Severin Reiz ${ }^{\S}$, Chenhan Yu^{\dagger}, James Levitt ${ }^{\dagger}$, George Biros ${ }^{\dagger}$, Hans-Joachim Bungartz ${ }^{\S}$
${ }^{\S}$ Technical University of Munich, \dagger University of Texas at Austin, reiz@in.tum.de, chenhan@utexas.edu, jlevitt@ices.utexas.edu, gbiros@ices.utexas.edu, bungartz@in.tum.de

\mathcal{H}-Matrix Algebra: Matrix operations with hierarchical Approximations

Applications:

Kernel methods (e.g. KDE), neural-networks, PDEs, graphs and covariance operators etc

Goals:
(1) constructing $\tilde{K} \approx K$ requires $\mathcal{O}(N \log N)$ work;
(2) a matvec with \tilde{K} also requires $\mathcal{O}(N \log N)$ work;
(3) $\|\tilde{K}-K\| \leq \epsilon K$, where $0 \ll \epsilon \ll 1$ is a user-defined error tolerance

Challenges:

- Approximate tunable correctness
- Complexity constraints
- Load balancing and communication

Hierarchical Off Diagonal Low Rank (HODLR) ${ }^{1,2}$

Fast multipole additive splitting:

$$
\tilde{K}_{\alpha \alpha}=\left[\begin{array}{cc}
\tilde{K}_{11} & 0 \\
0 & \tilde{K}_{\mathrm{rr}}
\end{array}\right]+\left[\begin{array}{cc}
0 & U V_{1 \mathrm{r}} \\
U V_{\mathrm{r} 1} & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & S_{1 \mathrm{r}} \\
S_{\mathrm{r} 1} & 0
\end{array}\right]
$$

Compressed matrices offer speed ups in computations!
Matrix-vector product: $u_{i}=\sum_{\text {block diagonal and sparse }}^{\sum_{p \in \text { Near }} K_{i p} w_{p}}+\underbrace{\sum_{p \in \operatorname{Far}}^{i} K_{i p} w_{p}}_{\text {low rank }}$
Matrix inversion: $K=D+U V=D(I d+\underbrace{W}_{D-1 /} V), Z=(I d+V W)^{-1}$ Sherman-Morrison-Woodbury $K^{-1}=(I d-W Z V) D^{-1}$

Geometry-oblivious Fast Multipole Method (GOFMM)
Randomization: Distance based sampling

- Compute nearest neighbors
- Start on a leaf level

Partitioning schemes $\left\{\begin{array}{l}\text { geometric } \\ \text { geodesic } \\ \text { geometry-oblivious }\end{array}\right.$
Low-rank decomposition
Nested interpolative decomposition

$$
G \approx G_{c o l} P
$$

- $G_{\text {col }}$ is a subset of columns of G
- P a projection matrix

Error estimate

$$
\left\|G_{c o l} P-G\right\|_{2} \leq \sigma_{s+1} \sqrt{s(n-s)+1}
$$

Rank-revealing QR factorization (GEQP3)
Triangular solve (TRSM)
Alternative approach using randomization ${ }^{3}$
-Sample rows from neighboring indices

$$
\mathcal{N}_{\alpha}=\cup_{i} \mathcal{N}_{i} \text { where } i \in \alpha
$$

-Select skeletons and save

$$
\mathcal{N}_{\alpha}=\cup_{i} \mathcal{N}_{i} \text { where } i \in \mathcal{S}_{\alpha}
$$

- On interior levels
- Use columns from children $\mathcal{S}_{\text {left }} \cup \mathcal{S}_{\text {right }}$
-Sample rows from children skeleton neighbors
$\mathcal{N}_{\alpha}^{s}=\left(\mathcal{N}_{\text {left }} \cup \mathcal{N}_{\text {right }}\right) \backslash\left(\right.$ Nodes $_{\text {left }} \cup$ Nodes $\left._{\text {right }}\right)$

Kernel distance: Gram vector space

SPD Matrix can be resembled by scalar product of unknown vectors ϕ

$$
K_{i j}=\left\langle\phi_{i}, \phi_{j}\right\rangle
$$

- Two distances strategies: Gram- ℓ_{2} and Gram-angle (introduced in ${ }^{4}$)

$$
\begin{aligned}
\left\|\phi_{i}-\phi_{j}\right\|_{2}^{2} & =\left\langle\phi_{i}-\phi_{j}, \phi_{i}-\phi_{j}\right\rangle= \\
& =\underbrace{\left\langle\phi_{i}, \phi_{i}\right\rangle}_{K_{i i}}-2 \underbrace{\left\langle\phi_{i}, \phi_{j}\right\rangle}_{K_{i j}}+\underbrace{\left\langle\phi_{j}, \phi_{j}\right\rangle}_{K_{j j}} \\
\cos \left(\varangle\left(\phi_{i}, \phi_{j}\right)\right) & =\frac{\left\langle\phi_{i}, \phi_{j}\right\rangle}{\left\|\phi_{i}\right\| \cdot\left\|\phi_{j}\right\|}=\frac{\left\langle\phi_{i}, \phi_{j}\right\rangle}{\sqrt{\left\langle\phi_{i}, \phi_{i}\right\rangle\left\langle\phi_{j}, \phi_{j}\right\rangle}}
\end{aligned}
$$

Numerical simulation codes

- gofmm_python ${ }^{\text {a }}$
-Suitable for development prototyping
- Modular framework
-Suitable to check approximability for new test cases
- MPI-GOFMM ${ }^{2}$
-C++ with MPI implementation
- Load balancing through task model
- Runtime dependency analysis
- Asynchronous evaluation scheme

$a_{\text {https }}: / /$ gitlab. 1rz.de/ga36wom/gofmm $\$ _python

$a_{\text {https }: / / g i t h u b . c o m / s e v e r i n 617 / h m 1 p-1 ~}^{\text {- }}$

Results

Evaluation of geometry-oblivious scheme Gram scheme: Partitioning

- For many cases similar spectra (lower plots) compared to geometric schemes
- Allows applicability where no geometry is available (graphs etc)

Spectra of off-diagonal level-1 block (σ_{i} / σ_{1} vs. i)

Gram scheme: Accuracy
ASKIT: 5 Approximate Skeletonization Kernel-Independent Treecode in High Dimensions

- Geometric scheme
- Aim: Kernel methods in high dimensional feature space
- Similar neighbor-sampling and approximation scheme

MPI-GOFMM

	ScaLAPACK	STRUMPACK 6			MPI-GOFMM		
Case	multiplication	ϵ_{2}	compression	multiplication	ϵ_{2}	compression	
K04	4.1	0.17	224	7.47	$1.7 \mathrm{E}-05$	1.69	
K07	4.0	0.02	15.8	3.27248	$1.0 \mathrm{E}-04$	1.45	
K11	4.1	0.01	93.6	2.195	$7.9 \mathrm{E}-06$	0.09	
K12	4.1	0.11	222	4.28205	$6.6 \mathrm{E}-05$	1.64	
G03	2.8	0.10	33.5	2.081	$7 \mathrm{E}-05$	0.04	
H02	3.9	0.09	$\mathbf{1 9 . 6}$	5.3	$7.0 \mathrm{E}-04$	$\mathbf{1 1 . 4 4}$	

Table 1: $100,000 \times 100,000$ float32 matrices from kernels, PDEs, graphs, Hessians ($\mathcal{O}(N \log N)$ work) on 4 "Skylake" nodes
Research Focus
Nonsymmetric case: $\left(K \in \mathbb{R}^{N \times M}\right)$

- GOFMM only works for SPD
- Nonsymmetric scheme works currently on points
- Single tree or dual tree?
- Aim: matrix-vector multiplication in $(N+M) \log (N+M)$
Applicability studies and acceleration
- Entry look-up requires $\mathcal{O}(1)$
- Gauss-Newton Hessians in Neural Networks, studies on approximate entries

Matrix Inversion

References

[1] W. Hackbusch, Hierarchical matrices: algorithms and analysis, vol. 49. Springer, 2015.
[2] S. Ambikasaran, "A fast direct solver for dense linear systems." https://github. com/sivaramambikasaran/HodLR, 2013. (HQRRP)," SIAM Journal on Scientific Computing, vol. 39, no. 2, pp. C96-C115, 2017.

