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FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Task Based Parallelization of the Fast Multipole
Method implementation of ls1-mardyn via

QuickSched

Task-basierte Parallelisierung der
Implementierung der Fast Multipole Methode von

ls1-mardyn via QuickSched

Author: Fabio Alexander Gratl

Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz

Advisor: Nikola Tchipev, M.Sc.

Date: November 15, 2017





I confirm that this master’s thesis is my own work and I have documented all sources and
material used.

Munich, November 15, 2017 Fabio Alexander Gratl





Acknowledgements

At this point, I want to express my gratitude to the people who supported me throughout
this thesis. First of all to the chair for scientific computing and Professor Hans-Joachim
Bungartz for offering me the possibility for this thesis and providing me access to all the
computing platforms used. Also, a big thank you goes to Nikola Tchipev for his guidance,
patient explanations, inspiring discussions, and constructive feedback over the course of this
project. Last but not least, I want to thank Josefine for her continuous support and helpful
input all around the clock.

vii



viii



Abstract

The Fast Multipole Method is an algorithm for computing long-range interactions in
N−body problems in linear computational complexity. Since it consists of many individual
parts per time step, even optimized fork-join approaches using OpenMP carry a significant
synchronization overhead [AMP+13]. However, these parts do not need to be executed
completely after each other, instead, an interweaving is possible. Therefore, task based
approaches with a dynamic dependency model are good candidates for parallelization.

This thesis describes a task based, shared memory parallelization of the implemen-
tation of the Fast Multipole Method in the large-scale molecular dynamics code ls1-
mardyn [NBB+14][Eck14]. Since the approach aims for a maximal scheduling flexibility, the
QuickSched library was chosen to create and execute tasks as explicit tasks provided by
OpenMP 4.5 are not dynamic enough to model the required dependencies [Gal16].

The approach is tested with a range of parameter configurations and on two different
architectures, namely Intel Ivy Bridge and the new state-of-the-art Intel Xeon Phi Knights
Landing.

Through a detailed analysis of the scheduling and scaling behavior it is shown that the
here presented approach can achieve good parallel performance, but is highly dependent on
a good choice of parameters for the Fast Multipole Method.
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Zusammenfassung

Die Fast Multipole Methode ist ein Algorithmus zur Berechnung der Interaktionen in-
nerhalb eines N−Körper-Problems über große Distanzen in linearer Rechenkomplexität.
Da der Algorithmus pro Zeitschritt aus vielen Einzelschritten besteht, bringen auch opti-
mierte fork-join Ansätze, welche OpenMP nutzen, einen signifikanten Mehraufwand durch
die erforderliche Synchronisation [AMP+13]. Da diese Einzelschritte jedoch nicht streng
nacheinander ausgeführt werden müssen, ist es möglich diese ineinander zu verflechten.
Daher sind task-basierte Ansätze mit dynamischen Abhängigkeiten gute Kandidaten für
eine Parallelisierung.

Die vorliegende Arbeit beschreibt eine task-basierte Parallelisierung mit geteiltem Speicher
für die Implementierung der Fast Multipole Methode im Molekulardynamikcode ls1-mardyn
[NBB+14][Eck14]. Weil der Ansatz auf maximale Flexibilität während des Schedulings
abzielt, wurde die QuickSched Bibliothek gewählt, da explizite Tasks von OpenMP 4.5 nicht
dynamisch genug sind um die erforderlichen Abhängigkeiten abzubilden [Gal16].

Der Ansatz wird mit einer Reihe von Parameterkonfigurationen auf der Intel Ivy Bridge
sowie der modernen Intel Xeon Phi Knights Landing Architektur getestet.

Durch eine detaillierte Analyse des Scheduling- und Skalierungsverhaltens wird gezeigt,
dass der vorgestellte Ansatz gute parallele Leistung erzielen kann, diese aber jedoch stark
abhängig ist von einer guten Wahl der Parameter für die Fast Multipole Methode.
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Introduction and Background
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1. Introduction

Large-scale molecular dynamics simulations are nowadays able to replicate the behavior of
trillions of molecules to on a realistic level [EHB+13]. Therefore, they have become highly
useful tools in different fields of science like molecular biology [KDFB04], thermodynamics
[DES+11], chemistry [vGB90], or material studies [Bin95]. They can be employed to analyze
or predict properties and processes on a molecular level under exactly specifiable and
reproducible parameters.

However, since molecular dynamics simulations determine the behavior of a particle by
evaluating its interactions with all other particles, they are by their definition, an N−body
problem. Naively, this class of problems has a computational complexity of O(N2) since every
particle interacts with all others. While efficient algorithms for short-range interactions have
are already been established for some time [Pli95], the same cannot be said for long-range
interactions. Approaches with good asymptotical computational complexity have been
developed, like the Ewald-Summation, which lies in O(N

3
2 ), or its further development, the

P3M, lying in O(N log(N)). Also, tree-based approaches like the Fast Multipole Method
with a complexity of O(N) were published. Yet, asymptotical complexity is not the only
thing to consider in practice, which is why especially the Fast Multipole Method was and
still is subject to critical analysis. For example, [PG96] compares the P3M, Fast Multipole
Method, and Ewald-Summation, concluding:

”The FMM is a second choice for all system sizes both in terms of speed and
program complexity”

Ten years later, [KP06] arrives at the conclusion:

”[...] the FMM is commonly overestimated in its complexity and underestimated
in its performance.”

With the desire to simulate ever-growing numbers of molecules the need for linearly scaling
algorithms rises even further.

Although Moore’s Law, which can be translated to the speed of new CPUs doubling
approximately every two years, is still in effect, it is not anymore due to an increase in
frequencies, but by the fact that more and more compute cores are fitted on modern
processors. Over the last years processors containing 64 cores and more are becoming more
and more available and are employed in supercomputers. Most prominently, processors with
high core counts are used, the number one of the top 5001, the Sunway TaihuLight at the
National Supercomputing Center in Wuxi2.

This trend requires a paradigm shift in code and software design to more parallel algorithms.
Also, when greater amounts of memory are needed, as it is the case in large-scale simulations,

1https://www.top500.org
2http://www.nsccwx.cn
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shared memory parallelizations should be considered to avoid duplication of data and
overhead by communication.

For these reasons, this thesis explores the potential of a shared memory parallelization of
the Fast Multipole Method in the molecular dynamics simulation ls1-mardyn.
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2. Theoretical Background

Molecular dynamics simulations bring together the fields of molecular chemistry and computer
science. Here, the necessary theoretical background shall be explained. This covers the
underlying physical processes on the one hand and the applied algorithms that allow for
efficient computation of the problem on the other hand.

2.1. Intermolecular Potentials

Before discussing the Fast Multipole Method, the relevant intermolecular potentials need to
be defined. Here, only pairwise potentials are considered and their effects are assumed to
be exactly additive. Those potentials can be divided into short- and long-range potentials
depending on how their influence decreases on with growing distance between interacting
particles.

2.1.1. Lennard-Jones Potential

The Lennard-Jones Potential ULJ , also-called the L-J Potential or 12-6 Potential, was first
proposed in 1924 by John Lennard-Jones and John Edward [LJ24]. It is a very simple
mathematical model for attracting forces, like van der Waals or London dispersion forces,
and repulsive forces, like Pauli repulsion, between two particles. According to these forces,
particles induce a repulsive potential, which declines with spacial distance and can be seen
in Figure 2.1. When a certain distance ε is reached, the potential turns into an attractive
force growing with further distance up to a value sigma. After that, the potential converges
to zero with more spacial separation[LJ31].

ULJ(P1, P2) = 4ε

(( σ
R

)12
−
( σ
R

)6)
(2.1)

In Equation 2.1, R is the distance between the particles P1 and P2. The ε represents the
minimal potential between the particles and σ the spacial distance where attractive and
repulsive forces cancel out exactly.

For small R the minuend is the dominant part of the term due to its larger exponent,
which is why it can be seen as the repulsive term. Conversely, the subtrahend is dominant for
larger R, what makes it the attractive term. A visualization of this can be seen in Figure 2.1
for ε = 1 and σ = 1.

Due to its computational simplicity and fairly good approximation of interparticle forces,
it is often used in molecular dynamic simulations [GKZ07].

Since molecules consisting of several particles become more complex, several so-called
Lennard-Jones centers are considered per molecule, which are points in the molecule from
where the potential is calculated. When computing the Lennard-Jones potential between two

4



2.1. Intermolecular Potentials

two-centered molecules, all pairwise interactions except the interactions within the molecules
need to be considered. An example of this situation is depicted in Figure 2.3. An increased
number of Lennard-Jones centers exponentially increases the number of calculations necessary
since for n molecules with m centers each O(nm) computations need to be executed.

Figure 2.1.: Profile of the Lennard-Jones Potential for ε = 1 and σ = 1.
Source: http://atomsinmotion.com/book/chapter5/md

Figure 2.2.: Cutoff radius around a
molecule (red circle). Only
blue molecules are considered
for force calculation.
Source: [TWG+15]

Figure 2.3.: Interactions between multi-
centered molecules. Blue discs
represent Lennard-Jones cen-
ters, dashed arrows interac-
tions.
Source: [Gra17]

2.1.2. Electrostatic Potential

The Coulomb Potential is one of the fundamentals of electrostatics. It was discovered by
Charles Augustin de Coulomb in 1785 [Cou85].

UC(q1, q2) =
1

4πε0
· q1 · q2

R
(2.2)

ε0 in the first fraction of Equation 2.2 is the so-called vacuum permittivity and the whole
fraction is called Coulomb’s constant, which roughly evaluates to 8.99 · 109Nm2C−2. Both

5
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2. Theoretical Background

q1 and q2 are point charges or charges spread over separated spheres and R is the distance
between their centers.

There is also the possibility of several charges distributed over one molecule, the most
common example being a water molecule [Ran09]. The equations for how the influence of
these dipoles or quadrupoles can be calculated are stated in [Eck14] or more in-depth in
[GGJ11].

2.2. Linked-Cell Algorithm

In Chapter 1 it was mentioned that the calculation of forces in molecular dynamic simulations
is an N−body problem since theoretically, every particle induces a potential on every other
one. Thereby, the naive direct computation results in a computational complexity of O(N2),
which is not to be desired.

As explained in Subsection 2.1.1, the attractive part of the Lennard-Jones Potential decays
rapidly with increasing distance between the interacting particles because of its sixth power.
This results in a negligible potential between particles which are far apart. Therefore, the
Lennard-Jones Potential can be considered a near-field force.

This property is exploited by the Linked-Cell algorithm, which reduces the particles to
be considered for each particle only to those in a fixed cutoff radius rc. Beyond this, the
potential between the particles is sufficiently small to not induce a significant error.

For ease of addressing the single molecules, the domain is subdivided into cells. These do
not necessarily need to be of uniform size but for the sake of simplicity and to be in line
with the current implementation of ls1-mardyn a uniform cell size is assumed. The length
of these cells is typically rc, so only all neighbor cells, including diagonal neighbors, need
to be searched when looking for particles inside of the cutoff range. This is visualized in
Figure 2.2. Smaller cell sizes lead to more cells to be considered but also to less unnecessary
distance calculations as the finer grid better approximates the cutoff radius [Eck14].

Since only a constant number of cells needs to be considered for each cell and the number
of cells is typically chosen proportional to the number of particles N , the computational
complexity of the Linked-Cell Algorithm lies in O(N).

2.3. Fast Multipole Method

Not all potentials decay as fast over distance as the Lennard-Jones potential and must
therefore also be taken into account for distant particles. An example is the Coulomb
potential, which was explained in Subsection 2.1.2.

Calculating the potential between all particles directly would naively again result into a
problem of complexity in O(N2), whereby N is the total number of particles in the system.
In order to tackle this, Leslie Greengard and Vladimir Rokhlin in 1987 proposed the Fast
Multipole Method [GR87], which applies certain simplifications reducing the complexity
down to O(N).

Another notable approach is the Ewald-Summation, the oldest algorithm for efficiently
calculating long-range potentials, which was proposed in 1921 by Paul Peter Ewald [Ewa21].
It works on the idea of splitting potentials into a short-range and a long-range contribution
by introducing a cutoff radius. The short-range contribution can be calculated in linear time,

6



2.3. Fast Multipole Method

for example by the Linked-Cell Algorithm. Since the long-range contribution is a smooth
function it can be evaluated in Fourier space by only looking at the first few coefficients of
the transform as these low-frequency components dominate [Eck14]. It is also important
to acknowledge that by using the Fourier transform, an infinite number of periodic images
is considered implicitly, which leads to a very high accuracy of this method. However, as
shown in [Fin94], the optimal computational complexity for the Ewald-Summation is O(N

3
2 ),

which makes it suboptimal for huge simulations.
Commonly employed improvements of the Ewald-Summation are the Particle-Particle-

Particle-Mesh (P3M) [EHL80] and later the Particle-Mesh-Ewald (PME) [DYP93]. Both
apply interpolations to obtain a grid for the charges and then perform fast Fourier transforms.
This results in an improved complexity of O(N log(N)).

A detailed comparison of accuracy and actual run-time between the Ewald-Summation, the
Particle-Mesh-Ewald, and the Fast-Multipole-Method was made in [Pet95]. It is concluded
that starting from about 105 particles the Fast-Multipole-Method seems to be faster but
the Particle-Mesh-Ewald’s accuracy prevails. However, it needs to be noted that this study
is from 1995 when the Fast-Multipole-Method was rather new. Also, various choices in
the implementation make it difficult to compare different Fast-Multipole-Method codes. In
[KP06] a more recent analysis of such choices is made. Furthermore, the authors argue, that
the Fast Multipole Method is also a good choice for long simulations of smaller systems.

2.3.1. Intuition

The first idea of the Fast Multipole Method is to split the contributing long-range forces in
near- and far-field interactions depending on the spacial distance between the source and
target particles.

Φ = Φnear + Φfar (2.3)

Near-field interactions Φnear need to be calculated directly, for example by means of the
Linked-Cell Algorithm described in Section 2.2 in O(N) by defining a cutoff radius.

Far-field interactions Φfar work on the idea that clustered particles can be combined into
one virtual pseudo-particle. This can be done by using the multipole and local expansion
which are derived in [GR87] with spherical harmonics, and for the three-dimensional case in
[GR88]. In order to computationally simplify the calculations, the algorithm can also be
formulated using solid harmonics, which are derived from the spherical harmonics, which is
explained in [Ell95].

Figure 2.4 visualizes how the multipole and local expansion approximate the exact potential.
The particles p1 and p2 induce potentials at r = 1 and r = −1, respectively, which is depicted
by the green graph. This is the potential that needs to be approximated. Using the multipole
expansion, a pseudo-particle m is created at r = 0, which approximates the two previous
particles. Its potential is represented by the red graph. However, it must be considered that
the quality of the approximation by the red graph for the green one increases with distance
to m and is only sufficiently good after a certain distance from the pseudo-particle. This
means, that the multipole expansion is only a good approximation of the real potential for
interactions from a certain distance. The converse is true for the local expansion, which
is depicted by the blue line. It is only a good approximation for the direct vicinity of the
pseudo-particle.

7



2. Theoretical Background
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Figure 2.4.: Profiles of the exact potential (green), the approximation by the multipole
expansion (red), and by the local expansion (blue) relative to spacial distance r.
Source: Based on a similar figure by Nikola Tchipev.

Using these expansions, a tree can be constructed by first grouping particles to multipole
expansions and then group those expansions to larger multipole expansions. In the two-
dimensional case, this results in a quadtree or an octree in three-dimensions. To compute
interactions between the nodes of the tree, special operators need to be used. Since this thesis
is mainly concerned with the parallelization of the Fast Multipole Method its mathematical
details and the definition of the operators will not be discussed. The interested reader
is therefore redirected to the sources mentioned above and especially to [Gal16], whose
description matches the here used variation of the Fast Multipole Method best.

2.3.2. Algorithm

The whole Fast Multipole Method, can be divided into five major steps. Some of those steps
can be executed concurrently but for the sake of simplicity, the sequential version shall be
presented for now.

The original terminology from [GR87] only separates the Algorithm in an Upward- and
Downward Pass. To stress the importance of the actual calculations of interactions between
pseudo particles for this thesis, this part of the Downward Pass is here described as the
Horizontal Pass.

For this explanation, a rectangular domain is assumed, which is structured in cells and
has an arbitrary distribution of particles.

Upward Pass

The idea of the first phase is to propagate the information of particles up the tree of
expansion, hence, it is called the Upward Pass. First and foremost the information of all
particles need to be pooled to multipole expansions. This can either be done by an adaptive
cluster-finding approach or simper by using a rigid grid of cells, which is assumed here. For
every cell, a multipole expansion is created using the particle-to-multipole (P2M ) operator.

8



2.3. Fast Multipole Method

Figure 2.5.: Contributions of (pseudo-) particles to expansions during the Upward Pass.
From left to right (pseudo-) particles (black) are hierarchically aggregated to
pseudo particles (red) that represent a bigger part of the domain, starting with
the real particles in the right. Red borders show the size of the cell the respective
red pseudo-particle covers.

Subsequently, the following levels of the tree can be constructed. Every new multipole
expansion combines 2d, here four, expansions of the previous level in the pattern visualized
in Figure 2.5. The creation of a multipole expansion from others is done by the means of
the multipole-to-multipole (M2M ) operator. This process is repeated recursively until only
one multipole expansion representing the whole domain is constructed.

Horizontal Pass

With all multipole expansions updated, their influence on the local expansions can be
calculated. This operation is done with the multipole-to-local (M2L) operator. Here, the
multipole expansion is used to simulate the effect of the potential of a distant cluster on
a local target, which is approximated by the local expansion. As described in Figure 2.4,
this uses the optimal properties of both expansions. Since the multipole expansion is not a
good approximation for short distances, only cell pairs that are separated by a Chebyshev
distance greater than one are considered. Figure 2.6 colors these ignored cells in white. Cells
with a Chebyshev distance greater one shall be called well-separated.

The first tree level to have enough cells to compute M2L operations contains four cells
per dimension, as seen in the left part of Figure 2.6. This results for every cell on the next
level in an area whose potentials have already been considered at the previous level. In the
right part of Figure 2.6 this is depicted by the gray area.

The M2L operation can, for uniform grids, be significantly accelerated by calculating it in
the Fourier space, which is described in detail in [Gal16]. For the Fast Multipole Method
Algorithm, this has no further consequences except the transform of the source and target
cell to and from Fourier space right before and after the M2L operation.

Downward Pass

After the Horizontal Pass, every local expansion contains the influence of all well-separated
multipole expansions in a radius of Chebyshev distance of three on the same level. The goal

9



2. Theoretical Background

Figure 2.6.: Patterns for M2L operations. All cells who are not well-separated from the
target cell and whose influence was not yet propagated to the target are included.
Left: All well-separated multipole expansions (blue cells) are taken into account
for the target local expansion (red). Direct neighbors (white) are ignored.
Right: On the next level only the direct expansions within the neighbors from
the level before need to be considered. Not well-separated neighbors are ignored
again.

is for the local expansions on the leaf level to contain the full influence of all long-range (=
well-separated) interactions. For this, the information of all local expansions that overlap
over the levels need to be propagated to the leaf level using the local-to-local (L2L) operator.
This process is visualized by the left and middle part of Figure 2.7. Every (pseudo-) particle
represents its respective cell, which is confined by a line in the same color as the particle.
Black source pseudo-particles propagate their information to the red target pseudo-particles.
Traversing the tree, this scheme incorporates the influence of every well-separated multipole
expansion on every local expansion.

Finally, since the first part of the Downward Pass aggregates all necessary information in
the leaf cells of the expansion tree, the influences on the real particles can be calculated
from their respective local expansions. For this, the local-to-particle (L2P) operator is used.

Near-Field Evaluation

The evaluation of all far-field interactions have left an area around every cell that is not yet
accounted for, which corresponds to the white area seen in Figure 2.6 on the lowest level.
This area shall be what is considered in the near-field Evaluation. This is essentially a direct
evaluation of all pairwise particle interactions. The operator computing all interactions
between two cells is called particle-to-particle (P2P).

10



2.3. Fast Multipole Method

Figure 2.7.: Contributions of (pseudo-) particles to expansions during the Downward Pass.
From left, representing the top of the tree, to right, representing the real particle
level, (pseudo-) particles (red) are updated by local expansions (black).

Pseudo-Code Implementation

The detailed description from above can also be formulated as a pseudo code as seen in
Algorithm 1.

2.3.3. Computational Complexity

As mentioned in the Introduction, the calculation of particle interactions in molecular
dynamics simulation is an N−body problem. The direct computation of all pairs has a
complexity of O(N2) where N is the number of particles in the system since every particle
has to interact with every other.

An improvement to the computational complexity can be achieved by exploiting the idea
of only calculating long-range interactions to pseudo-particles instead to all individual real
particles. Clustering particles to pseudo-particles, for example by employing the multipole
expansion, results in a tree of height O(log(K)) where K is the number of cells in the domain
on the last level.

Let sd be the subdivision factor of the tree which is depending on the number of dimensions
considered in the simulation. Every cell is divided into two cells per dimension:

s(d) = 2d (2.4)

For the three-dimensional case considered here s3 = 8 which produces an octree. The
number of nodes in such a tree is given by a geometric series:

11



2. Theoretical Background

Algorithm 1: Fast Multipole Method

Input: d dimensional Domain D containing particles P structured as cell grid

// Upward Pass

1 foreach cell do
2 foreach particle in cell do
3 Build leaf level multipole covering all particles in the cell using P2M

4 for level ← maxLevel to 0 do
5 for m← 0 to multipolesInLevel by 2d do
6 Build multipoles from 2d adjacent multipoles using M2M

// Horizontal Pass

7 for level ← maxLevel to 0 do
8 foreach Multipole mt do
9 foreach Multipole ms ← radiusChebyshev(mt,ms) ≤ 3

and radiusChebyshev(mt,ms) > 1 do
10 Compute local expansion using M2L from ms to mt

// Downward Pass

11 for level ← 2 to maxLevel do
12 foreach Multipole mt do
13 Add contribution of parent(mt) local expansion to local expansion of mt

using L2L

// Far-Field

14 foreach cell do
15 foreach particle in cell do
16 Evaluate far-field influence of local expansion corresponding to this cell using

L2P

// Near-Field

17 foreach cell ct do
18 foreach cs ← neighbor cells and ct do
19 foreach particle pt ← ct do
20 foreach particle ps ← cs do
21 Calculate pair-wise interaction using P2P

12



2.3. Fast Multipole Method

logs(d)(K)∑
i=0

s(d)i =
1− slogs(d)(K)+1

1− s(d)
(2.5)

=
1− s(d) · s(d)logs(K)

1− s(d)
(2.6)

=
1− s(d) ·K

1− s(d)
(2.7)

As s(d) is constant for a given scenario, Equation 2.7 lies in O(K). Since K is typ-
ically chosen proportionally to N and typically K � N , it can safely be assumed that
asymptotically O(K) ∈ O(N).

Not every tree node can interact with every particle since expansions that include the
particle or are not well-separated to it must be disregarded or included via near-field
evaluations. However, if all single particles are targets like in the middle part of Figure 2.8,
it is still necessary to traverse the whole height of the tree for every particle. Thereby this
only reduces the complexity to O(N · log(N)). An example of an algorithm that is similar
to this approach is the Barnes-Hut algorithm proposed by Josh Barnes and Piet Hut in 1986
[BH86].

Based on this, the advantage of the Fast Multipole Method is that it also clusters the
targets for the long-range interactions by using the local expansion. The differences in the
approaches are visualized in Figure 2.8. In this Figure, it can be seen that the interaction
between two pseudo-particles can be calculated in constant time. However, also the creation
of the pseudo-particles need to be accounted for. Greengard and Rokhlin show in their
initial paper [GR87] that this can be done in O(M) where M is the number of particles
the pseudo-particle represents. This number is constant for all but the leaf level due to
the tree structure. For the leaf level, it can also assumed to be constant, since the number
of multipole expansions, like the number of cells K is typically chosen proportional to N .
Therefore it can be concluded that M ∈ Θ(1).

Like K, M is typically proportional to N and M � N which is why it can also be assumed
that asymptotically O(M) ∈ O(N).

Consequently, when factoring in that the M2L-operator consumes constant time and is
for every target cell executed 6d − 3d times, the whole Horizontal Pass, line 7 in Algorithm 1
can be computed in O(N).

The same complexity is true for the second part of the Upward Pass, starting in line 4,
and the Downward pass in line 11, since they both traverse the whole tree of size O(N).

However, since in the end, every particle needs to be accounted for and updated there
need to be parts of the algorithm which traverse over the whole particle set and therefore
have a complexity of O(N). These are the first part of the Upward Pass in line 1 and the
far-field evaluation from line 14. Also, when assuming to use a Linked-Cell algorithm for
the near-field computation, the complexity of the last part of the algorithm, starting from
line 17, lies in O(N).

So to sum up, all loops in Algorithm 1 are in O(N), therefore the whole algorithm for the
Fast Multipole Method is in O(N).
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2. Theoretical Background

Figure 2.8.: Interaction techniques for long-range particle interactions.
Left: Naive pairwise interaction O(N2).
Middle: Clustering distant sources to one pseudo-particle (red) O(N).
Right: Clustering both sources and targets to pseudo-particles (red) O(1).
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3. Description of Tools

This thesis was made using the already existing codes of the task based parallelization
framework QuickSched and the molecular dynamics code ls1-mardyn. QuickSched was
chosen because of its high flexibility and simplicity. The main target platform was a new
Xeon Phi processor of the Knights Landing architecture. However, also Ivy Bridge processors
were used to compare the impact of the architecture.

3.1. QuickSched

The library QuickSched is a tool for parallelizing code by the means of subdividing it into
tasks.

It was developed by Pedro Gonnet1,2, Aidan B.G. Chalk1, and Matthieu Schaller3. They
also work on SPH With Inter-dependent Fine-grained Tasking (SWIFT)4, which is an
open-source astrophysics simulation by the Institute for Computational Cosmology (ICC)5

and the Institute of Advanced Research Computing (IARC)6 at the University of Durham.
The QuickSched library is the result of the back-port of a task based parallel approach for
smoothed particle hydrodynamics in SWIFT [Gon15].

Written in C, QuickSched can be used with either OpenMP or POSIX Threads (Pthreads)
as the underlying threading mechanism. For this thesis, OpenMP was used exclusively.

The distinguishing feature of QuickSched is its ability to model tasks that cannot be
executed concurrently, but whose order of execution is irrelevant, by the means of lockable
resources. This makes it more flexible than for example the explicit task mechanism
offered by the current OpenMP version 4.57. Furthermore, dependencies between tasks and
organization of resources through hierarchies are supported. Since this thesis only contains
a minimal introduction to QuickSched, a more detailed description of it and benchmark
results can be found in [GCS16], or for the Knights Corner architecture in [Gra17].

In QuickSched, a task is a struct which holds, among other things, information on its
dependencies and locks. The former which are the ids of the tasks it unlocks. The latter are
the ids of the resources the task locks. Additionally, each task contains an integer indicating
the type of the task, which is later used to determine what the task actually does. Also,
every task is assigned a cost upon creation or by measuring the ticks it took to finish during
the last execution.

1School of Engineering and Computing Sciences, Durham University, United Kingdom.
2Google Switzerland GmbH, Zürich, Switzerland.
3Institute for Computational Cosmology, Durham University, United Kingdom.
4http://icc.dur.ac.uk/swift
5http://icc.dur.ac.uk
6https://www.dur.ac.uk/iarc
7http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
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3. Description of Tools

Task 1
r1,r2,r5,r6

r1 r2 r3 r4

r5 r6 r7 r8

r9 r10 r11 r12

r13 r14 r15 r16

Task 4
r5,r6,r9,r10

Task 5
r6,r7,r10,r11

Task 3
r3,r4,r7,r8

Task 8
r10,r11,r14,r15

Task 2
r2,r3,r6,r7

Task 7
r9,r10,r13,r14

Task 6
r7,r8,r11,r12

Task 9
r11,r12,r15,r16

Queue 1

Queue 2

Queue 3

Figure 3.1.: Left: Domain divided into resources. Colors indicate tasks and which resources
they require.
Right: Tasks distributed over queues.

For the actual scheduling process, a weight is calculated for each task. To find the critical
path in an application the weight consists of the task’s cost and the maximum weight of all
the tasks it unlocks:

weighti = costi + max
j∈unlocksi

{weightj} (3.1)

The central component of the library is the scheduler struct. Whenever a task or resource
is generated, its id and properties are saved there. It is used to resolve dependencies between
tasks, order them according to the applications critical path, and distribute them over
queues, which are processed by the different threads. A task is added to a queue when all
its dependencies are resolved, but its resources do not necessarily have to be available at
this moment.

Figure 3.1 sketches a possible situation as it can be encountered in the code this thesis
considers. The white squares represent resources, for example, particle cells, and the colored
squares tasks that calculate interactions between cells. Each task locks all resources it
touches and evaluates these cell’s interactions. This means the purple task one and blue
task four are mutually exclusive since they both depend on the resources five and six. As no
task depends on any other task, all dependencies are resolved and all tasks are distributed
over the queues, which could result in the situation on the right of the Figure.

The distribution and ordering of the tasks inside the queues is a critical aspect since
this determines the actual scheduling. QuickSched tries to put tasks which use the same
resources in the same queues to benefit from caching. For the ordering, a so-called max-heap
is used that compares tasks by their assigned cost. This means every k-th element’s cost are
larger than the 2k + 1st and 2k + 2nd. The benefit of this structure is a lower complexity of
O(log n) for maintaining it as opposed to O(n) for a strictly sorted queue, where n is the
number of tasks in the queue. Though not providing optimal guarantees for the ordering of
the tasks, according to [GCS16] it ”[...] turns out to be sufficient in practice”.

The desired number of queues has to be provided upon initialization of the scheduler

while the number of threads used to process them has to be chosen upon execution of it.

In order to specify what the tasks actually do, the user has to define a runner() function
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3.2. ls1-mardyn

that chooses behavior according to the aforementioned task type. The required signature
and a typical body is sketched in Listing 3.1.

1 void runner ( int type , void ∗data ) {
2 switch ( type )
3 case taskType1 :
4 // do s t u f f us ing data
5 case taskType2 :
6 // do other s t u f f us ing data
7 }

Listing 3.1: General form of a typical runner() function.

Finally, if the distribution of tasks over the queues was not sufficiently balanced and a
thread finds its queue to be empty while there are still tasks to be executed, it tries to steal
a task from a randomly selected other queue.

3.2. ls1-mardyn

The molecular dynamics code for which this shared memory parallelization was written
is large systems 1 - molecular dynamics (ls1-mardyn) 8. It is currently developed by the
High Performance Computing Center Stuttgart (HLRS)9 at the University of Stuttgart, the
Laboratory for Engineering Thermodynamics (LTD)10 at the University of Kaiserslautern,
the chair for Scientific Computing in Computer Science (SCCS)11 at Technische Universität
München, the chair for Thermodynamics and Energy Technology (ThEt)12 at the University
of Paderborn, and the University of Darmstadt13.

The source code is mainly written in C++ and is publicly available as free software under
a BSD license [NBB+14].

ls1-mardyn is able to model molecule interaction based on the Lennard-Jones and Coulomb
potential to simulate van der Waals and electrostatic dipole and quadrupole forces. The
code is specialized for huge numbers of multi-centered particles that can carry multiple
charges. It was demonstrated that ls1-mardyn is highly scalable and is capable of simulating
up to 4.125× 1012 molecules [EHB+13] using Linked-Cells interaction mechanisms.

Included in ls1-mardyn is also an implementation of the Fast Multipole Method, which is
optimized by a Fast Fourier Transform acceleration [Gal16]. There also exists a distributed
memory MPI parallelization whose scalability has also already been demonstrated [Obe16].
At the moment, however, no comprehensive shared memory parallelization for ls1-mardyn’s
Fast Multipole Method is available, which is the goal of this thesis.

3.3. Computation Platforms

The QuickSched parallelization was developed for arbitrary x86 platforms. However, experi-
ments were mainly conducted on two platforms with different architectures, namely Knights

8http://www.ls1-mardyn.de
9http://www.hlrs.de/home

10http://thermo.mv.uni-kl.de
11https://www5.in.tum.de
12http://thet.uni-paderborn.de
13https://www.tu-darmstadt.de
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3. Description of Tools

Landing and Ivy Bridge, which are described below in order to be comparable.

3.3.1. CooLMUC3 / Knights Landing

The primary target platform for this thesis and on which most tests that are shown in
Part III were conducted is the CooLMUC3 14 omnipath-connected many-core cluster located
at the LRZ15. The cluster consists of 32 nodes, each with one Intel Xeon Phi 7210F processor
of the Knights Landing architecture. These processors consist of 64 x86 cores with a clock
frequency of 1.3 GHz16. Each core contains two 512 Bit wide vector processing units (VPU)
that implement the AVX-512 instruction set extension, allowing for a maximum of 32
double precision floating point operations per cycle when using fused multiply-add (FMA)
operations17. They are also capable of so-called four-way Hyper-threading, which allows for
the concurrent execution of four threads per core.

Another interesting feature is the so-called High-Bandwidth Memory (HBM), which is
16 GB of MCDRAM that is directly integrated into the processor and replaces the L3-cache.
It can be set to different operation modes to act as cache-memory, addressable memory,
or a 50/50 hybrid of the two modes. For the course of this thesis, cache mode was used
exclusively.

All these features make the Knights Landing architecture a good target for highly parallel
shared memory codes and therefore the logical target platform of this thesis.

On CooLMUC3, the Intel C/C++ Compiler (ICC) version 17.0.4 was used for compilation
and it was linked against Intel Math Kernel Library (MKL) 2017 18 update 3 for a Knights
Landing compatible implementation of the FFTW functions.

3.3.2. SuperMIC / Ivy Bridge Nodes

SuperMIC19 is part of the SuperMUC20 cluster at LRZ. It consists of 32 nodes each
comprising of two Intel Xeon E5-2650 v2 (Ivy Bridge) host processors and two Intel Xeon
Phi 5110P (Knights Corner) accelerator cards connected via PCIe 2.0. Since for this thesis
only the Ivy Bridge host processors were used, no further description of the accelerators will
be given here. For further details and ls1-mardyn’s performance using QuickSched for the
computation of short-range forces on these processors, the interested reader is redirected to
[Gra17]. The host processors were chosen to provide a reference of the performance of the
code on a more classical architecture and see the impact of the architecture.

On SuperMIC, the GNU Compiler Collection (GCC) version 7.2.0 was used for compilation
and the FFTW21 library version 3.3.3.

14https://www.lrz.de/services/compute/linux-cluster/coolmuc3
15https://www.lrz.de
16https://ark.intel.com/products/94709/Intel-Xeon-Phi-Processor-7210F-16GB-1_

30-GHz-64-core
17https://www.lrz.de/services/compute/linux-cluster/coolmuc3/overview
18https://software.intel.com/mkl
19https://www.lrz.de/services/compute/supermuc/supermic
20https://www.lrz.de/services/compute/supermuc/systemdescription
21http://www.fftw.org
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3.3. Computation Platforms

Feature CooLMUC3
SuperMIC

(host Processors)
SuperMIC

(Accelerators)

Nodes 148 32 32

Processors per
Node

1 2 2

Cores per Processor 64 8 60

Threads per Nodea 256 32 240

Vector Instruction
Extension

AVX-512 AVX KNC

Frequency [GHz] 1.3 2.6 1.05

L1 Cache [KB]
per Processor

64× 32 instr.
64× 32 data

8× 32 instr.
8× 32 data

60× 32 instr.
64× 32 data

L2 Cache [KB]
per Processor

32× 1024 8× 256 60× 512

L3 Cache [MB]
per Processor

- 20 -

Memory per Node
[GB]

96 + 16 HBM 64
8

(Per Accelerator)

Memory Bandwidth
[GB/s]

80.8 (460 for HBM) 59.7 320

Interconnect Intel Omnipath
Mellanox

Infiniband FDR14
PCIe 2.0 to host

Table 3.1.: Overview of the technical details of the used platforms. Data
taken mainly from https://www.lrz.de/services/compute/linux-cluster/

coolmuc3/overview for CooLMUC3 taken and from https://www.lrz.de/

services/compute/supermuc/supermic for SuperMIC .

aIncluding Hyper-threading
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4. Related Work

As already described in Section 2.3, it is difficult to compare specific implementations of
the Fast Multipole Method. Nevertheless, it is always good practice and beneficial to see
where similar attempts have been made and what conclusions were drawn, since task based
approaches of the Fast Multipole Method have already been made.

Detailed comparisons of state-of-the-art methods for long-range interactions like multigrid-
based-, P3M, Fast Fourier Transform based-, and the Fast Multipole Method were compared
in [AFH+13]. It is concluded that the Fast Multipole Method, although not yet widely
adopted, offers the most efficient performance and scalability. However, most of the time
the complex choice of parameters for the simulation and selected method have a significant
impact on accuracy and performance. Additionally, the authors compare the performance of
the approaches on different architectures. They report that on platforms with low processor
frequency the Fast Multipole Method outperforms all other tested algorithms.

Codes from different projects such as ExaFMM 1, which was originally developed by Rio
Yokota and Lorena A. Barba at the Boston University[YB12], make of use the so-called
dual tree traversal to determine what interactions need to be evaluated between which cells
[Yok13]. This approach is combined with dynamically spawned tasks by the MassiveThreads2

library [NT14] to provide a flexible and scalable parallelization[TNYM12].

In contrast, the here presented approach builds the whole task structure in advance by
directly determining interaction partners through index calculations. Therefore, a large
amount of tasks to be executed is directly available at the beginning of the computation
and does not have to be generated at every time step.

The StarPU 3 library is another task programming library aimed for hybrid CPU / GPU
platforms. Compared to QuickSched, it has more elaborate features, for example defining
extensions to the C language through the StarPU GCC plug-in and then being used in a very
similar manner like OpenMP through compiler pragmas. In [ABC+14], several algorithms
are explored and compared using OpenMP and StarPU. It is concluded that StarPU offers
more high parallel performance because fewer synchronization points are needed due to
greater flexibility. The authors also highlight the strong impact of the choice of the scenario
on the balance of the load within the Fast Multipole Method’s steps and the thereby induced
difficulties in load balancing.

Since the load balancing in QuickSched is done on an empirical basis by measuring the time
each task took in the previous time step, a highly dynamic load balancing is to be expected.
However, scalability can still be negatively impacted by a suboptimal parametrization of the
Fast Multipole Method leading to an imbalance between P2P- and M2L-operations [Kab12].

A further related example is the so-called data-driven Fast Multipole Method implementa-

1http://www.bu.edu/exafmm
2https://github.com/massivethreads/massivethreads
3http://starpu.gforge.inria.fr/
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tion described in [LY14]. It uses the QUeuing And Runtime for Kernels (QUARK)4 runtime
environment to asynchronously schedule tasks at runtime. QUARK aims to schedule tasks
according to the data they use to achieve high re-usability. QuickSched also considers this
by taking the resources used by a task into account when assigning it to queues.

The author of [LY14] also remarks that creating tasks for every single M2L-operation
induces an undesirable scheduling overhead due to the massive number of tasks since every
cell has 189 M2L-interactions in three-dimensional space. A similar comparison is made in
this thesis in Section 6.4.

The author also recommends not to use two-way operations since they block both cells,
as they are both source and target of an operation. In [ABC+14] it is suggested to create
blocks for the M2L-operation. Both of these findings were incorporated in the design of a
task pattern for the M2L-step described in Subsection 5.2.3.

4http://icl.utk.edu/quark/
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Part II.

Towards a Task Based
Implementation of the Fast Multipole

Method
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5. Implementation

As mentioned in Section 2.3 and Chapter 4, many different implementation details and
paradigms for the Fast Multipole Method exist. The here presented task based parallelization
of a sequential implementation is designed for maximal flexibility during scheduling of
computation tasks. Therefore it will be explained how the code subdivides the domain, how
tasks are formulated, and what dependencies exist between them.

5.1. Domain Segmentation

Like the Linked-Cell Algorithm, the Fast Multipole Method is based on a segmentation
of the domain in cells. The size of these cells does not necessarily have to be uniform,
but since ls1-mardyn currently only supports cells of uniform size this thesis considers this
case exclusively. However, the parallelization approach presented here does not prohibit a
generalization to an adaptive cell size.

The structuring of the domain as a whole is visualized in Figure 5.1.

ls1-mardyn segments a given cuboid domain in a three-dimensional grid of uniform cells.
These cells are the basic structure of the Linked-Cell Algorithm. On top of this grid, an
octree of so-called multipole-cells is constructed. These cells contain both the multipole and
local expansion of the area of the domain belonging to the cell. For every Linked-Cell-cell
there is one leaf cell in the multipole tree. The root cell residing at tree level zero represents
the whole domain.

At the edges of the domain, a layer of halo cells of width one is created in the Linked-Cell
grid. There are no multipole-cells for these halo cells due to periodicity.

5.2. Tasks and Dependencies

The Fast Multipole Method consists of several operators described in Subsection 2.3.2, which
are all employed in separate loops as shown in Algorithm 1. Therefore, a straightforward
approach is to define a task type for each operator and then formulating the dependencies
between them. It is important to consider that all tasks need to be initialized before they
are executed. This means that they cannot depend on data or pointers generated during
runtime since also their payload must be initialized in advanced.

For example, if a task needs the potential of a multipole expansion of a cell the payload
cannot contain this potential since it is not known in advance. It must contain for example
the cell id since this information can be computed in beforehand. From there the task needs
to have enough privileges to be able to access the relevant information.

A summary of the number of tasks, dependencies, and locks with respect to the number
of cells in the Linked-Cells data structure is presented in Table 5.1.
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5. Implementation

Figure 5.1.: Representation of the data structure and interactions of the Fast Multipole
Method in ls1-mardyn. The left and right tree represent the exact same domain
during upward and downward pass, respectively. Almost all P2P- and M2L-
interactions are omitted for visibility.

5.2.1. P2M

The first part of the Upward Pass is an interaction between the Linked-Cell structure for
the near-field computation and the last level of the multipole cell tree. In Figure 5.1 the
former are depicted as squares and the multipole cells as circles.

One P2M-task executes exactly one P2M-operation between one source cell and its
respective target.

Since the halo region of the Linked-Cell structure has no counterpart in the multipole cell
tree no P2M-operations are executed there. This also means that the source and target cell
differ in their index by the width of the halo in every dimension.

As there is no overlapping in either sources or targets there are no dependencies and all
of these tasks can be executed in parallel.

5.2.2. M2M

The second part of the Upward Pass consists of interactions between the layers of the
multipole cell tree. As seen in Figure 5.1, 2d cells are contributing one cell in the next layer.

Here, to reduce the total number of tasks and dependencies, one M2M-task consists of
all M2M-operations that share the same target. Thus, all M2M-tasks on one level are
independent.

Since the idea of the Upward Pass is to propagate the information from the lowest level to
the top, each M2M-task needs to wait until all of its source cells’ M2M-tasks are complete.
The exception are the M2M-tasks between the lowest and second lowest level where they
need to wait for their respective P2M-tasks instead. This way, every M2M-task depends on
2d other tasks in order to be unlocked.
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5.2. Tasks and Dependencies

Figure 5.2.: Model of periodic boundary conditions for the M2L-step. Since the fainter cells
in the separated blocks are out of the domain, their counterparts at the opposing
side of the domain are used instead.

5.2.3. M2L

Like the term Horizontal Pass suggests, all M2L-operations are confined to their level. All
M2L-tasks on different levels are independent. Also, all M2L-operations that do not share
the same target but are on the same level can be executed in parallel.

It was decided that the Fast Multipole implementation for ls1-mardyn should simulate
periodic boundary conditions [Kab12]. This has the advantage of avoiding effects at the
edge of the domain or finite-system effects [Eck14]. Figure 5.2 shows how periodic boundary
conditions are modeled for the extreme case of the cell in the lower left corner in a two-
dimensional scenario. The red cell should interact with the fainter cells following the stencil
described in Section 2.3.2. However, since the domain ends to the left and below with the
red cell, the respective cells at the opposing sides of the domain are chosen. This corresponds
to taking the coordinates of the target cells modulo the width of the domain on this level.

Since the M2L step is one of the most work-intensive steps of the Fast Multipole Method
[KP06] it is of increased interest when aiming to optimize the algorithm. Therefore, different
parallelization patterns were tested.

Pairs2Way The first pattern creates one task for the two directed M2L-operations between
one pair of cells. Tasks which share a common cell cannot be executed in parallel since every
cell in a task is used as a target.

As explained in Section 2.3.2, the M2L-operator can be accelerated by shifting the
computation to the Fourier space. Therefore, every source multipole expansion and every
target local expansion needs to be transformed before the actual M2L-operation can be
performed. Since multiple M2L-tasks in this pattern have the same source or target these
initializations cannot be part of the calculation tasks but need to be separate tasks that
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5. Implementation

Figure 5.3.: Flowchart visualizing dependencies of M2L-tasks in the Pairs2Way task pattern.
Black arrows represent a ”depends on”, red arrows a ”cannot be executed
simultaneously” relation.

precede or follow their respective calculation tasks. Consequently, a M2L initialization and
a M2L finish task type is introduced for forward and back transform. Both task types
transform the multipole expansion, as well as the local expansion of one cell. The task
dependencies for three cells are described in Figure 5.3.

The advantage here is a very fine granularity for optimal dynamic load balancing. Also,
this pattern can make use of the two-way M2L optimization explained in [Gal16].

The disadvantage, however, is a drastic increase in the number of tasks and dependencies
compared to the next approach. This leads to a significant scheduling overhead, which is
shown in Part III.

CompleteCell Similar to the grouping of M2M-operations, here one M2L-tasks consists
of all M2L-operations for the same target cell. Following the algorithm described in
Subsection 2.3.2, there are 6d − 3d M2L-operations per cell, which results for the three-
dimensional case here in 189 sources per target. Both images in Figure 2.6 depict exactly
one M2L-task by this pattern in the two-dimensional case. This also means that all these
tasks can be executed independently as none of them share a target.

Since every local expansion is only used in exactly one task, the initialization and
finalization of them can also be done in the M2L-calculation task to reduce the number of
dependencies. The initialization of sources, however, still needs to be a single task per cell
since sources are shared over multiple targets. Including the initialization of sources in the
calculation task would mean that every source is initialized once per target and possibly
concurrent which might lead to race conditions.

The M2M-task which targets a certain cell does not necessarily have to precede the
M2L-calculation task targeting the same cell. Yet, as the two tasks share the same target
they must not be executed at the same time. In order to model this kind of dependency
with QuickSched, resources for the cell can be defined which are locked by either tasks. This
whole pattern for the M2L- dependencies is depicted in Figure 5.4.

Although the two-way optimization cannot be used here, a higher degree of parallelism
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5.2. Tasks and Dependencies

Figure 5.4.: Flowchart visualizing dependencies of M2L-tasks in the CompleteTarget task
pattern. M2M-operations have the cell they are in as target.
Black arrows represent a ”depends on”, red arrows a ”cannot be executed in
parallel” relation.

can be reached since all calculation tasks are independent. This tradeoff is examined in
[LY14] and the authors concluded that for dynamic task based scheduling a higher degree of
parallelism is more advantageous which is supported by the experiments in Part III.

5.2.4. L2L

As seen in Figure 5.1, the L2L-step is very similar to the M2M-step except that it is a
Downward instead of an Upward Pass. Similar to its equivalent one L2L-task consists of all
L2L-operations that share the same source. Therefore, all L2L-tasks on the same level are
independent.

Also similar to the Upward Pass, the idea here is to propagate all information to the lowest
level. This means that in order to start a L2L-task, all tasks which convey information to
this respective cell need to be completed. These tasks are the M2L-task that includes the
finalization of the M2L-step for this target cell and the L2L-operation that targets it.

Since a L2L-task obviously has a local expansion as a target, it cannot be executed
in parallel with the M2L-tasks that have the same cell as their target. Thus, the same
QuickSched resource needs to be locked.

5.2.5. L2P

The last part of the Downward Pass works analogously to the L2L-step except that it targets
particle cells of the Linked-Cell structure instead of local expansions.

Every L2P-task too has to wait for the L2L- and M2L-tasks that target its source cell.

As L2P-tasks are not the only tasks to target particle cells, there need to be QuickSched
locks for each particle cell too, which are taken by these tasks. Each L2P-task locks 2d

particle cells.
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5.2.6. P2P

The last step of the Fast Multipole Method, the near-field evaluation, works only on the
Linked-Cell structure. Therefore, the P2P step is almost the same as the Linked-Cell
algorithm described in Section 2.2, which means that every cell has to interact with the cells
shown in Figure 5.5 and itself or the left part of Figure 5.7.

The first difference to the Linked-Cell algorithm is that there is no spherical cutoff radius
for each molecule. For each, molecule all molecules in the surrounding cells are considered.

The second difference is that for every cell the relevant data has to be converted to
a so-called Structure of Arrays (SoA) before it is used in any P2P-operation and after
all P2P-operations involving the cell are done the data has to be migrated to the single
molecules. This is done to facilitate vectorization and improve cache efficiency. Details
about the Structure of Arrays approach in ls1-mardyn are described in [Eck14].

Structuring the tasks for the computations of the interactions in the P2P-step has to be
done in the same way as described in [Gra17]. There, a task based version of a parallelization
strategy that employs coloring is presented.

One task takes a cube of two cells per dimension and calculates all interactions involving
the cell in the lower left front corner. Here, an optimization is employed by exploiting
Newton’s third law of motion. It states that for every directed force F enacted from a body
A to a body B there is a force of the same magnitude in the opposite direction:

FA,B = −FB,A (5.1)

Using Equation 5.1 it is possible to reduce the number of computations done in each
P2P-operation by a factor 1

2 by only calculating every interaction in one direction and also
applying the resulting force with the opposing sine in the other direction.

When applying this pattern to every cell, all horizontal, vertical, and diagonally right
upwards interactions are covered. In the example illustrated in Figure 5.5 starting from
cell 6 the interactions with the cells 2,3,5,7,9, and 10 are covered by this. To also include
the interactions on the other diagonal it suffices to evaluate the diagonal interaction in the
two-by-two cell task block as seen in Figure 5.6, since the pattern is employed on every cell.
In the three-dimensional case, there are more additional diagonals that need to be accounted
for, as can be seen in Figure 5.7.

With every cell in a task being used as source and target, for every computation, all of
one task’s cells need to be locked by it and in order to start a task, the locks of all cells need
to be available. For example, in Figure 5.6 task two, which covers the cells 2, 3, 6 and 7,
is blocked by both, tasks one and two. Additionally, every P2P-task blocks 2d L2P-tasks,
since they too target these particle cells. Therefore, these small versions of tasks seem better
suited for this algorithm than the adaptive larger versions suggested in [Gra17] as they block
significantly fewer tasks.
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5.2. Tasks and Dependencies

Figure 5.5.: Naive interaction pattern of
one cell during the P2P-step
in the two-dimensional case.
Source: [Gra17]

Figure 5.6.: Compact task pattern includ-
ing Newton’s third law of mo-
tion.
Source: [Gra17]

Figure 5.7.: Left: Naive interaction pattern of one cell in tree dimensions.
Rights: Compact interaction pattern.
Source: [Gra17]

5.2.7. Task Weighting

For all task types and approaches QuickSched ’s automatic task weighting mechanism is used.
It works by counting the ticks every single task takes to finish. This count is then used as
the cost of the task for the next run of the scheduler. That also means that in the first run,
which is the first time-step of the simulation, no task weighting is available which can result
in suboptimal scheduling.

The method of counting the ticks is dependent on the platform for which QuickSched was
compiled. A wide range of architectures, operating systems, and compilers are supported.
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Tasktype Number of tasks Depends on Unlocks Blocks/Conflicts

P2M K -
1
8 M2M
1
8 M2L init

-

M2M
∑log8(K)

l=1 8l
8 P2M OR
8 M2M

1
8 M2M
1
8 M2L

-

M2L init
∑log8(K)

l=1 8l
8 P2M OR
8 M2M

1
189 M2L

1 L2L OR
1 L2P

M2L
∑log8(K)

l=1 8l 189 M2L init
1 L2L OR
1 L2P

1 L2L OR
1 L2P

L2L
∑log8(K)

l=1 8l
1 M2L
1 L2L

8 L2L OR
8 L2P

1 M2L

L2P K
1 M2L
1 L2L

- 8× 1
8 P2P

P2P init ( 3
√
K + 2)3 - P2P -

P2P ( 3
√
K + 1)3 P2P init P2P fin

8× 1
8 P2P

8× 1
8 L2P

P2P fin ( 3
√
K + 2)3 P2P - -

Table 5.1.: Overview of all tasks and their dependencies relative to the number of Particle cells
in the Linked-Cell structure K not including halo cells. The last three columns
are the impact of one single task of this category. Here the ”CompleteCell”
M2L-task pattern is chosen.

For a full list, it is advisable to have a look at the definitions in the source code in cycle.h.
On x86-64 architectures when using the GNU Compiler Collection (GCC) or the Intel

C/C++ Compiler (ICC) the rdtsc1 assembler instruction is used.
Since the exact time of execution per task is dependent on many factors which cannot

necessarily be influenced by the user, this task weighting is not fully deterministic. Thereby,
this leads to a nondeterministic task scheduling.

1https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
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Part III.

Verification and Validation
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6. Experiments

In order to test the aforementioned implementations, the scenario depicted in Figure 6.1 was
used. Here, a cube is randomly filled with uniformly distributed particles. In the middle of
the domain, a sphere is placed, which has a radius of 1

8 of the length of the domain. In this
sphere, the density of particles is about 3.77 times higher and they are placed in a grid-like
pattern. A part of this sphere can be seen in Figure 6.2, which is a slice of the center of the
domain.

All particles are of the same type. They have one Lennard-Jones center and a σ and ε of
one. Each molecule carries two charges of +1 and −1, respectively, offset from the center by
0.005 on the z axis in either direction.

Two sizes of the experiment are considered. The first with a side of length 80, which
leads to a Linked-Cell structure of 16 × 16 × 16 cells without halo cells containing 85805
molecules in total. The second version is of double width in each dimension, which leads to
32× 32× 32 cells with a total of 675394 molecules.

This in-homogeneous setup guarantees a moderate imbalance in the computation time for
tasks of the same type.

Figure 6.1.: Visualization of the full simu-
lation domain.

Figure 6.2.: Slice showing the denser center
region.

6.1. Strong Scaling

Using the scenario just described, strong scaling tests were performed and different parameter
configurations were tested. This was done mainly on the Xeon Phi processors described in
Subsection 3.3.1 and also on the Ivy Bridge processors of Subsection 3.3.2 to highlight the
effects of the architectures on the code.

Size is the length of the domain not measured in cells but in a unit length of about
5.29177 × 10−11 defined in [NBB+14]. Here, if not otherwise specified, a size of 80 is the
default for all experiments.

32



6.1. Strong Scaling

The subdivision factor is a relative information on the number of cells the domain is
subdivided in, whereby a subdivision factor of one corresponds to the number of cells
described above in Chapter 6. A factor of two results in a split of every particle cell in eight
equally sized cells. Consequently, the tree of multipole cells increases in size by exactly one
level. This means more of the force calculation is moved to the long-range part.

Order stands for the order of the multipole and local expansion. A higher order typically
brings the benefit of increased accuracy of the simulation, however, at the cost of an increased
runtime.

The first Figure 6.3 compares the two task patterns that are described in Subsection 5.2.3.
Here, in contrast to all other Figures, only time for the actual calculation steps, which are
the M2L- and P2P-step, is taken into account. This is especially visible at the given time to
solution. For all remaining tests and Figures, the ”Complete Cell” approach was used.

Figure 6.4, Figure 6.5, and Figure 6.6 show the effects of different domain sizes, subdivision
factors, and orders, respectively. Figure 6.7 and Figure 6.8 show combinations of different
orders and subdivision factors on the Xeon Phi and Ivy Bridge platform.
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Figure 6.3.: Comparison of the two parallelization strategies of the M2L-step described in
Subsection 5.2.3. Time to solution is here significantly lower as only the time
for the M2L- and P2P-steps are taken into account.
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Figure 6.4.: Comparison of different domain sizes with order 10, subdivision factor 1, time
steps 30.
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Figure 6.5.: Comparison of different subdivision factors with order 10, size 80, time steps 30.
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Figure 6.6.: Comparison of different orders with subdivision factor 1, size 80, time steps 30.
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Figure 6.7.: Xeon Phi: Comparison of different orders and subdivision factors, size 80, time
steps 30.
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Figure 6.8.: Ivy Bridge: Comparison of different orders and subdivision factors, size 80, time
steps 30. The yellow line is from the Xeon Phi platform for comparison.

6.2. Weak Scaling

Due to the limitation of ls1-mardyn to only allow for cubic sizes and with the edge length
being multiples of 10, the weak scaling has to always increase by a factor of 23 = 8 instead
of 21. Since the available Xeon Phi processor has only 64 cores just three measurement
points are possible when there should be a maximum of one execution thread per hardware
thread, even when taking the four-way Hyper-threading into account.
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Figure 6.9.: Weak scaling: Size 40, 80, 160, Timesteps 30.

6.3. Task Timings

In this section detailed visualizations of the activity of the threads of the processor are
shown. All Figures show a measurement on the Xeon Phi platform except Figure 6.22 and
Figure 6.23, which are from the Ivy Bridge platform.

To achieve a high resolution, the rdtsc1 assembler instruction was used before and after
every task. This is the information represented on the x-axis.

1https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
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6. Experiments

On the left-hand side always five time steps are shown. The right-hand side is always a
closer lookup of the fourth time step, which is circled in red on the left. Colors indicate the
task type as given in the keys.

Figure 6.10.: Order: 10, Subdivision 1.

Figure 6.11.: Order: 10, Subdivision 1.

Figure 6.12.: Order: 10, Subdivision 1.
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Figure 6.13.: Order: 10, Subdivision 1.
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Figure 6.14.: Order: 10, Subdivision 1.
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Figure 6.15.: Order: 10, Subdivision 1.

36



6.3. Task Timings

Figure 6.16.: Order: 10, Subdivision 2.

Figure 6.17.: Order: 31, Subdivision 1.

Figure 6.18.: Order: 31, Subdivision 2.

Figure 6.19.: Order: 10, Subdivision 2.
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Figure 6.20.: Order: 31, Subdivision 1.

Figure 6.21.: Order: 31, Subdivision 2.
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Figure 6.22.: Ivy Bridge: Order: 10, Sub-
division 1.
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Figure 6.23.: Ivy Bridge: Order: 10, Sub-
division 1.

6.4. Analysis

In High-Performance Computing (HPC) the typical goal is not only to ”get the answer as
fast as possible” but to use the available hardware as efficiently as possible. This is measured
in parallel efficiency, which is the achieved speedup divided by the number of threads used.

Given the plots and figures from Chapter 6, an analysis of various parameters and their
combinations shall be performed.

6.4.1. M2L-Task Patterns

The first aspect to analyze is the effect of the two task patterns for the M2L-step, which
were described in Subsection 5.2.3. Looking at Figure 6.3 the ”Complete Cell” approach is
significantly faster and sustains an equal or higher parallel efficiency for all thread counts.
This was to be expected since this is comparable to task patterns compared to [Gra17].
There it is also observed that it is beneficial to cluster operations that share resources to
one task instead of creating a significantly higher number of tasks with many locks and
dependencies between them since this notably increases the scheduling overhead.

For this reason, it was decided only to continue experimenting with the ”Complete Cell”
approach, so no further data on the ”Pair2Way” approach was collected.

6.4.2. Domain Size

Comparing the performance using different domain sizes Figure 6.4 suggests an equally
good scaling relative to each size. Only at size 80 with 256, there is a larger deviation.
This suggests that for this number of threads the experiment is not large enough. However,
running 256 threads already uses the four-way Hyper-threading and is therefore for now not
of primary concern.
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6.4.3. Subdivision Factor

Increasing the subdivision factor, as demonstrated in Figure 6.5, has a huge negative impact
on the time to solution, which is expected, but also on the speedup and parallel efficiency.
Adding one layer to the multipole cell octree roughly increases the number of cells by a
factor of eight. At the same time, the total number of molecules stays the same so the actual
computational expense of the average task decreases. This means the fraction of the total
execution time of the scheduling increases. Reducing the size of the particle cells means that
the cutoff that decides where the near-field computation ends and particles are considered
to be in the far-field is narrowed. For the Fast Multipole Method, the effect is a shift of
computational effort from the P2P- to the M2L-step. Also, the far-field part grows faster
than the near-field part. This is because of the tree, responsible for computing the far-field,
gains another layer but still has to compute all other layers. The near-field part just adopts
the new size and has to cover the same number of cells as the last layer of the multipole cell
tree. Therefore, also the other task types that operate inside the tree grow slightly more in
computational expense than the P2P-part. All this can indeed be observed when comparing
the task timing plots in Figure 6.15 and Figure 6.19, which are showing a single time step
with the subdivision factors one and two, respectively.

6.4.4. Expansion Order

Increasing the order of the multipole and local expansion also has a negative effect on the
time to solution. However, the effect on scaling and parallel efficiency is positive as can be
seen in Figure 6.6. A higher order increases the computational expense of all operations that
interact with a local or multipole expansion, which are all task types except those for the
P2P-step. This leads to the exact opposite effect induced by the subdivision factor, which was
described above. Here, the fraction of the total time of execution that represents scheduling
decreases because of the fraction of computation increases. Comparing Figure 6.15 and
Figure 6.20, it can be seen that the latter contains relatively fewer blue areas which indicates
a decline in the dominance of the P2P-step. It can also be seen that from all task types
that interact with either multipole or local expansions, especially the L2L- and M2M-tasks
increase in dominance. Interestingly, they seem to grow in computational expense even
faster than the dominant M2L-step. This can be led back to the optimizations through the
Fast Fourier transform and order reduction techniques described in [Gal16].

From a user’s perspective, according to Figure 6.6, an order of 19 seems to be a good
compromise between increased runtime and parallel efficiency.

6.4.5. Combining Subdivision and Order Effects

In Figure 6.7 a comparison is made between combinations of high and low order and two
subdivision factors. The blue and green line being very close in the left panel indicates that
a drastic increase in the expansion order increases the total runtime roughly in the same
way as raising the subdivision factor by one with the high order version being slightly slower.
However, the higher subdivision factor does not scale equally well, which leads to the high
order being faster starting from 32 threads. This is also a number of threads where the
version with the higher subdivision factor slips under 50% parallel efficiency.
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When combining both the high order and higher subdivision factor a strong increase in
the time to solution can be observed. Nevertheless, the positive effects on the scaling and
efficiency of the higher order clearly dominate the negative ones of the increased subdivision
factor as the yellow line shows good efficiency for up to 64 threads.

Looking at the task timings in Figure 6.21 this is supported. The plot is not only
dominated by the M2L-step, but also the L2L- and M2M-step, which especially increase in
dominance through a higher order. The P2P-step is almost irrelevant in this configuration
as only very small and few blue bars can be seen.

6.4.6. Architectures

Figure 6.8 shows the same parameter combinations as Figure 6.7 but tested on the Ivy
Bridge platform, described in Subsection 3.3.2, with the yellow line being a test on the Xeon
Phi platform for reference. Since one Ivy Bridge node consists of two processors with eight
cores each, only a scaling up to 32 threads, using Hyper-threading, is reasonable.

Comparing the parameter configurations, the same observations can be made as for the
Xeon Phi analysis. However, when looking at the exact task timings seen in Figure 6.23,
a strong shift in computation time from M2L- to P2P-tasks can be observed. The major
difference between these tasks is that the P2P-operation tends to be more compute-bound
due to its high arithmetic density since it has to compute O(N2) operations where N is the
number of particles in both involved cells. In [Gal16] it is suggested that the vectorized
M2L-operation is memory bound. Yet, the memory size and bandwidth of the Xeon Phi
are both higher, which should result in this platform being better suited for performing the
M2L-operation. From an implementation point of view, a difference in the platforms is that
ls1-mardyn was linked against different libraries for the Fast Fourier Transformation. For Ivy
Bridge FFTW2 was used, while for the Xeon Phi the Intel Math Kernel Library (MKL 2017)3

was used which implements the Fast Fourier Transform with FFTW compatible bindings for
Knights Landing processors. Further examination of this discrepancy is necessary to fully
explain the data.

Comparing the same parameter configurations on the different platforms (purple vs yellow
line in Figure 6.8), for the same thread count the time to solution on Ivy Bridge is faster by
a factor of two, which is consistent with its clock rate being exactly the double of the Xeon
Phi ’s. Only on 32 threads, this pattern is broken, since here the Ivy Bridge processors enter
Hyper-threading.

6.4.7. Task Timings

When comparing the task timings in Figure 6.10, Figure 6.11, and Figure 6.12, the initial
time step takes an increasing share of the overall computation time. This trend is continued
when the subdivision factor is increased as seen in Figure 6.16 and even stronger with
increased order as seen in Figure 6.17. An explanation for this can be that in this initial
step memory allocations are made, which tend to take a long time. Also, as explained in
Subsection 5.2.7, in this initial step the tasks are not yet properly weighted, which leads to

2http://www.fftw.org
3https://software.intel.com/mkl
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suboptimal scheduling. However, this does not impact the scaling plots in Section 6.1 and
Section 6.2 since there the initial step is not included.

Taking a closer look at the timing plots of the single time steps, no significant gaps, which
would indicate idle time, can be detected, even at the very end of the time steps. This
suggests that for the given tasks the scheduling worked very well sustaining a high workload
on every processor in spite of the tasks having strongly varying computational cost.

For a comparison with a scheduling featuring gaps and a more detailed analysis of the
end of a time step see Appendix A.

6.4.8. Weak Scaling

The purpose of weak scaling is to see how an application behaves when the problem size
increases but the relative load on the processing unit stays the same, adding more processors
as the size increases. Such a test can be seen in Figure 6.9. The suboptimal performance
of the green line suggests that increasing the subdivision factor relatively increases the
scheduling overhead of QuickSched, while increasing the order has the converse effect, as
described above.

All four parameter combinations significantly drop in parallel efficiency at 64 threads. In
principle, QuickSched was shown to be capable of linear scaling [GCS16] [Gra17], however, for
this scenario and shared memory parallelizations of the Fast Multipole Method of ls1-mardyn
no optimal performance is known.

Nevertheless, the aforementioned drop might indicate that the scheduling overhead does
not scale very well for this task pattern and further research is to investigate optimal layout
of such patterns.
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7. Comparison

Since it is very difficult to compare different implementations of Fast Multipole Methods, as
described in Section 2.3, a short comparison to the MPI1 parallelization of ls1-mardyn is
made here.

7.1. MPI Version

The MPI parallelization of ls1-mardyn is, in contrast to the here presented QuickSched
parallelization, a distributed memory parallelization. It is based on the idea of splitting
the domain into several smaller ones that are each handled by a local multipole cell tree,
the so-called local tree. These local trees are then connected by a so-called global tree that
propagates the far-field influence of the rest of the domain on each local tree. Furthermore,
an exchange of halo layers between the MPI ranks is necessary to fully compute every M2L-
stencil. A detailed description of the implementation, optimizations, and its performance is
made in [Obe16].

Strong scaling experiments with the same parameters as in Figure 6.7 were conducted for
pure MPI runs without the QuickSched parallelization. In order to preserve comparability,
the tests were executed on only one node of the Xeon Phi system. However, due to execution
limitations, only a scaling up to 32 ranks was possible.
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Figure 7.1.: MPI Version: Comparison of different orders at subdivision factor 1, size 80,
time steps 30. One rank per thread was used.
Purple and Green are the QuickSched version.
Cyan and Yellow are the MPI version.

1http://www.mcs.anl.gov/research/projects/mpi
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Figure 7.2.: MPI Version: Comparison of different orders at subdivision factor 2, size 80,
time steps 30. One rank per thread was used.
Purple and Green are the QuickSched version.
Cyan and Yellow are the MPI version.

The strong scaling in Figure 7.1 and Figure 7.2 show good, almost linear speedup
throughout the 32 ranks. Also, the parallel efficiency stays above 80% except for the cyan
line in the first Figure. This indicates that this parallelization does not suffer the same
problems from an increased subdivision factor as the QuickSched version.

However, for high orders, the QuickSched version outperforms the MPI version. For a
subdivision factor of one, the difference is marginally but it increases with subdivision factor
of two.

In [Obe16] it is noted that a good load balancing is only given for uniform particle
distributions. Since in this scenario the sphere of denser particles was placed exactly in the
middle of the domain, the imbalance induced by it was most probably well distributed over
several ranks. Moving this sphere and increasing its density or inducing more inhomogeneity
to the scenario potentially has a more severe impact on the MPI than on the QuickSched
version since it has no load balancing mechanism at the moment.
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7.2. Summary

7.2. Summary

A shared memory parallelization of the Fast Multipole Method in ls1-mardyn using QuickSched
was presented. Its scalability potentials were tested and potential problems were explained.
It can be concluded that the load balancing of the tasks by QuickSched worked well, however,
more research is needed to see if the task pattern can be optimized to provide a more linear
scaling. At the moment, especially an increase in the subdivision factor, which governs how
small all particle cells become, has a grave impact on performance since the computational
expense of every single task becomes smaller and their number far greater. The result is a
shift of overall computational effort from calculating interactions to scheduling tasks, which
harms scalability.

This can be countered by a higher expansion order of the multipole and local expansions,
which increases the computational expense per task for all far-field interactions. Thereby, on
average, computational effort is shifted back to evaluating interactions instead of scheduling.
It was demonstrated that this effect can outweigh the negative effect of the subdivision
factor. However, this is not due to a reduction in the computational effort of the scheduling
but by substantially increasing the computational effort of evaluating the interactions, which
results in a far greater overall time to solution.

On the other hand, the choice of the subdivision factor and order of expansion are
parameters which can be chosen perfectly free by the user. A good choice can depend
on the particle density, number of Lennard-Jones sites per molecule, desired accuracy, or
time to solution. In [Kab12] it is argued that the optimal choice of subdivision factor and
order of expansions is reached when the computational effort for the M2L- and P2P-step
are equivalent. This is especially true for the parallelization strategy in this thesis since
these steps can be executed completely in parallel. Looking back at the task timing plots in
Section 6.3 this would require subdivision factors smaller than one, which is currently not
supported by ls1-mardyn.

7.3. Outlook

It was demonstrated that through the use of flexible libraries for task based parallelism
like QuickSched it possible to implement a completely interwoven parallelization of the Fast
Multipole Method. A similar approach using OpenMP 4.5 would have required several
barriers and would degenerate to a fork-join approach. However, it needs to be mentioned
that according to the latest technical report number 6 (TR6)2 for the upcoming OpenMP
5.0 API specification, new mechanisms for more flexibility of explicit tasks are planned,
including ”mutually exclusive tasks”.

Due to the simplicity of QuickSched it is easily possible to alter single task types,
introduce new ones, and conduct further research on how to improve the task patterns for
better scalability. As explained in Section 7.2, reduced scalability is observed when the
computational effort per task becomes very small. A way to counter this is by introducing
tasks of dynamic size as demonstrated for the Linked-Cell algorithm in [Gra17]. Similar
mechanisms can be thought of for the far-field evaluation.

2http://www.openmp.org/press-release/openmp-tr6/
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An interesting point for further investigation would be the cache efficiency of the here
presented task patterns to design a more data-driven and cache friendly approach. The
current implementation only models dependencies and leaves the rest to the QuickSched
scheduler, which takes into account which tasks use what resources when distributing them
over its queues. Bundling tasks might lead to a decrease in the total amount of tasks and
dependencies and improve cache behavior.

Considering that there is now an MPI based distributed memory- and a QuickSched /
OpenMP, based shared memory parallelization, the logical next step would be to merge
those two. Such a hybrid parallelization is already thought of in the outlook of [Obe16] and
was predicted to be beneficial since it would reduce the number of MPI ranks and thereby
lower the amount of communication. This could require adding further QuickSched tasks for
the MPI communication. Also, every MPI rank could host its own QuickSched scheduler,
which brings a very dynamic scheduling over the whole simulation.

Finally, it is concluded that the here shown approach is capable of good scaling given the
right choices of simulation parameters. Still, further research in optimizing task patterns
seems worthwhile.
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A. Observable Effects in Timing Plots
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Figure A.1.: Suboptimal task scheduling with large visible gaps left of the red line and
scattering of tasks on the right.
Source: [Gra17]

In Figure A.1 two effects can be observed. First, left of the red line, white gaps between
the colored tasks can be seen. These stand for time the processor is not executing tasks.
They can occur either due to an inefficient scheduling process or because not enough tasks
are available at this moment because their dependencies are not yet resolved or they are
blocked by other currently executing tasks.

The right-hand side of the red line is mainly white, which means that the processor spends
hardly any time on executing tasks. In fact, only the threads with the ids 20, 50, and 58
appear to still execute tasks frequently, which indicates that these are the only threads
whose queues are still filled. All other threads have empty queues and are thus trying to get
tasks by work-stealing. However, since the work-stealing implementation works by checking
randomly selected queues most of the time, empty ones are checked. With a chance of only
3
59 ≈ 0.05 to hit a queue that still has tasks, it is reasonable that the majority of threads
spend most of their time looking for tasks instead of executing them.
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Figure A.2.: A single time step of the simulation explained in Chapter 6 with order 10,
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A. Observable Effects in Timing Plots

In contrast to the situation in Figure A.1, no gaps can be seen in Figure A.2. On the
one hand, this is due to a far greater number of tasks, which results in substantially more
work available for each thread. On the other hand, Figure A.2 has a length of the x−axis
of 2.8 × 109 ticks while Figure A.1 only covers 6 × 107 ticks, which makes small gaps in
the latter easier visible. However, even when examining Figure A.3, which is a zoom-in on
the end of Figure A.2 circled in red, no significant gaps can be found before the very end
of the time step. The large white parts on the left side of this Figure are caused by the
visualization, which omits tasks that started before the 2.485×109-th tick. The whole length
the x−axis of Figure A.3 are 6× 106 ticks, which makes it 1

10 -th of the length of Figure A.1.
The scattered part starting shortly after 2.488× 109 has a length of roughly 2× 106 ticks.
Looking at thread 25, 33, and 50, this seems to be approximately the time needed for three
consecutive P2P-calculation tasks that seem to block each other. Therefore, the size of this
scattered end phase appears to be sufficiently small. Also, no heavily imbalanced queues
can be observed as in Figure A.1.
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