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Abstract―Inspired by body motion in mammals we 
propose an embodied control hierarchy for 
semi-autonomous combination of self-organized motion 
primitives for goal directed trajectory execution. 
Movements are adaptive, the setup transferrable to 
different body morphologies and draws potential for 
integration in a comprehensive neural network based on 
Hebbian Learning that behaves similar to neural circuits 
in the spinal cord. 
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1. Introduction 
Neural Networks demonstrate great potential for control 
of musculoskeletal robots with antagonistic control 
principles. In general, bigger networks naturally lead to 
more complex behaviors but are very specialized and lack 
generality. Therefore, in this paper we propose trajectory 
execution based on two phases of self-organized motion 
primitive generation and its following combination to 
new behaviors. Inspiration is drawn by pattern generators 
in the Spinal Cord but in contrast to Central Pattern 
Generators we exploit self-organization for behavior 
generation to remain generality and adaptability. 
On the example of a tendon-driven Myorobotics shoulder 
arm imitating a musculoskeletal biological body we 
demonstrate semi-autonomous execution of trajectories. 
Our results may contribute to a better understanding of 
motion execution by neural circuits in the spinal cord but 
as well build a base for small neural networks that can 
efficiently generate and execute motions with biomimetic 
robots. 
 

2. Musculoskeletal Robot and Self-Organized 
Behavior Generation 

As a test environment we utilize a Myorobotics robot that 
mimics a human shoulder arm. A ball and socket shoulder 
and revolute elbow arm are controlled by antagonistically 
arranged tendon-driven actuators. The Myorobotics 
muscle units imitate muscle fibers: A tendon is rolled up 
while a series elastic element includes flexibility. Sensor 
feedback is provided in terms of force, position and 
velocity according to muscle afferents. 
For generation of motion primitives, the Differential 
Extrinsic Plasticity (DEP) learning rule as introduced by 
Der and Martius [1] is exploited. A single layer feed 
forward neural network with 

  

maps sensory information x (force + position) to muscle 
motor control commands y. An incorrect inverted model 
of the world with a modelling error dy serves as learning 
basis for explorative behaviors and sensory input is 
delayed for periodic pattern generation. In [1] the DEP 
rule has been applied to the Myorobotics arm and 
demonstrated generation of a variety of self-organized 
periodic arm motions that are adaptive to environment 
interactions.  
 

3. Proposed Control Components and Hierarchy 
Experiments with decerebrated cats show that body 
motion patterns can be recalled by inducing electrical 

stimuli in the mammal’s brainstem [2]. Analogous, in our 
setup user input (behavior decision) specifies a desired 
motion pattern to be executed as well as its speed and 
amplitude. Figure 1 depicts our proposed control 
hierarchy that imitates functionalities of the brain, spine 
and muscles. The central components of the spinal cord 
for periodic motion generation and storage are based on 
Hebbian Learning, a simple neural network triggers 
subsequent motion patterns:  
- Behavior Generation: A rate based neural network 

applying the DEP learning rule in a closed-loop of the 
sensory motor map of the 
musculoskeletal robot arm 

- Behavior Storage: The weight 
matrices of the neural network 
representing the different 
motion patterns are stored in a 
Hopfield network and are 
recalled associatively by motion 
selection commands 

- Motion Trigger: A two-layer 
neural network as shown in 
figure 2 detects potential 
transition points and triggers a 

 
Figure 1: A Control Hierarchy inspired by motion execution in the 
Spinal Cord 

 
Figure 2: Two layer 
neural network for 
transition triggering 
based on motor poses ai 
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transition to the following motion pattern autonomously 
after its specification. For this purpose motor positions 
are continuously encoded as Sparse Distributed 
Representation and experimentally specified transition 
points are stored in the network weights.   

In a first learning phase self-organized motion primitives 
are generated by manual interaction with the robotic arm 
and stored as weight matrices, as well the trigger network 
is initialized accordingly. Afterwards a desired trajectory 
can be generated by sequential input of the underlaying 
motion primitives, the speed and frequency can be 
adapted continuously. 
 

4.  Results 
We generated three different periodic motion primitives 
as visualized in the principle drawing of figure 3 to cover 
the cartesian motion space of the robots forearm. All 
motions can be modelled in terms of frequency (about 
0.25 Hz to 0.8 Hz) and amplitude (about 2 to 6 radiants 
motor position). We identify reasonable transition points 
in the pattern centers and adjust the trigger network 

accordingly (blue). The red line indicates a potential 
generated trajectory assembled out of various motion 
primitive parts: a subsequent motion primitive can be 
selected at any time since the system autonomously 
transitions whenever a transition point is reached. Weight 

matrices can be recalled associatively from the Hopfield 
network, whereas improvements for storage capacity need 
to be addressed prospectively. The transition quality is 
improved by providing modelled context information 
assuming a perfect subsequent motion primitive instead 
of the actual history context. Figure 4 demonstrates an 
example result of switching between two stored motion 

primitives combining quarter patterns each. The 
transitions are stable and free of disturbances, the top 
shoulder muscle (yellow) not affected by a change of 
direction transitions smoothly. 
 

5. Conclusion 
In the demonstrated experiment setup we can generate 
purposeful trajectories as a combination of self-organized 
motion primitives. Hereby, speed and amplitude can be 
varied while a triggering mechanism autonomously 
transitions to the next selected motion primitive. 
The proposed approach of using motion primitives as 
building blocks for complex behaviors is very similar to 
current implementations with Central Pattern Generators  
as e.g. in [3]. However, in our implementation the 
patterns itself are self-organized so that motions evolve 
self-explorative based on the body morphology and 
remain highly adaptable to any disturbance. 
Two aspects let the proposed approach compare to 
biology: The neural circuity in the spinal cord is build up 
of not more than five layers, in our setup we only utilize 
networks with a maximum of two layers. Furthermore, 
plasticity in the spinal cord decreases with development 
time. With our setup we propose a phase of learning 
motion primitives that afterwards are combined to 
achieve fast execution of desired trajectories in the full 
action space.  
Since most components are based on Hebbian Learning 
Rules, future research will move towards a single 
comprehensive associative network that generates, stores 
and triggers motion patterns. To further compare the 
results with biological findings the Neurorobotics 
Platform [3] will be exploited to set up a closed loop 
control simulation experiment with musculoskeletal 
human and animal models. 
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Figure 3: Schematic drawing of trajectory execution based on basic 
motion primitives on the Myorobotics tendon-driven shoulder arm: A 
goal directed motion is executed by combining parts of previously 
self-organized motion primitives whereas the motion transition itself is 
triggered autonomously by a simple neural network. 

 
Figure 4: Motor position plots for five shoulder muscles demonstrating
fluent transitions without disturbances and loss of motion amplitude. 


