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Abstract

This thesis describes the integration of the sparse grid density estimation-based classifi-
cation into the datamining pipeline of the SG++ toolbox. As the sparse grid density
estimation can be reduced to solving a system of linear equations, a database to man-
age precomputed system matrix factorizations for different common scenarios was
introduced. Furthermore, existing algorithmic modules were refactored, mainly by
reorganizing the ownership of model state instances, such as the underlying grid
objects and corresponding surplus vectors. Models for density estimation as well as
classification were implemented as standalone tasks, therefore being made accessi-
ble to end-users. The new concepts are evaluated and compared to their previous
implementation, showing that computational and memory complexity is maintained.

Zusammenfassung

Diese Arbeit befasst sich mit der Integration der auf der Dünngitter-Dichteschätzung
basierenden Klassifikation in die Datamining Pipeline der SG++ Toolbox. Da die
Dünngitter-Dichteschätzung auf das Lösen eines linearen Gleichungssystems zurückge-
führt werden kann, wurde eine Datenbank eingeführt, welche vorab berechnete Zer-
legungen von Systemmatrizen verschiedener häufig auftretender Szenarien verwaltet.
Weiterhin wurden bereits existierende algorithmische Module angepasst, hauptsächlich
durch die Reorganisierung der Verwaltung von zustandsbezogenen Instanzen, wie
etwa den zugrundeliegenden Gittern und den zugehörigen Koeffizientenvektoren.
Die Modelle für die Dichteschätzung und Klassifikation wurden so als eigenständige
Funktionalität dem Endnutzer zugänglich gemacht. Zuletzt analyisert die Arbeit die
neuen Konzepte und vergleicht sie mit der vorherigen Implementierung. Dabei wird
insbesondere aufgezeigt, dass deren Komplexität sowohl hinsichtlich der Rechenzeit
als auch des Speicherbedarfs erhalten geblieben ist.
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1. Introduction

With the ever improving capabilities of technology and the availability of large datasets
over the last decades, data-driven knowledge acquisition has risen in popularity and
relevance. The extraction of information out of often huge data already plays a huge
role in a broad variety of fields such as stock-market prediction, DNA sequencing and
robotics, and is expected to have even more impact in the future. Since this knowledge
discovery is usually not done manually, but should rather be automated, so-called
Machine Learning techniques focus on algorithmic approaches to the subject.

One typical Machine Learning task is called classification, where the goal is to
correctly classify new unseen data. The correlation between the data sample and
its respective class label is inferred using a pre-classified training dataset. Despite
appearing rather simple at first glance this problem statement can be applied to many
real-world problems, one being for example cancer diagnosis.

Classification can be tackled employing different strategies, among the most popular
being Random Forests, Nearest-Neighbor-based methods, Support Vector Machines and
Deep Neural Nets. The approach described in this thesis tries to estimate the probability
of a data sample belonging to a certain class by incorporating an approximation for
each class-conditional probability density function and based on that predict the correct
class label. In order to parametrize the density function, a grid-based approach is used:
The density function is retrieved by combining different basis functions centered at the
grid points.

However those methods typically do not scale well with the dimensionality of the
data. Often computational effort and memory requirements even grow exponentially
when dealing with high-dimensional datasets. Thus the data is sometimes preprocessed
in order to reduce its dimensionality beforehand, which, however, may lead to a heavy
information loss that could badly influence the classification performance. This issue is
often referred to as the curse of dimensionality and also grid-based methods suffer from
it severely.

Spatially Adaptive Sparse Grids provide a remedy to this problem to at least some
extent, as they do not rely on a full grid structure to estimate the density function.
Instead they try to adapt to the problem structure and only employ grid points in
regions of interest, i.e. where the method is expected to benefit from those additional
points. Since the computational expense of grid-based density estimation depends on
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1. Introduction

the number of grid points, which in the case of full grids grows exponentially with the
grid dimension, a sparse grid structure can overcome the curse of dimensionality and
make even high dimensional settings feasible.

The SG++ toolbox [11], created by Dirk Pflüger and developed at the chair of Scientific
Computing at the Technical University of Munich and the Institute for Parallel and
Distributed Systems at the University Stuttgart, impelements many sparse grid-based
methods. Among those there has already been an approach to classification involving
sparse grid density estimation as described by Peherstorfer [10]. This implementation
however was rather conceptual and not yet integrated into the datamining pipeline
of the toolbox, which is ought to provide easy access to the various data-driven
functionality of the software. On the one hand many algorithmic components did not
provide the necessary interface and had to be refactored, which will be discussed in
Chapter 3. On the other hand the density estimation itself was not accessible to the
user and instead directly incorporated into the classification modules.

This thesis describes the concepts and implementational changes necessary to over-
come those issues and successfully integrate the sparse grid density estimation-based
classification into the datamining pipeline. Furthermore, the performance of the mod-
ules is evaluated and compared to the previous implementation.
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2. Theoretical Background

First of all, the theoretical background involving density estimation and classification
methods as well as sparse grids themselves will be elaborated.

2.1. Machine Learning

As introduced in Chapter 1, Machine Learning approaches try to automatically retrieve
information from data. Depending on the problem statement, a model is chosen that
should be able to discover the underlying structure of a given dataset S and generalize
well enough to make plausible predictions for new unseen data samples.

Usually however not the entire available data is used to train the model. Instead a
portion of the dataset S is kept from the algorithm. Since during the training process
the model can never learn from this dataset, it can be used to validate whether the
model has generalized well by evaluating its performance on this dataset. Therefore
this dataset is often referred to as test data Stest. The performance of any Machine
Learning approach should always be evaluated on the test data.

Even though the test data should never be involved in the training process, one might
desire to validate the performance of the model during training nevertheless. Therefore,
often the remaining portion of the dataset S \ Stest is even further split into data that is
actually used to train the algorithm Strain and data to validate the performance during
training Sval , which of course can not be involved in the training process as well. Note
that the test data Stest and the validation data Sval are distinct from each other as the test
data should only be used to evaluate the final performance of an already trained model.

In the following, if not explicitly mentioned otherwise, data samples will always
be referred to as belonging to the training data. Consequentially M will describe the
number of samples the training data consists of M = |Strain|.

In Machine Learning, approaches are often categorized depending on the problem
statement. Consider for example classification of handwritten digits. In addition to the
feature vector, representing a single image, also the corresponding target, namely the
digit that the sample represents, must be available to the algorithm. This fundamentally
differs from a setting, in which the dataset S only consists of those feature vectors
alone, for example when trying to find clusters in the dataset.
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2. Theoretical Background

Settings, where those targets are part of the dataset, are called supervised learning. In
contrast to that, we speak of unsupervised learning whenever these targets are not at
hand. Commonly, even a third paradigm is mentioned: Reinforcement learning deals
with problems, where in a given situation an agent should find the best action to
take with respect to some rewarding function [1]. This thesis however will only deal
with classification, one supervised learning setting that is based on another unsupervised
learning technique, namely density estimation.

2.1.1. Density Estimation

We will first take a look at density estimation, an unsupervised learning task. Since
no targets are involved, the dataset S can be formulated as consisting of only M
d-dimensional feature vectors xi, each representing one data sample.

S = {xi}M
i=1 ⊂ Rd (2.1)

For these samples, the basic assumption is, that they were drawn independently (and
noisily) from a random variable X with unknown distribution. The goal of density
estimation is to find a suitable function f̂ (x), that approximates the true probability
density function fX(x) of the distribution.

f̂ (x) ≈ fX(x) (2.2)

One common method to formulate f̂ (x) is, to sum kernel functions centered at the
data samples xi, which is described more detailed in [5]. However, whenever the
resulting density function is to be evaluated, all kernel functions have to be considered.
Therefore, the complexity of this approach scales linearly with the number of data
samples, thus making settings involving especially large datasets intractable. In contrast
to that, so-called sparse grids can be employed to estimate the density function, such
that the complexity of its evaluation is independent of the data size. An in-depth
elaboration of this method is provided in Section 2.3.

Regularization Generally speaking, in Machine Learning, the goal always is, to pro-
pose a function f̂ (x) provides a good generalization in the context of the problem
statement, rather than explaining the given data best. Usually, this is achieved by
solving an optimization problem, where an algorithm tries to minimize a loss function,
that only depends on already present training data.

This however does not necessarily lead to an approximation f̂ that generalizes well
to unseen data, but rather leads to a solution that only resembles the training data
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very accurately. This issue is called overfitting and can be counteracted by employing
regularization, where some degree of smoothness is enforced to the function f̂ .

Typically, this smoothness is achieved by implementing a regularization term into
the loss function. It consists of a regularization operator Λ as well as a regularization
strength λ. The latter describes the trade-off between explaining the training data S
and smoothness of the function f̂ . It is one important so-called hyperparameter in most
Machine Learning settings and has to be chosen carefully, when aiming for reasonable
results.

2.1.2. Classification

A common supervised learning task is called classification, where each data sample xi is
associated with a categorical class label yi. As the space of class labels is discrete, it
can easily be mapped to a subset of the natural numbers K = {1, ..., k} ⊂ N. In this
supervised learning setting, the dataset can be formalized as a set of tuples of feature
vectors and targets.

S = {(xi, yi)}M
i=1 ⊂ Rd × K (2.3)

The classification problem can then be formulated as finding an approximation f̂ (x)
for the underlying unknown function f : Rd 7→ K, that maps samples from the data
space to their corresponding class label.

f̂ (x) ≈ f (x) (2.4)

There has been a great number of approaches to this problem, among the most
popular being Random Forests, Support Vector Machines and Deep Neural Networks.
The method this thesis focuses on however employs density estimation, as described in
Section 2.1.1, to predict the class label of unseen data samples.

Density Estimation based Classification The main idea of this technique is to estimate
the probability of observing a sample given a certain class label and then use Bayes’
theorem to predict the class for a new data sample.

For each class c ∈ K, the so-called class-conditional probability density function
p (x | y = c) is estimated separately using only training samples Sc associated with this
class c.

Sc = {xi ∈ S | yi = c} (2.5)

The probability of a data sample belonging to a certain class c can be formulated by
applying Bayes’ theorem as mentioned before:
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2. Theoretical Background

p (y = c | x) ∝ p (x | y = c) p (y = c) (2.6)

Note that the normalization constant (p (x))−1 = (∑c′∈K p (y = c′, x))−1, which is
required in order for p (y = c | x) to be a valid distribution, is the same for each class
c ∈ K and thus can be omitted, which can be seen in Equation (2.8).

One possible way to estimate the class prior p (y = c) is to use the relative frequency
of data samples associated with class c.

p (y = c) =
|Sc|
|S| (2.7)

The prediction function can then be formulated as finding the class label c that
maximizes p (y = c | x).

f̂ (x) = arg max
c∈K

p (y = c | x) (2.8)

2.2. Grid Based Interpolation

The technique described in Section 2.1.2 relies on the performance of the density
estimation of the class-conditional probabilities. However, as hinted before in Section
2.1.1, common methods do not scale well with the dimensionality of the problem.
Therefore, we introduce sparse grids as one alternative approach to density estimation
that provides a remedy to the curse of dimensionality to some extent.

To get a grasp of the concept, consider the task of interpolating an unknown function
f : Ω 7→ R. In the following we restrict the function domain Ω to be the d-dimensional
unit-hypercube, Ω := [0, 1]d.

2.2.1. Full Grid Interpolation

To begin with, consider interpolating a function f on a full grid. In this case, usually
the mesh width is chosen as 2−n, thus resulting in a regular full grid of discretization
level n with N = 2n − 1 equidistant grid points in each dimension.

For the sake of simplicity, only the one-dimensional interpolation problem will be
presented first and only later extended to a multi-dimensional domain. For convenience,
the grid points will not be referred to by their Cartesian coordinates but rather indexed
by i ∈ {1, ..., N}.

The interpolation task can be attempted by introducing basis functions with local
support, each of which is centered at a different grid point. There are various choices
for the type of basis function to employ, many of them being more or less suitable for
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2. Theoretical Background

different scenarios. Usually in Machine Learning related problems however, the lack of
prior knowledge enforces using piecewise d-linear basis functions, as they are the most
easy ones to deal with. A common example is the standard hat function.

ϕ (x) = max (1− |x|, 0) (2.9)

Nodal Basis In the nodal basis the basis function centered at grid point i only provides
support between grid points i − 1 and i + 1. Thus, the i-th basis function can be
obtained by dilatation and translation [11].

ϕi (x) =
(

2n−1x− i
)

(2.10)

The interpolant p (x) is given as weighted sum of the basis functions ϕi, as can be
seen in Figure 2.1. The weighting coefficients αi are called surpluses [11].

f (x) ≈ p (x) :=
N

∑
i=1

αi ϕi (x) (2.11)

Hierarchical Basis Another option is to put the different basis functions in a hierar-
chical order. Basis functions at coarser levels provide broader support and thus are
responsible for the overall structure of the interpolant. In contrast, basis functions at
very fine levels only contribute to the function locally.

Instead of referring to grid points using only their index, now also their level is
necessary to identify it. Therefore, we define a set of hierarchical indexes for a certain
level l.

Il =
{

i ∈N : 1 ≤ i ≤ 2l − 1∧ i mod 2 = 1
}

(2.12)

A grid point can now be indexed by a tuple (l, i), that consists of its level l ≤ n and
index at this level i ∈ Il . Again, the normal hat function from Equation (2.9) is used as
basis function, each of which will still be centered at another grid point (l, i) [11].

ϕl,i = ϕ
(

2lx− i
)

(2.13)

Furthermore, the hierarchical subspaces Wl can be defined as span of all basis
functions ϕl,i centered at grid points of level l.

Wl = span {ϕl,i : i ∈ Il} (2.14)
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Figure 2.1.: Interpolant (red) of a polynomial function (blue) using a linear combination
of nodal basis functions ϕi (orange) scaled by their surpluses αi.
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Figure 2.2.: Visualization of the hierarchical basis and their correspondence to the nodal
basis (dotted lines). The nodes of the hierarchical basis are indexed by (l, i)
where l is the level and i the index at level l respectively.

The entire space of piecewise linear functions on a full grid with discretization level
n can be obtained by directly summing over all the hierarchical subspaces up to level
l ≤ n [11].

Vn =
⊕
l≤n

Wl (2.15)

Figure 2.2 gives a visual intuition of why the combination of hierarchical subspaces
in fact yields the entire full grid. Each grid point in the hierarchical basis directly
corresponds to an unique grid point in the nodal basis. When later dealing with sparse
grids, the tree structure in which the hierarchical basis functions are organized, can
be pruned or extended at certain nodes, which is called coarsening and refinement
respectively.

Similar to interpolation using the nodal basis, the interpolant can be written as
weighted sum of hierarchical basis functions. In contrast to the nodal basis however,
the surplus vector as well as the basis functions now have to be indexed by their level
and index at this level [11]. Figure 2.3 offers a visualization for interpolation on a full
grid using the hierarchical basis.

f (x) ≈ p (x) := ∑
l≤n,i∈Il

αl,i ϕl,i (2.16)

Higher Dimensions Previously only univariate settings were considered. Higher
dimensional problems however can be derived easily, making use of a tensor product
structure to describe the interpolant [11].

First of all however, notational aspects and common vector norms, that are necessary
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Figure 2.3.: Interpolant (red) of a polynomial function (blue) using a linear combination
of hierarchical basis functions ϕl,i (orange, green, purple) scaled by their
surpluses αl,i.
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to describe this construction, will be defined. Namely, those are the l1-norm |~l|1 and
the maximum norm |~l|∞.

|~l|1 :=
d

∑
j=1
|lj| and |~l|∞ = max

1≤j≤d
|lj| (2.17)

Instead of only using a single level l and index i, now d-dimensional vectors~l and~i
are required to identify a hierarchical basis function in the d-dimensional grid.

ϕ~l,~i (~x) :=
d

∏
j=1

ϕlj,ij

(
xj
)

(2.18)

The set of valid indexes for a given vector of levels can be defined in a straight
forward fashion [11].

I~l =
{
~i : 1 ≤ ij ≤ 2lj − 1∧ ij mod 2 = 1∧ 1 ≤ j ≤ d

}
(2.19)

Multi-dimensional hierarchical subspaces can be derived analogously to Equation
(2.14) [11]. Figure 2.4, taken from [11], offers a visualization of the two dimensional
hierarchical subspaces for |~l|∞ ≤ 3.

W~l = span
{

ϕ~l,~i (~x) : ~i ∈ I~l
}

(2.20)

Similar to Equation (2.15), the full grid space with maximal discretization level n can
be written as sum over those hierarchical subspaces [11].

Vn =
⊕
|~l|∞≤n

W~l (2.21)

Lastly, the interpolation itself can be reformulated like in Equation (2.16).

f (~x) ≈ p (~x) = ∑
|~l|∞≤n,~i∈I~l

α~l,~i ϕ~l,~i (~x) (2.22)

2.2.2. Sparse Grid Interpolation

When performing interpolation on a full grid, each basis function needs to be evaluated
at least once. Therefore, the computational effort highly depends on the number
of grid points, as each of them provides one basis function that offers support for
the interpolant p (~x). In the case of regular full grids with discretization level n and
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W(1,1) W(2,1) W(3,1)

· · ·

W(1,2) W(2,2) W(3,2)

· · ·

W(1,3) W(2,3) W(3,3)

· · ·

...
...

...
...

Figure 2.4.: Two dimensional hierarchical subspaces W~l with |~l|∞ ≤ 3. Figure taken
from [11].
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dimension d, the number of grid points grows exponentially with the dimensionality
[11].

|G f ull | = (2n − 1)d ∈ O(2nd) (2.23)

Thus, for high dimensional settings, interpolation on regular full grids suffers from
the full curse of dimensionality and quickly becomes infeasible. Sparse grids introduce
a way to drastically reduce the number of grid points, therefore making even tasks
in higher dimensions tractable. The underlying basic concept again is to combine
hierarchical subspaces W~l , in order to retrieve the regular sparse grid space V(1)

n . In
contrast to full grids however, fine grained subspaces that only pay small contribution
to the overall interpolant p (~x) are left out [11].

V(1)
n =

⊕
|~l|1≤n+d−1

W~l (2.24)

Figure 2.5, taken from [11], depicts how the combination of coarse hierarchical
subspaces results in a regular sparse grid of level n = 3.

The interpolant p (~x) for full grids, described in Equation (2.22), can easily be adapted
to the sparse grid structure as well.

p (~x) = ∑
|~l|1≤n+d−1,i∈I~l

α~l,~i ϕ~l,~i (~x) (2.25)

Note that the upper bound for the number of grid points contained in a sparse grid of
level n, reduces to O(2nnd−1), while the error increases ever so slightly for sufficiently
smooth functions f [11] [4].

2.2.3. Spacial Adaptivity

Even though regular sparse grids significantly improve the tractability of high dimen-
sional settings, the curse of dimensionality still prevails for a high number of dimensions
and high sparse grid level. Also, even though sparse grids might not spend as many
grid points in regions of low interest for the problem as full grids do, still their structure
does not necessarily adapt well to the problem setting at all. There even might be
regions where points are desired to populate the function domain more densely. To
counteract these problems, yet another concept is introduced, namely spatial adaptivity.
Using spatially adaptive sparse grids as described by Dirk Pflüger in [11], grid points
can be added to or removed from the sparse grid, without needing to introduce a new
level in each dimension.
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l1=1 l1=2 l1=3 l1

l2=1

l2=2

l2=3

l2

V(1)
3

Figure 2.5.: Construction of a regular sparse grid of level n = 3 from different hierar-
chical subspaces. Adding the greyed-out subspaces as well would result in
a regular full grid. Figure taken from [11].

This can be imagined as locally pruning or extending the hierarchical tree of grid
points, that is depicted by Figure 2.2 for one dimensional settings. By employing a
heuristic function, regions in which additional grid points might increase the model
performance can be determined as well as regions, in which grid points are superfluous,
as they do not contribute much to the overall solution.

Refinement The process of adding new points to the sparse grid is called refinement.
After the application of a suitable heuristic, children are added to leaf nodes in the
hierarchical tree of grid nodes. Often, performing refinement for only one grid point
can lead to overfitting the target function, which in the case of interpolation might be
desired, but when considering density estimation most likely negatively affects the ac-
curacy. Thus, refining multiple grid points during each refinement step simultaneously,
usually provides better results in these settings. For a more detailed examination of
refinement strategies and heuristics for refinement, refer to [7].

Another noteworthy aspect is, that many sparse grid based algorithms require
the hierarchical tree-like structure of grid points to be traversable in both directions.
Therefore when adding grid points as children to an existing leaf node in one dimension,
parent grid points might have to be created in order to preserve a valid hierarchical
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Figure 2.6.: Two refinements on a level two sparse grid. The refinement of the first
point (red) does not require additional parent points in the hierarchical tree
(left). The second refinement step however creates points that lack parents
in the vertical dimension (middle). Those parent points (gray) are added to
the grid as well, in order to preserve traversability for the hierarchical tree
in both directions (right). Figure taken from [11].

structure in those dimensions as well. Figure 2.6 illustrates this process of recursively
adding parents to newly introduced grid points. Usually in data-driven settings
however, this kind of tree traversal is not a necessity.

Coarsening Since the computational effort highly depends on the number of basis
functions, it also makes sense to remove grid points, from which the solution does not
really benefit. This process is called coarsening and can be understood as pruning the
hierarchical tree-like structure (see Figure 2.2) of the sparse grid. Again, the impact on
the accuracy of the model depends on the heuristic that determines which and how
many grid points should be coarsened during each step. An in-depth discussion can
again be found in [7].

2.3. Sparse Grid Density Estimation

For simplicity, if not defined otherwise, a hierarchical basis will be implicitly assumed
when talking about any sparse grid from here on. Furthermore, instead of referring
to the basis functions and surpluses by a tuple

(
~l,~i
)

, they will be indexed using
enumeration, similar to indexing nodal basis functions.

Next, an approach to density estimation as described in Chapter 2.1.1, that operates
on sparse grids, is introduced. Given our training dataset S , we can obtain a highly
overfitted initial guess for our density function fε, by using Dirac delta functions
centered at the data samples. In order to retrieve a more generalizing solution, regular-
ization will be applied to this function, where Λ describes the regularization operator
and λ the regularization strength respectively. The density function f̂ can be obtained
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by solving the optimization problem given by Equation (2.26) [10].

f̂ = arg min
f̃

∫
Ω

(
f̃ (x)− fε (x)

)2
dx + λ‖Λ f̃ ‖2

2 (2.26)

As elaborated in [10], when applying this approach to the space of sparse grid basis
functions, a system of linear equations can be derived as solution to the optimization
task.

(R + λC)~α =~b (2.27)

In this system, the matrix R represents the structure of the underlying sparse grid, as
it is defined as Ri,j = 〈ϕi, ϕj〉L2 , where 〈·, ·〉L2 denotes the standard L2 inner product.
The regularization is represented by the matrix C, which is usually chosen to be the
identity matrix, since it makes computational aspects much easier. As previously,
~α describes the hierarchical surpluses of the sparse grid, i.e. the coefficients of the
hierarchical basis functions ϕ. Lastly, the right-hand side b corresponds to the training
data S , since bi =

1
M ∑M

j=1 ϕi
(
xj
)

[10].
One thing to note is that the size of the left-hand side matrix (R + λC) ∈ Rn×n does

not depend on the size of the training data, but rather the number of points contained
by the underlying sparse grid. Since the computational complexity of solving this
system is in O(n3), efficient methods have to be considered in order to tackle sparse
grid density estimation. One possible approach involves using conjugate gradients to
iteratively find a solution. An advantage of this method is, that it does not require
the entire matrix to be loaded into memory [10]. Another way to deal with the cubic
complexity is to factorize the left-hand side system matrix beforehand and use the
decomposition to efficiently solve the system afterwards. This will be referred to as
Online-/Offline Splitting and is explained in Section 2.4.

2.4. Online-/Offline Splitting

As mentioned before, when dealing with sparse grid density estimation, a system of
linear equations has to be solved. Since the left-hand side matrix R + λC is independent
of the actual training data, factorizing the system matrix beforehand can be used to
enhance the runtime performance of the density estimation drastically. The computation
of the factorization usually has a runtime complexity of O(n3) and will be referred
to as offline step, since it can be performed without requiring any data whatsoever,
i.e. the left-hand side only depends on the structure of the sparse grid itself as well
as the regularization. When attempting to solve the system for any given right-hand
side b, which can only be computed with data at hand, the computational complexity
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decreases to O(n2). This step will be called online step.

Adaptivity Since the left-hand side of the system depends on the grid structure, one
aspect which has to be considered is spatial adaptivity as described in Section 2.2.3.
In Machine Learning settings, typically any kind of prior knowledge is hardly ever
available. Therefore, in order to achieve reasonable performance, it is inevitable for
the sparse grid to be able to adapt to the given problem structure itself. This however
can not be implemented into the offline step, as these structural changes depend on
the training data as well. Also, recomputing the system matrix factorization after
each refinement or coarsening step, would again lead to a complexity of O(n3), thus
rendering the online step obsolete.

To maintain the improvements provided by the online-/offline splitting, matrix
factorizations that allow to efficiently deal with spatial adaptivity have to be considered.

To begin with, let us investigate coarsening first. When removing any grid point
i and its corresponding basis function ϕi, simply the i-th row and column have to
be removed from the left-hand side (R + λC). Accordingly, adding grid points via
refinement means extending the system matrix by additional rows and columns.

Regularization Another thing which comes to mind is the regularization term λC,
that also is part of the left-hand side of the system (2.27). In many settings, for example
when performing cross-validation, it would be desirable to vary the regularization
strength λ during the online step as well. Thus, any matrix factorization that is used in
the offline step should also allow for an efficient computation of adding and subtracting
any multiple of the identity matrix from the left-hand side of the system. Note that for
simplicity, we assumed the regularization operator C to be the Identity I.

Matrix Factorization Four different kinds of matrix factorization methods will be
discussed and examined with respect to the two requirements mentioned before. An
attempt that is quite easy to compute, would be LU factorization, where R + λC is
decomposed into an lower triangular matrix L and upper triangular matrix U. As Figure
2.1 shows however, neither for spatial adaptivity nor for changes to the regularization
strength, efficients methods are available.

Another approach is factorizing the left-hand side using Eigen decomposition, since
it makes adapting the regularization strength λ quite simple. Because spatial adaptivity
is still not supported by this factorization type, other methods have yet to be considered.

More promising seems to be the Cholesky decomposition, where the goal is to find a
matrix L, such that the left-hand side can be decomposed into:

R + λC = LL′ (2.28)
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Matrix Factorization Adaptivity Regularization
LU decomposition 7 7

Eigen decomposition 7 3

Cholesky decomposition 3 (3)
Orthogonal decomposition 3 3

Table 2.1.: Examination of which matrix factorization method allows structural changes
to the sparse grid (Adaptivity) and variation the regularization strength
(Regularization).

As the system matrix is positive semidefinite, this approach is applicable. Updating
the factorization with respect to refinement, coarsening and changes to the regulariza-
tion strength were discussed and implemented by Adrian Sieler in [14]. One downside
of this approach is that updating the factorization when changing the regularization
strength λ has a computational complexity of O(n3), making it as expensive as just
recomputing the entire factorization from scratch. Therefore, theoretically the regular-
ization strength can be adapted indeed, however not without significant computational
effort that would render the entire Online-/Offline Splitting obsolete.

Another viable factorization method, the so-called Orthongal decomposition, was
elaborated by Dimitrij Boschko in [3]. The system matrix factorizes into

R + λC = QTQ′ (2.29)

where Q is an orthogonal and T an upper triangular matrix. As for the Cholesky
decomposition, spatial adaptivity as well as varying the regularization strength are
fully supported and also already implemented.

Figure 2.1 summarizes the capabilities of each matrix factorization approach with
respect to the requirements that were discussed previously.
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3.1. The SG++ Toolbox

The SG++ toolbox is an open-source library, written in C++, which provides solutions to
various problems using sparse grids. The project was created by Dirk Pflüger [11] and
is currently developed at the chair of Scientific Computing at the Technical University
of Munich and the Institute for Parallel and Distributed Systems at the University
Stuttgart.

Among the many features this library implements, it also contains an approach to
classification using sparse grid density estimation as discussed in Section 2.3. Previously
however, this approach has not been part of the datamining pipeline, a module of SG++,
that was designed to tackle data-driven problems in a very user-friendly fashion. Over
the course of this thesis, the current implementation will be described and successively
integrated in the pipeline. This requires refactoring of existing algorithmic components
as well as implementation of new modules to fit the pipeline interface.

3.2. System matrix decomposition database

Since the offline step as described in Section 2.4 requires decomposing the system matrix,
which in the case of Cholesky- and Orthogonal decomposition has cubic complexity,
pre-computing those factorizations for common settings may help to improve the
runtime of the sparse grid density estimation drastically. When encountering a scenario
for which the left-hand side of the system (2.27) has already been decomposed in the
past, the expensive offline step can be omitted, thus reducing the complexity of the
entire density estimation to O(n2), as it will only rely on the online step.

Of course, some kind of system to maintain these factorizations has to be introduced,
in order to be able to benefit from this method. The first issue that arises is, how to
formally identify similar scenarios, i.e. settings which share a system matrix. Simply
comparing the entire left-hand side system matrix of each setting would certainly be
one possible approach, however by far not the most efficient.
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3.2.1. Configuration Structures

In the previous implementation, system matrices were built using a set of configuration
structures, which therefore can be expected to be sufficient for the identification of
possible application settings. Thus, the database will use an instantiation of these
structures as a key value to identify certain scenarios.

GeneralGridConfiguration This configuration describes the basic structure of the
sparse grid that will be created. It includes attributes such as the dimensionality, grid
level and the type of basis function, the grid employs, as well as their behavior at the
grid boundaries. Details can be found in [11].

AdaptivityConfiguration In this structure, the adaptivity behavior of the sparse grid
can be defined, i.e. how many points should be added simultaneously during each
refinement step. Also, adjustments to the heuristics, that are used for triggering
refinements in the first place as well as for finding grid points suitable for refinement
and coarsening respectively, are possible.

RegularizationConfiguration Settings regarding the regularization such as the regu-
larization strength and the regularization operator are provided by this structure.

DensityEstimationConfiguration Lastly, the hyperparameters of the density estima-
tion itself are included as members of this structure. Among those are the type of
matrix factorization to employ, together with specific parameters that further specify
the factorization behavior. Additionally, this configuration provides a member to decide
whether to use an online-/offline splitting based approach to solve the system of linear
equations or instead retrieve the solution numerically, for example by employing the
conjugate gradients method.

3.2.2. Database Implementation

The database itself is represented by a JSON file. This allows any user to manually
include decompositions themselves, if desired, but also makes the parsing process
quite simple. The most relevant functionality, the database class provides, is to check
whether a certain configuration is already associated with any factorized system matrix,
implemented by the hasDataMatrix method. Consequently, if this is the case, a path
to this serialized instance can be retrieved via the getDataMatrix method. Lastly, any
setting of configurations can also be associated with a new file path by calling the
putDataMatrix method. The class diagram given in Figure 3.1 depicts the structure of
the database.
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DBMatDatabase

+ hasDataMatrix() : bool
+ getDataMatrix() : string
+ putDataMatrix()

Figure 3.1.: Simplified class diagram of the system matrix decomposition database only
including relevant methods. It provides functionality for retrieving and
storing system matrices by associating a set of configurations with a path
to the corresponding serialized and decomposed system matrix.

3.3. The Datamining Pipeline

As indicated by Figure 3.2, the datamining pipeline consists of various modules,
that each provide different functionality to the concept. For an end-user, the only
relevant component however is the SparseGridMiner class, as it encapsulates the entire
datamining pipeline concept by its own. It can be easily instantiated using a factory
class and passing a configuration file in JSON format. Currently, the SparseGridMiner
implements datamining functionality, employing three different module classes:

DataSource The DataSource module is responsible for providing data samples in an
iterative fashion. Files can automatically be processed and the dataset is split into
batches of arbitrary size.

ModelFittingBase The ModelFittingBase base class represents the core of the function-
ality, as it implements the possible datamining approaches themselves. Depending
on the specific subclass, the data samples retrieved from the DataSource instance can
be used to train a model and also perform spatial refinement. Models for regression,
density estimation as well as classification all inherit from this superclass.

Scorer The Scorer class uses a metric, that was specified in the configuration JSON
file, in order to evaluate the performance of the model on the training and test data.
Previously, it was responsible for triggering the fitting and spatial refinement by itself.
This functionality however was moved into the SparseGridMiner class to ensure a more
clean and extensible interface for the datamining pipeline.
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3.4. Algorithm-/Application Refactoring

One of the main issues when migrating the density estimation and density estimation-
based classification into the datamining pipeline was to reorganize ownership of
different state instances. These instances include the grid itself as well as the vector of
surpluses~α and the configurations described in Section 3.2.1. Those are meant to be
held by the model instance of the pipeline, but were instead owned by the data matrix
instances, see Figure 3.2. In the following, classes that relate to the left-hand side of the
system matrix will be referred to as part of the algorithm module.

DBMatOffline The DBMatOffline class resembles a system matrix that may already
be decomposed. It contains methods to build the system matrix based on a given set
of configurations as well as functionality to factorize it. As especially for different
factorization approaches the implementation of latter might differ fundamentally, the
DBMatOffline is conceptualized as an abstract class type. Classes that inherit from it
are:

• DBMatOfflineLU

• DBMatOfflineChol

• DBMatOfflineDenseIChol

• DBMatOfflineEigen

• DBMatOfflineOrthoAdapt

Each of them corresponds to a factorization method. The DBMatOfflineDenseIChol
class represents an iterative approach to the Cholesky factorization, details can be
found in [8].

In the previous implementation, each of those classes held the configuration at-
tributes described in Section 3.2.1 themself, and used them to automatically create the
underlying sparse grid, when the system matrix was requested to be built (by calling
the buildMatrix method). As Figure 3.2 suggests however, the grid is to be owned by
the model class of the pipeline instead. The same applies to the configuration instances
as well. Thus, the DBMatOffline classes and its methods had to be refactored in a way,
such that they can operate on a grid instance that is passed by the caller, instead of
storing one themselves. Again, similar changes were necessary with regard to the
configuration structures.
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datamining pipeline algorithm

holds

uses one per class

is based on

factor-
ization

SparseGridMiner

- dataSource
- model
- scorer

+ learn()

ModelFittingBase

- config

+ fit()
+ refine()
+ update()
+ evaluate()

ModelFittingBaseSingleGrid

- grid
- alpha
+ getGrid()
+ getSurpluses()

ModelFittingClassification

- models

ModelFittingDensityEstimation

+ refine(newNoPoints, removedPoints)

ModelFittingDensityEstimationOnOff

- online

ModelFittingDensityEstimationCG

- b

DBMatOffline

- grid
- config
- lhsMatrix

+ buildMatrix()
+ decomposeMatrix()

DBMatOnline

- offline

+ updateSystemMatrix-
Decomposition()

DBMatOnlineDE

- alpha
- b

+ computeDensity-
Function()
+ updateRhs()
+ normalize()
+ eval()

Figure 3.2.: Simplified class diagram of the datamining pipeline and an exert of the
most relevant base classes of the algorithm modules. State instances were
removed from the algorithm classes (red text) and placed inside the datamin-
ing pipeline structure (green text). Classes that had to be added are filled
green, while already existing classes share a yellow filling.
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DBMatOnline The DBMatOnline abstract class type is supposed to wrap around an
instance of DBMatOffline, on which the system matrix decomposition already has
been performed. It provides methods to update the left-hand side, i.e. performing
refinement, coarsening and incorporating changes to the regularization strength λ.

DBMatOnlineDE The density estimation functionality itself is implemented into
the DBMatOnlineDE, which itself inherits from the DBMatOnline class. There is one
DBMatOnline subclass, each corresponding to a DBMatOffline class, which implements
functionality tailored to fit the factorization it represents. Thus the following classes
inherit from DBMatOnlineDE:

• DBMatOnlineDELU

• DBMatOnlineDEChol

• DBMatOnlineDEDenseIChol

• DBMatOnlineDEEigen

• DBMatOnlineDEOrthoAdapt

Each of those classes is related to a solver, that is supposed to compute the vector
of surpluses ~α for a given grid setting and the currently available right-hand side.
Also, normalization functionality is implemented, ensuring that the density function,
implicitly given by the surplus vector~α, represents a valid probability distribution.

3.5. Integration of Density Estimation into the Datamining
Pipeline

To implement the sparse grid density estimation into the datamining pipeline, a model
class that inherits from ModelFittingBase had to be designed. Since density estimation,
in contrast to classification (which relies on multiple density estimation models), only
employs one sparse grid, the module hierarchy of the fitting module was split: The
ModelFittingBaseSingleGrid class was created as another abstract supertype, which itself
inherits from ModelFittingBase. It should serve as parent to all models, that only use
a single sparse grid, i.e. density estimation and regression. This structure can be
observed in Figure 3.2.
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ModelFittingDensityEstimationOnOff There are two approaches to sparse grid den-
sity estimation, namely using the Online-/Offline Splitting as explained in Section 2.4
and employing iterative methods, such as conjugate gradients, to solve the system of
linear equations. Consequentially, two different model classes were implemented, each
corresponding to one of the two methods. The ModelFittingDensityEstimationOnOff
class uses matrix factorization in order to retrieve the vector of surpluses~α. Therefore,
it refers to an instance of the DBMatOnlineDE class type, which is constructed when
data is initially fit to the model using its fit method. Furthermore, whenever new data
becomes available (for example in streaming settings or when performing learning on
batches), the update method can be used to make the data known to the online object,
i.e. recomputing the right-hand side of the equation and retrieving the corresponding
new surpluses.

ModelFittingDensityEstimationCG Additionally, a class to perform density estima-
tion employing the conjugate gradients method for solving the system of linear equa-
tions, given by Equation (2.27), was implemented as well. The functionality is very
similar to the ModelFittingDensityEstimationOnOff class. In contrast to it however, the
right-hand side is no longer held by an online instance but instead managed by the
model itself.

3.6. Integration of Classification into the Datamining Pipeline

The classification module differs from other subclasses of ModelFittingBase, as it does
not control a single grid and vector of surpluses, but instead uses references to several
density estimation models, each of which is responsible for its own state instances. This
structure can again be observed in Figure 3.2. As in order to perform density based
estimation, a density function has to be computed for each class, the ModelFittingClas-
sification module first splits the training data according to their class labels and then
passes these datasets to the respective density estimation models.

When predicting the class of a data sample, the classification module uses the density
estimation models it refers to, in order to evaluate all normalized class conditional
density functions. Making use of Equation (2.8), the predicted class corresponds to the
density function, that provides the highest evaluation on the data sample in question
after being weighted with the respective class prior. This procedure is visualized by
Figure 3.3.

One issue that naturally arises with this design is spatial adaptivity. Density estima-
tion models, each of which inherits from the ModelFittingDensityEstimation superclass,
select candidate points for refinement only based on the structure of their own grid or

25



3. Implementation

density

evaluate()

evaluate()

label

SparseGridMiner ModelFittingClassification ModelFittingDensityEstimation

Figure 3.3.: Visualization of the classification procedure: The classification model uses
different density estimation models and returns the class label associated
with the density function, that provided the highest evaluation.

the magnitude of the their own surpluses. In classification however, more sophisticated
methods are required: As elaborated by Kreisel in [7], the state of all models should be
considered when selecting suitable points for refinement.

In the SG++ toolbox, refinement and coarsening is implemented by functors. Since
classification relies on multiple grids at the same time, functors that operate on a set of
models have to considered. Those inherit from the abstract superclass MultiGridRefine-
mentFunctor. In especial, the classification model class supports these different types of
refinement functors:

• MultiSurplusRefinementFunctor

• ZeroCrossingRefinementFunctor

• DataBasedRefinementFunctor

• GridPointBasedRefinementFunctor

• MultipleClassRefinementFunctor

For detailed explanations of those approaches, refer to [7]. Most of them however
have in common, that they determine critical regions, i.e. where refinement might be
necessary, by comparing the class conditional density functions with one another. Thus,
state instances of all models, such as the underlying grids and corresponding surpluses,
have to be accessible to the classification model. Because of that, models based on a
single grid also offer respective getter-methods, as can be seen in Figure 3.2.

Since the functor instances automatically reorganize the grid instances as required
for the refinement, changes have to be communicated back to the density models as
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well. By overloading the refine method of the ModelFittingDensityEstimation class, each
model can restructure its state instances based on an refinement step that was triggered
externally and has already been applied to the grid. Figure 3.4 offers an illustration of
this procedure.
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grid

getGrid()

surpluses

getSurpluses()

create

(grid after refinement)

refine()

refine(newNoPoints,
removedPoints)

ModelFittingClassification ModelFittingDensityEstimation

MultiGridRefinementFunctor

Figure 3.4.: Sequence diagram of the refinement procedure employing multiple grids.
First, the classification model collects the state instances from each model.
After that, a refinement functor is initialized and used to refine these
grids. Lastly, the information about the changes in the grid structure is
communicated back towards the density model.
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In order to verify the implementation, its performance will be evaluated on different
datasets. These measurements include the classification accuracy achieved by the
models, as well as the runtime of the training process and overall memory consumption.
The results will then be compared to the previous implementation of the approaches,
as for each dataset density estimation based on Online-/Offline Splitting together with
models employing conjugate gradients will be tested. All evaluations were performed
on the same machine, using an Intel Core i5-4210H processor.

If not mentioned otherwise, the same configuration is used to train models on each
dataset: We start with a regular sparse grid and vary the initial level between two and
eight, which in the end results in sparse grids of different sizes. The training data is
shuffled randomly and 20% of it will be used for validation, i.e. to monitor convergence
of the training process and trigger refinements. The models for both implementations
are trained for two epochs on batches of size ten in the case of Online-/Offline Splitting
based density estimation and batches of size one when using conjugate gradients. Note
that the previous implementation of conjugate gradients-based density estimation only
supports batches of size one, that is, it processes each data sample separately. Thus,
in order for the implementations to be comparable, the corresponding model of the
datamining pipeline was configured to operate on a batch size of one as well. Ten
refinements are performed, each refining ten grid points at once. A data-based strategy
serves as refinement indicator. The regularization strength λ is set to 0.01 and the prior
on the classes is obtained by the relative frequency of data samples belonging to a class.

4.1. The Ripley-Garcke Dataset

The Ripley-Garcke dataset originates from [12] and was modified by Jochen Garcke
for being applicable to sparse grid methods. It was generated sampling noisily from a
mixture of two Gaussians. It only contains a very small amount of samples, i.e. the
training set consists of 250 points, while the testing set includes 1000 data instances.
Since the Ripley-Garcke dataset is not linearly separable, it serves well for validating
the classification functionality of the model implementation. A visualization of the
dataset can be found in Figure 4.1.
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Figure 4.1.: Visualization of the Ripley-Garcke dataset. The training data (left) consists
of 125 samples per class, while the testing data (right) includes 500 samples
for each class.
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Figure 4.2.: Evaluation of the classification accuracy of the methods on the Ripley-
Garcke dataset. Online-/Offline Splitting as well as Conjugate gradients-
based approaches inside the datamining pipeline were compared to their
previous implementation. Apart from small deviations, the performance of
the pipeline and previous implementation mostly match. After reaching
a certain grid size, the accuracy degrades slowly, probably because of
overfitting.

4.1.1. Classification Accuracy

The first measurement to consider is the classification accuracy achieved by the different
models. When increasing the initial sparse grid level we obtain different classifiers each
relying on a more refined grid structure. After training the models, their classification
accuracy on the test data is evaluated. The results are averaged over ten runs, while the
corresponding standard deviation serves as uncertainty measure.

As figure 4.2 indicates, the performance of the pipeline model matches its previous
implementation mostly. While the Online-/Offline Splitting-based method imple-
mented into the datamining pipeline seems to slightly underperform, the approach
employing conjugate gradients appears to achieve better results than its previous im-
plementation. Note however, that these results suffer from uncertainty, as can also be
observed in Figure 4.2. Nonetheless, the overall capability of the two implementations
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Figure 4.3.: Evaluation of the runtime of the methods on the Ripley-Garcke dataset.
Online-/Offline Splitting as well as conjugate gradients-based approaches
inside the datamining pipeline were compared to their previous implemen-
tation. The pipeline implementation achieves comparable runtimes and
in case of the conjugate gradients approach, it even seems to outperform
the previous implementation slightly. Overall, Online-/Offline Splitting
results in superior runtime behaviour compared to the conjugate gradients
method, even more so, when omitting the offline step.

can be regarded as quite similar. After a certain number of grid points is reached,
the performance slowly degrades for all model implementations, probably because of
overfitting, since the regularization strength is kept fixed while the model complexity
steadily increases.

4.1.2. Time Complexity

Naturally, another measurement of interest is the time needed to train a model. Again,
this measure heavily depends on the model complexity, i.e. the grid size. As for the
classification accuracy, results are averaged over ten runs. Since the variance of the
measurements is neglectably small, it is omitted in Figure 4.3.

As shown by Figure 4.3, both implementations for each approach, namely Online-
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Figure 4.4.: Evaluation of the memory consumption of the Online-/Offline Splitting-
based approach on the Ripley-Garcke dataset both inside the datamining
pipeline and its previous implementation. The two implementations require
almost the same amount of memory. Since the entire system matrix has to
be present in memory during training, several megabytes are needed.

/Offline Splitting and conjugate gradients, almost exactly match in runtime behavior.
The pipeline implementation of the conjugate gradients method even appears to out-
perform the previous implementation slightly. Generally, the Online-/Offline Splitting
models can be observed to demand less computational effort when operating on the
Ripley-Garcke dataset. This effect is even reinforced, when omitting the offline step, i.e.
making use of the matrix factorization database mentioned in Section 3.2.

4.1.3. Memory Complexity

The third criterion that will be taken under consideration, is the memory consumed
during training time, as this is another factor that puts limitations on the scalability of
the model. Again, the memory complexity was evaluated for models that only differ
by the size of the final grid they operate on. The exact values were retrieved making
use of the valgrind [9] tool.
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Figure 4.5.: Evaluation of the memory consumption of the conjugate gradients-based
approach inside the datamining pipeline and its previous implementation
on the Ripley-Garcke dataset. Even though the pipeline implementation
results in a small overhead, both implementations only require memory in
the order of kilobytes as the system matrix is not needed to be present in
memory during training.
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As illustrated by Figure 4.4, also the memory complexity of the two implementations
match very well in the case of Online-/Offline Splitting-based density estimation.
Similar results can be observed in Figure 4.5, where the overhead produced by the
pipeline is comparably small and seems to be constant in the number of grid points.
Another noteworthy aspect is, that the total amount of memory consumed by the Online-
/Offline Splitting approach has a magnitude of megabytes, whereas the conjugate
gradients method only requires few kilobytes during runtime. This is because, as
mentioned in Section 2.3, the system matrix does not have be loaded into memory
entirely during the solving process when using conjugate gradients [10].

4.2. The Two Moons Dataset

The second dataset that was used to evaluate the implementation is the Two Moons
dataset, which also was generated artificially using Scipy [6]. The training data consists
of 400 samples in total, while the testing data contains 600 data instances. All of them
were sampled noisily with a standard deviation of 0.2. Figure 4.6 gives a visualization
of the data.

4.2.1. Classification Accuracy

As for the Ripley-Garcke dataset, first of all the classification accuracy of the two
implementations is evaluated on the Two Moons dataset. Again, models of different
complexity are trained on the same data and evaluated on the test set afterwards, while
the performance measurements were averaged over ten runs and the uncertainty is
given by the empirical standard deviation.

Figure 4.7 shows that also for the Two Moons dataset the classification accuracy
achieved by both the pipeline and the previous implementation does not differ signifi-
cantly, when taking under consideration the uncertainty of the measurements. While
the Online-/Offline Splitting-based approach results in a slightly worse accuracy than
the previous implementation, pipeline models employing conjugate gradients are able
to achieve small improvements in the classification accuracy. For larger grid sizes, the
performance slowly starts to degrade eventually, probably because of overfitting, as has
already been observed for the Ripley-Garcke dataset.

4.2.2. Time Complexity

Next, the time each model took to train was measured and compared with the previous
implementation. As before, the grid size was varied by tweaking the initial sparse
grid level, while all other settings remained fixed. Analogous to the Ripley-Garcke
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Figure 4.6.: Visualization of the Two Moons dataset. The training data (left) consists of
400 samples in total, while the testing data (right) includes 600 samples. For
both sets, the samples were drawn noisily using Scipy [6] with a standard
deviation of 0.2.
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Figure 4.7.: Evaluation of the classification accuracy of the methods on the Two Moons
dataset. Online-/Offline Splitting as well as conjugate gradients-based
approaches inside the datamining pipeline were compared to their previous
implementation. Within the given uncertainty, the pipeline implementation
for both approaches achieves results similar to the previous implementation.
While the Online-/Offline Splitting-based method slightly underperforms,
pipeline models using conjugate gradients achieve small improvements in
the classification accuracy.
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Figure 4.8.: Evaluation of the runtime of the methods on the Two Moons dataset. Both
the pipeline as well as the previous implementation result in similar training
times. Online-/Offline Splitting (both online- and offline step combined)
slightly outperforms the conjugate gradients approach, while the online
step alone requires significantly less training time.

dataset, measurements are averaged over ten runs and uncertainties are not included
into Figure 4.8 because of their comparably small magnitude.

For the Two Moons dataset, Figure 4.8 shows, that the time complexity of the
methods was indeed maintained when migrating the classification functionality into
the datamining pipeline. For both Online-/Offline Splitting and the conjugate gradients-
based approach, the runtime almost exactly matches the previous implementation. Also
note that omitting the offline step (by using the matrix factorization database described
in Section 3.2) results in a significant speedup of the training process.

4.2.3. Memory Complexity

Lastly, the memory requirements on the Two Moons dataset were analyzed. Models of
different complexity were trained on the same dataset and the valgrind [9] tool was
employed to retrieve memory consumption measurements.
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Figure 4.9.: Evaluation of the memory consumption of the Online-/Offline Splitting
approach inside the datamining pipeline and its previous implementation
on the Two Moons dataset. Both the pipeline implementation and the
previous one require the same amount of memory. Since the entire system
matrix has to be present in memory during the entire training process, the
memory consumption has a magnitude of megabytes.
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Figure 4.10.: Evaluation of the memory consumption of the conjugate gradients-based
approach inside the datamining pipeline and its previous implementation
on the Two Moons dataset. Both implementations require almost the same
amount of memory during training. Again, the pipeline implementation
causes a slight overhead of small magnitude. The total memory consump-
tion has only an order of kilobytes, as it is not necessary to load the system
matrix into memory entirely.
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The behavior of the models on the Two Moons dataset, depicted by Figures 4.9
and 4.10, is very similar to the observations made for the Ripley-Garcke data: First,
for both approaches the memory requirement curves of the pipeline and previous
implementation match fairly well. The conjugate gradients-based method of the pipeline
however still causes a slight memory overhead. This indicates, that the integration of
the methods into the datamininig pipeline did not have any significant bad influence
the memory complexity overall. Second, the matrix factorization approach in the
pipeline as well as in the previous implementation again demand several megabytes
of memory, as the entire system matrix has to be kept in memory during the whole
training process [10].

4.3. The DR-10 Dataset

The third dataset that will be used to verify the models of the pipeline is the data release
10 of the Sloan Digital Sky Survey 3 (DR-10)1 [13]. It contains several photometric
measurements of astronomical objects, resulting in a four-dimensional dataset with over
640, 000 training and over 270, 000 testing samples. As the only non-artificial dataset of
significant size used in this thesis, it provides insight on how the models behave on very
large real world data. Using the DR-10 dataset, the batch size, the models were trained
on, was increased to 50, 000 in order to make training more tractable. Since the previous
implementation of conjugate gradients-based density estimation only supports batches
of size one, it is not applicable to a big dataset such as the DR-10. Training even a
single classifier operating on small grids took several hours. This is due to the fact, that
the system of linear equations has to be solved again whenever any new data sample
is processed. In this Section, the previous implementation of the conjugate gradients
approach will therefore not be considered, while the conjugate gradients models of
the datamining pipeline were also trained on batches of size 50, 000. Furthermore, the
regularization strength was decreased to λ = 10−7 and the initial sparse grid level was

1Official SDSS-III Acknowledgement: Funding for SDSS-III has been provided by the Alfred P. Sloan
Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department
of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/. SDSS-III is managed
by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collabo-
ration including the University of Arizona, the Brazilian Participation Group, Brookhaven National
Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the
German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan
State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National
Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics,
New Mexico State University, New York University, Ohio State University, Pennsylvania State Univer-
sity, University of Portsmouth, Princeton University, the Spanish Participation Group, University of
Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and
Yale University.
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Figure 4.11.: Evaluation of the classification accuracy of the methods on the DR-10
dataset. Online-/Offline Splitting as well as conjugate gradients-based ap-
proaches inside the datamining pipeline were compared to their previous
implementation. The Online-/Offline Splitting-based approach inside the
pipeline is only able to catch up to its previous implementation on bigger
grids. The conjugate gradients-based method achieves comparable results
but fails to benefit from a big grid as the Online-/Offline Splitting density
estimation does.

only varied between two and six.

4.3.1. Classification Accuracy

Analogously to the previous datasets, classifiers operating on different grid sizes were
trained separately. Since training any model on the DR-10 dataset took significantly
more time than using a small dataset, measurements for the classification accuracy
were averaged over only three runs.

As can be seen in Figure 4.11, both implementations of Online-/Offline Splitting
achieve comparable results. The previous implementation however slightly outperforms
the pipeline model on smaller grid sizes. Only when operating on a higher number
of grid points, the pipeline implementation is able to catch up to the previous state.
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The conjugate gradients-based method also is able to provide reasonable results, but
seems to not benefit from a bigger grid as much as the Online-/Offline splitting method
does. More promising results can be expected when using even larger grids, since the
accuracy curves do not degrade for more refined grid settings, in contrast to results
that have been observed previously for the Ripley-Garcke- and Two Moons dataset.

4.3.2. Time Complexity

As for the other datasets, the runtime of the model training processes will be examined
as well. Again, because of the size of the DR-10 dataset, results were averaged over only
three runs. Uncertainties are once more left out in Figure 4.12, as they are neglectable,
compared to the overall runtime.

Figure 4.12 mainly shows three things: First, the two approaches to density estimation
implemented into the datamining pipeline result in comparable runtimes, while the
online step of the Online-/Offline Splitting-based classifier slightly outperforms the
conjugate gradients method. Second, the previous implementation of Online-/Offline
splitting takes significantly longer to train a model. This issue is caused due to the
previous implementation considering the entire training data when applying the data-
based refinement strategy to the model, while the pipeline only has access to the current
batch. The third noteworthy observation is, that the offline step of the Online-/Offline
Splitting-based approach does almost not at all contribute to the overall runtime of
the training process. That is, because the effort to decompose the system matrix for
comparably small grid sizes is neglectable compared to processing batches consisting
of 50, 000 data samples each.

4.3.3. Memory Complexity

Lastly, the memory complexity of the models will be evaluated on the DR-10 dataset.
Models operating on different grid sizes were trained separately and memory con-
sumption measurements were retrieved using the valgrind [9] tool.

The observations for the Online-/Offline approach, depicted by Figure 4.13, are
similar to those made on the other datasets. While both implementations require about
the same memory, the overall consumption is still dominated by the system matrix itself,
even though the entire data has to be kept in memory during training as well. In the
case of conjugate gradients-based density estimation however, the memory complexity
seems to be constant, as can be seen in Figure 4.14. This is due to the fact, that the
memory allocated for the actual training process itself is neglectably small compared to
the amount of memory, which is required to hold the training and testing data. Thus,
when operating on big datasets, for smaller grids, the memory complexity is dominated
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Figure 4.12.: Evaluation of the runtime of the methods on the DR-10 dataset. The Online-
/Offline Splitting approach was compared to its previous implementation,
while for the conjugate-gradients method only the pipeline implementation
was considered. The two approaches to density estimation implemented
into the datamining pipeline seem to be able to cope with big datasets
better when using data-based refinement, as they only consider the current
batch rather than the entire training data when triggering refinements.
The online step also dominates the offline step by far, since the effort to
process batches of size 50, 000 is way higher compared to factorizing the
system matrix.
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Figure 4.13.: Evaluation of the memory consumption of the Online-/Offline Splitting-
based approach inside the datamining pipeline and its previous imple-
mentation on the DR-10 dataset. The memory consumption of the pipeline
implementation is slightly reduced compared to the previous implementa-
tion. The overall memory complexity still is dominated by the size of the
system matrix, even when operating on large datasets such as the DR-10.

45



4. Evaluation

8.02× 107

8.04× 107

8.06× 107

8.08× 107

8.1× 107

8.12× 107

8.14× 107

8.16× 107

8.18× 107

8.2× 107

1000 2000 3000

M
em

o
ry

C
o
n
su
m
p
ti
o
n
in

B
y
te
s

Average Number of Grid Points

Pipeline (CG)

Figure 4.14.: Evaluation of the memory consumption of the conjugate gradients-based
approach inside the datamining pipeline. Since the system matrix is not
required to be loaded into memory entirely, the overall memory complexity
is dominated by the size of the dataset.
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by the size of the data itself rather than the number of points in the underlying sparse
grids.

47



5. Conclusion and Future Work

Over the course of this thesis, density-estimation based classifiers operating on sparse
grids have been successfully integrated into the datamining pipeline of the SG++
toolbox. This involved implementing suitable model classes into the pipeline as
well as refactoring algorithmic modules, in order to fit the concept of the pipeline.
State instances are now controlled by the model instances rather than the algorithmic
components.

Additionally, density estimation models were made accessible to the end-user by
implementing them as standalone modules into the dataminig pipeline as well. These
include a model that relies on factorizing the system matrix in order to obtain the
density function together with a conjugate gradients-based approach. To enhance the
runtime performance of density estimation approaches employing matrix factorization,
a database system to utilize precomputed factorizations for common scenarios has been
introduced.

Evaluations have proven the models to maintain the performance of their previ-
ous implementation in terms of classification accuracy as well as time and memory
complexity of the training process apart from neglectable overhead produced by the
pipeline framework itself. For big datasets and data-based refinement strategies, the
runtime behaviour of the methods could even be enhanced.

Further improvements to the classification models could be done by parallelizing
the learning process inside the pipeline. Such concepts have already been elaborated
and implemented previously by Vincent Bode in [2] and could be transfered to the
classification model of the datamining pipeline.
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Avg. grid size Avg. accuracy
Accuracy

uncertainty
Avg. runtime

online / offline (s)

Runtime
uncertainty

online / offline (s)

414.50 0.8855 0.0038
0.2801/
0.0000

0.0119/
0.0000

439.40 0.8846 0.0042
0.2939/
0.0000

0.0185/
0.0000

532.70 0.8898 0.0044
0.3488/
0.0001

0.0204/
0.0003

742.50 0.8909 0.0041
0.5443/
0.0100

0.0273/
0.0000

1161.40 0.8819 0.0035
1.1951/
0.1444

0.0943/
0.0054

2192.50 0.8732 0.0071
4.2503/
2.1392

0.2073/
0.0413

Table A.1.: Runtime and accuracy measurements of the pipeline implementation of
Online-/Offline Splitting-based methods on the Ripley-Garcke dataset

Avg. grid size Avg. accuracy
Accuracy

uncertainty
Avg. runtime

online / offline (s)

Runtime
uncertainty

online / offline (s)

340.54 0.8953 0.0028
0.0689/
0.0000

0.0111/
0.0000

371.63 0.8981 0.0049
0.0803/
0.0000

0.0043/
0.0000

457.01 0.8905 0.0050
0.1332/
0.0000

0.0136/
0.0000

654.42 0.8902 0.0060
0.2834/
0.0112

0.0318/
0.0013

1109.22 0.8848 0.0056
0.8930/
0.1526

0.0610/
0.0102

2139.51 0.8763 0.0067
3.9639/
2.2733

0.4294/
0.1499

Table A.2.: Runtime and accuracy measurements of the previous implementation of
Online-/Offline Splitting-based methods on the Ripley-Garcke dataset
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Avg. grid size Avg. accuracy
Accuracy

uncertainty
Avg. runtime (s)

Runtime
uncertainty (s)

480.55 0.9014 0.0041 1.6555 0.1610
493.75 0.8951 0.0059 1.8634 0.1670
666.75 0.8980 0.0071 2.4738 0.2792
848.75 0.8860 0.0035 2.9567 0.3272
1247.10 0.8839 0.0051 4.3123 0.3677
2253.70 0.8727 0.0046 7.3554 0.5801

Table A.3.: Runtime and accuracy measurements of the pipeline implementation of
conjugate gradient-based methods on the Ripley-Garcke dataset

Avg. grid size Avg. accuracy
Accuracy

uncertainty
Avg. runtime (s)

Runtime
uncertainty (s)

352.00 0.8948 0.0029 1.5272 0.1966
381.30 0.9000 0.0041 1.6012 0.1664
470.60 0.8925 0.0054 2.0046 0.1853
688.50 0.8898 0.0050 2.8423 0.3798
1127.10 0.8861 0.0033 4.4174 0.3400
2153.60 0.8774 0.0060 7.6103 0.6684

Table A.4.: Runtime and accuracy measurements of the previous implementation of
conjugate gradient-based methods on the Ripley-Garcke dataset

Avg. grid size Avg. accuracy
Accuracy

uncertainty
Avg. runtime

online / offline (s)

Runtime
uncertainty

online / offline (s)

465.60 0.9650 0.0021
0.4749/
0.0000

0.0161/
0.0000

507.30 0.9658 0.0040
0.5086/
0.0000

0.0175/
0.0000

659.90 0.9688 0.0033
0.6840/
0.0000

0.0460/
0.0000

846.60 0.9637 0.0031
0.9681/
0.0101

0.0407/
0.0003

1285.60 0.9630 0.0046
1.9444/
0.1406

0.0841/
0.0043

2273.00 0.9605 0.0017
6.2499/
2.1131

0.2157/
0.0207

Table A.5.: Runtime and accuracy measurements of the pipeline implementation of
Online-/Offline Splitting-based methods on the Two Moons dataset
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Avg. grid size Avg. accuracy
Accuracy

uncertainty
Avg. runtime

online / offline (s)

Runtime
uncertainty

online / offline (s)

376.57 0.9631 0.0022
0.1095/
0.0000

0.0167/
0.0000

414.11 0.9636 0.0028
0.1309/
0.0000

0.0151/
0.0000

538.86 0.9638 0.0030
0.2524/
0.0000

0.0574/
0.0000

748.25 0.9622 0.0036
0.4796/
0.0105

0.0768/
0.0011

1200.09 0.9614 0.0033
1.4053/
0.1459

0.1590/
0.0083

2228.94 0.9598 0.0039
5.8331/
2.2086

0.8007/
0.1869

Table A.6.: Runtime and accuracy measurements of the previous implementation of
Online-/Offline Splitting-based methods on the Two Moons dataset

Avg. grid size Avg. accuracy
Accuracy

uncertainty
Avg. runtime (s)

Runtime
uncertainty (s)

465.95 0.9640 0.0024 2.4360 0.1585
488.05 0.9632 0.0022 2.6533 0.1446
637.90 0.9643 0.0035 3.7241 0.3803
841.65 0.9628 0.0028 4.6031 0.3441
1257.25 0.9625 0.0024 7.1039 0.6387
2258.85 0.9588 0.0036 11.8249 0.6405

Table A.7.: Runtime and accuracy measurements of the pipeline implementation of
conjugate gradients-based methods on the Two Moons dataset

Avg. grid size Avg. accuracy
Accuracy

uncertainty
Avg. runtime (s)

Runtime
uncertainty (s)

368.70 0.9647 0.0029 2.2242 0.2973
414.20 0.9652 0.0035 2.3035 0.2255
489.50 0.9647 0.0036 2.8577 0.4055
695.00 0.9652 0.0026 3.9426 0.3955
1141.10 0.9630 0.0029 6.1578 0.4825
2165.80 0.9607 0.0031 10.8836 0.6818

Table A.8.: Runtime and accuracy measurements of the previous implementation of
conjugate gradients-based methods on the Two Moons dataset.
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Avg. grid size Avg. accuracy
Accuracy

uncertainty
Avg. runtime

online / offline (s)

Runtime
uncertainty

online / offline (s)

762.67 0.8219 0.0027
53.4016/

0.0000
4.0137/
0.0000

1005.67 0.8390 0.0055
73.7837/

0.0020
3.5992/
0.0000

1477.33 0.8376 0.0072
82.6631/

0.1433
5.5665/
0.0049

3553.67 0.8863 0.0005
144.1860/

5.9217
6.2422/
0.0742

Table A.9.: Runtime and accuracy measurements of the pipeline implementation of
Online-/Offline Splitting-based methods on the DR-10 dataset.

Avg. grid size Avg. accuracy
Accuracy

uncertainty
Avg. runtime

online / offline (s)

Runtime
uncertainty

online / offline (s)

850.67 0.8361 0.0076
170.5783/

0.0000
1.7757/
0.0000

1186.00 0.8552 0.0001
221.4463/

0.0020
0.7872/
0.0000

1655.00 0.8543 0.0003
300.5573/

0.1463
1.2353/
0.0031

3561.00 0.8867 0.0000
490.3910/

5.9860
2.6678/
0.1217

Table A.10.: Runtime and accuracy measurements of the previous implementation of
Online-/Offline Splitting-based methods on the DR-10 dataset.

Avg. grid size Avg. accuracy
Accuracy

uncertainty
Avg. runtime (s)

Runtime
uncertainty (s)

744.00 0.8270 0.0040 62.1821 2.5060
887.00 0.8286 0.0057 68.4133 7.8965

1544.00 0.8530 0.0082 103.6683 3.3741
3208.67 0.8556 0.0121 157.2517 7.3188

Table A.11.: Runtime and accuracy measurements of the pipeline implementation of
conjugate gradients-based methods on the DR-10 dataset.
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Avg. grid size Memory (Bytes)
387.00 4784000
402.00 5181000
541.00 9257000
685.00 14680000
1131.00 39480000
2215.00 150200000

Table A.12.: Memory measurements of the pipeline implementation of Online-/Offline
Splitting-based methods on the Ripley-Garcke dataset.

Avg. grid size Memory (Bytes)
337.80 4091000
373.00 5132000
460.60 7295000
656.10 14750000
1111.80 38840000
2135.40 140000000

Table A.13.: Memory measurements of the previous implementation of Online-/Offline
Splitting-based methods on the Ripley-Garcke dataset.

Avg. grid size Memory (Bytes)
456.00 432600
470.00 434700
685.00 547500
850.00 643100
1222.00 830100
2254.00 1377000

Table A.14.: Memory measurements of the pipeline implementation of conjugate
gradients-based methods on the Ripley-Garcke dataset.
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Avg. grid size Memory (Bytes)
338.00 322100
379.00 340100
525.00 416500
656.00 475500
1118.00 703500
2139.00 1197000

Table A.15.: Memory measurements of the previous implementation of conjugate
gradients-based methods on the Ripley-Garcke dataset.

Avg. grid size Memory (Bytes)
455.00 6487000
488.00 7524000
595.00 11010000
843.00 22000000
1292.00 50880000
2324.00 164900000

Table A.16.: Memory measurements of the pipeline implementation of Online-/Offline
Splitting-based methods on the Two Moons dataset.

Avg. grid size Memory (Bytes)
379.40 5465000
443.90 9187000
532.40 10890000
752.90 20900000
1212.80 48040000
2242.70 159900000

Table A.17.: Memory measurements of the previous implementation of Online-/Offline
Splitting-based methods on the Two Moons dataset.
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Avg. grid size Memory (Bytes)
387.00 377400
488.00 417300
618.50 502900
869.00 626500
1222.00 806200
2280.00 1362000

Table A.18.: Memory measurements of the pipeline implementation of conjugate
gradients-based methods on the Two Moons dataset.

Avg. grid size Memory (Bytes)
355.00 329000
374.00 337800
475.00 380300
720.00 514500
1142.00 714000
2204.00 1224000

Table A.19.: Memory measurements of the previous implementation of conjugate
gradients-based methods on the Two Moons dataset.

Avg. grid size Memory (Bytes)
834.00 86140000
1076.00 100000000
1776.00 157700000
3535.00 441500000

Table A.20.: Memory measurements of the pipeline implementation of Online-/Offline
Splitting-based methods on the DR-10 dataset.

Avg. grid size Memory (Bytes)
851.00 100100000
1186.00 120200000
1655.00 160100000
3561.00 457200000

Table A.21.: Memory measurements of the previous implementation of Online-/Offline
Splitting-based methods on the DR-10 dataset.
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Avg. grid size Memory (Bytes)
779.00 81140000
787.00 81140000

1338.00 81140000
3116.00 81140000

Table A.22.: Memory measurements of the pipeline implementation of conjugate
gradients-based methods on the DR-10 dataset.
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