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Abstract

Classical Conditioning plays a vital role for learning in every mammal. It is is based on unsupervised neural
learning embodied in a physical body that is in continuous interaction with the environment. Embedding the
Hierarchical Temporal Memory (HTM) in the closed-loop of the sensorimotor space of a Myorobotics tendon-
driven robotic arm we demonstrate learning, prediction and control of biomimetic body motions. Experiments
finally lead to conditioned reactions in natural interaction with a human partner.
The HTM is able to learn arm movements generated by interaction with a human partner in a short time. It predicts
future positions in different time scales up to seconds in advance. Closing the loop we utilize HTM predictions
for motor control. Hereby learned motions are recalled from synaptic connections proactively continuing motion
execution. Association, prediction and control requisite the HTM for conditioning according to Pavlovian: Neutral
stimuli get associated to motions, after learning sensor impulses can trigger single arm lifting motions. Hereby, both
the motions and the stimuli are learned from the environment and get associated efficiently. We can demonstrate
high biological plausibility as for example even input variations result into similar variations in the action output.
The robotic system consisting of biologically derived hardware and software components utilizes only usupervised
Hebbian Learning to act autonomously. Learning is executed in real-time, can handle natural variations of human
motions and takes morphologically plausible sensor input into account. The setup is fully scalable due to its
modularity. Hereby, novel applications for the HTM are opened: It can be used in musculoskeletal robot control
scenarios and robots being able to interactively learn from human partners and the environment.

Index Terms

Hierarchical Temporal Memory (HTM), Myorobotics, Musculoskeletal Robots, Artificial Neural Network,
Classical Conditioning, Hebbian Learning, Associative Memory, Embodiment, Morphological Computing

I. INTRODUCTION AND MOTIVATION

The human musculoskeletal system differs dis-
tinctly from todays classical robots used for indus-
trial purposes, and so does sensing and control. In
particular, humans are able to predict and learn from
the environment. A biological body focuses less
on a highly precise and accurate motion repetition.
Instead, mammals are compliant, adaptive to the
environment as well as interaction partners and
therefore highly flexible. To enable robots for close
Human Robot Interaction scenarios and behaving
autonomously in a complex world these character-
istics are highly desired. Therefore, imitating the

human musculoskeletal system in robotic systems
is of special interest. Considering the concept of
embodiment and exploiting morphological comput-
ing, the body plays an essential role in what kind
of motions can be learned [1]. It becomes clear
that only an adequate conjunction of hardware and
software concepts can exploit the full prospects
of a biomimetic robotic systems with particular
interest in learning as the most intuitive way to
acquire new skills. In this paper we exploit the un-
supervised behavioral learning concept of Classical
Conditioning that describes the association of sensor
stimuli to motion execution. In this way new action
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and reaction scenarios can be learned, a first step
towards autonomous task execution in interaction
with the environment.

Our experiments are based on the closed-loop
sensorimotor setup we introduced in [2]. An artifi-
cial neural network connects sensor and motor space
while the world representation gets stored in the
synaptic connections. We utilize a musculoskeletal
humanoid arm that is built out of the modular tool-
box Myorobotics [3]. The tendon driven actuation,
imitating human muscles, affects a 1 Degree of
Freedom (DOF) revolute elbow joint and a 3 DOF
ball and socket shoulder joint. The Hierarchical
Temporal Memory [4] artificial neural network is
an associative memory based on Hebbian Learning
and inspired by the neocortex. While manually
interacting with the robotic arm the artificial neural
network is exposed to the sensory space of the
robotic system. The neural network predicts future
motion states and the forecasts later are used to
control one of the Myorobotics motor units.

In this paper we introduce the first application
of the Hierarchical Temporal Memory in combina-
tion with a musculoskeletal robot. The HTM is a
popular neo-cortex inspired artificial neural network
demonstrating good prediction results, but so far
only used for sensory prediction and classification
tasks. The Myorobotics arm was built as a robot to
safely collaborate with a human user. The compliant
structure has not yet been utilized to let users teach
motions by demonstration. Exploiting the HTM in
a closed loop setup for robot control is presented
here for the first time. We hereby mimic embodied
associative learning: Sensory stimuli from the body
are learned and a learned motion can executed.
We carry on the experiments towards autonomous
robot behavior learning and execution in a Classical
Conditioning stimulus reaction scenario.

With the conducted experiments we can conclude
three results. The Hierarchical Temporal Memory
performs well on sensory input of a periodically
moving musculoskeletal robotic arm. In particular,
motions can be predicted in different time steps on-
line and in real-time. Hawkins hypothesis generating
motor commands is similar to making predictions
[5] is proven in our experiments. We demonstrate
that motions stored in the synaptic connections of
the HTM can be recalled successfully as a learned

trajectory can be executed by retrieval from the
HTM. After learning predictions can be directly
applied to motor setpoints, the current sensor in-
put triggers the next action. Both results set the
requirements to execute learning experiments ana-
logue to the psychological concept of Classical
Conditioning: Exploiting the associative memory
capabilities of the HTM single non-periodic motions
can be conditioned to sensor stimuli. After learning
a similar impulse recalls the manually taught motion
sequence while stimuli derivations retrieve similar
motion variations. Proceeding the experiments in
interaction with a human subject result in a very
natural behavior which emphasizes the biological
plausibility of the introduced setup.

Our results tackle the question of how to control
a complex musculoskeletal robot by using brain
inspired learning algorithms, and vice versa help to
understand the underlying brain learning concepts
for conditioning in mammal behaviors. From the
application side, this enables interactively teaching
of robots by demonstration which does not require
any expert knowledge. With further research in this
direction robot usage may be opened for a wider
user community.
In our initial experiments on the one hand we
demonstrate the good ability for Myorobotics robots
as a basis for interactive teaching experiments as
well as its controllability with artificial neural net-
work controller. On the other hand we emphasize
that the HTM can be used for robot control scenar-
ios enabling interactive learning experiments. This
work may also contribute to a better understanding
of the human motion learning abilities, as both the
robot and learning algorithms are highly inspired by
the human body and brain. The presented work may
open novel application scenarios for the HTM and
enables new control strategies for musculoskeletal
robots in Human Robot Interaction scenarios.

In this paper of biologically derived learning with
a musculoskeletal robotic arm we first introduce the
technologies in terms of robotic hardware and neural
network implementation as well as the psycholog-
ical concept of Classical Conditioning. Due to its
first application of the HTM in combination with a
musculoskeletal robot, two experiments prove the
HTM pre-requesites to be used for conditioned
learning in a robots applications. On the one hand
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the ability of the HTM to learn temporal motion
patterns of the robotic arm is shown, on the other
hand the possibility to recall a learned motion is
demonstrated. section V then describes the inte-
gration of both pre-experiments to a conditioning
experiment teaching a motion that can be intuitively
recalled by sensor stimuli. Results are discussed
in the conclusion. Here we point out the highly
biomimetic nature of the experiment, further devel-
opment and application scenarios of the results are
presented.

II. BIOMIMETIC TECHNOLOGY CONCEPTS

Motion learning in human beings is twofold in-
cluding the body and neural learning. We introduce
technology counterparts for both to mimic the mus-
culoskeletal system of mammals and learning in the
neocortex, respectively.

A. Myorobotics Anthropomimetic Robotic Arm

The human musculoskeletal system is able to
execute sophisticated motions while being highly
flexible and compliant. Individual joints are actuated
by multiple muscles that only apply contracting
forces, on the contrary also multiple joints can be
controlled by the same muscle unit. Exploiting the
antagonist principle pretension on muscles can vary
the stiffness of the actuated body parts and hereby
sign highly adaptable to environment interactions.
Energy stored in the visco-elastic muscles can be
efficiently recuperated in periodic motion execution
such as walking and jumping. Feedback in terms of
applied forces and muscle contractions can serve as
inputs for control procedures.

Various approaches exist to mimic these charac-
teristics in technical systems. Hydraulic approaches
surpass pneumatic ones in terms of strength, while
novel electrically actuated soft materials are de-
veloped. Tendon-driven systems implement flexibil-
ity with springs and are well controllable as the
system dynamics in terms of differential equations
are known. Examples for full humanoid muscu-
loskeletal robotic bodies can be found for pneumatic
approaches [6][7] and in the tendon-driven robot
Kenshiro [8]. All musculoskeletal robots share the
principle of morphological computing: outsourcing
control to the morphology, executed motions behave
naturally smooth and human-like. In contrast to

nowadays industrial robots, the intrinsic compliance
enable safe human-robot interaction.

The Myorobotics project (Make Your Own -
Robot-Toolkit Myorobotics) ”is strongly inspired
from the human and animal musculoskeletal sys-
tem“[3]. It integrates the tendon-driven muscle ap-
proach for high modularity into a comprehensive
and lightweight toolbox of design primitives. The
cost-efficient and reconfigurable components allow
building bio-inspired robots as well as industrial
ones that exploit the introduced and desired hu-
man characteristics [3]. Four Design Primitives are
provided: bones out of light-weight carbon fiber,
3D printed joints, muscle units and Myo-Ganglion
serving as lower-level control boards running PID
(proportional-integral-derivative) controllers adapt-
ing for the control error.

Figure 1 shows the physical muscle setup, includ-
ing non-linear flexibility by routing the tendon via a
series elastic element in a triangular way. Feedback
is provided by sensors for spring elongation (mus-
cle force), motor encoder (muscle contraction) and
absolute joint position sensors (body pose).

Figure 1: A technical Myorobotics muscle unit that imitates
biological muscle characteristics. Contraction and non-linear
flexibility are implemented by rolling up a tendon with a
brushless motor and triangular routing along a spring, respec-
tively. Proprioception in accordance to biology is included in
terms of position (muscle afferent type 1a) and force (muscle
afferent type 1b) feedback with motor encoder and magnetic
measurement of the spring elongation.

Starting with the ECCE project [9] of building a
humanoid musculoskeletal robot, enhancements in
3D pinting technologies evolved the Anthrob Arm
[10] and a modularization with the Myorobotics
toolkit lead to the latest version of a biologically
derived arm. A 1 DOF asymmetric revolute elbow
joint and a 3 DOF spherical ball and socket shoulder
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joint imitate the skeletal structure of a humanoid
arm. 11 Myorobotics muscle units are arranged cir-
cular around the shoulder according to the biological
rotatory cuff and antagonistically at the upper arm
imitating biceps and triceps.

Due to cross control of multiple muscles and
joints the purely contractile control of tendon-driven
systems is increasingly complicated compared to
standard joint controlled robots. As a first step
Jaentsch in [11] provided an advanced controller
design and approaches for friction compensation
using machine learning techniques. However, with
an increasing number of muscles fibers approaches
for autonomously learning or by demonstrating play
an essential role.

Using a robotic arm that imitates the human
musculoskeletal system is of great benefit in our ex-
periment setup. Due to the mechanically compliant
character people can safely interact with the arm.
Interaction is possible dynamically while applied
forces are sensed and serve as additional HTM input
to improve the learning accuracy.

B. Hierarchical Temporal Memory

The brain continuously processes a variety of
sensory input from different proprioceptive and ex-
teroceptive modalities in parallel to understand time
event sequences and hereby reason about future
activities. Learning spatio-temporal patterns to pre-
dict future outcomes, sensor stimuli are adaptively
associated with each other to recognize coherences
as events can only be fully understood in the context
of all sensor inputs. As a fundamental learning
rule for unsupervised learning processes, Donald
Hebb in 1949 [12] spotted the basic concept of

”neurons wire together if they fire together“[13].
This Hebbian Learning rule could be refined thanks
to advancements in brain recording. Putting more
detail in particular on the time factor of synaptic
spike occurrences STDP (Spike Timing-Dependent
Plasticity) was found fundamental as described in
[14] and [15].

Various concepts have been developed for time-
series understanding. In an analytical way math-
ematical concepts estimate model parameters as
with ”Moving Average“, ”Autoregressive Model“or
a combination of both ”Autoregressive Moving Av-
erage Model“[16][17]. Considering biological find-

ings a more general non-parametric approach in
temporal learning extending prediction for non-
linear dynamics is introduced with Recurrent Neural
Networks in the 1980s. This approach was further
refined to the Long Short-Term Memory by Schmid-
huber and Hochreiter in 1997. Single memory units
equipped with input, output and forget gates better
handle the vanishing gradient problem in backprop-
agation learning. In 2003 it has been ”used as a
controller for a real robot“[18] for the first time in
combination with reinforcement learning for path
planning of a mobile robot platform in a maze.
However, these types of neural networks require
a huge training set and pre-learning. In contrast,
online learning, which is essential in robotics appli-
cation, can only be achieved with techniques such
as sliding window or batch learning [19].

The ”Hierarchical Temporal Memory“(HTM)
claims to be highly inspired by findings in the
sensory-motor layers two and three of the Human
Neocortex. According to the whitepaper ”cells used
in the HTM cortical learning algorithms are far more
realistic than the artificial neurons used in most
neural networks“[5].

Figure 2: Principle network connectivity and data processing
in the Hierarchical Temporal Memory. The HTM implements
technical equivalents for sensory organs and learning of spatio-
temporal sequences in the neocortex. Raw sensory data is
processed by encoders and fed into the Cortical Learning
algorithm consisting of Spatial Pooler and Temporal Memory
cells. The network is initially randomly connected and weights
adapted by variations of unsupervised Hebbian Learning. The
output is classified to predict future occurrences in the sensory
space.

Analogue to Hebbian Learning the strength of
connections between single cells is continuously
updated and the hereby learned spatio-temporal pat-
terns can provide future prediction states.
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As visualized in Figure 2, in each processing
iteration step a sampled data row is fed through
the different components and a prediction value is
calculated. A brief description of their functionality
is depicted here:

Encoder Encoders imitate the functionality of
sensory organs such as retina and cochlea where
native real world physical input is continuously
converted to electrical signals [21]. Preserving se-
mantic characteristics of the input data, here a bio-
inspired Sparse Distributed Representation (SDR)
[22] ensures noise handling by bit overlapping.

Spatial Pooler In the Spatial Pooler cells which
initially connected to ta random subset of the input
space specialize on semantically similar patterns
and hereby pool a wide input space to a small
cell representations. The cell connection, technically

”permanence values“in ]0, 1[, is reinforced or weak-
ened according to Hebbian Learning.

Temporal Memory The Temporal Memory ex-
tends cells to columns learning the temporal context
of the forwarded activation. First, the activity of
Spatial Pooler cells is propagated along the synapses
according to connection strength. Active columns
exceeding an activation threshold serve as the pre-
diction output. Second, analogue to Hebbian learn-
ing the most active cells reinforce their connections
that led to its activation and decrease weights of not
involved synapses.

Figure 3 visualizes processing of a contextual
input sequence: After learning specialized predictive
cells get active depending the current sensory input
(D). A typical HTM implementation with 40 active
columns and 32 cells region theoretically allows to
store patterns in 3240 different contexts [4], SDR
encoding allows multiple simultaneous predictions.

Classifier The classifier inverts encoding to out-
put a prediction in the input metric. The calculated
Anomaly Score is not considered here, but can give
additional feedback about the learning quality.

More details and a formal description of HTM
cells, connectivity and learning rules can be found
in [24] [25]. [25] indicates reasonable performance
in comparison to other time-series learning methods
on training data sets.

Figure 3: Sequence Learning in the Hierarchical Temporal
Memory: Spatial and temporal correlations in the sensory
space are learned by means of modified Hebbian Learning
rules, patterns are stored distributed in synaptic connections
between cells of columns. Accordingly, the time association
is utilized to output predictions of future occurrences from the
given input (figure from [4])

Being highly inspired by the neocortex, for engi-
neering reasons the implementation includes sev-
eral added non biological features for better per-
formance. As the HTM is limited to only a few
sensory inputs, we exploit the provided ”Swarm-
ing“algorithm based on Particle Swarm Optimmiza-
tion (PSO) to preselect the best sensory input
spaces.

Nearly all applications of the HTM such as
prediction of CPU power consumption, stock prices
and language processing are purely sensory. A first
step towards sensory-motor integration can be found
with an extension for 3D object representations in
the real world in [23]. In contrast, for our experi-
ments the HTM is embodied into the control loop
of the robotic arm, actively controlling motors.

For this purpose four HTM learning characteris-
tics are of special interest:

• online: no split between test and training set,
instant and continuous prediction allows real-
time application in robotics

• unsupervised: heavily relying on the local
learning rules adaptation to the environmental
input without any goal-definition

• spatio-temporal: association of sensory and
motor events as well as sequences can learn
trajectories

• noise tolerance: handling high variation in sen-
sor values that particularly arise with muscu-
loskeletal robot and human motions
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In this paper we focus on how the HTM deals
with musculoskeletal motions and in particular try to
imitate biological behaviors with our test setups and
executions. The HTM implementation itself has not
been changed for the executed experiments, rather
its setup, input and encoder specification is objective
of the following experiments. For all experiments
we used a HTM network with common parameters
according to Table I.

Parameter Value
Number of columns 2048
Number of cells per column 32
number of active columns per inhibition area 40
maximal number of segments per cell 128
permanence decay 0.1
permanence incrementation 0.1

Table I: Main HTM parameters used for the experiments

III. CLASSICAL CONDITIONING

Conditioning describes a class of lifelong learning
procedures in mammals such as humans. In contrast
to Operant Conditioning where rewards reinforce
behaviors, we here focus on Classical Conditioning
as an unsupervised learning principle associating
sensory signal inputs and action outputs.

A. Psychological Concept

The brain is an associative memory that con-
tinuously correlates stimuli and behaviors [26]. In
fact, implicitly stored behaviors can be triggered
for execution by peripheral stimuli which also may
hold for voluntary movements [26, p. 656]. Classical
Conditioning has initially been studied by Ivan
Pavlov on the salivation process of a dog. Basis are
an unrelated Neutral Stimulus and an Unconditioned
Stimulus which naturally leads to an Unconditioned
Reaction. Presenting specific sequences of stimuli to
the subjects sensory space, the Neutral Stimulus gets
conditioned as the Conditioned Stimulus directly
causing the Conditioned Reaction. In Classical Con-
ditioning the chronology of stimuli distinguishes
different types. We here focus on the most com-
mon Forward Conditioning. In general, the fastest
learning can be achieved if Conditioned Stimulus
and Unconditioned Stimulus are presented without
delay, in the best case they overlap slightly. Con-
ditioning plays a key role in mammalian behavior

generation only combining natural reactions with
environmental stimuli.

B. Robotic Implementations

In robotic applications a lot attention has been
drawn to Operant Conditioning. To achieve a goal
autonomously in an efficient way, a multitude of im-
plementations well known as reinforcement learning
are proposed. A popular example is the Q-Learning
[27] implementation e.g. used for robot path plan-
ning.

Far less implementations exist for Classical Con-
ditioning, still it gets more relevant within human
robot interaction scenarios which nowadays draw
special interest. [28] underlines the importance of
Classical Conditioning for social robots and intro-
duces a probabilistic architecture implementation.
More biologically derived models can be found
in STDP implementations such as [29]. In [30]
a spiking neural network lets an icub robot learn
the association of tactile and visual information to
verbal action.

Due to its unsupervised character enabling stimuli
association, Hebbian like learning plays an impor-
tant role in Classical Conditioning. In addition, all
neural network based models compared in [4] are
based on Hebbian Learning. The implementation in
the HTM demonstrates capabilities for learning spa-
tial as well as temporal patterns, hereby the network
fulfills the requisites for a Classical Conditioning
procedure. After the prerequisite tests, our final
experiment is inspired by a Classical Conditioning
example from [26, p. 1244] including hand lifting
motions and electrical stimuli: ”A subject lays her
hand, palm down, on an electrified grill; a light
(Conditioned Stimulus) is turned on and at the same
time she receives an electrical shock on on finger
- she lifts her hand immediately (Unconditioned
Response). After several light-shock conditioning
trials she lifts her hand when the light alone is
presented“.

IV. LEARNING, PREDICTION AND CONTROL OF
MUSCULOSKELETAL ROBOTIC MOTIONS

The implementation of the HTM embodied in
a closed-loop of the sensorimotor space of a My-
orobotics arm has been introduced in [2]. To ver-
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ify its applicability with reasonable solutions for
sensing and control tasks, we demonstrate its per-
formance with two experiments, respectively. While
the first can be considered as a typical usage of the
HTM here applied to a novel type of data input, the
second one puts the HTM in a new and embodied
context scenario for control purposes. On the one
hand we demonstrate the performance of learning
and prediction on the specific sensory motion pat-
terns generated by the robotic arm. Hereby, we first
question its capabilities for robotics applications
in terms of online learning, real-time performance
and handling of natural highly deviating motions
including drift. On the other hand closing the control
loop, we introduce the novel use case of HTM for
control tasks utilizing predictions as motor com-
mands. We try to recall learned motion patterns
from the HTM synapses to autonomously continue
learned motion patterns. For both experiments its
biologically derived context in terms of setup, ex-
ecution and learning procedure is outlined before
results are presented.

A. Proprioceptive Pose Prediction

Learning by self-motivated exploration of the
own body and the surrounding environment is very
time consuming. It highly depends on the strength of
intrinsic curiosity and is limited to the capabilities
gained by the slow process of evolution. Humans
have gained a lot of knowledge not being transferred
via evolution but passed to next generations by
narration and demonstration. Big development steps
occur lifting a child to force walking, putting it
into another room to explore a new environment
or directly guiding body parts to point out possible
actions. Such guidance can either improve already
learned motions in terms of precision or as teach
completely new actions.

We generate motions manually by direct interac-
tion with the robotic arm, concurrently the HTM
is exposed to the generated sensory signals. While
the HTM has been validated for sensory prediction,
we here question its performance on the specific
characteristics of natural muscle generated motions.

Experiment and Results: Body posture in mam-
mals is guaranteed by permanent muscle ground
tension. Consequentially exploiting the antagonist
principle, pretension on the Myorobotics muscle

units ensure a stable initial arm position. Imitating
a motion similar to an inter human handshake, we
take the robots tip and move it in an ellipsoidal way
as visualized in Figure 4 on the left.

We see the resulting elbow joint position in
Figure 5 in blue as a deviating periodic wave that
stabilizes after some iterations and hereby demon-
strates natural characteristics of a human supervised
motion. Feeding the sensory data into the HTM,
the filtered HTM prediction (red) of the elbow
joint position is plotted shifted in time to compare
actual values and the corresponding forecast. We
observe the prediction is very unsure in the begin-
ning leading to wrong and peaked output values
as the motion is never seen before and hereby
at first unpredictable. However, after only a very
short learning time the predicted values converge
to the actual sensory data. It takes only about four
motion iterations until the prediction gets close to
the waveform motion. Finally, after four motion
iterations a prediction accuracy better than ±10%
is reached including only a few outliers appearing
as spikes in the analogue output.

For the introduced experiment, three aspects are
of special interest:

a) Sensor Input: The heuristic ”Swarm-
ing“algorithm based on Particle Swarm Optimiza-
tion is applied to preselect input fields as the HTM
input. The algorithm selects the elbow position and
the applied force on the biceps (Bizeps Breve) as
input fields that can best support the pose prediction.
This selection is meaningful from an anatomical
perspective as well: The biceps muscle is directly
affected when moving the arm and therefore can
support a motion prediction.

b) Online real-time learning: The experiments
are executed online feeding the sensory dataset S
of the robot into the HTM in every control cylce
step of 20 ms, leading to a new prediction output
in every iteration. We here only demonstrate the
results with 10 time step predictions (10* 20ms
= 200ms), however also different step sizes have
been successfully applied. The general hypothesis of
smaller step sizes leading to more accurate results,
bigger ones to less accurate predictions is supported
by our data.

c) Prediction Filter: The prediction output of
the HTM is generally infiltrated by short error

7

Page 7 of 18 AUTHOR SUBMITTED MANUSCRIPT - BB-101535.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Figure 4: Proprioceptive Pose Prediction: In a Human Robot Interaction experiment
(left) the user guides the compliant robot forearm in an ellipsoidal way, very similar
to shaking hands with another person. The proprioceptive sensory feedback is fed
into the HTM to predict the elbowjoint joint position.

Figure 5: Proprioceptive Pose Prediction: The proprioceptive sensory feedback generated by the ellipsoidal arm
motion is fed into the HTM to predict the elbowjoint joint position. The HTM (red, shifted in time) predicts
the periodic motion (blue) very fast, and after about four repetitions reaches an accurracy better than ±10%.
The experiment is executed online in real-time
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spikes, in our particular use case of robotic motions
we know such characteristics are physically not
possible. Filtering the output leads to a suppression
of spikes increasing the quality of the prediction
significantly. This is demonstrated with a mean filter
that takes into account stored last prediction outputs
according to Equation 1.

pt,mean =
pt−2 + pt−1 + pt

3
(1)

with: px = Prediction for timestep x
t = prediction step time

As the HTM can predict multiple steps ahead
simultaneously, a wider basis for a filter mask in-
cluding also future prediction values can be applied.
Due to the increased computation time exceeding
the robot control cycle time of 20ms, we demon-
strate the enhancement by a median filter according
to Equation 2 in an offline analysis.

pt,median = median(pt−2, pt−1, pt, pt+1, pt+2) (2)

The prediction results (top) in Figure 6 of a
slightly more complex arm motion in comparison
to its non-filtered equivalent (below) emphasize a
decreased spike rate down to less than 20%. As well
the accuracy of the prediction can be improved and
a smoother prediction in particular in the beginning
is observed.

In this joint position prediction scenario, the HTM
demonstrates good performance on proprioceptive
sensory data of robotic motions for arm pose pre-
dictions in different time steps. The neural network
runs online and adapts very fast to a novel motion.
The prediction quality could be even improved in
particular in terms of non plausible peak value
errors by the introduced mean or median filtering
techniques.

B. Synaptic Motion Recall for Muscle Control
While the multitude of neural networks as well as

the HTM is applied to sensory data only, in robotics
closed-loop scenarios for controlling motors de-
pending on the given sensory input are required.
Summarizing findings in neuroscience, processing
of sensory and actuation is considered similar [26,

p.33]. In particular, it can be seen a the inverted
process whereas both regions are highly interlinked
and the connections define its purpose. The brain as
well receives an efferent copy that is exploited for
predictive control.

Even though the HTM is optimized for sensory
processing, its developer Hawkins proposes the neo-
cortex is able to directly control body limbs. More
specific, he thinks the neocortex could directly be
able to control body limbs [5][31]. By spotting the
similarity of motor commands and predictions he
suggests adding output for motor control directly to
the HTM.

Experiment and Results: From the introduced
neuroscientific findings we can derive three state-
ments that serve as a basis to utilize a learning
algorithm such as the HTM for muscle control:

1) Motor and sensory regions are fully intercon-
nected

2) The brain receives a copy of motor control
commands

3) Predictions can be seen similar to motor con-
trol activation

In this experiment a motion is generated by
actuating the central biceps longum muscle with a
sinusoidal position setpoint command that pushes
the whole arm in a similar behavior. After the
learning phase the control input is substituted by di-
rectly applying motor position predictions as control
commands. In this phase the HTM runs in a closed
loop generating the next motor commands based
on the current sensory input. In this experiment the
biceps motor setpoint is the only network input, the
encoder SDR is spread on 396 input cells.

Figure 7 visualizes the takeover process after
learning: The red line shows the actual control
setpoint of the biceps, the blue line is the prediction
(here the prediction is not shifted in time, so a
correct prediction is one step ahead).

As we can see the HTM takes over the control
for the robotic arm in a fluent way, no delay or
any deviation in the sinusoidal motion is visible.
In the plotted run the motion continues for about
half a sinewave period which means about 40 HTM
predictions were used for control.

Hereafter, slightly wrong predictions lead to di-
rection change of muscle activation. Nevertheless,
the HTM still finds back into correct predictions.
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Figure 6: Spike Reduction by Filtering the HTM Prediction Output: HTM predictions are characterized by a spiky errors (top)
which are obviously non plausible in natural motion execution. Applying a median filter (window size = 5, bottom) improves
the prediction output in terms of a smoother prediction being more accurate in shorter time (bottom left) and reduced spike
error rate all over the prediction periode (bottom right).

Figure 7: Synaptic Recall of Motions: The HTM learns to predict the next time step of
a sinusoidal motor motion, here only the last iteration is plotted. Learning is turned off at
the black error and from here the HTM prediction is used to directly control the motor. We
see the fluent continuation of the processed motion for about 40 timesteps, and even after
some wrong predictions different patterns of the original motion is recalled. We conclude
that synaptically stored motions can be recalled from the HTM and predictions be directly
utilized as motor control commands.
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Later on different motion patterns with a length of
about 20, 10 and later less cycle times are recalled.
Since we predicted the motor setpoint and directly
used it for motor control the biceps muscle moved
according to the visible motion pattern.

Repeating the test execution with same settings
leads to different recalled sub-patterns of the learned
sinewave motion. Even though jumping out of the
pattern on every wrong prediction, multiple pattern
parts can be recalled while the muscle is still mov-
ing. After emerging to noisy behavior no patterns
are recalled any more.

This motor control experiment demonstrates that
the predictions of the HTM can be directly used
as the motor control commands and hereby puts
the HTM in a closed-loop for applications in robot
control tasks. In particular, one can actively recall
and re-execute a motion that has been learned
previously and is stored in the synaptic connections
of the HTM. As a prerequisites for long-term con-
trol scenarios the HTM prediction output needs to
be of very good quality, the characteristic spiking
prediction output can disturb or stop the recalling
process.

With the introduced experiments we demonstrate
that the HTM can be exploited for learning, predic-
tion and control of musculoskeletal robotic motions.
It can be directly embedded in a closed loop,
associating multiple reasonable sensory inputs to
a learned motion. Hereby, an inner sensorimotor
mapping is learned in the Neural Network based
on variations of unsupervised Hebbian Learning.
The introduced setup has potential for upscaling
to routinely full body motions. In a first step here
multiple HTMs could be used for multiple muscles,
for future research the HTM needs to be adapted to
be able to handle a multitude of sensory inputs in
parallel.

V. CLASSICAL CONDITIONING OF A
MUSCULOSKELETAL ROBOTIC ARM

The HTM performs well for prediction and con-
trol of repetitive motions, given the theoretical as-
sumption of a perfect prediction motions could be
continued forever. However, human behavior as well
consists of many isolated actions that are executed
individually. To recall and execute single motions,

we utilize the psychological concept of Classical
Conditioning. Hereby, the prerequisites of sensory
association, prediction and motion control have been
demonstrated. We now first break the periodic con-
straint of motions and afterwards execute a full
conditioning experiment that shows a conditioned
stimulus reaction.

A. Non-Periodic Motion Prediction

We break the periodic time constraint by mod-
ifying the pose prediction experiment. Instead of
regular arm motions only a single lifting action is
executed at a time followed by a pause of a random
time in the range of 0 to 5s.

1) Predicting Random Occurrences: The left di-
agram in Figure 8 visualizes the irregular guided
arm movements and the prediction after a long
learning time of 2.5 minutes (about 30 repetitions):
The prediction includes many spikes, in particular
we see that the HTM can never adequately forecast
the beginning of a motion and hereby the predic-
tion gets disturbed for a long range. The obvious
reason here is the randomly chosen starting time.
A high anomaly score at the motion starting points
underpins this observation.

2) Prediction support with Preceding Stimuli:
We modify the experiment setup according Figure 9
by introducing an exteroceptive sensor stimulus.
Just before every independent arm lifting motion
(2), an additional neutral stimulus is generated by
manually turning the exteroceptive sensor (1). Two
scalar encoder are used for the biceps motor posi-
tion and stimulus input each. Both use 272 cells,
weighting both inputs equal.

In Figure 8 the right diagram demonstrates the
online learning progress after only two minutes
including about 24 repetitions of stimulus and reac-
tion. While previously even after a very long time
motions could not be predicted adequately, only
supplemented with an additional stimulus we here
see a good prediction after a short learning time.
The HTM can especially predict the beginning of
each arm motion quite accurately. In addition, it
tracks the structure of the movement in general well
considering the visible high variation in arm lifting
execution.
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Figure 8: Non-Periodic Motion Prediction: If arm lifting motions are executed not periodically including random time gaps
between every action, the HTM particularly cannot predict a motion starting point and the quality of prediction becomes
insufficient spiking all along the motion (left). However, providing a previously neutral stimulus before every arm lifting leads
to a significantly better prediction result and additionally shorter learning time (right). In especial the beginning of the variable
arm lifting can mostly be predicted accurately and the results rise the hypothesis that the stimulus is conditioned to the lifting
motion.

Figure 9: Experiment setup for Classical Conditioning: An exteroceptive sensor is turned
and afterwards the arm is lifted manually. Sensory data is fed into the HTM network and
after learning only stimuli are provided and the HTM predictions directly applied as the
biceps motor control.

B. Conditioned Prediction and Reaction

The drastically improved prediction is a good in-
dicator that the exteroceptive stimulus is associated
to the arm lifting action and hereby supports the
prediction. However, a successful conditioning must
be proven with actively triggering a behavior with
the associated stimulus. This may be seen as the
technical equivalent of collecting salivary from the
Pavlovian dog.

1) Motion Expectation: Having learned non-
periodic motions as described before, we now pro-
vide only sensor stimuli without moving the arm at
all. The raw data input from exteroceptive stimuli
and proprioceptive motion sensing is presented on
the left in Figure 10: Only the last iterations of the
learning procedure with impulses (blue) followed
by arm motions (brown) are visualized. For the last
three stimuli learning is turned off and no motion
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occurs to the robot. The resulting prediction in Fig-
ure 10 on the right clearly demonstrates an predicted
arm motion on every presented stimuli even though
the arm itself is not moved at all. Two of the three
stimuli cause a complete prediction of the full arm
movement being very similar to the one presented
manually during the learning phase. In addition,
even a modified stimulus leads to a reasonable
output: The weaker second stimulus here predicts
a weaker motion with reduced amplitude. Hence,
we can conclude the lifting motion got successfully
conditioned to the exteroceptive impulse.

2) Motion Reaction: Besides a motion expecta-
tion, in an original view of Classical Conditioning
we expect a physically observable Conditioned Re-
action to occur after every presented stimulus.

We integrate the successful motor control by
recall of predictions from chapter Synaptic Motion
Recall for Muscle Control so that now the HTM
learns directly on the motor position. After learning
the prediction value is utilized as the motor setpoint
commands to move the robot. Figure 11 on the
left demonstrates the prediction of non-periodic
motor motions with sensor stimuli support, which is
slightly worse than elbow position predictions. We
observe that the elbow position is taken as network
import. Being a delayed and smoothed version of
motor motions it can support the prediction output.

We now apply the predicted motor position as
the setpoint for the dedicated biceps muscle motor
and run the learned HTM (learning turned off) in
real-time. Figure 11 visualizes the results of the
online experiment: On every exteroceptive impulse
(brown line) we see the motor starting to move
(blue line). Consequently, the robot lifts his arm
similar to what we have taught before. In addition,
the robot moves and the resulting sensory change
is taken into account. Again, variation in terms of
impulse strength compared to the learned ones we
see a weaker movement or a full arm lifting.

The results reflect the behavior of Classical Con-
ditioning. In particular, a previously Neutral Stim-
ulus is conditioned to cause an expectation for a
motion and in a second step caused the physical
reaction of the arm itself. A robotic system has no
intrinsic reaction that corresponds for example to
the unconscious salivation process observed with the

Pavlovian dog. However, in terms of conditioning
the essential point of Unconditioned Stimulus and
Unconditioned Reaction can be seen as something
is happening with the subject’s body the agent can
not actively influence. In our case this is imitated
by lifting the robotic arm. Therefore, biological
primitives can find their substitutes with technical
implementations:

• Neutral Stimulus:
– Turning an exteroceptive sensor (1)

• Unconditioned Stimulus and Unconditioned
Reaction:

– Manually lifting the robotic arm (2)
After learning the Unconditioned Stimulus in

terms of a humanoid intention to raise the arm,
is superseded and the conditioned stimulus directly
triggers the Conditioned Response lifting the arm.

In view of robotic applications, we stress that
the Conditioning is executed online in real-time
and therefore could be executed in a very intuitive
human robot interaction scenario. Even though we
presented highly variant motions as well as stimuli,
after conditioning the robot reacts to every impulse.
Hereby even weaker versions of the stimuli cause a
reaction which is a weaker version of the learned
arm lifting motion, which also can be seen in
biological experiments.

A consolidated video documentation for the con-
ducted experiments can be found as complimentary
material with this paper.

VI. CONCLUSION

Classical Conditioning plays an important role
in Mammals learning behavior. We here briefly
summarize our experiments that demonstrate the
ability to predict motions, execute motions by recall
and trigger motions with conditioned sensor stimuli.
All experiments are utilizing the HTM in com-
bination with a Myorobotics arm. Afterwards we
emphasize the highly biological inspired character
of our setup and experiment execution, before we
suggest possible future developments for the HTM
in robotic conditioning tasks. A greater outlook for
applications of the gained results is spotted.

A. Summary
Summarizing the experiment results, we success-

fully applied the HTM for musculoskeletal robot
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Figure 10: Motion Expectation on Conditioned Stimuli: After associating presented stimuli and a subsequent motion, learning
is turned off and only stimuli are presented (HTM raw data input on the left). After learning is turned off (time 11:27:39) the
HTM predicts full arm motions (right , green) on every stimuli even if the physical arm itself is not moved at all (right, blue).
While a stimulus similar to the learned ones leads to a forecast of the full learned motion (first and last prediction), providing
a weaker stimulus (second prediction) we see a weaker variation of the learned arm lifting.

Figure 11: Stimulus Reaction in Classical Conditioning: The proprioceptive muscle position is predicted including preceding
sensor stimuli. After learning, predictions are applied as motor setpoints. We observe a Conditioned Reaction on every
Conditioned Stimulus, in particular the robot lifts its arm on every presented exteroceptive stimulus (right)

motion learning, prediction and control. The HTM
predicts highly deviating motions online in real-
time multiple time steps ahead. Filtering the output
can help to improve the prediction quality. Ad-
ditionally we introduced a new application field:
With our experiments we demonstrate that the HTM
can not only passively learn motions, but implicit
knowledge that is stored in the synaptic connections
can also be recalled afterwards. Hawkins sugges-
tion of motor control commands being similar to
predictions is proven as we use HTM predictions
directly as motor control commands and hereby
fluently recall and continue learned motions. Clas-
sical Conditioning can be found important in every
mammal. According to this behavioral concept the
robot associates stimuli and actions meaningfully.
The HTM can learn the temporal and spatial re-
lation of a previously neutral stimuli and executed
motions. After the conditioning phase, the robots
expects motions on every stimuli or even reacts pro-
actively on every provided and sensor impulse.

Characteristics that highlight the beneficial com-

bination of Myorobotics and the HTM include:
• Noise Handling The HTM can deal with the

typical inaccuracy and drift of human motions.
• Real-time execution Learning runs in realtime

allowing natural human robot interaction.
• Embodiment The prediction is supported by

morphologically relevant sensory inputs which
are autonomously selected.

• Modularity All hardware and software compo-
nents are modular, thus results can be general-
ized and the setup upscaled.

In addition, the experiments successfully tackle
relevant problems such as the control of a complex
tendon-driven robot, recall of learned motions from
a neural network and robot learning by demonstra-
tion.

B. Biological Plausibility
The hardware setup as well as used software

components are biologically derived and lead to
a technical equivalent of the biological behavior
of Classical Conditioning. The Myorobotics Arm
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imitates the lightweight skeletal structure of a hu-
man arm and shoulder and its joints. The tendon
driven actuation imitates body control with contrac-
tile muscle fibers. Morphological computation lets
generated behaviors look humanoid. The HTM is
highly inspired by learning in the third and fourth
layer of the human neocortex and applies variations
of the neural Hebbian Learning found in the brain.
It processes sensory information continuously in
associative manner and is highly adaptive as neural
processing. The close-loop sensorimotor association
of morphologically relevant inputs demonstrates the
embodiment of adaptive learning in a biomimetic
body.

The conducted experiments reproduce biological
learning characteristics. The human brain is aware
of own future body states in dynamic motions which
we demonstrate with continuous prediction of joint
positions in different time scales. Body motions
are stored in neural circuits while a tied sensor to
motor coupling can recall learned behaviors with
triggering impulses. The main principles of Classi-
cal Conditioning are met in our robotic counterpart
of arm motions: A temporal relation between sensor
stimuli and motor action is learned by unsupervised
association. A conditioned stimuli triggers a learned
reaction, while even variations of the stimulus trig-
ger similar variations of the reaction. Arm position
prediction, recall and continuation of motions and
Classical Conditioning with a biomimetic arm find
there equivalent in human behaviors:

1) A subject receiving a handshake, unconscious
prediction ensures mental and proactive adap-
tation to the periodic motion.

2) A sudden break in the periodic handshake
leads to a confusion, a subject automatically
continuous the learned motion recalling the
learned pattern

3) Non-peridodic arm lifting can not be predicted
and therefore no adequate adaptation can oc-
cur. However, giving a stimuli such as a fillip
just before a motion, the stimulus gets condi-
tioned. With this stimulus prediction leads to
proactive arm liftings, and after some learning
time fillips can trigger the motion execution
similar as learned before.

Demonstrating the general behavior with a sim-

plified experiment setup, various components can be
refined to improve the given results.

C. Discussion
In this paper we introduce a biologically derived

implementation for behavior prediction, recall and
Classical Conditioning.

In contrast to analytical models for prediction
[16][17] our approach is capable of non-linear pre-
diction and continuously adapts to the given sensory
input. Exploiting neural networks for predictions
usually requires pretraining of the network or time
quantization for batch learning, in contrast here we
could execute our experiment online in realtime.
The high adaptability comes with a fast fading
memory which requires improvement.

The most common way to store and recall mul-
tiple motions in a neural network is to save the
weights in a database and reload them into the
network. In [32] Jaeger introduces Conceptors, em-
bedded in every control update step and being tested
on a humanoid character simulation demonstrates
fluent transitions between multiple motion patterns.
In contrast to this approach, we claim to not anal-
yse the neural network analytically but exploit the
network learning mechanisms itself. Exploiting only
Hebbian Learning we can demonstrate a more bio-
logically plausible approach, that leads to a natural
human robot interaction scenario. A Classical Con-
ditioning experiment in interaction with a humanoid
robot and spiking neurons has been executed in [30].
However, in our approach we physically interact
with a robot and hereby even teach the novel
conditioned reaction by motion demonstration.

The current setup is limited to a few sensory
inputs and was tested with learning a single behavior
at a time only. A clear drawback is the limitation to
short term memory storage. Learning can be turned
of to store behaviors, otherwise associations may be
overwritten shortly.

We can consider our approach as one of few
to control a robot online in realtime to generate a
biologically plausible behavior in interaction with
a humanoid user. Hereby neither high performance
computing nor batch learning is required.

D. Outlook
We demonstrate a very good performance of the

HTM in this initial application for Classical Con-
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ditioning of a robot. this is particularly interesting
since the developmental focus of the HTM so far
has mainly been on sensory data processing. We
therefore propose some further development with
focus on robotic specific characteristics. Robots of-
fer a wide and divers sensory space. As the HTM is
designed for multiple sensory input the pre-selection
currently executed by swarming shall be handled
by learning in the HTM itself. To utilize learned
behaviors the currently short term memory learning
needs to be extended for long-term capabilities
remembering a multitude of learned behaviors. A
concept for great variance, here in terms of motion
execution speed needs to be developed.

Despite having a powerful learning algorithm, learn-
ing ability was clearly defined by the sensory input
and motion capabilities. Utilizing the modularity of
the full concept both can easily extended, finally
upscaling to a full humanoid robot body. On this
multitude of sensory inputs and motion scenarios,
sophisticated stimulus reaction scenarios can be
learned by means of association and conditioning.

Considering the important role of Classical Condi-
tioning for behavior learning we emphasize the big

potential of the HTM in nowadays crucial robotic
application for intuitive Human Robot Interaction
scenarios. Utilizing the HTM motions can be pre-
dicted and an expectation about sensory states can
be analyzed for adequate actions. Finally, Condi-
tioning abilities in robots allow intuitive robotic
teaching procedures: Without any expert knowledge
new motions can be taught by guiding the robot
and associating it to a provided stimuli. The same
stimulus can recall the motion later in time. In the
future learning can be based on a wide sensory and
action space, providing novel stimuli combinations.
In this way even totally different motions can be
generated as a mix of the previous learned ones.
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