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Abstract

This thesis covers the implementation of a hardware-aware arbitrary high order deriva-
tive discontinuous galerkin (ADER-DG) method for hyperbolic partial differential equa-
tions. This method has been of a particular interest recently, as it is able to obtain a high
order solution in space and time. A specific focus of this thesis is on the optimization of
such a method on a current architecture. While the implemention is only used to solve
a three-dimensional advection problem, it is also applicable to other hyperbolic problems
like, e.g., the elastic wave equation.
A brief introduction to the mathematics of the approach is given, followed by a thorough
analysis of the characteristics of the method. The implementation is optimized for run-
ning on Intel Xeon E5-2697 v3 CPUs. The matrix-matrix multiplications in the method are
performed using efficient library implementations and a hybrid OpenMP/MPI implemen-
tation is presented. Overall it is shown that the ADER-DG method is suitable for perfor-
mance optimization on supercomputers and can be used to attain a high order of accuracy.
Results for single and multi node performance on such an architecture are presented. In
particular, convergence order, FLOPS and scaling are investigated. On a single node 50%
of the theoretical peak performance and on 64 nodes up to 38% theoretical peak perfor-
mance are reached.
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1 Introduction

Numerical methods converging with high order have been of particular interest in recent
years. For both linear and nonlinear systems, increasingly accurate models can be attained
using such methods. For hyperbolic problems in particular, the popular combination of
continuous or discontinuous Galerkin methods with Runge-Kutta methods for time dis-
cretization has been established. Unfortunately though, the computational cost of Runge-
Kutta methods for higher orders is negatively affected by the Butcher barrier [9].
One particular scheme that provides high order in both time and space without being af-
fected by such constraints, is the arbitrary high order derivative discontinuous Galerkin
(ADER-DG) scheme used in this thesis. Based on the standard discontinuous Galerkin
(DG) schemes [14], it relies on the arbitrary high order derivative (ADER) approach first
presented by Toro et al. in [19]. This has lead to a multitude of different schemes and
applications, e.g. [12][16][11].
Originally, the Cauchy-Kovalewski procedure is used in the ADER-DG scheme. It pro-
vides a way to replace time derivatives in the scheme with spatial derivatives. Recent
research has been focused on using a so-called element-local space-time Galerkin predic-
tor that is based on the weak differential form of the equation instead of the strong form
used in the Cauchy-Kovalewski procedure [12].
Research for ADER-DG approaches on tetrahedons using a Cauchy-Kovalewski procedure
can be found in [6][8][7]. In [6], an efficient implementation on the Intel’s Sandy Bridge
architecture reaching up to 50% of achievable peak performance is presented and in [8]
petascale performance on the SuperMUC supercomputer with an ADER-DG approach is
achieved. In [7], energy and time-to-solution oriented optimization of a high order ADER-
DG implementation is performed.
This thesis’ focus lies in the application of an ADER-DG scheme using a predictor based
on the weak differential form to hyperbolic partial differential equations (PDE) in three
dimensions, spatially discretized into cuboids. For simplicity’s sake, an approach for the
advection equation is constructed. This approach is presented in detail in the following
section. Application to, e.g., the elastic wave equation and other hyperbolic problems
would be possible too.
Afterwards a detailed analysis of the characteristics of the scheme is performed to explore
the possibilities in optimizing a hardware-aware implementation in Section 3. Starting on
one computation node only, we present results comparing the suitability of different, effi-
cient implementations of matrix-matrix multiplications and then move on to a multi-node
setting. Therein, relying on the Message Parsing Interface (MPI) and the Open Multipro-
cessing (OpenMP) API, we use a hybrid MPI/OpenMP implementation similar to [13].
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1 Introduction

In Section 4 we present results produced with the above-mentioned implementation. Sec-
tion 5, finally, takes a look at possible directions to pursue in the future and gives a brief
conclusion drawn from the results.
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2 Hyperbolic Partial Differential Equations
and Discontinuous Galerkin Schemes

In this section hyperbolic PDEs in three dimensions are introduced and we show the math-
ematical ideas behind the ADER-DG scheme used in this thesis. A more detailed presen-
tation of hyperbolic problems can be found in [17]. The mathematics of the ADER-DG
approach are shown in more detail in [16] [19].

2.1 Hyperbolic Partial Differential Equations

As shown in [17, 421 f.], assuming no source term, a three dimensional conservation law
can be written as

∂q

∂t
+
∂f(q)

∂x
+
∂g(q)

∂y
+
∂h(q)

∂z
= 0, (2.1)

with q(x, y, z, t) ∈ RNVar
describing the NVar conserved quantities and f(q), g(q) and h(q)

being the flux functions in x-,y- and z-direction respectively. Examples of hyperbolic PDEs
are, e.g., the advection equation, the shallow water equations or the elastic wave equation.
For the advection equation the above equation simplifies to

∂q

∂t
+A

∂q

∂x
+B

∂q

∂y
+ C

∂q

∂z
= 0, (2.2)

where A,B and C are in RNVar×NVar
and constant. There is a multitude of numerical

schemes to deal with these types of equations. One popular way are finite volume methods
which are presented in great detail in [17].
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2 Hyperbolic Partial Differential Equations and Discontinuous Galerkin Schemes

2.2 Arbitrary High Order Discontinuous Galerkin

Discontinuous Galerkin methods have been a focus of detailed research in the last years.
With the demand and need for high order methods such methods found a variety of ap-
plications, not only to hyperbolic problems, but also to elliptic and parabolic ones. A more
detailed introduction to DG methods can be found in [14].
For the ADER-DG scheme we start by introducing the reference element T e := T es × T et :=
[0, 1]4 with T es := [ξ0, ξ1] × [η0, η1] × [ζ0, ζ1] and T et = [τ0, τ1] to discretize the spatial and
temporal domain into NE elements of size ∆x×∆y ×∆z ×∆t. Reference coordinates for
each element T ei,j,k are

x = xi− 1
2

+ ξ∆x, y = yj− 1
2

+ η∆y, z = zk− 1
2

+ ζ∆z, (2.3)

where xi− 1
2
, yj− 1

2
and zk− 1

2
are the left boundaries of T ei,j,k in x, y and z direction respec-

tively. Similar to [12] for each spatial dimension, we approximate the numerical solution u
in the reference element T e using modal basis functions ψq(ξ, η, ζ) of degreeN with coeffi-
cients ûq, where q = (p, q, r) is a multi-index with 0 < p, q, r < N+1. They are constructed
using the tensor product of one dimensional basis functions ψk(ξ), ψk(η), ψk(ζ), 1 ≤ k ≤
N + 1 at supporting Gauss-Legendre points in the interval [0; 1] as

ψp(ξ, η, ζ) = ψp(ξ)ψq(η)ψr(ζ). (2.4)

In particular we use the shifted Legendre polynomials

Pn(x) = (−1)n
n∑
k=0

Ç
n

k

åÇ
n+ k

k

å
(−x)k, (2.5)

so that the numerical solution is approximated by

u =
q∑
1

ψq(ξ, η, ζ)ûq. (2.6)

Following [12], we can insert time into the approximation and define space-time basis
functions θp(ξ, η, ζ, τ) with coefficients q̂p, which are polynomials of degree N and where
p = (p, q, r, s) is a multi-index with 1 ≤ p, q, r, s ≤ N + 1. Additionally using the basis
function ψk(τ) for the time, they are constructed by the tensor-product of the space basis
functions ψk, so that

θp(ξ, η, ζ, τ) = ψp(ξ)ψq(η)ψr(ζ)ψs(τ). (2.7)
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2.2 Arbitrary High Order Discontinuous Galerkin

This allows us to rewrite (2.1) as

∂u

∂τ
+
∂f∗

∂ξ
+
∂g∗

∂η
+
∂h∗

∂ζ
= 0 (2.8)

where
f∗ =

∆t

∆x
f, g∗ =

∆t

∆y
g, h∗ =

∆t

∆z
h. (2.9)

We can then integrate (2.8) over the space-time control volume T e and multiply it by the
test functions, in this case the θp, which yields the weak form∫

T e
θp

Å
∂u

∂τ
+
∂f∗

∂ξ
+
∂g∗

∂η
+
∂h∗

∂ζ

ã
dT e = 0. (2.10)

As in [12], Integration by parts then results in∫
T e
s

θp(ξ, η, ζ, 1)u(ξ, η, ζ, 1)dT es −
∫
T e
s

θp(ξ, η, ζ, 0)u(ξ, η, ζ, 0)dT es−∫
T e

Å
∂θp
∂τ

ã
udT e +

∫
T e
θp
∂f∗

∂ξ
dT e +

∫
T e
θp
∂g∗

∂η
dT e +

∫
T e
θp
∂h∗

∂ζ
dT e = 0,

(2.11)

Furthermore, we can approximate the discrete space-time solution q in the same manner
as u, so that

q =
p∑
1

θp(ξ, η, ζ, τ)q̂p. (2.12)

Given our modal basis functions, we can thereby approximate the fluxes in the advection
equation, so that

f̂p = Aq̂p, ĝp = Bq̂p, ĥp = Cq̂p, (2.13)

f̂∗ =
∆t

∆x
f̂ , ĝ∗ =

∆t

∆y
ĝ, ĥ∗ =

∆t

∆z
ĥ. (2.14)
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2 Hyperbolic Partial Differential Equations and Discontinuous Galerkin Schemes

Inserting into equation (2.11) , it becomes

∫
T e
s

θp2(ξ, η, ζ, 1)θp(ξ, η, ζ, 1)q̂pdT
e
s −

∫
T e
s

θp(ξ, η, ζ, 0)ψqûqdT
e
s−∫

T e

Å
∂θp2

∂τ

ã
θpq̂pdT

e+∫
T e
θp2

∂θp
∂ξ

f̂∗pdT
e +

∫
T e
θp2

∂θp
∂η

ĝ∗pdT
e +

∫
T e
θp2

∂θp
∂ζ

ĥ∗pdT
e = 0,

(2.15)

Thereby we can then derive the following matrices

Kξ
p2p =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∂θp2

∂ξ
θp dξdηdζdτ, (2.16)

Kη
p2p =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∂θp2

∂η
θp dξdηdζdτ, (2.17)

Kζ
p2p =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∂θp2

∂ζ
θp dξdηdζdτ, (2.18)

K1
p2p =

∫ 1

0

∫ 1

0

∫ 1

0
θp2(ξ, η, ζ, 1) θp(ξ, η, ζ, 1) dξdηdζ −

∫ 1

0

∫ 1

0

∫ 1

0

∂θp2

∂τ
θp dξdηdζdτ, (2.19)

F 0
pq =

∫ 1

0

∫ 1

0

∫ 1

0
θp(ξ, η, ζ, 0) ψq dξdηdζ, (2.20)

so that (2.15) can be written as

K1
p2pq̂p +Kξ

p2pf̂
∗
p +Kη

p2pĝ
∗
p +Kζ

p2pĥ
∗
p − F 0

pqûq = 0. (2.21)

This results in an iterative scheme

q̂n+1
p = (K1)−1

p2p

Ä
F 0
p2qûq −K

ξ
p2pf̂

∗
p −Kη

p2pĝ
∗
p −Kζ

p2pĥ
∗
p

ä
, (2.22)

where we use û1,1,1 as initial guess. (2.22) will also be referred to as the prediction step.
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2.3 Fully Discrete ADER-DG Scheme

2.3 Fully Discrete ADER-DG Scheme

As in [16], to attain a fully discrete scheme, we can integrate the flux terms in (2.15) by
parts, which yields∫

T e
s

θp2(ξ, η, ζ, 1)θp(ξ, η, ζ, 1)q̂pdT
e
s −

∫
T e
s

θp(ξ, η, ζ, 0)ψqûqdT
e
s−∫

T e

Å
∂θp2

∂τ

ã
θpq̂pdT

e+∫
T e
t

∫
∂T e

s

θpψqFd∂T
e
s dT

e
t −

∫
T e
θp
∂ψq

∂ξ
f̂∗pdT

e+∫
T e
t

∫
∂T e

s

θpψqGd∂T
e
s dT

e
t −

∫
T e
θp
∂ψq

∂η
ĝ∗pdT

e+∫
T e
t

∫
∂T e

s

θpψqHd∂T
e
s dT

e
t −

∫
T e
θp
∂ψq

∂ζ
ĥ∗pdT

e = 0,

(2.23)

whereF,G andH are numerical fluxes. As numerical flux function the Local-Lax-Friedrichs-
Flux

F(q) =
1

2

Ä
f(q−) + f(q+) + smax(q+ − q−)

ä
, (2.24)

is employed, where q− and q+ are the quantities at the respective boundary interface ∂Ts
and smax is the absolute value of the signal velocity wave speed.
As before we can then define matrices

K̃ξ
pq =

∫ 1

0

∫ 1

0

∫ 1

0

∂ψq

∂ξ
θp dξdηdζdτ, (2.25)

K̃η
pq =

∫ 1

0

∫ 1

0

∫ 1

0

∂ψq

∂η
θp dξdηdζdτ, (2.26)

K̃ζ
pq =

∫ 1

0

∫ 1

0

∫ 1

0

∂ψq

∂ζ
θp dξdηdζdτ, (2.27)

M̃qq2 =

∫ 1

0

∫ 1

0

∫ 1

0
ψq ψq2 dξdηdζ, (2.28)

and, as in [16], describe the element boundary-related terms in ξ-direction as

F+,+
pq =

∫ 1

0

∫ 1

0

∫ 1

0
ψq(1, η, ζ) θp(1, η, ζ, τ) dηdζdτ, (2.29)

F+,−
pq =

∫ 1

0

∫ 1

0

∫ 1

0
ψq(1, η, ζ) θp(0, η, ζ, τ) dηdζdτ, (2.30)

F−,+
pq =

∫ 1

0

∫ 1

0

∫ 1

0
ψq(0, η, ζ) θp(1, η, ζ, τ) dηdζdτ, (2.31)

F−,−
pq =

∫ 1

0

∫ 1

0

∫ 1

0
ψq(0, η, ζ) θp(0, η, ζ, τ) dηdζdτ. (2.32)
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2 Hyperbolic Partial Differential Equations and Discontinuous Galerkin Schemes

In η-direction and ζ-direction the matrices are analogously

G+,+
pq =

∫ 1

0

∫ 1

0

∫ 1

0
ψq(ξ, 1, ζ) θp(ξ, 1, ζ, τ) dξdζdτ, (2.33)

G+,−
pq =

∫ 1

0

∫ 1

0

∫ 1

0
ψq(ξ, 1, ζ) θp(ξ, 0, ζ, τ) dξdζdτ, (2.34)

G−,+
pq =

∫ 1

0

∫ 1

0

∫ 1

0
ψq(ξ, 0, ζ) θp(ξ, 1, ζ, τ) dξdζdτ, (2.35)

G−,−
pq =

∫ 1

0

∫ 1

0

∫ 1

0
ψq(ξ, 0, ζ) θp(ξ, 0, ζ, τ) dξdζdτ, (2.36)

H+,+
pq =

∫ 1

0

∫ 1

0

∫ 1

0
ψq(ξ, η, 1) θp(ξ, η, 1, τ) dξdηdτ, (2.37)

H+,−
pq =

∫ 1

0

∫ 1

0

∫ 1

0
ψq(ξ, η, 1) θp(ξ, η, 0, τ) dξdηdτ, (2.38)

H−,+
pq =

∫ 1

0

∫ 1

0

∫ 1

0
ψq(ξ, η, 0) θp(ξ, η, 1, τ) dξdηdτ, (2.39)

H−,−
pq =

∫ 1

0

∫ 1

0

∫ 1

0
ψq(ξ, η, 0) θp(ξ, η, 0, τ) dξdηdτ. (2.40)

To reduce the notational burden, we can now define

f+q =
1

2
F+,+
pq (f̂p + smaxq̂

n+1
p ) +

1

2
F+,−
pq (f̂p − smaxq̂

n+1
p ),

f−q =
1

2
F−,+
pq (f̂p + smaxq̂

n+1
p ) +

1

2
F−,−
pq (f̂p − smaxq̂

n+1
p ),

g+q =
1

2
G+,+

pq (ĝp + smaxq̂
n+1
p ) +

1

2
G+,−

pq (ĝp − smaxq̂
n+1
p ),

g−q =
1

2
G−,+

pq (ĝp + smaxq̂
n+1
p ) +

1

2
G−,−

pq (ĝp − smaxq̂
n+1
p ),

h+q =
1

2
H+,+

pq (ĥp + smaxq̂
n+1
p ) +

1

2
H+,−

pq (ĥp − smaxq̂
n+1
p ),

h−q =
1

2
H−,+

pq (ĥp + smaxq̂
n+1
p ) +

1

2
H−,−

pq (ĥp − smaxq̂
n+1
p ),

so that finally, the resulting update step for each iteration in the scheme becomes

ûn+1
q =ûnq−

M̃−1
Å

∆t

∆x
(f+q − f−q )− K̃ξ

pqf̂
∗
p

ã
+

M̃−1
Å

∆t

∆y
(g+q − g−q )− K̃η

pqĝ
∗
p

ã
+

M̃−1
Å

∆t

∆z
(h+q − h−q )− K̃ζ

pqĥ
∗
p

ã
.

(2.41)
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2.3 Fully Discrete ADER-DG Scheme

Note that for N = 0, the presented method simplifies to a finite volume method. Periodic
boundary conditions were employed and sufficiently smooth initial conditions used to
avoid the problems arising with discontinuities in the initial condition. Alternatively, those
could be addressed using limiters as shown in [20].
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3 Problem Characteristics and Optimization

This section details the computational characteristics of the ADER-DG solver. We analyze
the sparsity patterns in the matrices and describe ways to optimize single core up to multi-
node performance. We refer to [8] for similar investigations with a spatial discretization
employing tetrahedons.

3.1 Problem Characteristics

The ADER-DG approach has several features that have to be considered to perform an
efficient optimization. As the computationally expensive part of the solver can be written
as matrix-matrix multiplications, we focus on performing these efficiently.
The first thing to consider is that due to the nature of the ADER-DG approach, the com-
putation of the prediction and update step for each element requires the same matrices. In
case of the prediction step those matrices areKξ,Kη,Kζ , F 0 and K−1. For the update step
they are Kξ

∗ ,K
η
∗ ,K

ζ
∗ ,M

−1
∗ and the matrices in equations (2.24) to (2.39).

Furthermore these matrices are independent of the quantities, parameters of the PDE and
time. Therefore, they can be precomputed and reused. In case of the advection equation
the matrices A,B and C are also constant, resulting in a constant time step ∆t.
The prediction step in particular is well-suited for optimization as it is completely element-
local. As most of the matrices in equations (2.22) are of size (N + 1)4 × (N + 1)4 the pre-
diction step is likely to require most of the computational effort for bigger N , i.e. higher
order. Note that this is caused by the approach taken here and is not necessarily the case
for a Cauchy-Kovalewski-based prediction step. It is also possible to reduce the number
of degrees of freedom in time as shown in [10].

3.2 Matrix Structure

Another important observation is that all matrices involved are sparse matrices. While
the implementation does not consider this due to time-constraints of this thesis, this is
still a relevant feature of the approach. Sparsity patterns for the matrices for nodal basis
functions are shown in [18].
Note that the involved matrices are sparse in lower dimensional cases as well. In the
Figures 3.1 and 3.2 the sparsity patterns of the matrices involved in each iteration are
depicted.
Ideally a sparse matrix-matrix multiplication kernel can be implemented to address this

11



3 Problem Characteristics and Optimization

Figure 3.1: Sparsity patterns for the matrices Kξ,Kη,Kζ , (K1)−1, M̃−1 and F 0 for N = 2. Similar
sparsity patterns occur for all tested N .

and additionally improve performance as in [6]. The memory limitations of the chosen
computing system however will most likely not be affected by this to a large degree as
the main impact on memory results from the size of q̂, f̂ , ĝ, ĥ, f̂∗, ĝ∗ and ĥ∗ as they contain
NE × (N + 1)4 ×NVar entries.
To consider the impact of the sparsity patterns, Section 4 compares zero and non-zero
entries of the involved matrices for all tested N .

3.3 Single Core Optimization

Considering the factors mentioned previously, standard procedures can be used to opti-
mize the single core performance. We focus on the optimization for Intel Xeon E5-2697 v3
CPUs supporting the Advanced Vector Extensions 2 (AVX2). General guidelines for this type
of optimization can be found in [5].
First off, all arrays used to represent the matrices and variables in the implementation are
64-byte aligned in contiguous memory to allow for the efficient use of AVX2 intrinsics and
the available memory bandwith. The contiguous aligned access helps to attain an optimal

12



3.3 Single Core Optimization

Figure 3.2: Sparsity patterns for the matrices K̃ξ, K̃η, K̃ζ , F+,+, G+,+ and H+,+ for N = 2. Similar
sparsity patterns occur for all tested N .

memory bandwith. It is also beneficial for the aforementioned intrinsics, a set of instruc-
tions that allows the automated use of the corresponding AVX2 registers and of fused
multiply-add (FMA) operations. Thus, the so called single instruction, multiple data (SIMD)
instructions on current Intel architectures can be efficiently utilized. All executables were
compiled using the Intel C++ Compiler 15.0. To benefit from compiler-based optimization
techniques, the flags for aggressive optimization −O3 and the Interprocedural Optimization
(IPO) were set. Furthermore, the keyword restrict was used were applicable. Finally, AVX2
instructions support was enabled using the flag -xCORE-AVX2.
The activation of aggressive optimizations using −O3 allows the compiler to perform ac-
tions such as loop transformations or collapsing if -statements. Most importantly it enables
auto-vectorization on the Intel compiler. However, the −O3 flag sometimes impairs the
performance rather than aid it depending on the implementation.
Similar to the optimization with −O3, the IPO is automatic and gives the compiler ad-
ditional information about things like, e.g., loop trip counts, data alignment or data de-
pendencies. This way it is possible to auto-vectorize more loops or automatically inline
functions. More information on the usage of this feature can be found in [2].
The restrict keyword, finally, asserts that memory referenced by a pointer is not accessed
in any other way than in the current code scope. This disables runtime checks for aliasing
and therefore needs to be used carefully.
We employ different kernels for the prediction step and the update step to allow for distinct
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performance analysis of them. For comparison we tested multiple matrix-matrix multipli-
cation implementations. One version using only the auto-vectorization features as base-
line, one employing the Intel Math Kernel Library’s 11.2 (MKL) DGEMM implementation
[3] and one utilizing LIBXSMM [4], a library optimized for small matrix-matrix multipli-
cations. In case of LIBXSMM, this required including a file containing inlined assembly
code, whereas the MKL was statically linked. Note that the baseline version does not fea-
ture specific optimizations like cache-blocking. Regarding the LIBXSMM kernels, one has
to keep in mind that the library is optimized for matrix-matrix multiplications with small
problem sizes, which limits the performance for higher order scenarios. Conversely the
MKL is optimized for large problem sizes, i.e. it is not the best fit for the lower order
scenarios.

3.4 Hybrid MPI/OpenMP Parallelization

In regards to parallelization a hybrid MPI/OpenMP parallelization with overlapping com-
munication and computation was implemented. We use one rank for every node and one
rank runs a number of OpenMP threads. Furthermore, asynchronous communication be-
tween the MPI ranks is employed to minimize waiting times and allow for minimal over-
head. On each rank we pick one thread on one core that is dedicated to handling the rank’s
communication. A similiar approach was taken in [13].
We divide the spatial domain in equally sized subblocks in one, two, or three dimensions
depending on the number of ranks. Each of these subblocks is divided into an inner, copy,
and ghost layer as depicted in Figure 3.3, but in three dimensions. Therein the ghost
layer is equivalent to the adjacent blocks’ copy layer and analogously the copy layer to
the adjacent blocks’ ghost layer. The reason for this lies in the need to access neighbouring
elements in the computation of the update step (2.41). This requires either sending the
prediction step on the copy layer to adjacent blocks or computing the prediction on the
ghost layer too.
In regards to the OpenMP parallelization, for both the prediction and update step, we split
the rank’s domain into as many subdomains as we have computation threads, i.e. threads
apart from the one dedicated to communication. We pin the computation threads to all
cores apart from the communication core in a such a fashion that without hyper-threading
every core is running at most one thread and with hyper-threading, all cores are running
at most two threads.
The communication thread persistently checks if the ongoing communication has been
completed and, when it is appropiate, posts the necessary sends and receives for each
rank. The most critical part here is to make sure that no computations are performed on
the data that is still being sent and that no computation begins before all necessary data
has been received. While this is certainly more complex and difficult to implement than a
synchronous communication, where communication and computation do not overlap, it is
advantageous in this case as most of the necessary computations do not rely on data from
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3.4 Hybrid MPI/OpenMP Parallelization

Figure 3.3: Two-dimensional depiction of the domain of one rank. The inner layer comprises all
elements, which only require the inner and copy layer for the computation of the update
step. The update step on the copy layer requires access to elements from all three layers.
The ghost layer contains elements from the neighbouring ranks’ copy layer. Each rank
has up to six neighbours, depending on the total number of ranks.

other ranks. One disadvantage, however, is that the core handling the communication
does not perform any computations and we sacrifice its computational power. On modern
architectures this is increasingly sustainable as the trend for a higher number of cores per
node persists.
Considering the view of one rank, one rank could perform an iteration, i.e. the compu-
tation of the prediction and update step on its inner and copy layer, as shown in Figure
3.4. In this approach it is necessary to send 4NVar(N + 1)4 values for each element in the
copy layer. After posting the necessary receive for its ghost layer (step I), each rank first
needs to be sure that there is no send on his part still ongoing, as in the next step each
one computes the prediction step of his copy layer (step II). The copy layer now needs to
be sent to the adjacent ranks (step III). Meanwhile, the prediction and update step of the
inner layer is computed (steps IV and V). Following that, if the receive on the ghost layer
has been completed the update step on the copy layer can be performed (step VI).
The advantage of this approach is that the time between receiving and sending can be used
to perform the two computationally most expensive steps, the computation of the predic-
tion and update step on the inner layer.
Alternatively, it is possible to proceed as shown in Figure 3.5. This approach relies on send-
ing only NVar(N + 1)3 values for each element. As in the first approach a receive for the
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Figure 3.4: A visualization of the steps necessary to perform one iteration on one rank, if the pre-
diction step on the ghost layer is performed on the neighbours. The green line indi-
cates a MPI barrier for outgoing communication, the red one for incoming communica-
tion.Subscripts C and G denote elements in the copy and ghost layer respectively. One
rank computes the prediction step on its copy layer and sends the results to its neigh-
bours. Similarly it receives the prediction step on the ghost layer from its neighbours
and can then perform the update step on its copy layer. The inner layer is independent
of the ghost layer and prediction and update step on it can be computed asynchronously.

ghost layer is posted first (step I). After that the prediction step on the inner and copy layer
is computed (step II). When the aforementioned receive completes, we now also compute
the prediction step on the ghost layer (step III). If no sends are still ongoing, the update
step on the copy layer is then computed and sent to the rank’s neighbours (steps IV and
V). Finally the update step on the inner layer is computed (step VI).
Similarly to the previous approach, during communication we compute the update step
and prediction step on the inner layer and, additionally, the prediction step on the copy
layer. Compared to the previous approach we also have significantly less values that need
to be sent, especially for higher N . However, the computations of adjacent ranks overlap
as each rank also computes the prediction step on its ghost layer.
We implemented the second approach, given that it provides us more communication-
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Figure 3.5: A visualization of the steps necessary to perform one iteration on one rank, if the predic-
tion step on the ghost layer is performed on the rank. The green line indicates a MPI bar-
rier for outgoing communication, the red one for incoming communication.Subscripts
C and G denote elements in the copy and ghost layer respectively. One rank computes
the prediction step on its copy and inner layer. It receives the neighbours ûG and then
performs prediction step on the ghost layer. The inner layer is independent of the ghost
layer and prediction and update step on it can be computed asynchronously. Note that
before the start of the first iteration, the rank receives the initial ûG from its neighbours,
which is not depicted in the image.

independent computations while needing less communication overall. Although, if we
compare the computational overhead created by performing the prediction step on the
ghost layer too, we perform the prediction on 6(N i)2 elements twice, where N i is the
amount of elements per dimension. This is neglible compared to the (N i)3 elements on the
inner and copy layer.
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4 Results

This section features the results of different performance and error measurements of the
implementation. After an introduction to the basic setup for all these measurements single-
node and multi-node performance measurements are given.

4.1 Setup

All measurements were performed on the Leibniz Rechenzentrum’s CoolMUC2 1 cluster that
consists of 252 nodes, each featuring dual socket 14-core Intel Xeon E5-2697 v3 CPUs, 64
GByte memory per node and an Infiniband FDR network connection. The maximum fre-
quency of one core is set to 2600 Mhz. All measurements were performed with double-
precision.
Test scenarios were chosen so that each rank’s memory is sufficiently utilized and that a
reasonable number of iterations is manageable. Results were averaged over multiple it-
erations. Test cases ranging from N = 1 to N = 4 using N i ∈ 150, 100, 60, 40 elements
per dimension respectively with a time step ∆t = 1

8
1

(2N+1) . The A,B and C matrices were
chosen to be diagonal matrices with only 1’s on the diagonal, so that due to the periodic
boundary conditions and the domain [0; 1]3 at t = 1 the initial condition should be re-
stored. As a sufficiently smooth initial condition is needed, we choose a three-dimensional
Gaussian function at t = 0. As the matrices and basis functions from Section 2 are indepen-
dent of the initial condition they were precomputed with a Matlab implementation. The
initial conditions were created using the same code and below error measurements were
taken in Matlab as the basis functions were not available in the C++ implementation.
As error function we choose a relative L2 error with

eL2 =

∑
i(ũi − ui)2∑

i ũ
2
i

, (4.1)

where the ũi are the exact solutions at the supporting points of all elements and the ui the
numerical ones at t = 1 respectively.
Figure 4.1 shows an error plot for the Matlab implementation. Unfortunately, the imple-
mentation does not provide stable results as one can see in the plot. One reason for this
might be that due to the performance limitations of the Matlab implementation, only small
test cases could be performed. E.g., the order of convergence for N = 0 for N i = 10 and
N i = 20 is only 0.60, whereas for N i = 20 and N i = 40 it is 0.96, indicating that bigger test

1https://www.lrz.de/services/compute/linux-cluster/
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cases might clarify the order of convergence. The order of convergence and corresponding
tests are shown in Table 4.1.
The C++ implementation is identical to the Matlab implementation in regards to the im-

Figure 4.1: Convergence results ranging from N = 0 to N = 4 and N i = 3 to N i = 40 for a
Matlab implementation. Black triangles depict the data points chosen to compute the
order of convergence shown in 4.1. Bigger test cases were not feasible with the Matlab
implementation.

plemented scheme, so that above measurements can represent both. All following results
will be referring to the C++ implementation.
In case of the multi-node measurements, each rank contains a domain of size [0; 1]3 and
initialized as it is described above to allow for simple weak-scaling tests. On each rank
N i elements per dimension comprise the inner and copy layer, whereas 6N i comprise the
ghost layer.
Note that with higher N due to the sparsity of the matrices involved, the reported hard-
ware FLOPs are increasingly zero FLOPs. For N = 1 about 91% of the matrix entries in the
matrices in (2.41) and (2.22) are zeroes. For N = 2, N = 3 and N = 4 about 97.7%, 99.08%
and 99.57% are zero entries respectively.

4.2 Single-Node Performance

This section presents all results performed on only one node. The strong scaling perfor-
mance measurements were all taken on one specific node of the cluster to avoid node-
related performance variance. Results regarding OpenMP strong scaling, performance
and memory bandwidth are given. With Intel Turbo Boost disabled, the theoretical peak
performance of one core of the cluster is 41.6 GFLOPS and of one node therefore 1164.8
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Table 4.1: Order of convergence for differentN , corresponding to the values in Figure 4.1. Expected
orders of convergence for N would be N + 1. For N = 0, N = 3 and N = 4 values are as
expected.

N N i
1 N i

2 e1L2 e2L2 Order of convergence

0 10 20 0.013057 0.0086972 0.60
0 20 40 0.0086972 0.0044869 0.96
1 10 20 0.00015316 1.5272e− 05 3.33
2 5 10 3.4006e− 05 5.2299e− 07 6.02
3 5 10 4.1187e− 07 2.4835e− 08 4.05
4 3 6 8.7062e− 07 2.7041e− 08 5.01

GFLOPS. However, due to higher power requirements of AVX2 instructions, clock speeds
are lower in practice as shown in [1].
Regarding all results, note that one of the 28 cores is the dedicated communication core.
This could have been disabled for single-node tests, but to allow for easy comparison with
the multi-node tests it was not.

4.2.1 Kernel Implementation

In Figure 4.2 we compare the different kernel implementations, i.e. auto-vectorized, LIBXSMM
or MKL-based ones for different N . As expected the auto-vectorized version can not keep
up with the other two. At N = 1 and N = 2 the LIBXSMM kernels are the fastest ones
and for N = 3 and N = 4 the MKL kernels. Overall performance increases with higher N ,
which coincides with the results from [7]. A comparison of the time spent in the update
and prediction kernel using the respectively fastest version is depicted in Figure 4.3 for
different N . For N = 1 the update step is more time-consuming as the difference in size
between the matrices used in it compared to the bigger matrices in the prediction step is
relatively small, e.g. the K̃ξ, K̃η, K̃ζ as well as the flux matrices are of size 8× 16, whereas
the matrices in the prediction step are mostly of size 16 × 16. However, for N = 4 this
difference is decisive, as the prediction step matrices are now of size 625 × 625 where as
the smaller ones in the update step are of size 125 × 625. Therefore, with higher N , the
prediction step is increasingly computationally expensive.
For N = 1 and using LIBXSMM kernels the achieved memory bandwidth on one node
with 55 threads in the prediction step kernel was 41.25 GiB/s and 36.35 GiB/s in the up-
date step kernel. Values for higher N decrease, indicating that our problem is compute-
and not memory-bound as a memory bandwidth of 104 GiB/s was attained performing
the STREAM [15] benchmark on one node.
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Figure 4.2: Comparison of the performance of the different implementations for N ranging from 1
to 4. For N = 1 and N = 2 the LIBXSMM kernels perform best at 174 and 391 GFLOPS
respectively. For N = 3 and N = 4 the MKL kernels are faster at 490 and 591 GFLOPS
respectively. The auto-vectorized version was slower than the library-based ones in all
cases.

Figure 4.3: A depiction of the time spent computing the prediction and update step using the re-
spectively fastest kernel implementation for cases withN ranging from 1 to 4. ForN = 1
the update kernel requires more computation time, whereas with increasing N the pre-
diction kernel becomes more time-consuming.
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4.2.2 OpenMP Implementation

In Figure 4.4 performance measurements ranging from 2 to 55 OpenMP threads are shown,

Figure 4.4: Performance measurements for N = 4 using the MKL kernels and 2 to 55 threads. For
more than 28 threads hyper-threading is used,wgucg allows for a peak performance of
591 GFLOPS at 55 threads. Using two threads - one dedicated to communication and
thereby not contributing on one node - a performance of 26 GFLOPS is achieved.

where one thread is a dedicated communication thread not contributing to the computa-
tion. This run was performed using the MKL kernels, N = 4, and N i = 40. Thus the
largest problem size tested is used for the OpenMP tests. The reason for this is that the
highest order cases are most interesting and computationally demanding.
A single-core performance of 26 GFLOPS is achieved, i.e. 62% of the theoretical peak per-
formance. For N = 4 the matrix sizes range from 125 × 125 to 625 × 625. It is discernible
that for higher N performance might yet increase, as the MKL performs best in cases in-
volving larger matrices. For 55 OpenMP threads a peak performance of 591 GFLOPS is
reached, i.e. 50% of the theoretical peak performance.
Note that the drop in performance at 29 threads is caused by the fact that at this point
hyper-threading is used on one core. The implementation uses static scheduling, there-
fore the performance is negatively affected, because the cores only running one thread are
quicker than the one core running two and have to wait for it. This trend continues until
55 threads are reached, where every core, aside from the communication core, is running
two threads.
Figure 4.5 shows the corresponding strong scaling. For 28 threads 22.02 times the per-
formance of one computing thread is achieved, whereas for 55 threads it is 22.66. One
might expect close to theoretically perfect scaling, but multiple factors affect the perfor-
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Figure 4.5: Strong scaling measurements for N = 4 using the MKL kernels and 2 to 55 threads.
The dashed line indicates the values for perfect scaling. 22.02 times and 22.66 times the
performance of one computing thread is achieved with 28 and 55 threads respectively.

mance. First-off the higher power consumption for AVX2 instructions mentioned before
negatively affects the performance. In [1] a reduction of up to 10% of the core frequency
for this CPU model is observed. Furthermore, the division of the computation, especially
of the six faces in the ghost and copy layer, between the threads becomes more difficult as
less elements are concerned.
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4.3 Multi-Node Performance

In this section, the results using multiple nodes are presented. Unfortunately, it was not
feasible to use the same nodes for each computational run, so some variance between re-
sults has to expected. Building on the single-node results, test cases withN = 1 andN = 2
were performed using the LIBXSMM kernels and N = 3 and N = 4 ones with the MKL-
based kernels. Performance and scaling results for different rank counts are given and
time spent in the computational kernels versus overall runtime is shown. In particular,
weak scaling was analyzed, so that for, e.g., four ranks the domain size was four times as
big.
In Figures 4.6,4.7,4.8 and 4.9 the performance and scaling measurements for N ∈ [1; 4] are
depicted. For N = 1 and N = 2 performance is limited by the single-node performance.

Figure 4.6: Performance results for N = 1 on 1 to 32 nodes using the LIBXSMM kernels on the left.
A peak performance of 5175 GFLOPS on 32 nodes is achieved. Weak scaling results on
the right. 29.76 times the speed of one rank is achieved on 32 ranks. The dashed line
indicates the values for perfect scaling.

The maximum performance reached is 5175 GFLOPS and 10389 GFLOPS respectively. The
implementation reached 29.76 and 26.16 times the speed of one rank on 32 ranks respec-
tively. For N = 3 a peak performance of 23.5 TFLOPS on 64 nodes is reached, i.e. 32% of
the theoretical peak performance. In theN = 4 run on 64 nodes 28.2 TFLOPS are achieved,
i.e. 38% of the theoretical peak performance. For N = 3 and N = 4 the speedup was 47.94
and 49.72 with 64 ranks compared to one respectively. Unfortunately, for higher N the
scaling is worse than for, e.g., N = 1. This is odd, since the computational cost increases
by a higher order than the amount of data that has to be sent for bigger N , as the size of
û depends on the factor (N + 1)3, whereas many of the matrix-matrix multiplications in
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Figure 4.7: Performance results for N = 2 on 1 to 32 nodes using the LIBXSMM kernels on the left.
A peak performance of 10389 GFLOPS on 32 nodes is achieved. Weak scaling results on
the right. 26.16 times the speed of one rank is achieved on 32 ranks. The dashed line
indicates the values for perfect scaling.

Figure 4.8: Performance results for N = 3 on 1 to 64 nodes using the MKL kernels on the left. A
peak performance of 23478 GFLOPS on 64 nodes is achieved. Weak scaling results on
the right. 47.94 times the speed of one rank is achieved on 64 ranks. The dashed line
indicates the values for perfect scaling.
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Figure 4.9: Performance results for N = 4 on 1 to 64 nodes using the MKL kernels on the left. A
peak performance of 28214 GFLOPS on 64 nodes is achieved. Weak scaling results on
the right. 47.72 times the speed of one rank is achieved on 64 ranks. The dashed line
indicates the values for perfect scaling.

(2.22) involve matrices of size (N + 1)4 × (N + 1)4. One reason might be the actual topol-
ogy of the selected nodes in the runs or differences in the computational speed achieved
by specific nodes. A better load balancing approach might be necessary in that case.
In Figure 4.10 the fraction of the time spent in the kernels compared with the overall run-
time per rank is depicted for N = 1. A version implementing a simple synchronous com-
munication using the MPI Sendrecv command was tested too. The synchronous version
ran with 54 threads so that both versions had the same amount of threads available for
the compute kernels. The overall runtimes for the asynchronous implementation were
15.82, 16.70 and 15.87 seconds for 8, 16 and 32 ranks respectively, while the synchronous
one required 15.03, 19.44 and 18.30 seconds. Note that the synchronous version spends a
greater fraction of time outside of the kernels for a greater number of ranks, while the asyn-
chronous version does not. As more ranks are involved more communication is required
and as each communication has to be completed before the computation can continue in
the synchronous case. The performance is negatively affected by this. Overall the asyn-
chronous approach provides better scalability, even if it sacrifices 1

28 of the performance
due to the dedicated communication core.
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Figure 4.10: A comparison of the fraction of the time spent in the kernels and the overall runtime
for an implementation using the synchronous MPI Sendrecv command and the asyn-
chronous implementation. Both implementations utilized 54 threads in the kernels.
The overall runtimes for the asynchronous implementation were 15.82, 16.70 and 15.87
seconds for 8, 16 and 32 ranks respectively, while the synchronous one required 15.03,
19.44 and 18.30 seconds. For an increasing number of nodes the synchronous version
spends less time in the computation kernels, whereas no significant change occurs in
the asynchronous implementation. Overall runtimes are comparable, especially as the
slightly slower synchronous implementation could utilize two more threads.
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5 Conclusion and Outlook

Overall the results of the implementation coincide with [6][8][7] in that ADER-DG ap-
proaches are well-suited to achieve good performance on current supercomputer architec-
tures. The pitfalls of Runge Kutta methods for higher orders do not apply. Furthermore
the element-local features of the ADER-DG approach allow an easy parallelization. The
fact that the involved matrices are identical for all elements saves memory and simplifies
the implementation.
On a single core 62% of the theoretical peak performance are achieved, on one node 50%.
This decline is partially attributable to the higher power demands of AVX2 instructions,
but also points to some issues in the OpenMP parallelization. We reach 38% of the theoreti-
cal peak performance on 64 nodes forN = 4. The decline in this case might require further
investigation. A comparison between a synchronous and asynchronous communication
approach showed better scaling results for the asynchronous one.
There is a number of things relevant to future research. First-off the implementation or
use of sparse matrix-matrix multiplication kernels should be considered to drive runtime-
oriented optimization and to allow for realistic runtime measurements. While a variety of
libraries exists to perform such operations, it might be advantageous to implement kernels
specifically designed with the structure of the sparsity patterns from Section 3 in mind.
It is necessary to confirm the order of convergence with bigger test cases. Also, there is
still room for optimizations in the implementation. The scaling issues with the OpenMP
implementation should be addressed as well as the similar problems with the MPI imple-
mentation.
Furthermore the extension to more complex problems like the elastic wave equation or the
Euler equations is desirable to furthermore confirm the practical usability of this method
and to be able to use it to compute solutions to problems that are not analytically solvable.
One problem could be in the applicability of the modal basis functions to nonlinear prob-
lems. However, nodal basis functions as in [16][12] could be used here as well. Finally the
implementation of limiters, as in [20], to deal with more complex initial conditions and the
use of a more flexible discretization like, e.g., tetrahedons and adaptive element sizes are
of interest to be able to model complex geometries.
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