
Master’s Thesis

Computer-Aided Design in Virtual Reality

Author: Benjamin Rüth
Field of Studies: Computer Science, Computational Science and Engineering

1st Examiner: Univ.-Prof. Gudrun Klinker, Ph.D. (TUM)
2nd Examiner: Univ.-Prof. Dr. Hans-Joachim Bungartz (TUM)

Academic Supervisor: Dr. Frieder Pankratz (TUM)
Assistant Supervisors: Dr. Philipp Emanuel Stelzig (Siemens, Corporate Technology)

Dr. Dirk Hartmann (Siemens, Corporate Technology)
Date: 28.2.2017

Technische Universität München
Fakultät für Informatik

Lehrstuhl für Wissenschaftliches Rechnen
Boltzmannstraße 3

85748 Garching bei München

I hereby declare that this thesis is entirely the result of my own work except where
otherwise indicated. I have only used the resources given in the list of references.

Benjamin Rüth, München, February 28, 2017

Acknowledgements

I express my gratitude to everybody who supported me during the past six months cre-
ating this work. I greatly enjoyed the research, the implementation, and the experiments
conducted during this thesis.

I thank my supervisors Dr. Frieder Pankratz, Dr. Philipp Emanuel Stelzig and Dr.
Dirk Hartmann for their support, great ideas, guidance and motivation. I thank Prof.
Gudrun Klinker, Ph.D. and Prof. Dr. Hans–Joachim Bungartz for the examination of
the thesis.

I thank Manuel Biedermann, Dr. Andreas Dippon and Dr. Christoph Kiener for
sharing their point of view in expert interviews. I also thank the participants of the user
study for the time and energy they put into solving tasks and filling out questionnaires.
I am grateful for their valuable feedback.

I thank my collegues at Siemens, Corporate Technology for their company and support.
I thank Stefan for introducing me to IDeAs, Christof for his help with VTK, Christian
for the introduction to Unity, Utz for mathematical guidance, Theo for his expertise
with NX and Christa for knowing the right solution in every situation.

I especially thank Erik, Michaela and Julian for their help with proofreading and
refining this thesis.

Finally I thank my parents Johanna and Norbert, my sister Anna and my partner
Catrin.

i

Abstract

Computer-aided design (CAD) and computer-aided engineering (CAE) play an important
role in the product design process. CAD is commonly used for the creation of geometry
while CAE allows us to assure the functionality of a product and optimize it with respect
to the requirements of the application. These tools are restricted to trained users. In
this thesis the novel concept of using virtual reality technology to provide an intuitive
and easy-to-learn user interaction is proposed. This enables the layman to work with
CAD.

The prototype CADinVR, developed at Siemens, Corporate Technology is extended
with the Virtual Reality Surface Fitting Extension (SurfFitX). Here the classical topology
optimization design workflow is realized: The user starts with an initial design which
is optimized to obtain a lightweight structure. A mesh representation of the optimized
geometry is created that is consistent with boundary condition shapes. The mesh is
partially reconstructed using SurfFitX and finally the output is given in a native CAD file
format (.step). This reconstructed geometry is superior to the original mesh geometry,
since it provides a flexible and parametrized B-spline representation of the geometry.
This representation can be further processed using standard CAD tools.

The interaction concepts that are implemented in CADinVR and SurfFitX are evalu-
ated by performing a user study: Here the user’s performance in SurfFitX is compared
to the performance in the traditional CAD system FreeCAD. Further potential fields of
use for VR technology in CAD are described on the basis of the user study.

iii

Zusammenfassung

Rechnergestützte Konstruktion (CAD) und rechnergestützte Entwicklung (CAE) sind
wesentliche Bestandteile des Entwurfprozesses von Produkten. CAD wird dabei all-
gemein für die Erstellung der Geometrie genutzt, während CAE dazu dient die korrekte
Funktion des Bauteils sicherzustellen und das Bauteil für die gewünschte Anwendung
zu optimieren. Der Einsatz dieser Werkzeuge ist auf geschulte Benutzer beschränkt.
In dieser Arbeit wird gezeigt wie der Einsatz von Technologien aus dem Bereich der
Virtuellen Realität (VR) in einem neuartigen Konzept dazu dient eine intuitive und le-
icht erlernbare Benutzerschnittstelle zu entwerfen mit der auch ein Laie im Bereich der
CAD arbeiten kann.

Der Prototyp CADinVR, entwickelt in der Abteilung Coporate Technology der Firma
Siemens, wird durch Virtual Reality Surface Fitting Extension (SurfFitX) erweitert.
Darin wird der klassische Topologieoptimierungszyklus realisiert: Der Anwender stellt
einen grundlegenden Entwurf bereit. Dieser wird optimiert um eine Leichtbaustruktur
zu erhalten. Es wird ein Gitter erzeugt, das die optimierte Geometrie darstellt und
konsistent mit geometrischen Randbedingung ist. Im folgenden wird ein Teil des Gitters
mithilfe von SurfFitX rekonstruiert und im nativen CAD-Format (.step) bereitgestellt.
Diese Geometrie ist der ursprünglichen Gitterdarstellung überlegen, da darin flexible und
parametrisierte B-Splines verwendet werden, welche in herkömmichen CAD Werkzeugen
weiter bearbeitet werden können.

Die Benutzerschnittstelle von CADinVR und SurfFitX wird in einer Studie bewertet:
Dabei wird der Erfolg des Benutzers bei der Bearbeitung einer Aufgabe in SurfFitX
sowie in dem herkömmlichen CAD-System FreeCAD verglichen. Weitere potentielle
Anwendungsgebiete von VR-Technologie im Bereich der CAD werden auf der Grundlage
der Studienergebnisse beschrieben.

v

Contents

Abstract iii

Zusammenfassung v

1. Introduction and background 1
1.1. Potential use of virtual reality technology in computer-aided design 1

1.2. Design assistance: Topology optimization and reverse engineering 3

1.3. Siemens CADinVR prototype and surface fitting extension 4

1.4. Structure of the thesis . 4

2. Methods 7
2.1. Description of geometry . 7

2.1.1. Exact representation of geometry 7

2.1.2. Approximate representation of geometry 10

2.1.3. Geometry conversion and comparison 11

2.2. Computer-aided design . 12

2.2.1. Philosophy and requirements . 12

2.2.2. Open CASCADE Technology . 12

2.2.3. FreeCAD . 14

2.3. Virtual reality . 15

2.3.1. Hardware . 15

2.3.2. Design in virtual reality . 16

2.3.3. Unity3D . 17

2.3.4. Virtual reality software interface 17

2.4. Topology optimization . 19

2.4.1. Theory . 19

2.4.2. Input and output . 19

2.5. Level set and voxel description . 20

2.5.1. Level sets . 20

2.5.2. Fast marching method . 21

2.5.3. Level set propagation . 22

2.5.4. Boolean operations on level sets 23

2.5.5. Visualization Toolkit . 23

2.6. B-splines . 23

2.6.1. B-spline curves and surfaces . 23

2.6.2. Continuity . 24

vii

3. Design Workflow 27
3.1. Topology optimization . 30

3.1.1. Definition of boundary conditions 30

3.1.2. Optimized voxel geometry . 30

3.2. Consistent level set . 33

3.3. Parametric geometry reconstruction . 39

3.3.1. Mesh visualization . 40

3.3.2. Contour extraction from meshes 40

3.3.3. Loft surface creation . 41

3.3.4. B-Spline sketching . 44

4. User interaction 45
4.1. Shape interaction . 45

4.2. Sketching . 47

4.3. Camera adjustment . 47

5. Implementation 51
5.1. Frontend . 51

5.1.1. General overview . 51

5.1.2. Large meshes and compound objects 52

5.1.3. The menu . 52

5.1.4. Coordinate mapping . 53

5.2. Backend . 54

5.2.1. General overview . 54

5.2.2. Exchange data types . 54

6. User study 57
6.1. The task . 57

6.2. Experimental setup . 59

6.3. Evaluation procedure . 60

7. Results 61
7.1. Topology optimization workflow using Virtual Reality Surface Fitting Ex-

tension . 61

7.1.1. GE Bracket . 61

7.1.2. Generate Quadcopter . 62

7.2. User study . 65

7.2.1. The Task . 66

7.2.2. System Usability Scale . 69

7.2.3. Interview . 71

7.3. Expert Interview . 75

7.3.1. Today’s engineering workflow . 75

7.3.2. Sketches and drawings in virtual reality 76

viii

8. Discussion, conclusion and future directions 77
8.1. The design workflow . 77
8.2. User Study . 78

8.2.1. Simple and intuitive user interface 78
8.2.2. Easier learning experience . 79
8.2.3. Better access to 3D design tools 79
8.2.4. Concept design . 80

8.3. The role of virtual reality in computer-aided design 80
8.4. Conclusion . 81
8.5. Future directions . 83

A. User study: Material 85
A.1. The task . 85

A.1.1. Userguide FreeCAD . 85
A.1.2. Userguide CADinVR . 90

A.2. Questionnaires and interview . 95
A.2.1. The Background Questionnaire . 95
A.2.2. The SUS Questionnaire . 96
A.2.3. Interview questions . 97

B. Tutorials 99
B.1. Open CASCADE Technology: Tutorial and Examples 99
B.2. Visualization Toolkit: Tutorial and Examples 109

ix

1. Introduction and background

Today there exists a broad range of professional general purpose desktop computer-aided
design (CAD) and computer-aided engineering (CAE) tools such as NX or AutoCAD [1–
4]. But there also exist open source solutions such as FreeCAD [4] and online tools such
as OnShape [3]. These tools provide advanced user interfaces and modeling functionality
and allow the user to design 3D models of engineering parts with a high level of detail
and accuracy. The use of the aforementioned tools is usually restricted to trained experts
due to high cost and complex user interfaces1.

Today’s 3D modeling tools obviously restrict the user to a projection of the 3D model
onto the two-dimensional computer screen. The computer screen and input devices such
as the computer mouse force the user to understand abstract concepts for performing 3D
operations. Therefore the user needs training in order to understand the abstract con-
cepts of CAD which are needed to operate the tools. On top of that the user interaction
strongly differs between different tools.

But 3D modelling and simulation software is not only demanded by trained engineers
who know how to work with a broad range of tools but also by amateurs and untrained
professionals: additive manufacturing has reached the consumer market and the layman
wants to design appealing and functional geometry that can be fed into the hobbyist’s 3D
printer. In order to support people designing custom parts, very simple design tools such
as Tinkercad exist [6]. Also professional workflows can be improved by incorporating
simulation methods into product design workflows; here also non experts have to be
involved [7].

1.1. Potential use of virtual reality technology in
computer-aided design

We observe a gap between the demand and the accessibility of design tools. Using
virtual reality (VR) technology one can overcome these deficits and CAD tasks become
considerably easier to solve – especially for the untrained user – because VR hardware
gives access to a real 3D model. Instead looking at a 2D projection of the model on the
screen the user receives a stereoscopic 3D image of the model in a virtual environment.
A more intuitive and accessible user experience (UEx) is possible because the user does
not have to understand abstract 3D concepts of geometry representation. With this also
inexperienced users are able to use CAD software.

Today’s VR hardware is affordable and accessible for a wide range of people, software
interfaces to popular hardware setups [8, 9] exist, but there are only few specialized VR

1As an example: a book on CAD technology can easily have more than 700 pages [5].

1

Tools

C
A
D

to
ol

C
A
D

vi
su

al
iz
at

io
n

m
an

ip
ul

at
io
n

sim
pl

e

V
R
/A

R

pr
of

es
sio

na
l

op
en

so
ur

ce

NX [1] 3 3 3 7 7 3 7

FreeCAD [4] 3 3 3 7 7 7 3

FreeCAD VR [19] 3 3 ? 7 3 7 3

Mindesk [15] 7 3 7 ? 3 3 7

Tinkercad [6] 7 7 7 3 7 7 7

Unreal VR [13] 7 7 3 ? 3 3 7

Tiltbrush [11] 7 7 3 3 3 7 7

VR VTK [14] 7 7 7 7 3 3/7 3

OCCT [21] 3 3 3 7 7 3/7 3

DualCAD [20] 3 ? 3 ? 3 7 7

Table 1.1.: Summary of different design tools – We compare different design tools
with respect to the following categories: Is the tool a full fledged CAD tool
(CAD tool)? Is the tool able to load and visualize CAD geometry in .step

format (CAD visualization)? Does it allow to manipulate geometry (manip-
ulation)? Is it easy to use (simple)? Is it a VR or AR tool (VR/AR)? Is it
considered a professional tool and used in professional applications (profes-
sional)? Is it an open source tool (open source)? We use the signs 3 and
7 for indicating true or false. A ? indicates that we could not evaluate the
respective category.

software systems [10]. In the following we summarize VR tools that support components
necessary for design in VR: There exist tools that concentrate on different aspects of
design such as drawing and sketching [11] or games development [12, 13]. VR technology
is also used for scientific visualization using the VR extension of Visualization Toolkit
(VTK) [14]. Recently VR and augmented reality (AR) technology have also been used in
the context of CAD for purposes of visualization without manipulation of the underlying
geometry in professional tools such as Mindesk [15–17]. Part analysis and assembly are
realized in a VR environment in IC.IDO [18]. An interface for the popular VR headset
Oculus [9] exists in the open source CAD software FreeCAD version 0.15 [19]. There are
AR systems that go beyond visualization and allow the user to even model the geometry
such as DualCAD [20]; anyhow in this approach only modeling of primitive shapes is
supported. For a comparison of the different tools see Table 1.1.

In this thesis we further develop the Virtual Reality Surface Fitting Extension (Surf-
FitX) on top of the prototype CADinVR, a CAD tool that heavily relies on VR tech-
nology. The development is mainly relying on the game engine Unity3D [22] and the
geometry kernel Open CASCADE Technology (OCCT) [21].

We evaluate the usability of SurfFitX in a user study. By comparing SurfFitX with
an existing desktop CAD tool, we want to analyze the benefits of VR in the context of
CAD. Additionally we summarize the feedback of a CAD expert regarding the potential
of VR technology in the context of CAD and product development.

2

1.2. Design assistance: Topology optimization and reverse
engineering

In this work we want to concentrate on the use case of the reverse engineering of a
topology optimized part. This task is especially difficult in traditional CAD since a
topology optimized geometry is not built in a bottom–up approach, where the whole
part is constructed from simple primitive shapes. The geometry is rather defined by
the specifications of the part in a top–down manner: it is the output of an optimization
algorithm which computes the optimal2 geometry and topology for specified loads and
fixtures.

The optimized geometry has to be analyzed and rebuilt by the CAD modeler in several
hours of manual work. There are two main reasons for this additional step: Firstly,
it cannot be guaranteed that the output geometry complies with specifications that
are imposed on boundary condition shapes like, for example, screw threads; therefore,
without special care at this point the optimized part might not fit in the application
anymore. Secondly, the output geometry format of the optimization procedure is usually
a mesh geometry or a voxel grid that is hard to process further. Automatized approaches
for the reconstruction of CAD geometry from mesh geometry exist [23, 24], but they
do not provide the flexibility of manual reconstruction, they are very complicated and
the results are often not satisfactory with respect to the mesh quality. Additionally
very general shapes originate from topology optimization and the structures have a
complex topology which makes it even harder to automatically reconstruct the geometry.
Therefore the reconstruction of a topology optimized structure in CAD can only be done
by an expert with a large toolset in geometric modeling.

In this thesis we propose a workflow that eases the process of the creation of CAD
geometry from topology optimization output: We decouple the simulation driven de-
sign phase from the constructive reconstruction phase. In the first phase the topology
optimized geometry is created and design decisions are made; in the second phase a
CAD expert creates the production ready parametrized geometry. We first automati-
cally postprocess the optimized geometry in order to guarantee that the resulting mesh
is consistent with boundary condition shapes. Then we manually reconstruct the consis-
tent mesh geometry using the prototype SurfFitX in a beginner-friendly VR environment,
where sketches and simple surfaces can be created in a fast and intuitive way. Working
in 3D space helps the user to better visualize and understand complex structures. At the
same time the user can reconstruct the structures in 3D without the need of falling back
to 2D concepts of traditional CAD like planar sketches. Therefore, we can significantly
speed up the process of surface reconstruction using VR technology.

SurfFitX outputs B-Spline curves and loft surfaces in the standardized .step file format
that can be easily used in CAD. The expert CAD modeler may use these curves and
surfaces for the reconstruction of watertight, parametrized and smooth CAD geometry
in a professional CAD tool like NX or AutoCAD. The quality of the final model complies
with established engineering standards.

2The geometry is optimal with respect to a certain goal like minimum weight etc.

3

VR-SurfFitX

CADinVR

S
te
am

V
R

ad
d
it
io
n
al

in
te
rf
ac
es

Unity Frontend

Backend
In
te
ra
ct
io
n

P
ri
m
it
iv
es

B
o
ol
ea
n

C
om

p
le
x

S
h
ap

es

OCCT VTK Level Set

Vive
Interaction

Visualization

C
A
D

V
ox
el

S
D
F

Features added in SurfFitX

Existing features of CADinVR

Figure 1.1.: Overview over CADinVR with SurfFitX – CADinVR provides basic
CAD functionality for interaction with primitive shapes in a virtual environ-
ment (blue regions). We extended CADinVR with functionality for voxel
data visualization and manipulation. We also added mechanisms for the
creation of complex shapes such as loft surfaces or B-spline curves. The
additional functionality is provided in SurfFitX (red regions).

1.3. Siemens CADinVR prototype and surface fitting extension

SurfFitX is an extension for the prototype CADinVR developed at Siemens, Corporate
Technology in 2016. CADinVR enables the user to create and manipulate primitive
shapes that are modeled through CAD technology directly in a VR environment. A core
functionality is the possibility to perform boolean operations on shapes for the creation
of complex geometry. CADinVR consists of two layers: A frontend based on Unity3D
providing interfaces to the VR hardware, and a backend written in C++, which provides
an interface to the CAD-kernel OCCT.

The functionality of CADinVR is extended in the scope of this thesis by providing
SurfFitX. Here we provide means of visualization for voxel or mesh geometry through
the visualization library VTK [25]. We also provide a collection of level set methods
for the creation and manipulation of a signed distance function (SDF) originating from
topology optimization data.

Using SurfFitX the user can interactively extract contour curves from the mesh by
defining cutting planes and draw guiding lines. Contour curves may be used for the
creation of parametrized surfaces that approximate the mesh geometry. All created
objects are modeled using OCCT and therefore comply with established CAD standards.

4

1.4. Structure of the thesis

The development of an interactive VR application for CAD demands knowledge and tools
from a wide range of different fields. We provide the required theoretical framework for
the thesis in chapter 2. This includes explanation of basic concepts of computational
geometry, CAD and VR, introduction of the software frameworks that are used, the
theory of topology optimization, and a short summary of level set methods and the fast
marching method.

In chapter 3 we describe the workflow for the creation and reconstruction of a topology
optimized shape using SurfFitX. We first start with modelling the topology optimization
problem, then we optimize the part using the prototype Interactive Design Assistant
(IDeAs) [26], postprocess the results with level set techniques, extract contours and
guiding lines using SurfFitX and finally create a volumetric part on the basis of the
extracted geometry using NX [1].

In chapter 4 we summarize the concepts for user interaction that exist in SurfFitX in
order to provide an intuitive UEx for a CAD application in VR. This involves existing
functionality from CADinVR, but also new concepts of user interaction developed in the
scope of this thesis.

In chapter 5 we summarize the implementation aspects of the Unity frontend and
the CAD backend. Here we also present a clear classification of parts of SurfFitX that
originate from CADinVR and functionality that has been developed in the scope of this
thesis.

In chapter 6 we summarize the setup of the user study that has been performed to
evaluate the usability of SurfFitX, especially with respect to the interaction methods
described in chapter 4. This includes the explanation of a surface fitting task that
represents a part of the workflow described in chapter 3. Additionally we explain the
evaluation procedure, where we relied on the System Usability Scale (SUS) questionnaire
[27] and an interview.

In the first part of chapter 7 two example parts obtained from the workflow described
in chapter 3 are presented: The parts result from a topology optimization process and
they have been reconstructed using SurfFitX. We optimized and reconstructed a jet
engine bracket [28] and the body of a quadcopter [29]. We also present the results of
the user study on the basis of evaluation procedure explained in chapter 6. Finally we
summarize feedback that we received from a CAD expert with respect to SurfFitX and
potential use in professional workflow.

In the final chapter 8 we discuss and evaluate the results from the previous chapter, we
describe the potential of VR technology in CAD, and provide future directions regarding
SurfFitX.

5

2. Methods

The development of a computer-aided design (CAD) application with a virtual reality
(VR) user interface an interdisciplinary task where materials from different fields are
needed. In the following section we collect background material from the fields of CAD,
VR, simulation and computational geometry that is important in the scope of this thesis.

Depending on the application – CAD, visualization or simulation – different represen-
tations of geometry are in use. We give an overview over different concepts for describing
geometry in section 2.1.

We provide an overview over the different fields that we are covering in the scope of
this thesis. CAD technology and related software that is used for the exact description
of shapes is introduced in section 2.2. We give a short summary of VR technology
and the game engine Unity3D that we are using for visualization and manipulation of
geometry in section 2.3. Then we summarize the basic concepts of topology optimization,
a simulation method for optimal shape generation, in section 2.4.

Finally we provide the mathematical framework that is needed in the scope of this
thesis: We rely on level set methods for the manipulation of voxel data that emerge
from topology optimization (section 2.5), and B-splines and non-uniform rational B-
spline (NURBS) are introduced, as they are the standard for geometry description in
CAD (section 2.6).

2.1. Description of geometry

There exist many different ways of describing geometry. Depending on the application
certain representations are more commonly used than others.

In this section we will shortly review different descriptions of geometry and their
respective fields of application. Major classifications for describing geometry are, firstly,
describing solid bodies through their volume or describing them with their surrounding
surface, and, secondly, describing geometry exacly or approximately (see Figure 2.1).

In subsection 2.1.1 we summarize methods for exact geometry representation that
are, for example, used in CAD. In subsection 2.1.2 approximate representations are
revised; these are frequently used in the field of simulation and visualization. Finally
we give a short overview over methods of conversion between different representations
in subsection 2.1.3.

2.1.1. Exact representation of geometry

An exact representation of geometry is usually utilized through parametrized objects
such as, a circle that is defined by origin, radius and normal vector. More general and

7

~o

exact approximate

r

Figure 2.1.: Two geometric descriptions of a circle – A 2D circle can either be de-
scribed exactly through the parameters radius and origin or approximately
with a mesh. Both descriptions are used in different context, the exact repre-
sentation is used in CAD for parametrized geometry, while an approximate
representation is often used in computer graphics.

flexible concepts like NURBS exist (see section 2.6 for more information). We call this
a parametric description of a curve or surface. Theoretically solid objects can also be
described through parametrized objects [30].

The following two philosophies for the exact description of volumetric geometry exist:
constructive solid geometry (CSG) and boundary representation (BREP) (see Figure 2.2):

• CSG describes the shape as a set of primitive shapes that have been joined using
Boolean operations. Primitive solid shapes – cube, cylinder or sphere – are fused,
subtracted or the intersecting region is deterimend for the creation of new shapes
(see Figure 2.2b).

• BREP describes the shape on the basis of its surface, which is built from several
faces with a given topology. Solid bodies are described by a watertight surface,
that is, a closed shell without holes that surrounds the region occupied by the solid
(see Figure 2.2c).

Both of the two philosophies use parametric curves and surfaces in order to be able
to exactly represent geometry at arbitrary resolution. In order to be able to repre-
sent arbitrary shapes and provide sufficient flexibility we either need a large range of
parametrized shapes or very flexible basis functions (e.g. NURBS see section 2.6). With
this additionaly degree of complexicity comes additional structural information about
the geometry: a circle, for example, is explicitly denoted as a circle.

In CAD the geometry is mostly modelled using the aforementioned concepts. But
also in the field of numerical simulation, branches exist that use exact representation
of geometry (isogeometric analysis (IGA) [30]). In the scope of this thesis we use a
standardized file format based on the Standard for The Exchange of Product model data
(.step) [31, 32] for data storage and exchange of BREP data.

8

(a) A simple shape

(b) Representation using CSG. (c) Representation using BREP

Figure 2.2.: Representation of a simple shape with CSG and BREP – Using
CSG (Figure 2.2b) we first fuse two blocks (∪) and create an L-shaped
compound object, then we drill a hole, by subtracting a cylinder from the
resulting shape(−). BREP (Figure 2.2c) fully describes the shape using the
boundary surfaces to create a watertight shell. The connection of the several
faces is described through the topology. From [33]

.

9

(a) Triangular mesh of the Stanford bunny.
From [34].

(b) A voxel grid with one colored voxel.
From [35].

Figure 2.3.: Approximative geometry representation – The first dataset is a visual-
ization of the Stanford Bunny dataset using a triangular mesh (Figure 2.3a),
the second dataset is a voxel dataset with a single voxel colored differently
(Figure 2.3b).

2.1.2. Approximate representation of geometry

Geometry is usually represented in an approximative sense if an exact representation
is not feasible, not needed or too complicated (For example geometry see Figure 2.3).
Using concepts of discretization a geometry can be approximated in one of the following
ways:

Unstructured mesh We represent the surface of a geometry or the interface between
two regions using a mesh. In a two dimensional setting the mesh is a set of vertices and
a set of lines connecting the vertices; in a three dimensional setting the mesh is a set
of vertices that form polygonal shapes (very often triangles or quadrilaterals are used).
Volumes are described by a watertight surface with face normals pointing into the inside
or outside direction (depending on the convention).

In general a mesh geometry is very flexible and arbitrary shapes are described approx-
imately using meshes. Anyhow, modification of meshes is difficult because there do not
exist any control parameters and every vertex has to be modified on its own.

Mesh representations of geometry are widely used in computer graphics, because they
can provide a visualization of the geometry in a cheap and efficient way. Exchange
formats for mesh geometry are stereolithography (.stl) and .obj file format.

Structured cells A pixel (2D) or voxel (3D) grid is a structured, Cartesian grid of cells.
Using this representation, additional volume information can be stored and the surface
of the geometry is only represented implicitly by the volume information: In a 2D pixel
image we do not describe a boundary but identify region of different color. Each cell is
defined by its grid coordinates and its value.

Cell geometry is bound to the resolution of the underlying mesh and – without further
improvements – not adaptive. Features that are finer than the resolution cannot be

10

resolved. Modifying voxel geometry and performing computations on voxel geometry is
particularly simple due to the simple Cartesian structure of voxel grids.

Voxel representations of geometry are often used in simulations due to their simple
structure – many topology optimization frameworks use a voxel representation of the
geometry, where each voxel represents a cell of variable density. A possible way of storing
voxel data in 3D is the .vtk format, examples for 2D pixel data formats are the widely
used image formats .bmp, .jpg and .png.

2.1.3. Geometry conversion and comparison

Depending on the intended application and the storage format of the data, geometry
representations have to be converted. There exist a number of concepts for transforming
one representation of geometry into another one (see Figure 2.4):

• Contouring: Contouring allows us to create a contour at a certain threshold
value. This converts voxel or pixel data to mesh data and the boundary between
regions of different value is described explicitly. Common algorithms are marching
cubes [36] or dual contouring [37].

• Fitting: Fitting allows us to fit parametric curves or surfaces to point or mesh
data. Different algorithms, like least squares fitting of NURBS exist [38].

• Voxelization: Voxelization is the process of converting mesh data or parametrized
curves into their voxel or pixel1 representation. We can either detect the voxels
that are overlapped by a curve or surface (surface voxelization), or the voxels that
are inside of a closed contour (solid voxelization)[39]. We either provide simple
boolean information, whether a voxel is overlapped by the shape, respectively lies
inside or outside, or we provide more detailed information like color or distance to
the surface.

(a) Contour. Created with [40]. (b) NURBS fit. From [38]. (c) Rasterization. From [41].

Figure 2.4.: Conversion of geometry representations – We create the contour
(black) of a pixel image to obtain a mesh representation (Figure 3.10b),
fit a NURBS curve to a set of point data to obtained a parametric represen-
tation (Figure 2.4b) or rasterize a vector image of the letter ”A” to obtain
a pixel version (Figure 2.4c).

1Here the term rasterization is used

11

2.2. Computer-aided design

“Computer-aided design (CAD) can be defined as the use of computer systems to assist
in the creation, modification, anaysis or optimization of a design.” ([5], p.4) In the
following we will first give a short overview over existing CAD software and the general
architecture of a CAD program. Then we give an overview over the open source CAD
kernel Open CASCADE Technology (OCCT), that is used for geometric modeling, and
the open source CAD software FreeCAD, which relies on OCCT.

2.2.1. Philosophy and requirements

Due to the wide range of demanded functionality CAD systems are usually very complex
pieces of software. There are many different software packages for different purposes:
Powerful commercial packages are Siemens NX and AutoCAD [1, 2], but also open source
tools like FreeCAD [4] and even online tools, only relying on a browser and a connection
to the internet exist [3]. Also specialized niche products that only support a subset of
CAD functionality exist: the design assistant Solidthinking Inspire [42] can be used for
topology optimization; the modelling tool Blender [43] also supports techniques that are
rather used by the computer graphics community than by engineers.

Usually the user is able to perform different operations through a graphical user inter-
face (GUI). The toolset that the software offers usually depends on the field of application
and type of task the user wants to perform: Software for architectural design offers tools
for building doors and windows, while engineers need tools that help in the construction
of screws and threads.

At their core CAD systems rely on the kernel that handles the geometric modelling
and provides the algorithmic backbone. There exist commercial kernels (Parasolid used
by Siemens NX, ACIS used by AutoCAD [44, 45]) and some open source kernels like
OCCT [21].

Most CAD systems provide a mixture of BREP and CSG for the exact description
of geometry. Approximative mesh geometry formats are often only supported as ex-
change formats, since they cannot be modified as easily as parametrized geometry (see
section 2.1). OCCT uses at its core BREP for geometry representation, while boolean
operations on primitive shapes are supported as well. The Online CAD system Tinkercad
[6] solely relies on CSG.

2.2.2. Open CASCADE Technology

For our work we rely on the open source kernel Open CASCADE Technology (OCCT),
that is written in C++. OCCT is designed in an object oriented manner and provides
a mature, extensible and portable architecture. A wide range of functionality that
is required in the context of CAD, but also advanced frameworks for visualization and
application development exist (for technical overview see Figure 2.5). In the scope of this
thesis we use version 7.0.0 of OCCT. For licence information and a thorough explanation
please refer to [46].

12

Figure 2.5.: OCCT technical overview – OCCT focuses on geometrical modelling
(the modules Modelling Data, Modelling Algorithms and Mesh). But many
additional frameworks exist. From [21].

OCCT models geometry through BREP, but also supports CSG concepts like boolean
operations on geometry. Modelling capabilities of OCCT range from simple 2D geometry
to complex freeform surfaces. Additionally approximation and interpolation algorithms
exist for the generation of geometry. OCCT also supports the triangulation of surfaces
and sampling of parametric curves. The dedicated voxel module has been removed in
the update from version 6.9.0 to version 7.0.0. For data exchange OCCT provides a
framework for reading and writing .step files. With those features OCCT provides a
host of functionality: Exact geometric modelling of shapes, an algorithmic backbone for
approximation and interpolation, meshing of arbitrary geometry and writing files that
comply with the .step file format. For useful tutorials and explanation on OCCT see
[47]. In section B.1 we give code examples and detailed explanation of OCCT components
that have been used in the scope of this thesis.

13

2.2.3. FreeCAD

As an example CAD tool we use FreeCAD. FreeCAD realizes geometric modelling
through a mixture of the BREP and CSG philosophy and provides a similar toolset
as professional CAD tools. For detailed explanation of the software, please refer to [4].

Architecture

FreeCAD is a freely available open source tool written in the programming language
Python [48]. Additionally Python is used in the FreeCAD Python interpreter as a script-
ing language to allow the user to customize FreeCAD or perform complex operations,
which cannot be realized or are very cumbersome using the GUI.

FreeCAD relies on the kernel OCCT. Additional technologies in use are Coin3D [49]
for visualization of 3D geometry and Qt [50] for the creation of GUI elements. All the
aforementioned tools provide a Python interface and can be accessed using the FreeCAD
Python interpreter.

FreeCAD is designed in a modular and extensible way and provides an interface for
homebrewn extensions through so-called workbenches. Adding new features to FreeCAD
is explicitly supported by the developers: Collaborators can design new workbenches
and easily access the libraries that are already in use by the main program for tasks of
modelling, visualization and user interactions. This guarantees a coherent user interface
and workflow.

Possible use cases for FreeCAD

With its open architecture, FreeCAD can be used in a variety of different contexts. The
following use cases of FreeCAD are relevant in the scope of our work:

1. CAD tool: FreeCAD is a freely available CAD tool. FreeCAD supports the design
and modification of parts and the visualization of .step geometry. Therefore,
FreeCAD is a free alternative to the commercial packages.

2. OCCT prototyping: Using the FreeCAD Python interpreter we have an easy-
to-use implementation of OCCT at hand. Therefore, we can prototype ideas and
see the results in one single application. After validation, the prototype is finalized
using the C++ implementation of OCCT.

3. Extensible CAD system: FreeCAD being open source allows us to customize
the tool to our needs. The possibility of adding workbenches is very helpful in this
context.

14

2.3. Virtual reality

In this section we shortly summarize available VR and augmented reality (AR) hard-
ware (see subsection 2.3.1) and give a short overview over design tools for VR and AR
(subsection 2.3.2). We desribe the game engine Unity3D that we are going to use for
development in the scope of this thesis (see subsection 2.3.3) and we introduce the as-
set SteamVR, that provides a high level interface between the the VR hardware and
Unity3D (see subsection 2.3.4).

2.3.1. Hardware

We distinguish between virtual reality (VR) and augmented reality (AR) hardware: In AR
the real world is augmented with artificial, virtual components. In VR the action takes
place in a purely virtual environment. Many VR setups use a head-mounted display
(HMD) worn by the user, that provides a stereoscopic 3D image and hides the real
world. But there also exist CAVE setups where the image is projected onto the walls
of a room. No HMD is needed and the user can see his own body [51]. In VR and
AR the position of the user’s head is tracked in space and the virtual environment is
modified correspondingly. Therefore, the user gets the impression of acting in a real 3D
environment.

In some setups the user is only an observer of the 3D environment [52]. But often
the user is able to interact with the environment through a wide range of input devices:
Traditional gamepads are just, but also special controllers with a spatial tracking in 3D
space exist [8, 9, 53, 54]. There are devices that support a direct tracking of the user’s
hands [55].

Figure 2.6.: The Vive Controller – Menu button (1), Trackpad (2), System button
(3), Status Light (4), Micro-USB port (5), Tracking sensor (6), Trigger (7),
Grip button (8). Picture and description from [8].

15

There exists a variety of VR and AR Hardware: An example for AR hardware is the
Hololens [56]. Pokemon GO [57], a recently popular AR game that is played on the
smartphone, where the user does not wear a HMD. The Oculus [9] and the Playstation
VR [54] can be controlled using a gamepad without spatial tracking or with optionally
available controllers with spatial tracking. The Google Daydream [53] and the Google
Cardboard [52] are HMD where a Smartphone has to be plugged in. In the following we
concentrate on the Vive [8] as an example VR hardware package.

The Vive developed by HTC and Valve is a HMD, where the position of the head of
the user is tracked. One can either use the HMD in a seating position or while moving
around in a certain area. With a stereoscopic display the Vive comes with full 3D
support. Additionally a pair of controllers can be used for user input (see Figure 2.6),
the position of the controller is tracked and can be visualized in the VR environment.

In the last few years VR technology has reached the consumer market: In 2012 Oculus
issued its Kickstarter campaign and gathered over US$2.4 million. Facebook aquired
Oculus in 2014 for an estimated US$2 billion [58]. With Vive and Oculus, today’s
VR hardware is relatively affordable and accessible for a wide range of people. Good
positional tracking and a high resolution stereoscopic HMD are provided. For both
systems high level programming interfaces exist [59, 60] and there is a large community.
With this, the development of advanced software applications for VR is possible and
there is a large field of potential users.

2.3.2. Design in virtual reality

With stereoscopic visualization and input devices with 3D positional tracking VR and
AR provide great possibility for design in 3D space. In the following we provide two
examples of design tools in VR that inspired our work.

The VR interfaces for the Unreal Engine and for Unity3D allow the user to design
complex scenes for 3D games in a virtual environment [12, 13]. Here the user has the
possibility to inspect the whole scene in the role of an immersed observer. 3D positioning
and scaling happens by ”grabbing” objects using the controllers in an intuitive and easy
to use way. A virtual tablet provides access to advanced functionality and a snapping
mechanism for objects is implemented.

In the 3D sketching tool Tiltbrush [11] the user can create 3D sketches in a virtual
environment. The user paints by moving the controller through the air, the controller
is used like a brush and colorful lines are created. The user can choose from a wide
range of different colors and painting devices with a menu that is attached to the second
controller. Additional mechanisms for sketching of straight lines, redo/undo and export
of data are provided.

We summarize that there exist design tools for constructive as well as creative work
in VR. The tools heavily rely on the positional tracking of HMD and controller as well
as the stereoscopic imaging for providing a more intuitive user experiance. For more
examples of desing tools in VR and AR please refer to [20].

16

compound

cylinder

frontPlane

backPlane

box

(a) Game object hierarchy (b) A simple game object in the Unity edi-
tor

Figure 2.7.: Unity game object – The compound game object (GO) (Figure 2.7b) can
be positioned in 3D space while the parts keep their relative local position
due to the hierarchical structure of the GO (Figure 2.7a).

2.3.3. Unity3D

The game engine Unity3D [22] is widely used for the development of computer games and
other interactive 3D applications. Unity already comes with fundamental functionality
for game development and 3D visualization. For complex behavior Unity supports the
scripting languages C# and JavaScript. Unity’s functionality can easily be extended by
plugins2 from Unity’s AssetStore.

The basic data structure of Unity is the game object (GO) with a transform3 as its only
mandatory property. Using a component4 one can customize the GO. By hierarchically
adding additional GOs as children, that inherit the global position of the parent GO,
one can build compound objects (see Figure 2.7).

2.3.4. Virtual reality software interface

In the context of VR we need a software framework that provides an interface to the
VR hardware, consistent handling of the position of the HMD, and stereoscopic 3D
rendering.

The Unity asset SteamVR [59, 61] provides the above mentioned functionality and
gives access to the basic functionality of the Vive from within the Unity scripting en-
vironment. It allows us to track the position of the HMD and the controllers as well
as detecting buttons being pressed. But Unity’s asset store also provides interfaces to
other VR hardware: We draw the reader’s attention to [60] for support of the Oculus
[9] and [62] for Android devices like the Daydream [53]. Therefore, we can easily switch
from the Vive to a different VR hardware package.

For user interaction in VR there exist several third party assets [63, 64]. They link
actions performed with the controller to events that happen in the virtual environment.

2In the context of Unity a plugin is often also called an Asset.
3The transform is an object defining the GO’s position, rotation and scale in 3D space.
4A component can be anything from a mesh for geometry, a renderer for visualization of geometry or

a script for complex behavior.

17

This supports the development of interactive applications, where the user can modify
the environment by, for example, grabbing objects or interacting with widgets.

18

2.4. Topology optimization

Topology optimization allows us to optimize geometry of a continuum with respect to a
given objective function. This is a very broad and general framework that is useful, for
example, when designing specialized parts in the context of engineering problems.

Many professional and open source topology optimization frameworks exist [42, 65–
67]. In this thesis we use the prototype Interactive Design Assistant (IDeAs) developed
at Siemens, Coorporate Technology [26]. IDeAs allows us to create a part with maximum
stiffness.

2.4.1. Theory

We use topology optimization as a black-box: In the following we do not give a rigourous
explanation of the underlying mathematical framework of topology optimization (see
[68]), but only concentrate on the basics.

One popular approach to topology optimization is the Solid Isotropic Microstructure
with Penalization (SIMP) approach, where the optimization domain is discretized with
hexahedral elements with associated density values ρ. The density of each element
is used as a design variable in an optimization problem where the compliance c (ρ),
a measurement for the work done by external loads, is minimized. The optimization
procedure is constrained by a target volume fraction α and the possible density values
ρmin < rho < ρmax.

As an additional constraint the linear elasticity boundary value problem has to be
fulfilled. Using finite element method (FEM) the discretized form of the problem reads
Ke (ρ)u = f , where Ke (ρ) denotes the stiffness matrix, that depends on the density
distribution, u denotes the displacement and f the consistent force vector.

2.4.2. Input and output

The loads and fixtures, together with the optimization domain, define the design space
of the topology optimization problem. For an example input setup see Figure 2.8. The
optimization problem is solved using an iterative scheme (for more detail see [26]).

The final result of the topology optimization process is a mesh with hexahedral ele-
ments with an optimum a density value ρ. From the density values we can get information
about the properties of the optimized structure:

• If ρ = ρmax, this means that material with the maximum density is needed at this
place in order to obtain a structure that meets the requirements.

• If ρ = ρmin, this means that no material is needed at this place.

In order to manufacture an optimized part, the user usually defines a density threshold
ρmin ≤ θ ≤ ρmax. This threshold divides regions with material, where the density is
above the threshold ρ > θ, from regions without material, where the density is below
the threshold ρ < θ.

19

Figure 2.8.: Screenshot from Interactive 2D TopOpt App – Screenshot visualizes
the necessary boundary conditions for a topology optimization problem:
fixtures (triangles at the left border), forces (arrow at the right border) and
the optimization domain (white box partially filled with black material).
The resulting structure is optimal with respect to the boundary conditions.
Interactive App from [69].

2.5. Level set and voxel description

For postprocessing the voxel output of the topology optimization process, we use level
set methods. In this section we shortly describe level set methods and fast marching
methods and their application in computational geometry and CAD. The descriptions
are based on [70]. For a thorough introduction to the topic please refer to [70].

2.5.1. Level sets

Propagating interfaces are usually described in an explicit Lagrangian approach: parame-
trized functions or sets of vertices and edges define a curve or surface Γ that separates two
regions. In the level set framework interfaces are described from an Eulerian perspective,
where the interface is implicitly given as the isocontour of a multidimensional function.

The boundary value problem: For an interface Γ moving with normal propagation
speed F > 0 we define the arrival time function T (~x) that describes the arrival time of
the moving interface Γ at the location ~x. The arrival function T is defined through the
following boundary value problem:

|∇T |F = 1, T = 0 on Γ, F > 0 (2.1)

The arrival function T (~x) implicitly defines the propagating interface Γ (t) as

Γ (t) = {~x | T (~x) = t} .

20

Therefore, Γ (t = 0) describes the initial shape of the interface, while Γ (t = 1) describes
the shape at t = 1. If we choose F = 1, the arrival time function T (~x) represents the
distance of any position ~x to the interface Γ; negative values denote regions inside of the
interface, positive values denote regions outside of the interface. In this special case we
call T (~x) a signed distance function (SDF) and T fulfills |∇T | = 1.

The initial value problem: The arrival time function T (~x) does not allow negative
travelling speed F , since otherwise T (~x) would not be single valued at arbitrary locations
~x. Therefore, we define the time dependent level set function φ (t, ~x) with the interface
Γ (t) being the zero level set of φ:

Γ (t) = {~x | φ (t, ~x) = 0} .

The level set function is defined by the following inital value problem:

φt + F |∇φ| = 0 given φ (t = 0, ~x) , (2.2)

with arbitrary normal propagation speed F .

Discretization: By discretizing the functions T (~x) and φ (t, ~x) on a uniform grid

Ωh = {~xijk = (xi, yj , zk) | 0 < i < nx, 0 < j < ny, 0 < k < nk} ,

with

xi = x0 + i∆x,

yj = y0 + j∆x,

zk = z0 + k∆x,

we can numerically treat the associated partial differential equations (2.1) and (2.2).
The interface can be visualized easily using common algorithms for the visualization of
isocontours [36].

2.5.2. Fast marching method

In order to solve the boundary value problem (2.1), we have to first initialize the arrival
function T such that T = 0 on Γ. For this purpose we approximate the distance from
the interface to all gridpoints that are close to the interface Γ. A gridpoint is close to
the interface, if the interface lies between that gridpoint and one of its neighbors.

After having properly initialized T , we can use the fast marching method (FMM) for
solving the boundary value problem (2.1). Finally we obtain the arrival function T . The
complexity of the algorithm is O (M logM) on a grid with M points. Explanation and
implementation instruction can be found in [70].

21

2.5.3. Level set propagation

We easily obtain a valid initialization of φ for the initial value problem (2.2) by setting
φ (t = 0, ~x) = T (~x).

Choosing F in an appropriate way, the level set framework can be used for different
applications: Setting F = −κM , where κM denotes the mean curvature of the interface,
smoothens the surface. An expression of the mean curvature in terms reads

κM =

(
(φyy + φzz)φ

2
x + (φxx + φzz)φ

2
y + (φxx + φyy)φ

2
z

− 2φxφyφxy − 2φxφzφxz − 2φyφzφyz

)
(
φ2
x + φ2

y + φ2
z

) 3
2

, (2.3)

where we approximate the derivatives using finite differences.

Finally the following upwind scheme can be used for solving (2.2):

φn+1
ijk = φnijk −∆t

[
max (Fijk, 0)∇+ + min (Fijk, 0)∇−

]
,

where

φnijk = φ (tn, xi, yj , zk) = φ (tn, ~xijk)

Fijk = F (xi, yj , zk) = F (~xijk)

and

∇+ =

[
max

(
D−xijk , 0

)2
+ min

(
D+x
ijk , 0

)2
+

max
(
D−yijk, 0

)2
+ min

(
D+y
ijk, 0

)2
+

max
(
D−zijk, 0

)2
+ min

(
D+z
ijk, 0

)2
] 1

2

∇− =

[
max

(
D+x
ijk , 0

)2
+ min

(
D−xijk , 0

)2
+

max
(
D+y
ijk, 0

)2
+ min

(
D−yijk, 0

)2
+

max
(
D+z
ijk, 0

)2
+ min

(
D−zijk, 0

)2
] 1

2

,

with D±αijk denoting the forward, respectively backward, difference operator in α direction
at ~x = (xi, yj , zk).

Additionally we require the following CFL condition:

Ω
max

F∆t ≤ ∆x.

22

2.5.4. Boolean operations on level sets

The common Boolean operations on two shapes ΩA and ΩB can be applied to level sets:

ΩA ∪ ΩB = min (φA, φB)

ΩA ∩ ΩB = max (φA, φB)

ΩA − ΩB = max (φA,−φB) ,

where φA,B denote the respective level set representations of ΩA,B.

2.5.5. Visualization Toolkit

In order to be able to work with level set and voxel datasets, we need a toolset that
allows us to describe, store and visualize level set and voxel data: For this purpose VTK
can be used. VTK [25] is a powerful open-source library for computer graphics, image
processing and visualization. VTK is originally written in C++, but also provides an
interface to the programming language python.

In this thesis we only need a small fraction of VTK’s actual functionality, for a thor-
ough explanation of VTK please refer to VTK’s userguide [71], the VTK textbook [72]
and the reference documentation [73]. For a detailed of explanation of VTK functionality
used in the scope of this thesis please refer to the material in section B.2.

2.6. B-splines

B-splines are a special type of parametric function that is, due to its flexibility, widely
used in CAD for modelling of curves and surfaces. We do not explicitly introduce
NURBS, regardless they are important in CAD, because they are not needed in the
scope of this thesis.

In this section we first give a definition of B-spline curves and surfaces (see subsec-
tion 2.6.1) and explain basic concepts. After that we describe continuity requirements
for joined B-spline segments or patches (subsection 2.6.2).

For detailed explanation of NURBS and B-spline theory we refer to [30] and [74].

2.6.1. B-spline curves and surfaces

B-spline curve A B-spline curve is a parametric curve that is defined in the following
way:

~C (ξ) =

n∑
i=1

Np
i (ξ) ~Pi,

where ξ describes the parametric coordinate, where the curve is evaluated, ~Pi are the
control points of the curve, n denotes the total number of control points and Np

i (ξ) is
the i-th B-spline basis function of polynomial degree p defined through the Cox-de Boor
recursion formula:

23

• for p = 0:

N0
i (ξ) =

{
1 ξi ≤ ξ < ξi+1

0 otherwise

• for p > 0:

Np
i (ξ) =

ξ − ξi
ξi+p − ξi

Np−1
i (ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Np−1
i+1 (ξ) .

The knot vector ~ξ is vector of non-decreasing values that define the parametric space of
our curve.

B-spline surface By using a tensor product, we can construct the B-spline surface

~S (ξ, η) =
n∑
i=1

m∑
j=1

Np,q
i,j (ξ, η) ~Pi,j ,

with n ·m control points ~Pi,j . The two-dimensional B-spline basis function

Np,q
i,j (ξ, η) = Np

i (ξ)N q
j (η)

has an additional polynomial degree q and an additional knot vector H = [η1, η2, ηm+q+1]
related to the second parametric direction η.

2.6.2. Continuity

G0 continuity of B-splines Since a B-spline curve with an open knot vector interpolates
the first and last control point,

• a single curve is closed into a loop by setting ~P1 = ~Pn and

• two curves are connected by setting ~Pn = ~Q1.

For surfaces the same rules apply and we require

• ~P1,j = ~Pn,j ∀j = [1,m] for joining two opposite edges of a single patch to form a
cylindrical surface and

• ~Pn,j = ~Q1,j ∀j = [1,m] for joining two different patches in ξ direction along the
edges pointing in η direction. Two patches are connected at arbitrary edges ap-
plying similar rules.

Such a joint is called G0 continuous.

24

G1 continuity of B-splines Anyhow, setting the first and last control point of two
different curves (or of one and the same curve respectively) equal, only guarantees G0

continuity. In order to accomplish a G1 continuous joint5, additionaliy to G0 continuity6

we require
∂

∂ξ
~C1 (ξn) = α

∂

∂ξ
~C2 (ξ1) .

The first derivative of the B-spline basis function reads

∂Ni,p (ξ)

∂ξ
=

p

ξi+p − ξi
Ni,p−1 (ξ)− p

ξi+p+1 − ξi+1
Ni+1,p−1 (ξ) .

Inserting this into the definition of the B-spline curve with open knot vector yields after
some simplifications (consult [30] for details) the condition for G1 continuity of a B-spline
curve: (

~Q2 − ~Q1

)
= α

(
~Pn − ~Pn−1

)
.

Since ~Q1 and ~Pn have to be identical due to G0 continuity, G1 continuity requires the
additional property, that the two control points ~Q2 and ~Pn−1 are collinear with the
control point ~Q1 = ~Pn where both curves meet.

For B-spline patches we require this criterion across the whole connecting edge(
~Q2,j − ~Q1,j

)
= α

(
~Pn,j − ~Pn−1,j

)
∀j.

G2 continuity of B-splines We require C0, G1 and additionally

~Q1 +
1

α

(
~Q1 − ~Q2

)
= ~Pn−1 + α

(
~Pn−1 − ~Pn−2

)
.

5we only require geometric (G1) continuity, not parametric (C1) continuity; therefore we introduce the
arbitrary scaling factor α 6= 0.

6per definition Gn continuity always requires Gn−1 continuity plus additional constraints.

25

3. Design Workflow

In this chapter we describe how the methods described in chapter 2 are combined to
accomplish the task of designing a topology optimized part and then partially recon-
structing it in a virtual reality (VR) environment.

Throughout this section we use the GE Bracket [28] as an example problem. It origi-
nates from a design challenge issued by GrabCAD and General Electric in 2013, where
the design of a jet engine bracket has to be optimized in order to obtain a lightweight
part. The optimized part has to comply with a set of requirements: Firstly the part
has to withstand different load scenarios without breaking and, secondly, load interfaces,
where loads are applied or the part is fixed, should remain unchanged. The load inter-
faces are given as geometry in Standard for The Exchange of Product model data (.step)
file format. The winner of the competition [75] was finally able to reduce the weight of
the initial design by nearly 84% (see Figure 3.1).

We propose topology optimization methods for the design of lightweight structures.
We describe the necessary steps in modelling and simulation for the creation of a topol-
ogy optimized geometry in section 3.1. In order to guarantee that the optimized design
complies with bounardy condition geometry, we introduce an intermediate step before
the actual geometry reconstruction starts. Here we finally obtain a consistent description
of boundary conditions and optimized geometry (section 3.2). The resulting level set is
used in the following geometry reconstruction step (section 3.3), where we use VR tech-
nology for the extraction of B-spline curves and non-uniform rational B-spline (NURBS)
surfaces (section 2.6). In a postprocessing step we use a professional computer-aided de-
sign (CAD) tool with a rich toolset for geometric modelling in order to create the final
CAD geometry. The design workflow is visualized in Figure 3.2.

Figure 3.1.: GE jet engine bracket designs – The original part (left) and the winner
of the challenge right (right) with a weight reduction of nearly 84% from
2033 grams to 327 grams. Original design from [28] and optimized design
from [75]. Visualized using FreeCAD [4].

.

27

Design Cycle

1.

2.

3.

4.

5.

Topology
Optimization

Level Set
Methods

VR Geometry
Reconstruction

CAD
modelling

Additional
Iterations

?

Figure 3.2.: Design workflow realized in this thesis – We start with an initial design
(1), optimize the topology (2), create a consistent geometry representation
using level set methods (3), extract cross sections, loft surfaces and guiding
lines from the mesh using VR technology (4) and finally model the geom-
etry using a full fledged CAD tool (5). The resulting part can be used for
additional iterations.

28

3.1. Topology optimization

Interactive Design Assistant (IDeAs), a prototype for fast parallel topology optimization
developed at Siemens, Corporate Technology [26], supplies the topology optimization
framework described in section 2.4.

In subsection 3.1.1 we explain how to define the parameters that are necessary in order
to start a topology optimization process using IDeAs. Secondly in subsection 3.1.2 we
describe the resulting output.

3.1.1. Definition of boundary conditions

As already described in section 2.4 topology optimization is a procedure that tries to find
an optimal geometry with respect to a certain goal and a set of boundary conditions.
Using IDeAs we can easily create a lightweight structure using topology optimization
techniques. In IDeAs the boundary conditions are provided through geometry shapes in
.step file format (see Figure 3.3):

• Initial geometry: Geometry of the original, not optimized part. Defines the
initial material density distribution.

• Forces: Regions where forces are applied to the part.

• Fixtures: Regions where the part is fixed and no displacement occurs.

• Optimization domain: Region, where the algorithm may modify the initial
material density distribution. In regions outside of the optimization domain the
initial geometry shall be conserved. This is for example useful if a region should
remain empty (void regions)1 or the exact shape has to remain untouched2.

Additional quantities – like material properties or discretization parameters – have to
be implemented as well.

3.1.2. Optimized voxel geometry

The optimized geometry is represented with a density field on a regular voxel grid. By
specifying a density threshold θ we can visualize the resulting geometry as a set of voxels
that have a density value ρ ≥ θ. The .vtk file format [25] is used for outputting and
saving data (Figure 3.4).

1One possible reason is if space for additional parts is needed in this region.
2The thread of a screw, for example, must not be changed.

29

(a) Full input geometry (b) Initial geometry to be optimized

(c) Optimization domain with not optimized
regions (red).

(d) Parts with forces (blue) and fixtures
(green).

Figure 3.3.: IDeAs input geometry – IDeAs accepts input geometry defining the
topology optimization problem (Figure 3.3a). The part (Figure 3.3b) is
optimized in a given optimization domain, where certain regions can explic-
itly be excluded from optimization (Figure 3.3c). Force and fixture bound-
ary conditions are applied in certain regions (Figure 3.3d). Note that the
boundary condition regions are not lying inside the optimization domain
and therefore remain untouched. Geometry visualized in FreeCAD [4]. The
problem statement is based on [28].

30

(a) Voxel dataset

(b) Comparison of original (grey, transparent) and optimized (blue, opaque) shape.

Figure 3.4.: IDeAs output – The optimized geometry is output as a density field on
a regular voxel grid. We visualize the optimized geometry, by only display-
ing voxels with a density value ρ above the theshold value ρt = 0.5 (Fig-
ure 3.4a). Comparing the optimized to the original geometry we observe
that the amount of material has been reduced (Figure 3.4b). Visualized
using [40].

31

3.2. Consistent level set

In the following section we present the treatment of boundary condition geometry after
having completed the topology optimization step described in section 3.1. The algorithm
heavily relies on the level set methods introduced in section 2.5. This intermediate step
between topology optimization (section 3.1) and geometry reconstruction (section 3.3)
has been developed in the scope of this thesis and is necessary to create a represen-
tation of topology optimized voxel geometry, which is consistent with given boundary
conditions.

IDeAs does not return a mesh representation of the optimized geometry, but a voxel
representation with a density field ρ from which we can extract an optimal geometry by
defining a density threshold θ and creating a contour, where the density value ρ exceeds
the threshold value θ. This geometry is in general not satisfactory for the following
reasons:

• Boundary condition shapes are not represented exactly.

• Regions outside of the optimization domain might have been modified during topol-
ogy optimization.

In order to be able to create an optimized geometry that is consistent with the boundary
conditions, we propose the following algorithm:

1. Transform all geometry to signed distance functions (SDFs) (Figure 3.5):

• Interpolate the voxel density values onto the nodes, in order to obtain a
spacially discrete representation of the density field ρ. This can be done
easily using Visualization Toolkit (VTK).

• Transform this dataset into a SDF φ0 of the interface at the density threshold
θ. First we approximate the distance to the interface in a thin layer around
the interface by detecting the roots in ρ (~x) − θ = 0, where θ denotes the
density threshold where we want to create the interface, and then apply the
fast marching method (FMM) for the initialization of the remaining domain.

• Transform the optimization domain Ω and the shapes outside of the opti-
mization domain Ω – both defined as .step geometry – into their respective
SDFs φΩ and φΩ in a thin layer around the interface3. Then – again – use
the FMM for the initialization of the remaining domain.

• For all SDF use the same mesh that is already used for the voxel dataset.

2. Perform boolean operations on level sets (Figure 3.6):

• Perform φ0 ∩ φΩ = φ1 to remove any material that is outside of the optimiza-
tion domain.

3Here we use Open CASCADE Technology (OCCT) for a – costly – thin layer approximation based on
existing .step geometry

32

• Perform φ1 ∪ φΩ = φ2 to fuse the exact representation of untouched geometry
and the optimized geometry.

• After each boolean operation perform a reinitialization step4 in order to pre-
vent a deterioration of the SDF.

3. Smoothing of the result:

• Do some iterations of mean curvature smoothing on φ2 to obtain a smooth
geometry.

• Only perform smoothing inside the optimization domain Ω. On Ω set the
velocity equal to zero.

The resulting level set representation is consistent with the boundary conditions of the
original optimization problem (See Figure 3.8).

4This involves first performing a thin layer initializiation at the interface, where φi = 0, then applying
FMM for the initialization of the remaining domain.

33

(a) Voxel representation of optimized geometry
with threshold θ = 0.5.

(b) SDF of geometry φ0. Isocontour at φ0 = 0.

(c) .step representation of the optimization do-
main Ω.

(d) SDF of optimization domain φΩ. Isocontour
at φΩ = 0.

(e) .step representation of the unchanged do-
main Ω.

(f) SDF of unchanged domain φΩ. Isocontour
at φΩ = 0.

Figure 3.5.: Transformation to level sets – Transformation of the optimized voxel
geometry (Figure 3.5a) to the SDF (Figure 3.5b) is done by first interpo-
lating the voxel values onto the nodes and defining a surface at the density
threshold ρt. We also transform .step geometry that defines the simula-
tion domain (Figure 3.5c) and unchanged geometry (Figure 3.5e) to their
respective SDFs (Figure 3.5d and Figure 3.5f). Visualized using Paraview
[40]. .step files have been converted to .stl using FreeCAD [4].

34

(a) Initial shape φ0. (b) Shape φ1 after removing unchanged regions
(red).

(c) Shape φ2 after adding unchanged geometry
(blue).

(d) Final shape φ2.

Figure 3.6.: Boolean operations on level sets – From the initial level set φ0 (Fig-
ure 3.6a) we remove unchanged regions by building the intersection with
the optimization domain φ0 ∩ φΩ = φ1 (Figure 3.6b). Then we add the un-
changed, given geometry outside of the optimization domain φ1 ∪ φΩ = φ2

(Figure 3.6c). The resulting shape is consistent with the optimization result
and the geometry outside of the optimization domain remains unchanged
(Figure 3.6d). Visualized using Paraview [40].

35

(a) Initial shape φ2 with unchanged regions (red).

(b) At t = 0.0. (c) At t = 2.0.

Figure 3.7.: Level set smoothing – The shape is smoothened using the mean curvature
flow, some regions are excluded from smoothening (Figure 3.7a) . Smoothing
under mean curvature removes noise, but also reduces the volume of the
shape (Figure 3.7b and Figure 3.7c). Visualized using Paraview [40].

36

Figure 3.8.: Consistent level set – Isocontour at φ = 0 of the smoothened level set
with smoothening time t = 2.0. The level set geometry is consistent with the
boundary condition shapes that are given in .step format. The boundary
condition shapes are also visualized. Created using the algorithms proposed
in this work. Visualized using Paraview [40].

37

3.3. Parametric geometry reconstruction

In the previous sections we explained how to obtain a topology optimized geometry
from boundary conditions (section 3.1) and how we postprocess it in order to comply
with boundary condition shapes (section 3.2). Here we finally want to reconstruct the
topology optimized structure as a CAD geometry in boundary representation (BREP)
format (subsection 2.1.1).

We first visualize the topology optimized structure with a triangular mesh (see sub-
section 3.3.1). Now we want to reconstruct this mesh geometry using B-spline curves
and NURBS surfaces.

Topology optimized structures created on the basis of the Solid Isotropic Microstruc-
ture with Penalization (SIMP) approach are usually truss structures. Therefore, for the
reconstruction of the mesh geometry we propose the following specialized toolset (see
also Figure 3.9):

In order to be able to create struts of variable diameter we provide a tool for the
extraction of cross section contours from the mesh (subsection 3.3.2). These contours
can then be joined into loft surfaces that approximate a series of contours in order to
model struts (subsection 3.3.3). For more complicated parts like junctions of several
struts or regions where a smooth connection to bounary condition shapes has to be
created, we provide a sketching tool for the creation of guiding lines that lie on the mesh
(subsection 3.3.4).

1

2

3a

3b

Figure 3.9.: Toolset for geometry reconstruction implemented in SurfFitX –
The contour tool allows the extraction of contour shapes (orange) from the
mesh (1). Several contours can be joined to form a loft surface that approxi-
mates a strut structure (2). For complicated regions like junctions of several
struts (3a) or connections to bounary condition shapes (3b) we provide a
sketching tool for the creation of guiding lines (blue).

38

For the creation of a smooth, watertight and parametrized surface we finally rely on
a full fledged CAD tool like NX [1], which provides the wide range of tools that are nec-
essary to impose continuity conditions and create complicated surfaces. We can import
the contours, guiding lines and loft surfaces into NX and use them for the construction
process.

3.3.1. Mesh visualization

We visualize the topology optimized structure using a mesh that can be created using
the marching cubes implementation from VTK and a given threshold θ. In the previous
section we defined the topology optimized structure over its SDF φ. Therefore, we pick
the threshold θ = 0 in order to obtain the zero level set of the SDF φ = 0 as a triangular
mesh. The visualization of the mesh is handled by Unity.

3.3.2. Contour extraction from meshes

We approximate the mesh geometry by creating closed B-spline curves lying in cross
sections cutting the mesh. We call these B-spline curves contours. We implemented the
following algorithm for the extraction of contours from the SDF φ:

1. The user provides origin ~o, normal vector ~n, start direction ~d0
5 and radius r of a

disk D. The origin of the disk lies inside the mesh geometry and the disk defines
the cross section where the contour is going to be constructed.

2. We probe the SDF φ (~x) along n+1 straight lines γ (t)0...n pointing from the origin

~o into the search direction ~di:

~γi (t) = ~o+
~di∥∥∥~di∥∥∥ t, t ∈ [0, r] ,

with
~di = R (αi, ~n) ~d0,

where R (αi, ~n) ~x describes the rotation matrix rotating the vector ~x around the
axis ~n by αi degrees. We create sample lines for θi = 2πi/n, i = 0 . . . n.

3. Along each line γi we determine the position where the line crosses the mesh by
calculating the root of φ (~xi) = 0 using bisection. We define a tolerance ε and
iterate until |φ (~xi)| < 0.

4. We create a B-Spline curve that approximates the ordered array of n + 1 sam-
ple points [x0, x1, . . . , xn−1, xn]. We set the resulting B-Spline to be closed (C0

continuity) and obtain the contour

5 ~d0 · ~n = 0, therefore ~d0 lies inside of the disk D.

39

(a) Cutting plane with interpolated data
and isocontours. Visualized using Par-
aview [40].

(b) Extracted contour in the disk. Origin ~o
(red), sample points ~xi (green) and root
search line ~γ0 (t) (blue) are highlighted.
Visualized using FreeCAD [4]. [4].

Figure 3.10.: Contour extraction – The contour extraction algorithm samples the .vtk
dataset. Interpolated values are obtained using VTK (Figure 3.10a). On a
disk regularly spaced sample points are created by performing a root search
on the .vtk dataset along straight search lines. Finally an approximating
B-Spline curve is computed (Figure 3.10b).

To obtain a contour that approximates the mesh well and does not ignore important
features, the origin ~o of the disk should approximately lie in the center of the mesh region
that is contoured. Additionally the number of n + 1 sampling points should be neither
to low, since features might be lost, nor to high, since effects of overfitting might occur.

For a visualization of the algorithm please refer to Figure 3.10. Dataset probing and
necessary interpolations6 are realized using VTK [25], the geometry operations as well
as B-Spline approximation and modelling are realized using OCCT [21].

3.3.3. Loft surface creation

For the creation of surfaces from a set of closed or open wires, OCCT provides a mecha-
nism for lofting. We use this mechanism for either creating a loft from contours defined
using the algorithm mentioned above or creating a loft contours and already existing
wires.

Creating a loft surface from contours is trivial: The contours have to be selected in
the demanded order and a loft surface is created that tries to approximate the contours
as good as it is required by the tolerance that has been defined by the user (Figure 3.11).

If we want to create a loft using already existing contours (e.g. contours from existing
faces) we first have to extract the edges belonging to the faces, remove seam edges and
create a closed wire with consistent orientation (Figure 3.12).

The necessary algorithms for loft creation, shape analysis and shape healing are pro-
vided by OCCT [21].

6The SDF φ is provided in the discretized form of values lying on a regular grid stored as a .vtk dataset.

40

Figure 3.11.: Loft from three contours – Three extracted contours (orange) define a
loft surface. Visualized using FreeCAD [4].

Figure 3.12.: Loft connecting extracted contours and existing geometry – Three
extracted contours (orange) define a loft surface. One contour has been
created from an existing boundary condition shape (blue). Visualized using
FreeCAD[4].

41

3.3.4. B-Spline sketching

For shapes that cannot be described using contour curves, like junctions or connections
with bounary condition shapes, we provide a tool for sketching of guiding lines that are
aligned with the mesh. The lines are open B-spline curves.

An array of M sample points yi provided by the user desribes a line. In order to
remove noise, originating from hand tremor and inaccuracy of measurement, we fit a
B-spline curve to the sample points.

The resulting B-spline is smooth, but does not lie on the mesh. Therefore we extract
N uniformly spaced sample points ~x 0

i and shift them onto the mesh. This is equivalent
to determining the root of the SDF assosciated with the mesh by using the following
iterative gradient method:

~xn+1
i = ~xni −

1

2
φ (~xni)∇φ (~xni) ,

where φ denotes the SDF of the mesh and ∇φ the gradient of the SDF, which always
points from the inside direction of the mesh to the outside. With φ being the SDF it
already provides an easily accessible estimation for both the error and the stepwidth of
the gradient method. We iterate until |φ (~xni)| < ε, where ε denotes a tolerance.

After performing the gradient method, we obtain N shifted sample points that lie on
the mesh. We again fit a B-spline to the points and obtain an open B-spline lying on
the mesh.

For a visualization of the algorithm please refer to Figure 3.13. For B-spline fitting
and evaluation we used OCCT [21] functionality. The computation of gradients and
probing of the SDF can be easily done using VTK [25].

(a) B-spline approximation of input points
(green). Visualized using FreeCAD [4].

(b) Gradient method shifting sample points
from original B-spline (blue) onto mesh
and resulting B-spline (orange). Visu-
alized using FreeCAD [4].

Figure 3.13.: B-spline sketching on mesh – We first remove noise from the sample
points by creating an approximative B-spline (Figure 3.13a). Then we
apply a gradient method for shifting sample points from the B-spline onto
the mesh (Figure 3.13b).

42

4. User interaction

In this chapter we present the concepts of user interaction that allow the user of Virtual
Reality Surface Fitting Extension (SurfFitX) to access the core functionality of CADinVR
as well as the additonal functionality that has been introduced in section 3.3.

For user interaction we use the HTC Vive [8], the Unity3D [22] games engine, and the
SteamVR [59] interface (see also section 2.3): The user interacts with the virtual reality
(VR) environment using the two controllers of the Vive (see Figure 2.6). The pose of
the controllers is tracked and visualized in the virtual environment. The visualization of
the scene happens in the stereoscopic display of the Vive head-mounted display (HMD).

In section 4.1 we explain concepts for the manipulation and selection of shapes in the
virtual environment, this involves primitive shapes as well as complex geometry such as
loft surfaces. In section 4.2 we explain the mechanism for sketching of lines in 3D space.
Finally in section 4.3 we explain how the user controls the camera view in the virtual
environment and how the user is able to inspect complex scenes.

4.1. Shape interaction

For the manipulation of 3D shapes in a VR environment we need to be able to interact
with geometry that is represented through a triangular mesh. This first involves selection
of shapes and secondly being able to transform (translate, rotate and scale) shapes. For
more complex interaction we also provide a basic menu.

A majority of the user interaction metaphors that are presented in the following did
already exist in CADinVR. These metaphors have been implemented from scratch and
we decided to continue using them. However, there exist Unity Assets of high quality
that provide VR interaction functionality [63, 64], which we decided not to use due to
the already existing implementation in CADinVR.

We use the interaction methods described below for manipulation of the position,
rotation and scale of the mesh representing the topology optimized geometry (subsec-
tion 3.3.1), the positioning of cross section planes that define the input variables for
contour creation (see subsection 3.3.2), and the selection of contour shapes for the cre-
ation of loft surfaces (see subsection 3.3.3).

Hover and selection: We want to be able to detect if the user is pointing on an object
with the controller, we call this mechanism hovering. Active hovering is visualized by
a laser beam pointing from the controller to the object. Additionally we want to allow
the user to persistently select and deselect objects. When an object is hovered, selection
can be activated and deactivated by pressing the trackpad on the Vive controller. We

43

support selection and hovering for the whole object as well as for single faces of the
object (see Figure 4.1). This mechanism has been developed and implemented in the
legacy system.

(a) object hovering visualized in yellow (b) object selection visualized in bright yel-
low

(c) face hovering visualized in blue (d) face selection visualized in lilac

Figure 4.1.: Hovering and selection – A ray pointing from the controller to the object
indicates, that the controller is hovering the object.

Transformation: The user is able to transform objects with respect to position, rotation
and scale by using the controllers. The user grabs an object that is currently hovered by
pressing the trigger button. If the user grabs the object with only one controller, this
action binds the objects position and rotation to the movement of the controller (see
Figure 4.2) and the object exactly follows the movement of the controller. This basic
mechanism has been developed and implemented in CADinVR.

For objects that are far away we introduced a modified mechanism as the result of an
iterative development process: If the object is grabbed while being far away from the
user (the distance from the user to the object is larger than one armlength), translation
into the direction normal to the camera plane is performed relatively to the distance
of the user (pulling the object into the user’s direction by one armlength reduces the
distance from the user to the object by 100%, regardless of the actual distance.). For a
visualization see Figure 4.3.

44

Additionally grabbing the object with a second controller allows the user to scale
the object (see Figure 4.4). This mechanism has been developed and implemented in
CADinVR.

4.2. Sketching

Using the Vive Controller the user is able to draw lines in 3D space by pressing the
grip button. For this we attached a virtual drawing pen to the controller and sample
the position of the pen tip on each frame. While drawing we create a polygon passing
through the sample points. The resulting polygon provides the input for the creation of
guiding lines described in subsection 3.3.4.

4.3. Camera adjustment

An important and often tedious part of user interaction in 3D applications is the control
of the camera. This is needed for being able to look at the scene from different per-
spectives or at different scale. In the following we explain the camera controls that are
realized in SurfFitX.

Head-mounted display adjustment: Basic movement of the camera is intuitively real-
ized by moving the head. The position of the HMD is tracked and the position of the
camera in the virtual environment is ajusted correspondingly. This firstly forces the user
to move the head in order to change the perspective, and secondly restricts the available
perspectives to the physical space that is occupied by the user. A change in scale is not
possible. This basic mechanism is implemented in SteamVR [59].

Global coordinate system: In order to allow the user to scale the scene or look at the
scene from positions that exceed the physical abilities of the user we give the user the
possibility to modify the position and scale of the whole scene while the camera position
remains untouched. This concept is similar to the concept of scaling and positioning
the world that is presented in [13]. The user can modify the global coordinate system
by grabbing and transforming a reference object. The whole scene inherits the position,
rotation and scale of the reference object and is transformed and scaled correspondingly.
With this functionality we allow the user to inspect the scene at different scales and look
at objects from different perspectives. We implemented this mechanism in SurfFitX.

45

O

C1S1 C2

S2

transform

Figure 4.2.: Schematic drawing of translation and rotation – Translation and ro-
tation of a shape S in the global coordinate system O happens by hovering
and grabbing S at position S1. This attaches S to the controllers coordinate
system C1 until the controller releases S at the the new position C2. The
new position of S is S2.

∆ycontroller

∆yshape

far away

close

yuser

dfar

dshape

Figure 4.3.: Transformation of far away objects – If the object is far away (dfar <
dshape) from the user, the distance ∆yshape that the object is translated
towards the user is a multiple of the translation ∆ycontroller of the controller.
The movement of the shape ∆yshape is calculated from the movement of the
controller ∆yshape relative to the distance dfar.

46

O

l1

l2S1

S2
C1

C2scale

Figure 4.4.: Schematic drawing of scaling – Scaling of S is achieved by grabbing the
object with a second controller and moving the controller from C1 to C2.
S is scaled by the fraction of the distances l1 and l2 between the collision
points of the laser beams originating from the two controllers.

47

5. Implementation

In this chapter we describe the architecture of Virtual Reality Surface Fitting Extension
(SurfFitX) in depth:

We rely on the core functionality of CADinVR described in section 1.3. This soft-
ware system has been extended with respect to the visualization and reconstruction
(see section 3.3) of as well as the interaction (see chapter 4) with topology optimized
structures.

In section 5.1 and section 5.2 we describe the two main components – frontend and
backend – of SurfFitX and their specific tasks. In general the frontend, that heavily
relies on the game engine Unity, deals with user interaction and visualization, while the
backend, wrapping the open source libraries Open CASCADE Technology (OCCT) and
Visualization Toolkit (VTK), provides computer-aided design (CAD) core functionality
and customized algorithms for the reconstruction of topology optimized geometry.

5.1. Frontend

For user interaction and visualization we use a frontend application that uses the game
engine Unity. We first give a general overview over the tasks of the frontend application
(subsection 5.1.1). In the remaining subsections we provide a detailed explanation of
crucial implementational aspects.

5.1.1. General overview

For the visualization and manipulation of a CAD scene we rely on CADinVR function-
ality. The user has the possibility to create geometry and interact with it. In SurfFitX
we implemented visualization methods for topology optimized geometry and we use the
resulting optimized mesh geometry as the reference point of construction.

Unity already provides a large amount of functionality that is useful for the develop-
ment of interactive applications (see subsection 2.3.3) and provides means of communi-
cation with the virtual reality (VR) hardware using the Unity asset SteamVR [59] (see
subsection 2.3.4).

For user interaction we use the metaphors described in chapter 4. As a reference
object for camera adjustment (see section 4.3) we defined the mesh that visualizes the
topology optimized geometry (Figure 5.1).

We decided to prevent modification of geometry that has been created depending on
the topology optimized geometry, like loft surfaces or extracted contours. However, this
geometry can still be selected and therefore referenced.

49

(a) Transformation of a primitive. (b) Scene with mesh (transparent).

Figure 5.1.: Screenshots from the frontend application – A primitive object is first
transformed, then scaled (Figure 5.1a). The mesh defining the global coor-
dinate system is part of a scene, all objects can be moved freely Figure 5.1b.

5.1.2. Large meshes and compound objects

Unity does not support more than 65535 vertices per mesh. The mesh that visualizes the
topology optimized part is usually a large triangular mesh where this limit is exceeded;
the mesh from the low resolution geometry introduced in chapter 3 has for example
already about 15000 vertices and 20000 triangles. Thus, we have to pay special attention
to large meshes:

1. The mesh has to be split up into multiple submeshes that do not exceed the vertex
limit.

2. For each submesh an independent game object (GO) has to be created. This game
object can be hovered, selected and transformed, if this behavior is desired.

3. Hovering, selection and transformations have to be applied to the whole mesh
correspondingly, even though the user only interacts with a submesh.

We introduced the necessary logic for this scenario in order to be able to deal with large
meshes that exceed Unity’s vertex limit. With this logic we can also handle compound
objects that are built from multiple primitive objects.

5.1.3. The menu

The legacy system already provided a menu that can be used for accessing additional
functionality. The menu is directly attached to the controller. The user can select entries
from the menu by hovering an entry with the other controller and pressing the selection
button. By using the touchpad the user can scroll horizontally through several columns
in the menu. Vertical scrolling can be used to scroll through a column, that has many
entries (e.g. a list of input files).

50

Figure 5.2.: The menu – The user can scroll sideways through different columns like
Import, Create or Boolean using the trackpad. By selecting a menu entry
with the other controller the corresponding command is executed.

Using the menu the user can access the following functionality (functionality of the
legacy system is written in italics):

• undo/redo

• .stp import/export

• .vtk import

• creation of primitives

• boolean operations on shapes

• selection and deletion of shapes

• creation of planes for contour extraction

• creation of loft surfaces from selected contours

5.1.4. Coordinate mapping

The frontend application maps the transform1 of each shape that is transferred to the
backend to the coordinate system of the backend. It converts the global transform that is
used in Unity to the local transform in the coordinate system of the topology optimized
geometry, since the topology optimized geometry is used as the reference object defining
the global coordinate system on the backend(see section 4.3). This coordinate mapping
can be easily done using Unity functionality. The coordinates that finally are transferred
to the backend are always in the fixed coordinate system of the topology optimized
geometry.

1position, rotation and scale

51

5.2. Backend

The backend is written in C++. CADinVR provides access to functionality of Open
CASCADE Technology (described in subsection 2.2.2). In SurfFitX we added VTK
functionality (subsection 2.5.5) and custom algorithms in order to be able to handle
topology optimized geometry.

We first give a general overview over the backend functionality in subsection 5.2.1 and
then concentrate on crucial parts of the implementation. In the following subsection we
explain the exchange datatypes that are transferred to the frontend application for the
visualization of the geometry.

5.2.1. General overview

CADinVR already provided bookkeeping for the CAD model on the backend. The model
is stored, modified and consistently maintained on the backend. All shapes are modelled
consequently in OCCT and are identified by a unique id. New shapes can be created
and existing shapes can be modified. CADinVR provided functionality for the creation
of primitive shapes, boolean operations on shapes, the modification of existing shapes,
.step input and output and meshing of shapes.

In SurfFitX we added functionality for level set preprocessing (section 3.2), the gen-
eration of isosurfaces from voxel data using VTK, the extraction of contours from the
topology optimized geometry, the creation of loft surfaces from contours and function-
ality for B-spline sketching (section 3.3). All functionality is requested by the frontend
application, if the user provides the necessary input.

The topology optimized geometry cannot be modified on the backend and always
maintains its initial position, rotation and scale in space. Reconstructed geometry is
always created at a fixed position relatively to the topology optimized geometry.

5.2.2. Exchange data types

In CADinVR the shapes on the backend are uniquely identified by their respective
id. If they are requested by the frontend in order to be visualized, the shapes that
are modelled as OCCT objects have to be meshed using OCCT functionality. Each
face of the shape is meshed and the triangulated face represented through an array
of vertices and another array that contains the ids of vertices that form a triangle.
In SurfFitX we extended this mechanism to support edge or wire in order to be able
to handle contours (subsection 3.3.2) and guiding lines (subsection 3.3.4). Here the
corresponding parametrized curve is sampled and the resulting array of sampling points
is saved. After this the backend has converted complex OCCT objects to simple mesh
or polygon datatypes that can be marshalled and transferred to the frontend for further
processing (see Figure 5.3).

52

Figure 5.3.: Frontend requesting a mesh from backend – If the frontend application
requests the mesh of a shape, the backend application first creates a mesh
of the shape and then creates a simplified object that contains the necessary
information. This object is then sent to the frontend and the mesh can be
visualized.

53

6. User study

In chapter 1 we formulated the hypothesis that computer-aided design (CAD) is a con-
siderably easier when performed in a virtual reality (VR) environment compared to
established CAD systems. We want to evaluate this hypothesis by performing a user
study that tries to answer the following two questions:

1. Is it easier and more efficient to do CAD in VR?

2. How does the participant experience working with CAD in a VR environment in
general?

In the user study we evaluate of the performance of participants solving a task that
mimics a part of the workflow described in chapter 3. We use Virtual Reality Surface
Fitting Extension (SurfFitX) (described in chapter 5) as an example CAD system in VR.

In the following section we will give a detailed explanation of the task that the user
has to solve, the experimental setup of the study and the procedure of evaluating the
performance of the user. The whole user study was – depending on the preference of the
participant – conducted in English or German language.

6.1. The task

The task is subdivided in two parts:

1. Part one: The participant has to position three planes in 3D space relatively to a
given mesh. The Planes are used to extract three contours of a mesh. For solving
this part of the task, the participant has a time constraint of 5 minutes.

2. Part two: After the creation of the contours the participant has to perform
additional operations in order to produce a loft surface, that approximates the
mesh geometry, from the cross sections.

The user guides corresponding to the tasks can be found in the appendix (see subsec-
tion A.1.1 and subsection A.1.2). The explanation of the task is done with the simple
mesh shown in Figure 6.1, the participant has to solve the task with the bracket mesh
shown in Figure 6.2.

55

1 2

3 4

Figure 6.1.: Schematic overview over task – The participant has to reconstruct a
mesh geometry (red) by positioning cross section planes at indicated posi-
tions (green). Having positioned the cross section planes a contour (white)
is extracted. This procedure is performed three times in order to obtain
three contours. On the basis of these contours a loft surface (blue) that
passes through the contours is created.

Figure 6.2.: Reconstructed part of the GEBracket – The participant has to recon-
struct the topology optimized dataset of the GE Bracket [28].

56

6.2. Experimental setup

In an introductory part each participant completes a background questionnaire (see
subsection A.2.1). Then the participant is allowed to play a short VR game (Postcards
minigame in The Lab [76]). Most participants never used any VR hardware before and
we decided to introduce the user to VR and the HTC Vive before performing the actual
experiment.

In the main part of the experiment we compare the performance of the same partici-
pant solving the task described in section 6.1 in the two different environments SurfFitX
and FreeCAD (within-subject design) in order to answer the aforementioned questions.

• Desktop environment FreeCAD: FreeCAD is a traditional CAD system with state
of the art methods for modification of geometry. Keyboard and mouse are used as
input devices, we decided not to use a 3D mouse, since many participants do not
have experiance with this input device. We customized FreeCAD by adding a new
workbench with the functionality necessary for realizing the demanded workflow:
On the one hand we had to add tools that allow the creation of cross sections,
on the other hand we had to remove unnecessary features that might confuse the
user (see Figure 6.3). We decided to use FreeCAD as a reference system, because
it is open source, customizable and provides the same range of algorithms like the
VR system1. Professional CAD systems usually provide a better usability than
FreeCAD, but since they are not open source and use different geometry kernels,
we decided to use FreeCAD as the reference point for our research.

• VR environment SurfFitX: SurfFitX is the CAD system in VR that has been de-
scribed in chapter 5. Again, we removed existing functionality that is not necessary
for solving the given task. This system is the subject of our study.

Figure 6.3.: ”Lofting” workbench in customized FreeCAD – We implemented a
”Lofting” workbench with a reduced toolset: ”Create Loft Plane” for the
creation of a loft plane, ”Create Cross Section” for the extraction of a con-
tour from the mesh at the position indicated by the loft plane, ”Loft Pa-
rameters” for printing position and rotation of the plane and shortcuts to
standard FreeCAD functionality for transformation, rotation and scale and
adjustment of the working plane.

1Both systems use the geometry kernel Open CASCADE Technology (OCCT).

57

The participant has to solve the task in both environments, we permute the order of
solving the tasks in the two environments to account for effects of learning. We performed
the study with 20 participants. Before solving the task, the participant first receives a
demonstration of both tools: The basic workflow is shown and the necessary interactions
are explained on the basis of the user guides (see subsection A.1.1 and subsection A.1.2).
Then the user has a short period of time for experimenting with the software, revising
the interactions and asking questions. While solving the task, the participant has access
to the user guides (see above), and is allowed to ask for help.

6.3. Evaluation procedure

We quantify the performance of the participant in the different environments by measur-
ing the time needed for positioning the three planes. In VR we additionally measure the
amount of time needed for orientation. If the participant does not manage to position
all the planes in 5 minutes time, we provide a substitute result.

In order to evaluate the user experience, directly after the experiment the participant
fills out the System Usability Scale (SUS) [27] questionaire with 10 items. We decided
to use the SUS questionnaire due to its brevity, ease of use and the acceptance in the
community. The following formula is used for obtaining a single score from the 10 SUS
items q1, q2, . . . , q10:

(q1 − 1) + (5− q2) + (q3 − 1) + (5− q4) + · · ·+ (q9 − 1) + (5− q10) = SUS score,

where q1...10 denotes the rating 1 . . . 5 of the participant for each item.
After the completion of both tasks, the user answers interview questions and gives feed-

back. Here we evaluate the experience of the participant with the particular workflow,
the user interface and the general experience. We also ask for possible improvements
regarding SurfFitX.

The SUS questionnaire and the questions asked in the interview can be found in the
appendix (see subsection A.2.2 and subsection A.2.3).

58

7. Results

In this chapter we first present examples for topology optimized and reconstructed geom-
etry created using the design workflow introduced in chapter 3. We used the prototype
tool Virtual Reality Surface Fitting Extension (SurfFitX) in the reconstruction process.

We evaluated the usability of SurfFitX in a user study (chapter 6). The outcome of
this study is summarized in section 7.2.

In the last section (section 7.3) we summarize an interview with a computer-aided
design (CAD) expert. We discussed the potential of virtual reality (VR) technology in
the context of professional CAD and demonstrated SurfFitX as an example application.

7.1. Topology optimization workflow using Virtual Reality
Surface Fitting Extension

In the following chapter we present two examples that have been created using the
workflow proposed in chapter 3. We used SurfFitX for the extraction of contour shapes,
sketching of guiding curves and the creation of loft surfaces. Finally we used Siemens
NX [1] for the creation of smooth CAD geometry. The resulting geometry is consistent
with boundary condition shapes.

7.1.1. GE Bracket

Based on the specification provided in [28] we create a topology optimized design for
a jet engine bracket. The results of this process are presented throughout chapter 3, a
summary is given in Figure 3.2.

First we model the boundary conditions, forces and simulation domain (see [28]) in
NX[1]. Using Interactive Design Assistant (IDeAs) we perform the topology optimization
simulation and obtain an optimized voxel geometry.

We use the algorithm described in section 3.2 to obtain a consistent mesh representa-
tion of the optimized part. We observe that the boundary reconstruction scheme greatly
improves the mesh with respect to boundary condition shapes: The round parts of
boundary condition shapes are conserved as they are intended. Additionally we observe
that a few smoothing steps can remove noise from the geometry, but also significantly
change the geometry in certain regions. Small errors on the scale of the mesh resolution
are observed at the interface of boundary condition shapes and optimized domain.

Using SurfFitX we extract cross sections and guiding curves from the consistent mesh
geometry (see section 3.3). They provide guidance for the final geometry reconstruction

59

step that is performed using NX. We experience that the creation of cross sections and
guiding lines is simple and fast1.

In NX we create a smooth surface representation on the basis of the cross sections and
guiding lines. The part of work that has to be done in NX in order to obtain a smooth
geometry is high and requires experience with NX2. The resulting geometry is a smooth
surface representation of the optimized part that is consistent with provided boundary
condition shapes.

7.1.2. Generate Quadcopter

Based on the specifications provided at [29] we create a topology optimized quadcopter
body. In the specifications, the quadcopter is only subject to forces. Since IDeAs requires
at least one fixture, we have to slightly modify those specifications: We define the base
plate of the Quadcopter, where the load is attached, as a fixture and we adjust the forces
acting on the remaining boundary condition shapes correspondingly (see Figure 7.1).

The intermediate results after each step of the boundary condition reconstruction
workflow are presented in Figure 7.2. We observe that the base plate is greatly damaged
when the level set extraction from voxel data happens. We observe that the superposition
of the boundary condition finally produces consistent geometry.

After a few iterations of smoothing we obtain a smooth geometry. We observe that
the upper struts are damaged by the smoothing algorithm. The more smoothing steps
we apply the larger amount of material is removed and finally the upper struts vanish
completely (Figure 7.3).

1Only a few minutes are needed for this step
2This step requires about one week of training with NX and one day of work for the reconstruction of

the Bracket geometry on the basis of the output of SurfFitX

(a) Boundary condition shapes with fix-
tures (green) and forces (blues).

(b) Optimization domain (gray) and void
regions (red).

Figure 7.1.: Model of the Quadcopter – We had to modify the specification and
set the base plate as a fixture (Figure 7.1a). The void regions and the
simulation domain remain as specified (Figure 7.1b. Model specification
from [29], visualized in FreeCAD [4].

60

(a) Voxel image.

(b) Corresponding level set.

(c) Level set consistent with boundary condition shapes.

Figure 7.2.: Topology optimized quadcopter – From the voxel image of the quad-
copter with a density threshold of ρ = 0.5 (Figure 7.2a we create the corre-
sponding level set representation with an isosurface at φ = 0 (Figure 7.2b).
We consistently superpose the boundary condition shapes (Figure 7.2c). Vi-
sualized using Paraview [40].

61

(a) Smooth level set at t = 0.3.

(b) Smooth level set at t = 0.5.

(c) Smooth level set at t = 2.0.

Figure 7.3.: Level set smoothing – The level set is shown at different smoothing times.
Visualized using Paraview [40].

62

7.2. User study

In the following we present the results of the user study described in chapter 6. This
involves the presentation of the quantitative results from the task being solved in the VR
system SurfFitX and the desktop system FreeCAD (subsection 7.2.1), results from the
System Usability Scale (SUS) questionnaire (subsection 7.2.2) and user feedback given
in the interview session (subsection 7.2.3).

We decided to group the participants with respect to their success in the first part of
the task. We distinguish the following groups (Figure 7.4)

• Experts, who successfully completed part one in both systems.

• Successful beginners, who were only able to complete the first part of the task
in SurfFitX.

• Failed beginners who did neither succeed in SurfFitX nor in FreeCAD.

• One participant was not able to complete the experiment in SurfFitX environment
due to software issues and also failed in FreeCAD. We do not regard his perfor-
mance on the tasks and his SUS questionnaire. We are regarding his feedback in
the interview session.

• There are no participants who failed to solve the task in SurfFitX and successfully
solved the task using FreeCAD.

5

Experts

2

Failed Beginners

12

Successful Beginners

Figure 7.4.: Classification of participants with respect to their performance
in the both systems – We distinguish the participants with respect to
their performance in the two environments: Experts were successful both in
SurfFitX as well as in FreeCAD. Successful beginners successfully finished
the task in SurfFitX and failed in FreeCAD. Failed beginners failed in both
environments. No participant failed in SurfFitX, while being able to solve
the task in the Desktop environment.

63

7.2.1. The Task

In the process of solving the task we measured the time needed for teaching and learning
the task, the time needed for solving part one and part two and finally whether the single
parts have been solved successfully.

We observed that in SurfFitX the average time needed for teaching, as well as the
average time the user requested for experimentation, was lower than in FreeCAD (see
Figure 7.5). Comparing the time needed by the beginner’s group and by all participants
we observe a statistic significance (p-value below 0.05). If we only compare the time
needed by the experts we do not observe a statistic significance (p-values around 0.2).

A comparison between the groups in the same environment does not show clear statis-
tic significance for explanation and experimentation in FreeCAD (p-values of 0.58 and
0.63) and significance for experimentation in SurfFitX (p-value of 0.01). No significance
is observed for the explanation time in SurfFitX (p-value of 0.83).

For part one we observed that a higher portion of the participants successfully solved
part one in SurfFitX than in FreeCAD. We observed that only a minority (5 of 19) was
able to complete part one in FreeCAD in the given time of 5 minutes3. A majority
(17 of 19) of the participants was able to complete part one in SurfFitX (Figure 7.6).
Additionally we observed, that none of the participants was able to solve the task in the
desktop environment while failing in VR.

In part two we observed that all participants performed well in both environments.
On average they were slightly faster in SurfFitX (see Figure 7.7).

For successfull completions of part one in FreeCAD and SurfFitX we measured the
time needed for the positioning of the 3 planes and the construction of the cross section.
In SurfFitX we additionally measured the time needed for orientiation in the scene and
positioning the dataset.

Using the grouping explained above we observe that the expert group was in general
faster in SurfFitX than in FreeCAD. We detect a statistically significant difference (p-
value of 5.95−9) for the total time if we compare the performance of the expert’s group in
both systems (Figure 7.8a and Figure 7.8b). Comparing the performance of the expert’s
and the beginner’s group in SurfFitX we only observe a statistical significance for the
time needed to for the positioning of the first plane. For the other times taken no
statistically significant difference is detected (Figure 7.8b and Figure 7.8c). Among the
failed beginners, we observe that they were not able to complete the last plane in time,
but successfully positioned the first and second plane in SurfFitX while in FreeCAD they
did not even finish the first plane. However we observe that the first plane was usually
the most difficult of the three planes in FreeCAD, while all three planes were equally
difficult in SurfFitX.

3Few participants received additional time to finish the step they were currently performing. One
expert received additional time for positioning the last plane in FreeCAD.

64

All (19) Experts (5) Beginners (14)
0

5

10

T
im

e
[m

in
]

Explanation FreeCAD
Experimentation FreeCAD

Explanation FreeCAD
Experimentation FreeCAD
Explanation CADinVR

Experimentation CADinVR

Figure 7.5.: Comparison of time needed for teaching in SurfFitX and in
FreeCAD – Uncertainties are with ±1 minute very high, but one can ob-
serve the following trend: both explanation of the task and the necessary
steps to solve the task and experimentation time are smaller in SurfFitX.

FreeCAD CADinVR
0

5

10

15

20

P
a
rt
ic
ip
an

ts
[#

]

Successful
Failed

Figure 7.6.: Success in part one – Successful and unsuccessful participants when using
FreeCAD and SurfFitX, respectively.

All (19)
0

10

20

30

40

T
im

e
[s
]

FreeCAD
FreeCAD
CADinVR

Figure 7.7.: Comparison of the time needed for the second part of the task –
The time difference between the both systems is small and all participants
performed well.

65

Plane 1
(223.8s)

Plane 2
(45.6s)

Plane 3
(22.8s)

Remaining
(7.8s)

(a) Performance of expert group in
FreeCAD

Orientation
(83.6s)

Plane 1
(39.8s)

Plane 2
(44.8s)

Plane 3
(27.8s)

Remaining
(104.0s)

(b) Performance of expert group in Surf-
FitX

Orientation
(46.7s)

Plane 1
(96.0s)

Plane 2
(51.3s)

Plane 3
(31.9s)

Remaining
(71.1s)

(c) Performance of successful beginners in
SurfFitX

Figure 7.8.: Comparison of time usage in part one – We compare the experts in
FreeCAD (Figure 7.8a) and SurfFitX (Figure 7.8b). For the successful be-
ginners we only evaluate the performance in SurfFitX (Figure 7.8c)).

66

All (19)
0

20

40

60

80

100

S
U
S
S
co
re

FreeCAD
CADinVR

Figure 7.9.: Comparison of the SUS scores in a boxplot – The SUS score of Surf-
FitX system is higher than the score of FreeCAD. Comparing the average
SUS scores of all participants in the both systems we measured a p-Value of
10e− 7 < 0.05, the result is significant.

7.2.2. System Usability Scale

SurfFitX obtained a average SUS score of 80.9, whileFreeCAD scored 44.6 points. In
general a higher SUS score corresponds to better usability (see Figure 7.9).

For better readability of the figures in this section we reformulated the negatively
formulated SUS items (q2, q4, q6, q8, q10) in a positive manner and adjusted the SUS
scores per item correspondingly. Therefore, higher scores per item always correspond
to better usability. SUS item q2 – “I found the system unnecessarily complex” – is, for
example, reformulated to q′2 “I did not find the system unnecessarily complex”. The
score is adjusted to q′2 = 5 − q2. For the positive items (q1, q3, q5, q7, q9), we keep the
original evaluation procedure q1,3,5,7,9 − 1 (see Table 7.1).

For the single SUS items the average scores of SurfFitX are always higher than those
of FreeCAD (see Figure 7.10). If we take a look at the differences between FreeCAD and
SurfFitX we see: For some items the difference is high – q2 “I did not find the system
unnecessarily complex” and q8 “I found the system not cumbersome to use” – for other
items the difference is low – q4 “I think that I would not need the support of a technical
person to be able to use” and q6 “I thought there was no inconsistency in this system”.

If we compare the single SUS items among the expert’s and beginner’s group we do
not observe statistically significant differences.

67

q1 I think that I would like to use this system frequently

q2 I did not find the system unnecessarily complex

q3 I thought the system was easy to use

q4 I think that I would not need the support of a technical person to be able to use this system

q5 I found the various functions in this system were well integrated

q6 I thought there was no inconsistency in this system

q7 I would imagine that most people would learn to use this system very quickly

q8 I found the system not cumbersome to use

q9 I felt very confident using the system

q10 I did not need to learn a lot of things before I could get going with this system

Table 7.1.: The ten SUS items. – For easier readability in this section we reformulated
the SUS items in a positive manner. The userstudy was conducted using the
original questionnaire given in subsection A.2.2.

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10
0

1

2

3

4

It
em

S
co
re

FreeCAD
CADinVR

Figure 7.10.: Average ratings of the SUS items – Average rating of the different
SUS items in both systems for all participants (19). Comparing the items
for all participants we obtain p-Values smaller than 0.05. Therefore the
measurements are statistically significant.

68

7.2.3. Interview

In the interview session we obtained specific feedback regarding FreeCAD and SurfFitX,
and we were able to talk about the tasks in detail. Additionally we received ideas for
possible improvement, as well as comments regarding the potential use and possible
pitfalls of CAD in a VR environment.

In the following subsection we summarize interesting or helpful statements from the
participants. Numbers in brackets indicate that multiple participants gave identical or
similar statements. Statements without a number are statements that have only been
made by a single participant.

Comparison of FreeCAD and SurfFitX: Comparing FreeCAD and SurfFitX, a major-
ity of the participants (19 out of 20) stated that they preferred SurfFitX. The reasons
why the participants did not like FreeCAD belong to the following classes:

• Conceptual problems: Many participants (12) stated that FreeCAD was not
intuitive. They described the way of interacting with the system as being formal
and abstract, especially the concept of 2D working planes (8) and the rotation
mechanism (7) were problematic.

• Background knowledge: Some participants (3) stated that as a beginner they
had to learn a lot before being able to use FreeCAD. One reason was the over-
whelming user interface with many buttons (2); another reason was the necessity
for learning new concepts. But also modeling experts stated that coming from a
different system (e.g. 3DsMax, Catia, Inventor, ArchiCAD, NX) it was often hard
to learn the different controls, even though the concepts are usually similar.

• 3D visualization: Some participants (3) had problems with the 3D visualization
in FreeCAD. They stated that it was hard to imagine a 3D object if it was only
visualized with 2D means on a computer screen.

Feedback regarding the tasks: All participants stated that the task was basically
simple. A majority of the participants (18) stated that learning how to solve the task
was easier in SurfFitX:

• It was easier to learn how to solve the task, because less steps were needed to solve
the task, and each step consists of less substeps. In general there less preliminary
knowledge was needed and the user had to learn less for achieving the same result
(8).

• For solving the task the user did not need to use abstract concepts, since the
interaction was intuitive and natural. This made learning easier (6).

• The graphical user interface (GUI) was simpler and had less elements (3).

69

With respect part one (positioning of planes and creation of cross sections) a majority
(19) stated that the positioning of the planes was easier in SurfFitX, because the whole
workflow is more intuitive and less formalized. One participant stated that positioning
of the planes was good in both systems, but slightly easier in FreeCAD.

A slight majority of the participants (11) stated that the orientation in 3D space and
positioning of the camera was good in both systems. Anyhow, some participants (5) first
had to get used to the way of controlling the camera in SurfFitX. Some participants (3)
explicitly stated that the orientation in FreeCAD was easier, due to the better overview.

We received the following additional feedback regarding camera control and position-
ing of the planes in SurfFitX:

• Some participants (4) stated – even though for rough positioning they prefer VR
– that exact positioning was hard in SurfFitX and easier in FreeCAD.

• Moving the head was more intuitive than using a 3D mouse4.

• In FreeCAD the dataset is always centered, this makes orientation easier than in
SurfFitX.

• With the head-mounted display (HMD) controlling the camera and the Vive con-
trollers grabbing the object, a parallel positioning of camera and object was possi-
ble in SurfFitX. In FreeCAD these steps could not be done at the same time, but
had to be done sequentially.

• In SurfFitX it was sometimes hard to obtain a feeling for the depth, large objects
that were far away seemed like smaller objects that were closer to the point of
view.

• In SurfFitX it was easier to work while standing, because one can move around
freely and look at the object from different positions.

In part two (building a loft surface from existing contours), the largest part of the
participants stated that both systems were equally good (9). Many participants preferred
SurfFitX (7), because it was more direct and simple to select the planes without a context
menu. Some participants (4) stated that FreeCAD was better, because the context
menu helps with the selection and the laser pointer selection concept in VR makes exact
selection difficult.

Some remarks about part two:

• The context menu was especially important in complex scenes, because it made
selection of specific parts easier and also visualized the order of selection (4).

• Implementation of a proper, context sensitive visualization in SurfFitX could pro-
vide the context while still keeping the interface simple.

4Feedback from experienced user who usually uses a 3D mouse. All experiments in this study have
been performed without a 3D mouse.

70

• The evaluation of the resulting loft surface was easier in SurfFitX.

• In SurfFitX the direction connection of the menu to the controller was confusing.

• SurfFitX was very specialized and therefore it was easy to create a good interface.

Finally we also asked the participants whether solving the tasks was more enjoyable in
one of the two tools. The largest part stated that they only enjoyed working with Surf-
FitX (10), because it was intuitive and fast to learn, while the interaction with FreeCAD
was very abstract and frustrating. Nearly as many participants enjoyed working in both
systems (9). One participant did not enjoy working with any of the two systems.

We received the following comments regarding personal satisfaction while working in
a virtual environment:

• VR was fun, because it was something new (5).

• The 3D impression in VR gave the possibility of moving the body and the feeling
of being involved, which made it more enjoyable (4).

• People wearing glasses might have problems with wearing VR hardware.

• Working in a VR environment was fun; working in a desktop environment was
work (2).

Feedback for improving SurfFitX: We asked the participants for feedback regarding
possibilities for improvement of SurfFitX. We shortly summarize interesting feedback
below.

• Camera and orientation

– A mechanism for teleporting would give the user the possibility to look at the
model from a different perspective without touching the coordinate system or
the model.

– Showing a bounding box of the model or limiting the field of view would help
with respect to orientation.

– Use a special visualization if user is inside the object.

– Option for fitting the model to the field of view for improved orientation (3).

• Visualization

– Use different colors for different types of objects.

– Visualize order of selection when defining the loft (2).

• Menu and context

– Show tooltips directly on the controller in order to help beginners.

– An (optional) context menu or model tree would be helpful to support the
user when selecting objects (3).

71

– Instead of using a GUI or context menu, improve visualization with context
sensitive filters that make selection easier (3).

– Possibility of voice control.

– Menu selection using the touchpad, not by pointing on the corresponding
entry using the second controller. Remove the menu from the controller and
use a head-up display (HUD) or vitual tablet instead (2).

– Develop objects providing intuitive contextual behaviour, like for example a
basket for collecting objects or a stack for selecting objects in a certain order.

• Accuracy

– Implement the functionality to scale down controller movement (e.g. rotation
or translation of the controller reduced to 10% for more exact positioning).

– Filter hand tremor.

– Add 2D working planes for more exact positioning.

– Possibility to deactivate single transformations like rotation, translation or
scaling.

• Object interaction

– For close field interation it would be more intuitive if the user was able to
grab objects by touching them with the controller – additionally to pointing
at them with the laser beam (2).

– For far field interaction provide an additional tranformation mode, where the
object is first selected and then the motion of the controller is mirrored, this
allows us to rotate the object in any direction – with the currently imple-
mented tranformation mechanism the only possible rotation is around the
axis of the laser beam (2).

– Instead of selecting large objects – like the mesh – by pointing on them, use
smaller labels for reference in order to avoid a selection by accident.

– Provide a two handed rotation mode.

– Selection button difficult to press, better use trigger for selection and grip
button for grabbing.

72

7.3. Expert Interview

We conducted an interview with the CAD expert Manuel Biedermann working at Siemens,
Corporate Technology. He is a master student writing his thesis on the topic Simulation-
driven design for additive manufacturing [77], targeting the development of a design
process for additive manufacturing of parts with a simulation driven approach.

During the interview we demonstrated the prototype SurfFitX. Additionally we demon-
strated the VR sketching and drawing software Google Tiltbrush [11].

In the following we summarize the results of the interview.

7.3.1. Today’s engineering workflow

The design of engineering parts is an interdisciplinary task, where multiple experts from
different fields such as 3D modeling, numerical simulation, and mechanical engineering
cooperate. Exchange and generation of knowledge and results happens on a variety
of different channels: One important way of communication are hand-drawn sketches,
because it is simple, fast and no special tools are required for the creation of a sketch.
CAD is a core technology for the creation of detailed 3D models, because it is be used
for visualization, specification, validation and manufacturing of the part.

An intrinsic problem of sketches in the context of complex 3D parts is the restriction
to the two dimensional sheet of paper: On the one hand sketches always have to be
interpreted in order to transform them into three dimensional models. On the other
hand, whenever CAD geometry is validated a comparison to the sketches happens. This
process is vulnerable to error in both directions: the sketch might be misinterpreted if
it is translated into CAD or important features are not visualized when a comparison
of the CAD model and the sketch happens. With established technology – for example
by using a CAD tool – sketching in 3D is possible, but it requires expert knowledge,
interferes with the creative process and is time intensive; therefore this approach is not
feasible.

In [77] the application example of a twister is demonstrated: Fluid that originates
from a circular tube has to be distributed to a ring shaped domain. Additionally the
fluid has to exit the ring shaped domain with high tangential velocity. The fluid has to
be ”twisted”. A part that fulfils these requirements is designed in [77] through an simu-
lation driven approach. Here drawings have been used for the development of concepts
and a CAD model has been created for validation and manufacturing of the part (see
Figure 7.11).

73

Drawings CAD modelInterpretation

Comparison

Figure 7.11.: The interface between 2D sketches and 3D model – Interpretation
of the sketch can lead to misinterpretation, reduction of the 3D model can
remove important features. Examples from [77].

7.3.2. Sketches and drawings in virtual reality

Using VR technology the user can directly create schematic concepts in 3D, these draw-
ings can be imported into a CAD environment for further processing. Additionally the
3D CAD model can be visualized in the VR sketching environment.

We identified the following places, where VR technology can improve the design pro-
cess:

• fast sketching in 3D due to intuitive user interaction

• more consistent interface between sketching and 3D modelling

• possibility to involve non-experts into the design process

• using multiuser VR scenarios for collaborative – and possibly remote – design

• 3D visualization, validation and annotation of complex parts

As a part of the interview we created concepts and sketches in VR using Tiltbrush
[11] (Figure 7.12).

(a) Sketch of twister concept. (b) Sketch with annotations.

Figure 7.12.: Concept created in VR – Using VR technology we create a sketch of
complex 3D geometry in a fast and intuitive way (Figure 7.12a). Annota-
tions can be added easily (Figure 7.12b). Created using Tiltbrush [11].

74

8. Discussion, conclusion and future
directions

In the previous chapter we presented the resulting geometry that has been created using
Virtual Reality Surface Fitting Extension (SurfFitX), we summarized the user study and
we presented the outcome of an interview with a Computer-aided design (CAD) expert.
In this chapter we now discuss these results and draw a final conclusion.

We first evaluate the design workflow that has been developed in the scope of this
thesis. Here we used the prototype SurfFitX for the reconstruction of topology optimized
parts in a virtual reality (VR) environment (section 8.1).

In section 8.2 we interpret the results of the userstudy, where we evaluated SurfFitX
in comparison to the desktop CAD tool FreeCAD.

In section 8.3 we discuss the possible role of VR technology in the context of CAD on
the basis of the feedback that we received in the expert interview (section 7.3).

We summarize our work and give a conclusion in section 8.4. Finally we show up
future directions in section 8.5.

8.1. The design workflow

In section 7.1 we presented example geometry that has been created using the workflow
proposed in chapter 3.

We observed that the quality of the consistent level set strongly depends on the un-
derlying data:

If the resolution of the grid is fine compared to the smallest features, important fea-
tures are conserved and the geometry remains connected. Smoothing removes noise and
creates a smooth mesh that is consistent with the boundary conditions (subsection 7.1.1).

If features are on the scale of the mesh resolution, we loose important features. The
smoothing algorithm fastly removes noise, but fine features are lost as well (subsec-
tion 7.1.2).

We additionally observe that with a higher number of smoothing steps a larger amount
of volume is lost. This effect is due to the mean curvature flow that we apply to the
level set: This flow does obviously not conserve volume and no convergence happens.
Therefore, we have to stop the smoothing procedure manually. A volume conserving
and converging scheme is preferable.

Using the prototype SurfFitX we can easily extract contour shapes from the mesh.
The contour shapes approximate the contour well. However, the closed contour shapes
are only C0 continuous and therefore kinks appear where the start- and endpoint of the

75

contour meet. This deficit is due to Open CASCADE Technology (OCCT)’s approxima-
tion algorithm, which does not support higher continuity constraints for closed curves.
Sketch guiding lines is done fast and efficiently. The guiding lines approximate the shape
very well and they can be positioned at arbitrary positions on the shape.

The resulting contours, guiding lines and loft surfaces are successfully exported in
.step file format and they can be reused in NX. We remodel the contours and therefore
make them smooth using NX. The guiding lines are used for modeling of regions that
cannot be approximated with loft surfaces.

We summarize that the automated creation of boundary condition consistent level
set data greatly helps if the resolution of the dataset is fine enough. The smoothing
algorithm is able to create a smooth mesh, but has to be improved with respect to
convergence criteria and volume conservation.

The prototype SurfFitX helps the user to extract geometry features from mesh geom-
etry in a fast an intuitive way. We can import the extracted geometry into professional
CAD software. However, we still have to remodel curves and surfaced due to unsatisfac-
tory continuity of the surfaces and curves extracted using OCCT: The contour curves
only provide C0 continuity and the resulting loft surfaces show kinks.

Guiding lines and contour curves provide guidance for remodeling the shape. At the
same time the user can disable single guiding lines in order to concentrate on selected
features. This is a great improvement compared to remodeling the shape on the basis
of an unstructured mesh geometry, where contour and guiding curves for the creation
of surfaces have to be extracted manually by sampling the mesh. Additional effort is
necessary for partially hiding the mesh. This often leads to excessive camera adjustments
or manual definition of cutting planes in order to obtain a good view onto interesting
regions.

8.2. User Study

In this section we elaborate the results of the user study (section 7.2) from the perspective
of the following propositions:

• A VR tool can provide a simple and more intuitive user interface.

• Learning how to solve 3D design tasks is easier in a VR environment.

• VR technology helps to make 3D design tools more accessible.

• VR technology is especially useful for designing concepts.

8.2.1. Simple and intuitive user interface

VR technology tries to support the natural behaviour and movement of the user: If the
user moves the head the camera is positioned correspondingly; the controllers exactly
follow the motion of the user’s hands. We observed that users experience this as a
more natural user interface than using the desktop computer input devices keyboard

76

and mouse (see subsection 7.2.3). In the context of CAD users evaluated the natural
way of controlling the camera and moving objects positively.

Comparing a VR system to a desktop system, we observe that the users stated that the
VR system is simple (Figure 7.10; System Usability Scale (SUS) item q2), the various
functions are well integrated (Figure 7.10; SUS item q5) and the system is built in a
consistent way (Figure 7.10; SUS item q6). On average the VR system obtained a higher
SUS score than the desktop system (Figure 7.9).

Anyhow it should also be kept in mind that the high level of immersion in a VR system
sometimes leads to a overhead for orientation (in Figure 7.8 see time for orientation and
positioning of the dataset) and that the evaluated VR system is a CAD system with a
very narrow toolset (only two tools exist) and therefore a low level of complexicity.

All in all we summarize that a VR tool can provide a simple and more intuitive user
interface than a CAD tool.

8.2.2. Easier learning experience

The participants of the user study had to solve the same modelling task in a VR and in
a desktop environment. None of the participants had a high level of expertise in any of
the two provided tools and therefore all participants first had to learn how to use the
system.

In general it was easier to learn the workflow in the VR environment and the users
felt more confident in using the system after the explanation (Figure 7.10 SUS item 9).

While the desktop system is abstract and formal, the VR system provides a more intu-
itive and natural way of interacting with objects: Abstract concepts like rotation around
an axis or working planes do not even have to be introduced in the VR environment,
less substeps are needed to perform an action and the user does not have to be used
to visualize 3D content on a 2D computer screen (see subsection 7.2.3). Therefore, less
things have to be explained and understood (Figure 7.10 SUS item q10). This saves time
(see Figure 7.5) and makes it easier to understand how the system works (Figure 7.10
SUS items q3 and q4).

Also experts that are already used to CAD technology felt more comfortable with
a VR environment than with a CAD system they are not used to. Different CAD
systems have different paradigms of user input and even an expert can easily get confused
(subsection 7.2.3).

Therefore, we see that learning how to solve 3D design tasks is easier in a VR environ-
ment than in a dektop environment. Anyhow, we should keep in mind that professional
CAD programs like NX [1] or AutoCAD [2] usually provide a better user interface than
FreeCAD. A comparison of SurfFitX to a professional CAD program should be consid-
ered.

8.2.3. Better access to 3D design tools

In our user study more participants were able to successfully complete part one of the task
using VR technology, while only a small group (which we consider as experts) was able

77

to successfully complete part one in both environments (Figure 7.6). We also observed
that the participants mostly enjoyed working in VR and felt more involved, while using
the desktop environment was often associated with working (subsection 7.2.3).

This means that VR technology helps to make 3D design tools more accessible and it
therefore democratized high tech software that can be used in the product development
[78].

8.2.4. Concept design

The arguments mentioned above make VR technology a great tool for conceptual work:
with possibility to explain the tools very fast and the high rate of success, also users
unexperienced in 3D modelling can contribute to a concept for solving a 3D problem.

We claim that working in a VR environment also supports creativity, because it is
easier to use (Figure 7.10 SUS item q3), faster (Figure 7.8), less cumbersome and frus-
trating (Figure 7.10 SUS item q8), and users are willing to use the system frequently
(Figure 7.10 SUS item q1).

Anyhow, if we turn away from designing a concept and want to provide means of
accurate construction, traditional CAD has many advantages: Some participants already
stated that for accurate working they prefer traditional CAD (subsection 7.2.3) and
for complex parts the advanced GUI elements of traditional CAD provide guidance
(subsection 7.2.3 comments on part 2 of the task). In more traditional tasks with less
degrees of flexibility and freedom the benefits of VR are not as clear (Figure 7.7).

We summarize that VR technology greatly improves solving tasks with many degrees
of freedom, where accuracy is less important than creativity and ease of use; here VR
technology has many advantages over traditional CAD. For constructive tasks, where
accuracy and control play a major role traditional CAD is preferable.

8.3. The role of virtual reality in computer-aided design

In section 7.3 we described the potential of VR technology in the context of CAD.
VR technology provides great possibilities for drawing as well as fast and collaborative
development of concepts. VR is accessible to beginners and intuitive.

Traditional CAD provides a wide range of advanced and highly accurate tools for the
construction of detailed models and educated experts know how to work with professional
CAD tools in a fast and efficient way. Today’s CAD software is mature and looks back
on 40 years of history1. This shows: Translating the toolset of professional CAD tools
into a VR environment and the development of an intuitive user interface in order to
obtain a system that can replace today’s CAD technology is a task that is out of reach
in the scope of a thesis.

Traditional CAD is the optimal tool for accurate modelling and for the creation of
2D technical drawings due to perfectly fitting output and input devices [20, 79], it

1The initial release of the predecessor of Siemens NX was in 1973, Catia has been released in 1977 and
AutoCAD in 1982.

78

CAD in VR CAD on Desktop

flexible and fast modelling + -
accurate construction - +

develop a concept + -
refine model - +
fast to learn + -

highly skilled experts - +
intuitive working experience + -

powerful modelling tools - +
real world impression + -

good overview and control - +
intuitive input device in 3D + -

exact input device in 2D - +

Table 8.1.: Comparison of two systems – We compare CAD in VR and on desktop
systems.

provides a good overview over parts, and an advanced graphical user interface (GUI) with
context menus that help the user navigate through complex workflows. VR technology
supports intuitive and fast sketching, provides an intuitive and immersive experience,
and simple workflows that can be learned easily. We summarized the respective strengths
of traditional CAD and VR in Table 8.1.

Similar to [20] we propose a dual approach, where the VR and the desktop interface can
be used in parallel. This hybrid system should still provide enough flexibility such that
the user can choose between solving a task either in the desktop or the VR environment.
The underlying data and the presentation of the model should be kept consistent across
the interfaces in order to provide a consistent user experience and the overhead for
switching between the VR and the desktop environment should be kept at a minimum
(see Figure 8.1).

8.4. Conclusion

In this work we proposed an approach for the automatized generation of level set data
of topology optimized geometry that is consistent with existing boundary geometry. We
implemented the prototype SurfFitX that provides VR tools for contour extraction, loft
surface creation and fast guiding line sketching. We evaluated VR technology in the
context of CAD by, firstly, performing a user study that quantified the performance of
users solving an identical task in SurfFitX and FreeCAD and, secondly, by interviewing
a CAD expert about the potential role of VR in professional CAD.

Finally we ask the following question: Does the functionality that has been imple-
mented during the work on this thesis improve CAD? We implemented three tools: One
supports the extraction of contours from faceted geometry, another tool is used for the

79

VR

• 3D sketching

• fast

• design prototyping

Desktop

• 2D sketching

• accurate

• model refinement

Model
desktop

presentation
stereoscopic

3D presentation

User

Figure 8.1.: Hybrid CAD system – We propose a hybrid system using VR and desktop
technology for CAD. Switching between the interfaces should be fast and
easy and a consistent model has to be maintained.

creation of loft surfaces from closed curves and finally we provide a tool for the creation
of guiding lines.

In the section 7.2 and section 8.2 we showed that beginners profit from the function-
ality that has been implemented in VR. They mainly profit from VR due to a more
intuitive interaction with geometry. However, in the interview we experienced that ex-
perts are much harder to impress: They know how to achieve the same result using
traditional CAD software and they do not necessarily profit from the VR implementa-
tion. Additionally they usually criticize the limited toolset of our VR implementation
and the quality of the generated geometry.

On the one hand, a tool for the creation of loft surfaces already exist in a similar
form in traditional CAD and usually the quality of professional tools is superior to our
prototype implementation: As an example continuity constraints can be set easily. Here
experts do not see an advantage in using our prototype.

On the other hand, the tools for fast sketching and contour extraction are custom tools
that improve the workflow. We can easily extract features from mesh geometry and reuse
them in professional CAD tools. A better integration of these tools into existing CAD
software would be preferable in order to further enhance these tools.

This leads us to the following conclusion: If we want to improve CAD by introducing
new functionality in VR, we have to provide innovative VR tools that even improve
the workflow of CAD experts2. For the creation of innovative VR tools we, firstly,
have to carefully think about applications where a real demand for new tools exists and,
secondly, provide a user interface that does not suffer from the drawbacks of VR, namely
inaccuracy and a limited degree of flexibility compared to professional CAD tools. Here
a seamless integration of VR technology into existing workflows is crucial in order to
provide a better user experience where no compromises have to be made.

2That VR technology definitely has the potential to improve today’s CAD workflow has been demon-
strated in section 7.3 and section 8.3.

80

8.5. Future directions

Revising the feedback given during the interview sessions of the user study in subsec-
tion 7.2.3 we see many potential ideas for improvement of our tool:

The usability could be improved, by adding context based menus or introducing im-
proved metaphors for rotation and scaling. We propose an additional interaction mode
for improving rotation like for example the Voodoo Dolls technique[80]. We would like
to provide the possibility to fit the scale of the object to the user’s field of view to pre-
vent loss of orientation, this is for example implemented in FreeCAD [4]. With respect
to CAD–specific functionality we propose adding interaction techniques, that help to
suppress hand tremor and therefore improve accuracy. We could ,for example, decouple
the six degrees of freedom for positioning and selection by introducing an interaction
metaphor similar to Balloon Selection [81].

By directly integrating the topology optimization and the level set framework into
SurfFitX, we could greatly improve the user experiance and give the designer more
freedom by providing a fully interactive application (see [69]). Boundary condition
shapes and the optimization domain for the topology optimization could be defined
directly in VR and geometry reconstruction happens in an iterative process. Finally
this would lead to a fully integrated topology optimization design assistant that could
greatly improve product development [78].

With respect to the algorithms we propose the use of a more advanced CAD kernel
than OCCT. Some example kernels are mentioned in subsection 2.2.1. With a more
advanced kernel we can fit Cn continuous, closed curves to point data and therefore
improve the creation of contours, and provide a more stable working environment3.

In the current implementation of the level set smoothing algorithm we have to manu-
ally set the maximum smoothing time and find a good trade off between a smooth and
conservation of features. By introducing a volume preserving flow like the min/max flow
[82], this deficit could be finally eliminated. Additionally we propose using the level set
data for contour extraction for a faster and more robust point sampling4.

In order to be able to find innovative new CAD tools, where VR technology can really
revolutionize CAD and not only beginners, but also experts can profit, we propose to
talk to CAD experts about their respective workflows and needs. Possible fields for
application of VR technology are free form modelling, sketching in 3D and visualization
of complex parts.

Finally we propose to perform another user study after the aforementioned improve-
ments have been implemented. With the data from the user study of this thesis we could
easily quantify the improvement. A larger group of experts would be needed in order
to obtain statistically significant results for the comparison of beginner’s and expert’s
user experience. Additionally we should compare SurfFitX with a professional CAD tool
instead of FreeCAD, since professional CAD tools usually provide more advanced user
interfaces and a better user interaction.

3In OCCT Boolean operations on primitive bodies, for examples, sometimes do not work properly.
4Similar to the algorithm used for the creation of guiding lines

81

A. User study: Material

A.1. The task

A.1.1. Userguide FreeCAD

Preparation

• prepare task.vtk and task.stl

• make sure that the correct vtk path is set.

• open FreeCAD

• close all unnecessary GUI elements. We only need: ComboView, Workbench, Draft
mod Tools, Loft Tools

• open New Document

• import task.vtk

• open Lofting Workbench

Explanation

• Show Main Windows

• Show Document Tree

83

• Show Workbench Selection

• Show Toolbar

• Show panning, rotation (even though it is not needed in the sample dataset!) and
zooming of the view

• Selection and deselection of objects using document tree and main window.

• Hiding and showing of objects using space

Rules

• Before start you have 2 minutes for getting started and asking questions.

• You should try to solve the task without asking questions.

• For steps (1.) - (5.) of the workflow the working time is restricted to 5 minutes.

• The guiding planes are just a assisting visualization, usually they do not exist and
finding the right plane is part of the job. Therefore the loft planes have only to be
positioned roughly at the same place.

• If the task has not been completed in this time, we can use a checkpoint result.

Workflow

1. position the camera.

2. create a new loft plane by selecting Create Loft Plane in the toolbar.

84

3. Transform the loft plane to obtain the demanded cross section. Take care that the
center of the loft plane lies inside the dataset. The following tools in the toolbar
should be used, points are selected in the main window by pressing left+ctrl:

• Select working plane (camera plane):

a) Make sure that no items are selected.

b) Hit in the toolbar.

c) In the dialog hit View to set the new working plane.

• Select working plane (on existing plane):

a) Make sure that no items are selected.

b) Select an existing plane with ctrl + left

c) Hit in the toolbar.

• Translation in the working plane:

a) Select the translated object from the document tree.

b) Hit in the toolbar.

c) Select a starting point in the main window.

d) Select an end point in the main window.

• Rotation around axis perpendicular to the working plane:

a) Select the rotated object from the document tree.

b) Hit in the toolbar.

c) Select the rotation center in the main window.

d) Define the starting orientation by selecting a point.

e) Define final orientation by selecting a point.

• Scaling in the working plane:

a) Select the scaled object from the document tree.

b) Hit in the toolbar.

c) Define the scaling by selecting a point.

85

4. Create a cross section by selecting the loft plane and hitting Create Cross Section

in the toolbar.

5. You may want to check the cross section by hiding the loft plane.

6. Create 2 more cross sections.

86

7. Create a loft through the cross sections.

a) open Part workbench.

b) Hit in the toolbar.

c) In the dialog select the cross sections in the right order.

d) Hit OK.

8. Check the resulting loft by hiding the loft plane and the mesh.

87

A.1.2. Userguide CADinVR

Preparation

• prepare task.vtk

• open CADinVR

• import task.vtk

Explanation

• Explain controller

• Explain head mounted device

• Show translation, scaling and rotation of objects (also far translation)

• Show translation, scaling and rotation of mesh (view)

• Explain link of objects and mesh

• Show main menu, explain scrolling and selection

• Show temporary hiding by touching object with controller

• Show selection of objects

88

The HTC Vive Controller: Menu button (1), Trackpad (2), System button (3),
Status Light (4), Micro-USB port (5), Tracking sensor (6), Trigger (7), Grip button (8).
Picture and description from [8].

Rules

• Before start you have 2 minutes for getting started and asking questions.

• You should try to solve the task without asking questions.

• For steps (1.) - (5.) of the workflow the working time is restricted to 5 minutes.

• The guiding planes are just a assisting visualization, usually they do not exist and
finding the right plane is part of the job. Therefore the loft planes have only to be
positioned roughly at the same place.

• If the task has not been completed in this time, we can use a checkpoint result.

Workflow

1. position the mesh.

89

2. create a loft plane tool by selecting Menu>>Lofting>>Create Loft Plane.

3. Transform the loft plane to obtain the demanded cross section. The following
mechanisms should be used:

• Translation and rotation:

a) Point on the translated object with one controller.

b) Grab the object by holding the trigger button.

c) Translate and rotate the object by moving the controller.

d) Ungrab the object by releasing the trigger button.

• Scaling:

a) Point on the translated object with two controllers.

b) Grab the object with two controllers by holding the trigger button.

c) Scale the object by changing the distance between the controllers.

d) Ungrab the object by releasing both trigger buttons.

scal
e

transform

90

Take care that the center of the loft plane lies inside the dataset. Take also care
that the blue line points in a similar direction for all the loft planes, otherwise we
obtain a twisted shape in the end:

4. Create a cross section by selecting the loft plane.

5. You may want to check the cross section. If the cross section is not satisfying, just
create a new one.

91

6. Create 2 more cross sections.

7. Create a loft through the cross sections.

a) Select the cross sections in the demanded order.

b) Select Menu>>Lofting>>Create Loft along Wires.

8. Check the resulting loft by hiding the mesh.

92

A.2. Questionnaires and interview

A.2.1. The Background Questionnaire

Background never used expert

1 experience with 3D design tools

2 experience with 3D design tools

3 experience with FreeCAD

4 experience with VR

5 experience with HTCVive and controllers

93

A.2.2. The System Usability Scale (SUS) Questionnaire

SUS Strongly disagree Strongly agree

1
I think that I would like to use this

system frequently

2 I found the system unnecessarily complex

3 I thought the system was easy to use

4

I think that I would need the support of
a technical person to be able to use this

system

5
I found the various functions in this

system were well integrated

6
I thought there was too much
inconsistency in this system

7
I would imagine that most people would

learn to use this system very quickly

8
I found the system very cumbersome to

use

9 I felt very confident using the system

10
I needed to learn a lot of things before I

could get going with this system

94

A.2.3. Interview questions

1. Which system did you like more? / Welches System hat Ihnen besser gefallen?

2. Why did you like the other system less? / Warum hat Ihnen das andere System
schlechter gefallen?

3. Do you think the task was complex? / Denken Sie, dass die Aufgabe komplex war?

4. Was it in any of the two systems easier to learn the workflow? / War das Erlernen
der Aufgabe in einem der beiden Systeme einfacher?

5. In which system was the first part of the task (positioning of the planes) easier?
Why? / In welchem System war der erste Teil der Aufgabe (Positionierung der
Ebenen) einfacher? Warum?

6. In which system was the second part (creation of the loft) easier? why? / In
welchem System war der zweite Teil der Aufgabe (Erzeugung des Lofts) einfacher?
Warum?

7. Did you have fun working on the tasks using any of the systems? (no/only
one/both) / Hat es Ihnen Spaß gemacht in einem der Systeme die Aufgaben zu
bearbeiten? (nein/nur in einem System/in beiden)

8. Do you have any ideas how to improve the program? / Haben Sie irgendwelche
Verbesserungsvorschläge für die Software?

95

B. Tutorials

In this chapter we provide two tutorials with code snippets illustrating the functionality
of Open CASCADE Technology (OCCT) (section B.1) and Visualization Toolkit (VTK)
(section B.2) that has been used in the scope of this thesis.

B.1. Open CASCADE Technology: Tutorial and Examples

In the following section we provide a short overview over the basic concepts of OCCT
that are important in the scope of this thesis. We explain techniques for the creation
and manipulation of geometry and finally we explain the file exchange mechanism of
OCCT.

The following material has been compiled based on [47] and [21].

Topological model and geometrical model

OCCT relies on the boundary representation (BREP) philosophy for representing geom-
etry. This requires OCCT to use both a topological as well as a geometric model for
fully describing a shape [30, 83].

OCCT describes the composition of objects and the relationship of these using the
topological model. The basic topological entity and parent class of all other topological
entities is TopoDS Shape (see Figure B.1). We distinguish shapes that relate to actually
existing geometry1 and those that are only containers for other shapes2.

Using the BRepBuilderAPI, we can fill these container objects: TopoDS Wire is con-
structed with BRepBuilderAPI MakeWire of multiple, connected and ordered TopoDS Edge

objects . A TopoDS Solid is created using BRepBuilderAPI MakeSolid by a set of faces
that form a closed TopoDS Shell3.

Using the classes TopoDS Iterator and TopExp Explorer we can traverse a TopoDS Shape

and query specific features of the shape (see Listing B.2). Using the TopoDS Iterator

we can iterate over all the subshapes of a shape and act in the appropriate way. The
TopExp Explorer filters for specific types of subshapes; we can, for example, collect all
the edges belonging to a cube or iterate over the faces of a cylinder.

OCCT describes geometric entities using a geometrical model that defines the neces-
sary geometric parameters. There is the gp package, that gives access to basic simple

1 TopoDS Vertex, TopoDS Edge, TopoDS Face
2the remaining children of TopoDS Shape.
3Since OCCT uses BREP for solid body description, the TopoDS Solid is actually not related to any

geometry.

97

// a compound of different subshapes

TopoDS_Compound aCompound = ...

for (TopoDS_Iterator anIt(aCompound); anIt.More(); anIt.Next()) {

// get the subshape

TopoDS_Shape aSubshape = anIt.Value();

// determine the type

if (aSubshape.ShapeType () == TopAbs_EDGE)

// specific treatment for edge

else if (aSubshape.ShapeType () == TopAbs_WIRE)

// specific treatment for wire

else

// do nothing for other types

}

Listing B.1.: Iterating over a shape – We iterate over all the subshapes of a compound
object and treat the subshapes with respect to their type.

// an arbitrary shape

TopoDS_Shape aShape = ...

// the explorer is set to iterate over all the faces of the shape

for (TopExp_Explorer ex(aShape , TopAbs_FACE); ex.More(); ex.Next()) {

// get face from the explorer

TopoDS_Face F = TopoDS ::Face(ex.Current ());

// do something

...

}

Listing B.2.: Exploring a shape – We iterate over all the faces of a shape. Subshapes
of a different type are not considered at all.

datatypes. A gp Circ object describes a circle with a given radius and its axis4. The
axis defines the origin of the circle and the normal of the plane the circle lies in.

Using the Geom package, also more complex shapes can be described: A B–Spline curve
with all the necessary parameters5 is described by a . A B–Spline surface is described
using Geom BSplineSurface.

Finally the Geom2d package is a collection of objects used in the context of two dimen-
sional geometry. This involves curves, that are lying on surfaces or that are restricted
to a certain plane.

In order to be able to relate the representations of topology and geometry to one
another, OCCT provides the following Interface:

• Using the BRepBuilderAPI, we can create topological descriptions from geometry.
BRepBuilderAPI MakeEdge for example allows the creation of TopoDS Edge from
a variety of different geometric objects: We can use two gp Pnt objects to create

4An axis is a gp Ax2 holding an origin and a direction.
5knot vector, control points, degree

98

(a) The inheritence diagram of
TopoDS Shape. From [46].

(b) Example shape and components. From
[21].

Figure B.1.: OCCT topological model – All topological entities root from
TopoDS Shape (Figure B.1a). We distinguish entities that are directly re-
lated to existing geometry (TopoDS Vertex, TopoDS Edge, TopoDS Face)
and those that only provide containers (all other children). Two example
shapes and their components are shown in Figure B.1b.

a simple line or provide a generic Geom Curve (for example a Geom BSplineCurve)
to create a complex curve.

• The objects provided by the topological model can be transformed to their geo-
metric counterparts using adaptors from the packages Adaptor3d and Adaptor2d.

Techniques for creation and modification of geometry

OCCT enables the user to create and design parts with a high level of detail. Therefore,
the possibilities for creating and modifying geometry in OCCT are vast. The user can
create and manipulate simple shapes like lines and circles or complex free form surfaces,
that are defined by a set of boundary conditions. In the following we will review some
techniques, that are used in the scope of the thesis.

Parametric description of geometry Geometric shapes can be created using the Geom

and Geom2d package simply by providing the necessary parameters for a geometry (see
Listing B.3).

With Geom BSplineCurve, Geom BSplineSurface and Geom2d BSplineCurve the Geom
and Geom2d package also provide a powerful interface for non-uniform rational B-spline
(NURBS) modeling6, that supports

• the definition of NURBS using control points, weights, knot vector and degree,

6For corresponding theory please refer to section 2.6.

99

double radius = 5;

gp_Pnt origin = gp_Pnt(0, 0, 0);

gp_Dir normal = gp_Dir(0, 0, 1);

gp_Ax2 axis = gp_Ax2(origin , normal);

Handle(Geom_Circle) aCircleGeom = new Geom_Circle(axis , radius);

TopoDS_Edge aCircleTopo = BRepBuilderAPI_MakeEdge(aCircleGeom);

Listing B.3.: Creation of a circle in OCCT – We create a circle with radius r = 5,
centered at the origin ~x = (0, 0, 0) and lying in the XY-plane with the
normal being ~n = (0, 0, 1). Then we convert the circle to a TopoDS Edge.

Figure B.2.: Primitive shapes – Box, cylinder, cone, sphere, torus (from left to right).
Created in FreeCAD [4].

• the evaluation of a NURBS curves or surfaces and their respective derivatives, and

• advanced techniques like knot insertion, degree elevation insertion, curve splitting
and the definition of periodic curves and surfaces.

For more types of geometry that are supported by OCCT, please refer to the docu-
mentation [46].

Primitive shapes and boolean operations Using primitive shapes and boolean opera-
tions OCCT can also model geometry following the constructive solid geometry (CSG)
philosophy. Anyhow, internally the geometry is still represented using BREP and the
geometric and topological model, mentioned above, is in use.

The package BRepPrimAPI allows the user to create the basic primitive objects box,
cylinder, cone, sphere and torus (see Figure B.2).

Using BRepAlgoAPI BooleanOperation the user performs the boolean operations fuse,
common and cut (see Figure B.3). Please note that in general not only boolean opera-
tions on primitives, but on arbitrary shapes that belong to the TopoDS Shape family are
supported by OCCT. A thorough explanation of the algorithms can be found at [21].

Transformation of shapes BRepBuilderAPI Transform realizes isometric transforma-
tions, that do not change the basic nature of a geometric object7. Here we basically apply
a gp Trsf to a given TopoDS Shape. Using gp Trsf we translate, rotate and uniformly
scale the object.

7This means, that a circle always stays a circle.

100

(a) Overlapping Box and Cylinder.

(b) Box ∪ Cylinder (c) Box ∩ Cylinder (d) Box − Cylinder

Figure B.3.: Boolean operations – Boolean operations fuse/∪ (Figure B.3b),
common/∩ (Figure B.3c), cut/− (Figure B.3d) performed on overlapping
Box and Cylinder (Figure B.3a). All figures created using FreeCAD [4].

101

For non–uniform transformations, like scaling an object in only one direction, we
have to use BRepBuilderAPI GTransform. Here we apply the general transformation
gp GTrsf 8 to a TopoDS Shape.

B–Spline approximation of points OCCT provides tools for the B–Splines approxima-
tion of arrays of points. GeomAPI PointsToBSpline and Geom2dAPI PointsToBSpline

provide functionality for the approximation of a 1D array of points (a TColgp Array1OfPnt)
with a B–Spline curve in 3D and 2D, respectively. GeomAPI PointsToBSplineSurface

approximates a 2D grid of points (a TColgp Array2OfPnt) with a B–Spline surface.

These tools provide a high level interface to advanced approximation algorithms. Cus-
tomization is still possible up to a certain degree: The user can control degree and
smoothness of the resulting B–Spline as well as approximation tolerance of the approx-
imation algorithm and parametrization of the input data. Due to the documentation
[46] also a variational smoothing algorithm can be applied, that tries to minimize the
following criterion:

c1L (γ) + c2κ (γ) + c3τ (γ) , (B.1)

where the weights ci can be chosen by the user and L, κ and τ denote length, curvature
and torsion of the approximating curve γ.

int nPts = 40;

TColgp_Array1OfPnt samplePoints (1, nPts);

for (int i = 1; i <= nPts; i += 1)

samplePoints(i) = gp_Pnt (...);

double tolerance = .01;

int minDegree = 2;

int maxDegree = 5;

GeomAbs_Shape smoothness = GeomAbs_C3;

GeomAPI_PointsToBSpline bSplineApproximator(samplePoints , minDegree ,

maxDegree , smoothness , tolerance);

Handle(Geom_BSplineCurve) bSpline = bSplineApproximator.Curve ();

Listing B.4.: B–Spline approximation of points – We first define a
TColgp Array1OfPnt and fill it with sample points. Then we approximate
the points with a B–Spline using GeomAPI PointsToBSpline

Lofting OCCT’s loft interface BRepOffsetAPI ThruSections allows the creation of
complex surfaces and solid bodies. A loft is a surface that smoothly connects two or
more closed or open curves. In general the curve is represented by a TopoDS Wire;

8A general transformation is a linear transformation that is represented by a 4 × 4 matrix. Using a
non–uniform transformation we cannot guarantee that geometric entities keep their nature: a circle
becomes an ellipse if we scale it non–uniformly.

102

therefore, the curves do not necessarily have to be constructed from a single segment (a
TopoDS Edge).

OCCT provides further possibilities for customization of the loft:

• Instead of providing a TopoDS Wire as the first or last curve, the user can also
provide a TopoDS Vertex. This results in a singularity at the beginning or end of
the loft.

• A solid object is created from the loft surface, by adding lids at both ends of the
loft surface.

• Specifying a tolerance allows to create rather an approximation than an interpo-
lation of the provided curves.

Some example loft surfaces can be found in Figure B.4. A code snippet for creating a
loft through a set of wires is given in Listing B.5.

bool isSolid = true;

bool isRuled = false;

double tolerance = .01;

BRepOffsetAPI_ThruSections loftBuilder(isSolid , isRuled , tolerance);

for(int i = 0; i < n; i++)

loftBuilder.AddWire(loftWires[i]);

loftBuilder.SetSmoothing(true);

loftBuilder.CheckCompatibility(true);

TopoDS_Shape loft = loftBuilder.Shape ();

Listing B.5.: Creation of a loft surface – First the BRepOffsetAPI ThruSections

object is created, then a series of TopoDS Wires is added and finally the
loft surface is requested.

Shape healing and analysis Using algorithms for shape healing and analysis, we can,
for example, detect contours of connected faces, by removing seam edges (see Listing B.6
and Figure B.5). Additionally, we can check existing shapes for consistency and fix errors,
like for example edges being part of a wire that are not oriented consistently9.

Data exchange

OCCT not only provides powerful interfaces for creation and interaction with computer-
aided design (CAD) geometry, but also interfaces for data exchange. This involves, On

9In OCCT a wire is a collection of one or more, connected and consistently oriented edges. Edges have
an orientation – start and end of the edge – and have to be oriented, such that the end point of one
edge is identical with the starting point of the next one.

103

(a) Loft through closed the closed sur-
rounding curves of square, circle and
square.

(b) Loft through two open curves build
from two and three line segments.

(c) Loft through three half circular arcs and a vertex at the beginning and the end of the loft.

Figure B.4.: Loft surfaces – Different shapes created using OCCT’s
BRepOffsetAPI ThruSections. All figures created using FreeCAD
[4].

104

// collect all edges into the analyzer

ShapeExtend_WireData wireAnalyzer;

// several connected faces

TopoDS_Face* faces = ...

int nFaces = ...

// iterate over all faces

for (int i = 0; i<nFaces; i++) {

TopoDS_Face aFace = faces[i]

// get contour of face and add it to the analyzer

for (TopExp_Explorer faceEx(aFace , TopAbs_WIRE); faceEx.More();

faceEx.Next())

wireAnalyzer.Add(TopoDS ::Wire(faceEx.Current ()));

}

// only consider outer edges. Discard seam edges.

Handle(ShapeExtend_WireData) outerEdges = new ShapeExtend_WireData ();

for (int edgeId = 1; edgeId <= wireAnalyzer.NbEdges (); edgeId ++)

if (! wireAnalyzer.IsSeam(edgeId)) // discard seam edges

outerEdges ->Add(wireAnalyzer.Edge(edgeId));

// fix order/orientation of edges in wire

ShapeFix_Wire wireFixer;

wireFixer.Load(outerEdges);

wireFixer.FixReorder ();

// collect edges

TopTools_ListOfShape edges;

for (int edgeId = 1; edgeId <= outerEdges ->NbEdges (); edgeId ++)

edges.Append(outerEdges ->Edge(edgeId));

// create Wire

BRepLib_MakeWire wireMaker;

wireMaker.Add(edges);

TopoDS_Wire theContour = wireMaker.Wire();

// do final shape fixing

Handle(ShapeFix_Shape) shapeFixer = new ShapeFix_Shape;

shapeFixer ->Init(theContour);

shapeFixer ->Perform ();

theContour = TopoDS ::Wire(shapeFixer ->Shape());

Listing B.6.: Shape healing and analysis – Here we use shape analysis and heal-
ing algorithms for first semoving seam edges from connected faces using
ShapeExtend WireData. Then we fix the orientation of the edges and cre-
ate a single wire using ShapeFix Wire.

the one hand, meshing of CAD geometry, and, on the other hand, reading and writing
of files that comply with the Standard for The Exchange of Product model data (.step).

105

Figure B.5.: Outer contour of connected faces – We created the outer contour (red)
of connected faces by removing the seam edges and collecting the remaining
edges in a single wire.

Geometry meshing As soon as we want to display CAD geometry, we first have to mesh
it. OCCT provides a framework for the triangulation of arbitrary faces. Therefore, we
firstly extract the TopoDS Face Objects from each TopoDS Shape and then generate a
triangle mesh for each TopoDS Face.

We can generate a mesh of a shape using BRepMesh IncrementalMesh, where we can
also set discretization parameters like the linear and angular deflection (see Figure B.6).
Using TopExp Explorer we can iterate over the faces of a shape and access the Trian-
gulation of each face using BRep Tool::Triangulation. Finally we have to transform
the vertices of the mesh in order to get their global coordinates (see Listing B.7). The
resulting mesh is a triangle mesh, with one array of vertices and another array of vertex
indices that define the triangles.

File input and output In order to be able to persistently save our CAD designs or read
input CAD geometry, we decided to use .step files for data exchange. The .step file
format is a standardized exchange format for industry applications [31, 32]. OCCT pro-
vides an interface for reading and writing .step files, which comply with this standard.

Using STEPControl Writer we can save TopoDS Shapes objects to .step (see List-
ing B.8). Reading .step is done using STEPControl Reader (see Listing B.9).

106

Figure B.6.: Discretization parameters for meshing – In the process of meshing we
can specify the linear and angular deflection. “Linear deflection limits the
distance between a curve and its tessellation, whereas angular deflection
limits the angle between subsequent segments in a polyline.” Picture and
description from [21].

B.2. Visualization Toolkit: Tutorial and Examples

In the following section we give a detailed overview of the VTK functionality that is
used in the scope of this thesis. For a thorough explanation of VTK functionality please
refer to VTK’s userguide [71], the VTK textbook [72] and the reference documentation
[73].

Description of voxel data With vtkImageData VTK provides a datastructure for defin-
ing uniform grids of data. Here we have to distinguish between cell data and point data.
The dimension and origin of the dataset can be described as well (see Figure B.7 and
Listing B.10).

Dataset interpolation and probing VTK provides the possibility to resample and
probe a dataset. vtkPointDataToCellData and vtkCellDataToPointData allow us to
transform data from point data representation to the corresponding cell data represen-
tation and vice versa by using interpolation methods (see Figure B.8 and Listing B.11).
Using vtkProbeFilter we can sample the dataset in a certain region, like for example
along a line, if we use a vtkLineSource (see Figure B.9 and Listing B.12).

Contour extraction VTK provides an implementation of the marching cubes algorithm
[36] for the visualization of isocontours in datasets. Anyhow, many other methods for the
visualization of isocontours and surfaces exist [37, 84–86]. Since, the drawbacks of the
marching cubes algorithm do not matter in our field of application, we decided to rely on
the existing marching cubes implementation of VTK. Using the vtkContourFilter we
can extract an isosurface at a certain theshold from a dataset consisting of point data.
The isosurface is represented as a set of triangles that is saved in a vtkPolyData object
(see Figure B.10 and Listing B.13).

107

Figure B.7.: Cell and point data in VTK – Dataset with cell data (boxes) and point
data (spheres), colored by their corresponding value. The dataset has its
origin in ~x = (0, 0, 0) and a size of ~s = (5, 5, 5). With a uniform resolution
of h = 0.5 this means that there exist 11 point data values and 10 cells in
each dimension. This leads to 1331 point data values and 1000 cell data
values in total. Figure created using Paraview [40].

108

Figure B.8.: Interpolation of cell data to point data – The original point data
(boxes) is interpolated to the corresponding point data (spheres) on the
grid.

Figure B.9.: Line probing on dataset – We sample a coarse point dataset (large
spheres) using 101 sampling points (small spheres) on a line from ~x0 =
(0, 0, 0) to ~x1 = (5, 5, 5).

109

// shape to be triangulated

TopoDS_Shape aShape = ...

// discretization variables

Standard_Real aLinearDeflection = 0.1;

Standard_Boolean isRelative = Standard_False;

Standard_Real anAngularDeflection = 0.5;

// do the triangulation

BRepMesh_IncrementalMesh(aShape , aLinearDeflection , isRelative ,

anAngularDeflection);

// iterate over the faces

int f = 1;

for (TopExp_Explorer ex(aShape , TopAbs_FACE); ex.More(); ex.Next()) {

std::cout << "Face " << f << std::endl;

f++;

TopoDS_Face aFace = TopoDS ::Face(ex.Current ());

TopLoc_Location aLocation;

// access the triangulation of the face

Handle(Poly_Triangulation) triangulation = BRep_Tool :: Triangulation(

aFace , aLocation);

// array holding the vertices

TColgp_Array1OfPnt vertices(1, (triangulation ->NbNodes ()));

vertices = triangulation ->Nodes ();

// loop over all vertices and apply the transformation

for (int v = 1; v <= triangulation ->NbNodes (); v++) {

gp_Pnt aVertex = vertices.Value(v);

aVertex.Transform(aLocation.Transformation ());

vertices.SetValue(v, aVertex);

std::cout << "vertex " << v << ": (" << aVertex.X() << "," <<

aVertex.Y() << "," << aVertex.Z() << ")" << std::endl;

}

// array holding the vertex indices of the triangles

Poly_Array1OfTriangle triangles (1, triangulation ->NbTriangles ());

triangles = triangulation ->Triangles ();

for (int t = 1; t <= triangulation ->NbTriangles (); t++)

{

Poly_Triangle aTriangle = triangles.Value(t);

int N1 , N2 , N3;

aTriangle.Get(N1 , N2 , N3);

std::cout << "triangle " << t << ": (" << N1 << "," << N2 << ","

<< N3 << ")" << std::endl;

}

}

Listing B.7.: Meshing a TopoDS Shape – We mesh a TopoDS Shape by first splitting
the shape into its faces, and then creating a triangulation of each face.
Discretization parameters can be chosen by the user.

File input and output VTK can be used for reading and writing .vtk files (see List-
ing B.1). They can be visualized using tools like for example Paraview [40] or processed

110

// first we construct a shape

TopoDS_Shape aShape = ...;

// we create a writer

STEPControl_Writer writer;

// we add the shape to the writer

writer.Transfer(aShape , STEPControl_AsIs);

// and finally write a step files

writer.Write("aShape.step");

Listing B.8.: .step writing – We write an existing TopoDS Shape to a .step file.

// we create a reader

STEPControl_Reader reader;

// we read the file

IFSelect_ReturnStatus stat = reader.ReadFile("aShape.step");

// we define our Shape

TopoDS_Shape importedShape;

// we check for errors

if (stat == IFSelect_RetDone) {

// we do some necessary preprocessing

reader.ClearShapes ();

Standard_Integer NbRoots = reader.NbRootsForTransfer ();

Standard_Integer NbTrans = reader.TransferRoots ();

// we import the shape

importedShape = reader.OneShape ();

}

Listing B.9.: .step reading – We read an existing .step file.

furtherly.
If the data is already described using VTK datastructures (for example vtkImageData),

the data can be written to a .vtk file using the appropriate writer. For datasets of struc-
tured points, like the example dataset from above, one has to use vtkStructuredPointsWriter
(see Listing B.14). Reading of .vtk files can be done using the appropriate reader, like
for example a vtkStructuredPointsReader for a STRUCTURED_POINTS .vtk file (see
Listing B.15).

111

Figure B.10.: Isosurface inside a dataset – The isosurface divides the point dataset
at the threshold value t = 0.

vtk DataFile Version 4.0

vtk output

ASCII

DATASET STRUCTURED_POINTS

DIMENSIONS 11 11 11

SPACING 0.5 0.5 0.5

ORIGIN 0 0 0

CELL_DATA 1000

FIELD FieldData 1

cell_data 1 1000 double

-9.3571 -7.3571 -5.8571 ... -4.37606 -5.87606

POINT_DATA 1331

FIELD FieldData 1

point_data 1 1331 double

-11.5 -9.25 -7.5 ... -6.31119 -8.06119 -10.3112

Listing B.1: Example .vtk file: A structured grid with cell and point data. The
dimensions of the grid, the spacing and the origin are defined first. Then
the cell and point data values are given.

112

import vtk

import numpy as np

grid parameters

dx, dy, dz = 0.5, 0.5, 0.5 # spacing

Lx, Ly, Lz = 5.0, 5.0, 5.0 # sizing

x0, y0, z0 = 0.0, 0.0, 0.0 # origin

nx, ny, nz = int(Lx/dx + 1), int(Ly/dx + 1), int(Lz/dx + 1) # number of

points

initialize vtk grid

grid = vtk.vtkImageData ()

grid.SetOrigin(x0, y0, z0)

grid.SetSpacing(dx, dy, dz)

grid.SetDimensions(nx, ny, nz)

add point dataset

point_array = vtk.vtkDoubleArray ()

point_array.SetNumberOfComponents (1)

point_array.SetNumberOfTuples(grid.GetNumberOfPoints ())

point_array.SetName("point_data")

for i in range(grid.GetNumberOfPoints ()):

x,y,z = grid.GetPoint(i)

point_array.SetValue(i, -1 * ((x - 2.5) **2 + (y - 2.5) **2 - (1 -.5*np.

sin(z))**2))

grid.GetPointData ().AddArray(point_array)

add cell dataset

cell_array = vtk.vtkDoubleArray ()

cell_array.SetNumberOfComponents (1)

cell_array.SetNumberOfTuples(grid.GetNumberOfCells ())

cell_array.SetName("cell_data")

here we set up a filter to compute the cell centers

cellCenters = vtk.vtkCellCenters ()

cellCenters.SetInputData(grid)

cellCenters.Update ()

for i in range(grid.GetNumberOfCells ()):

x,y,z = cellCenters.GetOutput ().GetPoint(i)

cell_array.SetValue(i, -1 * ((x - 2.5) **2 + (y - 2.5) **2 - (1-.5*np.

sin(z))**2))

grid.GetCellData ().AddArray(cell_array)

Listing B.10.: Creation of a grid with point and cell data: – We use python VTK
to first create a vtkImageData object. Then we add vtkDoubleArray ob-
jects holding samples from an implicit function as point and cell data. For
generation of cell data we sample the implicit function at the correspond-
ing cell center.

113

import vtk

grid = ...

#apply cell to point data filter

celltoPoint = vtk.vtkCellDataToPointData ()

celltoPoint.SetInputData(grid)

celltoPoint.PassCellDataOn ()

celltoPoint.Update ()

Listing B.11.: Interpolating a dataset’s cell data to point data – We use
vtkCellDataToPointData for computing an interpolation of cell values
at point coordinates.

import vtk

grid = ...

#Set the points between which the line is constructed.

p1=[0,0,0]

p2=[5,5,5]

number of sampling intervals

numPoints =100

Create the line

line = vtk.vtkLineSource ()

line.SetResolution(numPoints)

line.SetPoint1(p1)

line.SetPoint2(p2)

line.Update ()

sample along the line

probe = vtk.vtkProbeFilter ()

probe.SetInputConnection(line.GetOutputPort ())

probe.SetSourceData(grid)

probe.Update ()

for i in range(numPoints +1):

thePoint = probe.GetOutput ().GetPoint(i)

theValue = probe.GetOutput ().GetPointData ().GetArray (0).GetValue(i)

print "value at "+str(thePoint)+"="+str(theValue)

Listing B.12.: Probing a dataset along a line – We first create a vtkLineSource

defining the line along which we want to sample the dataset, then we
use the vtkProbeFilter for creating the samples from the dataset using
interpolation methods. Finally we write the sample points to a file using
vtkPolyDataWriter.

114

import vtk

import numpy as np

initialize vtk grid

grid = ...

grid.AllocateScalars(vtk.VTK_DOUBLE , 1)

for z_id in range(grid.GetDimensions ()[2]):

for y_id in range(grid.GetDimensions ()[1]):

for x_id in range(grid.GetDimensions ()[0]):

id = grid.ComputePointId ((x_id , y_id , z_id))

value = grid.GetPointData ().GetArray("point_data").GetValue(

id)

grid.SetScalarComponentFromDouble(x_id , y_id , z_id , 0, value)

threshold = 0

iso = vtk.vtkContourFilter ()

iso.SetInputData(grid)

iso.SetValue(0, threshold)

iso.Update ()

poly = iso.GetOutput ()

traverse the points

for pointId in poly.GetNumberOfPoints ():

print "point "+str(p_id)+": "+str(poly.GetPoint(pointId))

traverse the triangles

polys = poly.GetPolys ()

polys.InitTraversal ()

pointIndices = vtk.vtkIdList ()

while polys.GetNextCell(pointIndices) == 1:

print "triangle: " + str((pointIndices.GetId (0), pointIndices.GetId

(1), pointIndices.GetId (2)))

Listing B.13.: Extracting an isosurface – Using VTK’s vtkContourFilter we ex-
tract an isosurface for a given threshold from a given point dataset.
vtkContourFilter outputs vtkPolyData, that holds the coordinates of
the triangle vertices and the indices of the points that form a tringle.

115

import vtk

grid = vtk.vtkImageData ()

...

write file

writer = vtk.vtkStructuredPointsWriter ()

writer.SetInputData(grid)

writer.SetFileName("exampleCellPoint_tiny.vtk")

writer.Write ()

Listing B.14.: Writing a .vtk file: – We write a .vtk file by transferring the
vtkImageData object grid to the writer.

import vtk

#read the vtk file as an unstructured grid

reader = vtk.vtkStructuredPointsReader ()

reader.SetFileName("exampleCellPoint.vtk")

reader.ReadAllVectorsOn ()

reader.ReadAllScalarsOn ()

reader.Update ()

obtain the data

grid = reader.GetOutput ()

point_data = grid.GetPointData ().GetArray("point_data")

for i in range(grid.GetNumberOfPoints ()):

x,y,z = grid.GetPoint(i)

print "value at"+str((x,y,z))+"="+str(point_data.GetValue(i))

Listing B.15.: Reading a .vtk file – We read a .vtk file and then iterate over all the
points and print the corresponding values.

116

import vtk

import numpy as np

grid = ...

iso = ...

write file

stl = vtk.vtkSTLWriter ()

stl.SetInputConnection(iso.GetOutputPort ())

stl.SetFileName("isosurface.stl")

stl.SetFileType (2)

stl.Write()

Listing B.16.: Writing a .stl file – We can write a .stl file with geometry information,
by forwarding the output of, for example, the vtkContourFilter to the
vtkSTLWriter.

117

Bibliography

[1] Siemens Product Lifecycle Management Software Inc. Siemens NX. 1973. url:
https://www.plm.automation.siemens.com/en/products/nx/ (visited on
Jan. 10, 2017).

[2] Autodesk Inc. AutoCAD. 1982. url: http://www.autodesk.com/products/

autocad/overview (visited on Jan. 6, 2017).

[3] Onshape Inc. Onshape. 2014. url: https://www.onshape.com/ (visited on Jan. 6,
2017).

[4] FreeCAD. FreeCAD. 2009. url: http://freecadweb.org/ (visited on Jan. 6,
2017).

[5] M M M Sarcar, K Mallikarjuna Rao, and K Lalit Narayan. Computer Aided Design
and Manufacturing. PHI Learning Pvt. Ltd., 2008. isbn: 9788120333420.

[6] Autodesk Inc. Tinkercad. 2017. url: https://www.tinkercad.com/ (visited on
Feb. 2, 2017).

[7] Tracy Woo. Maximizing Product Design in a Complex Manufacturing Environ-
ment. Tech. rep. Aberdeen Group, 2016.

[8] HTC Corporation. HTCVive. 2016. url: https://www.vive.com/us/ (visited on
Nov. 26, 2016).

[9] Oculus VR LLC. Oculus. 2016. url: https://www.oculus.com/ (visited on
Dec. 11, 2016).

[10] Simon Sua et al. “Virtual reality enabled scientific visualization workflow”. In: 2015
IEEE 1st Workshop on Everyday Virtual Reality, WEVR 2015 (2015), pp. 29–32.
doi: 10.1109/WEVR.2015.7151692.

[11] Google Inc. Tiltbrush. 2017. url: https://www.tiltbrush.com/ (visited on
Feb. 2, 2017).

[12] Unity Technology. Unity Editor VR. 2016. url: https://blogs.unity3d.com/
2016/12/15/editorvr-experimental-build-available-today/ (visited on
Feb. 2, 2017).

[13] Epic Games Inc. Unreal Engine VR Editor. 2017. url: https://docs.unrealengine.
com/latest/INT/Engine/Editor/VR/ (visited on Feb. 2, 2017).

[14] Kitware Inc. Using Virtual Reality Devices with VTK. 2016. url: https://blog.
kitware.com/using-virtual-reality-devices-with-vtk/ (visited on Feb. 2,
2017).

119

https://www.plm.automation.siemens.com/en/products/nx/
http://www.autodesk.com/products/autocad/overview
http://www.autodesk.com/products/autocad/overview
https://www.onshape.com/
http://freecadweb.org/
https://www.tinkercad.com/
https://www.vive.com/us/
https://www.oculus.com/
http://dx.doi.org/10.1109/WEVR.2015.7151692
https://www.tiltbrush.com/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://blogs.unity3d.com/2016/12/15/editorvr-experimental-build-available-today/
https://docs.unrealengine.com/latest/INT/Engine/Editor/VR/
https://docs.unrealengine.com/latest/INT/Engine/Editor/VR/
https://blog.kitware.com/using-virtual-reality-devices-with-vtk/
https://blog.kitware.com/using-virtual-reality-devices-with-vtk/

[15] Mindesk Inc. Mindesk. 2016. url: http://www.mindeskvr.com (visited on Feb. 2,
2017).

[16] Autodesk Inc. VRED. 2017. url: http://www.autodesk.com/products/vred
(visited on Feb. 2, 2017).

[17] TechViz. TechViz XL. 2017. url: http://www.techviz.net/techviz-xl (visited
on Feb. 2, 2017).

[18] ESI Group. IC.IDO. 2017. url: http : / / virtualreality . esi - group . com/

(visited on Feb. 2, 2017).

[19] FreeCAD. FreeCAD release notes 0.15. 2015. url: http://freecadweb.org/

wiki/Release_notes_015 (visited on Feb. 27, 2017).

[20] Alexandre Millette and Michael J McGuffin. “DualCAD: Integrating Augmented
Reality with a Desktop GUI and Smartphone Interaction”. In: 2016 IEEE Inter-
national Symposium on Mixed and Augmented Reality Adjunct Proceedings. 2016,
pp. 21–26. isbn: 9781509037407. doi: 10.1109/ISMAR-Adjunct.2016.23.

[21] OPEN CASCADE S.A.S. OpenCASCADE Technology 7.0.0. 2016. url: https:
//www.opencascade.com/doc/occt-7.0.0/overview/html/index.html (visited
on Nov. 7, 2016).

[22] Unity Technology. Unity. url: https://unity3d.com/de/ (visited on Nov. 26,
2016).

[23] Matthias Eck and Hugues Hoppe. Automatic reconstruction of B-spline surfaces
of arbitrary topological type. 1996, pp. 325–334.

[24] Saumitra Joshi et al. CAD-integrated Topology Optimization. Tech. rep. München:
Technische Universität München, 2016.

[25] Kitware. VTK. 2015. url: http://www.vtk.org/ (visited on Feb. 1, 2017).

[26] Gavranovic Stefan. “Topology Optimization using GPGPU”. Master Thesis. Tech-
nische Universität München, 2015.

[27] U.S. Department of Health and Human Services. System usability scale. 2017.
url: https://www.usability.gov/how- to- and- tools/methods/system-

usability-scale.html (visited on Feb. 10, 2017).

[28] General Electric and GrabCAD. GE jet engine bracket challenge. 2013. url: https:
//grabcad.com/challenges/ge-jet-engine-bracket-challenge (visited on
Feb. 25, 2017).

[29] Generate and GrabCAD. The Generate Quadcopter Challenge. 2016. url: https:
//grabcad.com/challenges/the-generate-quadcopter-challenge (visited on
Feb. 25, 2017).

[30] Roland Wüchner, Michael Breitenberger, and Anna Bauer. Isogeometric structural
analysis and design. München: Chair of Structural Analysis, Technical University
of Munich, 2016.

120

http://www.mindeskvr.com
http://www.autodesk.com/products/vred
http://www.techviz.net/techviz-xl
http://virtualreality.esi-group.com/
http://freecadweb.org/wiki/Release_notes_015
http://freecadweb.org/wiki/Release_notes_015
http://dx.doi.org/10.1109/ISMAR-Adjunct.2016.23
https://www.opencascade.com/doc/occt-7.0.0/overview/html/index.html
https://www.opencascade.com/doc/occt-7.0.0/overview/html/index.html
https://unity3d.com/de/
http://www.vtk.org/
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://grabcad.com/challenges/ge-jet-engine-bracket-challenge
https://grabcad.com/challenges/ge-jet-engine-bracket-challenge
https://grabcad.com/challenges/the-generate-quadcopter-challenge
https://grabcad.com/challenges/the-generate-quadcopter-challenge

[31] STEP Tools Inc. TheSTEPStandard. 2017. url: http://www.steptools.com/
stds/step/ (visited on Feb. 1, 2017).

[32] ISO10303-242:2014 - Industrial automation systems and integration - Product data
representation and exchange - Part 242: Application protocol: Managed model-
based 3D design. Standard. Geneva, Switzerland: International Organization for
Standardization, 2014.

[33] M. Breitenberger et al. “Analysis in computer aided design: Nonlinear isogeometric
B-Rep analysis of shell structures”. In: Computer Methods in Applied Mechanics
and Engineering 284 (2015), pp. 401–457. issn: 00457825. doi: 10.1016/j.cma.
2014.09.033.

[34] Gregory Nielson. “Chord Length (Motivated) Parametrization of Marching Cubes
IsoSurfaces”. In: Geometric Modeling and Processing (2004).

[35] Wikipedia. Voxel @ en.wikipedia.org. 2017. url: https://en.wikipedia.org/
wiki/Voxel (visited on Feb. 9, 2017).

[36] Timothy S. Newman and Hong Yi. “A survey of the marching cubes algorithm”.
In: Computers and Graphics 30.5 (2006), pp. 854–879. issn: 00978493. doi: 10.
1016/j.cag.2006.07.021.

[37] Scott Schaefer and Joe Warren. “Dual Contouring:” The Secret Sauce””. In: Cite-
seer (2002), p. 5. url: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.13.2631.

[38] Wenping Wang, Helmut Pottmann, and Yang Liu. “Fitting B-Spline Curves to
Point Clouds by Curvature-Based Squared Distance Minimization Fitting B-Spline
Curves by SDM”. In: ACM Transactions on Graphics 25.2 (2006), pp. 214–238.
issn: 07300301. doi: 10.1145/1138450.1138453.

[39] Shiaofen Fang and Hongsheng Chen. “Hardware accelerated voxelization”. In:
Computers and Graphics (Pergamon) 24.3 (2000), pp. 433–442. issn: 00978493.
doi: 10.1016/S0097-8493(00)00038-8.

[40] Kitware. Paraview. 2015. url: http://www.paraview.org/ (visited on Feb. 1,
2017).

[41] Wikimedia Commons. Vector Graphics Tutorial. url: https://commons.wikimedia.
org/wiki/Help:Vector_graphics_tutorial (visited on Feb. 9, 2017).

[42] solidThinking Inc. Inspire2016. url: http://www.solidthinking.com/Inspire2016.
html (visited on Nov. 15, 2016).

[43] Blender Foundation. Blender. 2017. url: https://www.blender.org/ (visited on
Feb. 1, 2017).

[44] Siemens Product Lifecycle Management Software Inc. Parasolid. url: https://
www.plm.automation.siemens.com/en/products/open/parasolid/ (visited on
Jan. 6, 2017).

[45] Spatial Corp. ACIS. url: https://www.spatial.com/products/3d- acis-

modeling (visited on Jan. 6, 2017).

121

http://www.steptools.com/stds/step/
http://www.steptools.com/stds/step/
http://dx.doi.org/10.1016/j.cma.2014.09.033
http://dx.doi.org/10.1016/j.cma.2014.09.033
https://en.wikipedia.org/wiki/Voxel
https://en.wikipedia.org/wiki/Voxel
http://dx.doi.org/10.1016/j.cag.2006.07.021
http://dx.doi.org/10.1016/j.cag.2006.07.021
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.2631
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.2631
http://dx.doi.org/10.1145/1138450.1138453
http://dx.doi.org/10.1016/S0097-8493(00)00038-8
http://www.paraview.org/
https://commons.wikimedia.org/wiki/Help:Vector_graphics_tutorial
https://commons.wikimedia.org/wiki/Help:Vector_graphics_tutorial
http://www.solidthinking.com/Inspire2016.html
http://www.solidthinking.com/Inspire2016.html
https://www.blender.org/
https://www.plm.automation.siemens.com/en/products/open/parasolid/
https://www.plm.automation.siemens.com/en/products/open/parasolid/
https://www.spatial.com/products/3d-acis-modeling
https://www.spatial.com/products/3d-acis-modeling

[46] OPEN CASCADE S.A.S. Open Cascade Technology 7.0.0 Reference Documenta-
tion. 2016. url: https://www.opencascade.com/doc/occt-7.0.0/refman/
html/index.html (visited on Jan. 10, 2017).

[47] Roman Lyngin. Open Cascade Notes. 2008. url: http://opencascade.blogspot.
de/ (visited on Jan. 10, 2017).

[48] Python Software Foundation. Python. 2001. url: https : / / www . python . org

(visited on Jan. 10, 2017).

[49] Kongsberg Gruppen. Coin3D. 2014. url: https://bitbucket.org/Coin3D/

coin/wiki/Home (visited on Jan. 10, 2017).

[50] The Qt Company. Qt. 2017. url: https://www.qt.io/ (visited on Jan. 10, 2017).

[51] Carolina Cruz-Neira et al. “The CAVE: Audio Visual Experience Automatic Vir-
tual Environment”. In: Commun. ACM 35.6 (1992), pp. 64–72. issn: 0001-0782.
doi: 10.1145/129888.129892. url: http://doi.acm.org/10.1145/129888.
129892.

[52] Google Inc. Cardboard. 2017. url: https://vr.google.com/cardboard/ (visited
on Feb. 2, 2017).

[53] Google Inc. Daydream. url: https://vr.google.com/daydream/ (visited on
Dec. 11, 2016).

[54] Sony. Playstation VR. 2017. url: https://www.playstation.com/en- us/

explore/playstation-vr/ (visited on Feb. 12, 2017).

[55] Leap Motion Inc. Leap Motion VR. 2017. url: https://www.leapmotion.com/
#112 (visited on Feb. 27, 2017).

[56] Microsoft. Microsoft Hololens. 2017. url: https://www.microsoft.com/microsoft-
hololens/en-us (visited on Feb. 12, 2017).

[57] Niantic Inc. Pokemon GO. 2017. url: http://pokemongo.nianticlabs.com/en/
(visited on Feb. 12, 2017).

[58] R. Gleasure and J. Feller. “A rift in the ground: Theorizing the evolution of anchor
values in crowdfunding communities through the oculus rift case study”. In: Jour-
nal of the Association of Information Systems 17.10 (2016), pp. 708–736. issn:
15583457 15369323.

[59] Valve Corporation. SteamVR. url: http://store.steampowered.com/steamvr
(visited on Nov. 26, 2016).

[60] Oculus VR LLC. Utilities for Unity 5.x Developer Guide. 2016. url: https://
developer3.oculus.com/documentation/game-engines/latest/concepts/

book-unity/ (visited on Dec. 11, 2016).

[61] Valve Corporation. SteamVR Asset. url: https://www.assetstore.unity3d.
com/en/content/32647 (visited on Nov. 26, 2016).

[62] Google Inc. Get Started with the Google VR SDK for Unity on Android. 2016. url:
https://developers.google.com/vr/unity/ (visited on Dec. 11, 2016).

122

https://www.opencascade.com/doc/occt-7.0.0/refman/html/index.html
https://www.opencascade.com/doc/occt-7.0.0/refman/html/index.html
http://opencascade.blogspot.de/
http://opencascade.blogspot.de/
https://www.python.org
https://bitbucket.org/Coin3D/coin/wiki/Home
https://bitbucket.org/Coin3D/coin/wiki/Home
https://www.qt.io/
http://dx.doi.org/10.1145/129888.129892
http://doi.acm.org/10.1145/129888.129892
http://doi.acm.org/10.1145/129888.129892
https://vr.google.com/cardboard/
https://vr.google.com/daydream/
https://www.playstation.com/en-us/explore/playstation-vr/
https://www.playstation.com/en-us/explore/playstation-vr/
https://www.leapmotion.com/#112
https://www.leapmotion.com/#112
https://www.microsoft.com/microsoft-hololens/en-us
https://www.microsoft.com/microsoft-hololens/en-us
http://pokemongo.nianticlabs.com/en/
http://store.steampowered.com/steamvr
https://developer3.oculus.com/documentation/game-engines/latest/concepts/book-unity/
https://developer3.oculus.com/documentation/game-engines/latest/concepts/book-unity/
https://developer3.oculus.com/documentation/game-engines/latest/concepts/book-unity/
https://www.assetstore.unity3d.com/en/content/32647
https://www.assetstore.unity3d.com/en/content/32647
https://developers.google.com/vr/unity/

[63] Sysdia Solutions Ltd. VRTK - SteamVR Unity Toolkit. url: https : / / www .

assetstore.unity3d.com/en/content/64131 (visited on Dec. 4, 2016).

[64] Albert Hwang. Focal Point and SteamVR Adapter. url: https://www.assetstore.
unity3d.com/en/content/59625 (visited on Dec. 4, 2016).

[65] Frustum Inc. Frustum. 2016. url: https://www.frustum.com/ (visited on Feb. 8,
2017).

[66] Topology Optimization research group at DTU Mechanical Engineering and DTU
Mathematics. TopOpt DTU. 2009. url: http://www.topopt.dtu.dk/ (visited on
Feb. 8, 2017).

[67] William Hunter. ToPy - 2D and 3D Topology Optimization using Python. 2009.
url: https://github.com/williamhunter/topy (visited on Feb. 8, 2017).

[68] M P Bendsoe and O Sigmund. Topology Optimization: Theory, Methods, and Ap-
plications. Springer Berlin Heidelberg, 2013. isbn: 9783662050866. url: https:
//books.google.de/books?id=ZCjsCAAAQBAJ.

[69] Niels Aage et al. Interactive topology optimization on hand-held devices. Tech.
rep. Lyngby: Department of Informatics and Mathematical Modelling, Technical
University of Denmark, 2012, pp. 3–4.

[70] James Albert Sethian. Level set methods and fast marching methods: evolving inter-
faces in computational geometry, fluid mechanics, computer vision, and materials
science. Vol. 3. Cambridge university press, 1999.

[71] Kitware Inc. The VTK User’s Guide. 2010, p. 536. isbn: 978-1-930934-23-8.

[72] Will Schroeder, Ken Martin, and Bill Lorensen. The Visualization Toolkit. 2006.
isbn: 978-1-930934-19-1.

[73] Kitware Inc. VTK Documentation. 2017. url: http://www.vtk.org/documentation/
(visited on Jan. 30, 2017).

[74] J Hoschek and D Lasser. “Grundlagen der geometrischen Datenverarbeitung”. In:
BG Teubner, Stuttgart (1989).

[75] M Arie Kurniawan. GE Jet Engine Bracket Version 1.2. 2013. url: https://
grabcad.com/library/m-kurniawan-ge-jet-engine-bracket-version-1-2-1

(visited on Feb. 25, 2017).

[76] Valve Corporation. The Lab. 2016. url: http://store.steampowered.com/app/
450390/.

[77] Manuel Biedermann. “Simulation-driven design for additive manufacturing”. Mas-
ter Thesis. Technische Universität München, 2017.

[78] Tracy Woo. The Democratization of Simulation in a Multiphysics World. Tech.
rep. Aberdeen Group, 2016. doi: Article.

[79] Ravin Balakrishnan et al. “The Rockin’Mouse: Integral 3D Manipulation on a
Plane”. In: Proceedings ACM SIGCHI Conference on Human Factors in Comput-
ing Systems (1997), pp. 311–318. doi: 10.1145/258549.258778.

123

https://www.assetstore.unity3d.com/en/content/64131
https://www.assetstore.unity3d.com/en/content/64131
https://www.assetstore.unity3d.com/en/content/59625
https://www.assetstore.unity3d.com/en/content/59625
https://www.frustum.com/
http://www.topopt.dtu.dk/
https://github.com/williamhunter/topy
https://books.google.de/books?id=ZCjsCAAAQBAJ
https://books.google.de/books?id=ZCjsCAAAQBAJ
http://www.vtk.org/documentation/
https://grabcad.com/library/m-kurniawan-ge-jet-engine-bracket-version-1-2-1
https://grabcad.com/library/m-kurniawan-ge-jet-engine-bracket-version-1-2-1
http://store.steampowered.com/app/450390/
http://store.steampowered.com/app/450390/
http://dx.doi.org/Article
http://dx.doi.org/10.1145/258549.258778

[80] Jeffrey S Pierce et al. “Voodoo Dolls : Seamless Interaction at Multiple Scales in
Virtual Environments in Virtual Environments”. In: CMU-HCI Institute (1999),
pp. 141–145. doi: 10.1145/300523.300540.

[81] Hrvoje Benko and Steven Feiner. “Balloon selection: A multi-finger technique for
accurate low-fatigue 3D selection”. In: IEEE Symposium on 3D User Interfaces
2007 - Proceedings, 3DUI 2007 (2007), pp. 79–86. doi: 10.1109/3DUI.2007.
340778.

[82] Ravikanth Malladi and James a. Sethian. “Image processing via level set curvature
flow.” In: Proceedings of the National Academy of Sciences of the United States of
America 92.15 (1995), pp. 7046–50. issn: 0027-8424. doi: 10.1073/pnas.92.15.
7046. url: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=
41468&tool=pmcentrez&rendertype=abstract.

[83] Ian Stroud. Boundary representation modelling techniques. Springer Science and
Business Media, 2006.

[84] Tao Ju et al. “Dual contouring of hermite data”. In: ACM Transactions on Graph-
ics. Vol. 21. 3. 2002, pp. 339–346. isbn: 1581135211. doi: 10.1145/566654.566586.

[85] Scott Schaefer, Tao Ju, and Joe Warren. “Manifold Dual Contouring”. In: IEEE
Transactions on Visualization and Computer Graphics 13.3 (2007), pp. 610–619.
issn: 1077-2626. doi: 10.1109/TVCG.2007.1012.

[86] Chien Chang Ho et al. “Cubical marching squares: Adaptive feature preserving
surface extraction from volume data”. In: Computer Graphics Forum 24.3 (2005),
pp. 537–545. issn: 01677055. doi: 10.1111/j.1467-8659.2005.00879.x.

124

http://dx.doi.org/10.1145/300523.300540
http://dx.doi.org/10.1109/3DUI.2007.340778
http://dx.doi.org/10.1109/3DUI.2007.340778
http://dx.doi.org/10.1073/pnas.92.15.7046
http://dx.doi.org/10.1073/pnas.92.15.7046
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=41468&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=41468&tool=pmcentrez&rendertype=abstract
http://dx.doi.org/10.1145/566654.566586
http://dx.doi.org/10.1109/TVCG.2007.1012
http://dx.doi.org/10.1111/j.1467-8659.2005.00879.x

List of Figures

1.1. Overview over CADinVR with SurfFitX 5

2.1. Two geometric descriptions of a circle . 8

2.2. Representation of a simple shape with CSG and BREP 9

2.3. Approximative geometry representation 10

2.4. Conversion of geometry representations 11

2.5. OCCT technical overview . 13

2.6. The Vive Controller . 15

2.7. Unity game object . 17

2.8. Screenshot from Interactive 2D TopOpt App 20

3.1. GE jet engine bracket designs . 27

3.2. Design workflow realized in this thesis . 29

3.3. IDeAs input geometry . 31

3.4. IDeAs output . 32

3.5. Transformation to level sets . 35

3.6. Boolean operations on level sets . 36

3.7. Level set smoothing . 37

3.8. Consistent level set . 38

3.9. Toolset for geometry reconstruction implemented in SurfFitX 39

3.10. Contour extraction . 41

3.11. Loft from three contours . 43

3.12. Loft connecting extracted contours and existing geometry 43

3.13. B-spline sketching on mesh . 44

4.1. Hovering and selection . 46

4.2. Schematic drawing of translation and rotation 48

4.3. Transformation of far away objects . 48

4.4. Schematic drawing of scaling . 49

5.1. Screenshots from the frontend application 52

5.2. The menu . 53

5.3. Frontend requesting a mesh from backend 55

6.1. Schematic overview over task . 58

6.2. Reconstructed part of the GEBracket . 58

6.3. ”Lofting” workbench in customized FreeCAD 59

125

7.1. Model of the Quadcopter . 62
7.2. Topology optimized quadcopter . 63
7.3. Level set smoothing . 64
7.4. Classification of participants with respect to their performance in the both

systems . 65
7.5. Comparison of time needed for teaching in SurfFitX and in FreeCAD . . . 67
7.6. Success in part one . 67
7.7. Comparison of the time needed for the second part of the task 67
7.8. Comparison of time usage in part one . 68
7.9. Comparison of the SUS scores in a boxplot 69
7.10. Average ratings of the SUS items . 70
7.11. The interface between 2D sketches and 3D model 76
7.12. Concept created in VR . 76

8.1. Hybrid CAD system . 82

B.1. OCCT topological model . 101
B.2. Primitive shapes . 102
B.3. Boolean operations . 103
B.4. Loft surfaces . 106
B.5. Outer contour of connected faces . 108
B.6. Discretization parameters for meshing . 109
B.7. Cell and point data in VTK . 110
B.8. Interpolation of cell data to point data . 111
B.9. Line probing on dataset . 111
B.10.Isosurface inside a dataset . 114

126

List of Tables

1.1. Summary of different design tools . 2

7.1. The ten SUS items. 70

8.1. Comparison of two systems . 81

127

List of Listings

B.1. Iterating over a shape . 100
B.2. Exploring a shape . 100
B.3. Creation of a circle in OCCT . 102
B.4. B–Spline approximation of points . 104
B.5. Creation of a loft surface . 105
B.6. Shape healing and analysis . 107
B.7. Meshing a TopoDS Shape . 112
B.8. .step writing . 113
B.9. .step reading . 113
B.10.Creation of a grid with point and cell data: 115
B.11.Interpolating a dataset’s cell data to point data 116
B.12.Probing a dataset along a line . 116
B.13.Extracting an isosurface . 117
B.14.Writing a .vtk file: . 118
B.15.Reading a .vtk file . 118
B.16.Writing a .stl file . 119

129

Acronyms

AR augmented reality

BREP boundary representation

CAD computer-aided design

CAE computer-aided engineering

CSG constructive solid geometry

FEM finite element method

FMM fast marching method

GO game object

GUI graphical user interface

HMD head-mounted display

HUD head-up display

IDeAs Interactive Design Assistant

IGA isogeometric analysis

NURBS non-uniform rational B-spline

OCCT Open CASCADE Technology

SDF signed distance function

SIMP Solid Isotropic Microstructure with Penalization

.step Standard for The Exchange of Product model data

.stl stereolithography

SUS System Usability Scale

UEx user experience

VR virtual reality

VR Virtuellen Realität

SurfFitX Virtual Reality Surface Fitting Extension

VTK Visualization Toolkit

130

	Abstract
	Zusammenfassung
	Introduction and background
	Potential use of virtual reality technology in computer-aided design
	Design assistance: Topology optimization and reverse engineering
	Siemens CADinVR prototype and surface fitting extension
	Structure of the thesis

	Methods
	Description of geometry
	Exact representation of geometry
	Approximate representation of geometry
	Geometry conversion and comparison

	computer-aided design
	Philosophy and requirements
	Open CASCADE Technology
	FreeCAD

	virtual reality
	Hardware
	Design in virtual reality
	Unity3D
	virtual reality software interface

	Topology optimization
	Theory
	Input and output

	Level set and voxel description
	Level sets
	fast marching method
	Level set propagation
	Boolean operations on level sets
	Visualization Toolkit

	B-splines
	B-spline curves and surfaces
	Continuity

	Design Workflow
	Topology optimization
	Definition of boundary conditions
	Optimized voxel geometry

	Consistent level set
	Parametric geometry reconstruction
	Mesh visualization
	Contour extraction from meshes
	Loft surface creation
	B-Spline sketching

	User interaction
	Shape interaction
	Sketching
	Camera adjustment

	Implementation
	Frontend
	General overview
	Large meshes and compound objects
	The menu
	Coordinate mapping

	Backend
	General overview
	Exchange data types

	User study
	The task
	Experimental setup
	Evaluation procedure

	Results
	Topology optimization workflow using Virtual Reality Surface Fitting Extension
	GE Bracket
	Generate Quadcopter

	User study
	The Task
	System Usability Scale
	Interview

	Expert Interview
	Today's engineering workflow
	Sketches and drawings in virtual reality

	Discussion, conclusion and future directions
	The design workflow
	User Study
	Simple and intuitive user interface
	Easier learning experience
	Better access to 3D design tools
	Concept design

	The role of virtual reality in computer-aided design
	Conclusion
	Future directions

	User study: Material
	The task
	Userguide FreeCAD
	Userguide CADinVR

	Questionnaires and interview
	The Background Questionnaire
	The SUS Questionnaire
	Interview questions

	Tutorials
	Open CASCADE Technology: Tutorial and Examples
	Visualization Toolkit: Tutorial and Examples

