
Technische Universität München

Munich School of Engineering

Bachelor’s Thesis of Alexander Rusch

Lehrstuhl für Wissenschaftliches Rechnen, Fakultät für Informatik

Extending SU2 to fluid-structure interaction
via preCICE

Author: Alexander Rusch

Examiner: Prof. Dr. Hans-Joachim Bungartz

Supervisor: Dipl.-Math. Benjamin Uekermann

Date of submission: 29. April 2016

Eidesstattliche Erklärung

Hiermit versichere ich, die vorliegende Arbeit selbstständig verfasst zu haben. Ich habe keine anderen
Quellen und Hilfsmittel als die angegebenen verwendet.

Ort, Datum Alexander Rusch

Abstract

Partitioned fluid-structure interaction (FSI) simulations involve a fluid solver, a solid solver and a
tool, which manages the coupling of the former two. In this thesis, the computational fluid dynamics
suite Stanford University Unstructured (SU2) is linked with the multiphysics coupling library Precise
Code Interaction Coupling Environment (preCICE). Therefore, a C++ adapter is developed, which is
integrated into the source code of SU2. Despite recently added, intrinsic fluid-structure interaction
functionalities of SU2, the coupling with preCICE is reasonable as it allows to flexibly choose any
partner code, including well-validated, commercial solvers. The coupling approach is successfully
tested with two- and three-dimensional, generic scenarios, as well as quantitatively validated with a
well-known FSI benchmark problem. Finally, the adapter is used to simulate a single wire of a brush
seal under turbulent flow conditions with up to 230 processes on the fluid domain. This exemplifies
the suitability of the realized coupling for real-world applications of larger scale. Moreover, this
thesis includes a description on how to practically integrate the developed adapter into SU2 and
subsequently, build the fluid solver with preCICE.

Zusammenfassung

Partitionierte Ansätze zur Simulation von Fluid-Struktur-Interaktion umfassen einen Strömungslö-
ser, einen Strukturlöser und ein Programm, das die Kopplung der beiden Ersteren handhabt. In
dieser Arbeit wird der numerische Strömungslöser Stanford University Unstructured (SU2) mit der
multiphysikalischen Kopplungsbibliothek Precise Code Interaction Coupling Environment (preCICE)
verbunden. Dazu wird ein Adapter in C++ entwickelt, der in den Quellcode von SU2 eingebettet wird.
Obwohl SU2 kürzlich um intrinsische Fähigkeiten zur Fluid-Struktur-Interaktion (FSI) erweitert wur-
de, ist die Kopplung mit preCICE sinnvoll, da hiermit die Flexibilität geboten wird, einen beliebigen
Partnerlöser für die Simulation zu wählen. Dies beinhaltet auch gut validierte, kommerzielle Löser.
Die Kopplung wird erfolgreich anhand von zwei- und dreidimensionalen, generischen Szenarios getes-
tet und zudem mittels eines bekannten FSI Benchmark-Tests quantitativ validiert. Schließlich wird
der Adapter verwendet, um einen einzelnen Draht einer Bürstendichtung unter turbulenten Strö-
mungsbedingungen zu simulieren, wobei das Strömungsgebiet mit 230 Prozessen parallel berechnet
wird. Exemplarisch wird damit die Eignung der entwickelten Kopplung für größere, praxisrelevante
Anwendungsfälle nachgewiesen. Diese Arbeit beinhaltet außerdem eine Beschreibung zur Integration
des Adapters in SU2 und zur anschließenden Installation des Strömungslösers mit preCICE.

i

Contents

Acknowledgements iv

Acronyms v

List of Figures vi

1 Introduction 1

2 Mathematical and Physical Basics of Fluid-Structure Interaction Problems 2

2.1 Continuum Assumption . 2

2.2 Description of Motion . 2

2.2.1 Eulerian Perspective . 3

2.2.2 Lagrangian Point of View . 3

2.2.3 ALE Method . 5

2.3 Domains and Interface . 7

2.3.1 Fluid Domain . 7

2.3.2 Solid Domain . 7

2.3.3 Interface and Interaction . 8

3 Computational Aspects of FSI Simulations 10

3.1 Monolithic and Partitioned Approaches . 10

3.2 Weakly and Strongly Coupled Partitioned Strategies . 11

3.3 Conforming and Non-Conforming Mesh Methods . 12

3.4 Stability Issue: Added Mass Effect . 13

4 Utilized Software Packages 16

4.1 preCICE - Flexible Coupling of Existing Solvers for Multiphysics Simulations 16

4.1.1 Implemented Coupling Strategies . 18

4.1.2 Communication Methods . 20

4.1.3 Data Mapping for Non-Matching Meshes . 21

4.2 SU2 - A Modular, Flexible CFD Solver . 24

4.2.1 Mathematical Modeling . 25

4.2.2 Software Structure . 26

4.2.3 Parallelization . 29

4.2.4 Intrinsic FSI Capabilities . 31

ii

5 Description of the Coupling Adapter and its Integration 33

5.1 Changes Concerning SU2 Configuration . 34

5.2 Adaption of SU2 Main Routine . 35

5.3 Coupling Adapter . 36

6 Selected Numerical Testcases 39

6.1 Qualitative Validation: 2D Flap . 41

6.2 3D Capabilities: Extended Flap . 43

6.3 Quantitative Validation: FSI3 Benchmark . 47

6.4 Practical Application: Slender Cylinder . 54

7 Conclusion and Outlook 60

Appendices 61

A Details on Integrating the Coupling Adapter into SU2 62

B SU2 Installation Description 68

Bibliography 74

iii

Acknowledgements

I want to thank my supervisor Benjamin Uekermann for his valuable, professional advice and his admirable
effort to introduce me to preCICE, as well as the topics of fluid-structure interaction, software development
and high-performance computing. His patience and descriptive explanations made my fast progress
possible.

Moreover, I want to thank Hans-Joachim Bungartz, who not only gave me the opportunity to work at
the Chair of Scientific Computing, but mentored me during my whole bachelor studies from the first
semester forth and helped me, whenever I had questions regarding my career. Also, he granted me access
to the computational resources, which were necessary to run the simulations.

Thanks go also out to the Munich School of Engineering and the "Verein der Förderer des Computational
Engineering e.V." for funding my participation in the "International Symposium and Winter-School on
Modeling, Adaptive Discretizations and Solvers for Fluid-Structure Interaction" in Linz, January 2016.

To my friends and my family, who unconditionally supported me during creation of this thesis: Thank
you so much. This work would not have been possible without you.

Finally, for never letting me down, always believing in me and supporting my studies: Thank you, Mum
and Dad.

iv

Acronyms

ALE Arbitrary Lagrangean-Eulerian.

AME Added Mass Effect.

API Application Programming Interface.

CFD Computational Fluid Dynamics.

CGNS CFD General Notation System.

CPS Conventional Parallel Staggered.

CSM Computational Solid Mechanics.

CSS Conventional Serial Staggered.

FEM Finite Element Method.

FSI Fluid-Structure Interaction.

FVM Finite Volume Method.

HPC High-Performance Computing.

MPI Message Passing Interface.

NN Nearest-Neighbor.

NP Nearest-Projection.

NSE Navier-Stokes Equations.

PDE Partial Differential Equations.

preCICE Precise Code Interaction Coupling Environment.

RANS Reynolds-Averaged Navier Stokes.

RBF Radial Basis Functions.

SU2 Stanford University Unstructured.

TCP/IP Transmission Control Protocol/Internet Protocol.

XML Extensible Markup Language.

v

List of Figures

2.1 The Eulerian observer does not move and focuses on the same spatial point as time passes.
The dashed lines indicate the monitored point and underline that the observer does not
follow the particle. This situation is shown from a Eulerian point of view (implied by the
Eulerian coordinate system in the upper left corner). The Eulerian coordinate system,
from which the observer monitors the situation, originates at his head. It is not shown
here for the sake of readability. 3

2.2 The Eulerian mesh nodes remain at the same spatial points as time passes, i.e. the Eulerian
mesh does not move. However, particles may change their positions. t denotes the time
axis. Figure adapted from [10]. 4

2.3 The Lagrangian observer "stands" on the particle and moves with it as time passes. The
dashed lines indicate that the observer only focuses on this very particle. This situation
is shown from a Eulerian point of view (implied by the Eulerian coordinate system in the
upper left corner). The Lagrangian coordinate system, from which the observer monitors
the situation, originates at his head (and moves with the observer). It is not shown here
for the sake of readability. 4

2.4 Particles may change their positions as time passes. The nodes of the Lagrangian mesh
follow the respective particles in order to coincide with them. t denotes the time axis.
Figure adapted from [10]. 5

2.5 The ALE observer may start from the Eulerian configuration and then move independently
of the particle motion. This situation is shown from a Eulerian point of view (implied by
the Eulerian coordinate system in the upper left corner). The ALE coordinate system,
from which the observer monitors the situation, originates at his head (and moves with
the observer), which is not shown here for the sake of readability. 6

2.6 The particles may change their positions as time passes. The nodes of the ALE mesh
neither have to stay at the same spatial points nor have to follow the particles necessarily.
They can move independently of the particles. t denotes the time axis. Figure adapted
from [10]. 6

2.7 Fluid (ΩF) and solid domain (ΩS) meet at the interface ΓFS . The outward normal vectors
nF and nS point in opposite directions. 9

3.1 The FSI problem is undivided and solved by a single monolithic solver, yielding the mul-
tiphysics solution. 10

3.2 Exchange of displacements/velocities as well as forces/stresses is managed by the coupling
component. All exchanged data is limited to the wet surface, i.e. these quantities are only
communicated for the respective nodes at the FSI interface. 11

3.3 In a partitioned approach, the FSI problem is divided into a fluid and solid subproblem.
These are treated by a fluid and structure solver, respectively, while a coupling component
ensures the interaction of the domains (see also Figure 3.2 for a more precise explanation).
Separate solutions are computed, which together yield the solution of the original problem.
Note that the arrows yielding the FSI solution are just of conceptual manner and should
not be interpreted as some sort of solution merging technique. 12

vi

3.4 Summary of the different discussed coupling approaches. The circles represent the fluid and
solid solver for the two partitioned approaches. Their overlap in the monolithic case implies
that a single solver is used for both domains. The arrows between the solvers indicate
single (weakly coupled partitioned approach) and multiple (strongly coupled partitioned
approach) data exchanges per time step. Figure adapted from [38]. 13

3.5 A conforming fluid mesh is shown in undeformed (Figure 3.5a) and deformed configuration
(Figure 3.5b) from a Eulerian point of view. The solid is represented by the gray rectangle.
Fluid nodes on the wet surface stick to the interface even after deformation. The mesh
fully conforms to the geometry of the structural domain. The rest of the fluid mesh is
smoothed in order to avoid highly distorted elements. The fluid mesh does not penetrate
the structural domain at any time. The solid mesh is not shown for a better general view.
Note the change in shape of elements, which are close to the displaced, upper corners of
the solid. 14

3.6 A non-conforming fluid mesh is shown in undeformed (3.6a) and deformed configuration
(3.6b) from a Eulerian point of view. The solid is represented by the gray, transparent
rectangle. Fluid nodes throughout the mesh do not move upon deformation of the solid
domain, also they are not aligned with the solid. Thus, the mesh is non-conforming. There
is no need for mesh smoothing techniques. The fluid mesh underlies the structural domain
at all times. The solid mesh is not shown for the sake of simplicity and readability. 14

4.1 Differentiation of inter- (4.1a) and intrafield parallelism (4.1b). This is only a schematic
sketch and does not represent realistic solver execution times. 17

4.2 Time stepping control by preCICE: The fluid solver performs smaller time steps than the
solid solver. At coupling instances (dotted, vertical lines), both solvers need to align. As
the last time step of the fluid solver would exceed this instance, an adequate time increment
is enforced by preCICE. The dashed box explains the used symbols and t denotes time. . 17

4.3 The CSS algorithm is shown for a complete computation cycle including: 1© Explicitly
obtaining the fluid solution of time instance n+1: F n(sn) 2© Communicating the dynamic
data fn+1 to the structure solver 3© Implicit calculation of the solid solution of time step
n+1: Sn(fn+1) 4© Forwarding the kinematic data sn+1 to the fluid solver. Figure adapted
from [18]. 18

4.4 The CPS algorithm is shown for a complete computation cycle including: 1© Explicitly
obtaining the fluid and solid solution, respectively, of time instance n+1: F n(sn), Sn(fn)
2© Communicating the coupling data fn+1 and sn+1 to the particular other solver. Figure
adapted from [18]. 19

4.5 Fluid and structure domains are shown with their respective mesh discretizations at the
wet surface in a two-dimensional case, i.e. the interface is a line. Nodes do not necessarily
coincide and the fluid mesh is denser than the solid mesh. Mesh connections besides the
edges at the wet surface are not shown for the sake of a clear view. 22

4.6 Conservative mapping of forces (4.6a) and consistent mapping of displacements (4.6b)
between a solid node and three assigned fluid nodes with the NN method. The spatial
distribution of the nodes and the assignment are chosen arbitrarily as the whole setting is
of generic character. 22

4.7 Determining the shortest distance with the NP method in a three-dimensional case. The
fluid surface mesh is an unstructured, triangular mesh. Exemplary, the distances of a solid
node to the fluid mesh are depicted by arrows: 1© The distance to the nearest neighboring
fluid node. 2© The orthogonal distance to the nearest edge of the fluid mesh. 3© The
orthogonal distance to the nearest surface element of the fluid mesh. 23

4.8 Class structure of SU2 starting from SU2_CFD for a simulation solving the NSE. The
high level of abstraction allows for flexible combination of different solvers for multiphysics
simulations. The child classes of CNumerics are not specified as they depend on the
numerical methods chosen by the user at configuration time. The dashed box explains the
used relations. Figure adapted from [30] and [36] . 27

vii

4.9 Domain decomposition of a triangular mesh into two submeshes. The thick, black line
in Figure 4.9a represents the edge cuts of the partitioning. The colored cells become halo
cells due to duplication of their respective nodes. The two detached submeshes overlap at
the halo cells and are shown in Figures 4.9b and 4.9c, respectively. 29

4.10 Schematic of domain decomposition in SU2 among two processes. In Figure 4.10a the
original mesh and the cutting procedure is shown. Figure 4.10b illustrates the introduction
of ghost nodes for both processes and the respective coloring of all nodes. The final meshes
including original and ghost nodes are shown in Figures 4.10c and 4.10d for processes #0
and #1, respectively. 30

4.11 Excerpt of the class structure for (intrinsic) FSI simulations in SU2 starting from CDriver.
The single-physics solvers represented by CMeanFlowIteration and CFEM_StructIteration
1© forward coupling data to the respective child classes of CTransfer, before they 2©
transfer it to the partner solver. The dashed box explains the used relations. Figure
adapted from [36]. 31

5.1 The source code of SU2 is extended by minimally invasive code changes, which allow to use
the adapter. The adapter makes use of the API of preCICE that is part of the coupling
tool’s source code. 33

6.1 Geometry of the two-dimensional flap testcase. The solid material of the flap is colored
gray. The inlet is depicted by arrows. Geometrical parameters are given in Table 6.3. . . . 41

6.2 Triangular meshes of fluid and solid domain for the two-dimensional flap testcase. See
Table 6.4 for quantitative descriptions of the meshes. 42

6.3 Results for the two-dimensional flap testcase for two different time instances. Velocity
magnitude of the flow and displacement magnitude of the flap are shown in the maximum
deflection state (Figure 6.3a) and in the steady state at the end of the simulation (Figure
6.3b). 43

6.4 Geometry of the three-dimensional flap testcase shown from two different perspectives.
The geometrical parameters are defined in Table 6.5. 44

6.5 Fluid and solid surface meshes of the three-dimensional flap testcase shown in the xz-plane
with orientation according to Figure 6.4a. The total mesh is shown in Figure 6.5a while
Figure 6.5b focuses on the zone nearby the flap. 44

6.6 Fluid and solid surface meshes of the three-dimensional flap testcase shown in xy-plane
with orientation according to Figure 6.4b. The total meshes are shown in Figure 6.6a,
while Figure 6.6b focuses on the zone nearby the flap. 45

6.7 Pressure upstream (left) and downstream (right) of the flap shown in xz-plane at t = 7.8 s.
The orientation is according to Figure 6.4a. Note that the flap displacements are very
small, such that they are barely visible in this figure. 46

6.8 Streamlines of the velocity field in vicinity of the flap for three different time instances.
The orientation is according to Figure 6.4a (xz-plane) for the first three figures. Figure
6.8d shows the same time instance as Figure 6.8c, yet the view is rotated around the z-axis
to yield a more spatial perspective. Note the development of the recirculation zone behind
the flap and the increasing flow speed at the gap between flap and channel walls as time
passes. 46

6.9 Displacements of the watchpoint with respect to time for all three spatial directions. The
oscillations are further characterized in Table 6.7. 48

6.10 Geometry of the numerical FSI benchmark proposed in [39]. Geometrical parameters are
given in Table 6.8. The cylinder is positioned slightly off-centered. 49

6.11 Fluid and solid meshes of the FSI3 benchmark testcase. The total mesh is shown in
Figure 6.11a while Figure 6.11b focuses on the zone nearby the cylinder and the attached
cantilever. Further descriptions of the meshes are given in Table 6.9. 50

6.12 Velocity profiles at x = 0 for different offset lengths loff (compare Figure 6.10). A parabolic
shape is achieved for an additional length of 1 m. 51

viii

6.13 Velocity magnitude at t = 6 s. Note the periodic, alternating low and high velocity zones
in the wake of the cantilever. 52

6.14 Displacements of the watchpoint with respect to time in x- and y-direction. The oscillations
are further characterized in Table 6.12. 53

6.15 Oscillations in the fluid mesh at the end of the cantilever at t = 6 s due to the simple NN
mapping and the large differences in element sizes of the two meshes. 53

6.16 A typical sealing element of a brush seal is shown in Figure 6.16a. The composition of it is
depicted in Figure 6.16b. Note that the housing and the rotor surface are shown in addition. 54

6.17 Geometry of the three-dimensional, slender cylinder scenario depicted from two different
perspectives. The geometrical parameters are defined in Table 6.13. 55

6.18 Surface meshes of the slender cylinder problem. The total fluid mesh is shown in Figure
6.18a while Figure 6.18b focuses on the zone nearby the cylinder. The wet surface meshes
(at cylinder top) are depicted in Figures 6.18c and 6.18d for the fluid and solid domain,
respectively. Further descriptions of the meshes are given in Table 6.14. 56

6.19 Deformation of the cylinder in xz-plane at different time instances. The orientation con-
forms with Figure 6.17a. 58

6.20 Displacements of the watchpoint with respect to time for all three spatial directions. The
simulation ends untimely due to a crash of the solid solver. 59

ix

1. Introduction

Airbags, parachutes and aircraft wings. Submarines, wind turbine blades and the human circulatory
system. All of these have something in common: Their physical behavior is dominantly governed by
the mutual influence of fluid and solid materials. E.g. an airbag inflates due to expansion of a gas.
The gas exerts forces on the airbag membrane and causes it to deform. This deformation represents a
change of the physical boundary conditions for the fluid and thus, influences the flow field in reverse.
Due to the flow field changes, the fluid forces acting on the membrane may vary again. This two-way
coupled physical nature is highly complex, but advances in computational science and engineering over
the past decades made tackling these multiphysical problems by means of numerical simulations feasible.
This allows to analyse technical systems with respect to fluid-structure interaction (FSI) and possibly
improve them. It also helps to understand complex FSI processes in nature and can, for instance, even
be used to estimate rupture risks in the cardiovascular system. However, efficient tools are needed to
simulate real-world scenarios, as the complexity of FSI problems implies high computational effort. One
way of solving them is to simulate fluid and solid domains with respective single-physics solvers and
link these by a third component, which respects the interaction aspects. Such a partitioned approach
is chosen in this thesis in order to connect the computational fluid dynamics (CFD) solver Stanford
University Unstructured (SU2) with the multiphysics coupling library Precise Code Interaction Coupling
Environment (preCICE). For this purpose, a C++ coupling adapter is developed in this work, which is
integrated into SU2. This allows to subsequently choose any preferred structure solver to execute FSI
simulations with. The modern and promising open-source fluid solver SU2 is well-validated and developed
with emphasis on large-scale simulations, which predestines it for coupling with preCICE. As this fluid
solver becomes more and more established, the coupling performed in this thesis might be interesting
and useful to a fairly wide community of researchers and engineers. Recently, SU2 was extended to
FSI simulations by a newly-implemented, intrinsic structural solver. However, coupling the fluid solver
with preCICE still offers many sophisticated features that SU2 does not provide itself, such as elaborate
coupling algorithms, data-mapping methods for non-matching meshes and fully-parallel simulation runs.
Moreover, the coupling approach of this work does not limit users to a single structural solver but
preserves the flexibility to choose any coupling partner, including highly elaborate, commercial solvers.
Finally, the coupling procedure is successfully tested with scenarios of different dimensionality (2D, 3D)
and complexity, including the well-known, challenging FSI benchmark test FSI3 proposed in [39].

Concerning mathematical notation in this thesis, I use both index notation (e.g. vi for velocity) and direct
tensor notation (e.g. v for velocity). In the latter case, tensors of first and second order are denoted by
bold symbols. No tensors of higher order are included in this work. Furthermore, all coordinate systems
are Cartesian and denoted either by (x, y, z) or (x1, x2, x3). I mostly stick with typical conventions when
explaining mathematical expressions in order to conform with corresponding literature as far as possible.

The thesis starts with an introduction to FSI problems with emphasis on physical aspects in Chapter 2.
This provides the reader with necessary knowledge to understand the complexity of FSI. Since this thesis
concentrates on numerical simulations, Chapter 3 focuses on how to computationally treat these problems
efficiently and gives an introduction to numerical problems of partitioned FSI simulations. The coupling
approach chosen in this work is categorized, its details are explained and alternative solution methods are
stated. Chapter 4 familiarizes the reader with the two software suites, which are relevant for coupling, i.e.
the coupling tool preCICE and the fluid solver SU2. The development of the adapter itself, its embedment
into SU2 and strategies for implementing the coupling are extensively explained in Chapter 5. Successful
validation of the adapter is presented in Chapter 6 and a first real-world application is simulated. Chapter
7 shortly summarizes the findings and outcome of this work and gives an outlook to future work on this
topic. Eventually, two appendices give further practical information on how to integrate the adapter in
SU2 (Appendix A) and subsequently build the fluid solver with preCICE (Appendix B).

1

2. Mathematical and Physical Basics
of Fluid-Structure Interaction Problems

In this part I give an introduction to the mathematical and physical properties of FSI problems. First
of all, in Section 2.1, I briefly explain why the application of continuum mechanics is valid for this kind
of problems. A motivation of different kinematic descriptions of motion related to computational meshes
follows in Section 2.2. Finally, in Section 2.3, I define the fluid and structure domain, as well as their
common interface.

2.1 Continuum Assumption

Fluids as well as solids are composed of molecules and atoms on a (sub-)microscopic level. However,
describing a certain volume of solid or fluid material by explicitly characterizing every single molecule or
even atom is way too extensive: For example, a volume of V = 1 cm3 of liquid water with molar volume
Vm = 18.0182 cm3/mol ([24]) at a temperature of T = 25◦C and an absolute pressure of p = 1 atm
contains

n =
V

Vm
NA ≈ 3.34 · 1022 (2.1)

molecules with NA = 6.022 ·1023 mol−1 being the Avogadro constant ([29]). Thus a molecule-by-molecule
description is not feasible, even for such relatively small volumes of material. Furthermore, it is also not
necessary as the typical relevant time and spatial scales perceivable in everyday life exceed the microscopic
ones by far. Rather, a so called continuum approach is used: Since properties (e.g. position, velocity,
etc.) of neighboring atoms and molecules differ only slightly, it is sufficient to consider only averaged
values of these quantities. In that sense, although in reality materials become discrete at some level of
refinement, for the purpose of larger-scale descriptions like those typically used in CFD or computational
solid mechanics (CSM), fluids and solids are considered as continuous materials. They can be continually
subdivided (to an infinitesimally small extent), yet their properties do not loose their smoothness. Based
on this assumption, in the following the term (material) particle is not used to denote molecules or atoms
but rather an infinitesimally small volume of continuum material. Within the scope of this thesis the
continuum assumption is valid as larger-scale motions are considered.

2.2 Description of Motion

A fluid in motion is considered and interaction with a solid occurs via deformations of the latter due to
viscous and/or inviscid forces exerted on the structure by the fluid. The resulting change in shape of
the structural material also implicates geometrical changes of the fluid domain. This yields different flow
behavior in reverse. Thus, it is necessary to represent kinematic and dynamic processes formally. There-
fore, some thoughts concerning the motion of the before mentioned continuum particles must be made.
In classical continuum mechanics there are two different perspectives ([26]): The Eulerian description,
which is discussed in Section 2.2.1, and the Lagrangian point of view, which I explain in Section 2.2.2.
Those two perspectives can be combined to the arbitrary Lagrangean-Eulerian (ALE) method, described
in Section 2.2.3.

2

x

y

z

(a) Eulerian observer and particle at time t1

x

y

z

(b) Eulerian observer and particle at time t2 > t1

Figure 2.1: The Eulerian observer does not move and focuses on the same spatial point as time passes.
The dashed lines indicate the monitored point and underline that the observer does not follow the particle.
This situation is shown from a Eulerian point of view (implied by the Eulerian coordinate system in the
upper left corner). The Eulerian coordinate system, from which the observer monitors the situation,
originates at his head. It is not shown here for the sake of readability.

2.2.1 Eulerian Perspective

In a Eulerian perspective the change of quantities of interest (e.g. density, velocity, pressure) is observed
at spatially fixed locations. In other words, a Eulerian observer does not vary the point of focus during
different time steps. This is depicted intuitively in Figure 2.1. Located at a certain point in Euclidean
space, the observer always focuses on the same location, no matter where particles may move. Thus, in
Eulerian description, quantities can be expressed as functions of a fixed location as well as time. This
may be denoted by

Θ = Θ̃(x, y, z, t), (2.2)

where Θ is a quantity of interest and Θ̃ denotes it in a Eulerian point of view. (x, y, z) represent a
fixed position in Euclidean space and t refers to time. Clearly, different particles can occupy the spatial
location, which the observer focuses on, at different instances of time. Therefore, in general no direct
information regarding the change of quantities of a single particle is available when motion is described
in a Eulerian perspective ([26]).

Eventually, a description of motion is needed not only for single particles and points in space, but rather
computational domains and meshes being central aspects of FSI problems. A computational mesh can be
interpreted as a number of observers distributed across the domain of interest and connected so as to form
a grid with nodes. If particles of the underlying domain move, a purely Eulerian mesh does not change
the positions of its nodes throughout the whole mesh at different instances of time. This is graphically
shown in Figure 2.2. Since this behavior of the mesh is independent of large-scale movements of particles,
it is the typical choice for CFD problems, where in general fluid particles move throughout the whole
computational domain. However, this approach also has its drawbacks as the level of refinement of the
mesh is crucial to the accuracy of computations because it defines to what extent small-scale changes can
be observed. If a mesh is of a much coarser scale than the motion occurring in the underlying domain,
the motion cannot be resolved ([10], [26]).

2.2.2 Lagrangian Point of View

On the contrary, a Lagrangian description implies that the observer focuses on a specific particle and
follows it, regardless of the speed and distance it may travel. Therefore, provided that the particle moves,
changes of the quantities of interest are observed at different spatial locations. The Lagrangian observer
tracks a particle and moves with it, as illustrated in Figure 2.3.

The motion of the particle as well as all other quantities of interest, can therefore be described by
reference coordinates (or material coordinates) in Euclidean space, (X,Y, Z), uniquely identifying the
observed particle at a reference configuration. Often t = 0 is chosen as reference but in general any time
instance can be used. Once the particle to be observed is specified, the Lagrangian observer only registers

3

t

Particles

Mesh nodes

Mesh connections

Movement of particles

Figure 2.2: The Eulerian mesh nodes remain at the same spatial points as time passes, i.e. the Eulerian
mesh does not move. However, particles may change their positions. t denotes the time axis. Figure
adapted from [10].

x

y

z

(a) Lagrangian observer and particle at time t1

x

y

z

(b) Lagrangian observer and particle at time t2 > t1

Figure 2.3: The Lagrangian observer "stands" on the particle and moves with it as time passes. The
dashed lines indicate that the observer only focuses on this very particle. This situation is shown from
a Eulerian point of view (implied by the Eulerian coordinate system in the upper left corner). The
Lagrangian coordinate system, from which the observer monitors the situation, originates at his head
(and moves with the observer). It is not shown here for the sake of readability.

4

t

Particles

Mesh nodes

Mesh connections

Movement of particles and nodes

Figure 2.4: Particles may change their positions as time passes. The nodes of the Lagrangian mesh follow
the respective particles in order to coincide with them. t denotes the time axis. Figure adapted from
[10].

changes concerning this one particle as time passes. Thus, quantities of interest can be described as

Θ = Θ̂(X,Y, Z, t). (2.3)

In contrast to the Eulerian perspective (Equation 2.2) however, the obtained information is strictly limited
to the specific observed particle (implied by the usage of the capital reference coordinate variables). Thus,
no convective fluxes appear in a Lagrangian description. No general information about a specific, fixed
Euclidean point in space is available ([26]).

Again, computational domains and meshes are considered: At a reference instance of time, usually at the
beginning of a simulation, mesh nodes are attached to the underlying material particles. As time passes
and particles move, the mesh nodes move with them causing the mesh to deform (except for cases in
which all particles move smoothly with equal speed and distance). Figure 2.4 depicts such a situation.
As it can be seen, the mesh nodes always coincide with their respective particles. A drawback of this
Lagrangian technique is that large-scale and irregular motions lead to distortions of the computational
mesh, which yields smaller accuracy in simulations as a consequence of the strictly enforced tracking.
However, from this point of view, small-scale motions, which often occur in solids, can easily be observed
without the need of using extremely fine meshes, which would be necessary in case a Eulerian perspective
was used. This results in reduced computational effort. Therefore, in general, the Lagrangian description
is the method of choice for CSM problems ([10], [26]).

Eulerian and Lagrangian descriptions are related. A mapping between them can be derived if the motion
is known:

xi = Xi + ui(Xi, t) ∀i = 1, 2, 3. (2.4)

Equation 2.4 can be explained as follows: The Eulerian, spatial position x of a particle at time t is the
position of this particle at its reference configuration X plus the displacements u that it traveled since
the point of time of the reference state ([26]).

2.2.3 ALE Method

Finally, I explain the ALE approach, a combination of the Eulerian and Lagrangian perspective widely
used for FSI problems. As the name implies, an ALE observer can arbitrarily decide whether to move
the point of focus or not. Furthermore, the observer is in no way restricted to the movement of particles.
Figure 2.5 depicts such a situation. The observer moves independently of the particle motion.

By analogy with the Eulerian and Lagrangian meshes before, an ALE mesh is considered as it can be seen
from a Eulerian perspective in Figure 2.6. Mesh nodes can move almost arbitrarily regarding the motion
of the underlying particles. The only restriction is, that node movements should not distort the mesh too
much as this leads to inaccuracy. It is reasonable to allow the nodes to follow moving particles up to a
certain extent, which is defined by mesh quality criteria. Since this approach does not allow to directly

5

x

y

z

(a) ALE observer and particle at time t1

x

y

z

(b) ALE observer and particle at time t2 > t1

Figure 2.5: The ALE observer may start from the Eulerian configuration and then move independently
of the particle motion. This situation is shown from a Eulerian point of view (implied by the Eulerian
coordinate system in the upper left corner). The ALE coordinate system, from which the observer
monitors the situation, originates at his head (and moves with the observer), which is not shown here for
the sake of readability.

link mesh motion and material particle motion, a new unknown is introduced to such a problem, namely
the relative movement between the ALE mesh and the material domain. This approach is especially
interesting for FSI problems because it is an alternative description to the Eulerian frame for the fluid
domain. As it is further explained in Section 2.3.3, fluid and solid material have to follow the moving
interface between them for physical reasons. Since the solid domain is usually described in a Lagrangian
view, there is no problem with keeping the solid mesh attached to the FSI interface. However, if a purely
Eulerian approach was used for the fluid domain, movements of the interface would lead to gaps between
the wet surface and the fluid mesh. Therefore, in ALE methods the fluid mesh nodes at the interface
always move with it. This can be interpreted as Lagrangian fashion of the approach, as fluid mesh nodes
follow the fluid particles sticking to the interface, while the rest of the fluid mesh is allowed to move
in such way that mesh distortions are kept minimal in order to preserve computational accuracy. Since
preserving mesh regularity refers more to a Eulerian approach, the choice of the name ALE becomes
apparent ([32], [10]).

t

Particles

Mesh nodes

Mesh connections

Movement of nodes

Movement of particles

Figure 2.6: The particles may change their positions as time passes. The nodes of the ALE mesh neither
have to stay at the same spatial points nor have to follow the particles necessarily. They can move
independently of the particles. t denotes the time axis. Figure adapted from [10].

6

2.3 Domains and Interface

As the name fluid-structure interaction implies, this type of problems is determined by the fluid and solid
domain, covered in Sections 2.3.1 and 2.3.2, respectively. Furthermore, their interaction is of importance,
which underlines the necessity of suitable coupling conditions at the domain common interface. The
interface is also referred to as wet surface. Its formal definition is stated in Section 2.3.3.

2.3.1 Fluid Domain

In the following, all of my considerations are limited to viscous Newtonian flows in the compressible
regime as this kind of model is the only relevant one for this thesis. Nevertheless, I want to point out that
throughout the FSI community also incompressible and inviscid flow regimes are commonly considered,
depending on the type of physical problem.

The before mentioned kind of flow is described by the Navier-Stokes equations (NSE), which I consider
in the general three-dimensional case in a Eulerian description. They consist of the continuity equation
(conservation of mass, Equation 2.5a), the momentum equation (conservation of momentum, Equation
2.5b) and the energy equation (conservation of energy, Equation 2.5c). The equations are shown in index
notation. Repeated indices imply Einstein’s summation convention. For a detailed explanation of this
convention, I refer to [26]. The NSE are usually derived by applying Newton’s Law to a fluid control
volume and an elaborate derivation can be found in [14]. The equations are taken from [26] and [14].

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0 (2.5a)

∂

∂t
(ρvi) +

∂

∂xj
(ρvivj + pδij − τji) = 0 ∀i = 1, 2, 3 (2.5b)

∂

∂t
(ρe0) +

∂

∂xj
(ρvje0 + vjp+ qj − viτij) = 0 (2.5c)

ρ denotes density, t time, x the spatial dimensions, v flow velocities in all dimensions and p pressure. δij
is the Kronecker Delta (δij = 1, if i = j and δij = 0 otherwise, for further explanations see [26]), τ the
viscous stress tensor, e0 total energy (per unit mass) and q heat flux (via conduction). For a Newtonian
fluid the viscous stress tensor is given by

τij = −2

3
µ
∂vk
∂xk

δij + 2µSij = −2

3
µ
∂vk
∂xk

δij + µ(
∂vi
∂xj

+
∂vj
∂xi

) ∀i, j = 1, 2, 3. (2.6)

With µ being the dynamic viscosity and S the rate of deformation tensor (symmetric part of the velocity
gradient ∇v):

Sij =
1

2
(
∂vi
∂xj

+
∂vj
∂xi

) ∀i, j = 1, 2, 3. (2.7)

In order to form a closed set of these partial differential equations (PDE), it is necessary to choose a
conductive heat flux model (usually Fourier’s Law), specify the caloric and thermodynamic equations of
state and finally, choose appropriate initial and boundary conditions for the problem ([17], [14], [26]).

2.3.2 Solid Domain

As described in Section 2.2.2, in solid mechanics usually a Lagrangian point of view is used (as is here),
because particles do not travel as far as they do in fluid dynamical problems. Also, the structural model
explained in this section is limited to the Saint Venant-Kirchhoff model, which is very common since
it is capable of handling large deformations often occurring in FSI problems ([18]). The model assumes
that the solid material is homogenous, meaning that mechanical properties of a particle of the body do
not depend on the location of the particle. In other words, these properties are the same throughout the
whole solid domain. Moreover, isotropy is assumed, such that the direction in which a stress is applied
to the solid does not matter, as the mechanical properties of the body are the same in all directions ([26],
[45]).

7

The following explanation is a short version, since this thesis does not focus on the solid mechanical
aspects of FSI problems. It is inspired by and partly taken from [18] and [26], where derivations are given
to a more detailed level.

By analogy with the NSE (see Equations 2.5), the description of the solid arises from considering a control
volume and applying Newton’s Law to it. A typical equation of motion in the form Mass · Acceleration
= Forces can be derived (again, the general three-dimensional case is considered):

ρ
∂2ui
∂t2

=
∂Sij
∂Xj

+ ρfi ∀i = 1, 2, 3. (2.8)

Here, ρ corresponds to the structure density, the second derivative of the displacements u with respect
to time t to the acceleration of a material particle and S to the second Piola-Kirchhoff stress tensor. X
denotes the material coordinates as mentioned before. In this case, also the volume force f is considered,
because gravity can often not be ignored for solid materials. Again, a constitutive law must be taken into
account, defining the relationship between stress and strain:

Sij = λEkkδij + 2µEij ∀i, j = 1, 2, 3, (2.9)

with
Eij =

1

2
(
∂ui
∂Xj

+
∂uj
∂Xi

) +
1

2

∂uk
∂Xi

∂uk
∂Xj

∀i, j = 1, 2, 3. (2.10)

Note that E is the Lagrangian (finite) strain tensor. The latter summand in Equation 2.10 is non-
linear and can be neglected for small deformations, leading to the Lagrangian infinitesimal strain tensor.
However, since we deal with possibly large deformations, this relationship remains non-linear. δij again
refers to the Kronecker delta. λ and µ are material parameters named Lamé constants. They relate
directly to Young’s modulus E and Poisson ratio ν, which are of more practical use1. Their relationship
is given as follows:

E =
µ(3λ+ 2µ)

λ+ µ
, (2.11a)

ν =
λ

2(λ+ µ)
. (2.11b)

Either (E, ν) or (λ, µ) are enough to fully characterize this material under specific assumptions:

• The solid is linearly elastic and isotropic.

• The strain tensor E is symmetric,

• as well as the stress tensor S.

• Furthermore, a scalar, positive definite strain energy density function (not shown in this shortened
explanation) relating stress and strain tensor via a potential formulation exists.

For more sophisticated explanations the interested reader may refer to [26].

Eventually, as for the fluid domain, appropriate initial and boundary conditions must be specified.

2.3.3 Interface and Interaction

Since FSI problems are centered on the interaction of the fluid and solid domain, their common interface
is of vital importance. A schematic picture of a sample situation at the wet surface is shown in Figure
2.7. Note that all quantities related to the solid and fluid domain, as well as the interface are subscripted
with S, F and FS, respectively. Also, in order to avoid simultaneous usage of sub- and superscripts, I
switch from index to direct notation in this section. In order to couple both domains via the interface
in a physically correct way, some conditions must be met. These conditions are commonly used for FSI
problems. However, in this specific case they are taken from [18] and [20].

First of all, fluid and solid domain should neither overlap, nor separate from each other at the interface
as there can be no space occupied by fluid and solid particles at the same time and "empty" space is

1Note that E (Young’s modulus, scalar) and E (Lagrangian strain tensor) are not the same.

8

Fluid domain

Solid domain

ΓFS

ΩS

ΩF

nF

nS

Figure 2.7: Fluid (ΩF) and solid domain (ΩS) meet at the interface ΓFS . The outward normal vectors
nF and nS point in opposite directions.

non-physical. Furthermore, for a viscous fluid the flow velocity at the domain boundary has to be equal
to the boundary velocity itself, which is called no-slip condition. Together, this results in the kinematical
requirement that the displacements of fluid and solid domain, as well as their respective velocities have
to be equal at the wet surface (denoted by ΓFS):

xF = uS on ΓFS , (2.12a)

vF =
∂uS
∂t

on ΓFS . (2.12b)

For inviscid fluids only velocity components normal to the wet surface have to be equal to the structural
velocity as the fluid may slip freely in tangential direction at any boundary.

It is not sufficient to consider only kinematic constraints at the interface. In addition, an equilibrium
of forces at the wet surface is needed such that it is not torn apart by resultant forces. Force vectors
originate from the stresses at the interface and the outward normal vectors of fluid and solid domain,
respectively. They have to be equal and opposite leading to the dynamic coupling condition:

σF · nF = −σS · nS on ΓFS . (2.13)

σ ∈ R3×3 denotes the stress tensor and n ∈ R3 the outward normal vector of the fluid and solid domain.
Note that here viscous as well as inviscid stresses are included.

9

3. Computational Aspects of FSI
Simulations

Subsequent to the basic physics of FSI problems drawn up in the last chapter, this section goes into detail
on computational treatment, which also allows for FSI techniques to be categorized. Two fundamentally
different classes of procedures for solving FSI simulations have been established, namely monolithic and
partitioned approaches. They are discussed in Section 3.1. Since this thesis focuses on the latter kind,
a characterization of weak and strong coupling in partitioned approaches is described in Section 3.2.
Subsequently, in Section 3.3, a different way of categorizing FSI techniques is presented, which is based
on conforming or non-conforming mesh treatment of respective solver strategies. The chapter is closed
by Section 3.4, having a look at the added mass effect (AME) - a stability issue arising from problems
with strong interaction in partitioned FSI simulations.

3.1 Monolithic and Partitioned Approaches

First of all, I want to point out that the terms monolithic and partitioned are interpreted differently
throughout FSI literature. However, in this thesis, they are only used in the hereafter explained sense.

Again, let the name fluid-structure interaction serve as a motivation for this section: On the one hand,
it implies a single (but coupled) physical problem while on the other hand, its clear multiphysical char-
acteristic is emphasized. This is also reflected in the monolithic and partitioned approaches, respectively.
However, monolithic and partitioned approaches should not be interpreted as solely oppositional. There
exist solver strategies for which the boundaries between the two approaches blur.

Monolithically treating both fluid and solid domain implies that they are solved simultaneously. This
means that one multiphysics solver deals with a single system of equations describing fluid, solid and their
coupling. Figure 3.1 depicts this strategy schematically. Such monolithic solvers are designed specifically
for the sole purpose of solving FSI problems. Therefore, a high level of specialization can be realized.
Simultaneously treating both flow and structural equations often results in good numerical stability of
the calculations. Furthermore, monolithic approaches solve the system of equations exactly, meaning
there are no errors (other than those which are inherent to numerical techniques) introduced by this form
of numerical treatment. However, development of such solvers from scratch requires a lot of coding work
and is often cumbersome ([8], [38], [20], [18]).

In contrast, partitioned approaches make use of existing single-physics solvers. The FSI problem is split
into a fluid and solid problem, which are both treated by their respective solvers separately, while a third
software module, the coupling component, incorporates the interaction aspects. It communicates forces

FSI problem monolithic solver FSI solution
treated by computes

Figure 3.1: The FSI problem is undivided and solved by a single monolithic solver, yielding the multi-
physics solution.

10

fluid solver

solid solver

coupling component

communicate displacements/velocities

transfer displacements/velocitiescommunicate forces/stresses

transfer forces/stresses

Figure 3.2: Exchange of displacements/velocities as well as forces/stresses is managed by the coupling
component. All exchanged data is limited to the wet surface, i.e. these quantities are only communicated
for the respective nodes at the FSI interface.

or stresses (dynamic data) calculated by the fluid solver at the wet surface to the solid component and
exchanges displacements or velocities (kinematic data) computed by the solid solver at the interface to
the fluid component in return ([18], [38]). A schematic sketch of this situation is shown in Figure 3.2.
More detailed and practical explanations about the coupling component are given in Section 4.1. For
now it is sufficient to know that the coupling component exchanges kinematic and dynamic data between
the single-physics solvers in order to preserve the coupled nature of the overall problem. In the end,
fluid and structural solutions together yield the FSI solution. By analogy with the monolithic approach,
it is graphically depicted in Figure 3.3. A big advantage of this approach is that existing solvers for
the fluid and solid problem can be reused, ranging from commercial to academic and open-source codes.
Especially in the commercial sector, these are often highly elaborate solvers with decades of experience in
their particular single-physics fields. They typically support very sophisticated solution techniques. Also,
those solvers are usually well-validated and compared to monolithic procedures the programming efforts
are lower for partitioned approaches, as only the coupling of the existing solvers has to be implemented
rather than the solvers themselves. Nevertheless, these advanced solvers can only be of good use for FSI
simulations if the coupling component is sufficiently precise ([8], [38], [20]).

3.2 Weakly and Strongly Coupled Partitioned Strategies

Partitioned strategies for solving FSI problems can be subclassed into weakly and strongly coupled ap-
proaches. They are also referred to as explicit and implicit methods in this thesis. Note that this
nomenclature is in no way fully consistent throughout FSI literature. However, all usage of these terms
in this thesis is limited to the sense of the explanations given in this section.

The distinction between explicit and implicit techniques is based upon the question, how often solutions
for the fluid and solid subproblem are computed within one time step and also, how frequently the
relevant kinematic and dynamic quantities are exchanged. For weakly coupled strategies solving is done
a certain, fixed number of times (often only once) per time step and data may not even be communicated
after each discrete time instance. In general, this is not sufficient to regain the monolithic ("exact")
solution of the FSI problem as the coupling conditions are not enforced within each time step. Thus,
no balance between fluid and structural domain with respect to energy, forces and displacements at the
interface can be guaranteed ([8], [18], [38], [2]). However, this coupling strategy can still yield good
results if the interaction between fluid and solid is rather weak (further explanations about the strength
of the interaction follow in Section 3.4). E.g. in aeroelastic simulations, where small displacements of
the structure appear within single time steps, the flow field is influenced by the structural displacements
only to a little extent ([13], [8], [2]).

In contrast, strongly coupled strategies make use of subiterations possibly resulting in multiple computa-
tions of the separate solvers and exchanges of the interface coupling quantities (as a reminder, see Figure

11

FSI problem

fluid problem

solid problem

coupling component

fluid solver

solid solver

FSI solution

solid solution

fluid solution
treated by

treated by

split into

split into

computes

computes

couples

couples

yield

Figure 3.3: In a partitioned approach, the FSI problem is divided into a fluid and solid subproblem.
These are treated by a fluid and structure solver, respectively, while a coupling component ensures the
interaction of the domains (see also Figure 3.2 for a more precise explanation). Separate solutions are
computed, which together yield the solution of the original problem. Note that the arrows yielding the
FSI solution are just of conceptual manner and should not be interpreted as some sort of solution merging
technique.

3.2) per physical time step. However, acceleration techniques are necessary to converge the underlying
coupling equation system. The coupling conditions at the wet surface are enforced in each time step up to
a convergence criterion. If the criterion is not met sufficiently, another subiteration within the same time
instance is calculated. Therefore, the solution can approximate the monolithic solution to an arbitrary
accuracy as the convergence criterion can be chosen as strict as needed. Such a method is in general
applicable to both FSI problems, which can be solved by weakly coupled approaches and those, for which
explicit procedures fail due to dominant interaction. However, strongly coupled algorithms are usually
used in the latter case - when weak coupling reaches its limits - since the implicit approach requires more
computational effort ([18], [38], [2]).

Figure 3.4 sums up the categorization of different coupling techniques mentioned in this and the previous
section. They are ordered with respect to stability and programming effort.

3.3 Conforming and Non-Conforming Mesh Methods

In this section, FSI methods are classified by means of two different mesh treatment procedures: con-
forming or non-conforming techniques. The basic question is, whether fluid and solid mesh need to align
with each other at the FSI interface or not. Unless stated otherwise, the explanations of this section are
taken from [20]. Note that some aspects of conforming mesh methods are already included in the previous
sections without explicitly mentioning so, in order to develop a better understanding of partitioned FSI
simulations.

Conforming mesh methods usually consist of three major subtasks, namely computation in the fluid and
solid domain, as well as interface and mesh movement. They require both fluid and structural meshes
to conform to the wet surface, because the coupling conditions are applied via the interface as physical
boundary conditions for the respective domains. This does not necessarily imply node-to-node matching
of fluid and structure meshes at the interface. This must hold for all time instances, which means that
both fluid and structural grids need to be moved in case deformations of the solid appear. This is a
simple task for the solid mesh, since it is usually expressed in a Lagrangian fashion anyway. However, as
a typical Eulerian fluid mesh would not follow the interface motion, the necessity of the ALE method as
discussed in Section 2.2.3 becomes apparent. Also, mesh smoothing techniques need to be introduced in

12

Weakly coupled partitioned approach
separate solvers compute once per time step,
data is exchanged once per time step

Strongly coupled partitioned approach
separate solvers compute multiple times per time step,
data is exchanged multiple times per time step

Monolithic approach
single multiphysics solver solves one system of equations

Stability Programming effort

Figure 3.4: Summary of the different discussed coupling approaches. The circles represent the fluid
and solid solver for the two partitioned approaches. Their overlap in the monolithic case implies that a
single solver is used for both domains. The arrows between the solvers indicate single (weakly coupled
partitioned approach) and multiple (strongly coupled partitioned approach) data exchanges per time
step. Figure adapted from [38].

order to prevent quality losses of the fluid mesh in terms of distorted elements. These irregularities lead
to accuracy loss in simulations. In Figure 3.5, a conforming mesh is shown at two different points in time.
At the first instance (Figure 3.5a) the solid is undeformed and therefore, also the fluid mesh remains in
its initial configuration. In contrast, at the second point in time (Figure 3.5b) the solid is deformed and
the fluid mesh conforms to the displaced wet surface. Consequently, also mesh smoothing is applied.
There is a wide variety of such mesh updating procedures. Some common techniques compute the mesh
movement by considering mesh edges as springs ((torsional) spring analogy), solving the Laplace equation
or solving a pseudo-structural system of equations (see e.g. [18], [43], [20] and their respective references
for further explanations of these techniques). Conforming mesh strategies are widely, but not exclusively
used in partitioned FSI approaches. Furthermore, they typically also utilize the ALE method ([20]).

In contrast, in non-conforming mesh strategies all interface conditions are directly imposed as constraints
on the flow and structural governing equations. Therefore, it is possible to use non-conforming meshes
for fluid and solid domains as they remain geometrically independent from each other. Thus, also mesh
smoothing techniques are obsolete [43]. Figure 3.6 depicts such a situation. By analogy with Figure 3.5,
again the initial configuration (Figure 3.6a) and an instance when the solid is deformed (Figure 3.6b) are
shown. It is clearly visible that the fluid mesh does not conform to the wet surface as all nodes stay at
the same position regardless of the solid deformation.
This approach is mostly used in immersed methods. The considerations in this section are limited to them,
as they are also very common for FSI simulations. Coupling is imposed via additional force-equivalent
terms appearing in the model equations of the fluid, enforcing the kinematic and dynamic conditions.
These FSI forces are computed from the structural model, which is dealt with separately together with
tracking the position of the interface. The forces represent the effects of a boundary or body being
immersed in the fluid domain (leading to immersed boundary and immersed domain methods). A purely
Eulerian mesh can be applied to the whole computational domain for solving the fluid equations, since
the force-equivalent terms are dynamically added in a spatially specific manner to those locations, which
are currently occupied by the structure. After solving the fluid equations, forces exerted on the solid at
the wet surface are computed and used as input for the structural solver, which still employs a Lagrangian
mesh. Subsequently, the deformation of the solid material is calculated and the displacement of the FSI
interface is fed back to the fluid model in form of updated force-equivalent terms ([31], [20], [43]).

3.4 Stability Issue: Added Mass Effect

To conclude this chapter about computational aspects of FSI simulations, the AME is briefly described.
Explanations of this effect can be found in a great variety throughout FSI literature, typically explicated
for specific solver strategies or flow regimes (see e.g. [5], [42], [15], [2]). Therefore, in the scope of
this thesis only a short phenomenological introduction to the concept of added mass and numerical
problems arising from it is given. However, this suffices to focus on both weakly and strongly coupled

13

(a) Conforming fluid mesh before deformation of the
structure.

(b) Conforming fluid mesh after deformation of the solid
domain.

Figure 3.5: A conforming fluid mesh is shown in undeformed (Figure 3.5a) and deformed configuration
(Figure 3.5b) from a Eulerian point of view. The solid is represented by the gray rectangle. Fluid nodes
on the wet surface stick to the interface even after deformation. The mesh fully conforms to the geometry
of the structural domain. The rest of the fluid mesh is smoothed in order to avoid highly distorted
elements. The fluid mesh does not penetrate the structural domain at any time. The solid mesh is not
shown for a better general view. Note the change in shape of elements, which are close to the displaced,
upper corners of the solid.

(a) Non-conforming fluid mesh before deformation of
the structure.

(b) Non-conforming fluid mesh after deformation of the
solid domain.

Figure 3.6: A non-conforming fluid mesh is shown in undeformed (3.6a) and deformed configuration
(3.6b) from a Eulerian point of view. The solid is represented by the gray, transparent rectangle. Fluid
nodes throughout the mesh do not move upon deformation of the solid domain, also they are not aligned
with the solid. Thus, the mesh is non-conforming. There is no need for mesh smoothing techniques.
The fluid mesh underlies the structural domain at all times. The solid mesh is not shown for the sake of
simplicity and readability.

14

partitioned approaches, which are practically relevant in this thesis. The AME is inherent to partitioned
FSI approaches as the single-physics fields are not continuously coupled but interaction only occurs at a
finite number of discrete time instances, when coupling quantities are exchanged.

As already mentioned in Section 2.3.3, there can be no gaps between structure and fluid. Also their
respective particles cannot occupy the same spatial locations simultaneously. Thus, if the solid is moved,
also fluid particles move. Changing the state of motion of the structural component consequently requires
taking into account inertial effects not only of the solid itself, but also of the surrounding fluid, which
artificially rests for the span of a single structure solver time step. In more descriptive words: Moving the
solid also implies moving fluid particles close to the solid. Therefore, the structure behaves more inert
due to artificially added mass ([42], [2]). Since inertia is dependent on mass and therefore density, the
AME is also. More precisely, it is dependent on the ratio (MA) of structural (ρS) und fluid density (ρF)
([42], [5]):

MA =
ρS
ρF
. (3.1)

This ratio is often used to describe how strong the interaction between solid and fluid is. For cases, in
which the solid density is much higher than the fluid density (MA � 1), this effect does not dominantly
influence the FSI problem (weak interaction). But as fluid and structure densities approach each other
(MA ≈ 1) or the fluid becomes even denser than the solid (MA < 1), its consideration is crucial (strong
interaction) and imposes stability limits on partitioned solution techniques ([5], [42], [2]). Note that the
AME is not only governed by the density ratio of Equation 3.1 but also by geometric properties of the
problem, the stiffness of the solid ([5]) and the speed of sound in the flow domain ([42]). Nonetheless,
for the sake of simplicity and intuitiveness, explanations in this thesis are mostly limited to the density
ratio.

In general, the AME is of bigger concern for incompressible flows than for compressible regimes. From
a physical point of view, deformations of the structural domain can be interpreted as perturbations for
the flow field. In compressible flows the speed of sound (speed at which perturbations propagate through
the flow) is finitely large. Thus, the influence of a geometrical change of the fluid domain caused by
deformations of the solid is locally limited during a certain period of time. In contrast, in incompressible
flows the speed of sound is infinitely large, hence all perturbations propagate through the flow without
time delay. Therefore, regardless of how much time has passed since a perturbation, the whole flow field
is directly affected ([42], [5]).

In the following it is assumed that a weakly coupled algorithm allows computation of the fluid and solid
solution only once per time step. In addition, coupling data is also exchanged once per time instance. In
contrast, a strongly coupled solver does the same at least twice per time increment (for a reminder see
Section 3.2 and compare Figure 3.4). As can be shown, in the compressible case a more dominant AME
can be compensated for by reducing the time step size of strongly coupled, partitioned solution algorithms.
This however, does not hold for the incompressible regime, where even in the limit of vanishing time step
size strongly coupled, partitioned algorithms might fail ([42]). These observations are consistent with the
above mentioned physical explanation.

First of all, considering compressible flows, indeed, the lack of repeated subiterations in weakly coupled
partitioned techniques leads to a strict limit for the density ratio (of Equation 3.1) due to the fact that
the interface conditions are not enforced and energy balance at the wet surface is generally not given.
If that limit is exceeded the algorithm fails due to instability ([2]). Likewise, in such a case a strongly
coupled partitioned algorithm converges slowly, resulting in possibly many necessary subiterations, which
is computationally costly. Yet it does not become unstable, given that the time step size is chosen suffi-
ciently small. Reducing the time step size to an arbitrarily small extent cannot stabilize a weakly coupled
approach if the stability criterion on the density ratio is not met ([15]). Conversely, the convergence
rate of strongly coupled algorithms increases by the same factor, by which the time step size decreases,
meaning that in the limit of vanishing time step size the monolithic solution is obtained ([5], [42]).

In the incompressible case however, a strict stability limit exists for both weakly and strongly coupled
algorithms. It is independent of the size of time increments1. Furthermore, in order for an implicit
method to achieve the monolithic solution (assuming its convergence is given, i.e. the before mentioned
stability limit is not exceeded) the number of subiterations must be increased as time step size decreases
([15], [42]).

1Recall that perturbation propagation is infinitely fast in incompressible flows.

15

4. Utilized Software Packages

Approaching the more practical aspects of this work, the used software packages are introduced. First of
all, the coupling component preCICE is described in Section 4.1. Afterwards, I explain the fluid solver
being coupled - SU2 - in Section 4.2.

4.1 preCICE - Flexible Coupling of Existing Solvers for Multi-
physics Simulations

Unless stated otherwise, the information concerning preCICE is taken from [18] and [4].

preCICE stands for Precise Code Interaction Coupling Environment1. It is an open-source coupling tool
(see also Section 3.1 for general explanations concerning the coupling component) developed for parti-
tioned multiphysics simulations such as FSI or fluid-structure-acoustic interaction mainly at the Chair
of Scientific Computing (Technical University of Munich) and the Institute for Parallel and Distributed
Systems (University of Stuttgart). The code can be accessed via Github2. Its goal is to enable a nearly
plug-and-play approach for coupling existing solvers in a black-box fashion, meaning that only restricted
solver information is available and coupling is limited to involving the interface nodes. Thus, no infor-
mation regarding derivatives and element shape functions at the interface is available. This restriction
of solver internal data is often the case for closed-source, commercial solvers. To preserve the plug-and-
play character, code changes of the single-physics solvers should be as minimally invasive as possible.
Therefore, a high-level application programming interface (API) is necessary, which preCICE offers in
various programming languages, such as C, C++, Fortran90/95 and Fortran2003. preCICE takes care
of all interaction-related activities such as different coupling strategies (Section 4.1.1), communication
between the solvers (see Section 4.1.2), data mapping for non-matching meshes (Section 4.1.3), conver-
gence acceleration of implicit, partitioned techniques (for a reminder see Section 3.2) and possibly time
stepping. Configuration is done via an extensible markup language (XML) file (extension .xml), which
is not discussed in this thesis. Instead, the interested reader is referred to [18]. The software package
is optimized for massively parallel systems ([41]) due to minimizing computation time bottlenecks and
enabling both interfield and intrafield parallelism. Interfield parallelism means that e.g. in the case of
FSI simulations both fluid and structural solver can be executed simultaneously, while intrafield paral-
lelism describes the possibility to run the single-physics solvers themselves on multiple processes. The
distinction is schematically depicted in Figure 4.1. preCICE is able to combine the possibilities of par-
allelism flexibly such that, for instance, fluid and solid problems can be solved concurrently (interfield
parallelism), using multiple fluid solver processes (intrafield parallelism), but only a single solid solver
process. This flexibility is important when it comes to optimizing overall runtimes of simulations and
efficient utilization of computing resources, since computational effort should be spread as equally as pos-
sible among the computing capacities. Typically, the solid domain is much less computationally costly
compared to the fluid field, so for runtime optimization often a set of a few solid processes but a larger
number of fluid processes is required.

Fluid and solid solvers do not have to use the same time step size. In order to communicate data between
the single-physics solvers, however, it is necessary that the solvers align with each other at certain times.
Thus, if the solvers advance with different time increments, preCICE might have to enforce time step
sizes so that data communication at a common point in time is possible. The situation is depicted
schematically in Figure 4.2.

1See http://precice.org, also a list of currently coupled solvers is given there.
2See https://github.com/precice/precice.

16

http://precice.org
https://github.com/precice/precice

fluid solver process

solid solver process

t

(a) Interfield parallelism: Fluid and solid solver run si-
multaneously as time passes. It is assumed that no in-
trafield parallelism is employed. Note that fluid and
structural solvers do, in general, not have the same run-
time. For the sake of simplicity it is implied here though.

fluid solver process #2

t

fluid solver process #0

fluid solver process #1

solid solver process #0

solid solver process #1

(b) Intrafield parallelism: Both fluid and solid problems
are solved by multiple solver processes, which run con-
currently for the respective single-physics fields. Note
that also interfield parallelism is shown here. For the
sake of simplicity all processes have the same runtime.

Figure 4.1: Differentiation of inter- (4.1a) and intrafield parallelism (4.1b). This is only a schematic
sketch and does not represent realistic solver execution times.

t

Fluid Solver Solid Solver

Usual time step size of the solver

Oversize fluid solver time step

New, enforced fluid solver time step

Figure 4.2: Time stepping control by preCICE: The fluid solver performs smaller time steps than the
solid solver. At coupling instances (dotted, vertical lines), both solvers need to align. As the last time
step of the fluid solver would exceed this instance, an adequate time increment is enforced by preCICE.
The dashed box explains the used symbols and t denotes time.

17

Fluid

Structure

sn

F n

Sn

1© F n(sn)

2© fn+1

3© Sn(fn+1)

4© sn+1

F n+1

Sn+1

F n+1(sn+1)

Sn+1(fn+2)

F n+2

Sn+2

fn+2 sn+2

Figure 4.3: The CSS algorithm is shown for a complete computation cycle including: 1© Explicitly
obtaining the fluid solution of time instance n + 1: F n(sn) 2© Communicating the dynamic data fn+1

to the structure solver 3© Implicit calculation of the solid solution of time step n + 1: Sn(fn+1) 4©
Forwarding the kinematic data sn+1 to the fluid solver. Figure adapted from [18].

In the following, I give short explanations about the main tasks of preCICE without focusing on the
actual code structure. The interested reader is referred to [18] and encouraged to have a look at the
source code, where necessary.

4.1.1 Implemented Coupling Strategies

preCICE allows both for usage of explicit and implicit coupling techniques. See Section 3.2 to recapitulate
the main differences of these approaches. Also, serial and parallel algorithms have been implemented, as
well as elaborate procedures particularly suited for black-box coupling.

Concerning notation, for all algorithms explained in this section n denotes the current time step of
the computation, F n and Sn are operators representing the fluid and solid solver computation at time
instance n, respectively. They yield the particular fluid and solid solutions fn+1 and sn+1 at time instance
n+ 1.

Explicit, Serial Algorithm

A serial, weakly coupled algorithm implemented in preCICE is the conventional serial staggered (CSS)
procedure ([18]). The algorithm is graphically depicted in Figure 4.3. The fluid solver uses the solid
solution at the last time step to compute its current solution (explicit). In contrast, the solid solver needs
the current flow solution to compute the structure solution at the same time instance (implicit). Because
of this dependency, fluid and structural solvers are said to be executed in a serial, staggered way as they
cannot run in parallel and their succession is strictly alternating ([12]).

Explicit, Parallel Algorithm

The conventional parallel staggered (CPS) algorithm is similar to the CSS procedure, but allows for
parallel execution of both fluid and structure solvers and represents a parallel, explicit coupling algorithm
implemented in preCICE ([18]). No implicit dependency as in the case of CSS is present. The succession
of this algorithm is shown in Figure 4.4. Fluid and solid solver advance in parallel and exchange coupling
data at the end of the time step. However, a drawback compared to the CSS algorithm is the loss of
implicitly involving the two solvers, which yields a less stable procedure. Since fluid and solid solvers have
to exchange coupling data after each iteration, the overall computation time of the scheme is dependent
on the most time-consuming solver, which makes an efficient distribution of computational effort between
flow and structure solvers crucial ([12], [18]).

18

Fluid

Structure

fn sn

F n

Sn

1© F n(sn)

1© Sn(fn)

2© fn+1 2© sn+1

F n+1

Sn+1

F n+1(sn+1)

Sn+1(fn+1)

F n+2

Sn+2

fn+2 sn+2

Figure 4.4: The CPS algorithm is shown for a complete computation cycle including: 1© Explicitly obtain-
ing the fluid and solid solution, respectively, of time instance n+ 1: F n(sn), Sn(fn) 2© Communicating
the coupling data fn+1 and sn+1 to the particular other solver. Figure adapted from [18].

Implicit, Serial Strategies

In the following only one time step is discussed, unless stated otherwise. Therefore, all superscripts
indicating the time step are neglected. However, subscripts are used to denote subiterations within one
time instance.

Algorithm 1 Block Gauss-Seidel method with relaxation technique
1: s0 = sp
2: k = 0
3: while convergence criterion not met do
4: F (sk) = fk+1

5: S(fk+1) = s̃k+1

6: compute sk+1 by relaxation
7: k = k + 1
8: end while

Several implicit algorithms are implemented in preCICE including a Block Gauss-Seidel method with
either constant or dynamic Aitken under-relaxation (see Algorithm 1). The Block Gauss-Seidel method
is basically an implicit extension of the CSS procedure employing a fixed-point iteration of the form:

s̃k+1 = S ◦ F (sk). (4.1)

First of all, the fluid solver runs using the old structural solution. Afterwards, the updated fluid solution
is used by the solid solver to compute the new structure solution. Note that s̃k+1 is used to indicate
that the structural solution is solely obtained by the respective solvers without any modification like
e.g. relaxation, while sk+1 indicates that such postprocessing has been applied to the solution. The
fixed-point formulation allows to define a residual as shown in Equation 4.2, which can be used to obtain
a scalar, absolute convergence criterion (see Equation 4.3), useful for close to zero values of the coupling
quantities, when rounding errors become important:

rk+1 = S ◦ F (sk)− sk = s̃k+1 − sk, (4.2)

‖rk+1‖ < εabs. (4.3)

‖ · ‖ denotes the Euclidean norm. Also, a scalar, relative convergence criterion is defined in order to keep
track of convergence between two subsequent subiterations:

‖rk+1‖
‖s̃k+1‖

< εrel, (4.4)

19

where 0 < εrel,abs < 1. By analogy with the CSS algorithm, the solid solver depends implicitly on the
updated solution of the fluid solver, thus not allowing for parallel execution of the single-physics solvers.
Since the fluid solver needs a value of the structural solution as input, which is not available for the first
iteration of a time step, a predictive value sp (Line 1, Algorithm 1) is used. The convergence criterion
mentioned in Line 3 can be understood as a combination of the absolute and relative limits defined in
Equations 4.3 and 4.4.
Relaxation techniques as mentioned in Line 6 are used to stabilize the subiteration method. For the
case of constant under-relaxation, the relaxed value of the kinematic coupling data is computed as a
combination of the old, relaxed and the new, unrelaxed value:

sk+1 = (1− ω)sk + ωs̃k+1, (4.5)

with 0 < ω < 1. Roughly speaking, values of ω close to 1 have little stabilizing effect, but result in fast
convergence (assuming the method is stable and convergent), whereas for values close to 0 the stabilization
is strong, yet convergence is slow and this leads to high computational effort as more subiteration steps
are necessary. Consequently, the value should be chosen such that the subiteration process is stable and
moreover, converges as fast as possible. Therefore, the choice of ω can be difficult in practice.
In contrast to constant under-relaxation, where the relaxation factor ω is fixed, dynamic Aitken relaxation
allows for a new factor to be computed in each subiteration. Basically, the dynamic factor is computed
from the last two subiteration solutions via linear extrapolation in order to find the solution of the
fixed-point system with zero residual, analogous to a root-finding problem with the secant method. The
algorithm for obtaining the dynamic Aitken factor is not further described here, as it exceeds the scope
of this thesis. Refer to [18], [21] and [25] for details.

Procedures Predestinated for Black-Box Coupling

As coupling of black-box solvers is one of the major issues of preCICE, no Newton methods can be used
for implicit coupling, since they require interface Jacobian information, which is typically not accessible
for this kind of solvers. Therefore, algorithms which make use of approximations of the Jacobian are
of importance. Two variants of these are implemented in preCICE, for serial and parallel usage. The
serial algorithm is called IQN-ILS, which stands for Interface Quasi-Newton with Approximation of the
Inverse of the Interface Jacobian Matrix by Least-Squares. In a sequential manner, fluid and structural
solvers are executed, followed by the IQN-ILS algorithm, which modifies the structural solution such that
the underlying fixed-point iteration converges. This solution is then fed back to the fluid solver and the
computation circle starts over, as long as the fixed-point is not yet reached up to a specified convergence
criterion.

The parallel procedure is named V-IQN, originating from a vectorial fixed-point formulation of the
problem (displacements and forces are gathered in a single vector). Again the procedure is based on an
Interface Quasi-Newton approach. The method allows for fluid and solid solver to be run simultaneously,
before the V-IQN algorithm modifies the vector of displacements and forces such that the fixed-point
iteration converges. If the convergence limit is not yet reached after a subiteration, these modified values
are used as input for the next iteration of fluid and structure solvers, respectively.
I do not explain these elaborate methods further. Refer to [8] for the IQN-ILS method and to [40] and
[27] for the V-IQN algorithm.

4.1.2 Communication Methods

Interfield parallelism is an important topic when it comes to high-performance computing (HPC) on
massively parallel systems. But the execution time of the solver processes does not solely determine
overall runtimes of simulations. A high level of parallelization also induces the necessity of efficient forms
of communication between the distributed processes so that data transfer does not become a dominant
bottleneck. preCICE offers three different means of communication based on files, sockets and message
passing interface (MPI) ([18]). A fully parallel process-to-process communication approach (both via
sockets and MPI) for preCICE is implemented in [37].

20

Files

File communication is a very basic form of communication. Solver processes write data to and read data
from files, which are stored on the hard drive of a computer. Communication is limited to a one-to-one
fashion, meaning that a single writer and a single reader communicate with each other. Each file is
named uniquely in order to identify the writer and reader by their respective names. Furthermore, the
file name contains a message counting number. In order to avoid writer and reader processing the same
file simultaneously, the currently working process renames the file and hides it by that manner from the
communication partner. Reading is implemented such that busy waiting is used to check for the correctly
named file. This is a drawback of file communication as it blocks computational resources. Moreover,
due to the inherent latency of the hard drive, the technique is not feasible for frequent data exchange. It
is implemented in preCICE solely for testing purposes as it allows to easily trace back errors ([18]).

MPI

MPI ([16]) is typically used for parallelizing applications (intrafield parallelism) in a way that parallel
processes run the same code, differing by the MPI rank/index3. However, in preCICE, MPI commu-
nication is used to exchange data between processes of different applications, namely the instances of
the single-physics solvers. A big advantage of this communication method is that MPI is available on
most scientific computers and offers qualities, which are relevant in the field of HPC, such as high data
throughput and small latency. In preCICE, MPI communication can be set up either via a single com-
munication space containing all executables (which are then subgrouped for the individual solvers) or via
different spaces. This means of communication can be quite prone to incompatibilities of software with
different implemented versions of MPI. Therefore, it may be necessary to adapt/change the underlying
MPI versions of the respective single-physics solvers or of preCICE. Especially in the case of closed-source
solvers, this adaption might not be possible and thus communication via MPI might have to be discarded.
Communication is performed asynchronously (non-blocking), which is highly relevant for fully parallel
process-to-process communication ([37], [18]).

Sockets

preCICE also supports communication via Transmission Control Protocol/Internet Protocol (TCP/IP)
sockets. Although their usage is rather unconventional in HPC, they are used in preCICE as they are
a very elaborate, well-known means of network communication and therefore, mostly bug-free. Further-
more, unlike in the case of MPI, different TCP/IP socket versions for different solvers to be coupled
do usually not yield runtime incompatibilities. Again, the communication procedure is asynchronous
(non-blocking) ([37]).

Gatzhammer shows in [18] that, indeed, MPI is the best-performing communication technique imple-
mented in preCICE as it outperforms socket- and file-based communication especially for use cases of
data exchange with higher numbers of nodes4. However, socket communication follows closely, such that
both techniques are very well-suited for larger-scale simulations.

4.1.3 Data Mapping for Non-Matching Meshes

In FSI simulations, fluid and structure meshes do not necessarily coincide in a node-to-node manner at
the wet surface. In fact, typically fluid and structural domains are spatially discretized to different levels
of refinement. In most cases, fluid meshes are finer than solid grids, meaning that at the wet surface more
fluid than structural nodes appear. This situation is sketched in Figure 4.5. Therefore, when coupling
data needs to be exchanged at the wet surface, some mapping between fluid and solid nodes must be
applied in order to be able to interpolate data between them. preCICE offers three different methods
for this, namely nearest-neighbor (NN) and nearest-projection (NP) mapping, as well as an interpolation
method based on radial basis functions (RBF) ([18]).

For all implemented procedures in preCICE, mapping can be applied in either consistent or conservative
fashion, which must be chosen dependent on what quantities are exchanged at the wet surface (e.g. forces

3An identifier for each of the parallel processes.
44 · 101 to 4 · 106 nodes are tested.

21

Fluid domain

Solid domain

Wet surface

Figure 4.5: Fluid and structure domains are shown with their respective mesh discretizations at the wet
surface in a two-dimensional case, i.e. the interface is a line. Nodes do not necessarily coincide and the
fluid mesh is denser than the solid mesh. Mesh connections besides the edges at the wet surface are not
shown for the sake of a clear view.

or stresses, displacements or velocities) ([18]). As is the case for the coupling described in this thesis (and
most of the numerical testcases, which are shown), a fine fluid mesh and a coarse solid mesh meet at their
common interface (as depicted in Figure 4.5). Forces need to be mapped from fluid to corresponding
structural nodes and displacements in reverse from solid to fluid nodes. As the number of fluid nodes
exceeds that of the structure, in general a single solid node is assigned to several fluid nodes5. If forces are
mapped from these multiple fluid nodes to the solid node, all of the assigned fluid nodes contribute to the
overall force value at the structural node in an additive manner. Such a mapping is called conservative, as
the overall sum of the forces on both fluid and structure side at the wet surface remains constant, i.e. it is
conserved. In contrast, when displacements are mapped from a single solid node to the fluid nodes, it is
not useful to distribute the single displacement value among the fluid nodes such that the displacements
of the fluid nodes sum up to the displacement of the solid node. Rather, all fluid nodes assigned to that
single solid node experience the same displacement. Such a mapping is called consistent, as the mapped
value is transferred exactly ([18], [7]). A schematic example of conservative and consistent interpolation
is depicted in Figure 4.6 for the NN method. Conservative mapping of forces and consistent mapping of
displacements is used in the coupling procedure performed in this thesis.

fS = (fF,1 + fF,2 + fF,3) = 60

fF,1 = 10 fF,2 = 20 fF,3 = 30

(a) Conservative mapping of forces from three fluid
nodes to one solid node. f represents exemplary scalar
force values without units. Fluid and solid values are
indicated with subscripted F and S, respectively. Also,
the fluid nodes are numbered via subscripts.

uS = 3

uF,1 = uS = 3 uF,2 = uS = 3 uF,3 = uS = 3

(b) Consistent mapping of displacements from one
structure node to three fluid nodes. u represents an ex-
emplary scalar displacement value without units. Fluid
and solid values are indicated with subscripted F and
S, respectively. Again, the fluid nodes are numbered.

Figure 4.6: Conservative mapping of forces (4.6a) and consistent mapping of displacements (4.6b) between
a solid node and three assigned fluid nodes with the NN method. The spatial distribution of the nodes
and the assignment are chosen arbitrarily as the whole setting is of generic character.

Nearest-Neighbor

NN mapping is the most basic method available in preCICE. Each node at the wet surface of a mesh
searches for the corresponding closest neighboring node of the other mesh. In this context, "closest" is
to be interpreted in the sense of the shortest Euclidean distance ([6]). Of course, this allows for multiple

5Note that for this generic example, NN mapping is assumed exemplarily.

22

x

y

z 1© 2©

3©

Figure 4.7: Determining the shortest distance with the NP method in a three-dimensional case. The fluid
surface mesh is an unstructured, triangular mesh. Exemplary, the distances of a solid node to the fluid
mesh are depicted by arrows: 1© The distance to the nearest neighboring fluid node. 2© The orthogonal
distance to the nearest edge of the fluid mesh. 3© The orthogonal distance to the nearest surface element
of the fluid mesh.

nodes of a fine mesh to be assigned to a single node of a coarse mesh as mentioned before. For this kind
of mapping, preCICE needs no information regarding mesh connections and elements, the sole position
of the nodes at the wet surface is sufficient ([18]).

Nearest-Projection

In the case of NP mapping, the shortest distance of a node of one mesh to the other mesh is detected. For
a general three-dimensional case, when the interface between fluid and solid is a surface, a node’s shortest
distance to the other mesh may occur at either a node, an edge or a surface element of the partner mesh.
Thus, for each node, preCICE computes the distance to the NN, the nearest edge and the nearest surface
element ([18]). For a graphical representation of this situation, see Figure 4.7. Consequently, the shortest
distance is chosen among those three, which determines whether one node (node is nearest), two nodes
(edge is nearest) or multiple (≥ 3) nodes (surface element is nearest6) have to be taken into account for
mapping. If the shortest distance occurs at an edge or a surface element, in general, not all nodes of the
respective edge or surface element have the same influence on the assigned node of the partner mesh.
Depending on how close these nodes are to the projected one, weights are calculated, which describe the
differently strong influence. As for this method preCICE needs to know not only about the positions of
all interface nodes, but also mesh connections in order to recognize edges and elements, at least one full
mesh representation must be fed to preCICE during startup of a simulation ([18]).

Radial Basis Functions

Interpolation with RBF can be done with either compactly or globally supported functions. This means
that the spatial influence of nodes, from which data is to be mapped, is either limited to a certain
Euclidean range, the support radius r, or not. In the latter case, each node at the wet surface of one
mesh influences each node at the interface of the other mesh. In contrast, with compactly supported
RBF, only those nodes of the partnering mesh are influenced, which are located within a sphere around
a node of the first mesh with radius equal to the support radius. In both cases the exact strength of the
influence (and its dependency on distance between two nodes) is then determined by the RBF itself:

φ(‖x‖), (4.6)
6Number of involved nodes is dependent on type of element, for a triangular surface element, it would be three.

23

where ‖x‖ denotes the Euclidean distance between a node of the first and the second mesh. Moreover,
for compactly supported RBF holds: φ(‖x‖) = 0 for ‖x‖ > r.
Generally, the wider the support of a basis function is, the better is the approximation. Yet the com-
putation of the interpolation requires more effort as influences of a lot of nodes have to be taken into
account. In reverse, a narrow support yields an interpolation system, which is easy to solve, but the
approximation might suffer from it resulting in larger mapping errors. Choosing an adequate support
radius is, therefore, a difficult task in practice. Moreover, the support radius should be kept fixed for all
wet surface nodes of a mesh as varying from node to node might not lead to an interpolation solution
([1], [33]).

Several different RBF are available in preCICE7. Globally supported functions include a thin-plate spline,
(inverse) multiquadrics, a volume spline and a Gaussian, while the following compactly supported RBF
are implemented: A thin-plate spline of continuity C2, as well as polynomials of continuity C0 and C6,
respectively ([18]).

4.2 SU2 - A Modular, Flexible CFD Solver

SU2 stands for Stanford University Unstructured8. It is an open-source software suite initiated and mainly
developed at the Aerospace Design Laboratory of Stanford University9. For this thesis the current release
version of SU2 is 4.1 "Cardinal". All explanations are therefore limited to this version.

Being motivated from an aerodynamical point of view, the core capabilities of the tool include CFD
analysis and design-driven tasks like shape optimization10 for single- and multiphysical problems based on
a finite volume method (FVM). More fundamental, SU2 solves problems governed by PDE on arbitrarily
unstructured meshes. However, SU2 uses a vertex-based FVM (rather than a cell-based approach), such
that solution variables are determined and stored at the vertices (= nodes). The vertices need to be
embedded in control volumes (= elements), which the numerical solution procedures are applied to. The
original mesh does not embed nodes in the cells, but they are defined on cell edges. Thus, a dual-mesh
is calculated from the primal-grid using a median-dual, vertex-based scheme. Cells of this dual-mesh are
calculated by connection of the centroids, faces and edge-midpoints of all primal-grid elements, which
share the respective node. The latter is now embedded in a dual cell. For further information about this
procedure, see [30].
Both steady and unsteady problems can be solved by SU2. The former is relevant for coupling with
preCICE in order to handle FSI simulations. In each physical time step of SU2 the time-dependent
problem is solved by converging it to a locally steady solution. Therefore, SU2 offers a dual-time stepping
procedure. Pseudo-time steps are performed for a single physical time step until sufficient convergence is
reached (or the specified maximum number of dual time steps). This method allows to reuse acceleration
methods, which are well-established for steady flow problems. I refer to [30] for further insights into this
method.

The highly modular character of the object-oriented C++ package allows for extension to fields of science
and engineering other than aerodynamics ([30]). However, in this thesis, I focus on its CFD and dynamic
mesh capabilities - central functions relevant for partitioned FSI simulations.
SU2 is subdivided into several software modules:

• SU2_CFD: CFD solver (PDE solution module), main component

• SU2_DEF: Mesh deformation

• SU2_DOT: Gradient projection for optimization tasks

• SU2_GEO: Definition of the geometry of problems

• SU2_MSH: Mesh adaption

• SU2_PY: Python scripts for automated tasks

• SU2_SOL: Solution export and conversion
7For the mathematical definition of these functions see [18].
8See http://su2.stanford.edu.
9The code can be accessed via Github: https://github.com/su2code/SU2.
10E.g. of aircrafts, aircraft wings or airfoils for wind turbines.

24

http://su2.stanford.edu
https://github.com/su2code/SU2

If not explicitly stated otherwise, I only describe the functional extent of the SU2_CFD module, as
all other modules are of no or minor importance for this work. In Section 4.2.1, I shortly state the
mathematical models used in SU2. In the following, in Section 4.2.2, input and output files, the basic
code structure and an exemplary run of the CFD solver is described. Section 4.2.3 gives an insight into
parallelization of the software suite and Section 4.2.4 closes the description of SU2 by motivating the
coupling of SU2 with preCICE, taking into account recently added, intrinsic FSI capabilities of SU2.

4.2.1 Mathematical Modeling

Analogous to the previous sections, I consider the mathematical modeling of SU2 in the most general,
three-dimensional case. Unless stated otherwise, the equations in the following are taken and adapted
from [30] and [36]. The suite is capable of solving various systems of PDE on a domain Ω ⊂ R3, as long
as the problem can be stated in the hereafter formal sense:

∂U

∂t
+∇ · F c(U)−∇ · F v(U) = Q(U) in Ω, t > 0. (4.7)

U is the solution vector of unknowns, which needs to be determined. F c is a vector of convective fluxes
and F v refers to viscous fluxes. Both flux vectors are functions of the unknown solution. Q denotes a
generic source term, which can also depend on U ([36], [30]).

From this basic formulation, a wide variety of PDE-based problems other than classical flow scenarios
(Euler, NSE, Reynolds-averaged Navier Stokes (RANS)) can be solved by adapting U , F c, F v and
Q to the concrete situation. For instance, the software is used in wind turbine and solar collector
simulation, for naval engineering purposes (free surface flows) and also in chemical engineering ([11]).
However, in this thesis, the treatment of the NSE is of greatest relevance. Defining the solution vector
as U = (ρ, ρv1, ρv2, ρv3, ρE)ᵀ, where ρ is the fluid density, v = (v1, v2, v3)ᵀ ∈ R3 is the flow velocity and
E is the total energy per unit mass of the flow, allows for usage of the formulation stated in Equation
4.7. The entries of the solution vector are also known as conservative variables since they refer to mass,
momentum and energy, which are conserved by the NSE (for a reminder, recapitulate Section 2.3.1). In
this model the convective and viscous fluxes are given as

F c(U) =

 ρv
ρv ⊗ v + pI

ρvH

 , F v(U) =

 0
τ

τ · v + µCp∇T

 . (4.8)

p denotes the static pressure and I ∈ R3×3 the identity matrix. H is the fluid enthalpy, τ ∈ R3×3

corresponds to the viscous stress tensor and µ is the dynamic viscosity of the fluid. Cp denotes the
specific heat at constant pressure and T refers to temperature. This formulation corresponds to a Eulerian
description of the fluid domain. For coupling SU2 with preCICE the ALE derivation is needed. The
viscous flux vector undergoes no changes and also the source term remains the same. Only the convective
flux vector needs to incorporate the velocity of the mesh nodes such that a relative velocity between mesh
and fluid particles is gained:

F c
ALE(U) =

 ρ(v − u̇mesh)
ρv ⊗ (v − u̇mesh) + pI
ρ(v − u̇mesh)E + pv

 . (4.9)

umesh ∈ R3 corresponds to the displacements of the mesh nodes. Thus, ∂umesh
∂t = u̇mesh refers to the

mesh velocities. Inserting Equation 4.9 and the viscous flux vector from Equation 4.8 into Equation 4.7
yields the final PDE system suitable for FSI coupling via preCICE.

Note that the above derivation corresponds to compressible flows (density is an unknown variable). Up
to the current version (4.1 "Cardinal") of SU2 only the compressible solver has an implementation of the
ALE method, the incompressible solver can solely be used with non-moving meshes. Consequently, also
the FSI capabilities of SU2 after coupling with preCICE are limited to the compressible regime.

25

4.2.2 Software Structure

Input and Output Files

SU2 needs only two different input files for a regular solver run: A configuration file and a mesh file.
Although the CFD General Notation System (CGNS) format can be used as mesh input for SU2, its
support is not part of the standard installation process as described in Appendix B. An own native mesh
format has been developed for SU2, which is easily readable and adaptable. Such mesh files carry the
extension .su2 and are written in ASCII format ([30]). These SU2 meshes can directly be created with
the free software Gmsh ([19]), for instance. The file contains the following information ([30]):

• Dimensionality of the problem11,

• total number of elements of the mesh,

• element connectivity information12: Including an identifier for the kind of each element (triangle,
rectangle, tetrahedron, etc.), indices of the involved nodes and a consecutively running number,
which serves as element index.

• Total number of mesh nodes,

• coordinates of all nodes with a consecutively running number used as node index.

• In addition, the total number of boundaries of the mesh (also referred to as markers) is given

• and for each boundary the name of the marker, the total number of involved elements and a list of
these elements is stated. This list includes an identifier for the kind of each element (line element
(2D), rectangle or triangle (3D)) and the indices of the involved nodes.

The configuration file with extension .cfg is a simple, text-based file, which contains all options for the
solver run of SU2. Each option starts with a unique name, followed by "=" and finally, the value of the
option:

optionName = optionValue. (4.10)

For instance, the boundary marker tags, which are described in the listing above, are used in the config-
uration file to prescribe boundary conditions. This might look like as shown in Equation 4.11:

MARKER_INLET = (inlet). (4.11)

In this example, "inlet" needs to be defined as a boundary marker in the SU2 mesh file.
Besides options, the configuration file may contain comments, which are marked with a "%" at the
beginning of a line. All white spaces (tabs, spaces, set-offs) are ignored when the file is parsed. Thus,
they can be used for formatting the file for the sake of readability. Also, format and name of the mesh
input file are specified in the configuration file, so the configuration file name is the only parameter, which
needs to be passed to SU2 upon starting a solver run ([30]).

The configuration file also describes what kind of output files should be written and how frequently.
Also the respective output formats are specified. Files for Tecplot13, Paraview14 and Fieldview15 are
supported. The output files relevant for a typical solver run are

• flow volume solution files (containing all solution variables throughout the whole mesh),

• convergence history files

• and the forces breakdown file (contains force coefficients for surfaces, which are marked in the
configuration file by "MARKER_MONITORING").

• Furthermore, flow restart files (for restarting a simulation from a specified point)

• and surface flow solution files (containing solution variables at surfaces, which are specified in the
configuration file by "MARKER_PLOTTING") can be created.

11SU2 can handle two- and three-dimensional problems.
12This is necessary as SU2 uses unstructured meshes and thus, no logical ordering of the mesh nodes can be assumed.
13Commercial, see http://www.tecplot.com.
14Open-source, see http://www.paraview.org.
15Commercial, see http://www.ilight.com.

26

http://www.tecplot.com
http://www.paraview.org
http://www.ilight.com

SU2_CFD

CMultiGridIntegration

CConfig COutput CDriver

CSingleZoneDriver

CIteration

CMeanFlowIteration

CIntegration

CSolver CNumericsCGeometry

CPhysicalGeometry CEulerSolver

CNSSolver

CVariable

CEulerVariable

CNSVariable

…

A B

A B

Class B is instantiated by class A

Class B is a child class of class A

Figure 4.8: Class structure of SU2 starting from SU2_CFD for a simulation solving the NSE. The high
level of abstraction allows for flexible combination of different solvers for multiphysics simulations. The
child classes of CNumerics are not specified as they depend on the numerical methods chosen by the user
at configuration time. The dashed box explains the used relations. Figure adapted from [30] and [36]

Class Dependencies

In order to perform a coupling of SU2 and preCICE as is explained in Chapter 5, some changes to the
source code of SU2 are necessary. However, to do so, the basic class structures and hierarchies of the fluid
solver need to be understood. All CFD computations of SU2 start with the file SU2_CFD.cpp, which
contains the main method for a solver run. Within the main function several classes are instantiated. A
graphical representation of these including their relations is given in Figure 4.8 for the case of a simulation
based on the NSE. At the beginning of a run of SU2_CFD three classes are instantiated: CConfig, COutput
and CDriver. In CConfig the configuration file is parsed and all therewith related information is saved.
COutput handles all output corresponding tasks such as writing solution or restart files. CDriver is
the class, which is in charge of the actual solving procedure. Due to various possible child classes,
CDriver allows for usage and combination of several different solvers for the purpose of multiphysics
simulations. In such a case, each solver works on its own, so called zone. Examples are combustion
modeling, two-phase flows or magnetohydrodynamics simulations ([30]). However, in this thesis and for
the example of solving a problem governed by the NSE, SU2 is used as a single-physics solver, yielding
only a single zone. Consequently, the child class CSingleZoneDriver is instantiated16. It basically just
instantiates CIteration and handles its function calls, including pre-processing, running a single iteration
and solution updating, once an iteration has converged. The concrete actions of these functions are
implemented in the subclasses of CIteration and depend on the type of physical problem to be solved. In
case of a NSE problem, the adequate child class is CMeanFlowIteration16. Pre-processing includes the
important steps of setting initial conditions for an iteration and computing grid movements, if dynamic
mesh capabilities are enabled. CMeanFlowIteration instantiates a child of the class CIntegration. If the
multigrid functionalities of SU2 are enabled, the child CMultiGridIntegration is chosen17. It connects
the classes CGeometry, CSolver and CNumerics, which handle discretization and subsequent spatial and
time integration of the problem. CPhysicalGeometry16 converts the primal-grid structure into the new

16For an overview of all (other) respective child classes, see [36] and [30].
17Otherwise CSingleGridIntegration.

27

dual-mesh structure, which the computations are executed on. The kind of solver to use depends on the
physical problem. For the NSE the final solver class is CNSSolver16. Here, the NSE are numerically
solved, finally yielding a solution vector. This is done by calling several classes in CNumerics, which are
determined by the numerical procedures chosen at configuration time16. These define the discretization
methods, which, in case of the NSE as governing equations, are used to compute viscous and convective
fluxes ([30], [36]).

Sequence of a Typical Solver Run

After explaining the structure of SU2 from a static point of view, I now consider a typical solver run
for a problem governed by the NSE, which is shown in Algorithm 2. Note that the run is reduced
to its basic elements and does not contain arguments when calling functions, datatypes, declarations
and initializations (except where needed for better understanding). At first, an iteration counter and

Algorithm 2 Typical SU2 solver run in pseudo code, reduced to core functionalities
1: stopCalculation = false;
2: externalIteration = 0;
3: parseConfigurationFileAndStoreRespectiveInformation();
4: geometricalPreprocessing();
5: driverPreprocessing();
6: if dynamicMeshSimulation then
7: setDynamicMeshStructure();
8: end if
9: while externalIteration < maxNumberOfExternalIteration do

10: driverRun();
11: updateConvergenceHistory();
12: if convergence then
13: stopCalculation = true;
14: end if
15: if solutionNeedsToBeOutput then
16: writeOutputFiles();
17: end if
18: if stopCalculation then
19: break;
20: end if
21: externalIteration++;
22: end while
23: return exitSuccess;

a flag for determining whether the simulation should be stopped are initialized. In the following, the
configuration file is parsed and the chosen options are stored. In geometricalPreprocessing(), the dual
mesh structure is computed. driverPreprocessing() instantiates all classes needed for the solver run and
transfers respective options from the configuration to these instances. Subsequently, if the simulation
deals with dynamic meshes, respective data structures such as for storing node displacements and mesh
velocities are prepared. While the iteration counter is smaller than the maximum number of iterations
(also prescribed in the configuration procedure), the solver keeps executing the following tasks: Run a
single iteration (more precisely described in Algorithm 3) and update the convergence history afterwards.
If convergence has been reached, set the flag for stopping the calculation to true. Depending on the options
specified at configuration time, determine whether output files need to be written or not. Subsequently,
the stopCalculation flag is checked. If it is set to true, the algorithm breaks out of the while-loop of
the solver. If it evaluates to false, it proceeds with incrementing the iteration counter and starts again
at the condition of the while-loop. After breaking out of the while-loop or if the maximum number of
iterations is reached, SU2 returns an exitSuccess, provided that the solver has not aborted during an
iteration due to e.g. divergence or other problems. A single solver iteration (see Algorithm 3) starts with
setting the initial conditions for the current iteration. If the simulation uses dynamic mesh capabilities,
as next step the mesh deformation is computed from the change of coordinates of the nodes relative to
the previous time step. A pseudo-structural problem is solved in SU2 for this purpose. The stiffness

28

Algorithm 3 A single driverRun (see Algorithm 2) in pseudo code, reduced to core functionalities

1: setInitialConditions();
2: if dynamicMeshSimulation then
3: computeMeshDeformation();
4: end if
5: storeOldSolution();
6: setTimeStep();
7: spacialIntegration();
8: timeIntegration();
9: computeNonDimensionalParameters();

10: monitorConvergence();
11: updateSolution();

of the mesh elements can be modeled to be proportional either to the inverse of the area/volume of
an element or to its distance to a boundary or the stiffness can be set constant. In the following, the
solution of the previous iteration is transferred from the equation system’s solution vector to separate
variables and the solution vector is reset. As SU2 offers adaptive time stepping functionalities, in the
next step the possibly adaptive time step is set. Afterwards, integration of the problem in space and time
occurs utilizing the numerical discretization and solution techniques specified in the configuration file.
This yields a new solution vector, from which non-dimensional parameters at surfaces of the problem are
derived, such as coefficients of lift and drag forces or coefficients of torques. The final step of an iteration
consists of updating the solution, which includes forwarding it to all different grid levels, assuming that
the multigrid capabilities of SU2 are used.

4.2.3 Parallelization

In order to run large-scale simulations in feasible time, SU2 can be executed in an intrafield-parallel
manner, meaning that the computational domain is split into parts, which separate processes work on.
SU2 uses the well-established partitioning software packages METIS and PARMETIS ([22], [23]) to deal
with this domain decomposition task, while communication is managed via MPI. The mesh is divided
using edge-cuts. Along the cut many elements remain fragmentary as nodes of one element may be
assigned to different processes. It is not efficient to allow the different processes to communicate with
each other whenever they need values of nodes that are not part of their own submesh. This would slow
down computations considerably due to communication overhead. Instead, ghost points are initialized
in SU2 to sustain complete elements for all processes. As a consequence, overlapping, so called halo cells
are created. For these, data is exchanged between the corresponding original and replicated nodes after
each iteration ([30], [11]). Figure 4.9 depicts this situation for a sample, triangular mesh, which is divided
into two submeshes. For the purpose of identifying which node (including the ghost nodes) is handled by

(a) Total mesh and cutting line. (b) Resulting submesh 1. (c) Resulting submesh 2.

Figure 4.9: Domain decomposition of a triangular mesh into two submeshes. The thick, black line
in Figure 4.9a represents the edge cuts of the partitioning. The colored cells become halo cells due to
duplication of their respective nodes. The two detached submeshes overlap at the halo cells and are
shown in Figures 4.9b and 4.9c, respectively.

which process, so called colors are assigned to the nodes. Each color is a number which, equals the MPI
rank of the respective process and is therefore unique among the processes ([30], [11]). The whole grid
partitioning procedure including the coloring of nodes is depicted schematically for a two-dimensional,
triangular mesh in Figure 4.10. It can be understood as a local, more detailed excerpt of Figure 4.9.

29

(a) The mesh is divided into two submeshes by cutting
edges of triangular elements. The thick line illustrates
the cut. Each "side" of the cutting line is handled by a
different processor. In the figure only a small sector of a
larger mesh is shown, which is indicated by the dashed
lines.

Process #0

Process #1

(b) Two unconnected submeshes are derived. Fragmen-
tary elements remain and ghost nodes (dashed circles)
are introduced as duplicates of the original nodes. Their
difference in position is only due to graphical reasons.
The dashed lines indicating further elements are omit-
ted for readability.

Original nodes of process #0

Ghost nodes of process #0

(c) Ghost and original nodes of process #0 are con-
nected to recover the original elements. The dashed
lines indicating further elements are omitted for read-
ability.

Ghost nodes of process #1

Original nodes of process #1

(d) Ghost and original nodes of process #1 are con-
nected to recover the original elements. The dashed
lines indicating further elements are omitted for read-
ability.

Figure 4.10: Schematic of domain decomposition in SU2 among two processes. In Figure 4.10a the original
mesh and the cutting procedure is shown. Figure 4.10b illustrates the introduction of ghost nodes for
both processes and the respective coloring of all nodes. The final meshes including original and ghost
nodes are shown in Figures 4.10c and 4.10d for processes #0 and #1, respectively.

30

CDriver

CFSIDriver

CIterationCIteration CTransfer

CMeanFlowIteration CFEM_StructIteration

CTransfer_FlowTraction

CTransfer_StructuralDisplacements

A B Class B is instantiated by class A

A B Class B is a child class of class A

A B Class B receives information from class A

1©

1©

2©

2©

Figure 4.11: Excerpt of the class structure for (intrinsic) FSI simulations in SU2 starting from CDriver.
The single-physics solvers represented by CMeanFlowIteration and CFEM_StructIteration 1© forward
coupling data to the respective child classes of CTransfer, before they 2© transfer it to the partner solver.
The dashed box explains the used relations. Figure adapted from [36].

4.2.4 Intrinsic FSI Capabilities

Recently, SU2 has been extended with a structural solver based on the finite element method (FEM)18.
It is capable of handling both geometrical and material non-linearities. In a partitioned approach (for
a reminder, see Section 3.1) the solid solver has been coupled with the original ALE-based flow solver
for the purpose of treating FSI problems. However, as described in Section 4.2.1, the flow solver dealing
with dynamic meshes is limited to compressible regimes, so are the FSI functionalities, consequently. All
information regarding the intrinsic FSI capabilities of SU2 is taken from [36].

Referring back to Figure 4.8, a new child class of CDriver is introduced, namely CFSIDriver, which
takes care of combining flow and solid solver. Next to instantiating CMeanFlowIteration for the fluid
domain and CFEM_StructIteration for the solid domain, the new class CTransfer is used for exchang-
ing data between the single-physics solvers. Its child classes CTransfer_FlowTraction and CTrans-
fer_StructuralDisplacements forward forces from fluid to solid and in reverse, displacements from structure
to flow solver. Figure 4.11 depicts the newly added class dependencies. Both weakly and strongly coupled
algorithms (for a reminder, see Section 3.2) are implemented, including the explicit CSS algorithm and an
implicit Block Gauss-Seidel method with either constant or dynamic Aitken relaxation. Since these algo-
rithms are also included in preCICE, no further explanation is given here. Instead, I refer back to Section
4.1.1. The intrinsic FSI implementation also contains strategies for non-matching meshes. Currently,
NN (for a reminder, see Section 4.1.3) and isoparametric mapping methods are available, but extension
to interpolation based on RBF is in progress. A consistent and conservative approach is chosen in SU2,
meaning that tractions are mapped conservatively, while displacements are transferred in a consistent
fashion (compare Figure 4.6).

Despite the intrinsic FSI capabilities, it is reasonable to couple SU2 with preCICE. First of all, via
preCICE a wider range of coupled simulation problems can be addressed, including e.g. fluid-structure-
acoustics interaction. Also, the user is given more flexibility when choosing a structural solver, ranging

18For now, the solver is limited to linear, first order elements (triangles and quadrilaterals in two-dimensional, tetra- and
hexahedra in three-dimensional problems).

31

from elaborate, commercial solid solvers to open-source and academic codes that solely focus on the
discipline of CSM. Moreover, although SU2 includes coupling algorithms, which are also implemented in
preCICE, none of these allow for interfield parallelism such that a fully-parallel execution of fluid and solid
solver is not possible. This is especially of importance when it comes to efficient usage of computational
resources and is therefore, highly relevant for HPC on massively parallel systems. SU2 does not utilize
coupling algorithms, which make use of the advantage that internal solver information is available, such as
e.g. Newton-Raphson methods, due to their high computational cost. Consequently, preCICE’s black-box
approach faces no drawbacks compared to the intrinsic coupling of SU2. Quite contrary, preCICE offers
very elaborate acceleration schemes for implicit coupling, which outperform the constant and Aitken
relaxation techniques implemented in SU2. Finally, preCICE also offers a greater, more sophisticated
selection of mapping procedures for non-matching meshes, possibly resulting in smaller interpolation
errors. In summary, coupling for FSI simulations via preCICE offers more flexibility and possibly also
more accurate results, while computational effort is spread effectively.

32

5. Description of the Coupling
Adapter and its Integration

SU2 code
changes preCICEAPI

Coupling

Adapter

Figure 5.1: The source code of SU2 is extended by minimally invasive code changes, which allow to use
the adapter. The adapter makes use of the API of preCICE that is part of the coupling tool’s source
code.

In order to couple SU2 with preCICE, a C++ adapter class named Precice1 is developed in the scope of
this work. A header file precice.hpp and a source file precice.cpp are the practical outcome. The Precice
class encapsulates all coupling related activities and separates them from the original SU2 source code.
It makes use of the high-level API provided by preCICE. Since the adapter is integrated into the source
code of SU2, it is completely compiled with it (for a description on how to install SU2 with preCICE,
see Appendix B). This way, coupling is achieved with minimally invasive code changes in SU2 and an
adaption of the original code is, thus, possible with only small effort, basically reduced to copy-paste
tasks. The adapter allows for usage of both explicit and implicit coupling strategies implemented in
preCICE and fully conforms with intra- and interfield parallelism. Moreover, usage of the adapter is
assimilated to the regular configuration process of SU2, thus, it is embedded smoothly into the software
suite. All options concerning the usage of preCICE (e.g. switching it on or off, specifying name and
location of the preCICE configuration file, etc.) are set via the SU2 configuration file. Consequently, no
recompilation of SU2 is necessary when the user decides to use/not to use preCICE. In addition, a single
executable, SU2_CFD, is enough to account for single-physics simulations (without preCICE) as well as
for FSI computations via preCICE. Figure 5.1 shows a schematic representation of the code coupling
approach.

Concerning notation of code shown in this chapter (and in the corresponding referenced sections of the
appendix), it is important to state that SU2 uses several "containers" for storing information (technically,
they are multiple pointers). E.g. a "config_container” is an instance of CConfig or a "geometry_container"
refers to CGeometry. Furthermore, all shown code excerpts are reduced to the necessary information.
Therefore, not all arguments of functions are stated but only the relevant ones. Also, ellipses (...) are

1Note that Precice and preCICE do not denote the same. The former refers to the adapter developed in this work, while
the latter is used to describe the coupling tool.

33

used to denote further lines of code, which are not shown for the sake of simplicity.

This chapter is organized in the following top-down way: Starting from the most user-respective changes
in SU2, in Section 5.1, the newly added, coupling-related options included in the SU2 configuration
file are presented and their usage is explained. In addition, necessary code changes are stated. The
chapter continues with a more technical, detailed description on how the coupling is embedded in SU2,
as in Section 5.2 adaptions to the main routine of SU2_CFD are described. Mostly, these modifications
include calling several functions, which are incorporated in the adapter class Precice. However, the tasks
hidden in these functions are not described until finally, the adapter itself is extensively explained with
emphasis on both physical and computational details at the end of this chapter in Section 5.3. Referring
back to Figure 5.1, Sections 5.1 and 5.2 correspond to "code changes" in SU2, while Section 5.3 relates
to the "Coupling Adapter".

5.1 Changes Concerning SU2 Configuration

In order to fully control the usage of preCICE for FSI simulations within SU2, new options in the
configuration file of SU2 are available (for a recapitulation of this file, see Section 4.2.2). They are listed
in the following with their default values:

PRECICE_USAGE = NO, YES (5.1a)

PRECICE_CONFIG_FILENAME = precice.xml (5.1b)

PRECICE_VERBOSITYLEVEL_HIGH = NO, YES (5.1c)

PRECICE_WETSURFACE_MARKER_NAME = wetSurface (5.1d)

Most obvious, PRECICE_USAGE is a flag used for determining whether a simulation should be run
with or without preCICE. Modifying the remaining three options is only reasonable if it is set to YES.
PRECICE_CONFIG_FILENAME specifies the name of the configuration file of preCICE. Also, its path
relative to the location of the SU2 configuration file must be specified. In order to allow users to have more
insight into the sequence of activities within the coupling adapter, the level of verbosity of the adapter can
be chosen. If PRECICE_VERBOSITYLEVEL_HIGH is set to YES, several checkpointing information
of the adapter is output to the console. Yet, too much console output can slow down simulations. Since
this information is typically not relevant when running an FSI simulation productively, the verbosity level
is chosen to be low by default. This feature of the coupling adapter is mainly included for tracing back
runtime errors. Eventually, as explained in Section 4.2.2, physical boundaries are treated as markers in
SU2. Each boundary has a unique identifying name, which is specified in the SU2 mesh file. The boundary
marker name corresponding to the FSI interface of the fluid mesh must be passed to the coupling adapter,
which is done via the option PRECICE_WETSURFACE_MARKER_NAME. A description on how to
adapt SU2 in order to use the new configuration options is given in Listings A.1, A.2 and A.3, Appendix
A to a detailed level.

The dynamic mesh capabilities of SU2 must be enabled, in order to use the implemented ALE formulation
of the flow solver. This is done via:

GRID_MOVEMENT = YES (5.2)

Still, a specific kind of grid movement needs to be chosen. Intrinsically available are e.g. specifications
for rigid motions or rotations of the mesh. Here, a new option is available, which is mandatory if SU2 is
used for FSI simulations via preCICE:

GRID_MOVEMENT_KIND = PRECICE_MOVEMENT (5.3)

A manual on how to add this new grid movement option to the configuration procedure of SU2 is given
in Listing A.4, Appendix A.

Yet, the implementation of PRECICE_MOVEMENT is missing. It defines the steps of which the mesh
movement procedure consists. After displacements of the nodes at the wet surface are transferred to
SU2 via preCICE, the mesh needs to be deformed and smoothed (for a reminder, see Sections 2.2.3 and
3.3). Despite the sole mesh deformation, also grid velocities must be calculated in order to be able to

34

use the ALE method of SU2. Finally, for cases in which the SU2 multigrid capabilities are enabled,
displacements and velocities of the mesh nodes need to be mapped to all grid levels. Intrinsic SU2

mesh movement procedures cannot be reused as either they do not include the three necessary steps
stated above (mesh deformation, grid velocity computation, forwarding information to multigrid levels)
or they involve further computations, which are not necessary for FSI simulations and therefore, represent
unnecessary computation overhead. The code defining the steps of PRECICE_MOVEMENT is given in
Listing A.5, Appendix A.

5.2 Adaption of SU2 Main Routine

After modifying files related to the configuration procedure of SU2 in the previous section, it remains to
adapt the SU2_CFD module in SU2_CFD.cpp, which relates to the solver run procedure itself. The goal
is to add as little code as possible in the main solver routine of SU2 such that the coupling adapter can
be used. Detailed, corresponding code excerpts are stated in Appendix A.

One core criterion for integrating the adapter into SU2 is that the solver executable should be able
to run both single- and multiphysics simulations without recompilation. Only a single adapter-related
variable needs to be initialized in the main routine of SU2 regardless of whether preCICE is used for a
simulation or not. The variable (called precice_usage) is a boolean flag corresponding to the newly added
PRECICE_USAGE option of the SU2 configuration file. This flag is the basis for conditionally triggering
all coupling activities. If it is set to false, no more coupling variables are initialized in SU2_CFD and
the single-physics solver runs according to the regular scheme previously shown in Algorithm 2, Section
4.2.2. The (only three) additional variables needed for coupling include an instance of the adapter class
Precice and two time-stepping variables (namely max_precice_dt and dt).

preCICE needs to be able to shut down SU2, in case the FSI simulation should be ended. Therefore, an
adaption of the main solver while-loop is necessary. In case a simulation runs without preCICE, the usual
condition of the while-loop is used, which checks that the number of solver iterations is smaller than a
specified maximum. However, if a coupled FSI simulation is executed, the adapter additionally evaluates
if preCICE signalizes a solver shut down.

Assuming that the solver loop is executed, a checkpointing procedure for implicit coupling strategies of
preCICE starts. For strongly coupled algorithms, preCICE tries to find the fixed-point of the coupling
equation system (as explained in Section 4.1.1). If the solution of a subiteration does not satisfy the pre-
CICE convergence criteria, resetting the fluid solver to the start of the time step is necessary. Therefore,
at the beginning of each solver iteration in SU2, the current solver state is saved such that reloading it
becomes possible. However, this is only done in the first subiteration of a new time step.

As mentioned in Section 4.1, preCICE might need to enforce time step sizes for the single-physics solvers.
To allow for the same in SU2, the minimally allowed time step size for an iteration needs to be determined
before the solution procedure starts. Here, the variables dt and max_precice_dt come into play. While
the former stores the current time increment of SU2, the latter is the maximum prescribed by preCICE.

After SU2 is done with executing a single solver iteration, preCICE is informed that a new flow solution
is available. Therefore, the coupling tool might advance in time. This triggers preCICE to manage the
data exchange between SU2 and other coupled solvers, as well as to execute the coupling algorithm. In
case of an implicit procedure, convergence acceleration techniques are also activated by this step.

In case a strongly coupled algorithm is chosen, preCICE needs to evaluate (by checking its convergence
criteria) whether the old solver state of SU2 needs to be reloaded, staying at the same physical time
instance, or the simulation can proceed with the next time step. In the former case, SU2 internal solver
variables are reset to the last time instance. It is not reasonable to allow SU2 to write output files if
preCICE signalizes that the current time step has not sufficiently converged.

Finally, SU2_CFD handles the clean shut down procedure at the end of an FSI simulation. Communica-
tion channels are closed via the adapter and coupling-related memory is deallocated.

In Appendix A the extended solver procedure of SU2_CFD is depicted in Algorithm 4 by analogy with
the original solver sequence shown in Algorithm 2.

35

5.3 Coupling Adapter

As shown in the previous section, most code changes in SU2_CFD consist of conditional clauses checking
whether the adapter is used, followed by function calls on the adapter object. In this section I explain
the adapter functions and how they relate to preCICE. No code excerpts are included in this section, as
the files precice.hpp and precice.cpp will soon be included in the open-source preCICE repository. Thus,
the interested reader is referred to the source code.

The adapter makes use of the high-level API provided by preCICE. Its main component is an interface
with predefined functions that need to be integrated in the adapter. The corresponding class (in preCICE)
is called SolverInterface. Simply calling functions of this class within SU2 is not sufficient for coupling.
Rather, the adapter also takes care of

• force calculation at the FSI interface,

• managing intrafield parallelization of SU2 in the coupling process,

• converting data from SU2 to preCICE specific representation and vice versa,

• setting up and triggering mesh deformation,

• as well as reading and writing iteration checkpoints.

All these functionalities are smoothly hidden within the adapter class. Directly integrating these tasks in
SU2 would imply highly invasive code changes in its main routines. Yet, the adapter class also contains
some functions, which I refer to as wrappers. They consist of not much more but function calls on
SolverInterface. The advantage of this technique is obvious: There is no need to instantiate an object of
class SolverInterface directly in SU2. Rather, only the adapter instantiates such an object and therefore
hides it from the main solver routines. Table 5.1 gives an overview of functions2 of the adapter class
Precice and whether they are wrappers or not.

function name wrapper function?
configure() yes
initialize() no
advance() no
isCouplingOngoing() yes
isActionRequired() yes
getCowic() no
getCoric() no
saveOldState() no
reloadOldState() no
finalize() yes

Table 5.1: Functions of the adapter class Precice and their characterization.

Some aspects of the adapter functions are already mentioned in Section 5.2. However, detailed explana-
tions of what these functions do and their connection to preCICE is eventually given in the following.

Startup of a Coupled Simulation

The whole coupling process starts with the instantiation of the adapter within the main solver routine of
SU2. Upon creation of the adapter object, several information is passed to it, including MPI rank and
size, as well as all geometry (CGeometry), solver (CSolver), configuration (CConfig) and grid movement
(CVolumetricMovement) related data. Next to initializing data structures needed for coupling, the most
important step is the instantiation of a SolverInterface object within the adapter, which represents the
adapter’s connection to preCICE (compare Figure 5.1).

The adapter object and its connection to preCICE are established, yet it still remains to configure
preCICE from its configuration file. This happens when configure() is called on the adapter with the

2Constructor and destructor are neglected.

36

name and location of the configuration file as input argument. Since this function is a wrapper, internally
the adapter calls the same function on SolverInterface and forwards name and location of the .xml file.
Consequently, preCICE parses the configuration file and creates necessary data structures for coupling.

Subsequently, communication between SU2 and its coupling partner, as well as preCICE internal meshing
at the wet surface needs to be initiated, which happens upon calling initialize() on the adapter. It checks
each node at the FSI interface and stores its coordinates in a data array, which is then forwarded to
preCICE via the SolverInterface object. It is important to keep in mind that intrafield parallelism is
possible in SU2. The corresponding domain decomposition procedure (for a recapitulation, see Section
4.2.3) can lead to situations, in which a process does not work on the wet surface at all. This is taken into
account in the adapter as follows: As mentioned in Section 5.1, the boundary marker name of the wet
surface must be given to SU2 during configuration. This name is now used to determine whether a process
includes FSI interface nodes or not. Consequently, the respective process is marked by a boolean flag,
processWorkingOnWetSurface. If it evaluates to false, the before mentioned coordinate transfer procedure
is skipped. After receiving the node coordinate information, preCICE is prepared to create an interface
mesh from it. Finally, initialize() is executed on the SolverInterface object, which triggers setting up
communication between the coupling partners, creating the wet surface mesh and computing a possible
restriction on the first time step of SU2.

Coupling Step

The actual coupling activities start with the main solver loop of SU2. As explained in Section 5.2, a solver
iteration only occurs if preCICE signalizes that the coupling should not be stopped yet. Therefore, in the
wrapper function isCouplingOngoing() a function of the same name is executed on the SolverInterface
object and its boolean return value serves as the demanded signal. Subsequently, at the beginning of an
iteration and in case an implicit coupling algorithm is chosen, preCICE needs to inform SU2 whether
the current iteration corresponds to the first one of a new time step. isActionRequired() is called on
the adapter, which is again just a wrapper for the same function call on SolverInterface. The input
argument, however, specifies whether the action refers to writing or reading an iteration checkpoint. For
this purpose, the adapter includes two constant string member variables. One corresponds to writing
and one to reading a checkpoint. They can be accessed by the respective getter-functions getCowic()
and getCoric(). In this case, the former is chosen since the adapter might have to write an iteration
checkpoint.
If so, saveOldState() is called on the adapter. The goal of saving the current ("old") solver state is to
store all information, which is necessary to be able to rerun exact the same iteration, implying that an
iteration of SU2 with the same computational outcome is expected, if the input is not changed. This is
important for implicit coupling algorithms of preCICE if convergence is not met and a time step needs
to be restarted. Then, preCICE varies the input of SU2 in terms of the transferred displacements, which
might yield a better result (in terms of forces), meaning that the residuals of the coupled fixed-point
system are reduced. The quantities, which need to be stored for this checkpointing strategy, include
variables associated with the nodal coordinates of the fluid mesh, the grid movement and the solution of
previous time steps.
After a solver iteration of SU2 advance() is called on the adapter object. This function is the adapter’s
most extensive one as it includes computing forces at the wet surface and transferring them to preCICE.
Moreover, it triggers the coupling algorithm in preCICE, as well as receiving and setting the nodal
displacements at the FSI interface computed by the structural solver. There is no predefined function
available in SU2, which computes forces at certain mesh nodes. Therefore, I implemented this computation
in the advance() function. First of all, the adapter again checks whether the respective MPI process works
on the wet surface or not via processWorkingOnWetSurface. Computing and forwarding forces is only
necessary for the nodes in immediate contact with the FSI interface. If a process includes wet surface
nodes, the adapter determines the kind of flow regime of SU2 (compressible or incompressible, viscous or
inviscid flow). As mentioned in Section 4.2.1, SU2 is currently not able to run incompressible simulations
with ALE support. However, I already include the force computation for incompressible flows in the
adapter, in case this capability will be added in future releases. In addition, the adapter computes a
factor for redimensionalizing forces (as SU2 features non-dimensionalized simulations as well). If the
current simulation is dimensional, this factor evaluates to 1. In order to explain the force calculation, I
assume the general, three-dimensional case of a simulation governed by the NSE. The overall force at a
node acting on the FSI interface is then given by a viscous term arising from the viscous stress tensor

37

and an inviscid term determined by the (dynamic) pressure. The computation is done as follows:

fi = −(ptotal − pstatic)niA+ τijnjA ∀i = 1, 2, 3, with (5.4a)

τij = µ(
∂vi
∂xj

+
∂vj
∂xi

)− 2

3
µ
∂vk
∂xk

δij ∀i, j = 1, 2, 3. (5.4b)

f denotes the force vector, p pressure (total and static, respectively) and τ the viscous stress tensor. A
and n refer to area and unit outward normal vector of the dual mesh element associated with the node, for
which the force is calculated. Note that the pressure term needs to be negated as by definition pressures
point inward the fluid control volume, but the pressure force exerted on the solid (i.e. outward the fluid
control volume) is required. The explanation of the viscous stress tensor in Equation 5.4b is identical to
Equation 2.6. Again, the adapter needs to manage intrafield parallel execution of SU2. As extensively
explained in Section 4.2.3, ghost nodes are introduced in SU2 in order to build halo-cells after domain
decomposition. If decomposition occurs at the wet surface, interface nodes are replicated. Allowing each
of the replicates and the original nodes to write forces to preCICE would yield unphysical computation
results, as those nodes share the same mapping to the solid mesh and therefore, forces would accumulate
at solid nodes. The adapter makes use of the colors assigned to the FSI interface nodes in SU2. This is
technically done by comparing the MPI rank (= color of the process) with the colors of the wet surface
nodes. If they do not match, the process works on a duplicate and thus, is not allowed to write forces
at such a node. The corresponding data array storing all FSI forces is eventually pushed to preCICE by
calling writeBlockVectorData() on the SolverInterface instance.
The next step is executing advance() on the SolverInterface object, which uses the length of the current
solver iteration of SU2 as input and returns the prescribed maximum for the next iteration. Internally,
preCICE now executes convergence acceleration techniques, if an implicit procedure is chosen and ex-
changes coupling data with the partner solvers.
In the following, the adapter needs to read the FSI interface nodal displacements calculated by the coupled
structural solver. Thus, readBlockVectorData() is called on the SolverInterface object. The so obtained
displacements are set as coordinate variations relative to the nodal positions of the last time step in SU2.
While writing forces must be restricted to the nodes originally belonging to a process, reading and setting
displacements needs to be done also for the replicates.
Although it would be possible to trigger the mesh deformation procedure right away, I decided against
this strategy as the current time step might have to be restarted and mesh deformation would be unnec-
essary computational overhead in such a case. Thus, it is triggered at the beginning of the next solver
iteration as shown in Algorithm 3.
Now the counterpart of writing an iteration checkpoint comes into play (only for implicit algorithms).
preCICE checks whether the fixed-point equation system converges sufficiently or not. In the latter case,
upon calling the wrapper function isActionRequired() with input argument getCoric() on the adapter,
the coupling tool signalizes that reloadOldState() needs to be executed. Consequently, the solver state
prior to the current iteration is retrieved by resetting the respective variables in SU2.

Clean Exit

The main solver loop of SU2 is usually exited when isCouplingOngoing() in the while-loop condition
evaluates to false, which means that preCICE tries to finish the FSI simulation. The last step of the
coupling is initiated when the wrapper function finalize() is executed on the adapter object. This causes
all communication channels related to the coupled simulation to be closed and used memory to be
deallocated.

38

6. Selected Numerical Testcases

In order to validate the developed coupling adapter, several testcases were simulated, which ought to
qualitatively and quantitatively confirm the physically correct implementation. Moreover, the capabilities
of the adapter for larger-scale two- as well as three-dimensional simulations are shown in the following.

All simulations in this chapter were carried out on the MAC Cluster "CoolMAC" using the "Sandybridge"
and "Bulldozer" partitions1. The coupled structural solver for all simulations was the module SOLIDZ
(CSM simulations), which is part of the multiphysics simulation software suite Alya that is developed
at the Barcelona Supercomputing Center ([44]). Meshes for the testcases were generated with the free
software Gmsh ([19]).

Each section in this chapter starts with a short definition of the respective testcase, including its geom-
etry, discretization, expectation of the physical behavior and a motivation for running the simulation.
Subsequently, I state the physical and numerical settings used for the run. In the end, the obtained
results are shown and discussed briefly.

Beginning with Section 6.1, a very simple two-dimensional testcase is described, which is altered to yield a
three-dimensional scenario in Section 6.2. A quantitative comparison of simulation results is possible via
running the well-known FSI3 benchmark testcase ([39]) in Section 6.3. The chapter is closed by Section
6.4, simulating a slender cylinder. This example has a practical background and represents a real-world
application.

As for all simulations material and physical parameters as well as solver configurations need to be defined,
I forestall them here in order to avoid repeating myself in each section of this chapter. Also, this allows
to compare simulations settings with each other more easily. Material and physical parameters are stated
in Table 6.1. Fluids are modeled as ideal gases, solids as linearly elastic and isotropic.
Several solver configuration options remain the same for all simulations: Forces and the displacements
relative to the last time step are chosen as coupling quantities. In case an implicit coupling algorithm is
used, these are monitored by preCICE for convergence of the fixed-point system. In addition, an implicit
coupling algorithm extrapolates the coupling quantities with a second-order scheme at the beginning of
each time step. If IQN-ILS or V-IQN (recall Section 4.1.1) are chosen for coupling, preCICE takes into
account up to 30 iterations of up to 10 previous time steps in order to solve the interface least-squares
problem.
Concerning SU2, time discretization is handled by the implicit Euler method and spatial discretization is
dealt with by a second-order scheme in combination with a Roe approximate Riemann solver ([34]). The
linear system, which finally yields the solution vector of the flow field, is solved by the FGMRES procedure
([35]). All other solver configurations are given in Table 6.2 or directly stated in the respective sections.
Note that some FSI simulations are initialized from a fluid-only start solution, which is calculated for a
time period specified with tstart. Also, some simulations make use of the dual time stepping technique of
SU2. The corresponding dual time convergence limit εdual relates to reducing the density residual of the
fluid domain.
Fluid and solid calculations are started on different nodes of the cluster for all simulations.

1For more information on the cluster and its specifications, see http://www.mac.tum.de/wiki/index.php/MAC_Cluster.

39

http://www.mac.tum.de/wiki/index.php/MAC_Cluster

2D Flap 3D Flap FSI3 Cylinder

fluid

density ρF [kg/m3] 5.28 · 10−5 1.06 · 10−4 103 1.185
dynamic viscosity µ [Ns/m2] 1.81 · 10−5 1.81 · 10−5 1 1.831 · 10−5

specific gas constant RS [J/kgK] 287.058 287.058 287.058 287.058
specific heat ratio κ [–] 1.4 1.4 1.4 1.4

solid
density ρS [kg/m3] 10−2 102 103 7.85 · 103

Young’s modulus E [N/m2] 103 106 5.6 · 106 5.58 · 109

Poisson ratio ν [–] 0.4 0.3 0.4 0.3

flow

Reynolds number Re [–] ≈ 300 300 200 ≈ 11326
Reynolds length lRe [m] 1 1 0.1 0.005
Mach number Ma [–] 0.3 0.15 0.01 0.101
free-stream temperature T [K] 293.15 293.15 0.353 298.15
free-stream velocity v [m/s] ≈ 103 51.49 2 35

Table 6.1: Material and physical parameters of all simulation scenarios shown in this chapter.

2D Flap 3D Flap FSI3 Cylinder

general
start solution period tstart [s] 1.5 – 2 10−2

simulation time t [s] 1.5 7.8 6 0.1
time step size ∆t [s] 10−2 10−3 10−3 10−5

SU2

lin. solver conv. limit εlin 10−6 10−7 10−7 10−7

lin. solver max. iter. maxIterlin 5 50 50 20
dual time method? no yes yes yes
max. # dual steps maxStepsdual – 20 20 20
dual conv. limit εdual – 10−7 10−7 10−5

preCICE

coupling algorithm IQN-ILS V-IQN V-IQN BGS (Aitken)
interfield parallel? no yes yes no
rel. conv. limit εrel 10−4 10−3 10−4 10−3

mapping method RBF NN NN NN

Table 6.2: Solver configurations for all simulation runs in this chapter.

40

x

y

h

l

lup
wf

hf

Figure 6.1: Geometry of the two-dimensional flap testcase. The solid material of the flap is colored gray.
The inlet is depicted by arrows. Geometrical parameters are given in Table 6.3.

geometrical parameters value [m]
channel length l 12
channel height h 8
channel length upstream lup 4
flap height hf 4
flap width wf 1

Table 6.3: Geometrical parameters of the two-dimensional flap testcase shown in Figure 6.1.

6.1 Qualitative Validation: 2D Flap

Case Definition

The first testcase is a two-dimensional simulation of a deformable flap which extends into a channel. At
the lower end the flap is clamped to the channel bottom while the upper end can move freely. Figure 6.1
in combination with Table 6.3 defines the geometrical properties of the testcase. A compressible, laminar,
viscous flow (governed by the NSE) with constant profile at the inlet is chosen. The inflow is marked
by the accumulation of arrows in Figure 6.1. The opposite side of the channel is the outlet where no
constraint on the flow is given. Upper and lower wall of the channel enforce no-slip conditions, as does
the wet surface.
Fluid and solid domains are discretized by unstructured, triangular meshes, which are not adaptively
refined in vicinity of the FSI interface. The initial configurations of the meshes are shown in Figure 6.2.
Note that the meshes do, in general, not match at the wet surface although element sizes are almost the
same. The fluid mesh is slightly coarser than the structural grid. Further quantitative descriptions of the
meshes are given in Table 6.4.

discretization parameters value
number of degrees of freedom, fluid mesh ndof,F 2081
number of degrees of freedom, solid mesh ndof,S 157
number of elements, fluid mesh nelem,F 3968
number of elements, solid mesh nelem,S 262
number of elements at wet surface, fluid mesh nelem,ΓF 36
number of elements at wet surface, solid mesh nelem,ΓS 45

Table 6.4: Discretization parameters of the two-dimensional flap testcase meshes shown in Figure 6.2.

41

Figure 6.2: Triangular meshes of fluid and solid domain for the two-dimensional flap testcase. See Table
6.4 for quantitative descriptions of the meshes.

This simulation scenario serves solely as qualitative validation. The flap is expected to deform once
the flow reaches it. Of course, the free end of the flap should move in positive x direction first due to
increasing stagnation pressure upstream of the flap. Subsequently, depending on stiffness and density of
the solid material, it is expected to spring back, before the fluid pushes it again in flow direction. For low
stiffness values this oscillatory behavior should decline rather quickly as time passes, finally leading to a
steady state in which the flap stays in its deformed configuration. Due to the fact that the flap’s height
is half of the channel’s height, it represents a fairly large barrier for the fluid flow. Thus, the movement
of the flap should considerably influence the flow field.

The results of this simulation can be used to check whether force computations of the adapter are feasible
as the solid domain is expected to deform continuously without regions of dents, which would imply
accumulation of forces. Moreover, correct displacement transfer from structural to flow solver and mesh
deformation of the fluid domain should yield conformity of both meshes at the wet surface.

Simulation Settings

The materials (see Table 6.1) are chosen empirically such that a strong interaction between fluid and
solid is present and rather large deformations of the solid domain occur. The AME is thus, a crucial issue
in this simulation. The flow conditions are defined using the flap width wf as Reynolds length (see Table
6.3).

Table 6.2 summarizes the solver configurations. The FSI simulation is started from a single-physics
fluid solution allowing the flow field to fully develop. During this period the flap remains in its initial
configuration and represents a non-moving, rigid obstacle in the flow channel.

The simulation is run in serial in both intra- and interfield manner as the low number of nodes and
elements allows to do so. Computation time does not exceed a 2 minute range (for the 1.5 s of FSI
simulation). In total, 324 FSI iterations are needed for the simulation, thus, on average 2.16 iterations
are necessary for convergence of the FSI system per time step.

Results

As expected, once the FSI simulation is started from the initial flow solution, the flap is bent towards the
outlet of the channel and starts oscillating back and forth until it finally reaches a steady deformation
state. The deformation appears to be smooth on the flap surface, which indicates that no unphysically
large forces are calculated by the adapter. Also, fluid and solid meshes conform perfectly at the FSI
interface, so errors in displacement transfer and mesh deformation procedure can be excluded. Figure
6.3 shows the velocity magnitude of the flow and the displacement magnitude of the flap for two different
points in time. The first corresponds to the state of maximum deflection of the flap, which occurs during

42

(a) Maximum deflection at t = 0.17 s. (b) Steady state at t = 1.5 s.

Figure 6.3: Results for the two-dimensional flap testcase for two different time instances. Velocity mag-
nitude of the flow and displacement magnitude of the flap are shown in the maximum deflection state
(Figure 6.3a) and in the steady state at the end of the simulation (Figure 6.3b).

the first oscillation period. The second shows the situation of the steady deformation state at the end of
the simulation.

The strong interaction between fluid and structure does not allow to run the same simulation with an
explicit coupling algorithm. Attempting to do so fails immediately after the start of such simulations
due to instabilities. Although about three orders of magnitude separate fluid and solid density, the low
Young’s modulus in combination with the rather large time step size yields great influence of the AME.
Reducing the time step size to ∆t = 10−3 s is not enough to stabilize the explicit computation. An even
smaller time step size should result in stability according to the explanations of Section 3.4, yet this is
not tested as it is not the main purpose of this testcase to find a stability margin for weakly coupled
algorithms.

6.2 3D Capabilities: Extended Flap

Case Definition

The next testcase is basically a three-dimensional extension of the scenario shown in the previous section
with slight variations in the geometry. Again, a deformable flap is clamped at one end to the channel
bottom and can move freely at the other end. The main difference is the additional, constant depth of
the problem expanding the simulation to three dimensions. The geometrical properties of the testcase are
stated in Figure 6.4, where the setup is shown from two different perspectives. Table 6.5 assignes values
to the geometrical parameters. This time, the flap narrows the channel even more than in the previous
simulation. At the inlet of the channel, which is highlighted by the arrows in Figure 6.4, a constant
inflow profile is prescribed. The flow is laminar, viscous and compressible, thus the NSE describe the
fluid motion. The outlet is opposed to the inlet and prescribes no constraint on the flow field. Upper and
lower wall in Figure 6.4a (with normals in z-direction) impose no-slip conditions, as well as the complete
wet surface. The channel walls with normal vectors pointing in y-direction are chosen as symmetry
boundaries. Consequently, the simulation corresponds to an infinitely deep flap.
Spatial discretization of fluid and structural domain is achieved by unstructured tetrahedral meshes. Close
to the flap surface the fluid mesh is adaptively refined, while the solid mesh remains uniform throughout
the structural domain. Unlike in the two-dimensional flap testcase, the fluid mesh is much finer than the
solid grid at the wet surface which corresponds to a more realistic simulation situation when it comes to

43

x
y

z

A

h

l

lup

wf

hf

(a) Geometry in the xz-plane.

x

y

z
d

(b) Geometry in the xy-plane.

Figure 6.4: Geometry of the three-dimensional flap testcase shown from two different perspectives. The
geometrical parameters are defined in Table 6.5.

geometrical parameters value [m]
channel length l 20
channel height h 2
channel length upstream lup 9.9
flap height hf 1.6
flap width wf 0.2
channel depth d 1
watchpoint (at t = 0) A (0, 0, 1.6)

Table 6.5: Geometrical parameters of the three-dimensional flap testcase shown in Figure 6.4.

practical FSI applications. The initial configurations of both meshes are shown in Figures 6.5 and 6.6
from two different perspectives. Note that only the surface meshes are shown, as it is difficult to present
the volumetric meshes in a feasible way. In Table 6.6, the mesh parameters are extensively described. In
the middle of the flap’s top a watchpoint is set (in preCICE), which allows to track the material particle
associated with that point as the simulation is run. The movement of the flap can, therefore, be described
in terms of the displacements of this watchpoint.

The simulation’s main purpose is to check whether the adapter works for three-dimensional problems as
well. The adapter is coded such that memory allocation, force calculation and data transfer are dependent
on the dimensionality of the scenario. Therefore, no problems should arise switching from a two- to a
three-dimensional simulation. Besides, this testcase is also a first glance at real-world applications since
due to the third dimension the number of degrees of freedom and the amount of mesh elements becomes

(a) Whole surface mesh shown in xz-plane.

(b) Close up of surface mesh at the flap
shown in xz-plane.

Figure 6.5: Fluid and solid surface meshes of the three-dimensional flap testcase shown in the xz-plane
with orientation according to Figure 6.4a. The total mesh is shown in Figure 6.5a while Figure 6.5b
focuses on the zone nearby the flap.

44

(a) Whole surface mesh shown in xy-plane.

(b) Close up of surface mesh at the flap
shown in xy-plane.

Figure 6.6: Fluid and solid surface meshes of the three-dimensional flap testcase shown in xy-plane with
orientation according to Figure 6.4b. The total meshes are shown in Figure 6.6a, while Figure 6.6b focuses
on the zone nearby the flap.

discretization parameters value
number of degrees of freedom, fluid mesh ndof,F 6291
number of degrees of freedom, solid mesh ndof,S 689
number of elements, fluid mesh nelem,F 24161
number of elements, solid mesh nelem,S 2535
number of elements at wet surface, fluid mesh nelem,ΓF 3522
number of elements at wet surface, solid mesh nelem,ΓS 868

Table 6.6: Discretization parameters of the three-dimensional flap testcase meshes shown in Figures 6.5
and 6.6.

considerably larger, even for such simple simulation setups. By analogy with the two-dimensional testcase,
the flap should deform as soon as the fluid flow reaches it. Again the tractions exerted on the structure
by the fluid and the counteracting elastic forces are expected to initiate an oscillation of the deformable
solid. Consequently, the watchpoint is expected to show oscillatory behavior in x- and z-directions, while
due to the symmetry of the problem no notable movement in y-direction should be tracked.

Simulation Settings

The material parameters defined in Table 6.1 are less critical with respect to the AME, compared to the
previous testcase. The used Reynolds length corresponds to the channel depth d as given in Table 6.5.

The flow is not initialized from a starting solution as in the previous testcase. Rather, the free-stream
values of the flow are used for initialization. Table 6.2 contains all other solver options used for this
simulation.

Due to the larger number of mesh nodes and elements, both inter- and intrafield parallelism are employed.
The fluid domain is parallelized with 192 processes, while the solid domain is dealt with by five processes.
Overall computation time for 7.8 s of physical simulation time is exactly 24 hours. Including all subit-
erations due to the strongly coupled algorithm an FSI iteration needs 7 s runtime (averaged value). Per
time step an averaged number of 1.58 subiterations is needed for convergence of the fixed-point equation
system.

Results

Since the simulation is started from the free-stream values, the flow field needs several time steps to
develop. Due to the selected material parameters, interaction between the flap and the fluid is weaker
than in the previous testcase. Nevertheless, the flap begins to oscillate as expected. However, the
oscillation does not decline as fast as in the two-dimensional testcase as the solid material is much stiffer
and denser now. This also yields smaller deformations of the flap. Again the deformation of the flap
appears to be smooth, which indicates correct force calculation by the adapter. Fluid and solid meshes
align at the FSI interface at all times. Thus, displacement transfer and the following mesh deformation
work fine. The flap almost fully blocks the flow in the channel leading to a great pressure difference
between the upstream and downstream side of the flap. This is depicted for the final time instance at
t = 7.8 s in Figure 6.7. Note that again the channel is shown in the xz-plane. Streamline representations

45

of the flow field are given in Figure 6.8 for different time instances in order to illustrate the development
of the fluid flow with respect to time. In the wake of the flap a recirculation zone is formed while at the
throughput the fluid is vastly accelerated.

Figure 6.7: Pressure upstream (left) and downstream (right) of the flap shown in xz-plane at t = 7.8 s.
The orientation is according to Figure 6.4a. Note that the flap displacements are very small, such that
they are barely visible in this figure.

(a) t = 0.05 s. (b) t = 1 s.

(c) t = 7.8 s, Perspective 1. (d) t = 7.8 s. Perspective 2.

Figure 6.8: Streamlines of the velocity field in vicinity of the flap for three different time instances. The
orientation is according to Figure 6.4a (xz-plane) for the first three figures. Figure 6.8d shows the same
time instance as Figure 6.8c, yet the view is rotated around the z-axis to yield a more spatial perspective.
Note the development of the recirculation zone behind the flap and the increasing flow speed at the gap
between flap and channel walls as time passes.

In contrast to the previous testcase, the movement of the flap cannot be easily captured graphically
because the deformations are much smaller. However, the watchpoint defined in Figure 6.4a and Table
6.5 allows a quantitative description of the flap oscillation. Figure 6.9 depicts the watchpoint movement
in all three spatial directions. The influence of the high stiffness of the flap material is reflected in the
oscillations in x- and z-direction, which show a relatively high frequency and seem to decay only very
slowly. The transient phase lasts for about three seconds. After this time span the flap oscillates quite

46

steadily. Surprisingly, the oscillation is also present in the y-direction. However, the amplitudes are in the
range of 10−8 m such that these displacements can be neglected. They may result from numerical errors
such as the not perfectly symmetric mesh. The bias towards positive y-displacement values underlines this
as physical oscillations would include both positive and negative displacement values in y-direction for
such a symmetric setting. Table 6.7 characterizes the oscillations with respect to frequency, mean value
and amplitude averaged over the time interval [3 s, 7.8 s]. Displacements in x- and z-direction oscillate
with the same frequency since they are geometrically related. Looking closer to Figure 6.9c, the oscillation
in y-direction is not as smooth as in the other two cases. Many smaller waves of higher frequency are
superimposed to form the oscillation (which has the same frequency as the other two oscillations). This
again indicates that the movement in y-direction originates from numerical errors.

mean ± amplitude [frequency]
ux (4.18± 1.30) · 10−3 m [1.78 Hz]
uy (2.45± 1.75) · 10−8 m [1.78 Hz]
uz (−2.90± 3.89) · 10−6 m [1.78 Hz]

Table 6.7: Further description of the oscillations (shown in Figure 6.9) of the watchpoint A in terms
of mean and amplitude value, as well as frequency of the displacements u in all three directions. The
quantities are obtained by averaging over the time period [3 s, 7.8 s].

6.3 Quantitative Validation: FSI3 Benchmark

Case Definition

The testcases in Sections 6.1 and 6.2 show the technical and qualitative correct implementation of the
adapter. However, no reference results are given for these two generic scenarios such that quantitative
benchmarking of the adapter is still necessary. In this section, the widely used numerical FSI benchmark
testcase FSI3 proposed in [39] is used to rank the performance of simulations with the developed adapter.
The testcase is two-dimensional and consists of a rigid cylinder (actually a circle in 2D) with a deformable
cantilever attached downstream. The geometry of the problem is defined in Figure 6.10. Definitions of
the corresponding parameters are given in Table 6.8. The inlet is again marked by arrows, its opposed
side is the outlet. Upper and lower wall of the channel, as well as cylinder and cantilever prescribe
no-slip conditions. The original benchmark proposes a parabolic inflow velocity profile. However, SU2

only supports constant inflow profiles in its current version. Therefore, the channel length upstream the
cylinder is extended with an offset. Due to the no-slip conditions of upper and lower wall a parabolic
velocity profile develops naturally by analogy with the well-known plane Poiseuille flow (see e.g. [26], [3]).
Because of the higher computational cost resulting from the additional channel offset, the channel length
behind the cantilever is reduced in comparison to the original geometry. This should not significantly
influence the physics of the testcase as the length is chosen mostly in order to visualize the flow conditions
behind the test object. Vortices in the wake of the cylinder induce oscillations of the cantilever. This
is also fostered by the slightly asymmetric position of the cylinder in the channel. The movement of
the cantilever approaches a periodic oscillation after a transient phase. Two more variations of the
benchmark scenario are given in [39]. However, differences are only due to material parameters as well as
the inflow velocity (determined by different Reynolds numbers). The FSI3 setting is the most challenging
as it includes the highest fluid velocity and the lowest density ratio MA = ρS

ρF
. Thus, the interaction

between fluid and solid is very strong and the AME becomes a crucial issue. Moreover, the parameters
of the scenario allow for large displacements of the cantilever. Originally, this test was designed for
incompressible, laminar, viscous flow regimes. As mentioned in 4.2.1, due to current limitations of SU2

no incompressible FSI simulations can be executed. Therefore, a low Mach number is chosen for the fluid
flow in order to reduce compressible effects to a minimum.
Unstructured, triangular meshes are used to discretize fluid and solid domain. Around the cylinder with
its attached flap the fluid mesh is adaptively refined, while the much coarser structural mesh is rather
constant throughout its domain. The initial configurations of the meshes are shown in Figure 6.11. A
numerical description of the grids is given in Table 6.9. In order to be able to describe the oscillations
of the cantilever, a watchpoint A is set at the end of the deformable solid as defined in Figure 6.10 and
Table 6.8.

47

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0 1 2 3 4 5 6 7 8

x

d
i
s
p
l
a
c
e
m
e
n
t

[
m
]

time [s]

(a) Displacement in x-direction.

-7x10
-6

-6x10
-6

-5x10
-6

-4x10
-6

-3x10
-6

-2x10
-6

-1x10
-6

 0

 1x10
-6

 2x10
-6

 3x10
-6

 0 1 2 3 4 5 6 7 8

z

d
i
s
p
l
a
c
e
m
e
n
t

[
m
]

time [s]

(b) Displacement in z-direction.

-3x10
-8

-2x10
-8

-1x10
-8

 0

 1x10
-8

 2x10
-8

 3x10
-8

 4x10
-8

 5x10
-8

 6x10
-8

 7x10
-8

 0 1 2 3 4 5 6 7 8

y

d
i
s
p
l
a
c
e
m
e
n
t

[
m
]

time [s]

(c) Displacement in y-direction.

Figure 6.9: Displacements of the watchpoint with respect to time for all three spatial directions. The
oscillations are further characterized in Table 6.7.

48

x

y

h

lloff

r

lC

w
C

A

Figure 6.10: Geometry of the numerical FSI benchmark proposed in [39]. Geometrical parameters are
given in Table 6.8. The cylinder is positioned slightly off-centered.

geometrical parameters value [m]
reduced channel length l 1.5
additional channel offset loff 1
channel height h 0.41
radius of cylinder r 0.05
center of cylinder C (0.2, 0.2)
length of cantilever lC 0.35
width of cantilever w 0.02
watchpoint (at t = 0) A (0.6, 0.2)

Table 6.8: Geometrical parameters of the benchmark scenario shown in Figure 6.10.

The necessity of the additional channel offset as described above becomes apparent by considering the
single-physics CFD test CFD1, which is also proposed in [39]. For this test the cantilever is considered as
rigid obstacle just as the cylinder. The test is run for the original and the channel geometry with additional
offset under same solver conditions. Also, adaptive refinement at the cylinder and the cantilever is the
same for both used meshes, preserving the comparability of the results. Lift and drag forces acting on
cylinder and cantilever serve as benchmark quantities. Table 6.10 compares the obtained force values for
both geometries with the reference results of CFD1. The values obtained by using the additional offset
are significantly closer to the reference results.
Moreover, experimenting with different offset lengths for the FSI3 test highlights an optimum of 1 m as
depicted by the velocity profiles in Figure 6.12. The profile corresponding to the original geometry, i.e.
without offset length, is almost perfectly constant. The only disturbances occur at the no-slip walls. An
offset of 0.5 m results in a more developed profile. However, this is not sufficient to obtain a parabolic
shape as is the case for an offset of 1 m. Consequently, the latter length is chosen for the FSI simulation.

discretization parameters value
number of degrees of freedom, fluid mesh ndof,F 26347
number of degrees of freedom, solid mesh ndof,S 111
number of elements, fluid mesh nelem,F 51682
number of elements, solid mesh nelem,S 146
number of elements at wet surface, fluid mesh nelem,ΓF 362
number of elements at wet surface, solid mesh nelem,ΓS 72

Table 6.9: Discretization parameters of the FSI3 testcase meshes shown in Figure 6.11.

49

(a) Whole mesh.

(b) Close up of mesh at cylinder and cantilever.

Figure 6.11: Fluid and solid meshes of the FSI3 benchmark testcase. The total mesh is shown in Figure
6.11a while Figure 6.11b focuses on the zone nearby the cylinder and the attached cantilever. Further
descriptions of the meshes are given in Table 6.9.

lift force [N] drag force [N]
no offset 1.005 13.39
offset 1.076 14.36
reference 1.119 14.29

Table 6.10: Comparison of geometry without and with 1 m channel offset for the test CFD1 ([39]).

50

y
-d

ir
e

c
ti

o
n

 [
m

]

0.1

0.2

0.3

0.4

0.15

0.05

0.25

0.35

velocity magnitude [m/s]
0 0.5 1 1.5 2 2.5 3

1 m offset

no offset

0.5 m offset

Figure 6.12: Velocity profiles at x = 0 for different offset lengths loff (compare Figure 6.10). A parabolic
shape is achieved for an additional length of 1 m.

Simulation Settings

As explained before, the testcase is usually simulated with incompressible flows. Nevertheless, due to the
already mentioned limitations of SU2, the flow is described by the compressible, laminar NSE in this case.
Choosing a very low Mach number is supposed to minimize compressible effects. It is defined in Table
6.1 in line with all other physical parameters of the simulation. The Reynolds number of this testcase is
determined using the cylinder diameter (see Table 6.8) as Reynolds length.

The flow is initialized from a fluid-only start solution. The cantilever is modeled as rigid obstacle during
this period and does not move. See Table 6.2 for all other solver settings. The start solution serves also
as simple scale-up test to determine the optimum number of processes to parallelize SU2 with. Table 6.11
summarizes the corresponding findings. Based on these results, the coupled FSI simulation is run with
120 processes on the fluid domain, while five processes handle the structural computation.

procs nodes after decomposition ghost nodes nodes per proc computation time [s]
60 30532 4185 508.87 109.2
100 32000 5653 320 73.3
110 32371 6024 294.28 72.3
120 32720 6373 272.67 69
140 33184 6837 237.03 69.5
≥ 160 - - - -

Table 6.11: Scale-up test for parallelization of the FSI3 benchmark in SU2. 2 s of single-physics solution
are calculated. The best result is obtained with 120 processes. For 160 processes or more the domain
decomposition procedure in SU2 does not finish successfully.

The computation time for 6 s of the coupled FSI simulation is about 12.5 hours. Per time step 2.29
iterations are needed for convergence of the coupled fixed-point system with a single FSI iteration having
a run time of 3.29 s. The latter two values are averaged.

Results

It takes about 3 s until the cantilever movement converges to a periodic oscillation as expected. Figure
6.13 presents the velocity field in vicinity of the test object at time instance t = 6 s. The periodic

51

Figure 6.13: Velocity magnitude at t = 6 s. Note the periodic, alternating low and high velocity zones in
the wake of the cantilever.

oscillation can be observed in the wake of the cantilever, where high and low velocity regions alternate.
Note that the low velocity region is dragged behind the cantilever tip. The oscillation of the watchpoint is
described in Figure 6.14, where the displacements in x- and y-direction are plotted for the last second of
the simulation. Table 6.12 captures the oscillations with respect to mean and amplitude values, as well as
the frequency. The obtained results are compared to the FSI3 reference given in [39]. Both displacements
in x- and y-direction agree quite well with the reference values. This validates the implementation of the
coupling adapter quantitatively.
The differences to the reference results have several reasons. First of all, even though the Mach number
is chosen very small, slight compressible effects may still be present such that this approach cannot be
expected to yield the exactly same values as obtained in an incompressible simulation. Next, refining
both meshes should produce more accurate results2. Especially, the solid mesh is very coarse. This yields
less degrees of freedom of the cantilever and consequently restricts its movement, which explains why the
absolute values (both mean and amplitude) of the displacements are too small compared to the reference.
Moreover, the FSI3 reference results were calculated using a smaller time step size of ∆t = 0.0005 s with
a monolithic solver. Also, configuring SU2 and preCICE more strictly in terms of the convergence criteria
should improve the simulation outcome. Yet, the probably most severe source of errors is the mapping
procedure. Since the meshes are far from matching in a node-to-node manner, conservatively mapping
forces by the NN method causes oscillations in the forces, which are received at the solid interface. This is
due to the fact that the number of fluid nodes, which are assigned to a single solid node, is not necessarily
constant over the structural FSI interface. E.g. one solid node may receive forces from five fluid nodes,
while a neighboring structural node gathers force values from six fluid nodes. For a high number of
assigned fluid nodes, difference of one or two fluid nodes is not significant (relative influence is small).
However, if only a few fluid nodes are assigned to the solid nodes, even a difference of one node can have
a large impact on the force value, as the relative influence of a single fluid node is then considerably
higher. Several simulation attempts with finer structural meshes failed due to these oscillations. The
choice of the relatively coarse structure mesh used for the FSI3 benchmark is, therefore, not arbitrary. It
smoothes out the influence of single fluid nodes on the overall forces received at structural nodes. Yet,
this incorporates the drawback of less degrees of freedom for the cantilever movement and introduces
spatial oscillations in the fluid mesh with large wavelength. NN mapping causes steps in the fluid mesh
as depicted in Figure 6.15. The displacements of single solid nodes are transferred consistently (recall
Section 4.1.3). Consequently, all fluid nodes associated with the same solid node are in line. Overall,
spatial oscillations result in the fluid mesh, which reduce computational accuracy. The wavelength of
these oscillations is larger, the greater the difference in refinement of both meshes is at the wet surface.
The computational problems arising from mapping forces conservatively are known ([7]). They can be
reduced by using meshes, which match to a greater extent and by applying more elaborate mapping
methods, such as RBF-based interpolation. Especially, the latter improvement can easily be realized, as
preCICE offers a wide variety of sophisticated RBF mapping methods (recall Section 4.1.3). However,
at the time of obtaining these simulation results, those methods have not yet been implemented with
support for parallel simulations in preCICE.

2The fluid mesh used for obtaining the reference results contains about 10 times more degrees of freedom.

52

-0.0035

-0.003

-0.0025

-0.002

-0.0015

-0.001

-0.0005

 0

 0.0005

 5 5.2 5.4 5.6 5.8 6

x

d
i
s
p
l
a
c
e
m
e
n
t

[
m
]

time [s]

(a) Displacement in x-direction.

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 5 5.2 5.4 5.6 5.8 6

y

d
i
s
p
l
a
c
e
m
e
n
t

[
m
]

time [s]

(b) Displacement in y-direction.

Figure 6.14: Displacements of the watchpoint with respect to time in x- and y-direction. The oscillations
are further characterized in Table 6.12.

mean ± amplitude [frequency]

achieved ux (−1.46± 1.48) · 10−3 m [9.77 Hz]
uy (1.05± 26.53) · 10−3 m [4.88 Hz]

reference ux (−2.69± 2.53) · 10−3 m [10.9 Hz]
uy (1.48± 34.38) · 10−3 m [5.3 Hz]

Table 6.12: Further description of the oscillations (shown in Figure 6.14) of the watchpoint A in terms
of mean and amplitude value, as well as frequency of the displacements u in x- and y-direction. The
quantities are obtained by averaging over the time period [5 s, 6 s].

Figure 6.15: Oscillations in the fluid mesh at the end of the cantilever at t = 6 s due to the simple NN
mapping and the large differences in element sizes of the two meshes.

53

6.4 Practical Application: Slender Cylinder

Case Definition

The chair of Flight Propulsion at Technical University of Munich and MTU Aero Engines work on
improving brush seals. These sealing elements are used in a wide variety of applications throughout the
discipline of mechanical engineering, including flight propulsion systems, gas turbines or steam turbines.
Efficient sealing is needed between static (stator) and dynamic elements (rotor) of a machine, separating
two zones of different operational conditions. Brush seals allow for large relative velocities between stator
and rotor (up to 500 m/s) and entail significantly lower leakage than alternative, conventional technologies
such as labyrinth seals. It is possible to separate gases from gases but also gases from liquids with brush
seals ([9]).

The name of these seals originates from their characteristic structure. See Figure 6.16 for an example of
a seal brush and its composition. Many deformable, slender wires are clamped together to form a brush,
which is spatially quite loose in its initial configuration. The wires are in contact with the rotor and allow
for both axial and radial relative motion between stator and rotor because of their elastic properties. Due
to the movement of the rotor, fluid flows against the brush wires. As a consequence, they are pushed
against the back support ring. The wires align with each other and the brush becomes more and more
compact, yielding a very leak-tight barrier for fluids. Of course, this behavior is also favored by friction
arising from the contact of the wires with the rotor. However, the fluid flow significantly influences
the deformation of the wires, which then impact the flow field in reverse, as the tight sealing obstacle
develops. Thus, brush seals are clearly governed by the mutual influence of fluid and solid, allowing to
further investigate the physics of these seals with FSI simulations in order to finally, develop improved,
more sophisticated brush seals.

In collaboration with the chair of Flight Propulsion, we plan to stepwise approximate the real conditions
in brush seals, beginning with the reduced-model research on single wires. A corresponding simulation
is executed with SU2 and preCICE using the newly developed coupling adapter. This demonstrates its
applicability for real-world, three-dimensional simulations of larger scale.

(a) Sealing element of a brush seal. Picture
taken from [9].

rotor
wires

back support ring

front housing

(b) Schematic cross section of the sealing element with its housing.
Figure adapted from [9].

Figure 6.16: A typical sealing element of a brush seal is shown in Figure 6.16a. The composition of it is
depicted in Figure 6.16b. Note that the housing and the rotor surface are shown in addition.

The geometrical and physical parameters of the simulation are taken from [9]. A deformable, slender
cylinder, which is clamped to the channel bottom, represents a single wire of the brush seal. In [9] the
cylinder is simulated with a reduced three-dimensional model, using a symmetry boundary condition at
the upper (free) end of the cylinder. Thus, the cylinder top and its influence on the behavior of the overall
simulation is not included. In contrast, in the scope of this work a fully three-dimensional FSI simulation
is run, including resolving the cylinder top. This introduces another degree of freedom for the movement
of the structure, making the problem more complex. Also, the simulation is computationally more costly
due to resolution of the cylinder top. The geometrical setup of the scenario is shown in Figure 6.17,

54

xy

z A
h

l

lup

dc

hc

(a) Geometry in the xz-plane.

x

y

z
A

cc

h

(b) Geometry in the xy-plane.

Figure 6.17: Geometry of the three-dimensional, slender cylinder scenario depicted from two different
perspectives. The geometrical parameters are defined in Table 6.13.

geometrical parameters value [m]
channel length l 0.5
channel height/depth h 0.1
channel length upstream lup 0.09975
cylinder height hc 0.05
cylinder diameter dc 0.005
cylinder center offset cc 0.05
watchpoint (at t = 0) A (0.1, 0, 0)

Table 6.13: Geometrical parameters of the three-dimensional showcase as defined in Figure 6.17.

discretization parameters value
number of degrees of freedom, fluid mesh ndof,F 38171
number of degrees of freedom, solid mesh ndof,S 646
number of elements, fluid mesh nelem,F 146396
number of elements, solid mesh nelem,S 2504
number of elements at wet surface, fluid mesh nelem,ΓF 52218
number of elements at wet surface, solid mesh nelem,ΓS 1088

Table 6.14: Discretization parameters of the showcase meshes displayed in Figure 6.18.

55

(a) Whole channel surface mesh. (b) Refinement at the cylinder.

(c) Cylinder surface fluid mesh. (d) Cylinder surface solid mesh.

Figure 6.18: Surface meshes of the slender cylinder problem. The total fluid mesh is shown in Figure 6.18a
while Figure 6.18b focuses on the zone nearby the cylinder. The wet surface meshes (at cylinder top) are
depicted in Figures 6.18c and 6.18d for the fluid and solid domain, respectively. Further descriptions of
the meshes are given in Table 6.14.

corresponding parameters are defined in Table 6.13. A constant inlet velocity profile is chosen (depicted
by the set of arrows in Figure 6.17). The opposite side of the channel is the outlet and prescribes no
conditions on the flow. Furthermore, the lower wall in Figure 6.17a enforces the no-slip condition, as
does the cylinder surface (wet surface). The upper wall (in Figure 6.17a) allows the fluid to slip freely.
Both boundaries with normal vectors pointing in y-direction, i.e. upper and lower wall of Figure 6.17b,
are chosen as symmetry conditions.
The problem is spatially discretized by unstructured, tetrahedral meshes. They are shown in Figure
6.18. Note that just the surface meshes are shown, as it is difficult to display the volumetric grids in a
reasonable way. Additionally, a numerical description of the grids is given in Table 6.14. The fluid grid
is adaptively refined in vicinity of the cylinder, while the solid elements are mostly of constant size. The
fluid grid is much finer than the structural mesh at the FSI interface. This is depicted in Figures 6.18c
and 6.18d at the top of the cylinder. In order to track the deformation of the cylinder, a watchpoint is
set to the middle of its top surface in preCICE.

According to the results in [9], the cylinder is expected to start oscillating in all three-directions. While
movement in z-direction is solely due to the geometrical constraints, two independent oscillations should
be observed for x- and y-displacements of the cylinder.

Simulation Settings

The flow is characterized as compressible, viscous and turbulent, thus it is governed by the RANS
equations. The turbulence closure problem is solved by using the Menter Shear Stress Transport (SST)
model ([28]) with a turbulence intensity of 5%. All other material and physical parameters are defined
in Table 6.1. The cylinder diameter (see Table 6.13) serves as Reynolds length.

The FSI simulation is initialized from a fluid-only start solution. During this period, the cylinder rep-
resents a rigid, non-moving obstacle in the channel. As in the previous benchmark scenario, the start
solution is used for determining the optimal number of processes to parallelize SU2 with, in order to
reduce the overall computation time. The results are stated in Table 6.15. Thus, SU2 is parallelized
using 230 processes. Five processes work on the structure domain. No interfield parallelism is used for

56

this simulation as calculating a single time step with the fluid solver exceeds the runtime of the solid
solver by far. The latter is fast enough such that no significant difference in the overall runtime of the
simulation is expected.

procs nodes after decomposition ghost nodes nodes per proc computation time [s]
210 65142 26971 310.2 2392
220 65712 27541 298.69 2246
230 66414 28243 288.76 2171
245 67242 29071 274.46 2290
300 70418 32247 234.73 2387

Table 6.15: Scale-up test for parallelization of SU2 for the slender cylinder scenario. 10−2 s of single-
physics solution are calculated. The best result is obtained with 230 processes.

The turbulence model is solved with an upwind spatial discretization scheme of first order, while the
implicit Euler method deals with time discretization.
An implicit, serial coupling algorithm with acceleration via dynamic Aitken relaxation is chosen (for a
reminder, see Section 4.1.1) in preCICE. The relaxation value at the beginning of a time step is set to
0.1. See Table 6.2 for the rest of the solver configurations.
The runtime for 2.3 · 10−3 s of the FSI simulation is roughly 19.7 hours. An average of 3.98 iterations
per time step is needed, thus, a single FSI subiteration lasts 77.47 s.

Results

Due to crashes of the simulation, no oscillation of the cylinder can be observed in the obtained results.
However, the crashes do not relate to errors in the developed adapter, but arise from physical restrictions
on the simulation and its initialization. Large deformations occur at the beginning of the simulation
yielding highly distorted solid mesh elements, such that the structural solver crashes within the first
250 time steps (time step size as stated above). Figure 6.19 depicts the displacement of the cylinder
in x-direction for different time instances at the beginning of the simulation. Compared to reference
values given in [9], the displacements of the cylinder are too large. They are plotted in Figure 6.20
with respect to the watchpoint. The initialization of the FSI simulation is the most critical aspect of this
scenario. Starting from a fluid-only solution with the original free-stream velocity is not sufficient to obtain
meaningful simulation results, since the forces initially exerted on the cylinder are too large. Therefore,
an initialization procedure is necessary, which reduces these forces during startup of the simulation.
A possible solution might be to start the simulation with a low free-stream velocity and continuously
increase it to the original value during the first few time steps. This, however, is not easily possible as
SU2 does currently not support time-dependent inflow profiles. Alternatively, the forces can be decreased
artificially by a "load ramping" procedure. Therefore, the force vector, which is transferred to preCICE,
can be simply multiplied by a scalar factor (< 1). This factor is then continuously increased within the
first time steps (up to 1) in order to recover the physically correct force vector. Such a method is already
implemented in preCICE, yet it requires to build preCICE with Python support. However, it might also
be useful to directly integrate this feature in the developed coupling adapter, because implementation is
rather easy as the force vector can be accessed and manipulated within the adapter before transferring
it to preCICE. A corresponding option could be added to the SU2 configuration file by analogy with the
approach of Section 5.1.

57

(a) t = 10 · 10−5 s. (b) t = 80 · 10−5 s. (c) t = 150 · 10−5 s. (d) t = 230 · 10−5 s.

Figure 6.19: Deformation of the cylinder in xz-plane at different time instances. The orientation conforms
with Figure 6.17a.

58

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0 0.0005 0.001 0.0015 0.002 0.0025 0.003

x

d
i
s
p
l
a
c
e
m
e
n
t

[
m
]

time [s]

(a) Displacement in x-direction.

-4x10
-5

-3.5x10
-5

-3x10
-5

-2.5x10
-5

-2x10
-5

-1.5x10
-5

-1x10
-5

-5x10
-6

 0

 5x10
-6

 0 0.0005 0.001 0.0015 0.002 0.0025 0.003

y

d
i
s
p
l
a
c
e
m
e
n
t

[
m
]

time [s]

(b) Displacement in y-direction.

-0.00025

-0.0002

-0.00015

-0.0001

-5x10
-5

 0

 5x10
-5

 0 0.0005 0.001 0.0015 0.002 0.0025 0.003

z

d
i
s
p
l
a
c
e
m
e
n
t

[
m
]

time [s]

(c) Displacement in z-direction.

Figure 6.20: Displacements of the watchpoint with respect to time for all three spatial directions. The
simulation ends untimely due to a crash of the solid solver.

59

7. Conclusion and Outlook

An adapter for linking the CFD solver SU2 with the multiphysics coupling tool preCICE is developed in
this work and validated both qualitatively and quantitatively with several testcases.

This work gives insights into the basics of FSI simulations and allows to classify the implemented parti-
tioned coupling among the wide variety of solver strategies. The integration of the adapter into the code
structure of SU2 is explained, as well as its implementation itself. The coupling approach is validated
via generic two- and three-dimensional testcases, and the well-known numerical benchmark scenario FSI3
([39]). The adapter is capable of handling three-dimensional, real-world examples. This is exemplified
by simulating a long, slender cylinder under turbulent flow conditions. The practical background of this
simulation is research on brush seals for e.g. gas turbines. However, time did not suffice to obtain mean-
ingful simulation results in the scope of this thesis. Thus, work on this topic will be continued. Once
feasible single-cylinder simulation results are achieved, scenarios involving multiple cylinders in a channel
should be simulated in order to include possible mutual interactions of these structures. Thereby, the
real conditions in brush seals can be approximated more precisely. In its current version, the adapter
is limited to a single wet surface in the SU2 mesh file. While it is technically possible to define the
surface of multiple cylinders as a single wet surface, it is more accurate to extend the adapter such that
an arbitrary number of separate FSI interfaces can be defined. Moreover, it might be useful to integrate
a load ramping functionality in the adapter, such that at the beginning of an FSI simulation the forces
exerted on the structure are reduced by a factor, which is consequently increased to recover the real
force values after a certain number of time steps. This might help to stabilize simulations as the initially
occurring, large displacements can be reduced by this method. Recently, several RBF mapping methods
have been included in preCICE, which can be used for parallel simulations. Applying these elaborate
interpolation procedures instead of NN mapping allows to use finer solid meshes without encountering
oscillatory forces at the wet surface, such that simulation results are expected to significantly improve
(compared to simulations done with NN mapping). Furthermore, the spatial oscillations at the FSI in-
terface are expected to vanish. Consequently, further testing with the FSI3 benchmark scenario will be
done in order to verify this.

The adapter is implemented such that it perfectly integrates into SU2, allowing to reuse characteristic
functionalities like turbulence modeling, convergence acceleration via dual time stepping and multi-grid
functionalities. Moreover, usage of preCICE for coupled FSI simulations can be configured via the native
SU2 configuration file. A single executable of SU2 can be used for different FSI scenarios and even
fluid-only computations without the need for recompilation. The adapter allows for inter- and intrafield
parallel simulations. While no ALE implementation is currently available for the incompressible solver
in SU2, the adapter is already prepared for this feature, possibly extending the FSI capabilities to the
incompressible regime in the future.

Although intrinsic FSI functionalities were recently added to SU2, the coupling with preCICE offers more
flexibility, as even commercial partner solvers can be chosen for multiphysics simulations. Moreover, the
coupling algorithms and data mapping methods of preCICE are more elaborate. The possibility of
running fully-parallel simulations outperforms the intrinsic FSI capabilities with regard to HPC.

Another practically very useful outcome of this work is the description of the procedure for integrating the
adapter into SU2 and building it with preCICE. Thus, users can easily extend SU2 to FSI via preCICE
guided by this thesis, which addresses both SU2 and preCICE communities. The adapter will soon be
included in the preCICE repository.

60

Appendices

61

A. Details on Integrating the
Coupling Adapter into SU2

Changes Concerning SU2 Configuration

The necessary code changes in SU2 for using the four new configuration options described in Section 5.1
need to be applied to the class CConfig. However, the class is defined by a header (config_structure.hpp),
an inline (config_structure.inl) and a source file (config_structure.cpp). All of them have to be adapted
slightly. In config_structure.hpp the member variables of CConfig are declared. In order to store the
values of the above mentioned configuration options, first of all, four new private variables need to be
introduced. Moreover, public getter functions are needed to access these variables. The necessary changes
are shown in the following:

class CConfig {
private :

. . .
bool p r e c i c e_usage ;
bool p r e c i c e_ve rbo s i t yLeve l_high ;
s t r i n g prec iceConf igFi leName ;
s t r i n g preciceWetSurfaceMarkerName ;
. . .

public :
. . .
bool GetpreCICE_Usage (void) ;
bool GetpreCICE_Verbos i tyLeve l_High (void) ;
s t r i n g GetpreCICE_ConfigFileName (void) ;
s t r i n g GetpreCICE_WetSurfaceMarkerName (void) ;
. . .

} ;

Listing A.1: Code changes in config_structure.hpp.

The four simple getter functions declared above are implemented in the file config_structure.inl :

. . .
in l ine bool CConfig : : GetpreCICE_Usage (void){ return p r e c i c e_usage ; }

in l ine bool CConfig : : GetpreCICE_Verbos i tyLeve l_High (void){ return
p r e c i c e_ve rbo s i t yLeve l_high ; }

in l ine s t r i n g CConfig : : GetpreCICE_ConfigFileName (void){ return
prec iceConf igFi leName ; }

in l ine s t r i n g CConfig : : GetpreCICE_WetSurfaceMarkerName (void){ return
preciceWetSurfaceMarkerName ; }
. . .

Listing A.2: Code changes in config_structure.inl.

62

Eventually, the configuration file interpreter needs to be informed about the new options. In con-
fig_structure.cpp an assignment for each of the configuration file options to the member variables of
CConfig is defined as well as the default values. This must be done in CConfig::SetConfig_Options for
the four new options as follows:

. . .
void CConfig : : SetConf ig_Options (. . .) {

. . .
addBoolOption ("PRECICE_USAGE" , p r e c i c e_usage , fa l se) ;

addBoolOption ("PRECICE_VERBOSITYLEVEL_HIGH" ,
p r e c i c e_ve rbo s i t yLeve l_high , fa l se) ;

addStringOption ("PRECICE_CONFIG_FILENAME" , prec iceConf igFi leName ,
s t r i n g (" p r e c i c e . xml")) ;

addStringOption ("PRECICE_WETSURFACE_MARKER_NAME" ,
preciceWetSurfaceMarkerName , s t r i n g ("wetSurface ")) ;
. . .

}

Listing A.3: Code changes in config_structure.cpp.

The new mesh movement option PRECICE_MOVEMENT in SU2 as introduced in Section 5.1 needs to
be added to the configuration procedure. In contrast to the other options stated above, no changes to the
CConfig class are needed since the option name GRID_MOVEMENT_KIND already exists. However, the
new value PRECICE_MOVEMENT must be introduced. Therefore, an adaption in option_structure.hpp
is necessary. Whenever multiple values1 for an option are possible in the SU2 configuration file, internally
each value is assigned with an identifying number. After parsing the configuration file, such option
values are mapped to their respective identifiers. These are further used in the source code of SU2.
The option_structure.hpp file is included in config_structure.hpp. This way, CConfig can use such value
mappings, although they are not directly defined in its own source code. The following changes simply
extend the mapping of already existing values for GRID_MOVEMENT_KIND by another entry:

. . .
enum ENUM_GRIDMOVEMENT {
NO_MOVEMENT = 0 ,
. . .
RIGID_MOTION = 2 ,
. . .
ROTATING_FRAME = 8 ,
. . .
PRECICE_MOVEMENT = 13
} ;

stat ic const map<st r ing , ENUM_GRIDMOVEMENT> GridMovement_Map =
CCreateMap<st r ing , ENUM_GRIDMOVEMENT>
("NONE" , NO_MOVEMENT)
. . .
("RIGID_MOTION" , RIGID_MOTION)
. . .
("ROTATING_FRAME" , ROTATING_FRAME)
. . .
("PRECICE_MOVEMENT" , PRECICE_MOVEMENT) ;

Listing A.4: Code changes in option_structure.hpp. Only the entries corresponding to PRE-
CICE_MOVEMENT need to be added. All other options are shown for illustrative reasons. 13 is
assigned to the new option value because of consecutive numbering. The class CCreateMap defines how
the mapping is done technically. It is not described here, as this detail is not necessary.

1Note that "value" can correspond to strings such as PRECICE_MOVEMENT, see Equation 4.10.

63

The new mesh movement sequence as mentioned in Section 5.1 is defined as follows: A switch-case-
statement in iteration_structure.cpp determines, which movement procedure to use based on the config-
uration information. The list of possible cases is now extended by PRECICE_MOVEMENT as follows:

void SetGrid_Movement(CGeometry ∗∗ geometry_conta iner , . . . ,
CVolumetricMovement ∗ g r id_movement , CConfig ∗ c on f i g_conta iner , . . . ,
unsigned long ExtI te r) {

. . .
unsigned short Kind_Grid_Movement =
con f i g_conta iner−>GetKind_GridMovement (. . .) ;
. . .
switch (Kind_Grid_Movement) {
. . .
case ROTATING_FRAME :

. . .
case RIGID_MOTION :

. . .
case PRECICE_MOVEMENT :

g r id_movement−>SetVolume_Deformation (geometry_container [MESH_0] ,
c on f i g_conta iner , true) ;
geometry_ conta ine r [MESH_0]−>SetGr idVe loc i ty (c on f i g_conta iner ,
Ext I t e r) ;
g r i d_movement−>UpdateMultiGrid (geometry_conta iner , c on f i g_ conta ine r) ;
break ;

case NO_MOVEMENT :
. . .

}

Listing A.5: Code changes in iteration_structure.cpp. Only the entries corresponding to PRE-
CICE_MOVEMENT need to be added. All other options are shown for illustrative reasons.

Adaption of the Main Solver Routine of SU2

First of all, the header file of the adapter, precice.hpp, needs to be included so that the adapter can be
instantiated within the code of the solver:

#include " . . / i n c lude / p r e c i c e . hpp"

Listing A.6: Including the header file of the adapter, precice.hpp in SU2_CFD.cpp.

For positioning newly added lines of code in SU2_CFD.cpp I refer to Algorithm 2. The initialization of
the boolean flag, which determines whether preCICE should be used and the conditional startup of the
coupling via the adapter is achieved by the following lines, which have to be inserted right before the
main solver while-loop of SU2 (i.e. between lines 8 and 9 of Algorithm 2):

bool p r e c i c e_usage = con f i g_ conta ine r [ZONE_0]−>GetpreCICE_Usage () ;
Pre c i c e ∗ p r e c i c e ;
double ∗max_p r e c i c e_dt , ∗dt ;
i f (p r e c i c e_usage) {

p r e c i c e = new Prec i c e (rank , s i z e , geometry_conta iner ,
s o l v e r_conta iner , c on f i g_conta iner , g r i d_movement) ;
dt = new double (c on f i g_ conta ine r [ZONE_0]−>GetDelta_UnstTimeND ()) ;
p r e c i c e−>con f i gu r e (c on f i g_ conta ine r [ZONE_0]−>GetpreCICE_ConfigFileName ()) ;
max_p r e c i c e_dt = new double (p r e c i c e−>i n i t i a l i z e ()) ;

}

Listing A.7: Insertion of the declarations and memory allocation of coupling-related variables, as well as
startup of the coupling procedure.

64

The flag precice_usage is set via the newly added getter function GetpreCICE_Usage() from the con-
fig_container, which stores all configuration information. Upon initialization of the adapter object
precice, MPI rank and size as well as the containers holding geometry, solver, configuration and grid
movement information are passed to it. For configuration of preCICE, name and location of its con-
figuration file need to be forwarded to the adapter. This is done by calling the new getter function
GetpreCICE_ConfigFileName(). The variable dt refers to the current physical time step size in SU2 and
is needed for timing issues, as is max_precice_dt.

Next, the condition of the main solver while-loop (starting at line 9 of Algorithm 2) must be modified
such that preCICE is able to shut down SU2 if a simulation should be ended. This is the case if
isCouplingOngoing() evaluates to false:

while ((Ext I t e r < con f i g_ conta ine r [ZONE_0]−>GetnExtIter () &&
pr e c i c e_usage && prec i c e−>isCoupl ingOngoing ()) | | (Ext I t e r <
con f i g_ conta ine r [ZONE_0]−>GetnExtIter () && ! p r e c i c e_usage)) {

. . .
}

Listing A.8: Modification of main solver while-loop condition, which allows to shut down SU2 via pre-
CICE.

SU2 cannot differentiate, whether a solver iteration is a new time step or a coupling subiteration. There-
fore, preCICE is solely in charge of this decision and signalizes it via a flag. The following lines must be
added right after the beginning of the while-loop body (between lines 9 and 10, Algorithm 2):

i f (p r e c i c e_usage && prec i c e−>isAct ionRequi red (prec i c e−>getCowic ())) {
prec i c e−>saveOldState(&StopCalc , dt) ;

}

Listing A.9: Saving the current solver state for checkpointing of implicit solver strategies in preCICE.

preCICE signals the necessity of saving the solver state via the isActionRequired() function. Its argument
specifies that the required action relates to writing an iteration checkpoint (getCowic()).

The following lines need to be inserted right after the code of Listing A.9 in order to allow preCICE to
enforce time steps2 smaller than the current value in SU2:

i f (p r e c i c e_usage){
dt = min (max_p r e c i c e_dt , dt) ;
c on f i g_ conta ine r [ZONE_0]−>SetDelta_UnstTimeND(∗ dt) ;

}

Listing A.10: Determining the minimal time step size for the next solver run.

preCICE is triggered, once a new fluid solution is computed:

i f (p r e c i c e_usage){
∗max_p r e c i c e_dt = prec i c e−>advance (∗ dt) ;

}

Listing A.11: Advancing preCICE after a solver run of SU2.

This code excerpt must be added between lines 14 and 15 of Algorithm 2, i.e. after convergence in SU2 is
checked, but before output files are written. advance() uses the current solver time step size as input and
returns the new maximum limit for the next time instance. This is determined by comparing time step
sizes of the coupled solvers up to the next instance when coupling data needs to be exchanged (compare
Figure 4.2).

If a subiteration has not converged in preCICE, SU2 is reset to the last iteration checkpoint. Thus, the
following code is the counterpart of the saveOldState() function of Listing A.9 and must be inserted right
after the advance() step:

2dt refers to the black and red arrows of Figure 4.2, while the green arrow corresponds to max_precice_dt.

65

i f (p r e c i c e_usage && prec i c e−>isAct ionRequi red (prec i c e−>getCor i c ())) {
ExtIter−−;
p r e c i c e−>re loadOldState (&StopCalc , dt) ;

}
else i f (solutionNeedsToBeOutput){

wr i teOutputFi l e s () ;
}

Listing A.12: Reloading the old SU2 solver state if another subiteration is necessary. Note that solution-
NeedsToBeOutput and writeOutputFiles() are simplified pseudo-code expressions.

By analogy with saveOldState(), reloadOldState() is initiated by preCICE as it signalizes if an action
is required. In contrast, this time the task does not relate to writing but rather reading an iteration
checkpoint (getCoric()).

The following code is executed at the end of a coupled simulation and, thus, must be added between lines
22 and 23 of Algorithm 2:

i f (p r e c i c e_usage){
prec i c e−>f i n a l i z e () ;
delete [] p r e c i c e ;

}

Listing A.13: Shutting down the coupling between SU2 and preCICE and deallocating memory.

Algorithm 4 sums up the SU2 solver run extended by the coupling-related, minimally invasive code
changes to SU2_CFD in pseudo-code, which are necessary to integrate the coupling adapter Precice into
SU2.

66

Algorithm 4 Conceptual SU2 solver run extended for coupling with preCICE in pseudo-code. The
shown code is reduced to main functionalities.
1: stopCalculation = false;
2: externalIteration = 0;
3: parseConfigurationFileAndStoreRespectiveInformation();
4: geometricalPreprocessing();
5: driverPreprocessing();
6: if dynamicMeshSimulation then
7: setDynamicMeshStructure();
8: end if
9: preciceUsage = getPreciceUsage();

10: if preciceUsage then
11: initializeAdapter();
12: configurepreCICE();
13: initializepreCICE();
14: initializeTimeSteppingVariables();
15: end if
16: while ((externalIteration < maxNumberOfExternalIteration) AND preciceUsage AND Cou-

plingIsOngoing) OR ((externalIteration < maxNumberOfExternalIteration) AND NOT preci-
ceUsage) do

17: if preciceUsage AND iterationCheckpointNeedsToBeWritten then
18: saveOldState();
19: end if
20: if preciceUsage then
21: determineAndSetNewTimeStepSize();
22: end if
23: driverRun();
24: updateConvergenceHistory();
25: if convergence then
26: stopCalculation = true;
27: end if
28: if preciceUsage then
29: advancepreCICE();
30: end if
31: if preciceUsage AND iterationCheckpointNeedsToBeRead then
32: externalIteration−−;
33: reloadOldState();
34: else if solutionNeedsToBeOutput then
35: writeOutputFiles();
36: end if
37: if stopCalculation then
38: break;
39: end if
40: externalIteration++;
41: end while
42: if preciceUsage then
43: finalizepreCICE();
44: deallocateMemoryForAdapter();
45: end if
46: return exitSuccess;

67

B. SU2 Installation Description

Building without preCICE

It is assumed that the reader of this description has some basic experience in working with git. If not, I
recommend an introduction as e.g. can be found here:

https://www.atlassian.com/pt/git/tutorial/git-basics

The open-source Computational Fluid Dynamics (CFD) Code Stanford University Unstructured (SU2)
can be accessed on Github:

https://github.com/su2code

The code can either be directly downloaded from there or cloned via:

$ git clone https :// github.com/su2code/SU2.git

The installation procedure uses the very common autoconf, automake tools. After downloading and
extracting or cloning the code, navigate to the directory, which contains the SU2 source code:

$ cd /path/to/SU2SourceCode

In this manual, I assume the code is to be built with support for the parallel features of SU2. Therefore,
the user needs to have a version of Message Passing Interface (MPI) installed, e.g. OpenMPI, MPICH or
Intel MPI.

To find out where the compiler wrappers MPICC(C) and MPICXX(C++) are located, simply run:

$ which mpicc
$ which mpicxx

Also by

$ mpicc --version
$ mpicxx --version

the compilers specified in the wrappers can be checked. To start the configuration of SU2 run:

$./ configure --prefix =/ installation/location/for/SU2/
--enable -mpi --with -cc=/ location/of/mpicc
--with -cxx=/ location/of/mpicxx

With prefix, the installation location for SU2 can be specified. If none is defined, SU2 is installed in

/usr/local/bin

by default. The second argument enables MPI communication (needed for parallel support) and the latter
two arguments specify which MPI wrapper compilers should be used (in case you want to use a different
wrapper than the standard one, just specify it here with its full path). The configuration now starts and
the system is checked for all necessary resources and requirements. If you encounter any errors here, just
have a look at the console output, which probably indicates the problem. It is possible that your version
of autoconf/automake is not the same as the one of the developers, who generated the makefiles. In such
a case it is necessary to run

68

https://www.atlassian.com/pt/git/tutorial/git-basics
https://github.com/su2code

$ autoreconf

once, so that the makefiles are adapted to your version of the tools. If this is not sufficient, it may be
necessary to adjust some environment variables in order for SU2 to find the necessary resources on your
system. Therefore, you may want to have a look at the files README.md and INSTALL, which are
located in the current directory. Just run

$ vi README.md

or

$ vi INSTALL

After the configuration process has finished successfully, the console output reads some commands, which
need to be added to your .bashrc file. These define some necessary environment variables (SU2_RUN,
SU2_HOME) and expand existing ones (PATH, PYTHONPATH). The lines might look like this:

export SU2_RUN="/home/yourUserName/bin"
export SU2_HOME="/home/yourUserName/SU2_source"
export PATH=$PATH:$SU2_RUN
export PYTHONPATH=$PYTHONPATH:$SU2_RUN

When opening a new shell, those commands set the path for the executeables and the source code of SU2.
Moreover, the path for some python scripts is defined, which are e.g. used for parallel computations in
SU2. In a user-friendly fashion the shown command lines are already adapted for your system so that
you only need to copy-paste them. The .basrc is located in your home directory and can be edited via

$ vi ~/. bashrc

The next step is to run the make command:

$ make -j 8

followed by

$ make install

To save some time, the build process can be accelerated using the -j flag with a number of processes, as
SU2 can be built in parallel. In this example, the build process would run on 8 processes. However, it is
reasonable to only use a number corresponding to the amount of physical cores available, since the build
process almost fully uses the computational resources of each core and thus, multithreading may even
slow down the process.
SU2 can also support the mesh and output format CFD General Notation System (CGNS - http:
//cgns.github.io). This is not standard though and therefore, not included in this short manual. For
further information I refer to the official wiki of SU2 on Github:

https://github.com/su2code/SU2/wiki

69

http://cgns.github.io
http://cgns.github.io
https://github.com/su2code/SU2/wiki

Building with preCICE

In this part, I describe how to build SU2 linked with preCICE. Therefore, the adapter files precice.hpp and
precice.cpp developed in this thesis and explained in Chapter 5 are included in the SU2 source code. It is
assumed that preCICE has been installed successfully beforehand. Concerning installation instructions
for preCICE, I refer to:

https://github.com/precice/precice/wiki/Building

It is assumed that code changes as stated in Appendix A have already been applied to SU2.
First of all, copy the adapter files to the following locations:

/path/to/SU2SourceCode/SU2_CFD/include/precice.hpp

and

/path/to/SU2SourceCode/SU2_CFD/src/precice.cpp

Now, navigate to the source code of the SU2_CFD module. It is located here:

/path/to/SU2SourceCode/SU2_CFD/src/SU2_CFD.cpp

The header file of the adapter, (precice.hpp), needs to be included in order for the coupling to be estab-
lished. Therefore, simply add the following line to the inclusions already given in SU2_CFD.cpp:

#include "../ include/precice.hpp"

Now we can start linking SU2 and preCICE via the static library libprecice.a, which is generated upon
successfully building preCICE. To do so, some environment variables have to be adapted so that SU2

knows what library to look after and in which directory:

$ export LDFLAGS=-L/path/to/preCICESourceCode/build/last
$ export LIBS=-lprecice

Here it is assumed that the last successful build of preCICE is used for linking. Of course, this can be
customized in order to link specific builds.
Before using autoconf and automake, the makefiles of SU2 have to be edited such that the adapter files
(precice.hpp and precice.cpp) are compiled with SU2. Navigate to the following directory:

$ cd /path/to/SU2SourceCode/SU2_CFD/obj/

Now edit the file Makefile.am, in which all the files to be compiled with SU2_CFD are given.

$ vi Makefile.am

Search for the following line in that file:

su2_cfd_sources = \

If you copied precice.hpp and precice.cpp to the suggested locations, add the following lines below that
expression:

../ include/precice.hpp \

../ src/precice.cpp \

If you copied them somewhere else, you need to adapt these paths. Make sure to use spacings and
backslashes analogously to the other lines there. Now the changes in Makefile.am have to be transferred
to Makefile.in, which finally leads to a new Makefile in the configuration process. This Makefile is then
used to build SU2 coupled with preCICE, again using the make command. Navigate back to the main
directory of SU2 by simply typing:

cd ../../

Now run:

$ automake

70

https://github.com/precice/precice/wiki/Building

to update Makefile.in. If this fails, it might be necessary to run

$ autoreconf

as described in the first part of this manual.
Once more, follow the configuration procedure:

$./ configure --prefix =/ installation/location/for/SU2/
--enable -mpi --with -cc=/ location/of/mpicc
--with -cxx=/ location/of/mpicxx

Depending on whether you changed the position/names of your SU2 source code or not you may or may
not have to add the command lines adapting the SU2 environment variables to your .bashrc, which are
given as console output at the end of a successful configuration process. Analogous to the build without
preCICE, now run make (with optional parallelization):

$ make -j 8

and

$ make install

The new executeable of SU2_CFD, now coupled with preCICE, can be found in

/path/to/SU2SourceCode/SU2_CFD/bin

if the installation finished successfully.

71

Bibliography

[1] Armin Beckert and Holger Wendland. Multivariate interpolation for fluid-structure-interaction prob-
lems using radial basis functions. Aerospace Science and Technology, 5(2):125–134, 2001.

[2] Tomáš Bodnár, Giovanni P Galdi, and Šárka Nečasová. Fluid-Structure Interaction and Biomedical
Applications. Springer, 2014.

[3] Leonid M Brekhovskikh and Valery Goncharov. Mechanics of continua and wave dynamics, volume 1.
Springer Science & Business Media, 2012.

[4] Hans-Joachim Bungartz, Florian Lindner, Bernhard Gatzhammer, Miriam Mehl, Klaudius Scheufele,
Alexander Shukaev, and Benjamin Uekermann. preCICE – A Fully Parallel Library for Multi-Physics
Surface Coupling. Computers & Fluids, 2016.

[5] Paola Causin, Jean-Frédéric Gerbeau, and Fabio Nobile. Added-mass effect in the design of parti-
tioned algorithms for fluid–structure problems. Computer methods in applied mechanics and engi-
neering, 194(42):4506–4527, 2005.

[6] Aukje de Boer, Alexander H van Zuijlen, and Hester Bijl. Review of coupling methods for non-
matching meshes. Computer methods in applied mechanics and engineering, 196(8):1515–1525, 2007.

[7] Aukje de Boer, Alexander H van Zuijlen, and Hester Bijl. Comparison of conservative and consistent
approaches for the coupling of non-matching meshes. Computer Methods in Applied Mechanics and
Engineering, 197(49):4284–4297, 2008.

[8] Joris Degroote, Klaus-Jürgen Bathe, and Jan Vierendeels. Performance of a new partitioned
procedure versus a monolithic procedure in fluid–structure interaction. Computers & Structures,
87(11):793–801, 2009.

[9] Yannick Diekmann. Möglichkeiten der Kopplung von Fluid- und Struktursimulationen. Semester
thesis, Technische Universität München, 2015.

[10] Jean Donea, Antonio Huerta, Jean-Philippe Ponthot, and Antonio Rodriguez-Ferran. Arbitrary
Lagrangian-Eulerian Methods. In Erwin Stein, René De Borst, and Thomas JR Hughes, editors,
Encyclopedia of Computational Mechanics, volume 1: Fundamentals, chapter 14. Wiley & Sons,
2004.

[11] Thomas D Economon, Francisco Palacios, Juan J Alonso, Gaurav Bansal, Dheevatsa Mudigere,
Anand Deshpande, Alexander Heinecke, and Mikhail Smelyanskiy. Towards High-Performance Op-
timizations of the Unstructured Open-Source SU2 Suite. AIAA Paper, 1949, 2015.

[12] Charbel Farhat and Michael Lesoinne. Two efficient staggered algorithms for the serial and parallel
solution of three-dimensional nonlinear transient aeroelastic problems. Computer methods in applied
mechanics and engineering, 182(3):499–515, 2000.

[13] Charbel Farhat, Kristoffer G van der Zee, and Philippe Geuzaine. Provably second-order time-
accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity.
Computer methods in applied mechanics and engineering, 195(17):1973–2001, 2006.

[14] Joel H Ferziger and Milovan Peric. Numerische Strömungsmechanik. Springer-Verlag, 2008.

72

[15] Christiane Förster, Wolfgang A Wall, and Ekkehard Ramm. The artificial added mass effect in
sequential staggered fluid-structure interaction algorithms. In ECCOMAS CFD 2006: Proceedings
of the European Conference on Computational Fluid Dynamics, Egmond aan Zee, The Netherlands,
September 5-8, 2006. Delft University of Technology; European Community on Computational Meth-
ods in Applied Sciences (ECCOMAS), 2006.

[16] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. University of Ten-
nessee, 3.1 edition, 2015.

[17] Giovanni P Galdi. An introduction to the mathematical theory of the Navier-Stokes equations: Steady-
state problems. Springer Science & Business Media, 2011.

[18] Bernhard Gatzhammer. Efficient and flexible partitioned simulation of fluid-structure interactions.
PhD thesis, Technische Universität München, 2015.

[19] Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-D finite element mesh generator
with built-in pre-and post-processing facilities. International Journal for Numerical Methods in
Engineering, 79(11):1309–1331, 2009.

[20] Gene Hou, Jin Wang, and Anita Layton. Numerical methods for fluid-structure interaction—a
review. Commun. Comput. Phys, 12(2):337–377, 2012.

[21] Bruce M Irons and Robert C Tuck. A version of the Aitken accelerator for computer iteration.
International Journal for Numerical Methods in Engineering, 1(3):275–277, 1969.

[22] George Karypis. METIS and ParMETIS. In Encyclopedia of Parallel Computing, pages 1117–1124.
Springer, 2011.

[23] George Karypis and Vipin Kumar. MeTis: Unstructured Graph Partitioning and Sparse Matrix
Ordering System. University of Minnesota, 4.0 edition, 2009.

[24] George S Kell. Effects of isotopic composition, temperature, pressure, and dissolved gases on the
density of liquid water. Journal of Physical and Chemical Reference Data, 6(4):1109–1131, 1977.

[25] Ulrich Küttler and Wolfgang A Wall. Fixed-point fluid–structure interaction solvers with dynamic
relaxation. Computational Mechanics, 43(1):61–72, 2008.

[26] W Michael Lai, David H Rubin, and Erhard Krempl. Introduction to Continuum Mechanics.
Butterworth-Heinemann, 2009.

[27] Miriam Mehl, Benjamin Uekermann, Hester Bijl, David Blom, Bernhard Gatzhammer, and Alexan-
der van Zuijlen. Parallel coupling numerics for partitioned fluid–structure interaction simulations.
Computers & Mathematics with Applications, 71(4):869–891, 2016.

[28] Florian R Menter. Two-equation eddy-viscosity turbulence models for engineering applications.
AIAA journal, 32(8):1598–1605, 1994.

[29] US National Institute of Standards and Technology. The NIST Reference on Constants, Units,
and Uncertainty - Avogadro constant. http://physics.nist.gov/cgi-bin/cuu/Value?na, 2016. Online,
accessed 15.03.2016.

[30] Francisco Palacios, Michael R Colonno, Aniket C Aranake, Alejandro Campos, Sean R Copeland,
Thomas D Economon, Amrita K Lonkar, Trent W Lukaczyk, ThomasWR Taylor, and Juan J Alonso.
Stanford University Unstructured (SU2): An open-source integrated computational environment for
multi-physics simulation and design. AIAA Paper, 287:2013, 2013.

[31] Charles S Peskin. The immersed boundary method. Acta numerica, 11:479–517, 2002.

[32] Ekkehard Ramm and Wolfgang A Wall. Fluid-structure interaction based upon a stabilized (ALE)
finite element method. In 4th World Congress on Computational Mechanics: New Trends and Ap-
plications, CIMNE, Barcelona, pages 1–20, 1998.

[33] Thomas CS Rendall and Christian B Allen. Unified fluid–structure interpolation and mesh mo-
tion using radial basis functions. International Journal for Numerical Methods in Engineering,
74(10):1519–1559, 2008.

73

[34] Philip L Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of
computational physics, 43(2):357–372, 1981.

[35] Youcef Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal on Scientific
Computing, 14(2):461–469, 1993.

[36] Ruben Sanchez, Rafael Palacios, Thomas D Economon, Heather L Kline, Juan J Alonso, and Fran-
cisco Palacios. Towards a Fluid-Structure Interaction solver for problems with large deformations
within the open-source SU2 suite. In 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference, 2016.

[37] Alexander Shukaev. A Fully Parallel Process-to-Process Intercommunication Technique for preCICE.
Master’s thesis, Technische Universität München, June 2015.

[38] Galina Sieber. Numerical simulation of fluid-structure interaction using loose coupling methods. PhD
thesis, Technische Universität Darmstadt, 2002.

[39] Stefan Turek and Jaroslav Hron. Proposal for numerical benchmarking of fluid-structure interaction
between an elastic object and laminar incompressible flow. In Hans-Joachim Bungartz and Michael
Schäfer, editors, Fluid-Structure Interaction: Modelling, Simulation, Optimisation, volume 53 of Lec-
ture Notes in Computational Science and Engineering, pages 371–385. Springer Science & Business
Media, 2006.

[40] Benjamin Uekermann, Hans-Joachim Bungartz, Bernhard Gatzhammer, and Miriam Mehl. A paral-
lel, black-box coupling algorithm for fluid-structure interaction. In Proceedings of 5th International
Conference on Computational Methods for Coupled Problems in Science and Engineering, pages
1–12, 2013.

[41] Benjamin Uekermann, Juan Carlos Cajas, Bernhard Gatzhammer, Guillaume Houzeaux, Miriam
Mehl, and Mariano Vázquez. Towards partitioned fluid-structure interaction on massively parallel
systems. Proceedings of WCCM XI/ECCM V/ECFD VI, Barcelona, 2014.

[42] E Harald van Brummelen. Added mass effects of compressible and incompressible flows in fluid-
structure interaction. Journal of Applied mechanics, 76(2):021206, 2009.

[43] Raoul van Loon, Patrick D Anderson, Frans N van de Vosse, and Spencer J Sherwin. Compari-
son of various fluid–structure interaction methods for deformable bodies. Computers & structures,
85(11):833–843, 2007.

[44] Mariano Vázquez, Guillaume Houzeaux, Seid Koric, Antoni Artigues, Jazmin Aguado-Sierra, Ruth
Arís, Daniel Mira, Hadrien Calmet, Fernando Cucchietti, Herbert Owen, et al. Alya: Multiphysics
engineering simulation toward exascale. Journal of Computational Science, 2016.

[45] Peter Wriggers. Nonlinear finite element methods. Springer Science & Business Media, 2008.

74

	Acknowledgements
	Acronyms
	List of Figures
	Introduction
	Mathematical and Physical Basics of Fluid-Structure Interaction Problems
	Continuum Assumption
	Description of Motion
	Eulerian Perspective
	Lagrangian Point of View
	ALE Method

	Domains and Interface
	Fluid Domain
	Solid Domain
	Interface and Interaction

	Computational Aspects of FSI Simulations
	Monolithic and Partitioned Approaches
	Weakly and Strongly Coupled Partitioned Strategies
	Conforming and Non-Conforming Mesh Methods
	Stability Issue: Added Mass Effect

	Utilized Software Packages
	preCICE - Flexible Coupling of Existing Solvers for Multiphysics Simulations
	Implemented Coupling Strategies
	Communication Methods
	Data Mapping for Non-Matching Meshes

	SU2 - A Modular, Flexible CFD Solver
	Mathematical Modeling
	Software Structure
	Parallelization
	Intrinsic FSI Capabilities

	Description of the Coupling Adapter and its Integration
	Changes Concerning SU2 Configuration
	Adaption of SU2 Main Routine
	Coupling Adapter

	Selected Numerical Testcases
	Qualitative Validation: 2D Flap
	3D Capabilities: Extended Flap
	Quantitative Validation: FSI3 Benchmark
	Practical Application: Slender Cylinder

	Conclusion and Outlook
	Appendices
	Details on Integrating the Coupling Adapter into SU2
	SU2 Installation Description
	Bibliography

