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Abstract

In this thesis we develop an MPI parallelization for the Fast Multipole Method in the
Molecular Dynamics software MarDyn. Different optimizations to the implementation
were investigated to minimize communication overhead. By restructuring of the standard
Fast Multipole traversal and the usage of non-blocking communication routines, an over-
lap between communication and computation is created. Furthermore, synchronized local
reduce operations are used to avoid collective operations which significantly improves
parallel efficiency for large scale simulations. Moreover, we discuss novel applications of
the zonal methods for parallelization of long range interactions in the context of the Fast
Multipole Method. Therefore, a new adaptation of the NT method was designed which re-
duces the communication partners to 6 in the local tree part and to 31 in the global tree part
for send as well as receive operations. In addition, import loads are reduced significantly
for the global tree part and for up to three levels in the local tree part. In this way, a parallel
efficiency of 67% with a speedup of 347 can be obtained even for small simulations with
2 local levels and 512 processors. For larger processor ranges relative speedups of 5.7 for
512 to 4096 processors and 3.6 for 4096 to 32768 processors could be achieved. Moreover,
the implementation is compared to the state-of-the-art Fast Multipole library ExaFMM.
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Zusammenfassung

In dieser Abschlussarbeit wird eine neue MPI Parallelisierung fiir die Fast Multipole
Methode in der Molekulardynamik Software MarDyn vorgestellt. Fiir diese Implemen-
tierung wurden mehrere Optimierungen entwickelt, um die Kommunikationskosten zu
verringern. Durch Verdnderungen in der Traversierung der Fast Multipole Methode und
durch die Verwendung von nicht blockierender Kommunikation wird eine Uberlappung
der Kommunikation mit den Berechnungen ermdglicht. Mithilfe von synchronisiertem
lokalem Datenaustausch schafft es die Implementierung komplett auf globale Reduktions-
operationen zu verzichten. Dies ermoglicht eine verbesserte Skalierung, vor allem fiir
Simulationen mit grofsen Prozessorzahlen. Auflerdem wurde ein neues Kommunikations-
schema entwickelt, um zonale Methoden innerhalb der Fast Multipole Methode verwen-
den zu konnen. Hierfiir wurden neue Importbereiche fiir die NT Methode definiert, mit
denen die Kommunikationspartner sowohl fiir das Senden als auch fiir das Empfangen
auf 6 fiir den lokalen Baum und auf 31 fiir den globalen Baum reduziert werden kénnen.
Dadurch konnte eine parallele Effizienz von 67% mit einem Speedup von 347 fiir 512
Prozessoren erreicht werden. Fiir die Testreihen zwischen 512 und 4096 beziehungsweise
4096 und 32768 Prozessoren konnte ein relativer Speedup von 5,7 beziehungsweise 3,6
gemessen werden. Zuséatzlich wird die hier erarbeitete Implementierung mit der Fast Mul-
tipole Bibliothek ExaFMM verglichen.
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1. Introduction

In our modern society computers have gained enormous influence on scientific research as
well as on the personal life. Through the years computers have developed from expensive
and large machines to affordable computing units used in smartphones or desktop com-
puters. As the increase of single-core computing power stalled over the past years, new
methods have been needed to increase overall performance of computer systems.

A solution to this problem that is studied heavily in the field of High Performance Com-
puting (HPC), is parallel computing. Here scientists try to adapt common algorithms to a
parallel computing environment, i.e. many processors that collaborate to solve a problem.
Hence, efficient algorithms were needed that try to improve the scalability, i.e. the reduc-
tion of computing time with increasing number of processors, as well as the single-core
performance through algorithmic improvements and vectorization. Often these two goals
are in conflict to each other as the most efficient single-core algorithms might be not suited
for a parallel execution. Consequently, researchers have to consider the trade-off between
single-core performance and scalability to choose the appropriate algorithm. Furthermore,
the problem size often dictates the usage of parallel computation, as single-core computa-
tions would not be feasible due to large runtimes.

Numerical simulations are one of the applications that largely benefit from parallel algo-
rithms. Some of the phenomena observed in nature cannot be studied realistically through
experiments or experiments might be too costly, time-demanding or dangerous. In these
cases numerical simulations are used to predict outcomes of experiments or to test hy-
potheses. As scientific research strives to simulate more and more realistic scenarios, these
computing requirements are constantly growing along with the problem size. Therefore,
runtimes are often too large to compute a simulation on a single core.

To satisfy these demands, modern simulations need to efficiently utilize clusters of pro-
cessors with up to millions of cores. Since these demands will continue to increase, HPC
research already targets the exascale where one exaFLOPS, i.e. 10'® computations per sec-
ond, with probably billions of cores will be available for the simulations. Supercomput-
ers already reach around 10'7 computations per second and these numbers are steadily
increasing [4]. The most powerful supercomputer in the world is currently Sunway Taihu-
Light with a theoretical peak performance of 125,436 TFlop/s (= 125.436 - 10'° computa-
tions per second) [4].

Molecular Dynamics [19] is one example of a simulation method that demands enor-
mous amounts of computation. Moreover, it also shows the huge scientific effort to in-
crease problem sizes for more realistic simulations. Recent simulations already reach tril-
lions of particles [15], however, simulations on a large scale, e.g. a cubic meter of gas at
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273.15 Kelvin and 101.35 kilopascal which contains 2.7 - 10% particles [19], are still out of
reach. These numbers demonstrate that there are still orders of magnitude that have to
be surpassed to simulate large scenarios at a molecular level. One of the biggest efforts in
the field of Molecular Dynamics is therefore to optimize sequential performance of the al-
gorithms through vectorization and algorithmic optimizations. Furthermore, researchers
try to design algorithms that are extremely parallel in order to utilize modern and future
supercomputers in the best possible way. This is done by optimizing mainly two things:
the force calculation between the particles and the communication scheme for the par-
allel algorithm. The latter also requires an efficient time-integration scheme for moving
the particles through space which often requires the particles to be redistributed to other
processors.

For the force calculation one has to distinguish between short and long range forces.
Short range forces have been successfully computed by introducing a cut-off radius to
the force calculation whereas long range forces demand more sophisticated approaches
like the fast summation methods. One of these approaches is the Fast Multipole Method
(FMM) [18, 21] which achieves an optimal scaling of O(n) where n is the number of parti-
cles. Because of these promising properties, the Fast Multipole Method is considered one
of the top 10 algorithms in scientific computing [14] right now and it is well suited for
exascale computing. In this work, we will try to implement a highly parallel version of the
Fast Multipole Method within the MD simulation program MarDyn [11, 23] by optimizing
communication costs through efficient data distribution and reduction of communication
overhead. This is done by reducing the number of communication partners as well as the
communication volume.

1.1. Overview

In chapter 2 we will give a short overview of the theoretical background in Molecular
Dynamics. The description will focus on the general algorithm and the computation of
the long range forces and especially the Fast Multipole Method. Furthermore, a quick
overview of the common parallelization methods in Molecular Dynamics and an intro-
duction to the Message Passing Interface will be given. In addition, the Molecular Dy-
namics software MarDyn will be presented followed by an overview of the related work.
Chapter 3 will then describe in detail our implementation starting from the basic parallel
version. Optimizations that include the reduction of communication partners and com-
munication volume through zonal methods [10] and algorithmic optimizations as well as
improvements within the MPI framework, will be discussed subsequently. Next, in chap-
ter 4 the results will be presented and an analysis of the scalability will be provided for
every optimization step. Finally, the work will be concluded in chapter 5 along with an
outlook for future research.
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2.1. Molecular Dynamics

The prediction of particle movements is an important part of modern simulations. His-
torically, the Schrodinger equation was used to described the interactions between parti-
cles. However, only in rare cases an analytical solution exists [19]. Therefore, approxima-
tions to the Schrodinger equation were proposed, such as the Born-Oppenheimer approx-
imation, which led to less complicated models. Unfortunately, solving the approximate
Schrodinger equation is, in general, too complicated for large scale simulations. Con-
sequently Molecular Dynamics use a more drastic approximation by using classical me-
chanics to simulate the movement of the nuclei of a particle and by calculating the forces
through analytical functions which use parameters obtained from experiments or param-
eter fitting.
The resulting problem, also known as the N-body problem, can be formulated based on
Newton’s second law of motion:
FZ' =m; - a; (2.1)

where Fj is the force that acts on the particle ¢, m; the particle’s mass and «a; the accelera-
tion of the particle. The result is a system of ordinary differential equations of second order
since the acceleration is the second derivative of the particle position. However, this sys-
tem of differential equations is in general not analytically solvable for more than 2 particles
[19]. Hence, numerical methods were invented to solve the N-body systems.

Usually these methods are split into two phases: the force calculation and the time-
integration step, i.e. the movement of the particles. The first step is solved by summing up
the force contribution of surrounding particles using analytical functions for the particle
potentials. This results in an O(n?) algorithm for pair-potentials as every particle pair
needs to be considered. After calculating the forces, a time-integration scheme is used to
adjust the particle positions for the next time-step.

The general algorithm for a molecular dynamics simulation can then be summarized as
follows [19]:

1 while(t < t_end){

2 force calculation
3 //time integration scheme
4 move particles according to forces, position and velocity
5 of particles (maybe with previous values of earlier time—steps)
6
}
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A popular choice for the time integration is the velocity-Stormer-Verlet scheme [27, 19]
which updates the position « and the velocity v at every time-step as follows [19]:

Fr . 6t?

!t =2 4 Sl + lQmi (2.2)
F + F"h6t

U;H_l _ Uz'n ( i T ) (23)

2mi

Here the superscript denotes the time-step of the respective variable. The benefit of the
velocity-Stormer-Verlet method is that it is less prone to rounding errors as other methods,
compared to the classical Stormer-Verlet method [19], and that the velocity is available
at the same time-steps as the position of the particles which enables a fast calculation of
thermodynamic quantities like the kinetic energy [19].

Another important part of an MD implementation is the force calculation which will be
discussed in the next section.

2.1.1. Force Calculation

In the general MD algorithm, mentioned in the last section, the forces acting on the parti-
cles have to be evaluated. A simple algorithm to achieve this would be a direct summation
approach to sum up all pair-wise interactions:

for all particles p{
for all particles p2 != p{
calculate forces acting on p caused by p2
using analytical functions

As one can see, the direct summation during the force calculations needs two nested for
loops resulting in the previously mentioned O(n?) complexity of the algorithm. This com-
plexity disqualifies the direct summation for large scale simulation with billions of parti-
cles as the amount of computation grows too fast. As numerical calculations, in general,
only need limited accuracy, approximations can be applied to reduce the computational
work to quasi-optimal O(n - log(n)) or even linear O(n) complexity. The applied schemes
differ depending on the properties of the specific potentials used for calculating the force.

Short range forces

Forces that decay “fast” in space are called short range forces [19]. An example is the
Lennard Jones potential [19]:

o3 )
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n

1

where 7;; is the distance between particlei and j and o = —— ( ”

mm

— ﬁ) o and e are con-
stants that are normally determined via parametrization of the specific material of interest.
The remaining parameters m and n are usually chosen to be m = 6, for simulating the van
der Waals force, and n = 12 for the Pauli repulsion.

These large exponents are responsible for the fast decay of the potential for large dis-
tances which led to the first technique to reduce the complexity of the force calculation.
The idea is to simply neglect interactions to particles that are far away. This is done by
introducing a cut-off radius 7., [19] which should be large enough to keep the error of
the calculation sufficiently small. During the force calculation all the interactions are omit-
ted if the distance is larger than the cut-off radius r.,;. As the number of particles in a
specific volume is limited, the number of particles in the cut-off radius is a constant. Con-
sequently, only a constant number of force contributions have to be considered per particle
which reduces the complexity to O(n).

Finding all particles within the cut-off radius is one of the problems of this method. A
naive implementation would check all particle distances resulting in an O(n?) algorithm.
Therefore, suited data structures are required to preserve the linear complexity of the algo-
rithm. Examples are the linked cell method [19] or Verlet’s neighbour lists [30]. The latter
saves a list of all particles within a certain distance 7,4, > 7cut for every particle. As the
particles move around in space, these neighbour lists have to be constantly updated. By
choosing 7,4, large enough it can be assured that no particle which is not in the neighbour
list will by closer than r.,; to the particle after a finite predefined number of time-steps. For
that reason, the lists are only updated after a predefined number of time-steps. Although
having linear complexity, the method requires a lot of book-keeping and updating of the
lists.

The linked cell method, on the other hand, applies a domain decomposition by intro-
ducing a grid to the domain. An illustration can be seen in fig. 2.1 where one can see the
single cells that are formed by the linked cell method. By saving all particles which are
inside each cell in a special data structure such as a linked list, one gets an efficient method
for accessing particles inside a specific area. If the edge length of a single cell is chosen to
be equal to the cut-off radius 7., it can be guaranteed that all particles that interact with
a particle in cell = are located inside of cell  or its direct neighbours. This limits the area
that has to be searched to a constant size which again leads to a constant work per particle
giving an O(n) algorithm. Similar to the Verlet lists one has to reassign the particles to the
cells every time-step as the particles move around in space. However, only a list for every
cell and not for every particle has to be updated.
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Figure 2.1.: Linked cells structure during the simulation. For the calculation of the forces
of particle inside the green cell only the cell itself and the red cells need to be
considered if the cell length is at least 7¢,;.

Long range forces

Unfortunately, not all forces decay fast enough in space to allow for a cut-off radius. One
example is the Coulomb potential [19]:

L qigj
U(r;:) = 24 25
( Z]) 41 €0 Tij ( )
with charges ¢; and g; of the respective particle i and j and the electric constant ¢y. The
Coulomb potential is used to calculate electrostatic interactions between particles which is
often required in Molecular dynamics in addition to the short range forces.
Another example would be the gravitational potential [19]:

mimj

U(’r‘ij) = —Ggr(w ~ (26)
ij
with gravitational constant G4, and masses m; and m; of the particles. Thus, fast solver
have been studied intensively in the context of molecular dynamics as well as astronomy.
By studying the shape of the curve for the coulombic or gravitational force it can be
seen that the potential changes fast for small distances r but changes insignificantly for
large distances. Similarly the forces, which are the spatial derivative of the potential, only
vary by a small factor for large distances. This leads to the concept of the fast summation
techniques that try to summarize the effect of multiple particles in one single force evalua-
tion. Famous fast summation methods are the Ewald summation [29], the Particle-Particle
Particle-Mesh (PPPM) [29] and the Fast Multipole method (FMM) [18] with complexities
of, respectively, O(n'®), O(n - log(n)) and O(n). In the following, we will restrict the de-
scription of fast summation methods to the Fast Multipole method as it is the focus of this
work.
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2.1.2. Fast Multipole Method

In 1985 Rokhlin proposed a method for an O(n) solver for the boundary value problem of
the Laplace equation which was a huge improvement over the common O(n?) solvers [24].
This improvement enabled larger simulations due to the better scaling of the computation
compared to the input size. Based on this work Greengard and Rokhlin developed the
Fast Multipole Method for the fast calculation of Coulomb or gravitiational interactions
that uses similar techniques [18].

The main idea in the algorithm is to divide the contributions of long range interactions
into a near and a far field [21]. Interactions to close particles are accounted for in the
near field computation whereas interactions to particles that are far away are considered
in the far field computation. The key aspect of this separation is that clustered particles
(y1,Y2,--ym) interact similarly with a particle z if the distance to the cluster is large. Conse-
quently it is not necessary to calculate all of these interactions separately, but instead they
proposed to use a pseudo particle yo which interacts with the particle and combines all the
effects of the clustered particles. Figures 2.2 and 2.3 show the key difference of the direct
summation approach versus the new pseudo particle approach. In order to get the com-
bined effect of all the clustered particles, they introduced the multipole expansion [18, 21]
which enables the computation of the Coulombic interactions to a cluster of particles by
using a pseudo particle. If the clustered particles have a maximal distance d to the pseudo
particle yo, it is possible to evaluate the force contribution of the cluster at every point that
has a larger distance d,,; to yo, i.e. dous > d or in other words to all particles outside of the
circle in fig. 2.3.

Figure 2.2.: Direct summation algorithm calculating all pairwise interactions of particles
[21].

Another observation is that the previous idea can also be applied in the opposite direc-
tion. That means that the contributions in the force calculation from particle x to the every
particle in the cluster (yi,y2,..,ym) is similar (see fig. 2.4). Again we can use the pseudo
particle idea and apply the interactions from outside of the cluster to the pseudo particle
and later apply these effects to the particles. This effect from the outside of the cluster is
represented by the local expansion [18, 21].

Combining these two ideas we can calculate interactions between distant clusters by cal-
culating these interactions only between the pseudo particles utilizing multipole as well
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>

Figure 2.3.: Interaction of multipole expansion y, with x that sums up all effects of all par-
ticles y; (M2P operator) [21].

x

Figure 2.4.: Building local expansion for x at yo. All y; may then evaluate the effect of x
through local expansion (P2L operator) [21].

as local expansions. However, it has to be ensured that the clusters are “well separated” in
order to get guarantees of the error bounds. The term well separated defines an implemen-
tation dependant value that represents the minimal distance between two pseudo particles
that is required if we want to use the pseudo particles instead of the single particles. This
restriction is necessary to get an error bound for the simulation. Greengard and Rokhlin
proposed a distance of at least 3 - R if every particle inside the two clusters (z1,22,..,x, and
Y1,Y2,-,Ym) have at most a distance R from the respective pseudo particle (z¢ or yo) which
are usually located at the center of the cluster. In fig. 2.5 one can see two well-separated
clusters which can interact via their multipole expansions. This reduces the complexity
of O(n - m) for the direct summation to the costs for the interactions of the multipole to
pseudo particles interactions, which can be done in constant time, the calculation of the
multipole expansions and the evaluation of the resulting local expansions at every cluster
particle, which costs respectively O(n) or O(m). Hence, the resulting cost is O(n +m) [18].

To get an efficient algorithm we now need to apply this concept in a hierarchical manner.
This can be done by increasing the cluster size the further away a cluster is from the particle
while still preserving the well-separation criterion. Therefore, the domain ! is recursively
subdivided into eight cubic cells resulting in an octree structure where the children of a
node represent the eight equally sized cubes located inside the parent node. This property

lwe limit ourselves to cubic domains
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Figure 2.5.: Interaction of 2 clusters via multipole expansions building the respective local
expansion (M2L operator) [21].

is illustrated in fig. 2.6 where the tree-structure and the respective subdivided domain is
shown for a 2D example using an quadtree instead of an octree. At every center of a cube
we now calculate the respective multipole expansion representing every particle located in
the cell. This process is repeated for every tree level. Consequently, the higher the level is
in the tree the larger the area gets which is assigned to the respective multipole expansion.
Using this strategy, well separated can now be redefined as the number of cells ws that
must be in between two cells in order to be able to calculate multipole interactions. As a
result, no interactions may be calculated to cells within the cube of edge length 2 - ws +
1 around the center of a cell (see fig. 2.8). Higher values for ws deliver more accurate
solutions at lower orders of the multipole and local expansions [21].

A simple algorithm based on this idea [21] would be to calculate the global tree of mul-
tipole expansions first and afterwards calculate all the interactions for every particle indi-
vidually by traversing the tree and summing up the effects of the multipole expansions on
the single particle. However, it must be ensured that no interactions are considered twice.
Therefore, one approach would be to start at the top level and calculate all the interactions
between the particle and the multipoles of subregions which do not contain the particle.
Moreover, these subregions need to be well separated to the subregion in which the par-
ticle resides. Next, the algorithm goes iteratively down the tree and continues with this
idea but discards cells that are children of already processed cells at higher levels. Hence,
only children of not well separated cells are considered in the lower level. At the bottom
level interactions to the particles within the leaf cells and their neighbours that are not
well separated still cannot be computed. This area is called the near field and the direct
summation algorithm is applied here despite its O(n?) scaling. By assuming a sufficiently
uniform distribution and a tree size of O(log(n)), it can be guaranteed that there is only a
constant number of particles in every cell. As a result, there is only constant runtime for
the direct summation. To keep the cost of the direct summation to a minimum the distance
ws can be set to ws = 1 [21]. This decision, however, causes a larger cost for the multipole
and local expansions as higher orders are required to guarantee low error bounds.

Unfortunately, this algorithm, which is similar to the Barnes-Hut algorithm [8], does not
give the desired linear scaling as traversing the tree of height O(log(n)) for every particle
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Figure 2.6.: Illustration of the spatial decomposition during the Fast Multipole Method.
Left: Domain is split recursively by subdividing it into four equal subregions.
Right: Tree representation of the recursive subdivision. Children of a node
represent the four subcells located inside of a parent cell.

costs O(n - log(n)). In addition, summing up the influences of all particles individually
for all multipole expansion on every level would also cost O(n - log(n)). To achieve lin-
ear complexity five operators need to be used that act solely between multipole and local
expansion or act between particles and expansions at the leaf level.

The first one is the Multipole to Multipole (M2M) operator which moves a multipole
expansion from one place to another in O(p*) where p is the order of the expansion. By ap-
plying this concept from the bottom to the top of the tree we can get multipole expansions
of parent nodes by moving all expansions of the children to the respective parent position
and summing them up. As a consequence, only leaf level multipoles have to be initiated
by summing up all particle interactions, using the Particle to Multipole (P2M) operator,
and every other multipole expansion can be calculated by traversing the tree upwards and
calculating the parent expansion from the child expansions. This process is illustrated in
tig. 2.7.

The next step utilizes local expansions which is one of the main differences to the pre-
vious approach. As in the Barnes-Hut like algorithm we start from the top of the tree
and traverse downwards calculating all the interactions between well separated cells. The
significant change, however, is that this is not calculated for every particle but instead a
local expansion is built for every cell. This can be done by summing up the influence from

10
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Figure 2.7.: Upwards pass during the FMM traversal. Multipole expansions and particles
are marked by dots and red highlighted dots are updated in the respective step.
Left: Initial calculation of the leaf level multipole expansions directly from the
particles with the P2M operator. Midle and Right: Calculation of higher level
multipole expansions from children in the tree using the M2M operator.

the interactions with other cells on the current level. The operator for doing this is called
Multipole to local (M2L) operator. Again it has to taken care of that no interactions are
considered twice. Hence, only interactions to cells that are children of not well separated
cells of the previous level and which are in addition well separated are used. In the result-
ing scheme for ws = 1 a cell interacts with all the cells that are children to a neighbour of
the parent of the considered cell or, in other words, the 2 layers of cells that surround the
parent area of the current cell (see fig. 2.8). Additionally, the cells of course need to suffice
the criterion of being well separated. As a result, there is a maximum of 6% — 3% = 189
interactions per cell (for ws = 1) on every tree level which are referred to as the interaction
list of the cell.

The last phase of the algorithm needs the Local to Local (L2L) and the Local to Particle
(L2P) operators. The L2L operator, similarly to the M2M operator, moves the local ex-
pansion to another place. Therefore, higher level local expansions can be moved to their
children positions and added up with them. By traversing down the tree, the influence of
the higher levels can be propagated down to the leaf level. The resulting local expansions
at the leaf level now combine the effect of the complete far field for every particle in the cell
and by using the L2P operator it is possible to evaluate this effect at every particle position
inside of the respective cell. This process can be seen in fig. 2.9 which demonstrates the
single steps and also visualizes the similarity to the upward traversal in the first step. The
only difference is that now local expansions are propagated down instead of multipole
expansions that are propagated upwards.

In addition to those steps, the near field interactions need to be summed up directly as
in the Barnes-Hut approach causing constant work per particle which, however, does not
conflict with the overall linear complexity.

11
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Figure 2.8.:

Figure 2.9.:

[lustration of the M2L operator during the FMM algorithm. Left: M2L oper-
ations that need to be done for the calculation of the red local expansion. The
area of the parent cell is highlighted in purple. Right: Larger example that
illustrates the concept of well-separated cells. The parent area (purple) and
the green area are not well separated for ws = 1 and therefore no interactions
may be calculated to the included cells. The grey area denotes the area that
was already accounted for in multipole interactions on higher tree levels and
interactions to this area are therefore ignored.

Downwards pass during the FMM traversak. Local expansions and particles
are marked by dots and red highlighted dots are updated in the respective
step. Left and middle: Local expansions are propagated down starting from
the highest tree level with the L2L operator. Right: The combined far field
effect is evaluated for every particle with the L2P operator.

Using these operators it is possible to formally define the whole algorithm based on

[18, 21]:
1 //step 1

. P2M

» for every particle{

3 build
i}

initial leaf level multipole expansions

12
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s //step 2: upward pass with MM

¢ for level = level.max — 1:1{

7 //iterate over all cells in curent level

8 for cell = 1:8%level{

9 build multipole expansion of cell from 8
10 children expansions with the M2M operator
11 }

12}

s //step 3: horizontal phase on every level with ML
u for level = 1:level max{

15 //iterate over all cells in current level

16 for cell = 1:8"level{

17 for cell2 in interaction list of cell{

18 build local expansion of cell by computing
19 M2L interaction of cell2 to cell

20 }

21 }

22}

» //step 4: downward pass with L2L

u for level = 2:level_max{

2 //iterate over all cells in current level

2 for cell = 1:8"level{

27 add contribution of parent local expansion
28 to cell local expansion

29 }

30}

s //step 5: far field computation with L2P
» for every particle{

3 evaluate far field through local expansion of
34 corresponding leaf cell
35}

s //step 6: near field computation with P2P
v for every particle{

38 for particle in every not well separated cell{
3 evaluate pair—wise potential

40 }

41}

With this formal description we can analyse the complexity of the Fast Multipole algo-
rithm step-by-step. In step 1 we calculate a single P2M operation for every particle which
costs O(p*) where p is the order of the expansion. As the order will be a constant that only
depends on the desired error bound, the P2M operation takes constant time. As a result,
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step 1 takes O(n) work. The second step now calculates the M2M operation for every cell
which also costs O(p*). Assuming a tree height of O(logs(n)) we have at most cxn € O(n)
cells at the leaf level. The total number of cells can then be calculated by:

levelmax 1 i S 1 i ]
; cn<§) <§c-n-<8) :?-c'nEO(n)

So we get a linear complexity as there is only constant work per cell. In step 3 we have at
most 189 M2L (€ O(p?)) operations per cell which is again constant work per cell as 189 is
fixed. Similar to step 2, step 4 has one L2L (€ O(p*)) operation per cell which gives again
constant work per cell with O(n) cells. The fifth step is analogue to step 1 which gives
one L2P (€ O(p*)) evaluation per particle resulting in the same linear complexity. Last, the
direct summation step causes only constant work per particle due to the constant number
of particles that are not well separated to the leaf cell.

It should be noted that we assume a sufficiently uniform distribution and do not con-
sider any highly clustered scenarios where the number of particles in the surrounding cells
might exceed a constant number. For such cases an adaptive method has been proposed
[12] to better handle highly non-uniform cases. In this work, however, we only look at the
uniform case using the standard Fast Multipole Method.

Another possible pitfall of the algorithm is the high complexity of the operators with
O(p*) which can lead to slow simulations. Therefore, improved versions of the operators
have been developed using Wigner rotation matrices reducing the complexity to O(p?)
[32]. There are even approaches that try to reduce the complexity further to O(p?) ([21]
and references therein). An overview of many M2L operator implementations and their
complexity can be found in [33]. In this work an FFT acceleration [17] is used in addition
to the standard M2L implementation that requires only O(p? - log(p)) computations.

Dual tree traversal

An alternative way to define the FMM is to use a recursive approach. The resulting algo-
rithm that is a hybrid approach between the standard FMM and a treecode algorithm such
as the Barnes-Hut algorithm [8] is called dual tree traversal [13, 34, 33].

In the dual tree traversal there is a distinction between “source” and “target” cells. In our
considerations, however, all cells are both “source” and “target” at the same time. At the
start of the algorithm one cell that is comparable to the root cell of the FMM is pushed on
a stack for source and target cells (see fig. 2.10 on the left). After this initialization, in every
iteration a cell pair is pulled from the stack and the larger of the two cells is subdivided.
Then for every combination of refined cell pairs, a multipole acceptance criterion (MAC)
[13] is applied that decides, based on for example cell lengths and cell distance, if an M2L
interaction can be applied or if the cells are too close together. The MAC is similar to
the “well defined” criterion of the interaction list based approach mentioned earlier. If the
MAC criterion is fulfilled, the interaction is calculated. Otherwise, the cell pair is pushed to

14



2.1. Molecular Dynamics

the stack as it needs to be refined. If a cell cannot be refined, a direct summation approach
is applied to calculate the interactions between the source and the target. As soon as all
refined pairs are processed, the next iteration is started. This process is depicted in the
right part of fig. 2.10. The algorithm terminates if the stack is empty. Benefits of the dual
tree traversal are the flexibility of the definition of the MAC and the ability to use the

method with non-cubic decompositions, which makes it easy to apply adaptivity to the
method [34].

Initial step Iterative step
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Figure 2.10.: Illustration of the dual tree traversal. Left: Initialization of the source and tar-
get tree. Right: General algorithm for processing the stack. The MAC is used
to decide if a cell needs to be refined or if the interaction can be calculated.
(image source [34])

2.1.3. Parallelization methods in Molecular Dynamics

In the previous sections the basic algorithm for Molecular Dynamics was derived and dis-
cussed as it is used in sequential programs. Unfortunately, sequential algorithms do not
achieve sufficient sizes and runtimes for many modern Molecular Dynamics simulations.
This is mainly due to two reasons: limited computing power of single-core processors
which has not increased significantly over the previous years and the limited memory
which is available for single-core computations. Both problems can be, to some extend,
solved by parallelization. Parallel computers offer large numbers of nodes consisting of
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multiple cores which are connected via fast networks, such as infiniband, and large mem-
ories which are nowadays often distributed over the nodes [19]. By using parallelization
techniques and suited communication routines, algorithms can be implemented which
distribute work to the cores of a multicore computer or cluster. Consequently, overall run-
times can be reduced and more memory is available for the complete simulation. Keeping
communication costs and additional overhead as low as possible for the parallel strategy
is one of the most important parts when designing these algorithms in order to get the best
performance.

In molecular dynamics a well-known parallelization strategy is the domain decomposi-
tion [19]. Here, the simulation domain, i.e. the virtual area in which the simulation takes
place, is partitioned into multiple subareas which are then assigned to a unique proces-
sor. There are multiple strategies on how to do this partitioning based on communication
costs and load balancing. The standard approach simply generates subdomaines of equal
size whereas other methods use more complex subdomains to get better load balancing
if particles are not uniformly distributed over space. One example of such an advanced
approach is the KD-tree decomposition [9]. In the following we restrict ourselves to the
description of the standard decomposition as no other technique is required for uniform
distributions which are studied in this work.

Figure 2.11 illustrates the standard domain decomposition for four processors. One
problem that arises with this partitioning is that particles which reside at the borders of
the subdomains have to interact with particles in neighbouring subdomains during the
fore calculation. Therefore, communication is needed as every processor only stores the
data of particles that are located in his local subdomain. If this method is combined with
the linked cell method (section 2.1.1) and a cell length which is at least as big as the cut-off
radius, this means that for short range interactions only the border area, i.e. neighbouring
cells which are direct neighbours to the local domain, needs to be imported. Hence, one
naive approach is to simply import those cells from all the 26 processors with neighbour-
ing subdomains. Another technique that uses less communications can be implemented
in a three step process (see fig. 2.12). First communication is performed in the z dimension
communicating the border area to the respective neighbours. Next, the border area and
the already received halo cells, i.e. the extended layer of cells outside of the local subdo-
main, of the x dimension are communicated. This process is repeated in the last step in the
y dimension. As a result only six communications are needed but two synchronizations
points are created between the single communication steps. The decision between this
three-step algorithm or the naive approach has therefore to be made considering the bene-
tit of less communication partners versus the decrease in parallelism due to the additional
synchronization points.

Another important aspect of the parallelization is the redistribution of the particles. As
particles move through space they might enter a neighbouring domain after a time-step.
Therefore, another communication step is needed to transfer particles to the new processor.
This can be done by communicating all particles that have moved from the local area to
the halo cells to the respective neighbour. A similar approach as in the communication
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2.1. Molecular Dynamics

Figure 2.11.: Standard domain decomposition with four processors in a 2D example. The
thick lines mark the borders of the local subdomaines whearas the thin lines
mark cell borders of the linked cell container.

.

|74

Figure 2.12.: Three-phase algorithm of the border cells. Communication starts in z direc-
tion, followed by the x dimension and the y dimension. Already available
cells are send in addition to the border cells to reduce the number of commu-
nication partners (image source [19]).

step for the force calculation can be used to achieve this by either communicating to the 26
neighbours or by doing a three-phase algorithm using only six communication partners.

This gives a basic algorithm for parallelizing Molecular Dynamics simulations using
short range interactions. Parallelization techniques for long range forces will be explained
next.

Long range forces

The main difference of long range forces (see section 2.1.1) compared to short range forces
is that it is not possible to introduce a cut-off radius, but instead interactions to all particles
need to be considered. This is in conflict to the previously introduced domain decomposi-
tion which aims to distribute the particles and calculate forces mainly on the local subre-
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gions. In addition, a simple halo communication will not suffice for the force calculation
as all particles need to be considered.

Fortunately, fast summation techniques such as the Fast Multipole Method have better
properties than a naive direct summation algorithm. In the Fast Multipole Method an
octree decomposition is used to recursively split the domain into smaller subdomains. This
process shows already the similarities to the domain decomposition. A common approach
is to assign processors to the nodes on a particular level of the tree. If the number of
processors p is a power of 8, i.e. p = 8% the k-th tree level has exactly p nodes which can
be assigned to a unique processor. A concept introduced by [35] now defines the subtree
that contains only the children of such a node as the local tree which is completely stored
at the respective processor. The tree until the k-th level is called the global tree and the
k-th level is referred to as the global level. In fig. 2.13 one can see a 2D illustration of this
concept. In addition to the decomposition, data has to be communicated for computations
in the global and the local parts of the tree. The communication in the local part of the
tree is restricted to the horizontal pass as the upwards and downwards passes solely act
on local values. Therefore the two neighbouring layers of multipole expansions need to be
imported for the calculation of the local expansions. In the global part of the tree, however,
the upwards pass needs communication in addition to the horizontal pass. In the upwards
pass the values obtained by the M2M operator need to be communicated and summed
up. Different strategies for the horizontal and local part of the tree will be compared in
chapter 3.

Zonal methods

Zonal methods [25, 10] aim to reduce import loads and communication partners by allow-
ing updates to particles inside of a halo region, i.e. particles that reside in a neighbouring
domain and which are only imported for force calculation, or even to particle pairs where
neither of the particles resides in the local subregion. Methods that use the latter criterion
are called neutral territory methods. However, these methods should not be mistaken for
the NT method [25] which is a specific neutral territory method that introduced the con-
cept of neutral territories. The previous approach, where all cells in the surrounding layer
around the local subdomain were imported, can be referred to as the full shell methods.
A simple zonal method based on this idea, is to import only half of the cells necessary to
tinish the force calculation and to allow updates to particle forces inside of the halo area.
By communicating these halo values back, it can be guaranteed that all particle interac-
tions are taken into account. This HS method halves the import load and the number of
communication partners but requires an additional backwards communication. The HS
method is especially suited for few processors as for large processors the import load is
mainly influenced by the cut-off radius and cannot be arbitrarily reduced with the num-
ber of processors.

An approach that tries to improve the import loads for large numbers of processors
is the NT method which was along with the SH method [26] the first neutral territory
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2.1. Molecular Dynamics

Figure 2.13.: Global (above line) and local part (below line) of the tree for a 2D example
with 4 processors. The colours show the respective processor where the tree
data is stored. The yellow global part is not stored at a particular processor
and needs to be obtained by communication.

method. This discussion will be restricted to the NT method as it has similar properties as
the SH method. The NT method utilizes the concept of zones by defining a tower region
and a plate region (see fig. 2.14). The tower is the union of the local subregion and the
adjacent subregions in the positive and negative y direction that share a face with the
local subregion. The plate on the other hand is the union of the local subregion and half
of the cells in the zz area of the local subregion that are adjacent to the local subregion
including edge neighbours. By interacting all particles inside of the tower with all particles
inside of the plate it is guaranteed that all particle interactions are calculated. However,
it must be ensured that the particle distances are below the cut-off radius and that the
local subregion does not interact with the lower tower because otherwise interactions are
calculated twice. As a result the NT method reduces the communication partners from
26 to 6 in addition to a significant reduction in the import load. Moreover, there is only
one synchronization at the end of the computation required. One optimization is to omit
parts of of the plate that have always larger distance than the cut-off radius to the tower
which causes a reduction of the import volume. This process is referred to as rounding
[10]. By allowing non cubic subdomains the NT method can further reduce the import
load arbitrarily with increasing processors which makes it perfectly suited for exascale
computing. It should be noted that in the NT method the communication partners vary
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for send and receive as the plate for sending is exactly the other half of the zz area as it is
for receiving. Hence, 10 communication partners are required in total of which 6 are used
during the send operations and 6 during the receive operations.

The shown examples are part of the two zone approaches as only forces are calculated
between two zones. K-zonal methods consider multiple zones and define specific interac-
tion patterns to improve the import loads further (see [10] for more information).

Figure 2.14.: Illustration of the import region for the NT method from different angles [25].
Local subdomain is highlighted green, the tower import region is blue and
the plate import region is highlighted in red. Note that both tower and plate
contain also the local subdomain.

2.2, Message Passing Interface

The Message Passing Interface (MPI) [16] is a message-passing library interface specifi-
cation for the programming languages C(++) and Fortran. It focuses mainly on the de-
scription of the parallel message passing between processors in shared and distributed
memory scenarios but also defines other parallel routines, such as parallel I/O. As MPI is
only a formal description of the behaviour of the interface, it does not specify any concrete
implementation. Hence, multiple vendors implemented MPI, such as Intel [3], IBM [2] and
the open source project OpenMPI [5].

The MPI standard offers multiple ways to communicate between different processors
that do not share the same address space. The most common way of communication is
the M PI_Send and M PI_Receive that enable the user to send specified buffers from one
MPI process, also called MPI rank, to another. For these send operations multiple ver-
sions exist such as synchronous sends that block the communicating rank during the com-
munication or asynchronous communications that return immediately and perform the
communication transparently in the background of the program through the MPI library.
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By using asynchronous communication, the user, however, has to ensure that necessary
communication has finished before using the communicated values but it also allows for
an overlap of the communication with the computation which can increase the parallel
efficiency. Checking if an asynchronous communication has finished can be done by us-
ing wait or test functions (M PI_Wait or M PI Test). Another way of communication
that will be used in this work is the collective operation which enables the user to spec-
ify an operation that will be performed on a dataset by a subset of all ranks. Typically
these operations are reductions such as summations of values that are distributed over all
processors. A common example is the M PI_Allreduce that performs a reduction and dis-
tributes the result to all contributing ranks. The subset of ranks that participate in such a
collective operation are organized in communicators. The most general communicator is
the MPI_COMM _WORLD that is predefined by the MPI implementation and contains
all ranks.
For a more detailed description of MPI, we refer to the MPI standard [16].

2.3. MarDyn

MarDyn [11, 23] is a publicly available Molecular Dynamics simulation software designed
for large scale simulations written in C++. It is well suited for the execution on supercom-
puters even with heterogeneous architectures by using dynamic load balancing schemes.
Presently, the calculation of pair potentials for short range interactions such as the Lennard-
Jones potential as well as the long range interactions of particles, e.g. the Coulomb poten-
tial, is possible. For the calculation of Coulomb interactions the Fast Multipole Method is
available with a newly developed FFT acceleration [17] of complexity O(p*log(p)).

As the general Molecular Dynamics step computes short range and long range inter-
actions, the communication of the halo particles, which is needed for the P2P calculation
as well as the short range calculation, is already performed before the FMM traversal.
Hence, the implementation in this work only communicates expansion values during the
Fast Multipole traversal. For this reason, the particle communication is not included in the
presented time measurements. However, Eckhardt et al already showed in [15] that the
particle communication scales well for large scale simulations with trillions of particles.

2.4. Related work

The high interest in the FMM method caused a lot of research in the past years for optimiz-
ing the parallel performance of the FMM algorithm. Ibeid et al [20] uses similar techniques
as described in this work using list-based traversal with a separation of a global and a local
tree and reducing the number of communication partners to a constant per level. Based on
this scheme they evaluated a performance model for the FMM algorithm.

Yokota and Barba [34] use the concept of the Dual Tree Traversal, which was proposed
in [13] for the calculation of gravitational forces with treecodes, to increases the flexibil-
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ity of the FMM through adjustable MAC values and an easy implementation of adaptive
methods for nonuniform scenarios. Auto-tuning features are used to optimize the algo-
rithm based on the specific architecture and GPU parallelization is used to enhance the
performance.

In [33] Yokota introduces a task-based threading model to optimize intra-node load bal-
ancing and thread-level parallelism for the DTT approach. He showed that his imple-
mentation achieved orders of magnitude of increased performance in comparison to other
FMM implementations.

Lashuk et al [22] introduced an implementation for non-uniform test-cases on hetero-
goeneous architecture by using MPI for intra-node communication combined with shared
memory and GPU parallelization inside of the nodes. They apply a load balancing scheme
using morton-order sorting and redistributing of contiguous chunks to the processors
based on the work of Warren and Salmon [31].
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In this section the parallel implementation of the Fast Multipole Method will be discussed
in detail showing the applied optimizations and the resulting benefits.

3.1. General concept

The general parallelization technique applied in this paper closely follows the work of [35]
using the tree decomposition of the domain with a global and a local tree as described in
section 2.1.3. We will now describe the basic implementation which will be then succes-
sively improved to get better parallel efficiency.

The current version only supports powers of 2 for the number of processors and dis-
tributes the MPI ranks as follows: The global level is computed by ceil(logs(p)) which
guarantees at least as many cells on the global level as processors since the number of cells
on each level is 8/, For powers of 8, one processor gets assigned to the cell that matches
his subdomain in the domain decomposition. For powers of 2 that are not powers of 8 the
domain decomposition does not provide cubic subdomains. Therefore, adjacent cells on
the global level can be assigned that fit exactly the pattern of the domain decomposition. A
2D example can be seen in fig. 3.1 for powers of 4 and for powers of 2 that are not powers
of 4. The levels below the global level contain the local subtrees. Each processor stores
the local tree that is rooted at the cell he is assigned to at the global level. If the processor
stores multiple cells on the global level, he also stores multiple subtrees. As the concepts
are the same for situations where multiple cells are assigned to a processor on the global
level compared to those with one unique cell, we restrict the further description to powers
of 8 (or 4 in 2D).

In section 2.1.3 it has already been shown that in the local and in the global part of the
tree communication is required to finish the FMM computation. The exact communica-
tion pattern differs for the global and local part of the tree which will be discussed in the
following.

By analysing the FMM algorithm one can see that during the processing of the local tree
only cells outside of the local tree are accessed in the horizontal phase while using the M2L
operator. Here the two layers of cells that surround the parents cell area are required (see
section 2.1.2). As the parent is always located on the same processor, the surrounding cells
are either located on the same processor or are directly adjacent to the local subregion. By
combining these import regions for all local cells one can easily see that all cells within the
two surrounding layers of the whole local subregion need to be imported for every local
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Figure 3.1.: Distribution of the processors on the global level in 2D. Assignment matches
area of domain decomposition. The left picture shows the case for powers of 4
the right for powers of 2 that are not powers of 4 where multiple adjacent cells
are assigned to each processor.

level. An illustration of this can be seen in fig. 3.2. The communication routine which is
used for the import of the cells is the three-phase algorithm described in section 2.1.3. The
upwards and downwards pass of the FMM traversal as well as the P2M and L2P operators
operate only on parents or children inside the tree or particles inside the local subregion.
Hence, no further communication is required in the local tree part.

Figure 3.2.: Import region (red) for the M2L operations of the prcoessor with the green
subdomain.

In the global part of the tree, the algorithm tries to compute all parent values of the cell
starting from the root of the local subtree at the global level. Therefore, communication is
required to determine these values in the upwards pass as only one of the multipole ex-
pansions is locally available for the M2M operations. This problem is illustrated in fig. 3.3.
For the general implementation we use the property that the M2M operator simply sums
up all the contributions of all M2M operations during the calculation of the parent multi-
pole expansion. Therefore, one can sum up the values of the 8 processors that calculate the
value of the same parent multipole expansion at the level above the global level. Further-
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more, it is possible to use the partial values of the parent multipole expansions to calculate
a partial value for the higher level. The summation of all these now 64 contributions de-
livers the correct multipole expansion. This property allows us to calculate first all local
contributions of every processor during the upwards pass until the top of the tree. Then
a global reduction is performed calculating the complete global tree at every processor
by summing up all contributions. As a result, all mulipole values are available for the
horizontal phase in the global part of the tree.

/M

Figure 3.3.: The processor which stores the dark green cell in the global tree can only cal-
culate one of the contributions during the M2M phase for the light green cell.
The processors that store the other children of the light green cell have to com-
municate their contributions to get the final parent multipole expansion.

For the P2P phase the neighbouring cells of the linked cell container are needed as in
the short range scenario. Here we utilize the communication which is already performed
for the computation of the short range forces described in section 2.1.3. In this, we assume
that the size of the smallest FMM cell is < one short-range cut-off radius.

The following algorithm gives an overview of all the single steps:

// Start of upwards pass

Step 1: Calculate local P2M and M2M in local subtree

Step 2: Communicate 2 border layers of local cells to neighbours
for every local level (three—phase algorithm)

Step 3: Propagate partial multipole contribution upwards in
global tree

Step 4: Allreduce of multipole values in global tree

// Start of horizontal pass
Step 5: Compute P2P
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Step 6: Compute local M2L (without cells from neighbours)
Step 7: Compute M2L in local subtree to neighbouring cells
Step 8: Compute M2L in global tree

// Start of downwards pass

Step 9: Compute L2L in global tree
Step 10: Compute L2L in local tree
Step 11: Compute L2P in local tree

3.2. Maximizing Overlap between communication and
computation

After analysing the dependencies of the single steps in the basic algorithm one can see
that some of the steps are interchangeable. For example step 3 and 4 have no dependency
to steps 5, 6 and 7 and therefore the order of those steps can be changed arbitrarily. Fur-
thermore, the order of step 5, 6, 7 and 8 is arbitrarily as there are no dependencies in the
horizontal phase between the different M2L operations. However, there are no relative
changes in the last four steps possible. Also the last two steps are fixed and cannot be
replaced by any other step. Only step 9 of the downwards pass could be computed before
steps 6 and 7, but only if step 8 already took place.

With the knowledge of the dependencies we designed an asynchronous algorithm that
utilizes the interchangeability of the steps and the asynchronous communication methods
of MPI [16]. For maximal performance it is desired that the communication is overlapped
by as much computation as possible. Therefore, we designed the algorithm in the way
that the communication is started as soon as possible. Hence, the first four steps are kept
in exactly the same order as previously mentioned but the communication is replaced by
an asynchronous communication scheme. This scheme does not use the three-phase algo-
rithm but a communication with all 26 neighbours (see also section 2.1.3) as the three phase
algorithm needs synchronization steps during the communication which complicates the
generation of a maximal overlap. In addition the M PI_Allreduce procedure is replaced by
an asynchronous M PI_Iallreduce which is available in MPI 3 [16].

So far there is only little overlap between the communication and the computation.
Therefore, it has to be checked which of the interchangeable steps during the horizon-
tal pass do not require any communicated values. As already noted in the algorithm, step
6 uses only cells in the local subtree and consequently does not need any communicated
values. Also step 5 only acts on local particles and particles that have already been commu-
nicated before the start of the long range force calculation in the current implementation.
Consequently step 5 and 6 need to be processed first in the horizontal pass with arbitrary
order. Steps 7 and 8 on the other hand need the communicated values of step 2 and step
4 respectively. Since every of these steps requires only one of these communications to be
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finished, they can be started as soon as the respective communication finishes. To improve
performance, we implemented a busy waiting routine that checks which of the communi-
cations terminates first and then starts the respective step. This can be realized by using
the M PI_Test command that returns a boolean value to indicate if the communication has
already finished. In this way, waiting times of single processors are minimized.

The order of the downwards pass was not changed even though step 9 could have been
placed before the M2L phase in the local tree if the M PI_Iallreduce would finish first.
However, in normal scenarios the M PI_Iallreduce is by far the most expensive communi-
cation step that finishes after the other communications and, in addition, step 9 takes only
a small amount of computing time. Therefore, it was not interleaved with the horizontal
pass to facilitate the implementation.

It should be noted that the implementation of the algorithm waits until the halo values
from all 26 neighbours have arrived. To get a maximal overlap one could even start pro-
cessing halos that have already been received while still waiting for the other halo values.
As the effort for an implementation of this concept would not be in relation to the benefits
of this additional overlap, we decided against this concept.

The new algorithm with overlap looks as follows:

// Start of upwards pass

Step 1: Calculate local P2M and MM in local subtree

Step 2: Communicate 2 border layers of local cells to neighbours
for every local level (Asynchronous Isend)

Step 3: Propagate partial multipole contribution upwards
in global tree

Step 4: Asynchronous Iallreduce of multipole values in global tree

// Start of horizontal pass
Step 5: Compute P2P
Step 6: Compute local M2L (without cells from neighbours)
Step 7:
while (not both computations processed){
if (Isend of step 2 finished){ //using MPI _Test
Compute M2L in local subtree to neighbouring cells

}
if (Iallreduce of step 4 finished){ //using MPI _Test
Compute M2L in global tree
}
}

// Start of downwards pass

Step 8: Compute L2L in global tree
Step 9: Compute L2L in local tree
Step 10: Compute L2P in local tree
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3.3. Removing the collective operations

As mentioned in the previous section, the M PI_Allreduce as well as the M PI_Iallreduce
dominates the communication cost for large numbers of processors. Hence, a new scheme
was implemented to improve the parallel efficiency. Instead of calculating the global
MPI _Iallreduce one can instead use local reduces to get the 8 necessary contributions
of the higher level multipole expansions (see fig. 3.4).

Figure 3.4.: Visualization of the step by step process for avoiding a global M PI_Iallreduce.
Starting from the global level a reduce is performed for every group of 4 child
processes to finalize the light green multipole value of the next level (left). Af-
ter a level has been completely finalized the next level is processed in the same
manner (right).

Although one can significantly reduce the communication volume with this approach,
one now has to wait until values have finalized before calculating the M2M operation for
the next higher level. This adds additional synchronization points to the algorithm as
otherwise the number of communication partners for the reduce would multiply by 8 for
every higher level resulting in a global reduce at the root of the global tree. However, the
significant decrease in communication partners to logs(p) * 8 € O(log(p)) instead of O(p)
might be worth the additional synchronizations. Furthermore, the communication volume
can be drastically reduced as now only the needed path up the tree is communicated and
not the whole global tree.

It should be noted that on every level different processors need to communicate as pro-
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3.3. Removing the collective operations

cessors that communicated on the lower level now share the same parent node. Therefore,
the higher the level the farer the distance to the processors if a cartesian grid of processors
is assumed. For simplicity and to use the built in MPI optimization, we have chosen to use
M PI_Allreduces in every step. Since not a global reduction is desired, the M PI_Allreduce
is called with a subset of the processors which only includes the 8 necessary communica-
tion partners. Therefore, M PI_Split is used to divide the processors into subgroups which
looks as follows:

int coords[3];
int myRank;
MPI_Comm_rank (_.comm,&myRank ) ;
//calculates own position in grid of processors
MPI_Cart_coords (.comm, myRank, 3, coords);
_neighbourhoodComms = new MPLComm|[ _globalLevel —1];
for(int i = _globalLevel —1; i>= 1; i——){
int stride = pow(2,_globalLevel — i);
MPLComm temp;
int rowLength = pow(2,i);
int colour = ((coords[2] / stride) * rowLength
+ (coords[1] /stride)) = rowLength
+ (coords[0] / stride);
MPI_Comm_split(.comm, colour, 0, &temp);
stride /= 2;
colour = ((coords[2] %= % stride) = stride
+ (coords[1] % stride)) = stride
+ (coords[0] % stride);
MPI_Comm_split(temp, colour, 0, &neighbourhoodComms[i —1]);

Here the MPI ranks are split based on their colour value and saved in the respective com-
municator for each level in the global tree. In the first split all processors are identified that
calculate the same parent multipole value. In the second split operation every processor is
grouped with 7 other processors that calculate other contributions to the multipole value.
In this scheme every processor communicates with seven processors at every level, even
though many processors share the same values at higher tree levels. Furthermore every
processor of a group of processors that share the same value communicates with differ-
ent processors. As it is desired that not single processors communicate more often than
others, this approach can be beneficial. However, depending on the specific architecture
other approaches could be useful. One approach would be to use one specific processor
that communicates for the whole group of processors which share the same value and then
distributes this value to all others. This could reduce communications between nodes on
clusters. In this implementation the first approach was chosen which will be referred to as
local reduce in the following.
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If the global reduce is removed from the algorithm, a second communication is neces-
sary to communicate the two border layers of the cell’s parent area as now the complete
global tree information is not available at the single nodes. Hence, a similar communica-
tion scheme as in the local tree part was implemented to solve this issue. However, since
every cell now resides on a different processor, we need to communicate with 189 different
MPI ranks as 189 neighbouring cells are accessed in the M2L phase. To guarantee that all
tree values have finalized, the communication is started at the end of the upwards pass.

The resulting new scheme is described by the following algorithm:

// Start of upwards pass

Step 1: Calculate local P2M and MM in local subtree

Step 2: Communicate 2 border layers of local cells to neighbours
for every local level (Asynchronous Isend)

Step 3: Propagate partial multipole contribution upwards
in global tree:
Synchronized reduces with Allreduce in groups of
8 processors in global tree

Step 4: Communication of 2 layers of cells in global tree
(Asynchronous Isend)

// Start of horizontal pass
Step 5: Compute P2P
Step 6: Compute local M2L (without cells from neighbours)
Step 7:
while (not both computations processed){
if (Isend of step 2 finished){ //using MPI _Test
Compute M2L in local subtree to neighbouring cells

if (Isend of step 5 finished){ //using MPI _Test
Compute M2L in global tree
}

}

// Start of downwards pass

Step 8: Compute L2L in global tree
Step 9: Compute L2L in local tree
Step 10: Compute L2P in local tree
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3.4. Reducing import loads and communication partners

3.4. Reducing import loads and communication partners

In this section we introduce different techniques to reduce the number of cells that need to
be imported during the FMM and how to reduce the number of communication partners
to decrease the communication overhead of the implementation.

3.4.1. Zonal methods

In section 2.1.3 we have introduced the concept of zonal methods to improve import loads
and reduce the number of communication partners. As import loads are not proportional
to the cell volume but to the number of cells in the Fast Multipole Method, zonal methods
cannot be used to get an arbitrarily scaling by reducing the cell volume as for short range
potentials. However, the reduction of the import area and the reduction of communication
partners can still be beneficial for FMM implementations.

We have shown that in the local part of the tree the two surrounding cell layers need
to be imported from 26 neighbouring processors. By using the HS method, we can halve
the import volume and communication partners but also introduce a second back com-
munication. Hence, there is no benefit for the FMM as we have the same amount of com-
munications and the same volume in total. The NT method on the other hand reduces
the number of send and receive operations to 6 which is an improvement even if the back
communication is considered. However, 4 communications are needed along the faces of
the subdomain which can increase the overall communication volume as we now need
to communicate two times 4 faces instead of only 6. Although this is a problem for large
subdomains, i.e. many local levels, the main focus of our optimizations are large numbers
of processors with small subdomains. Hence, face communications get smaller in respect
to edge and corner computations and a reduction in the communication volume can be
obtained. Table 3.1 shows the percentage of saved communication volume at different lo-
cal levels. One can see that the NT method is beneficial up to the third local tree level -
counted starting from the top of the local tree - which is in general sufficient as large num-
bers of processors reduce the number of local levels. For more than three local level more
volume is sent if both communication steps are considered. However the reduction of the
number of communications is still preserved for large subtrees.

For the global part of the tree the situation is different as a processor has no longer all
cells of the parent area available in his memory. Using a standard NT method with 1 cell
is not possible as for different directions the import radius varies depending on where the
cell is located in the parent region. Consequently, a new version of the NT algorithm was
designed in this work which was adapted to this specific scenario. By considering the
whole parent region as the local subdomain of a processor, the standard NT algorithm can
be applied by importing the two surrounding layers of cells as in the local part of the tree.
The only difference is now that every cell needs to be obtained from a different processor.

Using this approach however would decrease the parallel performance of the imple-
mentation as every processor in the parent region would now compute the whole tower
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Level | Imported cells | % compared to FS
1 48 (twice) 46.15
2 160 (twice) 71.43
3 576 (twice) 94.74
4 2176 (twice) 111.48

Table 3.1.: Table showing the benefit of the NT compared to the Full Shell (FS) method. The
percentage of communication compared to FS includes the backward commu-
nication volume.

and plate interaction. Furthermore, the cells of the other processors inside of the parent
region would be needed to compute all interactions. Consequently, a modification to the
standard tower and plate are needed. As every of the 8 cells in the parent region reside on
a different processor, one can split the tower and plate interactions into 8 parts to, on the
one hand, reduce the import loads and communication partners and, on the other hand,
avoid redundant calculation of M2L interactions. Therefore, the tower is restricted to the
subarea of the regular tower that is above and below the local cell inside of the parent
region. Furthermore, the plate is reduced to the subarea of the plate that has the same y
coordinate as the local cell. Hence, 8 combinations of subtowers and subplates, that com-
pute all the interactions of the NT method, are created. During the back communication,
it only needs to be ensured that all the contributions of the 8 different processors need
to be added up at the respective nodes. Using this approach the number of communi-
cation partners is reduced from 189 to only 24 communication partners for send as well
as receive operations. Again the communication partners differ for send and receive as
in the standard NT approach. Hence, a total of 40 different communication partners is
accessed during send and receive operations. Even though we need to communicate the
values back, this is still a huge improvement. Since communication partners are equal to
the number of communicated cells for the global tree, the overall improvements are the
same for the communication load.

The new algorithm is similar to the last one but includes a back communication after the
horizontal pass of the global and the local tree:

// Start of upwards pass
Step 1: Calculate local P2M and M2M in local subtree
Step 2: Communicate 2 border layers of local cells to neighbours
for every local level
(Asynchronous Isend with NT import areas)
Step 3: Propagate partial multipole contribution upwards
in global tree:
Synchronized reduces with Allreduce in groups of
8 processors in global tree
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3.4. Reducing import loads and communication partners

Figure 3.5.: llustration of the customized NT import zones for the global tree from differ-
ent angles. The green area is the parent area that contains 8 cells from different
processor. The black cell is the local cell stored at the illustrated processor. The
red area is the slice of the plate that has the same y coordinate as the black cell.
The blue area is the reduced tower that has the same z and z coordinate as
the black cell. The green cells which are part of the tower or plate have to be
imported too.

Step 4: Communication of 2 layers of cells in global tree
(Asynchronous Isend with NT import areas)
// Start of horizontal pass
Step 5: Compute P2P
Step 6: Compute local M2L (without cells from neighbours)
Step 7:
while (not both computations processed){
if (Isend of step 2 finished){ //using MPI_Test
Compute M2L in local tree to neighbouring cells
Backward communication of halo cells in local tree
}
if (Isend of step 5 finished){ //using MPI_Test
Compute M2L in global tree
Backward communication of halo cells in global tree
}
}
// Start of downwards pass
Step 8: Compute L2L in global tree
Step 9: Compute L2L in local tree
Step 10: Compute L2P in local tree
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3.4.2. Fused communication for global tree

As seen in the previous sections the global part of the tree faces the problem that many
cells on lots of different processors need to be imported for the M2L phase. Therefore,
normally 189 different cells are used from 189 different processors. There is, however, a
possibility to reduce the number of communication partners to 26 as in the local tree part.
The method which is based on [20] always aggregates all of the 8 cells that are located in
one parent region to reduce the number of communications. Therefore, during the upward
pass, when the parent multipole values are reduced for all 8 processors of one parent area,
the values of the current level are send in addition to the parent value. As a result, 9
cell values instead of only the parent value are communicated. Hence, every processor
now has the information of the whole parent region available at every level without any
additional communication.

With these additional cells, we can now reduce the number of communication partners
from 189 to 26 by only communicating to one processor for every of the surrounding par-
ent regions. Since there are only 26 of such regions, only 26 sends and receives are needed.
To equally distribute the communication work, every processor of a parent region com-
municates to different neighbouring processors. In fig. 3.6 one can see the main principle
of the fuse algorithm for a 2D example.

Figure 3.6.: Fused communication scheme for the green cell with purple parent region.
Left: processors with same parent region exchange multipole expansions (fuse
step). Right: One processor exchanges all four values for every parent region.
For every cell in the purple area another processor of the surrounding parent
regions sends the fused values.

This method can be combined with the NT method to even further reduce the communi-
cation partners to only 6 for send as well as for receive operations. Since the whole parent
region is now saved at every processor the standard NT communication scheme can be
used without any additional adjustments as mentioned before. However, the computation
scheme of the global tree can still be applied to avoid redundant computation. If this NT
scheme is used, an additional reduction at the end of the horizontal pass is required to
get all the contributions of the 8 processors in a parent region before sending them back.
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This is necessary as now every processor inside of a parent region computes different halo
contributions and the back communication can only be fused if the aggregated values are
known at every processor inside of the parent region.

3.5. Additional optimizations

As described in section 3.3, a method was implemented to avoid the global M PI_Iallre-
duce by using smaller reduces and adding synchronization steps inside of the upwards
pass. However, for some numbers of processors there might be a benefit of using an
M PI _Iallreduce instead of this approach. To get a more flexible scheme, the algorithm
was modified so that the synchronization method can be used up to a certain stopping
level and after this level an M PI_Iallreduce reduces the remaining global tree. Depend-
ing on the stopping level this final M PI_Iallreduce is not a global reduce as already
large parts of the tree have been finalized. Therefore, the reduce needs only to consider
pow(8, stoppinglevel) many processors. Again by equally dividing all processors with the
same values into different MPI communicators, every processor has to communicate to
the same amount of other processors. Since we now have a fully adaptive scheme that
can be optimized to the concrete scenario and number of processors, an auto tuning step
was implemented at the beginning of the simulation to calculate the best stopping level
by iterating over one iteration. This optimized stopping level is then used for the whole
simulation. As a result, the trade-off between large number of communication partners
and delay through synchronization can be handled better.

Another optimization performed in the implementation is to use ready sends instead
of standard sends. As in the MD routine normally a synchronization is required every
time-step for calculating temperatures or other physical values, we can already start the
receiving operations at the end of the previous iteration. Therefore, it is guaranteed that
the matching receives have been started before the next FMM calculation is performed.
This switch to ready sends improves the delay of the communication which decreases the
communication overhead. For backward communications in the NT algorithm, however,
standard sends are required as no global synchronizations guarantee that the matching
receive operations have already been started.
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4. Results

In this chapter a detailed analysis of the results for each implementation step is shown
to get a better understanding of the benefits and problems of the different approaches.
All tests were performed on a uniform distribution of particles with a constant density
throughout the simulation domain with periodic boundary conditions. A standard do-
main decomposition was performed for all tests, which splits the domain in equally sized
cuboid subdomains for each processor. The simulations were performed on the Super-
MUC cluster [7] (see table 4.1 for a description of the hardware).

In order to test the implementation for a wider range of parameters, three representa-
tive test cases were constructed. The first test case (A) is designed to guarantee two local
levels for the maximum number of processors in the respective scaling test. Every smaller
number of processors may have more than two local levels. The second test case (B) is
designed similarly but the number of local levels is reduced to 1 to get a better analysis for
smaller scenarios. Furthermore, this is the smallest possible scenario with only 8 local cells
and no local M2L operations. The last test (C) is computed with order 0 of the multipole
expansion and two local levels whereas the previous two tests are computed with order
10. Hence, the influence of different sizes and orders can be studied.

As the cluster does not allow for long simulations with small numbers of processors, ev-
ery scaling is split into three parts: one scaling from 1 to 512 processors with 10 time-steps,
one scaling from 512 to 4096 processors with 100 time-steps and, finally, one scaling from
4096 to 32768 processors with 100 time-steps. Furthermore, the different scalings have
different simulation sizes to increase the tree height for larger simulations and different
number of particles (see table 4.2 for details). If not stated otherwise, all simulations were
performed using O2 compiler optimizations and SSE vectorization instead of AVX vec-
torization !. However, another benchmark was performed to compare the AVX and SSE
vectorization of the final version. The Intel compiler 5.1 was used to build the program
and IBM MPI 1.4 to run the code on the cluster. In addition, the newly developed FFT
acceleration [17] will be tested to accelerate the M2L calculation. Since the M2L phase is
the most time-demanding part of the FMM algorithm, this decreases the parallel efficiency
as less computation is available to overlap with the communication.

It should be noted that all runtimes only include the processing of the FMM traversal
but exclude all other calculations in the Molecular Dynamics time-step. In particular, the
communication of the halo particles is not included as it is already required for the calcu-
lation of the short range forces before the FMM step (see section 2.3). All communications

Idue to technical difficulties
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Processor Type

Sandy Bridge-EPXeon E5-26808C

Nominal Frequency [GHz] 2.7
Number of Nodes 9216
Total Number of cores 147456
Total Peak Performance [PFlop/s] 3.2
Total Linpack Performance [PFlop/s] 2.897
Total size of memory [TByte] 288
Total number of Islands 18
Nodes per Island 512
Processors per Node 2
Cores per Processor 8
Memory per Core [GByte] 2 (1.5 avail)
Size of shared Memory per node [GByte] 32
Bandwidth to Memory per node [GByte/s] 102.4
Level 3 Cache Size (shared) [MByte] 2x20
Level 2 Cache Size per core [kByte] 256
Level 1 Cache Size [kByte] 32
Level 3 Latecy [cycles] 30
Level 2 Latecy [cycles] 12
Level 1 Latecy [cycles] 4
Latency Access Memory 160
Interconnect Technology Infiniband FDR10
Intra-Island Topology non-blocking Tree
Inter-Island Topology Pruned Tree 4:1
Bisection bandwidth of Interconnect [TByte/s] 12.5

Table 4.1.: Technical data of the SuperMUC Petascale System [7]

of multipole expansions that are listed in the algorithms of chapter 3 are included in the

FMM runtime.

4.1. Initial parallelization with overlap

First, the initial parallel version with maximized overlap described in section 3.2 will be
analysed. Figure 4.1 shows the strong scaling results for the different test cases without

the FFT acceleration.

One can easily see that the scaling for 2 local levels already scales up to 32 thousand
processors for order 10 as well as for order 0. Hence, the order seems not to influence the
scaling significantly. This can be explained by the reduced communication volume, as the
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4.1. Initial parallelization with overlap

Test case | Processor range | Number of particles | tree height | multipole order
A 1-512 672799 5 10
B 1-512 83974 4 10
C 1-512 672799 5 0
A 512 - 4096 5398158 6 10
B 512 - 4096 672799 5 10
C 512 - 4096 5398158 6 0
A 4096 - 32768 43252743 7 10
B 4096 - 32768 5398158 6 10
C 4096 - 32768 43252743 7 0

Table 4.2.: Simulation setup for the three test cases A, B and C with the different ranges of
processors.

communication volume scales like O(p?) where p is the order of the multipole expansion.
Consequently, communication volume is decreasing with lower orders as well as the com-
putation time. Apparently, these two effects are balanced well enough to give comparable
scaling effects even though the M2L operations scale like O(p*). The situation is different
for simulations with smaller trees. For 1 local level the scaling is reduced significantly and
therefore only moderate scaling can be obtained until 4096 processors. The reason for this
is the reduction of local computation due to fewer local levels. Hence, communication
dominates the overall simulation time for lower processor numbers as less overlap with
the computation can be achieved. Furthermore, the portion of the simulation time spent
in the global tree traversal increases for less local levels which also negatively influences
the scaling as redundant work is done in the global part of the tree.

These observations are in agreement with the waiting times for all test cases (see fig. 4.2).
The graphs show the amount of time the processors are waiting in a busy waiting routine
for the termination of the communication. In general, larger number of processors and
less local levels tend to increase the waiting time. An interesting observation is that even
though the order reduction does not influence the scaling as much as the reduction of the
tree height, both scenarios have a comparable increase in the waiting time. This supports
the hypothesis that besides the waiting time, the processing of the global part of the tree
decreases the performance of the FMM algorithm for small local trees. Moreover, for one
local level there is no M2L operation within the local tree which also reduces the overlap
with the halo communication.

Similar observations can be made if the FFT acceleration is enabled during the simula-
tion (see Appendix A.1). One can see that due to the reduction of computation in the FFT
implementation the parallel performance is heavily decreased and scaling can be observed
only to a processor number which is around £ of the number without the FFT acceleration.
This matches with the observation that the simulation with FFT acceleration is about seven
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Figure 4.1.: Strong scaling results for test case A (top), B (center) and C (bottom) in the
initial parallelization with overlap and without FFT acceleration.

times faster compared to the regular version. For cases where no improvement of the run-
time was observed at low numbers of processors, the last range of processors (4096 to
32768) was omitted.

Another difference to the default version is that the FFT acceleration involves pre- and
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Figure 4.2.: Amount of time waited in test case A (top), B (center) and C (bottom) compared
to the complete simulation time of the FMM algorithm.

post-processing steps, in order to convert to and from Fourier space. Hence, the speedup
that can be achieved depends on the degree to which those steps can be amortized by
the computation. As in the global tree only one M2L operation is computed for every
initialized cell, this might lead to smaller speedups in the global tree part. A detailed
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analysis of this effect, is, however, beyond the scope of the current work.

4.2. Optimizations

Besides the initial version with overlap, the single optimizations described in chapter 3
were tested on the SuperMUC cluster. Table 4.3 lists all tested optimizations along with
their abbreviations. A general overview of the results can be seen in fig. 4.3 for test case A
and in fig. 4.4 for test case B. An overview for test case C can be found in appendix A.2.
The figures show the speedup of the single optimizations compared to the initial version
with overlap for the specific processor numbers, i.e. the speedup is calculated by divid-
ing the runtime of the initial version by the runtime of the respective optimization. These
speedups should not be confused with speedups versus respectively 1, 512 or 4096 pro-
cesses. If no runtimes were measured in the initial version caused by the lack of any scaling
for large processor numbers, the speedups are calculated based on the first optimization
(locRed) with the removed global reduce operation. It can be seen that for almost every
processor number except for 1 processor the optimizations perform better. We now de-
scribe the observed benefits of the different optimizations in more detail based on figs. 4.3
and 4.4 and appendix A.2 where the single strong scaling results and waiting times can be
found for all test cases and optimization levels.

Abbreviation Optimization
initial initial version with overlap
locRed local reduces instead of global reduce
NT NT import areas are used
AT auto tuning of starting level for global reduce
AVX AVX vectorization is used instead of SSE

Table 4.3.: Abbreviations of different optimizations.

The first optimization (locRed) is the change from the global M PI_Iallreduce to local re-
duces with 8 communication partners described in section 3.3. In appendix A.2 the strong
scaling results and waiting times are shown for the different test cases. These results show
that the optimization already improves the scaling and decreases the waiting times sig-
nificantly (especially for 2 local levels). This benefit is maximal for high numbers of pro-
cessors as the global reduce dominates the runtime in these cases. As a result, scaling
of the runtime can be observed to much higher processor numbers, i.e. 32 thousand for
2 local levels and moderate scaling until 4096 for 1 local level. The lack of a collective
operation as well as the reduction of communication volume, therefore, outweighs the de-
crease of the parallel efficiency due to the additional synchronization points at every global
level. However, there is no improvement in the number of communications which is ap-
proximately O(log(p)) for the M PI_Iallreduce and for the new scheme. Hence, latency
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Comparison of speedups of different methods (2 levels)
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Figure 4.3.: Speedup of the runtime for the different optimization steps compared to the
intial version with overlap in test case A.
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Comparison of speedups of different optimizations (1 level)
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Figure 4.4.: Speedup of the runtime for the different optimization steps compared to the
intial version with overlap in test case B. In the range of 4096 to 32768 proces-
sors the comparison is to the first optimization (locRed) as no measurements

for the initial version are available.
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might only be reduced because of less synchronizations in the new version compared to
the M PI_Iallreduce which increases the overlap of computation and communication.

The next step (locRed_NT) is the reduction of the import load and communication part-
ners. First, the NT import was implemented which should be beneficial especially for few
local levels as the import volume savings are maximal in these cases (see table 3.1). The
strong scaling results in appendix A.2 support this hypothesis. Even for 2 local levels the
scaling improves noticeably which shows the benefit of the NT approach. For 1 local level
the improvements are larger and the waiting time (appendix A.2) as well as the scaling
could be improved so that good scalability until 4096 processors can be achieved. This
is also reflected in the speedups relative to the initial version which are significantly im-
proved compared to the first optimization for all test cases. Again test case B with 1 local
level shows the largest improvements of this optimization. These observations can also
be explained by considering the performance model in [20] with approximated commu-
nication time T,,_g_y = o 4+ nf + (h — hy,)y where « is the latency of the system, n the
message size in bytes, 5 the inverse bandwidth, 4 the number of hops of a specific message
and h,, the minimal possible number of hops for a message. In [20] it was observed that
for the local tree part the communication time is mostly influenced by the communication
volume whereas the communication in the global tree part is dominated by the hop costs.
Using the NT import areas a reduction of communications is achieved which at the same
time reduces latency a and the total message size n. Furthermore, less communications are
performed in the global tree levels. Hence, communication in both tree parts is improved.

Another optimization is the addition of the fused communication to the method (loc-
Red_NT Fuse). Unfortunately, despite the similar scaling, the method with fused commu-
nication showed slightly larger absolute runtimes with no improvement of scalability (see
tigs. 4.3 and 4.4). The waiting times (see appendix A.2) seem to be significantly improved
compared to the previous version, which can be explained by the reduction of commu-
nication partners and therefore less latency and overall hops. However, the additional
synchronization in the downwardpass, caused by the method, apparently leads to more
communication overhead than it saves. This effect is also seen in the relative speedups
compared to the initial version which are lower than in the optimization without fused
communication. Hence, for the next optimization steps fused communication was dis-
abled.

The auto tuning (locRed_NT_AT) of the starting level of the M PI_Iallreduce (see sec-
tion 3.5), improved the runtime especially for small processor numbers where a global re-
duce is superior to individual sends. This is caused by the MPI optimizations of the reduce
operator. Unfortunately, in some cases the auto tuning does not find the best level which
leads to slightly longer runtimes (see figs. A.14 and A.15). A possible solution to improve
the auto tuning could be to use multiple steps for the comparison of the different levels.
In this way, the waiting times which sometimes vary between the different processors and
simulation steps, could be predicted more accurately.

Another test was carried out to compare the AVX vectorization (locRed NT_AT_AVX)
to the SSE vectorization (locRed_NT_AT) for the FMM implementation. Previous results
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were performed with SSE optimizations although the SuperMUC architecture supports
AVX. Therefore, an AVX vectorization was tested to analyse the additional benefit for the
runtime. As the P2M and L2P operators are not vectorized, the improvements were limited
to about 9% of reduction in the sequential runtime. Therefore, the overall scaling was only
affected slightly as seen in figs. 4.5 and 4.6 but a reduction in the absolute computation
time was observed. The relative speedup to the initial versions shows that the AVX version
performs best for almost all scenarios and processor numbers.

4.3. Final Results

For a more detailed performance analysis the final optimization with AVX vectorization
(see figs. 4.5 and 4.6) was further examined. By looking at the runtime of the single op-
erators for 2 levels (see fig. 4.7) it can be observed that the computation of operators in
the local subtree scale well with the number of the processors. Unfortunately, the global
work increases with the number of processors which will at some point prevent further
reductions of the runtime. However, the observed decrease in scalability is mostly caused
by the increase in waiting time. Hence, it needs to be investigated if more sophisticated
approaches could lower these waiting times even further. Also faster interconnects and
memory controllers could be beneficial as they decrease communication time and, there-
fore, the waiting time. By looking at the other test cases (see appendix A.2) the same
observations can be made. The only difference is that for 1 level the waiting times have a
larger overall impact compared to the 2 level cases. This is the reason for the worse scaling
with 1 local level. It should be noted that F'M Mtotal in fig. 4.7 also includes the runtime
of the P2P, M2P and L2P operators.

Figure 4.8 shows the speedup for 2 local levels in test case A. For larger processor ranges
the relative speedup compared to the starting value of the respective range was evaluated.
The results show a good speedup of 347 for 512 processors with 5 tree levels, a relative
speedup of 5.7 between 512 and 4096 processors for 6 levels and a relative speedup of 3.6
between 4096 and 32768 processors with 7 levels. This is a huge improvement compared
to respectively 303.5, 3.3 and 0.7 of the initial version. Consequently, the implementation
reaches a parallel efficiency of 68% up to 512, 71% from 512 to 4096 and 46% from 4096 to
32768 processors (see fig. 4.8).
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Figure 4.5.: Strong scaling results for test case A (top), B (center) and C (bottom) with FFT
acceleration, AVX vectorization, dynamic global reduce adjustment and NT

import areas.
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Waiting time 2 local levels (with FFT)
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import areas compared to the complete simulation time of the FMM algorithm.
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Runtime of different M2L operators (2 level)
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Figure 4.8.: Speedup(top) and parallel efficiency(bottom) for the implementation with NT
import regions, dynamic reduce optimization and AVX vectorization in test

case A.

Number of particles 672799
Order 5
Tree depth 5 or Ncrit = 21
Periodicity 1 periodic image
Vectorization AVX
Distribution Uniform
Parallelization MPT only

Table 4.4.: This table shows the simulation setup for the comparison of MarDyn and Exa-
FMM.
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4.4. Comparison to ExaFMM

In this section the final implementation is compared to the FMM implementation of Ex-
aFMM [1] (released on 6/5/2016). It should be noted that it is, in general, hard to compare
FMM implementations as different expansions - spherical in Mardyn and cartesian in Ex-
aFMM - and different parallel or sequential accelerations are often used. Furthermore,
periodic boundary conditions might have different impact on the implementations. Due
to these difficulties, comparisons between different FMM codes should be taken with a
grain of salt.

As ExaFMM is optimized for low orders of the multipole expansion and MarDyn for
larger orders, the order was chosen to be 5 as it should produces similar performance for
both methods (see fig. 4.9). As ExaFMM performs best with the Dual Tree traversal (see
section 2.1.2), the DTT version is compared to the list-based approach of this work. In
order to get a similar acceptance criterion for DTT compared to the list-based approach,
theta was set to 0.53 to get a MAC that does not allow for interaction to any cell that is a
direct neighbour but allows interaction to any cell which is not a direct neighbour. Here
it is assumed that all cells are cubic which is not a necessary precondition for the DTT im-
plementation. For arbitrary sizes it is, however, not possible to construct a theta that gives
the same results as the list base traversal for every scenario. The constant Ncrit which
controls the depth of the tree was set to the average number of particles in a leaf cell which
is approximately 21 in our scenario. Consequently, each approach should produce similar
tree depths for both implementations. Particles were placed uniformly in both scenarios
and 10 iterations, which are equal to 12 force evaluations, were performed by both imple-
mentations. Furthermore, the codes were compiled using AVX vectorization and without
mutual force calculation. For parallelization only MPI was used without shared memory
parallelization. Table 4.4 shows further parameters like the number of particles.

In fig. 4.10 one can see the runtimes of both implementations. While ExaFMM performs
better for small numbers of processors, MarDyn outperforms ExaFMM for large scenarios.
This might be caused by the M PI_Alltoall operation used in the ExaFMM implemena-
tion for the cell exchange. As collective operations tend to produce bad scaling for large
processor numbers, a reduction of runtime could only be observed until 128 processors.
Another explanation for the worse scaling of ExaFMM is a suboptimal choice of param-
eters. Other choices for the expansions like spherical expansions or the list-based traver-
sal instead of the dual tree traversal might give better results. Furthermore, the multipole
data in ExaFMM scales with O(p?) which produces more communication load as the O(p?)
complexity of the spherical expansions in MarDyn. In addition, the communication of the
halo particles is included in the FMM runtime in contrast to our implementation (see sec-
tion 2.3). Larger test ranges are omitted as no reduction in runtime could be obtained for
ExaFMM.
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Figure 4.9.: Comparison of the runtime of different M2L implementations depending on
the order of the multipole expansion. The M2L time for the cartesian imple-
mentation of ExaFMM and our FFT implementation match best at order 5.
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Figure 4.10.: Comparison of the runtime for MarDyn and ExaFMM for different numbers
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5. Conclusion and Outlook

In this work we investigated different approaches for improving the efficiency of a paral-
lel FMM implementation. It was shown that collective operations may reduce scalability
drastically. Removing these collectives and reducing import load could significantly im-
prove parallel efficiency and therefore overall computation times for large number of pro-
cessors. The application of zonal methods has been shown to be beneficial for optimizing
communication costs. Therefore, a novel adaptation of the NT method was implemented
for FMM which could reduce import loads as well as communication partners and could
improve parallel efficiency especially for small test cases. Hence, strong scaling to higher
number of processors is possible with such approaches which enables faster computations
even at small problem sizes.

Bearing the difficulties of comparing FMM implementations (see section 4.4) in mind, we
could outperform ExaFMM in a uniform test case for 128 or more processors. However,
for small processor numbers ExaFMM benefits from its highly optimized single-core per-
formance resulting in lower runtimes compared to MarDyn. Hence, improving single-core
computation should be one of the main tasks for future research in order to get comparable
simulation time as the DTT approach of ExaFMM.

Another important aspect is the application of hybrid parallelization techniques. As
modern supercomputers mostly combine shared memory and distributed memory archi-
tectures, the usage of OpenMP [6] or other shared memory approaches is possible. Hence,
scalability could be improved through the reduction of MPI ranks which causes a decrease
of communication and at the same time an increase in local operations. However, spe-
cial care needs to be taken when it comes to load balancing threads in shared memory
approaches as some cell interactions might be filtered due to the well separation criterion
or the NT method which only interacts tower with plate cells. Furthermore, border cells
compute less if only local interactions are considered during the overlap with the com-
munication. Consequently, sophisticated approaches are necessary to outperform an MPI
only implementation which is ideally load balanced for a uniform distribution.

Furthermore, the application of approaches like zonal methods in adaptive scenarios
is an important topic. One way to achieve this would be to apply our optimizations to
the DTT method. In this way adaptive scenarios can be handled naturally and a broader
spectrum of applications could be targeted. Another way would be to use the adaptive
FMM method [12] and tailor our approaches to this new setting. One of the biggest issues
would be again the task of load balancing in such scenarios. However, it would also enable
the usage of processor numbers that are not powers of 2 which might be desirable for some
applications and architectures.
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A. Scaling Results

In this chapter various scaling results are presented for the initial version as well as the

different optimizations.

A.1. Scaling of initial version with overlap

Figures A.1 to A.4 show the strong scaling and the waiting times for the initial version

with overlap.
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Figure A.1.: Strong scaling results for test case A (top) and B (bottom) with FFT acceleration

in the initial parallelization with overlap.
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Strong scaling 2 local levels (order 0, with FFT)
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Figure A.2.: Strong scaling results for test case C with FFT acceleration in the initial paral-
lelization with overlap.
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Figure A.3.: Amount of time waited in test case A with FFT acceleration compared to the
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Figure A.4.: Amount of time waited in test case B (top) and C (bottom) with FFT accelera-
tion compared to the complete simulation time of the FMM algorithm.
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A.2. Scaling results of the different optimizations

In this section the scaling results of the different optimizations compared to the initial
version are presented for varying processor numbers.

Overview of speedups for test case C

Figures A.5 and A.6 shows the speedup of the different optimizations compared to the
initial version with overlap. As in the processor range of 4096 to 32768 no initial runtimes
were measured, the runtimes are compared to the first optimization (locRed).
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Figure A.5.: Speedup of the runtime for the different optimization steps compared to the
intial version with overlap in test case C for 1 to 512 processors.
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Figure A.6.: Speedup of the runtime for the different optimization steps compared to the
tirst optimization (locRed) in test case C for 4096 to 32768 processors.

Scaling results for optimization locRed

The scaling results and waiting times for locRed, i.e. without global reduce, without NT
import loads and without fuse or auto tuning, are show in figs. A.7 to A.9.
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Figure A.7.: Strong scaling results for test case A with FFT acceleration and no global re-
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Figure A.9.: Amount of time waited in test case A (top), B (center) and C (bottom) with
FFT acceleration and no global reduce compared to the complete simulation
time of the FMM algorithm.
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Scaling results for optimization locRed_NT

The scaling results and waiting times for locRed NT, i.e. without global reduce, with NT
import loads and without fuse or auto tuning, are shown in figs. A.10 and A.11.
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Figure A.10.: Strong scaling results for test case A (top), B (center) and C (bottom) with FFT
acceleration, no global reduce and NT import areas.
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Figure A.11.: Amount of time waited in test case A (top), B (center) and C (bottom) with
FFT acceleration, no global reduce and NT import areas compared to the
complete simulation time of the FMM algorithm.
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Scaling results for optimization locRed_NT_Fuse

The scalings results and waiting times for locRed_NT_Fuse, i.e. without global reduce,
with NT import loads, with fuse and no auto tuning, are shown in figs. A.12 and A.13.
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Figure A.12.: Strong scaling results for test case A (top), B (center) and C (bottom) with FFT
acceleration, no global reduce, NT import and fused communication.
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Figure A.13.: Amount of time waited in test case A (top), B (center) and C (bottom) with
FFT acceleration, no global reduce, NT import areas and fused communica-
tion compared to the complete simulation time of the FMM algorithm.
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A. Scaling Results

Scaling results for optimization locRed NT_AT

The scaling results and waiting times for locRed_NT_AT, i.e. without global reduce, with
NT import loads, without fuse, with SSE vectorization and with auto tuning, are shown in
tigs. A.14 and A.15.
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Figure A.14.: Strong scaling results for test case A (top), B (center) and C (bottom) with FFT
acceleration, dynamic global reduce adjustment and NT import areas.
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A.2. Scaling results of the different optimizations

Wiaiting time 2 local levels (with FFT)
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Figure A.15.: Amount of time waited in test case A (top), B (center) and C (bottom) with
FFT acceleration, dynamic global reduce adjustment and NT import areas
compared to the complete simulation time of the FMM algorithm.
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A. Scaling Results

Runtimes of single Fast Multipole operators

In this section the runtimes of the different FMM operators are shown for test cases B and
C (see figs. A.16 and A.17).

Runtime of different M2L operators (1 level)
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Figure A.16.: Runtime of single operators during the FMM algorithm compared to the
overall runtime and waiting time for test case B. FMM total also includes
the runtime of the P2P, M2P and L2P operators.
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Runtime of different M2L operators (2 levels, order 0)
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Figure A.17.: Runtime of single operators during the FMM algorithm compared to the
overall runtime and waiting time for test case C. FMM total also includes
the runtime of the P2P, M2P and L2P operators.
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