^{\prime} \geq n_{s}\) and trusted (the (devBC \(\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\right)\) )
and \(\forall n^{\prime \prime}>n^{\prime} . n^{\prime \prime} \leq\langle n i d \leftarrow t\rangle_{n} \wedge\)
    \(\neg\) Option.is-none (devBC \(t\langle n i d \leftarrow t\rangle_{n}\) nid \(\left.^{\prime} n^{\prime \prime}\right)\)
    \(\longrightarrow \neg\) trusted (the (devBC \(\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime \prime}\right)\) ) by auto
hence \(n^{\prime} \geq n_{s}\) and untrusted: \(\forall n^{\prime \prime}>n^{\prime} . n^{\prime \prime} \leq\langle\text { nid } \leftarrow t\rangle_{n} \wedge\)
    \(\neg\) Option.is-none (devBCt \(\left.\langle\text { nid } \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime \prime}\right) \longrightarrow\)
    \(\neg\) trusted (the \(\left(\operatorname{dev} B C t\langle\text { nid } \leftarrow t\rangle_{n}\right.\) nid \(\left.\left.{ }^{\prime} n^{\prime \prime}\right)\right)\) by auto
```

moreover have $\langle n i d \leftarrow t\rangle_{n}<n$
using $\exists \exists n^{\prime}$. latestAct-cond nid $\left.t n n^{\prime}\right\rangle$ latestAct-prop(2) by blast
with $\left\langle n^{\prime} \leq\langle n i d \leftarrow t\rangle_{n}\right\rangle$ have $n^{\prime}<n$ by simp
moreover from $\left\langle\neg\right.$ Option.is-none (devBC $\left.\left.t\langle\text { nid } \leftarrow t\rangle_{n} n i d^{\prime} n{ }^{\prime}\right)\right\rangle$
have $\xi_{\text {the }}\left(\operatorname{dev} B C t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\right) \xi_{t n^{\prime}}$ using devBC-act by simp
with $\left\langle\right.$ trusted (the $\left(\operatorname{dev} B C t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\right)$) >
have the $\left(\operatorname{dev} B C t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\right) \in \operatorname{actTr}\left(t n^{\prime}\right)$ using actTr-def by simp
ultimately have prefix sbc $\left(b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle n n i d^{\prime} n^{\prime}\right)^{t} n^{\prime}\right)\right)$
using step.IH by simp
interpret ut: untrusted devExt $t\langle n i d \leftarrow t\rangle{ }_{n}$ nid $^{\prime} n^{\prime} \lambda n$. umining $t\left(n^{\prime}+n\right)$
proof
fix $n^{\prime \prime}$
from devExt-devop[of $t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n$]
have prefix (devExt $t\langle\text { nid } \leftarrow t\rangle_{n}$ nid' $^{\prime} n^{\prime}\left(\right.$ Suc $\left.n^{\prime \prime}\right)$)
$\left(\right.$ devExt $\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime} n^{\prime \prime}\right) \vee$
$\left(\exists b\right.$. devExt $t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\left(\right.$ Suc $\left.n^{\prime \prime}\right)=$
devExt $\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime} n^{\prime \prime} @[b]\right) \wedge$
\neg Option.is-none (devBC $t\langle n i d \leftarrow t\rangle{ }_{n}$ nid $\left.^{\prime}\left(n^{\prime}+S u c n^{\prime \prime}\right)\right) \wedge$
$\xi_{\text {the }}\left(\operatorname{devBC} t\langle\text { nid } \leftarrow t\rangle_{n}\right.$ nid $^{\prime}\left(n^{\prime}+\right.$ Suc $\left.\left.n^{\prime \prime}\right)\right) \xi_{t}\left(n^{\prime}+\right.$ Suc $\left.n^{\prime \prime}\right) \wedge$
$n^{\prime}+$ Suc $n^{\prime \prime} \leq\langle n i d \leftarrow t\rangle_{n} \wedge$
mining $\left(\sigma_{\text {the }}\left(\operatorname{dev} B C t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime}\left(n^{\prime}+\text { Suc } n^{\prime \prime}\right)\right)^{t}\left(n^{\prime}+\right.\right.$ Suc $\left.\left.n^{\prime \prime}\right)\right)$.
thus prefix (devExt $t\langle n i d \leftarrow t\rangle_{n}$ nid $^{\prime} n^{\prime}\left(\right.$ Suc $\left.n^{\prime \prime}\right)$)
$\left(\right.$ devExt $\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime} n^{\prime \prime}\right) \vee$
$\left(\exists b\right.$. devExt $t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\left(\right.$ Suc $\left.n^{\prime \prime}\right)=$
devExt $\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime} n^{\prime \prime} @[b]\right) \wedge$ umining $t\left(n^{\prime}+\right.$ Suc $\left.n^{\prime \prime}\right)$
proof
assume prefix (devExt $t\langle n i d \leftarrow t\rangle_{n}$ nid $^{\prime} n^{\prime}\left(\right.$ Suc $\left.n^{\prime \prime}\right)$)
$\left(\right.$ devExt $\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime} n^{\prime \prime}\right)$
thus ?thesis by simp
next
assume $\left(\exists\right.$ b. devExt $t\langle n i d \leftarrow t\rangle_{n} \operatorname{nid}^{\prime} n^{\prime}\left(\right.$ Suc $\left.n^{\prime \prime}\right)=$
devExt $\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime} n^{\prime \prime} @[b]\right) \wedge$
\neg Option.is-none (devBC $t\langle$ nid $\leftarrow t\rangle\rangle_{n}$ nid $^{\prime}\left(n^{\prime}+\right.$ Suc $\left.\left.n^{\prime \prime}\right)\right) \wedge$
ξ the $\left(\operatorname{devBC} t\langle\text { nid } \leftarrow t\rangle_{n}\right.$ nid $^{\prime}\left(n^{\prime}+\right.$ Suc $\left.\left.n^{\prime \prime}\right)\right) \xi_{t}\left(n^{\prime}+\right.$ Suc $\left.n^{\prime \prime}\right) \wedge$
$n^{\prime}+$ Suc $n^{\prime \prime} \leq\langle n i d \leftarrow t\rangle_{n} \wedge$
mining $\left(\sigma_{\text {the }}\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} \operatorname{nid}^{\prime}\left(n^{\prime}+\text { Suc } n^{\prime \prime}\right)\right)^{t}\left(n^{\prime}+\right.\right.$ Suc $\left.\left.n^{\prime \prime}\right)\right)$
hence \exists b. devExt $t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\left(\right.$ Suc $\left.n^{\prime \prime}\right)=$
devExt $t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime} n^{\prime \prime} @[b]$
and \neg Option.is-none $\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime}\left(n^{\prime}+S u c n^{\prime \prime}\right)\right)$
and sthe $\left(\operatorname{devBC} t\langle\text { nid } \leftarrow t\rangle_{n}\right.$ nid $^{\prime}\left(n^{\prime}+\right.$ Suc $\left.\left.n^{\prime \prime}\right)\right) \xi_{t}\left(n^{\prime}+\right.$ Suc $\left.n^{\prime \prime}\right)$

```
        and \(n^{\prime}+S u c n^{\prime \prime} \leq\langle n i d \leftarrow t\rangle_{n}\) and
        mining \(\left(\sigma_{\text {the }}\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} \text { nid }^{\prime}\left(n^{\prime}+\text { Suc } n^{\prime \prime}\right)\right)^{t}\right.\)
        ( \(n^{\prime}+\) Suc \(\left.n^{\prime \prime}\right)\) ) by auto
    moreover from \(\left\langle n^{\prime}+\right.\) Suc \(\left.n^{\prime \prime} \leq\langle n i d \leftarrow t\rangle_{n}\right\rangle\)
        \(\left\langle\neg\right.\) Option.is-none \(\left(\operatorname{devBC} t\langle\text { nid } \leftarrow t\rangle_{n}\right.\) nid \(^{\prime}\left(n^{\prime}+\right.\) Suc \(\left.\left.\left.n^{\prime \prime}\right)\right)\right\rangle\)
        have \(\neg\) trusted \(\left(\right.\) the \(\left.\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime}\left(n^{\prime}+S u c n^{\prime \prime}\right)\right)\right)\)
        using untrusted by simp
        with 《条he \(\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n}\right.\) nid \(^{\prime}\left(n^{\prime}+\right.\) Suc \(\left.\left.n^{\prime \prime}\right)\right) \xi_{t}\left(n^{\prime}+\text { Suc } n^{\prime \prime}\right)^{\prime}\)
        have the \(\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime}\left(n^{\prime}+\right.\right.\) Suc \(\left.\left.n^{\prime \prime}\right)\right) \in \operatorname{actUt}\left(t\left(n^{\prime}+\right.\right.\) Suc \(\left.\left.n^{\prime \prime}\right)\right)\)
            using actUt-def by simp
        ultimately show ?thesis using umining-def by auto
    qed
qed
from \(\left\langle\neg\right.\) Option.is-none ( \(\left.\left.\operatorname{dev} B C t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\right)\right\rangle\) have
    \(b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\right)^{t} n^{\prime}\right)=\operatorname{devExt} t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime} 0\)
    using devExt-bc-geq[of \(\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n\right]\) by simp
moreover from \(\left.\left\langle n^{\prime} \leq\langle n i d \leftarrow t\rangle_{n}\right\rangle\left\langle\xi_{\text {nid }}\right\rangle_{t}\langle n i d \leftarrow t\rangle_{n}\right\rangle\) have
    \(b c\left(\sigma_{n i d^{\prime}} t\langle n i d \leftarrow t\rangle_{n}\right)=\operatorname{devExt} t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\left(\langle n i d \leftarrow t\rangle_{n}-n^{\prime}\right)\)
    using devExt-bc-geq by simp
with \(\left\langle\neg\right.\) prefix sbc \(\left.\left(b c\left(\sigma_{n i d^{\prime}}(t\langle n i d \leftarrow t\rangle n)\right)\right)\right\rangle\) have
    \(\neg\) prefix sbc (devExt \(t\langle\text { nid } \leftarrow t\rangle_{n}\) nid \(\left.^{\prime} n^{\prime}\left(\langle n i d \leftarrow t\rangle_{n}-n^{\prime}\right)\right)\) by simp
ultimately have \(\exists n^{\prime \prime \prime} . n^{\prime \prime \prime} \leq\langle n i d \leftarrow t\rangle_{n}-n^{\prime} \wedge\)
    length (devExt \(\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime} n^{\prime \prime \prime}\right)<\) length sbc
    using 〈prefix sbc \(\left(b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} t\langle\right.\right.\right.\) nid \(\leftarrow t\rangle{ }_{n}\) nid \(\left.\left.\left.\left.^{\prime} n^{\prime}\right)\left(t n^{\prime}\right)\right)\right)\right\rangle\)
    ut.prefix-length[of sbc \(\left.0\langle n i d \leftarrow t\rangle_{n-n]}\right]\) by auto
then obtain \(n_{p}\) where \(n_{p} \leq\langle n i d \leftarrow t\rangle_{n}-n^{\prime}\)
    and length (devExt \(t\langle\text { nid } \leftarrow t\rangle_{n}\) nid \({ }^{\prime} n^{\prime} n_{p}\) ) < length sbc by auto
hence length (devExt \(t\langle n i d \leftarrow t\rangle_{n}\) nid \(\left.^{\prime}\left(n^{\prime}+n_{p}\right) 0\right)<\) length \(s b c\)
    using devExt-shift[of \(\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime} n_{p}\right]\) by simp
moreover from \(\left\langle\langle n i d \leftarrow t\rangle_{n} \geq n^{\prime}\right\rangle\left\langle n_{p} \leq\langle n i d \leftarrow t\rangle_{n}-n^{\prime}\right\rangle\)
    have \(\left(n^{\prime}+n_{p}\right) \leq\langle n i d \leftarrow t\rangle_{n}\) by simp
ultimately show ?thesis using \(\left\langle n^{\prime} \geq n_{s}\right\rangle\) untrusted by auto
next
    assume \(\neg\left(\exists n^{\prime} \leq\langle n i d \leftarrow t\rangle_{n} . n^{\prime} \geq n_{s} \wedge\right.\)
        \(\neg\) Option.is-none (devBC \(\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\right) \wedge\)
        trusted (the ( \(\left.\left.\operatorname{dev} B C t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\right)\right)\) )
    hence cas: \(\forall n^{\prime} \leq\langle\text { nid } \leftarrow t\rangle_{n} . n^{\prime} \geq n_{s} \wedge\)
        \(\neg\) Option.is-none (devBC \(\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\right)\)
        \(\longrightarrow \neg\) trusted (the (devBC \(\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n\right)\) ) by auto
    show ?thesis
    proof cases
        assume Option.is-none \(\left(\operatorname{dev} B C t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n_{s}\right)\)
        thus ?thesis
        proof cases
        assume \(\forall n^{\prime}<n_{s}\). Option.is-none ( \(\left.\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\right)\)
        with \(\left\langle\right.\) Option.is-none \(\left.\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} n i d \prime n_{s}\right)\right\rangle\)
            have devExt \(t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n_{s} 0=[]\) by simp
        with \(\langle\neg s b c=[]\rangle\) have
```

length (devExt $\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n_{s} 0\right)<$ length sbc by simp
moreover from lAct have $\langle n i d \leftarrow t\rangle_{n} \geq n_{s}$ using latestActless by blast moreover from cas have
$\forall n^{\prime \prime}>n_{s} . n^{\prime \prime} \leq\langle n i d \leftarrow t\rangle_{n} \wedge \neg$ Option.is-none $\left(\operatorname{dev} B C t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime \prime}\right)$
$\longrightarrow \neg$ trusted $\left(\right.$ the $\left.\left(\operatorname{dev} B C t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime \prime}\right)\right)$ by simp
ultimately show ?thesis by auto
next
let ? $P=\lambda n^{\prime} . n^{\prime}<n_{s} \wedge \neg$ Option.is-none $\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n}\right.$ nid $\left.^{\prime} n^{\prime}\right)$
let $? n^{\prime}=G R E A T E S T n^{\prime}$. ?P n^{\prime}
assume $\neg\left(\forall n^{\prime}<n_{s}\right.$. Option.is-none $\left.\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\right)\right)$
moreover have $\forall n^{\prime}>n_{s}$. $\neg ? P n^{\prime}$ by simp
ultimately have exists: $\exists n^{\prime}$. ? P $n^{\prime} \wedge\left(\forall n^{\prime \prime}\right.$. ? P $\left.n^{\prime \prime} \longrightarrow n^{\prime \prime} \leq n^{\prime}\right)$
using boundedGreatest $[o f ? P]$ by blast
hence ?P ? n ' using GreatestI-ex-nat $[o f ? P]$ by auto
moreover from $\left\langle ? P\right.$? $\left.n^{\prime}\right\rangle$ have $\}$ the $\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} ? n^{\prime}\right) \xi_{t} ? n^{\prime}$ using devBC-act by simp
ultimately have
length $\left(b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} ? n^{\prime}\right)^{t}{ }^{?} n^{\prime}\right)\right)<l e n g t h ~ s b c \vee$
prefix sbc $\left(b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle n n i d^{\prime} ? n^{\prime}\right)\left(t ? n^{\prime}\right)\right)\right)$
using assms(4) by simp
thus ?thesis
proof
assume length $\left(b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} ? n^{\prime}\right)^{t}{ }^{?} n^{\prime}\right)\right)<$ length $s b c$
moreover from exists have $\neg\left(\exists n^{\prime}>\right.$? n^{\prime}. ?P $\left.n^{\prime}\right)$
using Greatest-ex-le-nat [of ?P] by simp
moreover from 〈? P ? n ' 〉 have
$\exists n^{\prime}<n_{s} . \neg$ Option.is-none (devBC $\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\right)$ by blast
with $\left\langle\right.$ Option.is-none $\left.\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n_{s}\right)\right\rangle$
have devExt $t\langle n i d \leftarrow t\rangle_{n}$ nid $^{\prime} n_{s} 0=$
$b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} ? n^{\prime}\right)\left(t ? n^{\prime}\right)\right)$ by simp
ultimately have length (devExt $\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n_{s} 0\right)<$ length sbc by simp
moreover from lAct have $\langle n i d \leftarrow t\rangle_{n} \geq n_{s}$ using latestActless by blast
moreover from cas have $\forall n^{\prime \prime}>n_{s} . n^{\prime \prime} \leq\langle n i d \leftarrow t\rangle_{n} \wedge$
\neg Option.is-none $\left(\operatorname{dev} B C t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime \prime}\right) \longrightarrow$
\neg trusted (the ($\left.\operatorname{devBCt}\langle\text { nid } \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime \prime}\right)$) by simp
ultimately show ?thesis by auto
next
interpret $u t$: untrusted devExt $t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n_{s} \lambda n$. umining $t\left(n_{s}+n\right)$
proof
fix $n^{\prime \prime}$
from devExt-devop[of $\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n_{s}\right]$
have prefix (devExt $t\langle n i d \leftarrow t\rangle_{n}$ nid $^{\prime} n_{s}\left(\right.$ Suc $\left.n^{\prime \prime}\right)$)
$\left(\operatorname{devExt} t\langle n i d \leftarrow t\rangle_{n}\right.$ nid $\left.^{\prime} n_{s} n^{\prime \prime}\right) \vee$
$\left(\exists b\right.$. devExt $t\langle n i d \leftarrow t\rangle_{n}$ nid $^{\prime} n_{s}\left(\right.$ Suc $\left.n^{\prime \prime}\right)=$ devExt $\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n_{s} n^{\prime \prime} @[b]\right) \wedge$
\neg Option.is-none (devBC $\left.t\langle n i d \leftarrow t\rangle_{n} \operatorname{nid}^{\prime}\left(n_{s}+S u c n^{\prime \prime}\right)\right) \wedge$ ξ the $\left(\operatorname{devBC} t\langle\text { nid } \leftarrow t\rangle_{n} \operatorname{nid}^{\prime}\left(n_{s}+\right.\right.$ Suc $\left.\left.n^{\prime \prime}\right)\right) \xi_{t}\left(n_{s}+\right.$ Suc $\left.n^{\prime \prime}\right) \wedge$

```
    \(n_{s}+\) Suc \(n^{\prime \prime} \leq\langle n i d \leftarrow t\rangle_{n} \wedge\)
    mining \(\left(\sigma_{\text {the }}\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} \text { nid }^{\prime}\left(n_{s}+\text { Suc }^{\prime \prime}{ }^{\prime \prime}\right)\right)^{t\left(n_{s}+\text { Suc } n^{\prime \prime}\right)}\right)\).
thus prefix (devExt \(t\langle\text { nid } \leftarrow t\rangle_{n}\) nid' \(^{\prime} n_{s}\left(\right.\) Suc \(\left.n^{\prime \prime}\right)\) )
        \(\left(\right.\) devExt \(\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n_{s} n^{\prime \prime}\right) \vee\)
    \(\left(\exists\right.\) b. devExt \(t\langle\text { nid } \leftarrow t\rangle_{n}\) nid \(^{\prime} n_{s}\left(\right.\) Suc \(\left.n^{\prime \prime}\right)=\)
    devExt \(t\langle n i d \leftarrow t\rangle_{n}\) nid \(\left.^{\prime} n_{s} n^{\prime \prime} @[b]\right) \wedge\) umining \(t\left(n_{s}+S u c n^{\prime \prime}\right)\)
proof
    assume prefix (devExt \(t\langle n i d \leftarrow t\rangle_{n}\) nid \(^{\prime} n_{s}\left(\right.\) Suc \(\left.n^{\prime \prime}\right)\) )
        (devExt \(t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n_{s} n^{\prime \prime}\) )
        thus ? thesis by simp
    next
    assume \(\left(\exists b\right.\). devExt \(t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n_{s}\left(\right.\) Suc \(\left.n^{\prime \prime}\right)=\)
        \(\operatorname{devExt} t\langle\text { nid } \leftarrow t\rangle_{n}\) nid \(\left.^{\prime} n_{s} n^{\prime \prime} @[b]\right) \wedge\)
        \(\neg\) Option.is-none \(\left(\operatorname{devBC} t\langle\text { nid } \leftarrow t\rangle_{n}\right.\) nid \(^{\prime}\left(n_{s}+\right.\) Suc \(\left.\left.n^{\prime \prime}\right)\right) \wedge\)
        \(\xi_{\text {the }}\left(\operatorname{devBC} t\langle\text { nid } \leftarrow t\rangle_{n}\right.\) nid \(^{\prime}\left(n_{s}+\right.\) Suc \(\left.\left.n^{\prime \prime}\right)\right) \xi_{t}\left(n_{s}+\right.\) Suc \(\left.n^{\prime \prime}\right) \wedge\)
        \(n_{s}+\) Suc \(n^{\prime \prime} \leq\langle n i d \leftarrow t\rangle_{n} \wedge\)
        mining \(\left(\sigma_{\text {the }}\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle n\right.\right.\) nid \(^{\prime}\left(n_{s}+\right.\) Suc \(\left.\left.n^{\prime \prime}\right)\right) t\left(n_{s}+\right.\) Suc \(\left.\left.n^{\prime \prime}\right)\right)\)
    hence \(\exists b\). devExt \(t\langle\text { nid } \leftarrow t\rangle_{n}\) nid \(^{\prime} n_{s}\left(\right.\) Suc \(\left.n^{\prime \prime}\right)=\)
                devExt \(t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n_{s} n^{\prime \prime} @[b]\)
        and \(\neg\) Option.is-none \(\left(\operatorname{devBC} t\langle\text { nid } \leftarrow t\rangle_{n}\right.\) nid \(^{\prime}\left(n_{s}+\right.\) Suc \(\left.\left.n^{\prime \prime}\right)\right)\)
        and \(\xi_{\text {the }}\left(\operatorname{devBC} t\langle\text { nid } \leftarrow t\rangle_{n}\right.\) nid \(^{\prime}\left(n_{s}+\right.\) Suc \(\left.\left.n^{\prime \prime}\right)\right) \xi_{t}\left(n_{s}+\right.\) Suc \(\left.n^{\prime \prime}\right)\)
        and \(n_{s}+S u c n^{\prime \prime} \leq\langle n i d \leftarrow t\rangle_{n}\)
        and mining \(\left(\sigma_{\text {the }}\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle n \text { nid }{ }^{\prime}\left(n_{s}+S u c n^{\prime \prime}\right)\right)^{t}\right.\)
            \(\left(n_{s}+\right.\) Suc \(\left.\left.n^{\prime \prime}\right)\right)\) by auto
    moreover from \(\left\langle n_{s}+\right.\) Suc \(\left.n^{\prime \prime} \leq\langle\text { nid } \leftarrow t\rangle_{n}\right\rangle\)
            \(\left\langle\right.\) Option.is-none \(\left.\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} \operatorname{nid}^{\prime}\left(n_{s}+S u c n^{\prime \prime}\right)\right)\right\rangle\)
            have \(\neg\) trusted \(\left(\right.\) the \(\left.\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime}\left(n_{s}+S u c n^{\prime \prime}\right)\right)\right)\)
            using cas by simp
    with \३the \(\left(\operatorname{devBC} t\langle\text { nid } \leftarrow t\rangle_{n} n i d^{\prime}\left(n_{s}+\right.\right.\) Suc \(\left.\left.n^{\prime \prime}\right)\right) \xi_{t}\left(n_{s}+\text { Suc } n^{\prime \prime}\right)^{\rangle}\)
        have the \(\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime}\left(n_{s}+S u c n^{\prime \prime}\right)\right) \in\)
        \(\operatorname{actUt}\left(t\left(n_{s}+S u c n^{\prime \prime}\right)\right)\)
        using actUt-def by simp
    ultimately show ?thesis using umining-def by auto
    qed
qed
assume prefix sbc \(\left(b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle n n^{\prime} d^{\prime} ? n^{\prime}\right)\left(t ? n^{\prime}\right)\right)\right)\)
moreover from exists have \(\neg\left(\exists n^{\prime}>\right.\) ? \(n^{\prime}\). ? \(\left.P n^{\prime}\right)\)
    using Greatest-ex-le-nat[of ?P] by simp
moreover from \(\langle ? P\) ? \(n\) ' have
    \(\exists n^{\prime}<n_{s} . \neg\) Option.is-none ( \(\left.\operatorname{dev} B C t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\right)\) by blast
with \(\left\langle\right.\) Option.is-none ( \(\left.\left.\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n_{s}\right)\right\rangle\) have
    devExt \(t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n_{s} 0=\)
        \(b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle n n i d^{\prime} ? n^{\prime}\right)\left(t ? n^{\prime}\right)\right)\)
    by \(\operatorname{simp}\)
ultimately have prefix sbc (devExt \(t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n_{s} 0\) ) by simp
moreover from lAct have \(\langle\text { nid } \leftarrow t\rangle_{n} \geq n_{s}\) using latestActless by blast
with \(\left.\leqslant_{n i d} \xi_{t}\langle n i d \leftarrow t\rangle_{n}\right\rangle\) have
```

```
\(b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle n \text { nid }^{\prime}\left\langle\text { nid }^{\leftarrow} \leftarrow t\right\rangle\right)^{t}\langle n i d \leftarrow t\rangle_{n}\right)=\)
devExt \(t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n_{s}\left(\langle n i d \leftarrow t\rangle_{n}-n_{s}\right)\)
using devExt-bc-geq by simp
with \(\left\langle\neg\right.\) prefix sbc \(\left.\left(b c\left(\sigma_{n i d^{\prime}}\left(t\langle n i d \leftarrow t\rangle_{n}\right)\right)\right)\right\rangle\left\langle\xi_{n i d} \xi_{t}\langle n i d \leftarrow t\rangle n^{\prime}\right.\)
    have \(\neg\) prefix sbc \(\left(\right.\) devExt \(t\langle n i d \leftarrow t\rangle_{n}\) nid \(\left.^{\prime} n_{s}\left(\langle\text { nid } \leftarrow t\rangle_{n}-n_{s}\right)\right)\)
    by \(\operatorname{simp}\)
    ultimately have \(\exists n^{\prime \prime \prime}>0 . n^{\prime \prime \prime} \leq\langle n i d \leftarrow t\rangle_{n}-n_{s} \wedge\)
    length (devExt \(t\langle n i d \leftarrow t\rangle_{n}\) nid \(\left.n_{s} n^{\prime \prime \prime}\right)<\) length sbc
    using ut.prefix-length [of sbc \(\left.0\langle n i d \leftarrow t\rangle_{n}-n_{s}\right]\) by \(\operatorname{simp}\)
    then obtain \(n_{p}\) where \(n_{p}>0\) and \(n_{p} \leq\langle n i d \leftarrow t\rangle_{n}-n_{s}\) and
        length (devExt \(t\langle n i d \leftarrow t\rangle_{n}\) nid \(\left.{ }^{\prime} n_{s} n_{p}\right)<\) length sbc by auto
    hence length (devExt \(t\langle\text { nid } \leftarrow t\rangle_{n}\) nid \(\left.^{\prime}\left(n_{s}+n_{p}\right) 0\right)<\) length \(s b c\)
        using devExt-shift by simp
    moreover from lAct have \(\langle\text { nid } \leftarrow t\rangle_{n} \geq n_{s}\) using latestActless by blast
    with \(\left\langle n_{p} \leq\langle n i d \leftarrow t\rangle_{n}-n_{s}\right\rangle\) have \(\left(n_{s}+n_{p}\right) \leq\langle\text { nid } \leftarrow t\rangle_{n}\) by simp
    moreover from \(\left\langle n_{p} \leq\langle n i d \leftarrow t\rangle_{n}-n_{s}\right\rangle\) have \(n_{p} \leq\langle n i d \leftarrow t\rangle_{n}\) by simp
    moreover have \(\forall n^{\prime \prime}>n_{s}+n_{p} . n^{\prime \prime} \leq\langle\text { nid } \leftarrow t\rangle_{n} \wedge\)
    \(\neg\) Option.is-none (devBC \(\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime \prime}\right) \longrightarrow\)
    \(\neg\) trusted (the ( \(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n}\) nid \(\left.^{\prime} n^{\prime \prime}\right)\) ) using cas by simp
        ultimately show ?thesis by auto
        qed
    qed
next
    assume asmp: \(\neg\) Option.is-none ( \(\operatorname{devBC~} t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n_{s}\) )
    moreover from lAct have \(n_{s} \leq\langle n i d \leftarrow t\rangle_{n}\) using latestActless by blast
    ultimately have \(\neg\) trusted \(\left(\right.\) the \(\left.\left(\operatorname{dev} B C t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n_{s}\right)\right)\)
    using cas by simp
    moreover from asmp have \(\xi_{\text {the }}\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n}\right.\) nid \(\left.^{\prime} n_{s}\right) \xi_{t} n_{s}\)
    using \(\operatorname{dev} B C\)-act by \(\operatorname{simp}\)
ultimately have the \(\left(\operatorname{dev} B C t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n_{s}\right) \in \operatorname{act} U t\left(t n_{s}\right)\)
    using actUt-def by simp
hence length \(\left(b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n_{s}\right)\left(t n_{s}\right)\right)\right)<l e n g t h s b c\)
    using assms(2) by simp
moreover from asmp have
    devExt \(t\langle n i d \leftarrow t\rangle_{n}\) nid' \(^{\prime} n_{s} 0=\)
            \(b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} t\langle\right.\right.\) nid \(\left.\left.\leftarrow t\rangle n n i d^{\prime} n_{s}\right)\left(t n_{s}\right)\right)\)
        by \(\operatorname{simp}\)
    ultimately have length (devExt \(\left.t\langle n i d \leftarrow t\rangle_{n} n i d{ }^{\prime} n_{s} 0\right)<\) length sbc by simp
    moreover from lAct have \(\langle n i d \leftarrow t\rangle_{n} \geq n_{s}\) using latestActless by blast
    moreover from cas have \(\forall n^{\prime \prime}>n_{s}\). \(n^{\prime \prime} \leq\langle\text { nid } \leftarrow t\rangle_{n} \wedge\)
        \(\neg\) Option.is-none (devBC \(\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime \prime}\right) \longrightarrow\)
        \(\neg\) trusted (the (devBC \(\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime \prime}\right)\) ) by simp
    ultimately show ?thesis by auto
    qed
qed
then obtain \(n^{\prime}\) where \(\langle n i d \leftarrow t\rangle_{n} \geq n^{\prime}\) and \(n^{\prime} \geq n_{s}\)
    and length (devExt \(t\langle\text { nid } \leftarrow t\rangle_{n}\) nid' \(\left.n^{\prime} 0\right)<\) length sbc
    and untrusted: \(\forall n^{\prime \prime}>n^{\prime} . n^{\prime \prime} \leq\langle\text { nid } \leftarrow t\rangle_{n} \wedge\)
```

\neg Option.is-none $\left(\right.$ devBC $\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime \prime}\right) \longrightarrow$
\neg trusted (the (devBC $t\langle\text { nid } \leftarrow t\rangle_{n}$ nid' $\left.n^{\prime \prime}\right)$) by auto
interpret ut: untrusted devExt $t\langle\text { nid } \leftarrow t\rangle_{n}$ nid ${ }^{\prime} n^{\prime} \lambda n$. umining $t\left(n^{\prime}+n\right)$
proof
fix $n^{\prime \prime}$
from devExt-devop $\left[\right.$ of $\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n\right]$
have prefix (devExt $t\langle n i d \leftarrow t\rangle_{n}$ nid $^{\prime} n^{\prime}\left(S u c n^{\prime \prime}\right)$)
$\left(\right.$ devExt $\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime} n^{\prime \prime}\right) \vee$
$\left(\exists b\right.$. devExt $t\langle n i d \leftarrow t\rangle_{n}$ nid $^{\prime} n^{\prime}\left(\right.$ Suc $\left.n^{\prime \prime}\right)=$
devExt $\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime} n^{\prime \prime} @[b]\right) \wedge$
\neg Option.is-none $\left(\operatorname{devBC} t\langle\text { nid } \leftarrow t\rangle_{n}\right.$ nid $^{\prime}\left(n^{\prime}+\right.$ Suc $\left.\left.n^{\prime \prime}\right)\right) \wedge$
\}the $\left(\right.$ devBC $t\langle\text { nid } \leftarrow t\rangle_{n} \operatorname{nid}^{\prime}\left(n^{\prime}+\right.$ Suc $\left.\left.n^{\prime \prime}\right)\right) \xi_{t}\left(n^{\prime}+\right.$ Suc $\left.n^{\prime \prime}\right) \wedge$
$n^{\prime}+$ Suc $n^{\prime \prime} \leq\langle\text { nid } \leftarrow t\rangle_{n} \wedge$
mining $\left(\sigma_{\text {the }}\left(\operatorname{devBC} t\langle\text { nid } \leftarrow t\rangle n \text { nid }^{\prime}\left(n^{\prime}+\text { Suc } n^{\prime \prime}\right)\right)^{t}\left(n^{\prime}+\right.\right.$ Suc $\left.\left.n^{\prime \prime}\right)\right)$.
thus prefix (devExt $t\langle n i d \leftarrow t\rangle_{n}$ nid $^{\prime} n^{\prime}\left(S u c n^{\prime \prime}\right)$)
(devExt $\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime} n^{\prime \prime}\right)$
$\vee\left(\exists b\right.$. devExt $t\langle n i d \leftarrow t\rangle_{n}$ nid $^{\prime} n^{\prime}\left(\right.$ Suc $\left.n^{\prime \prime}\right)=$
devExt $t\langle n i d \leftarrow t\rangle_{n}$ nid $\left.n^{\prime} n^{\prime \prime} @[b]\right) \wedge$ umining $t\left(n^{\prime}+S u c n^{\prime \prime}\right)$
proof
assume prefix (devExt $t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\left(\right.$ Suc $\left.n^{\prime \prime}\right)$)
(devExt $\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime} n^{\prime \prime}\right)$
thus ?thesis by simp
next
assume $\left(\exists b\right.$. devExt $t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\left(\right.$ Suc $\left.n^{\prime \prime}\right)=$ devExt $\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime} n^{\prime \prime} @[b]\right) \wedge$
\neg Option.is-none $\left(\operatorname{devBC} t\langle\text { nid } \leftarrow t\rangle_{n} n i d^{\prime}\left(n^{\prime}+\right.\right.$ Suc $\left.\left.n^{\prime \prime}\right)\right) \wedge$
\}the $\left(\right.$ devBC $t\langle\text { nid } \leftarrow t\rangle_{n}$ nid $^{\prime}\left(n^{\prime}+\right.$ Suc $\left.\left.n^{\prime \prime}\right)\right) \xi_{t}\left(n^{\prime}+\right.$ Suc $\left.n^{\prime \prime}\right) \wedge$
$n^{\prime}+$ Suc $n^{\prime \prime} \leq\langle\text { nid } \leftarrow t\rangle_{n} \wedge$
mining $\left(\sigma_{\text {the }}\left(\operatorname{devBC} t\langle\text { nid } \leftarrow t\rangle n \text { nid }{ }^{\prime}\left(n^{\prime}+\text { Suc } n^{\prime \prime}\right)\right)^{t}\left(n^{\prime}+\right.\right.$ Suc $\left.\left.n^{\prime \prime}\right)\right)$
hence $\exists b$. devExt $t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime}\left(\right.$ Suc $\left.n^{\prime \prime}\right)=$
devExt $t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime} n^{\prime \prime} @[b]$
and \neg Option.is-none $\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime}\left(n^{\prime}+\right.\right.$ Suc $\left.\left.n^{\prime \prime}\right)\right)$
and ξ the $\left(\operatorname{devBC} t\langle\text { nid } \leftarrow t\rangle_{n} n i d^{\prime}\left(n^{\prime}+\text { Suc } n^{\prime \prime}\right)\right)_{t}\left(n^{\prime}+\right.$ Suc $\left.n^{\prime \prime}\right)$
and $n^{\prime}+$ Suc $n^{\prime \prime} \leq\langle n i d \leftarrow t\rangle_{n}$
and mining $\left(\sigma_{\text {the }}\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle n n i d^{\prime}\left(n^{\prime}+S u c n^{\prime \prime}\right)\right)^{t}\left(n^{\prime}+\right.\right.$ Suc $\left.\left.n^{\prime \prime}\right)\right)$
by auto
moreover from $\left\langle n^{\prime}+\right.$ Suc $\left.n^{\prime \prime} \leq\langle\text { nid } \leftarrow t\rangle_{n}\right\rangle$
$\left\langle\neg\right.$ Option.is-none $\left(\operatorname{devBC} t\langle\text { nid } \leftarrow t\rangle_{n} n i d^{\prime}\left(n^{\prime}+\right.\right.$ Suc $\left.\left.\left.n^{\prime \prime}\right)\right)\right\rangle$
have \neg trusted $\left(\right.$ the $\left.\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime}\left(n^{\prime}+S u c n^{\prime \prime}\right)\right)\right)$
using untrusted by simp
with $\xi^{\text {the }}\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n}\right.$ nid $^{\prime}\left(n^{\prime}+\right.$ Suc $\left.\left.n^{\prime \prime}\right)\right) \xi_{t}\left(n^{\prime}+\text { Suc } n^{\prime \prime}\right)^{\prime}$
have the $\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime}\left(n^{\prime}+\right.\right.$ Suc $\left.\left.n^{\prime \prime}\right)\right) \in \operatorname{actUt}\left(t\left(n^{\prime}+S u c n^{\prime \prime}\right)\right)$
using actUt-def by simp
ultimately show ?thesis using umining-def by auto
qed
qed
interpret untrusted-growth devLgthBC $t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime} \lambda n$. umining $t\left(n^{\prime}+n\right)$
by unfold-locales

```
interpret trusted-growth \(\lambda n\). PoW \(t\left(n^{\prime}+n\right) \lambda n\). tmining \(t\left(n^{\prime}+n\right)\)
proof
    show \(\bigwedge n\). PoW \(t\left(n^{\prime}+n\right) \leq P o W t\left(n^{\prime}+S u c n\right)\) using pow-mono by simp
    show \(\bigwedge n\). tmining \(t\left(n^{\prime}+\overline{S u c} n\right) \Longrightarrow \operatorname{PoW} t\left(n^{\prime}+n\right)<\operatorname{PoW} t\left(n^{\prime}+\right.\) Suc \(\left.n\right)\)
        using pow-mining-suc by simp
qed
interpret bg: bounded-growth
    length sbc
    \(\lambda n\). PoW \(t\left(n^{\prime}+n\right)\)
    devLgthBC \(t\langle\text { nid } \leftarrow t\rangle_{n}\) nid \(^{\prime} n^{\prime}\)
    \(\lambda n\). tmining \(t\left(n^{\prime}+n\right)\)
    \(\lambda n\). umining \(t\left(n^{\prime}+n\right)\)
    length sbc cb
proof
    from \(\operatorname{assms}(3)\left\langle n^{\prime} \geq n_{s}\right\rangle\) show length \(s b c+c b \leq \operatorname{PoW} t\left(n^{\prime}+0\right)\)
        using pow-mono[of \(\left.n_{s} n^{\prime} t\right]\) by simp
next
    from 〈length (devExt \(t\langle n i d \leftarrow t\rangle_{n}\) nid \(\left.^{\prime} n^{\prime} 0\right)<\) length sbc〉
        show length \(\left(\right.\) devExt \(\left.t\langle n i d \leftarrow t\rangle_{n} n i d^{\prime} n^{\prime} 0\right)<\) length sbc.
next
    fix \(n^{\prime \prime} n^{\prime \prime \prime}\)
    assume \(c b<\operatorname{card}\left\{i . n^{\prime \prime}<i \wedge i \leq n^{\prime \prime \prime} \wedge\right.\) umining \(\left.t\left(n^{\prime}+i\right)\right\}\)
    hence \(c b<\operatorname{card}\left\{i . n^{\prime \prime}+n^{\prime}<i \wedge i \leq n^{\prime \prime \prime}+n^{\prime} \wedge\right.\) umining \(\left.t i\right\}\)
        using cardshift[of \(n^{\prime \prime} n^{\prime \prime \prime}\) umining \(\left.t n^{\prime}\right]\) by simp
    with fair [of \(\left.n^{\prime \prime}+n^{\prime} n^{\prime \prime \prime}+n^{\prime} t\right]\)
    have \(c b<\) card \(\left\{i . n^{\prime \prime}+n^{\prime}<i \wedge i \leq n^{\prime \prime \prime}+n^{\prime} \wedge\right.\) tmining \(\left.t i\right\}\) by simp
    thus \(c b<\operatorname{card}\left\{i . n^{\prime \prime}<i \wedge i \leq n^{\prime \prime \prime} \wedge\right.\) tmining \(\left.t\left(n^{\prime}+i\right)\right\}\)
        using cardshift[of \(n^{\prime \prime} n^{\prime \prime \prime}\) tmining \(t n^{\prime}\) by simp
qed
from \(\left\langle\langle n i d \leftarrow t\rangle_{n} \geq n^{\prime}\right\rangle\) have
    length \(\left(\right.\) devExt \(t\langle\text { nid } \leftarrow t\rangle_{n}\) nid \(\left.^{\prime} n^{\prime}\left(\langle\text { nid } \leftarrow t\rangle_{n}-n^{\prime}\right)\right)<\) PoW \(t\langle\text { nid } \leftarrow t\rangle_{n}\)
    using bg.tr-upper-bound[of \(\left.\langle n i d \leftarrow t\rangle_{n-n}\right]\) by simp
moreover from \(\left\langle\xi_{n i d} \xi_{t}\langle n i d \leftarrow t\rangle_{n}\right\rangle\left\langle\langle n i d \leftarrow t\rangle_{n} \geq n^{\prime}\right\rangle\)
have \(b c\left(\sigma_{\text {the }}\left(\operatorname{devBC} t\langle n i d \leftarrow t\rangle_{n} \text { nid }^{\prime}\langle n i d \leftarrow t\rangle n\right)^{t}\langle n i d \leftarrow t\rangle_{n}\right)=\)
    devExt \(t\langle n i d \leftarrow t\rangle_{n}\) nid \(^{\prime} n^{\prime}\left(\langle\text { nid } \leftarrow t\rangle_{n}-n^{\prime}\right)\)
    using devExt-bc-geq[of \(\left.t\langle\text { nid } \leftarrow t\rangle_{n} n i d^{\prime}\langle n i d \leftarrow t\rangle_{n} n\right]\) by simp
ultimately have length \(\left(b c\left(\sigma_{n i d^{\prime}}\left(t\langle n i d \leftarrow t\rangle_{n}\right)\right)\right)<\) PoW \(t\langle n i d \leftarrow t\rangle_{n}\)
    using 〈乡nid \(\left.{ }_{t}\langle n i d \leftarrow t\rangle n\right\rangle\) by simp
moreover have
    PoW \(t\langle n i d \leftarrow t\rangle_{n} \leq\) length \(\left(b c\left(\sigma_{n i d^{\prime}}\left(t\langle n i d \leftarrow t\rangle_{n}\right)\right)\right.\) ) (is ?lhs \(\leq\) ? \(\left.r h s\right)\)
proof -
    from 〈trusted nid〉〈\{nid \(\left.\xi_{t}\langle n i d \leftarrow t\rangle{ }_{n}\right\rangle\)
    have ?lhs \(\leq\) length \(\left(M A X\left(\operatorname{pin}^{( } \sigma_{\text {nid }} t\langle n i d \leftarrow t\rangle n\right)\right)\) using pow-le-max by simp
    also from \(\left\langle b c\left(\sigma_{n i d^{\prime}}\left(t\langle n i d \leftarrow t\rangle_{n}\right)\right)=M A X\left(\operatorname{pin}\left(\sigma_{n i d^{t}}\langle n i d \leftarrow t\rangle_{n}\right)\right)\right\rangle\)
        have \(\ldots=\) length \(\left(b c\left(\sigma_{n i d^{\prime}}\left(t\langle n i d \leftarrow t\rangle_{n}\right)\right)\right)\) by simp
    finally show? thesis .
qed
ultimately show False by simp
qed
```

```
            qed
            moreover from \(\left\{\left\{_{\left.n i d\}_{t}{ }_{n}\right\rangle}\right.\right.\) have \(\langle\text { nid } \rightarrow t\rangle_{n}=n\) using nxtAct-active by simp
            ultimately show ?thesis by auto
        qed
            moreover from \(\left\langle\xi_{\left.n i d \xi_{t} n\right\rangle}\right.\) have \(\langle n i d \rightarrow t\rangle_{n}=n\) using \(n x t\) Act-active by simp
            ultimately show? ?thesis by auto
        next
            assume \(\neg\left(\exists b \in \operatorname{pin}\left(\sigma_{\text {nid }}{ }^{t}\langle\right.\right.\) nid \(\left.\leftarrow t\rangle n\right)\). length \(b>\) length \(\left(b c\left(\sigma_{\text {nid }}{ }^{t}\langle\right.\right.\) nid \(\left.\left.\left.\leftarrow t\rangle n\right)\right)\right)\)
            moreover from \(\left\langle\right.\) \{nid \(\xi_{t} n^{\prime}\) have \(\exists n^{\prime} \geq n\). \{nid \(\xi_{t} n^{\prime}\) by auto
            moreover from lAct have \(\exists n^{\prime}\). latestAct-cond nid \(t n n^{\prime}\) by auto
            ultimately have \(\neg\) mining \(\left(\sigma_{\text {nid }} t\langle n i d \rightarrow t\rangle_{n}\right) \wedge\)
                \(b c\left(\sigma_{n i d} t\langle n i d \rightarrow t\rangle_{n}\right)=b c\left(\sigma_{n i d}{ }^{t}\langle n i d \leftarrow t\rangle_{n}\right) \vee\)
                mining \(\left(\sigma_{\text {nid }} t\langle n i d \rightarrow t\rangle_{n}\right) \wedge\)
                \(\left(\exists b\right.\). bc \(\left(\sigma_{\text {nid }}{ }\langle\right.\) nid \(\left.\left.\rightarrow t\rangle n\right)=b c\left(\sigma_{n i d} t\langle n i d \leftarrow t\rangle_{n}\right) @[b]\right)\)
            using 〈trusted nid» bhv-tr-in[of nid \(n t\) ] by simp
            moreover have prefix sbc (bc \(\left.\left(\sigma_{\text {nid }}{ }^{t}\langle n i d \leftarrow t\rangle n\right)\right)\)
            proof -
                from \(\left\{\exists n^{\prime}\right.\). latestAct-cond nid \(\left.t n n^{\prime}\right\rangle\) have \(\langle\text { nid } \leftarrow t\rangle_{n}<n\)
                using latestAct-prop(2) by simp
            moreover from lAct have \(\langle n i d \leftarrow t\rangle_{n} \geq n_{s}\) using latestActless by blast
            moreover from \(\exists n^{\prime}\). latestAct-cond nid \(t n n^{\prime}\) have \{nid \(\}_{t}\langle\) nid \(\leftarrow t\rangle n\)
                    using latestAct-prop(1) by simp
            with \(\langle t r u s t e d n i d\rangle\) have nid \(\in \operatorname{actTr}(t\langle n i d \leftarrow t\rangle n)\) using actTr-def by simp
            ultimately show ?thesis using step.IH by auto
            qed
            moreover from \(\left\{\right.\) snid \(^{2} \xi_{t} n^{\rangle}\)have \(\langle\text {nid } \rightarrow t\rangle_{n}=n\) using nxtAct-active by simp
            ultimately show? thesis by auto
        qed
        next
            assume nAct: \(\neg\left(\exists n^{\prime}<n . n^{\prime} \geq n_{s} \wedge \xi_{n i d \xi_{t}} n^{\prime}\right)\)
            moreover from step.hyps have \(n_{s} \leq n\) by simp
            ultimately have \(\langle\text { nid } \rightarrow t\rangle_{n_{s}}=n\) using \(\left\langle\left\{\xi_{\text {nid }}\right\}_{\xi_{t}} n^{\rangle}{ }^{\prime}\right.\) nxtAct-eq[of \(n_{s} n\) nid \(\left.t\right]\) by simp
            with strusted nid) show ?thesis using assms(1) by auto
        qed
        qed
    qed
    with \(\operatorname{assms}(5)\) show ?thesis by simp
qed
end
end
```


Bibliography

[ADG98] Robert Allen, Remi Douence, and David Garlan. Specifying and analyzing dynamic software architectures. In Egidio Astesiano, editor, Fundamental Approaches to Software Engineering, volume 1382 of Lecture Notes in Computer Science, pages 21-37. Springer Berlin Heidelberg, 1998.
[Al197] Robert J Allen. A formal approach to software architecture. Technical report, DTIC Document, 1997.
[AM02a] Nazareno Aguirre and Tom Maibaum. Reasoning about reconfigurable object-based systems in a temporal logic setting. In Proceedings of IDPT, 2002.
[AM02b] Nazareno Aguirre and Tom Maibaum. A temporal logic approach to the specification of reconfigurable component-based systems. In Automated Software Engineering, pages 271-274. IEEE, 2002.
[Arb04] Farhad Arbab. Reo: a channel-based coordination model for component composition. Mathematical structures in computer science, 14(03):329366, 2004.
[Bal04] Clemens Ballarin. Locales and locale expressions in isabelle/isar. Lecture notes in computer science, 3085:34-50, 2004.
[BC13] Yves Bertot and Pierre Castéran. Interactive theorem proving and program development: Coq'Art: the calculus of inductive constructions. Springer Science \& Business Media, 2013.
[BCK07] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice. Addison-Wesley Longman Publishing Co., Inc., 2007.
[Ber96] Klaus Bergner. Spezifikation großer Objektgeflechte mit Komponentendiagrammen. PhD thesis, Technische Universität München, 1996.
[BFGea93] Manfred Broy, Christian Facchi, Radu Grosu, and et al. The requirement and design specification language spectrum - an informal introduction. Technical report, Technische Universität München, 1993.
[BGM16] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies without proof of work. In Jeremy Clark, Sarah Meiklejohn, Peter Y. A. Ryan,

Dan S. Wallach, Michael Brenner, and Kurt Rohloff, editors, Financial Cryptography and Data Security - FC 2016 International Workshops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February 26, 2016, Revised Selected Papers, volume 9604 of Lecture Notes in Computer Science, pages 142-157. Springer, 2016.
[BHL $\left.{ }^{+} 14\right]$ Jasmin Christian Blanchette, Johannes Hölzl, Andreas Lochbihler, Lorenz Panny, Andrei Popescu, and Dmitriy Traytel. Truly modular (co) datatypes for isabelle/hol. In International Conference on Interactive Theorem Proving, pages 93-110. Springer, 2014.
[BK86] Jan A Bergstra and Jan Willem Klop. Algebra of communicating processes. CWI Monograph series, 3:89-138, 1986.
[$\left.\mathrm{BMR}^{+} 96\right]$ Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. Pattern-Oriented Software Architecture: A System of Patterns. Wiley West Sussex, England, 1996.
[Bro96] Manfred Broy. Algebraic specification of reactive systems. In Algebraic Methodology and Software Technology, pages 487-503. Springer, Springer Berlin Heidelberg, 1996.
[Bro10] Manfred Broy. A logical basis for component-oriented software and systems engineering. The Computer Journal, 53(10):1758-1782, February 2010.
[Bro14] Manfred Broy. A model of dynamic systems. In Saddek Bensalem, Yassine Lakhneck, and Axel Legay, editors, From Programs to Systems. The Systems Perspective in Computing, volume 8415 of Lecture Notes in Computer Science, pages 39-53. Springer Berlin Heidelberg, 2014.
[BS01] Manfred Broy and Ketil Stolen. Specification and development of interactive systems: focus on streams, interfaces, and refinement. Springer Science \& Business Media, 2001.
[BSAR06] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan Rutten. Modeling component connectors in reo by constraint automata. Science of computer programming, 61(2):75-113, 2006.
[CAPM10] Pablo F Castro, Nazareno M Aguirre, Carlos Gustavo López Pombo, and Thomas SE Maibaum. Towards managing dynamic reconfiguration of software systems in a categorical setting. In Lecture Notes in Computer Science, pages 306-321. Springer, 2010.
[CCGR00] Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and Marco Roveri. Nusmv: a new symbolic model checker. International Journal on Software Tools for Technology Transfer, 2(4):410-425, 2000.
[CCS12] Carlos Canal, Javier Cámara, and Gwen Salaün. Structural reconfiguration of systems under behavioral adaptation. Science of Computer Programming, 78(1):46-64, 2012. Special Section: Formal Aspects of Component Software (FACS'09).
[Cha89] K Mani Chandy. Parallel program design. Springer, 1989.
[DVdHT01] Eric M Dashofy, André Van der Hoek, and Richard N Taylor. A highlyextensible, xml-based architecture description language. In Software Architecture, 2001. Proceedings. Working IEEE/IFIP Conference on, pages 103-112. IEEE, 2001.
[FLV06] Peter H Feiler, Bruce A Lewis, and Steve Vestal. The sae architecture analysis \& design language (aadl) a standard for engineering performance critical systems. In Computer Aided Control System Design, Control Applications, Intelligent Control, pages 1206-1211. IEEE, 2006.
[FM97] JoséLuiz Fiadeiro and Tom Maibaum. Categorical semantics of parallel program design. Science of Computer Programming, 28(2-3):111-138, 1997.
[FS97] D. Fensel and A. Schnogge. Using kiv to specify and verify architectures of knowledge-based systems. In Automated Software Engineering, pages 71-80, November 1997.
[Gar03] David Garlan. Formal modeling and analysis of software architecture: Components, connectors, and events. In Formal Methods for Software Architectures, pages 1-24. Springer, 2003.
[GH05] Jeremy Gibbons and Graham Hutton. Proof methods for corecursive programs. Fundam. Inform., 66:353-366, 2005.
[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: Elements of reusable object-oriented software, 1994.
[GJS17] Thomas Göthel, Nils Jähnig, and Simon Seif. Refinement-based modelling and verification of design patterns for self-adaptive systems. In International Conference on Formal Engineering Methods, pages 157173. Springer, 2017.
[GM18] Habtom Kahsay Gidey and Diego Marmsoler. FACTum Studio. https: //habtom.github.io/factum/, 2018.
[GMW00] David Garlan, Robert T Monroe, and David Wile. Acme: Architectural description of component-based systems. Foundations of componentbased systems, 68:47-68, 2000.
[GR91] Michael M. Gorlick and Rami R. Razouk. Using weaves for software construction and analysis. In Les Belady, David R. Barstow, and Koji Torii, editors, Proceedings of the 13th International Conference on Software Engineering, Austin, TX, USA, May 13-17, 1991., pages 23-34. IEEE Computer Society / ACM Press, 1991.
[GRABR14] Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, and Andrew W Roscoe. Fdr3-a modern refinement checker for csp. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems, pages 187-201. Springer, 2014.
[HF10] Florian Hölzl and Martin Feilkas. Autofocus 3: A scientific tool prototype for model-based development of component-based, reactive, distributed systems. In Proceedings of the 2007 International Dagstuhl Conference on Model-based Engineering of Embedded Real-time Systems, MBEERTS'07, pages 317-322, Berlin, Heidelberg, 2010. Springer-Verlag.
[Hoa78] Charles Antony Richard Hoare. Communicating sequential processes. Communications of the ACM, 21(8):666-677, 1978.
[Jac02] Daniel Jackson. Alloy: A lightweight object modelling notation. ACM Transactions on Software Engineering and Methodology (TOSEM), 11(2):256-290, 2002.
[JR97] Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction. EATCS Bulletin, 62:62-222, 1997.
[KG06] Jung Soo Kim and David Garlan. Analyzing architectural styles with alloy. In Proceedings of the ISSTA 2006 workshop on Role of software architecture for testing and analysis, pages 70-80. ACM, 2006.
[KK99] Mark Klein and Rick Kazman. Attribute-based architectural styles. Technical Report CMU/SEI-99-TR-022, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1999.
[KMLA11] Christian Krause, Ziyan Maraikar, Alexander Lazovik, and Farhad Arbab. Modeling dynamic reconfigurations in reo using high-level replacement systems. Science of Computer Programming, 76(1):23-36, 2011. Selected papers from the 6th International Workshop on the Foundations of Coordination Languages and Software Architectures.
[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual International Cryptology Conference, pages 357-388. Springer, 2017.
[LKA $\left.{ }^{+} 95\right]$ David C Luckham, John J Kenney, Larry M Augustin, James Vera, Doug Bryan, and Walter Mann. Specification and analysis of system architecture using rapide. Software Engineering, IEEE Transactions on, 21(4):336-354, 1995.
[LMP10] Francois Laroussinie, Antoine Meyer, and Eudes Petonnet. Counting LTL. In 2010 17th International Symposium on Temporal Representation and Reasoning. IEEE, sep 2010.
[Loc10] Andreas Lochbihler. Coinduction. The Archive of Formal Proof s. http://afp.sourceforge.net/entries/Coinductive.shtml, 2010.
[LS13] Yi Li and Meng Sun. Modeling and analysis of component connectors in coq. In José Luiz Fiadeiro, Zhiming Liu, and Jinyun Xue, editors, Formal Aspects of Component Software - 10th International Symposium, FACS 2013, Nanchang, China, October 27-29, 2013, Revised Selected Papers, volume 8348 of Lecture Notes in Computer Science, pages 273290. Springer, 2013.
[Mar10] Diego Marmsoler. Applying the scientific method in the definition and analysis of a new architectural style. Master's thesis, Free University of Bolzano-Bozen, 2010.
[Mar14] Diego Marmsoler. Towards a theory of architectural styles. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering - FSE 2014, pages 823-825. ACM, ACM Press, 2014.
[Mar17a] Diego Marmsoler. Dynamic architectures. Archive of Formal Proofs, July 2017. http://isa-afp.org/entries/DynamicArchitectures. html, Formal proof development.
[Mar17b] Diego Marmsoler. On the semantics of temporal specifications of component-behavior for dynamic architectures. In Eleventh International Symposium on Theoretical Aspects of Software Engineering. Springer, 2017.
[Mar17c] Diego Marmsoler. Towards a calculus for dynamic architectures. In Dang Van Hung and Deepak Kapur, editors, Theoretical Aspects of Com-puting-ICTAC 2017-14th International Colloquium, Hanoi, Vietnam, October 23-27, 2017, Proceedings, volume 10580 of Lecture Notes in Computer Science, pages 79-99. Springer, 2017.
[Mar18a] Diego Marmsoler. A framework for interactive verification of architectural design patterns in Isabelle/HOL. In The 20th International Conference on Formal Engineering Methods, ICFEM 2018, Proceedings, 2018.
[Mar18b] Diego Marmsoler. Hierarchical specication and verication of architecture design patterns. In Fundamental Approaches to Software Engineering 21th International Conference, FASE 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, 2018.
[Mar18c] Diego Marmsoler. A theory of architectural design patterns. Archive of Formal Proofs, March 2018. http://isa-afp.org/entries/ Architectural_Design_Patterns.html, Formal proof development.
[Mar19] Diego Marmsoler. A calculus of component behavior for dynamic architectures. Science of Computer Programming, 2019. Under review.
[MCL04] Jeffrey KH Mak, Clifford ST Choy, and Daniel PK Lun. Precise modeling of design patterns in uml. In Software Engineering, pages 252-261. IEEE, 2004.
[MD17] Diego Marmsoler and Silvio Degenhardt. Verifying patterns of dynamic architectures using model checking. In Proceedings International Workshop on Formal Engineering approaches to Software Components and Architectures, FESCA@ETAPS 2017, Uppsala, Sweden, 222nd April 2017., pages 16-30, 2017.
[MG16a] D. Marmsoler and M. Gleirscher. On activation, connection, and behavior in dynamic architectures. Scientific Annals of Computer Science, 26(2):187-248, 2016.
[MG16b] Diego Marmsoler and Mario Gleirscher. Specifying properties of dynamic architectures using configuration traces. In International Colloquium on Theoretical Aspects of Computing, pages 235-254. Springer, 2016.
[MG18] Diego Marmsoler and Habtom Kahsay Gidey. FACTum Studio: A tool for the axiomatic specification and verification of architectural design patterns. In Formal Aspects of Component Software - FACS 2018-15th International Conference, Proceedings, 2018.
[MG19] Diego Marmsoler and Habtom Kahsay Gidey. Interactive verification of architectural design patterns in FACTum. Formal Aspects of Computing, 2019. Under review.
[Mi199] Robin Milner. Communicating and Mobile Systems: the π-calculus. Cambridge university press, 1999.
[MK96] Jeff Magee and Jeff Kramer. Dynamic structure in software architectures. In David Garlan, editor, SIGSOFT '96, Proceedings of the Fourth ACM SIGSOFT Symposium on Foundations of Software Engineering, San Francisco, California, USA, October 16-18, 1996, pages 3-14. ACM, 1996.
[MME15] Diego Marmsoler, Alexander Malkis, and Jonas Eckhardt. A model of layered architectures. In Bara Buhnova, Lucia Happe, and Jan Kofron, editors, Proceedings 12th International Workshop on Formal Engineering approaches to Software Components and Architectures, FESCA 2015, London, United Kingdom, April 12th, 2015., volume 178 of EPTCS, pages 47-61, 2015.
[MP92] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Springer New York, 1992.
[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http: //bitcoin.org/bitcoin.pdf, 2008.
[NPW02] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof assistant for higher-order logic, volume 2283. Springer Science \& Business Media, 2002.
[Oqu04] Flavio Oquendo. π-adl: An architecture description language based on the higher-order typed π-calculus for specifying dynamic and mobile software architectures. ACM SIGSOFT Software Engineering Notes, 29(3):1-14, May 2004.
[otSEC $\left.{ }^{+} 00\right]$ Architecture Working Group of the Software Engineering Committee et al. Recommended practice for architectural description of software intensive systems. IEEE Standards Department, 2000.
[PW92] Dewayne E Perry and Alexander L Wolf. Foundations for the study of software architecture. ACM SIGSOFT Software Engineering Notes, 17(4):40-52, 1992.
[Rau01] Andreas Rausch. Componentware. Dissertation, Technische Universität München, München, 2001.
[Rei95] Wolfgang Reif. The kiv-approach to software verification. KORSO: Methods, Languages, and Tools for the Construction of Correct Software, pages 339-368, 1995.
[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified modeling language reference manual, the. Pearson Higher Education, 2004.
[SBR12] Alejandro Sanchez, Luís Soares. Barbosa, and Daniel Riesco. Bigraphical modelling of architectural patterns. In Farhad Arbab and Peter Csaba Ölveczky, editors, Formal Aspects of Component Software, pages 313330, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
[SG96] Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging Discipline, volume 1. Prentice Hall Englewood Cliffs, 1996.
[SH04] Neelam Soundarajan and Jason O Hallstrom. Responsibilities and rewards: Specifying design patterns. In Software Engineering, pages 666675. IEEE, 2004.
[SMB15] Alejandro Sanchez, Alexandre Madeira, and Luís S Barbosa. On the verification of architectural reconfigurations. Computer Languages, Systems E Structures, 44:218-237, 2015.
[Spi07] Maria Spichkova. Specification and seamless verification of embedded real-time systems: FOCUS on Isabelle. PhD thesis, Technical University Munich, Germany, 2007.
[TMD09] Richard N Taylor, Nenad Medvidovic, and Eric M Dashofy. Software Architecture: Foundations, Theory, and Practice. Wiley Publishing, 2009.
[vOvdLKM00] Rob C. van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee. The koala component model for consumer electronics software. IEEE Computer, 33(3):78-85, 2000.
$\left[W^{+} 04\right] \quad$ Makarius Wenzel et al. The isabelle/isar reference manual, 2004.
[Wen07] Makarius Wenzel. Isabelle/isar - a generic framework for humanreadable proof documents. From Insight to Proof - Festschrift in Honour of Andrzej Trybulec, 10(23):277-298, 2007.
[WF02] Michel Wermelinger and José Luiz Fiadeiro. A graph transformation approach to software architecture reconfiguration. Science of Computer Programming, 44(2):133-155, 2002. Special Issue on Applications of Graph Transformations (GRATRA 2000).
[Wir90] Martin Wirsing. Algebraic specification. In Jan van Leeuwen, editor, Handbook of Theoretical Computer Science (Vol. B), pages 675-788. MIT Press, Cambridge, MA, USA, 1990.
[WLF01] Michel Wermelinger, Antónia Lopes, and José Luiz Fiadeiro. A graph based architectural reconfiguration language. Software Engineering Notes, 26(5):21-32, 2001.
[WSWS08] Stephen Wong, Jing Sun, Ian Warren, and Jun Sun. A scalable approach to multi-style architectural modeling and verification. In Engineering of Complex Computer Systems, pages 25-34. IEEE, 2008.
[ZA05] Uwe Zdun and Paris Avgeriou. Modeling architectural patterns using architectural primitives. In Ralph E. Johnson and Richard P. Gabriel, editors, Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2005, October 16-20, 2005, San Diego, CA, USA, pages 133146. ACM, 2005.
[ZLS $\left.{ }^{+} 12\right]$ Jiexin Zhang, Yang Liu, Jing Sun, Jin Song Dong, and Jun Sun. Model checking software architecture design. In High-Assurance Systems Engineering, pages 193-200. IEEE, 2012.

Glossary

architectural constraint constraints about different aspects of an architecture. 6
architectural design constraint constraints about different aspects of an architecture. 4
architectural design problem an architectural design problem and a set of architectural design constraints solving the problem. 4
architectural guarantee a property about an architecture. 6
architecture assertion logic formula with interface ports as free variables and predicates to denote component activation and connections between ports. 44
architecture snapshot a set of active components, connections between their ports, and valuations of the active component's ports. 23, 24
architecture specification set of architecture traces which does not restrict behavior. 27
architecture trace stream of architecture snapshots. 25
behavior assertion logic formula with ports as free variables. 41, 335
behavior projection operator to extract the behavior of a certain component c out of a architecture trace $t .27$
behavior trace stream of port valuations over a set of ports $P .19,41$
behavior trace assertion temporal logic formula over behavior assertions to specify behavior traces. 41

Blackboard pattern used for collaborative problem solving. 5
component activation number of activations of a component c within a certain architecture trace t up to time point $n .64$
component port a port used by a component. 22
component port valuation port valuation for component ports. 22
component type a component interface with a set of total execution traces for a component. 19, 20

Glossary
interface set of input and output ports. 18
message primitive entity which can be used and exchanged by components. 17
parametrized component type a component type with a valuated parameter port. 20, 21
port means by which components can exchange messages. 18
port valuation assignment of a set of messages to a set of ports $P .18,335$
Publisher-Subscriber pattern to support flexible communication between components of an architecture. 4

Singleton pattern used to restrict the number of active components in an architecture. 4

[^0]: ${ }^{1}$ Problem in this context is different from architectural design problem.

[^1]: ${ }^{2}$ We provide only informal specifications here. Corresponding formalizations are provided in Chap. 3 and Chap. 4.

[^2]: ${ }^{1}$ As indicated by Eq. 2.7, if multiple output ports are connected to one input port, the corresponding input port is valuated with the union of messages from all connected output ports.

[^3]: ${ }^{2}$ From now on, we shall sometimes use a dot for variables after a quantifier to highlight the variable bound by the corresponding quantifier.

[^4]: ${ }^{3}$ Alternatively we could have used traditional recursion, show that behavior projection is continuous, and use fixpoint induction [GH05] to proof properties about it. The reason to choose co-recursion here is that it simplifies subsequent formalization in Isabelle/HOL.

[^5]: ${ }^{1} \mathrm{~A}$ well-founded relation is a partial order which has no infinite decreasing chains.

[^6]: ${ }^{1}$ For function symbols, the sort for the return type is assumed to be on position 0 of the tuple.

