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1. Introduction

1.1. Numerical simulation of flow problems

The simulation of fluids is an important and vivid field of studies in engineering and sci-
ence. Complex flow scenarios can be found when designing hydraulic devices pumping
fluids through pipe networks. But also the human heart pushes fluids through compli-
cated vein systems. In general all these flow phenomena can, dependent on the model
and the problem, be divided into two categories: compressible and incompressible flow.
Especially the simulation of incompressible flow is a difficult field, because one has to
satisfy the incompressibility condition. Violating this incompressibility condition often
leads to wrong results and simulations with non–physical behaviour such as increasing
energy or momentum.

One very popular way to simulate fluid is the finite volume method (FVM). Here one
divides the whole simulation domain into many subdomains (finite volumes) and claims
important conservation laws like mass conservation, momentum conservation and energy
conservation on each subdomain. This leads to big systems of equations which have to be
solved using standard techniques from linear algebra. An important advantage of FVM
is that the method is directly defined over the conservation laws and thus conservation
of properties, which have to be conserved, has a very high priority.

Another approach is the finite difference method (FDM). First the simulation domain is
overlaid by a grid of discrete points. Then the incompressible Navier–Stokes equations,
which is the partial differential equation (PDE) describing flow, is approximated by
substituting occurring derivatives by difference quotients between these gridpoints. This
leads — again — to a big linear equation system. The main advantage of FDM is that the
implementation is very easy and straightforward. A good example for an implementation
of a FDM algorithm for the solution of fluid problems is given in [4].

In this thesis a finite element method (FEM) is used. In this case one modifies the incom-
pressible Navier–Stokes equations and uses tools from variational calculus and functional
analysis in order to find an approximative solution of the flow problem. The solution of
the Navier–Stokes equations becomes an optimization problem of finding the approxi-
mative solution which is closest to the real solution. The incompressibility condition can
be interpreted as a constraint to the optimization problem and therefore the incompress-
ible Navier–Stokes equations can be approximated by a restricted optimization problem,
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1. Introduction

which can be solved by the method of Lagrange multipliers. The approximative solution
is represented by using certain basis function, which are often nodal basis functions,
and a discretisation of the simulation domain into a finite number of subdomains or
cells. The solution of the problem can be found by calculating the weights of the base
functions in the approximative solution, which are leading to the optimal solution. The
calculation of the weight again leads to a big linear system of equations.

1.2. Structure of the thesis

The main difference of our FEM to standard FEM approaches is the usage of divergence–
free basis functions, which satisfy the incompressibility condition a priori. The focus of
the thesis lies on numerical test scenarios in order to show that divergence–free basis
functions on the one hand are able to prevent errors originating from a violation of in-
compressibility and on the other hand can guarantee correct physical behaviour of the
simulation, conserving energy and momentum. These numerical experiments are done
using a MATLAB–Tool which has been developed originally at the Chair of Scientific
Computing at TUM by Tobias Neckel during the work on his PhD–Thesis [5] and has
been extended significantly during our work on this thesis in order to be able to run
different test scenarios.

In order to present the concept of the divergence–free FEM approach used for the
computation of these test scenarios, in chapter 2 and chapter 3 the basic equations
of fluid dynamics are developed and the finite–element–discretization for the incom-
pressible Navier–Stokes equations is explained first. The necessary implementations for
the numerical experiments performed in chapter 5 are presented in chapter 4, where the
focus lies on the additions to the already existing code Quickfluid. In the final chapter 6
a conclusion follows and the important discoveries on FEM using divergence–free basis
functions are repeated.

1.3. Acknowledgement

I want to thank my supervisor Dr. Tobias Neckel for his constant support during the
work on this thesis. Especially when facing problems he often gave me the right impulses
and motivations for handling the problems and finding a solution. I also thank the
Chair of Scientific Computing at Technische Universität München, the head of the chair,
Prof. Dr. Hans–Joachim Bungartz, and especially Prof. Dr. Michael Baader and Dr.
Wolfgang Eckhardt for reading great lectures on the field of scientific computing.

I thank my family for their support during my whole life, especially during the last years
at university. I would not have been able to study without their education and financial

2



1.3. Acknowledgement

support! Finally I also thank my friends and my girlfriend for rereading this thesis,
helping me to find errors of any kind and listening to me when talking of the current
problems with the thesis — this was surely often a hard task for my friends, because I
actually know that mathematics is not everyone’s favourite topic.
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2. Governing equations

2.1. Conservation laws

When developing an algorithm for the solution of flow problems by using the finite
element method, one needs to understand the conservation laws first. These are

• conservation of momentum,

• conservation of mass and

• conservation of energy.

2.1.1. The Reynolds transport theorem

For the development of the conservation laws the Reynolds transport theorem (RTT)
will play an important role. If we want to calculate the total time derivative of a
time–dependent integral the following equation holds:

d
dt

∫
Ω

f (x, t) dx =
∫
Ω

∂f (x, t)
∂t

dx +
∫
Ω

div (f (x, t) u (x, t)) dx. (2.1.1)

Ω denotes the volume over which we are integrating and u (x, t) the fluid’s velocity.
f (x, t) describes a generic property of the fluid like for example the density of mass.
Thus the RTT is used for calculating the total inflow (or outflow) of mass into (or out
of) the domain Ω during a certain time period.

2.1.2. The continuity equation

The conservation of mass is stated by the continuity equation

d
dt

∫
Ω

ρ (x, t) dx

 = 0

5



2. Governing equations

with ρ (x, t) the density of the fluid. The integral over the density returns the mass in
the control volume Ω, which should not change over time. Using (2.1.1) the integral can
be rearranged:

d
dt

∫
Ω

ρ (x, t) dx

 =
∫
Ω

∂ρ (x, t)
∂t

dx +
∫
Ω

div (ρ (x, t) u (x, t)) dx.

Only incompressible fluids are considered. Therefore ∂ρ(x,t)
∂t = 0. Furthermore mass

conservation has to hold for infinitesimally small sub–volumes of Ω and the density has
to be constant due to incompressibility. That leads finally to the continuity equation

∇ · u (x, t) = 0. (2.1.2)

(2.1.2) claims that the velocity field of an incompressible flow problem has to be divergence–
free.

2.1.3. The momentum equation

The conservation of momentum can be represented by

d
dt

∫
Ω

ρ (x, t) u (x, t) dx

 =
∑

F .

The density ρ (x, t) times the velocity u (x, t) of the fluid gives the density of the mo-
mentum. By integrating over the control volume Ω the total momentum of the fluid
inside the control volume is obtained. This momentum should only change over time by
the amount of the applied Forces F due to Newton’s second law.
Again (2.1.1) is used in order to rearrange the integral. The calculations are quite com-
plicated and can be found in literature [5]. Here only the final differential form of the
momentum equation is presented and interpreted:

∂u

∂t
+ (u · ∇) u + 1

ρ
∇p − µ

ρ
∆u = g. (2.1.3)

The first term ∂u
∂t is the acceleration of the fluid. As commonly known acceleration is

caused by the forces acting on the fluid, which are

• body forces g, like for example gravity,

• convective forces (u · ∇) u,

• diffusive forces −µ
ρ ∆u, influenced by the dynamic viscosity µ and the density ρ of

the fluid, and

• pressure forces 1
ρ∇p.
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2.1. Conservation laws

2.1.4. The energy equation

The energy equation is not necessary for the formulation of the incompressible Navier–
Stokes equations, nevertheless conserving energy is an important property in order to
obtain correct results. The Lax–Milgram theorem states, that energy has to be dissi-
pated over time for convergence of the solution(see [2]). Therefore the energy equation
explains under which conditions convergence can be guaranteed.

The change of kinetic energy over time is given by

d
dt

∫
Ω

1
2ρ |u|2 dx

 .

Using (2.1.1) and (2.1.2) this gives

d
dt

∫
Ω

1
2ρ |u|2 dx

 =
∫
Ω

∂

∂t

(1
2ρ |u|2

)
+ 1

2ρ |u|2 div (u) dx =
∫
Ω

1
2ρ

∂

∂t

(
uT · u

)
dx.

Calculating the derivative yields∫
Ω

1
2ρ

∂

∂t

(
uT · u

)
dx =

∫
Ω

ρ

(
∂u

∂t

)T

· u dx.

For ∂u
∂t (2.1.3) can be plugged which leads to

d
dt

∫
Ω

1
2ρ |u|2 dx = −

∫
Ω

2µ
∣∣∣∇Su

∣∣∣2 dx, (2.1.4)

where
∇Su = 1

2
(
∇u + (∇u)T

)
.

Thus the energy is dissipated over time. The rate of dissipation correlates with the
viscosity of the fluid µ. (2.1.2) has been used several times in the preceding calculations.
Without incompressibility the energy equation would look different and this explains,
why incompressibility has to be satisfied in order to obtain a convergent solution.
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2. Governing equations

2.2. Incompressible Navier–Stokes equations and weak form

From the conservation laws presented in section 2.1 the fundamental incompressible
Navier–Stokes equations as well as the — for FEM necessary — weak form of the in-
compressible Navier–Stokes equations can be developed.

2.2.1. Incompressible Navier–Stokes equations

For incompressible flow we must satisfy mass conservation (2.1.2) on the one hand and
momentum conservation (2.1.3) on the other hand. Composing these two equations leads
to the incompressible Navier–Stokes equations :

∂u

∂t
− ν∆u + (u · ∇) u + 1

ρ
∇p = g (2.2.1)

∇ · u = 0. (2.2.2)

(2.2.2) can be interpreted as a constraint on the solution u. Solving the incompressible
Navier–Stokes equations is therefore a constrained problem1.

2.2.2. Weak form of the Navier–Stokes equations

For solving the incompressible Navier–Stokes equations using a FEM approach the so
called weak form of the incompressible Navier–Stokes equations is needed. The weak
form is just a different formulation of the ’strong’ form (2.2.1) and (2.2.2). The derivation
of the weak form can be found in literature for example in [3] or [5].

The weak form of the incompressible Navier–Stokes equations has the following form:

Find (u, p) ∈ U × P such that for all (s, q) ∈ S × Q holds:

(u̇, s)0 + a (u, s) + b (p, s) = l (s) (2.2.3)
c (u, q) = 0. (2.2.4)

1When using FEM this becomes a constrained optimization problem.
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2.2. Incompressible Navier–Stokes equations and weak form

Where we are using the following notation:

(u̇, s)0 =
∫
Ω

∂u

∂t
· s dx (2.2.5)

a (u, s) =
∫
Ω

(u · ∇) u · s + ν∇u : ∇sT dx (2.2.6)

b (p, s) = −1
ρ

∫
Ω

p (∇ · s) dx (2.2.7)

l (s) =
∫
Ω

g · s dx +
∫

ΓN

f · s da (2.2.8)

c (u, q) =
∫
Ω

(∇ · u) q dx. (2.2.9)

One can recognize the terms of the incompressible Navier–Stokes equations in the weak
form. The functions u ∈ U and p ∈ P are the solution of the equation and the functions
s ∈ S and q ∈ Q are the so called test functions. U, S, P, Q are infinite–dimensional
function spaces.
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3. Finite element method

3.1. Discretisation

In this first section the weak form of the Navier–Stokes equations, developed in chapter 2,
and basis functions are going to be used in order to formulate a discrete form of the
Navier–Stokes equations. This approach of solving partial differential equation (PDE)
is called the finite element method (FEM). For more details on the theory of FEM for
the incompressible Navier–Stokes equations see [3].

3.1.1. Definition of basis functions and discrete Navier–Stokes equations

When discretizing the computation domain Ω by dividing it into several quadratic cells,
n nodes are obtained. Node i has the position xi = ( xi yi )T and u (xi) = ( ui vi )T .
The basis functions Φx

i (x) and Φy
i (x) are defined in the following way:

Φx
i (x) =

 φ1
i (x)

φ2
i (x)


Φy

i (x) =

 φ2
i (x)

φ1
i (x)


Only nodal basis functions are considered, leading to

Φx
i (xj) =

 φ1
i (xj)

φ2
i (xj)

 =

 δij

0


Φy

i (xj) =

 φ2
i (xj)

φ1
i (xj)

 =

 0
δij

 ,

where δij is Kronecker’s delta and xj is the coordinate of any node.
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3. Finite element method

With these basis functions the discrete solution ûh of the PDE is defined as:

ûh (x, t) =
n∑

i=1
ui (t) Φx

i + vi (t) Φy
i . (3.1.1)

Using

uh =
(

u1 (t) , · · · , un (t) , v1 (t) , · · · , vn (t)
)T

and

Φ =
(

Φx
1 (t) , · · · , Φx

n (t) , Φy
1 (t) , · · · , Φy

n (t)
)T

we can also define ûh (x, t) in the following way:

ûh (x, t) =
2n∑
i=1

(uh)i Φi.

Therefore our continuous problem (2.2.1) under the constraint (2.2.2) reduces to the
following discrete problem which is basically just a system of equations:

Find uh such that

Au̇h + Duh + C (uh) uh − MT ph = f (3.1.2)
Muh = 0. (3.1.3)

The matrices in this equation are the discrete form of the continuous differential opera-
tors from the weak form of the incompressible Navier–Stokes equations. Because uh is
a finite vector, this problem can be solved.

3.1.2. Ritz–Galerkin approach

The discrete form ((3.1.2) and (3.1.3)) can be derived from the weak form ((2.2.3) and
(2.2.4)) by using the Ritz–Galerkin approach. We move from the infinite–dimensional
function spaces used in chapter 2 to the finite–dimensional function spaces

Uh ⊂ U Sh ⊂ S Ph ⊂ P Qh ⊂ Q.
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3.1. Discretisation

{Φ}i=1...2n is the basis of Uh and Sh
1. Ph and Qh are also defined by some similar basis

{Ψ}I=1...N
2. Therefore it is sufficient to consider the weak form for every one of the 2n

basis functions Φi out of {Φ}i=1...2n and N basis functionsΨI out of {Ψ}I=1...N in order
to check that the equation holds for every (sh, qh) ∈ Sh × Qh. Instead of u and p we are
using our approximative solution ûh for the velocity field and p̂h for the pressure field3.
Now the weak form reads

Find (ûh, p̂h) ∈ Uh × Ph such that for all i = 1, ..., 2n, I = 1, ..., N holds:(
˙̂uh, Φi

)
0

+ a (ûh, Φi) + b (p̂h, Φi) = l (Φi) (3.1.4)

c (ûh, ΨI) = 0. (3.1.5)

Here the same notation like in (2.2.5) through (2.2.9) is used.

3.1.3. Derivation of the matrices

Having narrowed down to these finite sets of functions4, the integrals of the weak form
can be evaluated and the matrices A, C and D can be set up. As an example the
evaluation of

(
˙̂uh, Φi

)
0

is shown here. The following expression is obtained by starting
with (2.2.5), the approximation ˙̂uh of u̇ and the basis function Φi:

(
˙̂uh, Φi

)
0

=
∫
Ω

∂ûh

∂t
· Φi dx =

∫
Ω

 2n∑
j=1

(
∂ (uh (t))j

∂t
Φj

)
· Φi

 dx.

Putting the sum and the derivative outside of the integral, substituting ∂(uh(t))j

∂t with
(u̇h)j and calculating the product yields

2n∑
j=1

(u̇h)j

∫
Ω

Φj · Φi dx.

1See subsection 3.1.1 for the definition of the basis functions building the basis.
2The derivation of the basis of the basis functions for the approximation of the pressure p̂h will not be

discussed here. See [5] for details on this topic.
3Again the construction of p̂h can be found in literature and will not be discussed here.
4The basis functions for the velocity are described in section 3.3. The basis functions for the pressure

are cellwise constant basis functions in this thesis. In general also more complicated basis functions
are used.
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3. Finite element method

The integral can now be substituted by

Aij =
∫
Ω

Φj · Φi dx.

Leading to
2n∑

j=1
(u̇h)j

∫
Ω

Φj · Φi dx =
2n∑

j=1
(u̇h)j Aij .

(2.2.5) has to hold for every i = 1, ..., 2n due to (3.1.4). 2n expressions are obtained,
which can be written as a matrix–vector–product:(

˙̂uh, Φi

)
0

=
∫
Ω

∂ûh

∂t
· Φi dx ⇔ Au̇h.

Similar calculations5 lead to the representation of the matrices C and D:

a (ûh, Φi) =
∫
Ω

(u · ∇) u · s dx +
∫
Ω

ν∇u : ∇sT dx ⇔ C (uh) uh + Duh.

The Matrix M is developed in an entirely different way using a finite volume discretiza-
tion: M discretizes the incompressibility constraint on the simulation domain. The
discrete continuity equation for one cell can be derived quickly by integrating the al-
ready known continuity equation (2.1.2) and using the divergence theorem.

0 !=
∫
Ω

∇ · u (x, t) dΩ =
∮

∂Ω=Γ

u (x, t) · ds.

Only quadratic cells are considered and the velocities on the nodes are given. The
velocities are numbered in a Z–numbering (see subsection 4.3.1). One cell is illustrated
in Figure 3.1.1.

Using the trapezoidal rule for evaluating the integral over Γ becomes∫
Γ1

u (x, t) · ds +
∫
Γ2

u (x, t) · ds +
∫
Γ3

u (x, t) · ds +
∫
Γ4

u (x, t) · ds =

1
2 (v1 + v2) +1

2 (−u1 − u3) +1
2 (−v3 − v4) +1

2 (u2 + u4) .

This expression can be rewritten and must be equal to 0 due to incompressibility:

1
2 (−u1 + u2 − u3 + u4 + v1 + v2 − v3 − v4) = 0. (3.1.6)

5For a detailed derivation see [1] or [3].
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3.1. Discretisation

Ω

 u2

v2

 u1

v1



 u3

v3

  u4

v4



Γ1

Γ2

Γ3

Γ4

Figure 3.1.1.: one cell with velocities at nodes

Incompressibility is claimed for each cell of the N cells in the domain and this system
of N equations can be rewritten in matrix–vector–notation to obtain the representation
of the matrix M :

Muh = 0.

The correct mapping from the local Z–numbering of the velocities to the global lexico-
graphical numbering is of course also very important and will be discussed later on in
section 4.3. A detailed explanation, why −MT discretizes the gradient can be found
in [1]. Having finished the derivation of the matrices A, C, D and M the discrete incom-
pressible Navier–Stokes equations (3.1.2) can be stated. Furthermore the equivalence of
(3.1.2) to (3.1.4) is shown.

3.1.4. The pressure Poisson equation

In order to guarantee that the constraint (3.1.3) is fulfilled, the pressure Poisson equation
(PPE) is applied. This equation will be derived in the following:

Solving the discrete NSE (3.1.2) for u̇h gives

u̇h = A−1
(
f − Duh − C (uh) uh + MT ph

)
. (3.1.7)

Additionally the incompressibility constraint (3.1.3) is differentiated

M u̇h = 0. (3.1.8)
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3. Finite element method

This yields

0 = MA−1
(
f − Duh − C (uh) uh + MT ph

)
. (3.1.9)

Solving for MA−1MT ph finally defines the PPE:

MA−1MT ph = MA−1 (Duh + C (uh) uh − f) . (3.1.10)

Substituting MA−1MT with Q and the right hand side of (3.1.10) with b yields

Qph = b. (3.1.11)

That is a linear system of equations which can be solved using standard techniques from
linear algebra6.

3.2. Boundary conditions

In this section the different kinds of boundary conditions (BC) will be presented shortly.
Here just the main differences of the boundary conditions and their fields of application
will be explained. For a detailed explanation of the theory of boundary conditions refer
to [3]. The details on the implementation of these boundary conditions will be discussed
in section 4.4.

3.2.1. Free nodes

Free nodes7 are considered as the standard case and do not demand any special treat-
ment. They do not belong to any boundary and lie inside of the domain, therefore each
free node has four neighbouring cells. The velocity u = ( u v )T on this node has two
degrees of freedom. Figure 3.2.1 illustrates a free node.

3.2.2. Dirichlet boundary condition, inlet and wall nodes

Dirichlet boundaries ΓD are either no–slip–walls8 or inlets9. Both components of the
velocity uD = ( uD vD )T on nodes lying on a Dirichlet boundary are given. For

6In the MATLAB Code used for the numerical test scenarios the same notation is used.
7Nodes lying inside the domain, which are not constrained.
8walls where the fluid sticks to the wall and has therefore no velocity
9domains where the fluid enters the simulation domain with a fixed, defined velocity
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3.2. Boundary conditions

u

Figure 3.2.1.: a free node with its velocity u

inlets at least one component (usually the normal component) is not equal to zero, for
no–slip–walls both components are equal to zero due to the no–slip–condition at the wall.
Each Dirichlet node has either one or two neighbouring cells. In Quickfluid inlet and
wall nodes are stored separately for postprocessing issues like the calculation of forces
acting on walls. Figure 3.2.2 illustrates both cases of Dirichlet nodes (corner nodes and
nodes at one side of the domain).

ΓD

ΓD

uD
uD

Figure 3.2.2.: a Dirichlet node with its given velocity uD, both cases, corner and side,
are shown.

3.2.3. Outlet boundary condition and outlet nodes

Outlet boundaries are Neumann boundaries. Nodes lying on outlet boundaries have two
neighbouring cells10, but both velocity components of uN = ( u v )T are free. Due to
this reason a special treatment of outlet nodes is needed(see section 4.4). See Figure 3.2.3
for an illustration of this type of boundary condition.
10Outlets on corners are not considered in this thesis, because they are not needed for our test scenarios.
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3. Finite element method

ΓN

uN

Figure 3.2.3.: an outlet node with its given velocity uN

3.2.4. Slip boundary condition and slip nodes

Slip boundaries are applied at slip–walls or at symmetry axes. Nodes lying on a slip–wall
always have two neighbouring cells. At slip–walls the normal component of the velocity is
always equal to zero, because the fluid must not penetrate the boundary; the tangential
component is free. Corners with slip boundaries are equal to Dirichlet boundaries with
both components of the velocity equal to zero. Therefore corners do not have to be
considered. For the scenario given in Figure 3.2.4 the velocity at the highlighted node
has the value uS = ( 0 v )T . Due to the complex conditions at slip nodes these nodes
have to be treated in a special way(see section 4.4).

ΓS

uS

Figure 3.2.4.: a slip node with its given velocity uS
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3.3. Different types of basis functions

3.3. Different types of basis functions

In this thesis two different types of basis functions for the velocity are compared:

• Pagoda basis functions, which are used in many standard FEM approaches11 and

• our particular divergence–free basis functions, which guarantee incompressibility
a priori.

These types of basis functions will be presented in detail and the analytical formulation
of them will be given in this section. The basis functions used for the interpolation of the
pressure will not be discussed because they are identical for both approaches presented
in this thesis12. Finally the both types of basis functions will be compared due to their
ability to approximate divergence–free velocity fields.

3.3.1. Pagoda basis functions

Pagoda basis functions are commonly used for FEM algorithms. These functions are
defined in the following way:

Φx
i (x) =

 φ1
i (x)

φ2
i (x)

 =

 φ (x − xi)
0


Φy

i (x) =

 φ2
i (x)

φ1
i (x)

 =

 0
φ (x − xi)

 .

The index i defines the node which is affected by the basis function. xi holds the
coordinates of this node. φ is a bilinear, piecewise defined function:

φ (x) =



(h − x)(h − y) , if 0 ≤ x ≤ h ∧ 0 ≤ y ≤ h

(h + x)(h − y) , if −h ≤ x ≤ 0 ∧ 0 ≤ y ≤ h

(h + x)(h + y) , if −h ≤ x ≤ 0 ∧ −h ≤ y ≤ 0
(h − x)(h + y) , if 0 ≤ x ≤ h ∧ −h ≤ y ≤ 0
0 , otherwise

.

Therefore the function φ only has compact support on a area [−h, h]2, which covers the
11In literature this kind of basis function is often used for a Q1Q0–element. The subscript denotes the

degree of the basis function where the basis function for the velocity is bilinear (degree one) and the
basis function for the pressure is constant (degree zero).

12For the pressure cell–wise constant basis functions, which are often called Q0 in literature, are used.
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3. Finite element method

adjacent cells to node i if h is the distance from one node to another. The four different
cases, where φ 6= 0, are corresponding to the four quadrants of the coordinate system.
A plot of the pagoda basis function for xi = ( 0 0 )T is given in Figure 3.3.1. The
implementation of the function can be found in subsection A.2.1.
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Figure 3.3.1.: pagoda basis function

3.3.2. Divergence–free basis functions

In this thesis basis functions designed for a divergence–free FEM are going to be surveyed.
The detailed derivation of this kind of basis functions can be found in [6] or [1]. In the
following only the most important aspects of divergence–free basis functions will be
considered.

The main idea behind divergence–free basis functions is to satisfy the incompressibility
constraint through a special construction of the basis functions. Divergence–free basis
functions have the property that as long as the velocity field on a cell fulfils the discrete
continuity equation (3.1.6), incompressibility can be satisfied inside the cell as well.
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3.3. Different types of basis functions

By using the discrete continuity equation and introducing one more node13 in the cen-
ter of each cell which is used for satisfying incompressibility, the divergence–free basis
function can be as follows

Φx
i (x) =

 φ1
i (x)

φ2
i (x)

 =

 φ̃ (x − xi)
ϕ̃ (x − xi)


Φy

i (x) =

 φ2
i (x)

φ1
i (x)

 =

 ϕ̃ (x − xi)
φ̃ (x − xi)

 .

Comparing this function to the pagoda basis function one will see immediately that the
divergence–free basis function has two components 6= 0, while the second component of
the pagoda basis function is equal to zero. The second component of the divergence–free
basis function is used for realizing traversing flow, which is important for satisfying
incompressibility. This difference will be visualized in subsection 3.3.3. For (x, y) ∈ [0, 1]2
and h 6= 0, φ̃ and ϕ̃ are defined in the following way:

φ̃ (x) =



1 − x
h − y

2h , if Case I
1
2 − x

2h , if Case II
1
2 − y

2h , if Case III
1 − x

2h − y
h , if Case IV

0 , otherwise outside of support

ϕ̃ (x) =



y
2h , if Case I
1
2 − x

2h , if Case II
1
2 − y

2h , if Case III
x
2h , if Case IV
0 , otherwise outside of support.

.

The different cases are defined in the following way:

Case I: x ≥ y ∧ x ≤ h − y

Case II: x ≥ y ∧ x ≥ h − y

Case III: x ≤ y ∧ x ≥ h − y

Case IV: x ≤ y ∧ x ≤ h − y.

In Figure 3.3.2 the four different cases are illustrated.

This definition of φ̃ and ϕ̃ can only be applied for the first quadrant. The other rep-

13This node is not a additional degree of freedom. It is just introduced for the derivation of the basis
functions and the total number of degrees of freedom does not differ for the two types of basis
functions.
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3. Finite element method

xi

I

II

III

IV

Figure 3.3.2.: The four different cases for the first quadrant. The red node has the
coordinates xi.

resentations of φ̃ and ϕ̃ are obtained using symmetry conditions. A plot of the full
divergence–free basis function on the four neighbouring cells of node i is shown in Fig-
ure 3.3.3. The implementation of the function can be found in subsection A.2.2.
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Figure 3.3.3.: divergence–free basis functions
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3.3. Different types of basis functions

3.3.3. Comparison

In order to understand the benefit of divergence–free basis functions, in the following
section a very simple flow field will be considered using both pagoda basis functions and
divergence–free basis functions. The discrete field shown in Figure 3.3.4 is divergence–
free due to (3.1.6)14.

u4 =

 u4

v4

 =

 0
0

u3 =

 u3

v3

 =

 −1
0



u1 =

 u1

v1

 =

 1
0

 u2 =

 u2

v2

 =

 0
0


Figure 3.3.4.: one very simple, divergence–free velocity field

First pagoda basis functions will be used for the interpolation of the velocity field on the
cell. Due to (3.1.1) the field ûh (x, t) is given by the following sum:

ûh (x, t) =
4∑

i=1
ui (t) Φx

i + vi (t) Φy
i = u1Φx

1 + u3Φx
3

= u1

 φ (x − x1, y − y1)
0

+ u3

 φ (x − x3, y − y3)
0


= (+1)

 φ (x − 0, y − 0)
0

+ (−1)

 φ (x − 0, y − 1)
0

 .

14The velocities for this scenario are numbered in a lexicographic way (global numbering), but the
discrete incompressibility equation is given in Z–numbering (local numbering). Therefore just putting
the velocities into the equation will not work, but a sufficient mapping has to be applied from the
local numbering to the global numbering. See chapter 4 for details on this topic.
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3. Finite element method

Only the area Ω = [0, 1]2 is considered. Therefore the right piecewise definitions of
φ (x, y) leads to

ûh (x, t) = 1

 (1 − x)(1 − y)
0

+ (−1)

 (1 − x)(1 + (y − 1))
0

 =

 2xy − 2y − x + 1
0

 .

Calculating the divergence yields

∇ · ûh (x, t) = ∂

∂x
(2xy − 2y − x + 1) + ∂0

∂y
= 2y − 1 6= 0,

which shows that the resulting velocity field is not divergence–free, even if the initially
given velocities on the nodes fulfil (3.1.6). A plot of the continuous field using a pagoda
basis function and its divergence is shown in Figure 3.3.5.
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Figure 3.3.5.: interpolating field using pagoda basis functions

The divergence is calculated using (3.1.6) for the cells of the mesh of interpolated nodes.
See also subsection 4.6.2 for more information about the calculation of the divergence.

Even if the initial 1 × 1 grid is refined15 such that the discrete divergence of the 2 × 2
grid is equal to zero, the continuous divergence is still not equal to zero — even if the
turning can now be realized properly. See Figure 3.3.6.

15Another five nodes are added.
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Figure 3.3.6.: interpolating field using pagoda basis functionson a refined 2 × 2 grid

Now divergence–free basis functions are used for the same initial setup: Again (3.1.1) is
used for the calculation of ûh (x, t) and a similar expression with divergence–free basis
functions is obtained.

ûh (x, t) =
4∑

i=1
ui (t) Φx

i + vi (t) Φy
i = u1Φx

1 + u3Φx
3

= u1

 φ̃ (x − x1, y − y1)
ϕ̃ (x − x1, y − y1)

+ u3

 φ̃ (x − x3, y − y3)
ϕ̃ (x − x3, y − y3)


= (+1)

 φ̃ (x − 0, y − 0)
ϕ̃ (x − 0, y − 0)

+ (−1)

 φ̃ (x − 0, y − 1)
ϕ̃ (x − 0, y − 0)

 .

In order to avoid piecewise definitions only ΩIV = {(x, y) | x ≤ y ∧ y ≤ h − x} will be
considered as an example. ΩIV is identical to the area IV from Figure 3.3.2. Inserting
the definitions of φ̃ and ϕ̃ from subsection 3.3.2 leads to the following expression for
ûh (x, t) on ΩIV :

ûh (x, t) = (+1)

 1 − x
2 − y

x
2

+ (−1)

 1 − x
2 + (y − 1)

−x
2

 =

 1 − 2y

x

 .
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3. Finite element method

The divergence of ûh (x, t) is equal to

∇ · ûh (x, t) = ∂

∂x
(1 − 2y) + ∂x

∂y
= 0.

For the other subsections of Ω the divergence is naturally also equal to zero. Unlike
using pagoda basis functions, the continuous field using divergence–free basis functions
is divergence–free . A plot of the field using divergence–free basis functions is given in
Figure 3.3.7.
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Figure 3.3.7.: interpolating field using divergence–free basis functions; the divergence of
the field is on the scale of numerical errors

Using divergence–free basis functions one can realize the turning of the fluid. The fluid
is neither compressed nor expanded, because of the divergence–free velocity field. The
calculated divergence using (3.1.6) is only in the range of numerical errors.

This simple example already shows, that by enforcing discrete incompressibility divergence–
free basis functions can generate continuously divergence–free velocity fields while fields
generated using pagoda basis functions do have a divergence not equal to zero. From
(2.1.4) follows that violating incompressibility may cause errors in the energy conser-
vation. Therefore the use of divergence–free basis functions prevents errors originating
from a violation of the energy conservation by guaranteeing pointwise incompressibility.
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4.1. Structure of the program

The FEM approach described in the previous sections has been implemented in the
MATLAB–code Quickfluid. The necessary local matrices for the discrete Navier–Stokes
equations have been obtained using MAPLE–worksheets developed in [5] and [7] and
are listed in subsection A.1.1 and subsection A.1.2. By choosing a set of matrices corre-
sponding with the type of basis functions, one can switch between standard FEM and
divergence–free FEM.

Using these local matrices one can calculate pressure, velocity and acting forces using a
matrix–free approach which is explained later in this chapter. One has to keep in mind
that Quickfluid is not using the exact mass matrix but a lumped mass matrix in order
to avoid solving another linear equation system in each timestep. The concept of mass
lumping will also be explained in subsection 4.4.1.

Initial and boundary conditions for different scenarios (see chapter 5) are hard–coded
in Quickfluid. Using a configuration file one can choose the type of scenario with the
corresponding boundary and initial conditions. Furthermore important parameters like
the dimension of the simulation domain, the Reynolds number, the number of cells of
the discretization and the size of one timestep can be determined using the configuration
file.

In each time step the PPE is set up — again using a matrix–free approach — and solved
exactly using the backslash operator in MATLAB. As a last step inside the timeloop time
integration is performed using an explicit Euler method. The approach of calculating
the pressure field via the pressure Poisson equation in the first place and then updating
the velocity field by applying the acting forces and the pressure gradient is called the
’Chorin projection method’.

For scenarios with given initial conditions an important and quite complex preprocessing
step is the calculation of the discrete initial velocity field via an L2–projection. This step
is also implemented in Quickfluid for scenarios where it is necessary. See section 4.5 for
a detailed description of this method.

For postprocessing the tool Quickvis is available, which is used for the visualization
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of the velocity and pressure field. Additional tools for the visualization of the applied
boundary conditions as well as the visualization of the divergence of a given velocity
field have been implemented (see section 4.6).

The rough structure of the program with the single steps necessary in each timestep is
visualized in Figure 4.1.1.

4.2. Implementation of element matrices

In order to be able to compute the test scenarios using divergence–free basis functions
one needs to compute and implement the local element matrices. In [1] these matrices
have been developed and calculated for pagoda basis functions as well as divergence–free
basis functions for 2D computations. In [7] these matrices have also been computed for
the three–dimensional case. For the computation of the matrices MAPLE has been used
in order to evaluate the integrals analytically.

The big advantage of the implementation of the divergence–free FEM approach used in
Quickfluid can be discovered when implementing divergence–free basis functions into an
existing FEM–framework: Key features like the compact support of the basis functions
and the number of degrees of freedom per cell are the same and therefore the program
does not have to be changed except for the element matrices in use.

4.3. Different concepts of numbering

In Quickfluid different concepts of numbering are used. In the following these concepts
as well as their fields of application will be explained. Particularly the differences in
global numbering (on the whole domain) and local numbering (on a single cell or around
a single node) will be explained in order to avoid confusion in the following chapters.

4.3.1. Z–numbering

When looking at single cells one often needs to gather information from the neighbouring
nodes. These nodes are traversed in the order illustrated in Figure 4.3.1. This type of
numbering is a local numbering, because for each cell the adjacent nodes could be ordered
in that way, but the numbering does not uniquely identify certain nodes like a global
numbering would do.

The Z–numbering is applied in all kinds of local operations on cells, like for example the
calculation of the divergence. We remember, that the divergence of the velocity ∇ · u is
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Set up Geometry A−1

assemble Q

Q = MA−1MTM Q

set initial velocity; n:=0u0 u0
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Figure 4.1.1.: structure of the program Quickfluid, red circles denoting already given
data (element matrices M, C, D and continuous initial condition u0), blue
circles denoting data generated within Quickfluid
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discretized through the matrix M . The derivation of the local matrix Mloc has already
been done in subsection 3.1.3 by using a finite volume approach. The local matrix Mloc
for one cell has the following form:

Mloc =
(

−0.5 0.5 −0.5 0.5 0.5 0.5 −0.5 −0.5
)

.

If the velocities on the corners of the cell are put into one vector uh in the order given by
Z–numbering1 one can easily calculate the discrete divergence of the cell by calculating
the following matrix–vector–product:

∇ · u = Muh =
(

−0.5 0.5 −0.5 0.5 0.5 0.5 −0.5 −0.5
)



u1

u2

u3

u4

v1

v2

v3

v4



.

One may notice that calculating this product gives exactly the expression (3.1.6), which
is the discrete continuity equation. Of course this only gives the divergence for one cell2.

3 4

1 2

Figure 4.3.1.: Z–numbering pattern of the nodes around one cell

1The x-component of the velocity first, then the y-component
2The global matrix M can be used for the calculation of the divergence of each cell. The assembly of

M will be explained later in this section.
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The same numbering is also applied for the calculation of the pressure gradient ∇p

through −MT ph. Here the resulting gradient (∇p)i = ( (∇px)i (∇py)i
)T on node i

is returned in the order defined by Z–numbering around the cell with given pressure p.

−MT
locp = −



−0.5
0.5

−0.5
0.5
0.5
0.5

−0.5
−0.5



p =



0.5p

−0.5p

0.5p

−0.5p

−0.5p

−0.5p

0.5p

0.5p



=



(∇px)1

(∇px)2

(∇px)3

(∇px)4

(∇py)1

(∇py)2

(∇py)3

(∇py)4



.

Again this will only lead to the pressure gradient for the nodes surrounding one cell3.

4.3.2. Counter–clockwise–numbering

Sometimes one wants to traverse the cells lying along one node. Here a different num-
bering, a counter–clockwise–numbering (CCW–numbering) shown in Figure 4.3.2, is
applied. The function which assembles the matrix Q, which is important for solving the

1 2

34

Figure 4.3.2.: CCW–numbering pattern of the cells around one node

PPE, uses this kind of numbering. This kind of numbering is also a local numbering.

3The x–component of the gradient comes — again — first, then the y–component
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4.3.3. Lexicographical numbering

In order to be able to uniquely identify cells as well as nodes, a lexicographical numbering
is used. The ordering is illustrated in Figure 4.3.3 for nodes and in Figure 4.3.4 for
cells. The figures show a simulation domain Ω which has the dimension of 4 × 2 cells,
respectively 5 × 2 nodes. In Quickfluid the dimensionality of the simulation domain is
saved via the number of cells in x–direction Nx —- respectively y–direction Ny. The
number of nodes in each direction can be calculated easily, since it is just nx = Nx + 1
(respectively ny = Ny + 1) on a regular Cartesian grid. The total number of cells
N = NxNy and n = nxny is also easily calculated.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Figure 4.3.3.: lexicographical numbering of the nodes on the whole domain

Many different properties of the fluid are saved on the nodes — for example the velocity.
The vector uh has 2n = 2nxny = 2(Nx+1)(Ny+1) = 20 entries4. In uh all x–components
of the velocity are saved first in a order given by the lexicographical numbering; then
the y–components follow. The velocity on node i is composed of the x–component (uh)i

and the y–component (uh)i. The pressure is saved for each cell and therefore the vector
ph has N entries, since the pressure is a scalar quantity.

4.3.4. Matrix–free approach

In Quickfluid mainly a matrix–free approach is used. That means that no big global
matrices are assembled, but that all cells or nodes are traversed and the contributions
of each cell or node are summed up to the requested quantity. One example is the
calculation of the pressure gradient:

• Initialize the global vector ∇p with the dimension 2n.

• Loop over all N cells of the domain in a lexicographical manner.
4The two is due to the two components of the velocity on each node.
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1 2 3 4

5 6 7 8

Figure 4.3.4.: lexicographical numbering of the cells on the whole domain

• Calculate the local contribution of the pressure (ph)I on cell I to the pressure
gradient on each node neighbouring cell I by −MT

loc (ph)I (Result is returned in
Z–numbering!).

• Distribute the local contributions to the global vector ∇p by applying a proper
mapping from the current cell I and the local numbering to the global numbering5.

Additionally to the pressure gradient also the right hand side of the PPE b as well as
the acting force F is calculated via a matrix–free approach.

4.3.5. Assembly routine

An alternative to a matrix–free approach is the assembly of global matrices. One will face
some disadvantages, like the huge sparse matrices generated by the assembly routine6,
but sometimes the global representation of the matrix is inevitable. The assembly routine
always follows the same recipe. The algorithm will be demonstrated for the assembly of
the matrix M :

• Initialize the global matrix M with the dimension N × 2n.

• Loop over all N cells of the domain in a lexicographical manner.

• Calculate the global indices of the nodes by applying a proper mapping from the
5The domain given in Figure 4.3.4 and Figure 4.3.3 can be considered as an example: Let I = 3,

then the global indices of the neighbouring nodes are i = 3, 4, 8, 9. In Z–numbering these nodes will
be returned in the following order: x–component of nodes 8, 9, 3, 4 and then y–component of nodes
8, 9, 3, 2. Knowing the global indices of the returned results it is easy to save the results to the right
positions in ∇p.

6For the very small scenario (only 8 cells) shown in Figure 4.3.3 and Figure 4.3.4The matrix M has
the dimension 8 × 30; the matrix A has the dimension 30 × 30. One might imagine how big these
matrices can become for scenarios with bigger dimensions.
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current cell I and the local numbering to the global numbering.

• Distribute the entries of the local matrix Mloc to the global matrix M at the global
indices corresponding to the currently processed nodes.

One might recognize the similarities between this algorithm and the one given in sub-
section 4.3.4. The global Matrices M and A are needed for example when calculating
the L2–projection and for the calculation of the discrete divergence of several cells. Also
the important matrix Q is calculated in a similar way, but with slight modifications due
to the geometry information of each cell which will be explained in subsection 4.4.2.

4.4. Implementation of new boundary conditions

Quickfluid initially only supported simple scenarios like channel flow or lid–driven cavity
with simple boundary conditions. For the test scenarios computed in chapter 5, inflow
and outflow boundaries have to be added in every direction7 as well as slip–wall bound-
aries — a new kind of boundary condition. These boundary conditions have already
been presented in section 3.2. In order to add these boundary conditions to Quickfluid
the calculation routines of the following matrices and vectors have to be modified:

• PPE matrix Q = MA−1MT

• the force vector F = Duh + C (uh) uh

• PPE load vector b = MA−1F

In this section the necessary modifications will be presented and the important mass
lumping of A will be explained.

4.4.1. Mass lumping

For the calculation of the matrix Q and the vector b one is in need of the inverse of the
mass matrix A. The calculation of the inverse A−1 implies the solution of an additional
linear equation system. In order to avoid this computational cost, the mass matrix A
will be lumped to the approximation Ã, with an easily accessible inverse.

For quadratic cells with the edge length h the following approximation Ãloc of Aloc is
used:

Aloc ≈ Ãloc = 1
4h2Id.

7In channel flow only inflow from the left and outflow on the right side of the simulation domain is
necessary.
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Id ∈ R4×4 is the identity matrix. The global lumped mass matrix Ã can be constructed
using the already known assembly routine. The inverse Ã−1 of the diagonal matrix Ã
can be calculated easily. For cells with index i the following values for the inverse are
obtained, if

• the cell is inside the domain:
(
Ã−1

)
i,i

= 1
h2

• the cell is at the side of the domain:
(
Ã−1

)
i,i

= 2
h2

• the cell is on a corner of the domain:
(
Ã−1

)
i,i

= 4
h2

For a detailed derivation of mass lumping see [3] or section 5 in [1]. Also see chapter 6
in this thesis for a short discussion about mass lumping.

4.4.2. PPE matrix Q

If one uses the global lumped mass matrix Ã, the PPE matrix Q = MÃ−1MT can be
assembled using a matrix–free approach in the following way:

• Initialize the global matrix Q with the dimension N × N , where N is the number
of cells.

• Loop over all n nodes in the domain in a lexicographical manner.

• Decide weather the current node i is an inner node, an outlet–boundary node, a
slip–boundary node, an outlet–corner node, a slip–corner node or a Dirichlet node.

• Find the cells neighbouring the current node i and add the correct weights —
depending on the kind of node — to the matrix Q at the positions corresponding
to the neighbouring cells.

The correct weights are calculated by determining the influence of one node on the
global matrix Q = MÃ−1MT for the different cases mentioned above. On the one
hand these cases differ due to the value of

(
Ã−1

)
i,i

on the other hand because of the
number of degrees of freedom at the current node due to the kind of applied boundary
condition. Note also that the global lumped mass matrices Ã for pagoda basis functions
and divergence–free basis functions are identical for all nodes but the corner nodes,
where the weights differ: For pagoda basis functions the value of Ã is equal to h2

4 while
for divergence–free basis functions the value of Ã is equal to h2

6 in the bottom left and
top right corner respectively h2

3 in the top left and bottom right corner. In this thesis
no corner outlet boundary conditions occur and therefore this special case does not have
to be treated.
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Matrices
(
MÃ−1MT

)
loc

∈ R4×4 showing the influence of one node on the surrounding
cells numbered in counter–clockwise order (see subsection 4.3.2) are calculated8 in order
to assemble the global matrix Q = MÃ−1MT . In Table 4.1 some examples for the
weights for the different cases are presented.

node type node position value of
(
Ã−1

)
i,i

(
MÃ−1MT

)
loc

free inside 1
h2 1

4h2

 2 0 −2 0
0 2 0 −2

−2 0 2 0
0 −2 0 2


outflow left wall 2

h2 1
4h2

 0 0 0 0
0 4 0 0
0 0 4 0
0 0 0 0


outflow 9 bottom–left corner 4

h2 1
4h2

 0 0 0 0
0 0 0 0
0 0 8 0
0 0 0 0


outflow 10 bottom–left corner 6

h2 1
4h2

 0 0 0 0
0 0 0 0
0 0 12 0
0 0 0 0


slip left wall 2

h2 1
4h2

 0 0 0 0
0 2 −2 0
0 −2 2 0
0 0 0 0


slip 11 bottom–left corner 4

h2 1
4h2

 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


slip 12 bottom–left corner 6

h2 1
4h2

 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


dirichlet any unnecessary 1

4h2

 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Table 4.1.: different weights used in the assembly routine of Q, weights given in the style

of element matrices

8For boundary nodes also the neighbouring cells lying outside of the domain are presented in the matrix
due to a consistent numbering. Of course these weights are equal to zero.

9for pagoda basis functions
10for divergence–free basis functions
11for pagoda basis functions
12for divergence–free basis functions
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For Dirichlet nodes as well as for slip–corner nodes all weights vanish and therefore these
nodes are not considered at all in the assembly loop.

4.4.3. Force vector F

The force vector F = Duh + C (uh) uh is also composed using a matrix–free approach:

• Initialize the global vector F with the dimension 2n × 1.

• Iterate over all N cells of the domain in a lexicographical manner.

• Calculate the local contribution of the velocities of the nodes surrounding cell I to
F 13.

• Distribute the local contributions to the global vector F by applying a proper
mapping from the current cell I and the local numbering to the global numbering.

Only dirichlet nodes have to be treated in a special way: Dirichlet nodes have a fixed
velocity and no acceleration is applied at these nodes; therefore the force Fi and Fi+n

is equal to zero. For slip–boundary nodes the force in normal direction is equal to zero
due to the same reason.

4.4.4. PPE load vector b

The PPE load vector b = MA−1F is also calculated using the lumped mass matrix Ã.
The values of Ã−1 follow the same rules like when calculating Q. But this time the
vector is composed by iterating over the cells and summing up the contributions of the
neighbouring nodes to each cell. The diagonal matrix Ã−1 is just scaling the lines in the
vector F and then Mloc is multiplied from the left to the entries in

(
Ã−1F

)
loc

in order
to get the entry in b corresponding to the current cell.

13We calculate the contributions to F by using the local matrices Dloc and Cloc and picking the velocities
of the nodes surrounding the curring cell out of uh.
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4.5. Implementation of initial conditions

For the test scenario Taylor–Green vortex flow (see section 5.5) initial conditions have
to be defined in a proper way. Therefore a given continuous initial condition (IC) of the
following form

u (x, t = 0) = u0 (x) =

 u0 (x)
v0 (x)


has to be discretized.

The discretization is needed in order to get a valid initial setup for the FEM algorithm
given through the vector u0

h. The resulting approximation û0
h (x) of the continuous IC

u0 (x) can be formulated using the basis functions Φi and the corresponding weights(
u0

h

)
i:

ûh (x, t = 0) = û0
h (x) =

2n∑
i=1

(
u0

h

)
i
Φi.

4.5.1. The interpolation of initial conditions

The naive way for generating discrete ICs would be just taking the interpolation of
u0 (x): (

u0
h

)
i

= u0 (xi)

and (
u0

h

)
i+n

= v0 (xi) .

The interpolation of u0 (x) just takes the exact values of u0 (x) at the n nodes xi. This
means the resulting discrete IC is exact at the nodes and interpolates the continuous IC
via the given basis functions in–between the nodes. But this very easy way of generating
ICs does not lead to correct results, because the interpolation is not the best approxima-
tion14 of u0 (x). Even though it is exact in the nodes, a more elaborated technique, the
L2–projection, has to be used for the generation of valid ICs for the FEM Algorithm.

14A good approximation minimizes the L2–error. An exact definition of the L2–error will follow in
subsection 4.5.3.
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4.5.2. Theoretical background of the L2–projection

The L2–projection leads to the discrete IC which is closest to the continuous IC con-
sidering the L2–norm. Furthermore the constraint of incompressibility of the resulting
velocity field will be applied. For the used discretization this L2–projected IC is the best
approximation of the continuous IC, because the projection moves the IC from a general
function space U to the function space of the discretization Uh ⊂ U .

The following sections strongly bases on the appendix on projections given in [3], which
can be referred for more details on function spaces and the mathematical derivation of
the projections presented on the following pages.

H1

J

V hJh

P h
0

P h
J

P h
J

u0

u0
h

u0
h,J

P h
0

P h
J

P h
J

v0

v0
h

v0
h,J

Figure 4.5.1.: some L2–projection (red arrows) of velocity fields (blue dots) from one
function space (circles) to another; Figure A.3.3-1 from [3]

An illustration of the different L2–projections of velocity fields can be found in Fig-
ure 4.5.1. This figure is motivated by Figure A.3.3-1 in [3]. This figure finally gives
a good overview over the function spaces of interest and the different projections of
vector–valued functions:

• The space H1 is the largest considered function space. It is assumed that the
initial velocity field u0 lies inside H1.
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• The space J ⊂ H1 is the space of continuously divergence–free functions. The
initial velocity field u0 is divergence–free (if ∇ · u0 = 0 then u0 ∈ J ⊂ H1). But
the initial velocity field does not necessarily have to be divergence–free: The field
v0 ∈ H1 for example is not divergence–free and therefore v0 /∈ J .

• The space V h ⊂ H1 contains velocity fields generated through a certain discretiza-
tion and basis functions (like for example û0

h (x)).

• The space Jh ⊂ V h ⊂ H1 contains discretely divergence–free velocity fields inside
of V h. One may notice that the spaces Jh and J do not necessarily overlap.
Therefore a proper projection from J to Jh is needed when generating initial
conditions.

In the following three sections different L2–projections will be presented:

• The first section deals with projections of scalar–valued functions in 1D and 2D.
This kind of projection is not relevant for the problem of projecting initial condi-
tions for flow problems, but the derivation of it will be useful for the explanation of
the theoretical background and the validation of the results by comparing projected
functions to examples given in [3].

• The second projection is a projection of a vector–valued function in 2D (like for
example a velocity field). This projection is also shown in Figure 4.5.1(P h

0 ). It is
simply a L2–projection of any velocity field (u0, v0 ∈ H1) onto the function space
of a certain discretization (P h

0 (u0) = u0
h ∈ V h and P h

0 (v0) = v0
h ∈ V h).

• The last projection is also a projection of a vector–valued function in 2D and is
shown in Figure 4.5.1 (P h

J ). Here the constraint of incompressibility is added
and this projection maps any velocity field (u0, v0 ∈ H1) onto the discretely
divergence–free velocity field via an L2–projection (P h

J (u0) = u0
h,J ∈ Jh and

P h
J (v0) = v0

h,J ∈ Jh). This projection is exactly the projection of interest when
looking for valid initial conditions for flow problems. One may notice that also not
necessarily continuously divergence–free functions (like v0 /∈ J) can be mapped to
discretely divergence–free functions via the projection P h

J .

This theoretical explanation of the L2–projection is finished by the following two excerpts
from [3] showing that an L2–projection with the constraint of incompressibility, like
explained in subsection 4.5.5, is inevitable when computing flow problems with given
ICs and should point out the relevance of the following section:

’Even if u is ’perfectly’ divergence–free (∇ ·u = 0), its projection (u0
h) will not generally

be’... and additionally to that ’a (seemingly ’superior’) perfectly divergence–free vector
field must be projected to its (’inferior’) discretely divergence–free counterpart in order
to provide a legitimate IC for time–integration of the GFEM NSE equations. This is
because Jh is not a subset of J — even though Jh ⊂ V h and V h ⊂ H1 and J ⊂ H1’
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4.5.3. L2–projection of scalar–valued functions in 1D and 2D

4.5.3.1. Derivation of the projection

The L2–norm (‖·‖0)of an arbitrary function u(x) ∈ Ł2 is defined in the following way:

‖u(x)‖2
0 =

∫
u(x)2 dx.

The L2–projection is used to find the closest function v(x) to a given function u(x) ∈ L2

considering the L2–norm. The choice of v(x) is restricted to the subspace S ⊂ L2. In
general u(x) /∈ S and therefore u(x) 6= v(x). The best result would be an approxima-
tion v(x) of u(x) which minimizes the L2–error ‖v(x) − u(x)‖0

15.The L2–projection can
therefore be formulated as the following optimization problem:

Find inf
v∈S

‖v − u‖0 .

Because of the positive definiteness of the norm the following optimization problem is
aquivalent:

Find inf
v∈S

‖v − u‖2
0 .

In other words the functional

F0 (v) = ‖v − u‖2
0 =

∫
(v − u)2 dx

has to be minimized. Varying v leads to

δF0 (v) = 2 ‖v − u‖2
0 = 2

∫
(v − u) δv dx.

Due to variational calculus a minimum is obtained if this equation is equal to zero.
Additionally, v and δv can be substituted by linear combinations of the basis functions
vi of S in the following way:

v =
∞∑

i=1
aivi

δv =
∞∑

i=1
bivi.

15One is facing the same problem when trying to discretize a given IC u0: The given IC cannot — in
general — be represented by the chosen set of basis functions and therefore one has to find the closest
approximation of u0 by the given basis functions, which is û0

h ∈ V h.
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The condition for a minimum reads
∞∑

j=1
bj

∫ ∞∑
i=1

(aivi − u) vj dx = 0.

Due to variational calculus this expression can only be equal to zero if

∫ ∞∑
i=1

(aivi − u) vj dx = 0 for j = 1, 2, ...∞.

For the scalar L2–projection not infinitely many, but n basis functions Φi(one for each
gridpoint) are availaible. The weights ai will be the values of the approximative function
ûh on the grid points. Thus ai is substituted by (uh)i.∫ n∑

i=1
((uh)i Φi − u) Φj = 0 for j = 1, 2, ...n.

Rearranging the equation leads to

n∑
i=1

(uh)i

∫
ΦiΦj =

∫
uΦj for j = 1, 2, ...n.

By using the global mass matrix A16, the vector uh holding the weights and the load
vector (b)i =

∫
uΦi dx17, this expression can be also written in matrix–vector–notation:

Auh = b.

This system of equations can now be solved using standard techniques from linear alge-
bra.

4.5.3.2. Numerical Examples

This method has implemented been implemented by first calculating the local mass
matrix Aloc and assembling the global mass matrix A via an assembly routine. The load
vector b is calculated by numerical integration. The speed of the calculation of b can
be further improved by considering the compact support of the basis functions when
defining the integration intervals. Especially in 2D this causes a massive speedup.

In order to test the implementation, hat functions have been used as basis functions in

16The local mass matrix is already known from the FEM algorithm and therefore this matrix only has
to be assembled through an easy assembly routine using the local mass matrix

17The calculation of b is often the bottleneck of the L2–projection and very costly.

42



4.5. Implementation of initial conditions

1D and pagoda basis functions in 2D. Two examples shown in [3] in A.3.2.7 have been
reproduced.

The first example is shown in Figure 4.5.2. One clearly sees that the resulting function
is not the interpolation of the given function, because the values on the nodes strongly
differ towards the discontinuity. Still this approximation is the best approximation of
the original function considering the L2–norm.
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Figure 4.5.2.: plot of a discontinuous function and its L2–projection ; problem inspired
by Figure A.3.2-23 in [3]

The second example is shown in Figure 4.5.3. The original function is the following 2D
standard distribution

u (x, y) = e
− 1

2

[(
x−x0

σx

)2
+
(

y−y0
σy

)2
]

with the following parameters:

σx = 1
6 , σy = 0.3σx, x0 = y0 = 1.
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4. Implementation

The L2–projection has been calculated on the domain [0, 2]2 with 13×13 gridpoints. The
maximum and minimum of the approximative function shown in Figure 4.5.3 are 0.9808
respectively −0.1065 and match the reference value given in [3]. Again the differences to
the interpolant like the pits on the both sides of the standard distribution can be clearly
seen.
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Figure 4.5.3.: a colorplot of a 2D function and its L2–projection with crosses showing
the grid of the projection; problem inspired by Figure A.3.2-24 in [3]

4.5.4. L2–projection of vector–valued functions in 2D

The L2–projection for vector–valued functions is mainly the same like for scalar–valued
functions, but with some tiny differences. A slightly different notation, which is more
consistent with the notation in Quickfluid, will be used, because the 2D L2–projection
will be mainly used for the generation of valid ICs.

4.5.4.1. Derivation of the projection

First of all, of course, the L2–norm is now acting on vector–valued functions and therefore
one has to use a scalar product. The L2–norm ‖·‖0 of a vector–valued function f (x) ∈ L2

is defined by
‖f (x)‖2

0 =
∫

f (x) · f (x) dx.
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4.5. Implementation of initial conditions

For a given function u0 (x) ∈ H1 ⊂ L2 the closest function û0
h (x) ∈ V h ⊂ H1 is looked

for. In other words the L2–error
∥∥û0

h (x) − u0 (x)
∥∥

0 has to be minimized. The following
optimization problem can be formulated:

Find inf
û0

h
(x)∈S

∥∥∥û0
h (x) − u0 (x)

∥∥∥2

0
.

This optimization problem is equivalent to the minimization of the functional

F
(
û0

h (x)
)

=
∫ (

û0
h (x) − u0 (x)

)
·
(
û0

h (x) − u0 (x)
)

dx.

Variation of û0
h (x) gives the following condition for a minimum

δF
(
û0

h (x)
)

= 2
∫ (

û0
h (x) − u0 (x)

)
· δû0

h (x) dx = 0.

Substituting û0
h (x) and δû0

h (x) by the representation using the 2n basis functions Φi

on the n nodes (2 basis functions for each node, 1 basis functions for each dimension)
gives

û0
h (x) =

2n∑
i=1

aiΦi

δû0
h (x) =

2n∑
i=1

biΦi.

This leads to the following condition for a minimum:

2n∑
j=1

bj

∫ 2n∑
i=1

(aiΦi − u0 (x)) · Φj dx = 0.

Or after some modifications equivalent to the scalar–valued case and substituting ai by
(uh)i (the weight vector from Quickfluid):

2n∑
i=1

(uh)i

∫
Φi · Φj dx =

∫
u0 (x) · Φj dx for j = 1, 2, ...2n

Using the global mass matrix A, the vector uh holding the weights and the load vector
(b)i =

∫
u0 (x) Φi dx, the expression can be rewritten in matrix–vector–notation18.

Auh = b.

This system of equations can again be solved using standard techniques.
18This time the dimension of the matrix A will be 2n × 2n because of the two components of the basis

functions. The dimension of uh and b will be 2n × 1. The assembly routine has to be modified
correspondingly.
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4.5.4.2. Numerical examples

The L2–projection of vector–valued functions has been implemented in the same way
like the L2–projection of scalar–valued functions. The only differences are

• the use of the local mass matrix for the vector–valued basis functions and the
corresponding assembly routine,

• a slightly different calculation of b due to the scalar product inside the integral
and

• some optimizations in the numerical integration when using piecewise defined basis
functions19.

In order to test the implementation and demonstrate the effect of the L2–projection the
L2–projection of the field

u0 (x) =

 sin (πx)
cos (πy)


on a 3 × 3 grid on the domain [0, 1]2 has been calculated. Figure 4.5.4 shows the values
of original field u0 (x) and of the projected field û0

h (x) on the nodes.

One will see the differences due to the projection:

• The vectors on the left and right edges are shifted in positive x–direction, because
the x–value on these gridpoints are sin (0) = 0 and sin (π) = 0, but the x–value
inside the whole domain is ≥ 0.

• The vectors on the middle of the upper and bottom edge are shifted in negative
x–direction, because the x–value on these gridpoints is sin (0.5π) = 1, but the
x–value inside the whole domain is ≤ 1.

This shows the averaging behaviour of the L2–projection. The projection takes the whole
domain into consideration and fits the discrete values of the approximative function that
the results matches best in a global way (L2–norm ). In subsection 4.6.2 the discrete
divergence of the approximative function û0

h (x) is shown20, which is clearly not equal
to zero (in Figure 4.5.1 the corresponding function is v0

h 6∈ Jh). This is what one would
expect since the divergence of the original field u0 (x) is also not equal to zero.

19This is of course very important when using divergence–free FEM . Here each cell has been divided into
eight triangular integration domains which are summed up in the end in order to avoid discontinuities
inside of one integration domain. In MATLAB this approach is recommended when using the function
integral2, which is the numerical integration function in use for the L2–projection presented here.
Without this optimization the vector b could not be calculated at all.

20The divergence of this and following fields is calculated using the postprocessing tool presented in
subsection 4.6.2.
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Figure 4.5.4.: a quiver plot of both the original and the projected field
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Figure 4.5.5.: the discrete divergence of the projected field
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4.5.5. L2–projection of vector–valued constrained functions in 2D

For the generation of proper IC in Quickfluid via an L2–projection two important con-
straints have to be added:

• The velocity field has to be divergence–free in order to be able represent a proper
IC for incompressible flow and

• applied BCs — especially Dirichlet boundary condition — have to be applied in
the right way.

4.5.5.1. Introducing the constraint of incompressibility

First the constraint ∇ · û0
h (x) = 0 has to be added to the projection. This leads to the

following constrained optimization problem:

Find inf
û0

h
(x)∈S

∥∥∥û0
h (x) − u0 (x)

∥∥∥2

0

while ∇ · û0
h (x) = 0.

This optimization problem is equivalent to the minimization of the following functional,
where the Lagrange multiplier λ is introduced in order to insert the constraint:

F
(
û0

h (x) , λ
)

=
∫ (

û0
h (x) − u0 (x)

)
·
(
û0

h (x) − u0 (x)
)

dx −
∫

λ∇ · û0
h (x) dx.

Variation of û0
h (x) and λ leads to a pair of variational equations21

∫ (
û0

h (x) − u0 (x)
)

· δû0
h (x) dx −

∫
λ∇ · δû0

h (x) dx = 0

and ∫
δλ∇ · û0

h (x) dx = 0.

21This expression is only valid for the special case with homogeneous Dirichlet boundary condition and
without any Neumann boundary condition! For details on the general case and the derivation of this
expression see [3].
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4.5. Implementation of initial conditions

Like in subsection 4.5.4 substituting û0
h (x) and δû0

h (x) with its representation using
the basis functions Φi leads to

û0
h (x) =

2n∑
i=1

aiΦi

δû0
h (x) =

2n∑
i=1

biΦi.

Additionally substituting λ and δλ with the following basis functions representations,

λ =
N∑

I=1
αIΨI

and

δλ =
N∑

J=1
βJΨJ ,

where N is the number of cells and ΨI are constant basis functionsOne may notice
that the same representation is used for the Lagrange multiplier λ, which has already
been used for the pressure in the previous chapters. This explains, why the pressure in
incompressible flow is often referred as a Lagrange multiplier., lead to the two modified
variational equations

∫ ( 2n∑
i=1

aiΦi − u0 (x)
)

·

 2n∑
j=1

bjΦj

 dx −
∫ ( N∑

I=1
αIΨI

)
∇ ·

 2n∑
j=1

bjΦj

 dx = 0

and

∫ [( N∑
J=1

βJΨJ

)
∇ ·

( 2n∑
i=1

aiΦi

)]
dx = 0.

Again the problem is modified by substituting ai with (uh)i and αI with λI . Additionally
taking into consideration, that the variational equation has to be true for every bj , βJ

leads to the following system:

2n∑
i=1

(uh)i

∫
ΦiΦj dx −

N∑
I=1

λI

∫
ΨI∇ · Φj dx =

∫
u0 (x) Φj dx for j = 1, 2, ...2n

and

2n∑
i=1

(uh)i

∫
ΨJ∇ · Φi dx = 0 for J = 1, 2, ...N.
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4. Implementation

By using the mass matrix (A)ij =
∫

ΦiΦj dx, A ∈ R2n×2n, the matrix discretizing the
divergence operator M ∈ RN×2n and the load vector (b)i =

∫
u0 (x) Φi dx, b ∈ R2n the

following system of equations in matrix–vector–notation can be set up:

Auh + MT λh = b

Muh = 0.

uh ∈ R2n is the already known vector holding the weights for the basis functions Φi and
λh ∈ RN is the vector holding the Lagrange multipliers.

For the implementation the composed system has been set up in order to solve the whole
problem in one step. Therefore

• the new matrix S has been assembled,

• the solution vector w, which is holding the weights and Lagrange multipliers, has
been composed and

• the right–hand side c which holds the load vector and many zeroes due to incom-
pressibility has been introduces.

Sw =

 A MT

M 0

 uh

λh

 =

 b

0

 = ĉ

4.5.5.2. Adding applied boundary conditions

For this thesis only the support of homogeneous Dirichlet boundary condition, Neumann
boundary condition and slip boundary condition is needed. For Neumann boundary con-
dition nothing has to be done at all and a slip boundary condition is just a composition
of Neumann boundary condition in the one and Dirichlet boundary condition in the
other direction. Therefore only the implementation of Dirichlet boundary condition
is necessary and for homogeneous Dirichlet boundary condition this is very easy and
straightforward: After setting up the composed system matrix S, a zero as the solution
for the weights corresponding with homogeneous Dirichlet nodes has to be enforced.
This can be achieved by setting the corresponding diagonal entry in S to 1 and all other
entries in the same line to 0. The corresponding entry in the right–hand side c — of
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4.5. Implementation of initial conditions

course — has to be set to zero as well.

A1,1 . . . A1,i . . . A1,2n

(
MT

)
1,1

. . .
(
MT

)
1,N

... . . . ... . . . ...
... . . . ...

Ai,1 . . . Ai,i . . . Ai,2n

(
MT

)
i,1

. . .
(
MT

)
i,N

... . . . ... . . . ...
... . . . ...

A2n,1 . . . A2n,i . . . A2n,2n

(
MT

)
2n,1

. . .
(
MT

)
2n,N

M1,1 . . . M1,i . . . M1,2n 0 . . . 0
... . . . ... . . . ...

... . . . ...
MN,1 . . . MN,i . . . MN,2n 0 . . . 0





(uh)1
...

(uh)i
...

(uh)2n

(λh)1
...

(λh)N



=



b1
...
bi

...
b2n

0
...
0



.

When applying Dirichlet boundary condition in x–direction on the node with index i22

this system of equations is transformed into the following one:

A1,1 . . . 0 . . . A1,2n

(
MT

)
1,1

. . .
(
MT

)
1,N

... . . . ... . . . ...
... . . . ...

0 . . . 1 . . . 0 0 . . . 0
... . . . ... . . . ...

... . . . ...
A2n,1 . . . 0 . . . A2n,2n

(
MT

)
2n,1

. . .
(
MT

)
2n,N

M1,1 . . . M1,i . . . M1,2n 0 . . . 0
... . . . ... . . . ...

... . . . ...
MN,1 . . . MN,i . . . MN,2n 0 . . . 0





(uh)1
...

(uh)i
...

(uh)2n

(λh)1
...

(λh)N



=



b1
...
0
...

b2n

0
...
0



.

4.5.5.3. Numerical Examples

First the effect of enforcing the incompressibility constraint is demonstrated by consid-
ering the field already known from the previous chapter:

u0 (x) =

 sin (πx)
cos (πy)


This field will be projected on a 3 × 3 grid on the domain [0, 1]2. This time incompress-
ibility will be claimed, but none Dirichlet boundary condition will be applied.
22For y–direction use i + n instead of i.
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Figure 4.5.6.: the discrete divergence of the projected field with incompressibility con-
straint

The resulting field is shown in Figure 4.5.6. One will see that the resulting field (in
Figure 4.5.1 the corresponding function is v0

h,J ∈ Jh)is indeed discretely divergence–free,
even if the original field u0 (x) is not divergence–free:

∇ · (u0 (x)) = ∂ sin (πx)
∂x

+ ∂ cos (πy)
∂y

= cos (πx) π − sin (πy) π 6= 0

In order to demonstrate the effect of enforcing different boundary conditions the L2–
projection of the velocity field

u0 (x) =

 sin (πx) sin (πy)
sin (πx) sin (πy)


will be calculated for three different types of BC:

• No BC see Figure 4.5.7

• Slip boundary condition see Figure 4.5.8

• Dirichlet boundary condition see Figure 4.5.9
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Figure 4.5.7.: the discrete divergence of the projected field with incompressibility con-
straint and no BC applied

The projections are calculated on a 11 × 11 grid on the domain [0, 1]2.

All three projections have in common that the divergence is equal to a numerical zero.
The differences in the resulting projections are due to the different applied BCs and the
characteristic behaviour:

• In Figure 4.5.7 one sees that no special conditions are applied on the wall.

• In Figure 4.5.8 one sees that on the boundary only tangential and no normal
velocities occur due to the slip boundary condition.

• In Figure 4.5.9 one sees that on the boundary neither tangential nor normal veloc-
ities occur due to the Dirichlet boundary condition23.

Finally one should note that all L2–projection in this section have been calculated using
pagoda basis functions. L2–projections using divergence–free basis functions have also
been calculated and the implementation is simple, because one only has to modify the
local matrices used for the L2–projection.

23Dirichlet boundary condition are often also called a no–slip–BC.

53



4. Implementation

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

projected field
gridpoints
discrete divergence on the cell

−1

−0.5

0

0.5

1

·10−16

Figure 4.5.8.: the discrete divergence of the projected field with incompressibility con-
straint and slip boundary condition applied

4.6. Postprocessing tools

4.6.1. Visualisation of boundary conditions

In chapter 5 many different boundary conditions will be faced. For visualizing the bound-
ary conditions, which have been presented in section 3.2 and have been implemented in
section 4.4, in a compact way and for debugging of the code, a visualisation tool for
boundary conditions has been implemented.

Quickfluid supports the following boundary conditions:

• Outlet boundary condition

• Inlet boundary condition

• Slip boundary condition

• Dirichlet boundary condition

For the different BCs, nodes as well as cells have to be treated in the proper way. Quick-
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Figure 4.5.9.: the discrete divergence of the projected field with incompressibility con-
straint and Dirichlet boundary condition applied

fluid saves the indices of nodes and cells which are constrained into different lists shown
in Table 4.2. The visualisation tool automatically generates a legend and marks con-
strained nodes and cells as well as free nodes. Furthermore for outlet and slip cells their
position is indicated by text markers24 because corner outlet cells do behave differently
then outlet cells at the right hand side of the domain. For example Figure 5.4.1 has been
generated using the visualisation tool.

4.6.2. Visualisation of discrete divergence

A visualisation tool for the discrete divergence of each cell in the simulation domain has
been implemented. This tool has been particularly useful when developing the algorithm
of the L2–projection and for analysis of computational results.
24RHS (LHS, TOP, DWN) indicates a cell at the right–hand side (left–hand side, top, bottom) boundary

of the domain and RU (RD, LU, LD) a cell at the upper–right (bottom–right, upper–left, bottom–left)
corner of the domain.

25This information is important for the calculation of forces acting on a wall.
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dirichletNode both velocity components of the node are given
slipNode only the normal velocity component of the node is given
freeNode no velocity component of the node is given
wallNode marks a node belonging to a wall25

inletNode both velocity components of the node are given and fluid is
entering the domain at this node

outletNode velocity is free on this node and fluid leaves the domain at
this node

slipCell cell is part of a slip–wall boundary
outletCell cell is part of an outlet boundary

Table 4.2.: BCs which are shown by the visualization tool for BC

The discrete divergence of one cell can be calculated by using the divergence theorem
like it has been explained in subsection 3.1.3. By using the assembly routine described
in subsection 4.3.5 one can generate the global matrix M from the given local matrix
Mloc. Now the divergence of a discrete velocity field ∇ · uh can be calculated easily by
evaluating the following matrix vector product:

∇ · uh = Muh.

The resulting vector holds the divergence of each cell in lexicographical order. The
visualisation of the divergence of each cell is realized through a color plot. The velocities
on each node are also shown. See for an example.
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5.1. General remarks

5.1.1. Choice of the test scenarios

The majority of the collection of the following test scenarios has been borrowed from the
PhD–thesis by J.Evans, who is working on divergence–conforming B–spline discretiza-
tions for the Navier–Stokes equations. In [2] these B–spline discretizations are developed
and tested. In order to gain insight into divergence–free basis functions, Quickfluid is
applied to the same scenarios. The main objective is to find similar advantages with re-
spect to stability and convergence comparing divergence–free basis functions to pagoda
basis functions like J.Evans found when comparing divergence–conforming B–splines to
a standard FEM approach.

5.1.2. Used timestep–size

In order to guarantee stability due to the time discretization, the criterion for setting
the size of one timestep τ has been taken from [5].

τ ≤ σ min (δtvisc, δtu, δtv)

where
σ = 0.8

and
δtvisc = A1h2

4ν
, δtu = A2h

2umax
, δtv = A2h

2vmax

with
A1 = A2 = 0.5.

In [5] the criterion is applied to a time–adaptive approach. This adaptivity is not sup-
ported in Quickfluid; therefore the maximum velocities umax and vmax are determined in
a preprocessing step, which is a very short simulation of the scenario with a very small
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(not ideal!) timestep, which guarantees stability for sure.

5.1.3. Calculation of the error

In this thesis velocity errors are calculated using the discrete L2–norm:

‖uh‖L2 =

√√√√ 1
N

N∑
i

u2
i + v2

i

Where N is the number of gridpoints and ui and vi are the x–component and the
y–component of the velocity on the i–th gridpoint.

When calculating the L2–error e one just has to evaluate the L2–norm of the error:

e = ‖uh − u‖L2

where u is the reference velocity field, which is often an analytical solution evaluated on
the gridpoints or a L2–projected analytical field.

5.2. Curve

The first test scenario is just a simple example where fluid is streaming into the domain
over the upper boundary with the velocity vD = ( 0 −1 )T and exiting the domain

over the left boundary with the velocity vD = ( −1 0 )T . The remaining boundaries

are set to homogeneous Dirichlet boundary condition with vD = ( 0 0 )T .

5.2.1. Implementation of the scenario

This scenario was just the first try in order to get in touch with the program Quickfluid
and the implementation of Dirichlet boundary condition. See figure Figure 5.2.1 for the
applied boundary conditions. The calculations have been done using divergence–free
basis functions. The following parameters are used:

• length in x–direction: L = 1

• length in y–direction: H = 1

• inlet velocity: U = 1

• Reynolds number: Re = UH
ν = 1
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Figure 5.2.1.: applied BC for the test scenario curve

• grid size: 10 × 10 cells

• timestep size: τ = σ min (δtvisc, δtu, δtv)

• simulation time: T = 0.04

5.2.2. Interpretation of the results

The scenario produces a steady velocity field shown in Figure 5.2.2 and the pressure
field shown in Figure 5.2.3. The divergence of the field is on the scale of the numerical
error on the whole domain and can therefore be considered equal to zero (also shown in
Figure 5.2.2).
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Figure 5.2.2.: resulting velocity field (with divergence) for the test scenario curve
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Figure 5.2.3.: resulting pressure field for the test scenario curve
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5.3. Kovasznay flow

5.3. Kovasznay flow

This test scenario is borrowed from [2] and is used to simulate the flow behind a infinite
two–dimensional grid.

5.3.1. Implementation of the scenario

For this flow problem there exists an analytical solution1

u (x, y) =

 1 − eλx cos(2π
(
y − 1

2

)
)

λ
2π eλx sin(2π

(
y − 1

2

)
)

 ,

p (x, y) = 1 − e2λx

2

with

λ = Re
2 −

√
Re2

4 + 4π2.

Of course ∇ · u = 0 holds.

In Quickfluid Kovasznay flow is simulated using the following parameters2 for both types
of basis functions:

• length in x–direction: L = 1

• length in y–direction: H = 1

• inlet velocity: U = 1

• Reynolds number: Re = UH
ν = 40

• grid size: 10 × 10 cells

• timestep size: τ = σ min (δtvisc, δtu, δtv)

• simulation time: T = 2

In Quickfluid the Reynolds number can be set by specifying the dynamic viscosity η = νρ.

1Different to [2] Kovasznay flow is simulated on the domain Ω = [0, 1]2 and not on Ω = [0, 1] ×
[
− 1

2 , 1
2

]
.

Therefore the analytical solution is also shifted by − 1
2 in y–direction.

2Again these parameters are borrowed from [2].

61



5. Numerical Test Scenarios

Due to the given parameter the dynamic viscosity has to be equal to

η = νρ = UHρ

Re .

Furthermore ρ is set to 1 which gives

η = 1
40 .

The necessary BCs are shown in Figure 5.3.1 for a 5 × 5 grid. Note that the BCs can
be implemented easily, because they are very similar to the boundary conditions from
channel flow3.

5.3.2. Interpretation of the results

Kovasznay flow is often referred as a convergence test for FEM discretizations and there-
fore the convergence towards the analytical solution with ongoing time using pagoda
basis functions and divergence–free basis functions has been compared. The difference
between the velocity field from the numerical simulation (using both pagoda basis func-
tions and divergence–free basis functions ) and the velocity field from analytical solution
is shown Figure 5.3.6 for the simulation time t ∈ [0, 2]. Both numerical simulations show
the same convergence towards the analytical solution. The convergence of both basis
functions is visually indistinguishable.

The constant offset of approximately 0.04 can be explained that the numerical solution
cannot converge towards the analytical solution because it ’lives’ in another function
space and therefore this constant offset will never vanish. An L2–projection of the
analytical solution onto the discrete 10 × 10 grid with the applied boundary conditions
could be used to eliminate this error, but the implementation of this special L2–projection
with the needed BCs has not been realized.

In Figure 5.3.2 and Figure 5.3.3 the velocity and pressure field at the beginning of the
simulation4 are shown. One will notice that these fields — especially the pressure field —
are far from the analytical solution, which would be a linearly decreasing pressure field.
In Figure 5.3.4 and Figure 5.3.5 the both fields are shown at the end of the simulation.
Especially the linearly decreasing pressure field is indistinguishable from the analytical
solution.

3The channel flow szenario has been already implemented in [5]. The implementation of Kovasznay
flow mainly consisted in recycling existing code.

4using divergence–free basis functions
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Figure 5.3.1.: applied BC for the test scenario Kovasznay flow
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Figure 5.3.2.: resulting velocity field (with divergence) for the test scenario Kovasznay
flow at the beginning of the simulation (T = 0)
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Figure 5.3.3.: resulting pressure field for the test scenario Kovasznay flow at the begin-
ning of the simulation (T = 0)
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Figure 5.3.4.: resulting velocity field (with divergence) for the test scenario Kovasznay
flow at the end of the simulation (T = 2)
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Figure 5.3.5.: resulting pressure field for the test scenario Kovasznay flow at the end of
the simulation (T = 2)
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Figure 5.3.6.: convergence of the velocity field from the numerical simulation of the test
scenario Kovasznay flow for two different basis functions
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5.4. Confined jet impingment

5.4. Confined jet impingment

Jet impingment is according to [2] a ’difficult numerical benchmark problem’, because
’spurious nonzero divergence’ may appear near the stagnation region and therefore the
incompressibility constraint is violated at this place. In [2] it has been shown that a
discretisation, which is satisfying incompressibility in an exact way, does not show this
behaviour and therefore better results can be achieved. Therefore jet impingment is
considered to be a test scenario which will lead to a deeper insight into the behaviour of
divergence–free basis functions.

5.4.1. Implementation of the scenario

An impinging jet can be simulated easily using the boundary conditions shown in Fig-
ure 5.4.1 for a 10 × 5 grid. In order to make use of the symmetry of the problem —
and only simulate half of the domain — a slip boundary condition is introduced at the
left hand side of the domain as a symmetry BC. The top and bottom walls are non–slip
walls and therefore homogeneous a Dirichlet boundary condition is applied. Only at a
certain part of the top boundary there exists an inlet for the fluid with specified inlet
velocity. The right–hand side of the domain is an outlet boundary condition, where the
fluid exits the domain.

The used parameters are given in [2]:

• length in x–direction: L = 8

• length in y–direction: H = 1

• size of Inlet: about 10%of L5

• inlet velocity: U = 1

• Reynolds number: Re = UH
ν = 50

• grid size: 24 × 3 cells

• timestep size: τ = σ min (δtvisc, δtu, δtv)

• simulation time: T = 500

The computations have been done using pagoda basis functions as well as divergence–free
basis functions.

5Exact value depends on grid size.
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Figure 5.4.1.: boundary conditions of jet impingment

68



5.4. Confined jet impingment

5.4.2. Interpretation of the results

The implementation of slip boundary conditions has been validated by once simulating
jet impingment without using slip boundary conditions and once simulating jet imping-
ment with slip boundary conditions. For an implementation without using slip boundary
condition, jet impingment is simulated on a 48 × 3 grid. The whole simulation domain
has to be simulated and a symmetric pressure field shown in Figure 5.4.2 develops. By
using slip boundary conditions one can realize a symmetry BC and only half of the do-
main has to be simulated which means only a 24 × 3 grid is needed. The pressure field
of jet impingment using slip boundary condition is shown in Figure 5.4.2. This pressure
field cannot be distinguished from the right half of the pressure field in Figure 5.4.36.
Thus the implementation of slip boundary condition can be considered to be correct.

0 8 160
1

x

y

Figure 5.4.2.: resulting pressure field for the test scenario jet impingment without using
slip boundary condition

0 80
1

x

y

Figure 5.4.3.: resulting pressure field for the test scenario jet impingment with slip
boundary condition

A simulation of jet impingment using divergence–free basis functions leads to the velocity
field shown in Figure 5.4.4 and the pressure field shown in Figure 5.4.5. The presented
field, obtained after a pretty long simulation time of about 5007, is equal to the stationary
field presented in [2]. The corresponding streamlines are shown in Figure 5.4.6.

6One should note that the presented pressure field is from a simulation of jet impingment with
Re = 10000. It was not possible to stably compute simulations with high Reynolds numbers us-
ing Quickfluid and therefore (symmetric) oscillations develop which are nice for demonstration of the
symmetry BC.

7which is equal to 20240 timesteps
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Figure 5.4.4.: resulting velocity field (with divergence) for the test scenario jet imping-
ment
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Figure 5.4.5.: resulting pressure field for the test scenario jet impingment
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Figure 5.4.6.: resulting streamlines for the test scenario jet impingment

The simulation has also been done for higher Reynolds numbers, but a stable compu-
tation for Re > 1000 has not been possible and after some steps oscillations have been
noticed. The reason for this erroneous behaviour when trying to deal with high Reynolds
numbers will be shortly discussed in chapter 6.
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5.5. Taylor–Green vortex flow

Taylor–Green vortex flow is a periodic8 non–stationary field of vortices. The initial
velocity field for Taylor–Green vortex flow is shown in Figure 5.5.1 on the domain [0, 2π]2.
The following IC is applied:

u0 (x) =

 sin (x) cos (y)
− cos (x) sin (y)


No external forcing is applied to the fluid and therefore the vortices exponentially decay
in time only due to viscosity. The analytical solution for Taylor–Green vortex flow reads

u (x, t) =

 sin (x) cos (y)
− cos (x) sin (y)

 e−2νt

p (x, t) = 1
4 (cos (2x) + cos (2y)) e−4νt.

In [2] it has been shown that conservative B–Splines lead to a stable and physically cor-
rect solution while Q2/Q1–elements lead to non–physical behaviour and an exponential
blow up of the error. This indicates that the use of conservative elements helps to avoid
errors originating from an non–physical energy growth which is caused by violating the
incompressibility constraint.

One of the main goals in this thesis is, on the one hand, to reproduce this stable be-
haviour using divergence–free basis functions. On the other hand it should be possible
to reproduce the unstable behaviour when using pagoda basis functions. This would
show that divergence–free basis functions have the same advantages like conservative
B–Splines concerning energy conservation.

5.5.1. Implementation of the scenario

Taylor–Green vortex flow can be implemented using slip boundary condition. These
slip boundary conditions can be interpreted as symmetry boundaries and therefore it is
sufficient to simulate one vortex in order to represent the infinitely large periodic vortex
field. In Figure 5.5.2 the used boundary conditions on a 8 × 8 grid which discretizes the
simulation domain Ω = [0, π]2 are shown. Additionally to a proper implementation of the
boundary conditions also the declaration of the initial conditions is a crucial point. In [2]
the initial conditions have been implemented using an L2–projection. This technique
has been explained in section 4.5. Therefore the continuous initial condition u0 (x) for
Taylor–Green vortex flow are projected on the discrete grid using L2–projection. The

8in space!
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resulting projected initial condition u0
h is then just used for the discrete velocity field on

the discrete grid.

The remaining parameters are the following:

• length in x–direction: L = π

• length in y–direction: H = π

• Reynolds number: Re = 100, 1000, 10000

• grid size: 8 × 8, 16 × 16, 32 × 32 cells

• timestep size: τ = σ min (δtvisc, δtu, δtv)

• simulation time: T = 5, 50, 500, 5000

5.5.2. Interpretation of the results

The test scenario Taylor–Green vortex flow has been simulated for a large variety of
different Reynolds numbers, grid resolutions and simulation times. The error of the
numerical simulation has been estimated by comparing one sample of the numerical
solution to the L2–projected analytical solution at the time corresponding to this sample.

In order to demonstrate the importance of the L2–projection for the proper calculation of
the error, the error for a simulation on a 8×8 grid with Re = 100 and simulation time T =
5 and T = 500 has once been calculated with a projection of the analytical solution and
once without a projection of the analytical solution. The results are shown in Figure 5.5.3
and Figure 5.5.4. It is obvious that the error calculated with an L2–projection and the
error without an L2–projection differ strongly — especially at the beginning. Therefore
an L2–projection is necessary if one wants to estimate the error in the right way. Of
course this procedure is — in general — very time consuming and therefore the (wrong)
error calculation without L2–projection could be used as an estimate, as both error
estimates9 are moving towards the same value with ongoing time.

For the special case of Taylor–Green vortex flow the time dependency of the analyt-
ical solution does not lead to the problem that for each step a L2–projection has to
be calculated. The time–dependent part of the solution can be separated from the
space–dependent part of the solution and therefore it is sufficient to project the IC and
then just add the time–dependent factor. This saves a large amount of time–consuming
computations.

9with and without L2–projection
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5.5. Taylor–Green vortex flow

u (x, y, t) = e−2νtu (x, y, t = 0) = e−2νtu0 (x, y)
P h

J−→ e−2νtu0
h

Secondly the effect of not projecting the initial condition via an L2–projection will be
demonstrated by once plotting the error of a simulation with L2–projected initial condi-
tions and once without L2–projected initial conditions (see Figure 5.5.5 and Figure 5.5.6).
The simulation is again calculated on a 8 × 8 grid with Re = 100 and T = 5 or T = 500.
At the beginning the error of the simulation with projected initial conditions stays below
the error of the simulation without projected initial conditions. But later on the errors
of the both simulations — with and without projected ICs — converge towards each
other and finally they are on the same level. In this thesis still a projection is applied
because it is on the one hand strongly recommended by [3] and on the other hand the
computational effort is low.

Taylor–Green vortex flow has been simulated for different Reynolds numbers. It has been
found out that for Reynolds numbers up to 103 a stable computation of Taylor–Green
vortex flow is possible. For Reynolds numbers bigger than 103 it has not been possible
to calculate correct results. Probably it is necessary to implement an upwind scheme in
order to be able to compute highly convective scenarios with high Reynolds numbers.
This additional implementation was not possible in the scope of this thesis.

Finally Taylor–Green vortex flow has also been simulated for different resolutions. For
Reynolds numbers where a stable computation is possible a higher resolution does not
lead to a better or worse stability. Having a closer look at the error one will see that
a higher resolution reduces the error slightly10 and that divergence–free basis functions
generally show a slightly larger error then pagoda basis functions (see Figure 5.5.8). For
Reynolds numbers where it has not been possible to obtain a correct result, a massive
blow–up of velocity — and thus completely incorrect behaviour — happens even earlier
for higher resolutions (see Figure 5.5.9). One should also notice that, if a blow–up
happens, the blow–up happens earlier when using divergence–free basis functions than
for pagoda basis functions .

Comparing these results to the results in [2] one should always keep in mind that the
simulations in this thesis have been calculated for different Reynolds numbers. On
the one hand a simulation with Re = ∞ is not possible with the code at hand and
computations for high Reynolds numbers are not possible as well. On the other hand [2]
does not supply reference solutions for simulations with lower Reynolds numbers, which
have been computed in this thesis. Therefore the test scenario Taylor–Green vortex flow
leads to an interesting insight into the FEM–code Quickfluid and reveals weak points
of the code. But one should be aware that only under limitations the results from this
thesis can be compared to the results given in [2] and even sometimes no statement is
possible.

10as one expects when reducing the mesh size and calculating the solution for a finer mesh
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Figure 5.5.1.: analytical initial condition Taylor–Green vortex flow
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Figure 5.5.2.: boundary conditions of Taylor–Green vortex flow
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Figure 5.5.3.: error plot of Taylor–Green vortex flow on an 8 × 8 grid for T = 5 and
Re = 100, calculating the error with and without L2–projection of the
reference solution
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Figure 5.5.4.: error plot of Taylor–Green vortex flow on an 8 × 8 grid for T = 500 and
Re = 100, calculating the error with and without L2–projection of the
reference solution
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Figure 5.5.5.: error of simulations of Taylor–Green vortex flow on an 8 × 8 grid with and
without L2–projected initial conditions for T = 5 and Re = 100
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Figure 5.5.6.: error of simulations of Taylor–Green vortex flow on an 8 × 8 grid with and
without L2–projected initial conditions for T = 500 and Re = 100
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Figure 5.5.7.: error of simulations of Taylor–Green vortex flow on an 8 × 8 grid for dif-
ferent Reynolds numbers
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Figure 5.5.8.: error of simulations of Taylor–Green vortex flow for different grid resolu-
tions at Re = 100
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6. Discussion of results

6.1. Comparison of standard FEM and divergence–free FEM

Two different types of basis functions for solving the incompressible Navier–Stokes equa-
tions developed in chapter chapter 2 have been presented in chapter chapter 3. The
modifications to the MATLAB code Quickfluid have been shown in chapter 4 in order to
perform various numerical Tests in chapter 5 using these two types of basis functions. In
the first part of the current chapter divergence–free FEM and standard FEM are going
to be compared on the basis of the results of the tests in chapter 5.

It has been shown that a stable computation of the presented test scenarios is possible
for both kinds of basis functions for moderate Reynolds numbers smaller than 10000.
For higher Reynolds numbers it was not possible to produce correct results for any of the
both types of basis functions1, and thus the only possible statement concerning stability
is that at least divergence–free basis functions do not produce worse result than pagoda
basis functions.

The test scenario Kovasznay flow is considered to test the convergence of a numerical
simulation code (see section 5.3). For this test scenario both types of basis functions
produce exactly the same errors over time and therefore the convergence of the simulation
is identical for both types of basis functions.

6.2. Conclusion

During the work on this thesis the necessary boundary conditions and especially the
L2–projection, which is necessary for a generation of valid initial conditions, have been
inserted into the existing FEM–code Quickfluid. In order to emphasize the easy handling
of divergence–free basis functions it should again be mentioned that the main part of the
work has not been the implementation of divergence–free basis functions, but the im-
plementation of boundary conditions and initial conditions necessary for the considered
test scenarios.

initial conditions have been implemented in a proper way by using an L2–projection,
1See section 6.2 and subsection 5.5.2 for possible reasons for this behaviour.
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which is according to [3] the only way of implementing initial conditions when using
a GFEM2 NSE discretisation. Additionally to the application of the L2–projection for
the generation of initial conditions, the L2–projection could also be a useful tool for the
generation of boundary conditions in the context of fluid–structure–interaction where
new boundary conditions have to be calculated in every timestep due to the interaction
between fluid and structure. Here the existing L2–projection has to be extended to
non–homogeneous Dirichlet boundary condition. Finally the L2–projection has also
been used for postprocessing purposes when calculating L2–projections of an analytical
reference solution for comparison with the actual numerical solution.

Even though, the question whether the used FEM–approach does or does not satisfy
energy conservation and thus lead to correct results in test scenarios like jet imping-
ment could not be answered completely. Even if it has been shown that the current
version of Quickfluid does not lead to correct results for high Reynolds numbers it is
still not entirely clear where these errors originate and how they can be prevented. It is
obvious that a large scale redesign of elementary parts of the code is necessary for the
implementation of concepts like upwinding3, substitute lumped mass matrices Ã with
full mass matrices A4 or trying different time integration schemes5. All of these points
are possible topics for further investigation and the implemented test scenarios can be
used for judging the effect of changes in the program.

One will notice that the approach used in this thesis compared to the approach presented
in [2] show a less stable behaviour, especially for high Reynolds numbers6. But one should
also notice that for several reasons (see subsection 5.5.2) the results in [2] could not be
compared directly to the results presented in this thesis.

But even if the use of divergence–free basis functions does not show a clear advantage
compared to using pagoda basis functions, the two test scenarios jet impingment and
Taylor–Green vortex flow have been identified as test scenarios displaying spurious non–
divergence–free behaviour and these two test scenarios — including the necessary addi-
tions like slip boundary conditions and the projection of initial conditions— have been
implemented properly and thus further investigation of these two scenarios is possible
— especially using the implemented post–processing tools.

2Galerkin finite element method
3This will probably lead to a stable computation of high Reynolds numbers.
4This is a theory due to [3] which may help reducing errors in the simulation. Still using A instead of

Ã leads to high computational cost in the calculation of Q and b, because an additionally system of
linear equations has to be solved in every step. Here a more efficient implementation of the assembly
of Q and b, as well as the calculation of p by solving the PPE would be necessary.

5This aspect has not been considered in this thesis.
6Evans did not meet the problems of velocity–blow up and non–physical behaviour when computing

the same test scenarios with his FEM–code
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A.1. Element matrices

A.1.1. Matrices for standard FEM

Mass matrix A:

1
36



4 2 2 1 0 0 0 0
2 4 1 2 0 0 0 0
2 1 4 2 0 0 0 0
1 2 2 4 0 0 0 0
0 0 0 0 4 2 2 1
0 0 0 0 2 4 1 2
0 0 0 0 2 1 4 2
0 0 0 0 1 2 2 4


Discretization of ∇ via M :

1
2

(
−1 1 −1 1 1 1 −1 −1

)
Diffusion matrix D

η

6ρ



4 −1 −1 −2 0 0 0 0
−1 4 −2 −1 0 0 0 0
−1 −2 4 −1 0 0 0 0
−2 −1 −1 4 0 0 0 0
0 0 0 0 4 −1 −1 −2
0 0 0 0 −1 4 −2 −1
0 0 0 0 −1 −2 4 −1
0 0 0 0 −2 −1 −1 4
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Convection matrix C (uh):

1
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−6 6 −2 2 0 0 0 0
−3 3 −1 1 0 0 0 0
−2 2 −2 2 0 0 0 0
−1 1 −1 1 0 0 0 0
6 2 −6 −2 0 0 0 0
2 2 −2 −2 0 0 0 0
3 1 −3 −1 0 0 0 0
1 1 −1 −1 0 0 0 0

−3 3 −1 1 0 0 0 0
−6 6 −2 2 0 0 0 0
−1 1 −1 1 0 0 0 0
−2 2 −2 2 0 0 0 0
2 2 −2 −2 0 0 0 0
2 6 −2 −6 0 0 0 0
1 1 −1 −1 0 0 0 0
1 3 −1 −3 0 0 0 0

−2 2 −2 2 0 0 0 0
−1 1 −1 1 0 0 0 0
−2 2 −6 6 0 0 0 0
−1 1 −3 3 0 0 0 0
3 1 −3 −1 0 0 0 0
1 1 −1 −1 0 0 0 0
6 2 −6 −2 0 0 0 0
2 2 −2 −2 0 0 0 0

−1 1 −1 1 0 0 0 0
−2 2 −2 2 0 0 0 0
−1 1 −3 3 0 0 0 0
−2 2 −6 6 0 0 0 0
1 1 −1 −1 0 0 0 0
1 3 −1 −3 0 0 0 0
2 2 −2 −2 0 0 0 0
2 6 −2 −6 0 0 0 0
0 0 0 0 −6 6 −2 2
0 0 0 0 −3 3 −1 1
0 0 0 0 −2 2 −2 2
0 0 0 0 −1 1 −1 1
0 0 0 0 6 2 −6 −2
0 0 0 0 2 2 −2 −2
0 0 0 0 3 1 −3 −1
0 0 0 0 1 1 −1 −1
0 0 0 0 −3 3 −1 1
0 0 0 0 −6 6 −2 2
0 0 0 0 −1 1 −1 1
0 0 0 0 −2 2 −2 2
0 0 0 0 2 2 −2 −2
0 0 0 0 2 6 −2 −6
0 0 0 0 1 1 −1 −1
0 0 0 0 1 3 −1 −3
0 0 0 0 −2 2 −2 2
0 0 0 0 −1 1 −1 1
0 0 0 0 −2 2 −6 6
0 0 0 0 −1 1 −3 3
0 0 0 0 3 1 −3 −1
0 0 0 0 1 1 −1 −1
0 0 0 0 6 2 −6 −2
0 0 0 0 2 2 −2 −2
0 0 0 0 −1 1 −1 1
0 0 0 0 −2 2 −2 2
0 0 0 0 −1 1 −3 3
0 0 0 0 −2 2 −6 6
0 0 0 0 1 1 −1 −1
0 0 0 0 1 3 −1 −3
0 0 0 0 2 2 −2 −2
0 0 0 0 2 6 −2 −6
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A.1.2. Matrices for divergence–free FEM

Mass matrix A:

1
24



3 1 1 1 −1 0 0 −1
1 3 1 1 0 1 1 0
1 1 3 1 0 1 1 0
1 1 1 3 −1 0 0 −1

−1 0 0 −1 3 1 1 1
0 1 1 0 1 3 1 1
0 1 1 0 1 1 3 1

−1 0 0 −1 1 1 1 3


Discretization of ∇ via M :

1
2

(
−1 1 −1 1 1 1 −1 −1

)
Diffusion matrix D

η

2ρ



2 −1 −1 0 0 0 0 0
−1 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 0 0 0 0
0 0 0 0 2 −1 −1 0
0 0 0 0 −1 2 0 −1
0 0 0 0 −1 0 2 −1
0 0 0 0 0 −1 −1 2
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Convection matrix C (uh):

1
96



−9 7 −2 4 −1 2 3 −4
−3 5 −2 0 1 −2 1 0
−1 3 −4 2 −1 0 3 −2
−3 1 0 2 1 0 1 −2
9 2 −7 −4 1 −3 −2 4
1 4 −3 −2 1 −3 0 2
3 2 −5 0 −1 −1 2 0
3 0 −1 −2 −1 −1 0 2

−5 3 0 2 −2 1 0 1
−7 9 −4 2 2 −1 −4 3
−1 3 −2 0 0 1 −2 1
−3 1 −2 4 0 −1 −2 3
4 1 −2 −3 3 −1 −2 0
2 9 −4 −7 3 −1 −4 2
0 3 −2 −1 1 1 −2 0
2 3 0 −5 1 1 0 −2

−4 2 −1 3 −3 2 1 0
0 2 −3 1 −1 2 −1 0

−2 4 −9 7 −3 4 1 −2
−2 0 −3 5 −1 0 −1 2
5 0 −3 −2 2 0 −1 −1
1 2 −3 0 0 2 −1 −1
7 4 −9 −2 −2 4 1 −3
3 2 −1 −4 0 2 1 −3

−2 0 −1 3 2 −1 0 −1
−2 4 −3 1 2 −3 0 1
0 2 −5 3 0 −1 2 −1

−4 2 −7 9 4 −3 −2 1
2 1 0 −3 −2 0 1 1
0 5 −2 −3 0 −2 1 1
2 3 −4 −1 −2 0 3 −1
4 7 −2 −9 −4 2 3 −1

−1 2 3 −4 −9 7 −2 4
1 −2 1 0 −3 5 −2 0

−1 0 3 −2 −1 3 −4 2
1 0 1 −2 −3 1 0 2
1 −3 −2 4 9 2 −7 −4
1 −3 0 2 1 4 −3 −2

−1 −1 2 0 3 2 −5 0
−1 −1 0 2 3 0 −1 −2
−2 1 0 1 −5 3 0 2
2 −1 −4 3 −7 9 −4 2
0 1 −2 1 −1 3 −2 0
0 −1 −2 3 −3 1 −2 4
3 −1 −2 0 4 1 −2 −3
3 −1 −4 2 2 9 −4 −7
1 1 −2 0 0 3 −2 −1
1 1 0 −2 2 3 0 −5

−3 2 1 0 −4 2 −1 3
−1 2 −1 0 0 2 −3 1
−3 4 1 −2 −2 4 −9 7
−1 0 −1 2 −2 0 −3 5
2 0 −1 −1 5 0 −3 −2
0 2 −1 −1 1 2 −3 0

−2 4 1 −3 7 4 −9 −2
0 2 1 −3 3 2 −1 −4
2 −1 0 −1 −2 0 −1 3
2 −3 0 1 −2 4 −3 1
0 −1 2 −1 0 2 −5 3
4 −3 −2 1 −4 2 −7 9

−2 0 1 1 2 1 0 −3
0 −2 1 1 0 5 −2 −3

−2 0 3 −1 2 3 −4 −1
−4 2 3 −1 4 7 −2 −9
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A.2. M–files defining the basis functions

A.2.1. pagoda basis functions

function [ u,v ] = normal_base( x_,y_,x0,y0,h)
%NORMAL_BASE retuns the values for the pagoda basis function with
%at the position x0,y0 at x_,y_. The compact support of the basis function
%is defined via the gridsize h. Vector and matrix input of x_,y_ is also
%accepted.

u=zeros(size(x_));
v=u;

%coordinates (x_,y_) are shifted to coordinate system where (x0,y0)=(0,0)
%aditionally symmetry of the basis function is applied by considering
%absolute values
x=abs(x0*ones(size(x_))-x_);
y=abs(y0*ones(size(x_))-y_);

%looping over each point where the basis function is evaluated
for i = 1:numel(x)

if(and(x(i)<=h,y(i)<=h))%(x,y) inside support, else (u,v)=(0,0)
%bilinear definition of pagoda basis function
u(i)=(h-x(i))*(h-y(i));

end

end

end
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A.2.2. divergence–free basis functions

function [ u,v ] = div_free_base( x_,y_,x0,y0,h)
%DIV_FREE_BASE retuns the values for the divergence free basis function
%with at the position x0,y0 at x_,y_. The compact support of the basis
%function is defined via the gridsize h. Vector and matrix input of x_,y_
%is also accepted.

u=zeros(size(x_));
v=u;

%coordinates (x_,y_) are shifted to coordinate system where (x0,y0)=(0,0)
%aditionally symmetry of the basis function is applied by considering
%absolute values
x=abs(x0*ones(size(x_))-x_);
y=abs(y0*ones(size(x_))-y_);

%looping over each point where the basis function is evaluated
for i = 1:numel(x)

if(and(x(i)<=h,y(i)<=h))%(x,y) inside support, else (u,v)=(0,0)
%piecewise definition of divergence free basis function
if(and(x(i)>=y(i),x(i)<=h-y(i)))

u(i)=1-x(i)/h-.5*y(i)/h;
v(i)=.5*y(i)/h;

elseif(and(x(i)>=y(i),x(i)>=h-y(i)))
u(i)=.5-.5*x(i)/h;
v(i)=u(i);

elseif(and(x(i)<=y(i),x(i)>=h-y(i)))
u(i)=.5-.5*y(i)/h;
v(i)=u(i);

elseif(and(x(i)<=y(i),x(i)<=h-y(i)))
u(i)=1-.5*x(i)/h-y(i)/h;
v(i)=.5*x(i)/h;

else
'ERROR'

end

%apply symmetry of y-component of basis function correctly
if((x_(i)-x0)*(y_(i)-y0)<0)

v(i)=-v(i);
end

end
end

end
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