
Department of Informatics
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Parallel Cluster Detection in Nucleation
Scenarios

Michael Obersteiner





Department of Informatics
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Parallel Cluster Detection in Nucleation Scenarios

Parallele Keimerkennung in Nukleationsszenarien

Author: Michael Obersteiner
Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz
Advisor: M.Sc. Nikola Tchipev
Date: September 15, 2014





I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Munich, September 24, 2014 Michael Obersteiner





Acknowledgments

In this chapter I want to thank the people who have contributed to this thesis. First I
want to express my gratitude to my supervisor Prof. Dr. Bungartz for giving me the pos-
sibility to write a bachelor thesis at the chair of Scientific Computing. Moreover I thank
Wolfgang Nicka for the development of the scenario generator used in this work which is
able to create MarDyn inputs for specified physical parameters, such as pressure and tem-
perature. Finally I want to thank my advisors Wolfgang Eckhardt and Nikola Tchipev for
the support I have received during the bachelor thesis. Especially Nikola Tchipev should
be further mentioned as we developed together the new coarsening strategy.

vii





Abstract

Molecular dynamics has emerged as an important technique for simulating nucleation
processes. However, an efficient implementation requires suitable parallel algorithms for
the cluster detection. In this work a parallel cluster algorithm is introduced based on
two depth-first searches using the geometric criterion. The first step is a local depth-first
search which is followed by a new coarsening strategy based on the global graph. This
coarse graph information is then processed by a master processor in a second depth-first
search. In addition several performance measurements were conducted on the resulting
implementation showing the good potential of the method and current drawbacks of the
sequential part of the algorithm. Finally the new method is evaluated and possible im-
provements and extensions are illustrated which would allow a very efficient and reliable
implementation.

ix





Zusammenfassung

In den letzten Jahrzehnten haben sich molekulardynamische Simulationen als wirk-
same Methode für die Vorhersage von Nukleationsszenarien herausgestellt. Für eine ef-
fiziente Umsetzung sind jedoch geeignete parallele Clustererkennungsalgorithmen nötig.
In dieser Arbeit wird ein paralleler Algorithmus vorgestellt, welcher mithilfe von zwei
Tiefensuchen eine effiziente Implementierung der Clustererkennung ermöglicht. Die er-
ste lokale Tiefensuche ermittelt alle lokal ermittelbaren Clusterteile und erstellt somit eine
vergröberten Graphen. Basierend auf dieser neu entwickelten Vergröberungsstrategie wird
der Graph mithilfe eines ”Masterprozessors” in einer zweiten Tiefensuche ausgewertet.
Die Performanceanalyse zeigt das Potential der neuen Methode, jedoch werden auch die
derzeitigen Probleme durch den sequentiellen Teil des Algorithmus deutlich. Weiterhin
werden mögliche Erweiterungen und Lösungen für die derzeitigen Probleme aufgezeigt,
welche eine sehr effiziente und zuverlässige Implementierung ermöglichen.

xi





Contents

Acknowledgements vii

Abstract ix

Zusammenfassung xi

1. Introduction 1
1.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Theory 3
2.1. Nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Molecular dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1. Force calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2. Linked cell algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3. Periodic boundary condition . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4. Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3. Clustering criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1. Energy criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2. Geometric criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3. Hybrid criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4. Cluster identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1. Sequential cluster identification . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2. Parallel cluster identification . . . . . . . . . . . . . . . . . . . . . . . 13

2.5. MarDyn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6. Relation to connected component labeling . . . . . . . . . . . . . . . . . . . . 15

3. Implementation 17
3.1. Sequential cluster detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1. Implementation of the geometric criterion . . . . . . . . . . . . . . . 17
3.1.2. Depth-first cluster detection . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2. Parallel cluster detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1. General concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2. Evaluation of the geometric criterion in halo regions . . . . . . . . . 22
3.2.3. Local depth-first search . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.4. Parallel cluster communication . . . . . . . . . . . . . . . . . . . . . . 24

xiii



Contents

3.2.5. Global depth-first search . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.6. Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.7. Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4. Results 29
4.1. Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2. Visual verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3. Physical verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4. Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4.1. Strong scaling with argon . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.2. Weak scaling of argon . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.3. Performance analysis with ethane . . . . . . . . . . . . . . . . . . . . 39

4.5. Evaluation of the clustering algorithm . . . . . . . . . . . . . . . . . . . . . . 42
4.5.1. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5.2. Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5. Summary and outlook 47
5.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Appendix 51

A. Source Code 51
A.1. Parallel cluster communication . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.2. Local depth-first search for the parallel algorithm . . . . . . . . . . . . . . . 53
A.3. Create graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Bibliography 61

xiv



1. Introduction

Nucleation is a process which can be observed everywhere in the nature. It is responsible
for the formation of clouds in the sky, caused by the condensation of water in the air, as
well as the crystallization process, which for example appears in supersaturated solutions.
In general nucleation processes occur during the change between different thermodynamic
phases, e.g vapor to liquid.

Since this spontaneous process often takes place in very short time periods (order of ns)
and the nucleation sites are often very small (nm), the possibility to study nucleation via
experiments is limited. For this reason numerical simulation is used to predict nucleation
processes which are of high interest for industrial applications such as chemical engineer-
ing.

The challenge in identifying clusters during a numerical simulation is the detection of
the phase change. A common method searches for ”bounded” particles in the domain
to detect a vapor to liquid change. A connected component of bounded particles forms
a cluster which represents a liquid drop. The difficulty is the exact determination of the
bounded particles, as there does not exist any exact physical description of a cluster.

A quantity of interest for industrial applications is the nucleation rate. This number
describes the rate at which clusters form in comparison to the time and the domain volume
of the experiment. Numerical simulation can be used to predict the formation of clusters
and can, therefore, give an estimate for the nucleation rate.

However, one problem of the numerical simulation is the high computational effort.
Therefore only very small particle numbers can be simulated. To calculate nucleation pro-
cesses for bigger scenarios massive parallelization is required. Unfortunately, common
cluster detection algorithms, such as depth-first search, are hard to parallelize [12].

In this work the well-established molecular dynamics framework MarDyn [8], used for
chemical engineering, is extended by a clustering detection. The existing methods devel-
oped by Kible [18], Walter [28] and Schluttig [21] did not provide an efficient algorithm
for parallelization, whereas the usage of the boost library [1] provided a good parallel ef-
ficiency but a significant overhead. Hence, a parallelization method based on two depth-
first searches combined with a new coarsening strategy is introduced which is specially
designed for the parallel cluster detection and therefore uses further application-related
assumptions to improve the parallel performance of the known methods. This method is
then further analysed.

1



1. Introduction

1.1. Overview

In chapter 2 the theoretical basics of the nucleation process and numerical dynamics are in-
troduced. Furthermore, the basic criteria for identifying bounded particles are presented
and compared. Finally, an introduction to the molecular dynamic simulator MarDyn is
given which we used for the molecular dynamic simulations. In chapter 3 the implemen-
tation of the cluster detection is outlined using the geometric criterion. The first section
describes the basic concept for a sequential algorithm. This concept is then extended by
a parallel algorithm which is described in detail in the next part of the chapter. In addi-
tion some optimizations of the whole algorithm are illustrated. In chapter 4 the results
of the clustering algorithm are presented and analysed. A visual verification, a physical
verification and a scalability analysis are included. Furthermore the method is evaluated
and current problems and advantages are shown. In chapter 5 a conclusion is given by
summing up the most important ideas and results. Finally, an outlook for future works is
presented.

2



2. Theory

2.1. Nucleation

The nucleation process was first described in the Classic Nucleation Theory (CNT) which
was introduced by Gibbs (see [17] and references therein). The theory describes the phase
transition between vapor and liquid as well as between liquid and solid. In general, nu-
cleation theory can be divided into two classes: homogeneous nucleation [5] theory which
describes nucleation processes of a single chemical species, e.g. Argon, and heterogeneous
nucleation (see [22] and references therein) where multiple chemical species interact. In
this work, we consider the homogeneous nucleation of a vapor-to-liquid transition.

Figure 2.1.: Energy function ∆U in the formation of a cluster of size i (image from [5])

A gas can be described as undersaturated, saturated or supersatured if the pressure of
the gas is less than, equal to or higher than, respectively, the vapor pressure of the liquid
phase at the same temperature. Since the undersaturated and saturated state are thermo-

3



2. Theory

dynamically stable, nucleation can only be observed in supersatured states [5]. In this case
the phase transition towards the liquid phase is driven by a thermodynamical equilibrium.
Although the creation of a new volume in the liquid phase provides free energy, due to the
pressure difference between the supersaturated vapor and the liquid droplet, the resulting
interface between the two phases costs energy [22]. Therefore, small droplets which pro-
vide only a small volume, but a relatively large interface, tend to collapse. Fig. 2.1 shows
the basic scheme of the energy contribution of the so called volume and surface term. The
number of particles where the energy ∆U reaches a maximum is called the critical size of
a cluster. Clusters with particle numbers above the critical size have a high probability to
remain stable and to grow further, as no more energy needs to be spent in expanding the
droplet. For this reason mainly clusters with a particle number equal to or higher than the
critical size are of interest for nucleation analysis.

The nucleation process is often characterized by its nucleation rate J which describes
the rate of clusters above the critical size which appear per unit volume and time. The
general formula is [18]:

J =
n

t · V
(2.1)

where n denotes the number of clusters above the critical size and t and V are the time and
volume.

CNT provides an analytic estimate of J under several assumptions, such as the restric-
tion that clusters only change their size by capturing or loosing single particles, and con-
sidering only spherical clusters. For further information see [17, 29]. However, CNT is not
reliable for every nucleation process. As Fladerer [11] indicated, especially in the case of
Argon, the CNT estimate fails to predict the nucleation rate. Similar results were obtained
by Yasuoka et al. [29]. For this reason, numerical simulation is important to the study of
nucleation processes.

2.2. Molecular dynamics

In molecular dynamics simulation [14] the behavior of particles is simulated. The particles
are represented by their type, velocity, position, mass, geometry and the forces which act
on them. In order to be able to compute their movement the particle interactions have to
be considered. Newton’s second law:

F = m · a (2.2)

can be used to formulate a system of ordinary differential equations which is solved in
a time-step method. One famous candidate is the Velocity-Störmer-Verlet method [26]
which first calculates the new position xi from the values of the forces and velocities of
the last time-step 2.3. In a second step the new velocities are calculated 2.4. The resulting
algorithm looks as follows [14]:

4



2.2. Molecular dynamics

xn+1
i = xni + δtvni +

Fni · δt2

2mi
(2.3)

vn+1
i = vni +

(Fni + Fn+1
i )δt

2mi
(2.4)

How the force Fni is obtained is discussed in the next section.

2.2.1. Force calculation

One of the crucial points of the molecular dynamics simulation is the force calculation.
The general idea is to calculate the force from a potential U which can be calculated from
the multibody potentials Un by [18]:

U =
∑
i

U1(ri) +
∑
i

∑
j>i

U2(ri, rj) +
∑
i

∑
j>i

∑
k>j>i

U3(ri, rj , rk) + ... (2.5)

The force is then calculated by [18]:

F = −∇U (2.6)

where∇ denotes the spatial gradient.
For the simulation with gas molecules, potentials with more than two bodies can be

neglected. In this work the Lennard-Jones potential is used [14]:

ULJ(rij) =
1

n−m

Å
nn

mm

ã( 1
n−m)

ε

ñÇ
σ

rij

ån
−
Ç
σ

rij

åmô
,m < n (2.7)

Here rij is the distance between the two particles i and j . To simulate the van der Waals
force, i.e. the attraction between the molecules, a common choice is m = 6. For the ease of
computation often n = 12 is assigned, which has no real physical justification [14] but has
shown good results in simulating the repulsive forces between particles[18]. The resulting
equation is:

ULJ(rij) = 4ε

(Ç
σ

rij

å12

−
Ç
σ

rij

å6
)

(2.8)

The remaining variables ε and σ are used to characterize the properties of the used chem-
ical species. If the Lennard-Jones potential between different materials needs to be com-
puted, the ε and σ values of the mixture are obtained using the Lorentz-Berthelot mixing
rule [6]:

σ12 = σ21 =
σ1 + σ2

2
(2.9)

5



2. Theory

ε12 = ε21 =
√
ε1ε2 (2.10)

However, in homogeneous nucleation only one single chemical species is simulated and
therefore the mixing rule does not need to be applied.

2.2.2. Linked cell algorithm

The force calculation which was presented in the last chapter has to be carried out for every
particle pair in the domain. With a domain consisting of N particles, there exist

(N
2

)
such

pairs resulting in an overall complexity of the order of O(N2), which is unacceptable for a
simulation. One method to reduce the order of complexity is to truncate the Lennard-Jones
potential. The so called cutoff radius rc only considers the particles which contribute sig-
nificantly to the force calculation. Since the high value of the exponent n = 12 in equation
2.8 produces very small forces for particles with a large distance rij , this approximation
makes sense. As only a limited number of particles can reside in one cell, due to the finite
volume of one molecule, only a constant number of particles within this cutoff radius have
to be checked for the force calculation. This reduces the complexity of the force calculation
to O(N).

The problem now is the fast determination of the particles within this range without
checking every particle in the domain, which would again result in a complexity ofO(N2).
One solution was introduced by Verlet [27], where for every molecule a list of neighbors
is saved which are at a distance of at most rmax. Thus, only particles from the list have
to be considered in the force calculation. After a fixed number of time-steps, the lists are
updated to allow a dynamic setup. Hence, rmax and the number of time-steps until the
next update have to be chosen carefully. Otherwise particles at a distance below rc might
appear during the simulation which are not contained in the neighboring list.

Although this method guarantees the linear complexity, the assignment of the particles
to the neighboring list requires a lot of book-keeping. A simpler approach is to introduce
a grid to the domain by dividing it into separate cells. This procedure directly leads to the
linked cell algorithm[14].

The linked cell method uses the cells generated by the grid to limit the space which needs
to be searched for neighboring particles within the cutoff radius. A common choice is to
set the cell length equal to rc. Consequently, only the particles within the same cell or an
immediately adjacent cell have to be considered to calculate the Lennard-Jones potential
on a single particle. As a result the overall complexity remains O(N). Since particles
move in space and therefore might leave one cell and enter another one, the assignment
of particles to the cells has to be done in every time-step. A 2D example of the linked cell
structure can be seen in Fig. 2.2.

6



2.2. Molecular dynamics

Figure 2.2.: The linked cell algorithm. Only the neighboring cells (gray) have to be tra-
versed for the force calculation. (image from [14])

2.2.3. Periodic boundary condition

Another important factor of the numerical simulation is the treatment of the domain bound-
aries. As computational resources are limited, one can only simulate a limited number of
cells. Therefore, boundary conditions have to define the treatment of the borders of the
domain. In the simulation of gases, usually the periodic boundary condition is applied,
which mimics an infinite volume. If a molecule leaves the domain on one side, it is moved
to the boundary of the opposite side, e.g. from left to right. Fig. 2.3 shows this conceptional
idea and the resulting new interpretation of the cutoff radius in the force calculation.

To implement this behavior in the numerical simulation, an additional layer of cells,
referred to as the ”halo layer”, is attached to the border of the domain. In this layer the
particles of the opposite border are copied to allow easy access during the force calculation,
as they can now be within the cutoff radius (see Fig. 2.3). An example of a domain with
halo cells can be seen in Fig. 2.4.

The halo cells have to be updated in every time-step, since particles may leave or enter
the ”border cells”, i.e. the cells of the domain which are directly attached to the border, at
any time during the computation.

2.2.4. Parallelization

The aim of molecular dynamics is to simulate as big scenarios as possible in order to pre-
dict the results of experiments or to study molecular phenomenona, as well as reducing
statistical noise during the simulation. Unfortunately, the force calculation is a computa-
tionally intensive task and restricts the number of particles which can be simulated. For
this reason, massive parallelization is applied to the numerical simulation to obtain big-
ger scenarios. Eckhardt [10] recently succeeded in simulating 4 · 1012 particles by using
146016 cores of the SuperMUC [4] to simulate several steps of a molecular dynamics simu-

7



2. Theory

Figure 2.3.: Visualization of the cutoff ra-
dius with periodic bound-
aries (image from [14])

Figure 2.4.: Visualization of the domain
with halo cells (gray) (image
from [14])

lation. Such numbers of particles can only be reached by applying suitable parallelization
techniques to the numerical methods.

The basic algorithm for parallelizing the simulation is the decomposition of the compu-
tational domain [14]. Since the Lennard-Jones potential is short ranged, the force calcu-
lation can be computed locally by only considering the particles within the cutoff radius.
Consequently, the domain can be split up and assigned to different processors. A basic
example can be seen in fig. 2.5.

Figure 2.5.: Decomposition of the domain in case of six processors (image from [14])

This strict separation leads to the problem that particles within the cutoff radius at the
borders of the single domains are located at different processors. To circumvent this prob-
lem every subdomain is expanded by a layer of halo cells, similar to the ones with periodic
boundaries. In these halo cells the particles of the corresponding neighbor are copied. It
should be noted that the periodic boundary concept needs still to be applied correctly.

8



2.3. Clustering criteria

Since particles can enter and leave halo cells at any time during the simulation, the halo
cells and the local domains need to be updated every time-step which requires a suitable
particle exchange. As the particles are now distributed over the different processors this
particle exchange needs to be coordinated. The naive implementation for updating the
halo cells would send the border particles, i.e. the particles within border cells, to all the
26 surrounding cells. A more efficient algorithm [14] uses only three communication steps
for each cell. The main idea is to separate communication into three phases, one for each
dimension, and to use the information which was received from other processors and send
it together with the own border particles. As a result only three communication neighbors
are needed. The concept can be seen in Fig. 2.6. For the exchange of particles which enter
another subdomain, a similar algorithm is used. For further information we refer to [14].

Figure 2.6.: Exchange of the particle information for the halo region. The relevant informa-
tion gained in the first exchange can be send together with the border particles
to the next processor in the second exchange. Analogously the information
from the first and second exchange is reused in the third one. (image from
[14])

2.3. Clustering criteria

With the methods of molecular dynamics a particle simulation can be computed in super-
saturated scenarios where nucleation is expected. However, a clustering criterion has to
be defined to identify clusters, i.e. a set of bounded particles.

Various techniques of cluster definitions have been studied in the work of Kible [18]. He
found out that the classical data-mining clustering algorithms, such as k-Means [15], are
not suited for the nucleation process. Therefore, Kible proposed the usage of the thermo-
dynamic clustering criteria which where mainly influenced by the work of Hill [16]. Hill
postulated a clustering criterion which assumes a cluster to be a set of pairwise bounded
particles. This approach transfers the cluster detection into a simple graph problem: the
detection of connected components. The nodes of the graph are defined as the particles

9



2. Theory

and the edges as bonds between them. For the detection of bonds, a clustering criterion is
used which defines the properties of a bounded particle pair.

2.3.1. Energy criterion

The energy criterion was first introduced by Hill [16]. He studied the energetic properties
of particles in clusters. He concluded that two particles can be considered to be bound
in a cluster if their relative kinetic energy ekin = 1

2m · v
2
rel , using the relative velocity

vrel = |vi − vj | [18] of the two particles i and j, is smaller than their negative potential
energy epot, e.g. the Lennard-Jones potential. Consequently the following equation holds
for a bounded particle pair [18]:

ekin + epot <= 0 (2.11)

If the Lennard-Jones potential is used, equation 2.11 can be written as [18]:

4ε

(Ç
σ

rij

å12

−
Ç
σ

rij

å6
)

+
m

2
(vi − vj)2 <= 0 (2.12)

This clear definition of a bounded pair enables a simple way of implementing the energy
criterion in a numerical simulation. In addition, the Lennard-Jones potential is already
computed in the force calculation. Hence, only the relative kinetic energy produces an
overhead in the whole simulation.

Despite this easy integration within the force calculation, the energetic criterion has
some weaknesses. The energetic analysis of a pairwise bond between particles is not al-
ways sufficient to reliably identify clusters. As pointed out in [20] a cluster of multiple
particles (e.g. 3) cannot be detected if the pairwise potential energies do not fulfill equa-
tion 2.11. Thus, there might be a certain amount of clusters which appear unrecognized
in the simulation. For this reason the geometric criterion is often implemented, which is
discussed in the following.

2.3.2. Geometric criterion

In 1963 Stillinger [23] came up with the idea to analyze the formation of droplets during
nucleation from a geometric point of view. Since liquid drops inside the vapor phase have
a higher density than the gas molecules, the distances between the particles in the liquid
phase should have smaller values than others. This idea leads to a very intuitive and easy-
to-implement clustering criterion which is called the geometric criterion or ”Stillinger”
geometric criterion. Similar to the cutoff radius, which is used in the force calculation, a
connectivity distance rg is defined which describes the maximum distance of two bounded
particles. A connected component within the graph of bounded particles then forms a
cluster. One key element of the geometric criterion is the determination of a suitable con-
nectivity distance rg. As Stillinger stated in [23], a too high value results in many false

10



2.3. Clustering criteria

positives, i.e. particles are assigned together in a cluster which do not form a cluster, and
a too small value for rg does not detect all the existing clusters. A common choice for this
connectivity distance is [17, 18]:

rg = 1.5 · σ (2.13)

where σ denotes the constant of the simulated chemical species which is also used in the
Lennard-Jones potential.

One great advantage of the geometric criterion is the simple distance calculation which
can be easily implemented within the simulation routine. Since in the normal molecu-
lar dynamic simulation the distance between every particle is already determined during
the force calculation, the detection of bounded particles creates nearly no computational
overhead.

Apart from the choice of the right rg the geometric criterion faces another problem. As
the distance between two particles does not necessarily imply a bound between them, false
positives are detected during the computation. For example if particles with a very high
relative velocity are within the connectivity distance, they are falsely considered to form a
cluster [20]. Thus, the results of the simulation become somewhat inaccurate.

One possibility to fix this problem was proposed by Pugnaloni and Vericat [20] who
added a residence time τ to the method of the geometric criterion. They differentiate be-
tween physical clusters and chemical clusters. A physical cluster does not necessarily need
fixed bonds between particles, i.e. particles can move within the cluster independently,
and therefore the new criterion only considers the set of particles which form the cluster.
A physical cluster at time t exists if this set has been connected, over a path of particles
with a distance less than rg, during the whole time interval [t−τ, t]. On the other hand, for
a chemical cluster every single bonds needs to last for at least the time τ in order to belong
to a cluster.

Another way to improve the accuracy of the geometric criterion is to consider particles
as part of one cluster if the graph fulfills the biconnectivity criterion [9]. Consequently,
particles which are temporally located near the cluster and which are only bounded over a
single path are not assigned to the cluster. This method is supported by the fact that some
chemical species form droplets of spherical shape, such as Argon [18], and therefore no
particles in big droplets should only be connected over a single path to the cluster. This
also holds if two big clusters are temporally connected via one particle, as this connection
should not be considered to connect both clusters.

2.3.3. Hybrid criterion

The disadvantages of the geometric criterion were the reason for further research in the
area of clustering criteria. One promising criterion is called the hybrid criterion [18, 17]. As
the name suggests this criterion combines two different properties to characterize the bond
between two particles, the geometric criterion and a new energy criterion. The new energy
criterion differs from the one from Hill [16], since it does not look at single particle pairs

11



2. Theory

anymore but instead considers potentials from all of the surrounding particles. Hence, the
potential energy from one particle to the surrounding particles is compared to the kinetic
energy of the particle. A particle is considered to be part of the liquid phase if the following
equation holds [18]:

∑
j

1

2
uij + ukin < 0 (2.14)

This means if the attraction, due to the potential energy, exceeds the kinetic energy, the
particle cannot move away from the other particles and is therefore bounded. The factor
1
2 is used to simulate the effect that only one half of the potential energy is received by
every particle for every interaction. It should be stated that ukin, in this case, represents
the kinetic energy using the absolute velocity and that only the part of the kinetic energy
which is caused by the Brownian motion must be considered. For further details read [18].

The main method looks then as follows. The geometric criterion is evaluated during
the force calculation of the simulation. The new energy criterion is then applied on the
resulting graph. All the particles which are assigned to the liquid phase, according to
equation 2.14, form a cluster in the graph which was obtained by the geometric criterion.
In other words the new energy criterion acts like an additional filter sorting out particles
from the graph which are not bound from an energetic point of view.

The advantage of the hybrid criterion is an improved accuracy in comparison to the
geometric criterion. Furthermore it provides an energetic justification for the clusters. Al-
though little artifacts, such as droplets consisting of single particles, were noticed by Kible,
the new criterion showed better results than the energy and the geometric criterion, espe-
cially in the most relevant case of larger clusters.

2.4. Cluster identification

2.4.1. Sequential cluster identification

Based on the clustering criterion bonds between single particles can be detected. A cluster-
ing algorithm has to define how these bonds are processed and how they form a cluster. A
standard technique is to define the cluster as a connected component of bounded particles.
Several methods have been developed to identify connected components in nucleation sce-
narios. One approach was developed by Stoddard [25] and uses a list-like structure saved
in an array to determine which particles belong to the same cluster. A pseudo code of the
algorithm looks as follows [18]:

1 for ( i = 1 ; i<=n ; i ++) L [ i ]= i / / i n i t i a l i z e
2 for ( i = 1 ; i<n ; i ++){
3 i f ( L [ i ] != i ) continue ; / / i i s a l r e a d y in a c l u s t e r
4 j = i ;
5 do {

12



2.4. Cluster identification

6 for ( k= i +1; k<=n ; k++){
7 i f ( L [ k]==k / / no t a s s i g n e d t o a c l u s t e r y e t
8 && molecules j and k share a bond ){
9 swap ( L [ j ] and L [ k ] ) ;

10 }
11 }
12 j = L [ j ] ;
13 }while ( j != i )
14 }

The algorithm iterates over every particles and searches all particles to which they are
bound. If a bond exists between particle j and k and k is not already assigned to a cluster,
their ids are swapped. Therefore a linked list is constructed for every cluster.

Another way of identifying the clusters is to use the graph structure explained in section
2.3. In this graph a connected component can be determined by a depth-first search or a
breadth-first search [9].

2.4.2. Parallel cluster identification

A problem of the parallel cluster identification are the bonds between domains of differ-
ent processors. For local clusters (clusters that have no bond to particles outside the local
domain) and the local parts of parallel clusters (clusters that are connected to other do-
mains) one of the sequential cluster identification methods can be applied. To merge the
local parts of the parallel clusters a communication step needs to be added to the cluster
detection. For this purpose two main concepts have been developed over the last years:
an iterative [18] and a hierarchical approach [18, 21].

The iterative approach communicates the cluster ids of the local parallel clusters to the
neighboring processors. With this information the clusters ids can be updated by setting
the same cluster ids on both processors. One deterministic method for obtaining the same
cluster ids is to use the smaller cluster id for both processors. Since clusters can cross
several processors and can have very complicated shapes, multiple communications steps
may be required until every part of the cluster has the same id. The method stops if no
cluster id changes during one communication step. This possibly very large number of
communication steps can be a bottleneck of the iterative method. An example for a cluster
which needs many communication steps to update every cluster id is shown in Fig. 2.7. In
this case it would need eight steps to propagate the cluster id 1 through the whole cluster
since in every step all local cluster ids are only propagated to directly connected cluster
parts.

On the other hand the hierarchical approach uses subsets of the global domain and per-
forms the cluster identification within these subdomains. A master processor then merges
the parallel clusters in each subdomain. Therefore, all processors of one subdomain have
to send all parallel cluster information to the master processors. However, clusters with

13



2. Theory

Figure 2.7.: Problematic cluster for the iterative method. Eight communication steps are
needed to update the cluster ids correctly (image from [18])

bonds to other subdomains cannot be merged. For this reason this procedure is applied
recursively on subdomains of increasing size till one processor gains all the necessary clus-
tering information of the whole domain. A common choice is to double the length of the
subdomains in every step, which leads to a logarithmic number of communication steps.
An example of the hierarchical method with two communication steps can be seen in Fig.
2.8.

A special case of the hierarchical method uses only one communication step. Hence, all
parallel clustering information is sent from every processor to one master processor which
performs the merging of the parallel clusters. This method reduces the communication
steps to one, resulting in a highly efficient cluster detection, but reduces the scalability of
the method. This one-layered hierarchical approach will be implemented in this work and
possible optimizations to provide better scalability are introduced.

One benefit of the hierarchical methods is that the problematic case of the iterative
method (see Fig. 2.7) can be solved with no additional communication steps since clus-
ter information can be updated globally.

There exist other methods based on a parallel connected component detection as de-
scribed in [12], but they are too general for the estimation of the nucleation rate, as only
the size of the clusters is important. In addition, further simplifications, such as the usage
of unique particle pairs between parallel clusters (see 3.2.3), can be made for the merging
of parallel clusters which are not generally applicable to a connected component search.
Thus, the general methods are too expensive for calculating the nucleation rate.

14



2.5. MarDyn

Figure 2.8.: Hierarchical method with two communication steps. In the first steps four
processors form a subdomain. In the second step only one master processor
is left which gains all the information of the whole domain from the previous
subdomain master porcessors. (image from [18])

2.5. MarDyn

The molecular dynamics simulator used in this work is called MarDyn [8]. MarDyn was
written in C++ and uses a modular structure in order to implement different algorithms for
various applications scenarios within molecular simulations. For parallelization the Mes-
sage Passing Interface MPI [13] was used along with the domain decomposition described
in section 2.2.4. For further information read [8].

In this thesis the existing features of MarDyn are extended by a clustering detection. The
concrete implementation will be described in chapter 3.

2.6. Relation to connected component labeling

The cluster detection problem in the numerical simulation is closely related to the con-
nected component labelling (CCL) problem in computer vision [24]. In CCL unique la-
bels are assigned to connected components within a regular grid. Knop and Rego [19]
described a parallel method to solve the problem of CCL by applying a data reduction
method. They use the hierarchical method described in section 2.4.2 and reduce the com-
munication data with mapping tables. By merging these mapping tables, globally unique
cluster labels are assigned to the parallel clusters. This reduction of data is similar to the
coarse graining used for the second depth-first search of our parallel clustering algorithm
(see chapter 3.2).

However, there are some important differences between the CCL problem and the clus-

15



2. Theory

ter detection in our simulation. At first, we only need statistical data of the clusters, such
as the cluster size, and not the specific bonds of particles within the cluster. Therefore in
our approach local clusters can be simply collapsed into single nodes which reduces the
amount of data. Second, no globally unique cluster ids are needed in our implementation,
which further reduces the complexity of the algorithm in comparison to the CCL problem.
As a result, a dedicated master processor is able to compute the global cluster detection in
our method since no cluster information from the global depth-first search has to be sent
back to the local domains. Finally, the usage of a regular grid can not be directly trans-
ferred to the molecular dynamic simulation due to the fact that molecule positions have
real values, while the pixel position of the regular grid have integer values. Even if the
linked cell structure is used to mimic a regular grid, an important difference would be that
multiple clusters with various parallel edges (edges that connect parallel cluster parts of
different subdomains) might exist within one cell, in contrast to the CCL problem where
every cell either contains a unique local cluster or nothing.

In conclusion, the CCL problem shows some similarities to our algorithm, but it is not
directly applicable on nucleation scenarios. Therefore, to the best of our knowledge, the
presented coarsening strategy is novel.

16



3. Implementation

In this work the geometric criterion was chosen as cluster criterion and a depth-first search
is used for the cluster identification. The cluster detection is divided up in several steps.
The first step is the detection of the single bonds between particles. Therefore the cluster-
ing criterion has to be integrated in the existing simulation environment. The next section
will describe in detail the implementation of the geometric criterion in the sequential case.

3.1. Sequential cluster detection

3.1.1. Implementation of the geometric criterion

The geometric criterion 2.3.2 considers two particles to be bound if their distance is smaller
than the connectivity distance. The calculation of the distance in 3D is quite expensive due
to the square root.

rij =
»

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (3.1)

One approach to reduce this complexity is to evaluate only the squared value of the dis-
tance, so that no square root needs to be applied. Consequently, the squared connectivity
distance has to be compared to the squared distance:

r2ij < 1.52 · σ2 (3.2)

The implementation can further be optimized by integrating the geometric criterion
within the distance comparison of the cutoff radius in the force calculation. As the squared
distance r2ij is already computed for the Lennard-Jones potential, this strategy provides
very good performance. A schematic example, illustrating the force calculation of one
molecule combined with the evaluation of the geometric criterion, can be seen next.

1 Molecule& m1 = currentCel lNextMolecule ( ) ;
2 for ( / / i t e r a t e o v e r a l l M o l e c u l e s w i t h i n c u r r e n t c e l l
3 / / and n e i g h b o r i n g c e l l s ) {
4 Molecule& m2 = nextMolecule ( ) ;
5 double squaredDistance = m2. distSquared (m1 ) ;
6 / / c h e c k c u t o f f r a d i u s and c a l c u l a t e f o r c e
7 i f ( squaredDistance < cutoffRadiusSquared ) {
8 c a l c u l a t e F o r c e (m1,m2 ) ;

17



3. Implementation

9 }
10 / / c h e c k g e o m e t r i c c r i t e r i o n and add e d g e s t o graph
11 i f ( squaredDistance < connect iv i tyDis tanceSquared ){
12 edges [m1. id ( ) ] . push back (m2. id ( ) ) ;
13 edges [m2. id ( ) ] . push back (m1. id ( ) ) ;
14 }
15 }

Since the adjacency matrix of the resulting graph will be a sparse matrix, i.e. only few
fields will be set to 1, the edges are saved in an array of vectors called edges. The vector at
position edges[i] saves the molecule ids of all molecules connected to molecule i. It should
be noted that the molecule ids in MarDyn are globally unique which guarantees that the
edges can even be set correctly in a parallel cluster detection.

3.1.2. Depth-first cluster detection

The previous section described how the graph for the cluster detection can be constructed.
The clusters can be seen as connected components within this graph. Therefore an al-
gorithm which determines connected components has to be implemented. One easy ap-
proach is to use a depth-first search [9] which is shown next.

1 void ComponentCalculator : : d e p t h F i r s t ( ) {
2 i n t id = 0 ;
3 i n t c l u s t e r S i z e ;
4 / / mark e v e r y m o l e c u l e a s u n v i s i t e d
5 for ( i n t i =0 ; i<numMolecules ; i ++){
6 v i s i t e d [ i ] = −1;
7 }
8 / / i t e r a t e o v e r a l l m o l e c u l e s
9 for ( i n t i =0 ; i<numMolecules ; i ++){

10 / / s t a r t s e a r c h i f no t a l r e a d y v i s i t e d
11 i f ( v i s i t e d [ i ] == −1){
12 c l u s t e r S i z e = search ( i , id ) ;
13 s i z e . push back ( c l u s t e r S i z e ) ;
14 id ++;
15 }
16 }
17 }
18

19 i n t ComponentCalculator : : search ( i n t vertex , i n t id ){
20 i f ( v i s i t e d [ ver tex ] != −1){
21 / / a l r e a d y v i s i t e d
22 return 0 ;

18



3.2. Parallel cluster detection

23 }
24 / / mark as v i s i t e d
25 v i s i t e d [ ver tex ] = id ;
26 i n t c l u s t e r S i z e = 1 ;
27

28 / / i t e r a t e o v e r a l l nodes which a r e c o n n e c t e d t o c u r r e n t node
29 std : : vector<int > : : i t e r a t o r i t ( edges [ ver tex ] . begin ( ) ) ;
30 while ( i t != edges [ ver tex ] . end ( ) ) {
31 / / sum up number o f p a r t i c l e s
32 c l u s t e r S i z e +=search ( * i t , id ) ;
33 i t ++;
34 }
35 return c l u s t e r S i z e ;
36 }

In the method depthF irst a depth-first search is iteratively started from every molecule
id that has not been visited by a previous search. The array visited is used to indicate if
a molecule has already appeared in the searching process. The field visited[i] is defined
to be −1 if the molecule with id i is unvisited. Otherwise it contains the cluster id of the
cluster the molecule belongs to. The search method first checks if the current vertex was
already visited. This is important to avoid loops during the search. If the node is unvisited,
a depth-first search is started at every node which is connected to the current vertex.

Furthermore the basic depth-first search was extended by a counter which determines
the cluster size, i.e. the number of particles in a connected component. This feature is
achieved with the recursively summing up of the clusterSize variable. Every time a node
is switched from unvisited to visited a value of 1 is assigned to the clusterSize variable.
Hence the resulting return value of the search method is the number of particles contained
in the cluster. This number is then saved in a vector called size containing the number of
particles belonging to cluster i at position i.

In this thesis every connected component is considered to be a cluster. As mentioned
in section 2.3.2 it is possible to improve the method by checking for the biconnectivity
criterion. Check [18] for further information on the implementation.

3.2. Parallel cluster detection

We developed an application-driven parallel version of our sequential method which will
be introduced in the next sections. We point out that only statistics of clusters of differ-
ent sizes are needed in our clustering algorithm, but not the specific connections between
molecules. The method represents a coarse-grained version of the one-layered hierarchi-
cal cluster identification method described in 2.4.2 and combines a local depth-first search
with a global depth-first search on a coarsened graph. This new strategy of coarsening
the graph for the second depth-first search allows us to reduce the data which needs to be

19



3. Implementation

transmitted to the master processor. In addition, only one communication step is needed
resulting in an improved performance.

3.2.1. General concept

The basic concept of our cluster detection within the domain decomposition is shown in
Fig. 3.1.

4 1 1 4

2 5

6 6

66

Figure 3.1.: Scheme of the cluster detection within the domain decomposition for four
threads where edges that leave the local subdomains are drawn as red dashed
lines. The local clusters are evaluated locally as in the sequential algorithm, but
the local parts of parallel clusters are collapsed into single nodes and unique
edges are set between them. The initial situation can be seen in the left figure
and the coarsened graph with the collapsed clusters can be seen on the right
figure.

The problem at hand is how to proceed with a cluster that is crossing the domain bor-
ders. Our algorithm shown in Fig. 3.1 treats such a parallel cluster like a part of a second
more coarser graph. Since the local part of the cluster can be determined by a simple
depth-first search as in the standard algorithm, it is possible to calculate the local number
of particles. After this step the local cluster parts are collapsed into single nodes with an
attached node weight equal to the local cluster size.

The problem which appears at this point is how to set deterministic edges between these
cluster nodes. As the border layer of nodes is known to the neighbor processor, due to
the halo layers, every processor can determine the parallel edges of a cluster. However,
sending all parallel edges to the master would decrease the communication performance.

20



3.2. Parallel cluster detection

For this reason only one unique edge between two local clusters is exchanged to reduce
the data for the communication step.

The key of the method is now how to determine a unique edge on the basis of these
parallel edges, which can be potentially thousands. The idea of our algorithm is to choose
the minimum molecule id of all the molecules from the border which have a connection to
the halo and the minimum of all the molecule ids from the halo which are connected to the
border area. This method has to be applied separately for every halo region from any sur-
rounding processor. The result is a set of, up to 26, unique particle pairs representing the
bonds to the surrounding processors which are connected to the cluster. We point out that
the unique particle pair does not need to have a real bond since the minimum calculation
is done separately for the boundary and the halo molecules. Hence, the particles contained
in parallel edges are split into two groups for each of the 26 directions: the border particles
and the halo particles. For every direction the minimal particle ids of both groups form
the unique particle pair. The basic steps of this algorithm are shown in Fig. 3.2.

P1 P2

B

A

C

E

F

D

P1 P2

B

A

C

E

F

D

P1 P2

33

Figure 3.2.: Parallel cluster detection between domains of two different processors. Left:
Initial situation. Middle: Unique particle pairs are identified. Right: Local
clusters are collapsed into single nodes with node weight equal to local cluster
size.

The result is a coarse graph representation of the global graph where the collapsed clus-
ters are the nodes and the unique particle pairs represent the edges. Since the information
is only known locally on every processor, a communication step is required. The relatively
small size of the coarse graph, in relation to all bonds of one domain, leads to the idea of
using a master processor which receives all the global cluster information. Therefore, for
each parallel cluster part the local cluster size is sent together with the, up to 26, unique
particle pairs to the master processor. Based on this information the edges between the
parallel clusters are formed with the unique id pairs and a second depth-first search is per-
formed. Finally, the cluster sizes of the parallel clusters are obtained by summing up the

21



3. Implementation

weights of the parallel cluster parts during the global depth-first search.
There are two ways to define a master processor. One possibility is to use one of the

processors which also performs the numerical simulation and the first depth-first search,
causing a sequential section of the whole algorithm. The other method uses a dedicated
processor which only performs the evaluation of the parallel clusters. An advantage of the
second method is that the molecular dynamic simulation can proceed during the global
cluster identification, provided that no cluster information is needed by the molecular
dynamics simulation.

The next sections describe the changes to the sequential implementation by applying
this concept.

3.2.2. Evaluation of the geometric criterion in halo regions

The comparison of the particle distance to the connectivity distance stays the same in the
parallel evaluation of the geometric criterion. However, the location of edges which enter
the halo or which are within the halo needs to be saved for the determination of the parallel
edges in the depth-first search. Since the parallel algorithm differentiates between the halo
regions coming from different neighbors, an important part of the new implementation is
the fast determination of the specific halo region. In the new implementation every cell
within the domain but not in the border area gets the location value 0. The border cells
receive the value 1 and the different halo areas have the location values 2-27. To make
the evaluation fast this assignment is already precomputed in the cell objects during the
construction of the linked cell container. Consequently, the assignment of the location to
a particle can be done very fast in the force calculation. The basic implementation for
iterating over all molecule pairs of 2 cells looks like this:

1 / / g e t l o c a t i o n s
2 unsigned short l o c a t i o n C e l l 1 = c e l l 1 . getLocat ion ( ) ;
3 unsigned short l o c a t i o n C e l l 2 = c e l l 2 . getLocat ion ( ) ;
4 / / c h e c k i f one o f t h e c e l l s i s in t h e h a l o
5 bool halo = ( l o c a t i o n C e l l 1 > 1 | | l o c a t i o n C e l l 2 > 1 ) ;
6 / / l o o p o v e r a l l p a r t i c l e s in t h e c e l l
7 for ( / / i t e r a t e o v e r a l l p a r t i c l e s in c e l l 1 ) {
8 Molecule& m1 = nextMolecule ( c e l l 1 ) ;
9 for ( / / i t e r a t e o v e r a l l p a r t i c l e s in c e l l 2 ) {

10 Molecule& m2 = nextMolecule ( c e l l 2 ) ;
11 / / c a l c u l a t e s q u a r e d d i s t a n c e be tween m o l e c u l e s
12 double squaredDistance = molecule2 . d i s t 2 ( molecule1 ) ;
13 i f ( squaredDistance < cutoffRadiusSquared ) {
14 c a l c u l a t e F o r c e (m1,m2 ) ;
15 }
16 / / c h e c k i n g g e o m e t r i c c r i t e r i o n and add ing e d g e s t o graph

22



3.2. Parallel cluster detection

17 i f ( squaredDistance < connect iv i tyDis tanceSquared ){
18 / / add ing bonds as e d g e s t o t h e graph
19 i f ( ! halo ){ / / d e t e r m i n e i f i t i s a normal edge
20 edges [ molecule1 . id ( ) ] . push back ( molecule2 . id ( ) ) ;
21 edges [ molecule2 . id ( ) ] . push back ( molecule1 . id ( ) ) ;
22 }
23 e lse { / / edge i n t o or w i t h i n t h e h a l o r e g i o n
24 / / l o c a t i o n s a r e s a v e d in a d d i t i o n t o t h e m o l e c u l e i d s
25 haloEdges [m1. id ( ) ] . push back ( std : : make pair (m2. id ( ) ,
26 std : : make pair ( l o c a t i o n C e l l 1 , l o c a t i o n C e l l 2 ) ) ) ;
27 haloEdges [m2. id ( ) ] . push back ( std : : make pair (m1. id ( ) ,
28 std : : make pair ( l o c a t i o n C e l l 2 , l o c a t i o n C e l l 1 ) ) ) ;
29 }
30

31 }
32 }
33

34 }

The difference in comparison to the sequential implementation is that the location is
used to evaluate if bonds are within the halo area or enter it, also referred as a halo edge.
If the bond is a halo edge, it is stored separately in the haloEdges array together with the
location values of both cells. The pair of location values is always saved in the same way at
the vector position haloEdges[i]: the first location value refers to the location of molecule
i and the second one the location of the molecule which is connected to i. We point out
that the molecule-pair traversal of MarDyn is not performed within halo cells. For the
purpose of the cluster detection, however, we needed to add the traversal of the halo cells
introducing a small overhead. The evaluation of edges within the halos is necessary to
detect connections of parallel cluster parts over the halo layer, which reduces the number
of parallel clusters parts and, therefore, the communication data. Furthermore, the number
of cases in which the problem explained in section 4.5.1 appears, is reduced significantly.
The effects of this overhead will be discussed in chapter 4.

3.2.3. Local depth-first search

The local depth-first search has to look for connected components in the new graph con-
sidering both sets, the normal edges and the halo edges. Furthermore the unique pairs of
particle ids have to be found for the parallel communication exchange. This is done with
the help of the location values of the haloEdges array mentioned in the last section. A
specific array called parallelEdges saves the unique particle pairs for all, potentially, 26
directions per cluster. The concept is to save the unique particle pair crossing the domain
border to the neighbor i at position parallelEdges[i]. The first value of each pair is the min-

23



3. Implementation

imum of the particle ids within the border belonging to a halo edge, whereas the second
value refers to the minimum of the particle ids within the halo belonging to a halo edge.
These minimal ids are updated throughout the depth-first search. Another challenge is
the correct determination of the particle numbers in the local parts of clusters. Molecules
which only exist in the halo cells must not be counted in the local cluster number. A prob-
lem is that some particles might appear in halo regions as well as in the border regions
with small numbers of processors due to the periodic boundaries. In this special case they
have to be counted, as the cluster is still on the same processor and therefore the depth-first
search explores the whole cluster. Thus, it has to be assured that particles only contained
in the halos are not counted. The resulting depth-first search can be found in the appendix
A.2.

3.2.4. Parallel cluster communication

To compute the second depth-first search on the coarser graph, the parallel clusters have
to be sent to the master together with the connecting particle pairs. This can be done with
three MPI commands. First, the number of parallel clusters each process has detected,
is sent to the master with one MPI Gather. According to this information the master
generates an offset array to correctly sort the incoming parallel clusters, i.e. the unique
particle pairs and the cluster sizes of the local parts, into the receive buffer of the second
communication. Here the slightly different command MPI Gatherv is needed which al-
lows variable input sizes of the different processors. Additionally, the number of already
detected local clusters of appropriate sizes has to be communicated to the master in an
MPI Allreduce command.

An improvement of this method can be achieved if the first and third step are combined.
Hence, in the first MPI Gather the number of local clusters of appropriate size is sent in
addition to the number of parallel clusters. Then only two MPI communication steps are
needed. The complete implementation of the exchange is illustrated in the appendix A.1.

3.2.5. Global depth-first search

One challange of the second depth-first search is the unusual representation of the edges.
The unique particle pairs are therefore first transformed into a common edge format, as
it was used in the first depth-first search. For this purpose the routine createGraph was
implemented to create a graph with the parallel clusters as nodes, identified by a special
id, and edges between those nodes. One simple method is to assign ids in the order of the
parallel clusters received in the MPI Gatherv. The edges are then obtained by setting up
a 2D matrix of size N2, where N denotes the number of particles in the simulation and by
using a sequential scanning process to find the corresponding particle pairs. The idea is
to simply mark the matrix position mij and mji with the cluster id of the current cluster if
no marking exists for this field. If an existing value is detected at this position an edge is
created between the current cluster id and the one found at the memory location of mij .

24



3.2. Parallel cluster detection

Finally a graph representation like in the sequential case is obtained. For a fast determi-
nation of the cluster sizes of the local cluster parts an additional array parallelClusterSizes
is used which contains the local cluster size of the parallel cluster i at position parallelClus-
terSizes[i].

The resulting depth-first search is just a slight variation of the sequential one explained
in section 3.1.2 where only the search procedure changes. Here the cluster size of a node
which gets marked is set the cluster size of the corresponding parallel cluster, which is
stored in parallelClusterSizes, instead of setting it to 1. The resulting new searchParallel
method was implemented as follows:

1 unsigned long ConnectedComponentCalculator : : s e a r c h P a r a l l e l (
2 unsigned long vertex , unsigned long id ){
3 i f ( v i s i t e d [ ver tex ] != −1){
4 / / a l r e a d y v i s i t e d
5 return 0 ;
6 }
7 v i s i t e d [ ver tex ] = id ;
8 / / s e t c l u s t e r s i z e
9 unsigned long c l u s t e r S i z e = p a r a l l e l C l u s t e r S i z e s [ ver tex ] ;

10 std : : vector<unsigned long > : : i t e r a t o r i t (
11 p a r a l l e l E d g e s [ ver tex ] . begin ( ) ) ;
12 while ( i t != p a r a l l e l E d g e s [ ver tex ] . end ( ) ) {
13 c l u s t e r S i z e += s e a r c h P a r a l l e l ( * i t , id ) ;
14 i t ++;
15 }
16 return number ;
17 }

3.2.6. Optimization

Memory optimization

The createGraphmethod introduces a compexity ofO(N2) for memory allocation, because
of the N x N matrix. This makes the algorithm unusable for larger scenarios. For 5000 par-
ticles the memory used for the matrix is already around 100MB. Therefore, a sparse matrix
was implemented for the detection of matching particle pairs. Equal to the edges in the
depth-first search, an array of vectors calledmatchArray is used. For every particle pair ij,
i is inserted in the vector at array positionmatchArray[j] and vice versa. To find the corre-
sponding cluster id for every edge, the cluster id is always saved right after the molecule
id of the particle pair in matchArray. A match for a pair ij exists if the corresponding
vector i already contains an entry j. If a match is found, the corresponding cluster id is
used to form the cluster edge and the pair is set invalid in the sparse matrix. This search-
ing in the vector does not affect the runtime, as there might be at most 26 edges for every

25



3. Implementation

molecule and therefore only up to 26 entries in the vector have to be compared to j. This
holds because every molecule belongs to one unique cluster and the number of edges to
neighboring processors is limited by 26 for every cluster. Therefore the runtime is just af-
fected by a constant and the overall complexity remains O(c), where c denotes the number
of parallel clusters parts. In the same way the memory complexity is reduced to O(N). In
order to delete the vectors at matchArray[i] efficiently for the next iteration, the first entry
of every vector contains the number of unresolved particle pairs for the molecule i. If this
number drops to 0, the vector is deleted to indicate that no unresolved pair is contained in
the vector. Hence, there is no need to run over the whole array at the end of the method.
The resulting createGraph method can be found in the appendix A.3.

Runtime optimization

Another point for optimization is the depth-first search. In the original version a depth-
first search is started at all particle ids contained in the global domain, which could lead
to a bad scaling. Thus, an additional vector called boundedParticles was integrated in the
calculation which saves the particles which form bonds. The insertion of the molecules
into the boundedParticles can be directly implemented in the force calculation as shown
below.

1 / / c h e c k i n g g e o m e t r i c c r i t e r i o n and add ing e d g e s t o graph
2 i f ( dd < edgeCutoffSquared ){
3 / / add ing m o l e c u l e s t o t h e v e c t o r o f b o u n d e d P a r t i c l e s
4 / / i f t h e y a r e not a l r e a d y c o n t a i n e d
5 i f ( edges [m1. id ( ) ] . empty ( ) && haloEdges [m1. id ( ) ] . empty ( ) ) {
6 boundedPart ic les . push back (m1. id ( ) −1 ) ;
7 }
8 i f ( edges [m2. id ( ) ] . empty ( ) && haloEdges [m2. id ( ) ] . empty ( ) ) {
9 boundedPart ic les . push back (m2. id ( ) −1 ) ;

10 }
11 / / add ing bonds as e d g e s t o t h e graph
12 i f ( ! boundaryToHalo ){ / / d e t e r m i n e i f i t i s a normal edge
13 edges [m1. id ( ) ] . push back (m2. id ( ) ) ;
14 edges [m2. id ( ) ] . push back (m1. id ( ) ) ;
15 }
16 e lse { / / edge from h a l o t o boundary
17 haloEdges [m1. id ( ) ] . push back ( std : : make pair (
18 m2. id ( ) , s td : : make pair ( l o c a t i o n C e l l 1 , l o c a t i o n C e l l 2 ) ) ) ;
19 haloEdges [m2. id ( ) ] . push back ( std : : make pair (
20 m1. id ( ) , s td : : make pair ( l o c a t i o n C e l l 2 , l o c a t i o n C e l l 1 ) ) ) ;
21 }
22

26



3.2. Parallel cluster detection

23 }

Consequently, in the depth-first search only the particles which have edges and, there-
fore, reside in the local domain are considered. This optimization provides a better scal-
ability. Especially in the time before nucleation appears runtime is significantly reduced.
The resulting implementation of the local depth-first search is shown in the appendix A.2.

3.2.7. Validation

The validation of the parallel algorithm was one of the crucial parts of this thesis. However,
the validation against the serial version was complicated due to the fact that over a long
period of time-steps the numerical values of the parallel version slightly differ from the
ones of the serial version. This behavior could be noticed after about 1000 time-steps and
caused slightly changed positions of the molecules. The reason for this is the changed
summation order in the force calculation, as well as some round-offs within the global
property calculations, such as the temperature for applying the thermostat. For this reason
a direct comparison of simulation results over long periods of time-steps, which was used
for validation of the optimization steps, were not possible, as the clustering results differed
after very long time periods. Although these differences in the simulation appeared, it
could be noticed that the first few time-steps of the computation returned the same result
with any number of processors.

This observation was used to create a different validation method. The basic idea is to
compare the results of short numbers of time-steps at different points of the simulation.
Therefore several restart files were created between 200000 time-steps and 300000 time-
steps of the simulation, where nucleation already occurs. At these starting points 100
time-steps were performed and the results were validated against each other.

In order to get reliable validation results, various numbers of cores in the parallel pro-
gram, such as 1,2,3,4,8,16,32 and 64, were compared to the sequential program. The re-
sults showed no deviations from the sequential ones and the parallel algorithm can, con-
sequently, be expected to be correct.

27





4. Results

4.1. Simulation setup

The introduced method was applied to several test-cases where nucleation appears with
different numbers of particles. The following parameters have to be defined for the simu-
lation of argon (one Lennard-Jones center) and ethane (two Lennard-Jones centers) (taken
from [18]):

Parameter Description
ρ pressure
T temperature
δt time-step
rc Lennard-Jones cutoff radius
L distance between the Lennard-Jones centers
ε/kB energy parameter of the gas molecule
m mass of the molecule
σ length parameter of the molecule

For the computation the following values were assigned to the simulation parameters
[18] which simulate physical valid nucleation scenarios:

Molecule ρ[mol/l] T [K] δt[fs] rc[Å] L[Å] ε/kB[K] m[u] σ[Å]
argon 0.97 80 10.8 15.3 - 119.80 39.9 3.405
ethane 3.0 220 4.0 14.0 2.345 135.57 15.0 3.500

The scalability tests were performed on the SandyBridge partition of the MAC cluster
[3] featuring 28 nodes of dual socket Intel SandyBridge-EP Xeon E5-2670 processors with
16 cores. Furthermore the simulation program MarDyn [8] was used with the standard
domain decomposition and therefore no load balancing is applied. For time measure-
ments the different processors were synchronized with MPI Barrier. Hence, the times
of the processor with largest workload are obtained. In the following the main simulation
results will be presented and an evaluation of the introduced parallel algorithm will be
performed.

29



4. Results

4.2. Visual verification

The result of the nucleation process can be verified visually due to the usage of the geomet-
ric criterion. For visualization the tool ParaView [2] was used which shows snapshots of
the particle configuration within the domain for every time-step. In Fig. 4.1 the common
steps of the computation can be seen.

Figure 4.1.: Different clustering stages during the computation with 5000 particles. Clus-
ters of size 1 (cluster id < 100) are only showed at iteration = 0. Top-left: Ini-
tial configuration on a nearly regular grid with no clusters. Top-right: Many,
mostly unstable, clusters are formed. Bottom-left: Full nucleation reached with
many clusters above the critical size of 20. Bottom-right: Final situation where
most clusters have merged.

At first the molecules are arranged in a mostly regular grid, then few little clusters are

30



4.3. Physical verification

built which tend to collapse. After this step some clusters continue to grow but still most
of them vanish. At about 200000 time-steps full nucleation is reached where many stable
clusters have been built above the critical size. Finally clusters are merging and therefore
the number of clusters is continuously decreasing. This effect of merging droplets is also
called coagulation [18]. Fig. 4.2 shows an example of the coagulation process.

Figure 4.2.: Coagulation causes the merging of two clusters. Three merging steps (from left
to right).

A similar observation can be made with ethane. Here the nucleation is much quicker
than in the argon case and already after 50000 time-steps huge clusters are formed. Fig.
4.3 shows some of the stages of the nucleation with ethane. It can be clearly seen that
ethane, in contrast to argon, builds non-spherical clusters.

Overall no errors of the implemented cluster detection were observed and the general
nucleation process fits to the theoretical concept.

Another way of analyzing the results visually is to study the building of clusters over
short time-periods. As this approach allows the examination of the rate of successfully
detected clusters, it is a good measure for the effectiveness of a clustering criterion. Fig.
4.4 shows two clustering situations which are about one picosecond apart.

It can be clearly seen that some particles leave clusters and some clusters completely
vanish. This observation is a result of the geometric criterion and not a bug of the imple-
mentation, since particles which are temporally close to each other are considered to share
a bond. In addition small clusters tend to collapse which increases this effect. However,
the overall rate of correctly identified clusters is high.

4.3. Physical verification

Besides the visual verification a physical one is important to determine the physical cor-
rectness of the whole simulation. One possibility is to compute the nucleation rate, as

31



4. Results

Figure 4.3.: Clusters of size > 1 in the nucleation steps of ethane. At first many small
clusters are build (left) which quickly merge (right).

Figure 4.4.: Clusters of size > 1 at time-steps 50000 and 50100.

described in 2.1, and to compare it to other simulations or experiments.
Before the calculation of the nucleation rate the number of clusters above the critical size

are compared to previous works. The nucleation rate can then be calculated by plotting the

32



4.3. Physical verification

number of clusters above the critical size and calculating a linear fit f during the nucleation
phase [18].

Fig. 4.5 shows the numbers of clusters above size of 20, which is approximately the
critical size for argon [18, 28], and above size 40. The results in general look very similar
to the ones from Kible [18]. The only major deviation is the missing second increase in the
cluster numbers in our results. However, as stated by Kible this was a rather unusual and
unexpected behavior. Therefore the curve fits even better to the theoretical model.

0 50 100 150 200 250 300 350 400
−2

0

2

4

6

8

10

12

14

16

18

Time−steps (10
3
)

N
u

m
b

e
r 

o
f 

c
lu

s
te

rs

 

 
Cluster of size > 20
Cluster of size > 30

Cluster of size > 40
f

Slope of f: 9.3560 * 10
−5

Figure 4.5.: Number of argon clusters of sizes larger than 20, 30 and 40 for 5000 particles.
The critical size is 20.

In addition the results for 256000 particles are shown in 4.6 which is in good agreement
to the results of Kible for 100000 particles.

For the calculation of the nucleation rate for Fig. 4.5 a linear fit f is generated using the
least squares method. It is important to calculate the linear fit only for the nucleation phase
where the number of clusters increases, here from about 20000 to 160000 time-steps. The
slope of the curve is then used to calculate the nucleation rate.

As stated in section 2.1 the nucleation rate is defined according to the following equation:

J =
n

t ∗ V
(4.1)

In this case the domain is a cube of length 204.56 Å and the time-step δt is equal to
10, 8 fs. The slop of the linear fit is 9.36 · 10−5Cluster

δt . Therefore, the nucleation rate can be
calculated as follows:

J = 9.36 · 10−5 · 1

(204.56 · 10−10m)3 · 10.8 · 10−15s)
= 1, 01 · 1033

1

m3 · s
(4.2)

33



4. Results

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

Time−steps (10
3
)

N
u

m
b

e
r 

o
f 

c
lu

s
te

rs

 

 
Cluster size > 20
f

Slope of f: 0.0049

Figure 4.6.: Number of argon clusters of sizes larger than the critical size 20 for 256000
particles

For the 256000 particle experiment the nucleation rate between 10000 and 110000 time-
steps can be calculated similarly. With the slope of the linear fit 4.94 · 10−3, a domain
length of 759, 58 Å and a time-step of 10, 8 fs the nucleation rate J = 1.04 · 1033 1

m3·s is
obtained. These results fit very well to the nucleation rates which where calculated by
Kible [18] (7.64 · 1032 1

m3·s ) and Walter [28] (7.73 · 1032 1
m3·s ).

4.4. Scalability

4.4.1. Strong scaling with argon

Parallel algorithms are often measured by the overhead they produce in comparison to the
sequential algorithm. A common criterion is the scalability which examines the runtime
which can be reached with different numbers of processors. The standard approach for
evaluating performance is called the strong scalability analysis. Here the system size, i.e.
the number of molecules in our case, is held constant and the runtime with different num-
bers of processors is compared. In an ideal case the runtime should halve if the number of
processors is doubled. Fig. 4.7 shows the results at the beginning of the simulation and at
200000 time-steps of MarDyn with and without the cluster detection for argon. It should
be noted that we used a MPI simulation with one core as a reference and not the sequential
program. However, this should not significantly affect the runtime of the cluster detection
since the runtime of the communication step can be neglected for one core (see Fig. 4.8)
and in this work we mainly focus on the analysis of the cluster detection.

34



4.4. Scalability

2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8
2^−6

2^−5

2^−4

2^−3

2^−2

2^−1

2^0

2^1

2^2

2^3

Number of cores

R
u

n
ti

m
e
 (

s
e
c
)

Beginning of the simulation

 

 

2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8
2^−6

2^−5

2^−4

2^−3

2^−2

2^−1

2^0

2^1

2^2

2^3
At 200000 time−steps

Number of cores

R
u

n
ti

m
e
 (

s
e
c
)

 

 
With cluster detection

Without cluster detection

Ideal scaling

With cluster detection

Without cluster detection

Ideal scaling

Figure 4.7.: Strong scaling with and without cluster detection using the geometric criterion
at the beginning of the simulation (left) and at 200000 time-steps (right) with
nucleation for 256000 argon molecules.

At the beginning of the simulation the scaling is nearly equal to the original scaling of
MarDyn. This is an effect of the runtime optimization which was discussed in section 3.2.6.
Only with 256 cores a slight increase in the runtime can be noticed. This could be caused
by the additional traversals of the cluster detection method, since edges within the halos
are searched as well and therefore more distances have to be calculated.

At 200000 time-steps the scaling is nearly equal to the scaling of MarDyn with low num-
bers of processors. This indicates that the depth-first search is scaling well with the domain
decomposition. However, for large numbers of processors the clustering method produces
an additional overhead which affects the scalability. This can be seen by the increasing gap
between the runtimes.

This effect can be further analyzed with the runtimes of the three basic components of
the cluster detection: the local and global depth-first search and the communication step.
Fig. 4.8 shows the results for argon at 200000 time-steps.

The reason for this additional overhead is caused by the sequential global depth-first
search and the communication time of the parallel algorithm. As in our implementation
no dedicated master processor was used, the scalability of the whole cluster detection is af-
fected. Furthermore the computation time of the sequential part increases with increasing
number of processors, since more parallel clusters appear at the same molecular confi-
guration. These assumptions are supported by Fig. 4.8 where the sequential part of the

35



4. Results

2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8
2^−10

2^−8

2^−6

2^−4

2^−2

2^0

2^2

2^4

Number of cores

R
u

n
ti

m
e
 (

s
e
c
)

 

 

Total time

Total cluster detection

Communication time

Global cluster detection

Local cluster detection

Figure 4.8.: Times for the components of the cluster detection in the strong scaling analy-
sis with 256000 argon molecules compared to the overall runtime of the
computation

algorithm and the communication time increases with the number of cores. In addition it
can be seen that the scaling of the local cluster detection is similar to the scaling without
the cluster detection.

Another observation of the strong scaling analysis is that MarDyn without cluster de-
tection does not provide a good scaling performance due to the lack of a load balancing
strategy. Nevertheless, in comparison to the results of Buchholtz [7] a better speedup,
i.e. the factor by which the runtime is reduced in comparison to the sequential task, of
about 62 is obtained for 128 processors, whereas Buchholtz only observed a speedup of
about 20. This is caused by the fact that Buchholtz used artificial nucleation-like scenarios
which can not be directly compared to a real nucleation scenario, as without load balanc-
ing the scalability depends heavily on the used scenario. Another aspect might be that we
compared the runtimes with multiple cores to the runtime of an MPI run with one thread
instead of the sequential programm.

In addition to the strong scalability, the computational overhead produced by the im-
plementation is an important factor for the clustering algorithm. For this purpose the
runtimes of MarDyn are compared with and without the cluster detection. In Fig. 4.9 the
overhead for argon at the beginning of the simulation without nucleation and at 200000
time-steps with nucleation can be seen.

The overhead at the beginning of the simulation is very small due to the runtime opti-
mizations. At 200000 time-steps the cluster detection gets more complex due to the bonds
in the nucleation process. This can also be seen in Fig. 4.9. As a result the overhead is big-

36



4.4. Scalability

2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8
−10

0

10

20

30

40

50

60

70

80

90

100

Number of cores

O
v
e
rh

e
a
d

 (
%

)

Beginning of the simulation

2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8
−10

0

10

20

30

40

50

60

70

80

90

100

At 200000 time−steps

Number of cores

O
v
e
rh

e
a
d

 (
%

)

Figure 4.9.: Relative overhead without nucleation at the beginning of the simulation (left)
and at 200000 time-steps with nucleation (right) for 256000 argon molecules

ger than at the beginning of the simulation. Nevertheless this overhead is mainly caused
by the fact that the master processor in our work also computes the molecular simulation,
i.e. the global cluster detection is a blocking operation, and the overhead is still beyond
100 % with 256 cores. Furthermore the additional distance calculations with the clustering
detection leads to further overhead, especially with nucleation.

In comparison to the overhead observed by Kible [18] (see Fig. 4.10) the overhead of our
implementation is much smaller, especially for low numbers of processors. Nevertheless,
for very large processor counts Kible’s overhead seems to decrease or at least to stay con-
stant, whereas our overhead continuously increases. However, the increasing overhead
can be circumvented by the use of a dedicated master processor.

4.4.2. Weak scaling of argon

Another way to examine performance is to use the weak scalability analysis. This method
holds the system size per processor constant, i.e. the molecule number is increased by the
same factor as the number of processor is increased. As a result the runtime should be
constant in an ideal case. The result of the weak scalability method can be seen in Fig. 4.11
and Fig. 4.12.

As in the strong scalability analysis, a deviation of the runtimes can be seen with higher
numbers of processors. With the results of Fig. 4.12 this additional overhead is again
caused by the increasing runtime of the global cluster detection and the communication

37



4. Results

Figure 4.10.: Relative overhead of the hybrid cluster detection with nucleation for different
numbers of processors observed by Kible (image from [18])

2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8
2^−3

2^−2.5

2^−2

2^−1.5

2^−1

2^−0.5

2^0

2^0.5

2^1

2^1.5

2^2

Number of cores

R
u

n
ti

m
e
 (

s
e
c
)

 

 
With cluster detection

Without cluster detection

Ideal scaling

Figure 4.11.: Weak scaling with and without cluster detection using the geometric criterion
at 200000 time-steps and 1000 argon molecules per processor

time. Moreover the local cluster detection scales similar to the simulation time without the
cluster detection.

38



4.4. Scalability

2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8
2^−12

2^−10

2^−8

2^−6

2^−4

2^−2

2^0

2^2

2^4

2^6

Number of cores

R
u

n
ti

m
e
 (

s
e
c
)

 

 

Total time

Total cluster detection

Communication time

Global cluster detection

Local cluster detection

Figure 4.12.: Times for the components of the cluster detection in the weak scaling analysis
with 1000 argon molecules per processor compared to the overall runtime of
the computation

4.4.3. Performance analysis with ethane

Since the force calculation with argon is faster than for molecules with multiple Lennard-
Jones centers, the additional traversal of the halo cells and the total time of the cluster
detection are contributing more to the overall time. Therefore, an improved scaling behav-
ior should be observed for more complex calculations. For this reason a testcase for ethane,
which consists of two Lennard-Jones centers, was simulated as well for the strong and the
weak scalability at time-steps where nucleation appears. Fig. 4.13 shows the results of the
strong scaling and Fig. 4.15 the results for the weak scaling analysis with ethane. The times
for the single components of the cluster detection can be seen in Fig. 4.14 and Fig. 4.16.
The results show that for ethane the local cluster detection dominates the rest of the cluster
detection even with 256 cores. This could be the result of the few very huge clusters which
are formed quickly in the ethane simulation. Therefore only a small amount of clusters
needs to be exchanged and the local cluster detection dominates the rest of the detection.
Another observation is that the whole cluster detection is cheaper compared to the overall
computation time for argon. This is the result of the more complex force calculation for
molecules with multiple Lennard-Jones centeres. However, for larger numbers of proces-
sors the bad scaling of the global search and the communication time will likely become a
problem.

Similar to the scalability results the overhead for ethane is smaller and increases slower
with the number of cores in comparison to the overhead for argon. Fig. 4.17 shows the

39



4. Results

2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8
2^−0.5

2^0

2^0.5

2^1

2^1.5

2^2

2^2.5

2^3

2^3.5

2^4

2^4.5

Number of Cores

R
u

n
ti

m
e
 (

s
e
c
)

 

 
With cluster detection

Without cluster detection

Ideal scaling

Figure 4.13.: Strong scaling with and without cluster detection using the geometric crite-
rion at 200000 time-steps for 256000 ethane molecules

2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8
2^−12

2^−10

2^−8

2^−6

2^−4

2^−2

2^0

2^2

2^4

2^6

Number of cores

R
u

n
ti

m
e
 (

s
e
c
)

 

 

Total time

Total cluster detection

Communication time

Global cluster detection

Local cluster detection

Figure 4.14.: Times for the components of the cluster detection in the strong scaling analy-
sis with 256000 ethane molecules compared to the overall runtime of the
computation

relevant changes for the simulation with nucleation at 200000 time-steps.

40



4.4. Scalability

2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8
2^−1

2^−0.5

2^0

2^0.5

2^1

2^1.5

2^2

2^2.5

2^3

2^3.5

2^4

Number of cores

R
u

n
ti

m
e
 (

s
e
c
)

 

 
With cluster detection

Without cluster detection

Ideal scaling

Figure 4.15.: Weak scaling with and without cluster detection using the geometric criterion
at 200000 time-steps and 1000 molecules per processor for ethane

2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8
2^−12

2^−10

2^−8

2^−6

2^−4

2^−2

2^0

2^2

2^4

2^6

2^8

2^10

Number of cores

R
u

n
ti

m
e
 (

s
e
c
)

 

 

Total time

Total cluster detection

Communication time

Global cluster detection

Local cluster detection

Figure 4.16.: Times for the components of the cluster detection in the weak scaling analysis
with 1000 ethane molecules per processor compared to the overall runtime of
the computation

Overall the overhead analysis shows promising results, especially for ethane.

41



4. Results

2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8
−10

0

10

20

30

40

50

60

70

80

90

100

Number of cores

O
v
e
rh

e
a
d
 (

%
)

Figure 4.17.: Relative overhead with nucleation at 200000 time-steps for ethane

4.5. Evaluation of the clustering algorithm

4.5.1. Problems

In this section a conceptual problem of the parallelization algorithm is outlined. Since the
whole parallel algorithm relies on the unique particle pairs, both processors have to be able
to calculate the same pairs in every scenario. However, in one very rare case the design
of the algorithm fails to identify the same particle pairs on every processor. One of this
problematic cluster, also referred as ”banana cluster”, is visualized in Fig. 4.18.

The problem arises if one processor (here P2) can not determine that two parallel clusters
which are not connected within the local domain are connected to the same cluster on the
neighbouring processor. Since the neighbouring processor (here P1) correctly identifies the
whole cluster, it only uses one unique particle pair (BE), whereas P2 chooses two unique
pairs (BE and CD). The reason for the problem is that P2 is not able to detect the connection
of B and C over A, as only the border area is saved in the halo region. As a consequence,
the createGraph method cannot find the right matches and the cluster detection returns
wrong results for such ”banana clusters”. In the implementation this problem produces
unresolved particle pairs within the createGraph method (see section 3.2.5) and as a con-
sequence some parts of a cluster cannot be merged during the global depth-first search.
Although this problem exists, it is not significant for most scenarios. The problem was not
detected in small scenarios, but in simulations with at least 128000 particles. Furthermore,
the problem only arises in very few time-steps and mostly in coagulation processes (see
Fig. 4.19). In this few situations the overall number of clusters is not significantly biased,
as the complete number of clusters outweighs the number of problematic cases.

42



4.5. Evaluation of the clustering algorithm

P1 P2

A

B

C D

E

Figure 4.18.: Problematic case of the parallel algorithm for two processors: P1 and P2. P1
chooses the green bond to connect the clusters, whereas P2 chooses the two
blue bonds. The dotted lines indicate the linked cells of the border layers.

Figure 4.19.: An example for a ”banana cluster” during a coagulation process where the
method fails to determine correct bonds. The domain borders are marked by
the straight line and the first layer of linked cells by a dashed line.

43



4. Results

Nevertheless for very huge scenarios, e.g. trillions of particles as mentioned in the intro-
duction, and for molecules which form non-spherical clusters, this problem might occur
more often. For this reason a solution is outlined which can be integrated in the paral-
lel algorithm. The main idea is to build the particle pairs for subsets of the cluster in the
halo and boundary layers, which are known to both processors, in order to verify that
the neighboring processor can collapse down to the same number of parallel edges. One
possibility to achieve this is to save all the edges from the boundary to the halo during
the first depth-first search. Next, an additional depth-first search is started from all these
edges, traversing only edges within the border and halo regions, to determine whether a
path connecting the cluster components is fully contained in the halo and boundary layer.
The results are different connected components which can be reliably detected from both
processors. Hence, for every subset a unique pair is chosen which solves the problematic
case. In the example shown earlier the graph for searching the new particle pairs is given
in Fig. 4.20.

P1 P2

B

C D

E

Figure 4.20.: Restricted search space within the border and halo area for the determination
of the unique particle pairs. Both processors determine the same particle pairs
connected by the blue bonds.

The problematic node A does not appear anymore in the process of assigning the particle
pairs and therefore both processors choose the same bonds.

This solution is currently not implemented in MarDyn, but this problem will be ad-
dressed in future works. It should be noted that all performance measurements for argon
were applied for simulations where this problematic case did not appear to not falsify the
results. In the case of ethane, the problematic case only occurred in case of 128000 and
256000 particles.

44



4.5. Evaluation of the clustering algorithm

4.5.2. Advantages

Despite the current problems of the method, it has several advantages. The concept of the
two combined depth-first searches results in a method which is easy to understand and
easy to implement. In addition, the number of communication steps is fixed and does not
increase with the problem size as the method described by Kible [18]. This reduces the
overall runtime and the parallel overhead.

Another advantage is the use of a depth-first search which enables the possibility to
perform a local biconnectivity detection by counting the depth (see [18] and references
therein). As a result a more reliable cluster detection can be implemented with little com-
putational overhead. For parallel clusters a biconnectivity detection will be researched in
the future.

Furthermore there is no need for unique cluster ids in this implementation and cluster
ids do not have to be exchanged between processors as in Kible’s work [18], which reduces
the runtime. If such unique global cluster ids are needed in future works, this feature
can be integrated in the algorithm by sending the local cluster ids in the communication
step. After this step the master processor only needs to merge the local clusters and create
unique cluster ids for the whole domain. These ids could then be sent back to the different
processors.

Finally, the clustering algorithm is not limited to the coarse grained depth-first search.
Based on the coarsening of the graph, all existing methods could be implemented to do
the cluster detection. For example the iterative method could operate on the coarse graph
construction. As a result the method is highly flexible and can be extended by further
cluster detection algorithms.

45





5. Summary and outlook

5.1. Summary

A parallel algorithm for the cluster detection using a new coarsening strategy was intro-
duced and evaluated. The performance analysis showed that the results of the methods
agree with the theory and the simulation results of other works. Moreover the scalability
results showed the potential of the method. Although the scaling of the local search was
equivalent to the scaling without cluster detection, the communication time and the global
depth-first search introduce a bottleneck for larger scenarios and the simulation with many
cores. However, for more complex simulation with multiple Lennard-Jones centers, which
are of most interest for industrial application, this effect only occurs for large numbers of
cores. Further optimizations, as described in the next section, should reduce the effect of
the global depth-first search on the scalability.

Another current weakness of the model is caused by unresolved particle pairs during
the preparation of the second depth-first search which only happens in rare cases with so
called ”banana clusters”. Even though this conflicts with the theoretical correctness, the
overall results are only influenced by a very small factor. Nevertheless a solution for the
problem was outlined which solves this issue.

5.2. Outlook

The new coarsening strategy enables the possibility for many further optimizations which
can be implemented in future works. One of the most important factors is the integration
of a load balancing approach, as without load balancing the scaling of the complete simula-
tion is limited by the current implementation without cluster detection. Buchholtz [7] has
done some research on load balancing within MarDyn and showed that the use of KD-trees
is an efficient load balancing strategy for nucleation scenarios. The KD-Decomposition is
already implemented in MarDyn. However, the cluster detection needs to be adapted to
the KD-Decomposition since the number of neighbors may vary with KD-trees, in con-
trast to the regular Domain Decomposition with exactly 26 neighbors. Another important
task is the implementation of the solution for the problematic case caused by unresolved
particle pairs (see section 4.5.1).

Regarding the scalability of the cluster detection many optimizations could be applied to
the existing method. For example a new data structure for the communication can be im-
plemented with less memory consumption which would reduce the bottleneck produced

47



5. Summary and outlook

by the communication. Moreover, the global cluster detection could be done by a dedi-
cated master processor which could also do further more complex analysis of the whole
nucleation process. For very large numbers of processors, however, further master proces-
sors may be needed to not affect the scalability. Therefore, the method could be optimized
by using a multi-layered hierarchical approach instead of the one-layered approach with
only one master processor, as explained in section 2.4.2, which would reduce the sequential
part of the algorithm. However, this approach would take more than one communication
step and further performance analysis need to evaluate if the method provides efficient
results within MarDyn.

48



Appendix

49





A. Source Code

This chapter contains excerpts from the implemented source code.

A.1. Parallel cluster communication

1 unsigned long Paral lelClusterCommunicat ion : : doClusterCommunication (
2 std : : vector<std : : pair<unsigned long ,
3 std : : pair<unsigned long , unsigned long> * > >& p a r a l l e l C l u s t e r ,
4 unsigned long numberOfClusters ){
5

6 / / g e t t h e number o f MPI t h r e a d s
7 i n t numberOfThreads ;
8 MPI Comm size (MPI COMM WORLD, &numberOfThreads ) ;
9 / / i n i t i a l i z e t h e two r e c e i v e b u f f e r s

10 unsigned long * rbuf1 = new unsigned long [ 2 * numberOfThreads ] ;
11 / / a s s i g n NULL −> on ly v a l i d e r e c e i v e b u f f e r a t m as t e r
12 unsigned long * rbuf2 =NULL;
13 / / i n i t i a l i z e t h e l e n g t h B u f f e r f o r t h e Gatherv
14 i n t * l e ng thB uf f e r = new i n t [ numberOfThreads ] ;
15

16 / / g e t number o f l o c a l p a r a l l e l c l u s t e r s
17 const unsigned long k = p a r a l l e l C l u s t e r . s i z e ( ) ;
18 unsigned long c l u s t e r s [ 2 ] ;
19 / / number o f p a r a l l e l c l u s t e r s
20 c l u s t e r s [0 ]= k ;
21 / / number o f l o c a l c l u s t e r s a b o v e c r i t i c a l s i z e
22 c l u s t e r s [1 ]= numberOfClusters ;
23 MPI Gather ( c l u s t e r s , 2 , MPI UNSIGNED LONG, rbuf1 ,
24 2 ,MPI UNSIGNED LONG, 0 , MPI COMM WORLD) ;
25 / / g e t t h e rank o f t h e c u r r e n t MPI p r o c e s s
26 i n t rank ;
27 MPI Comm rank (MPI COMM WORLD, &rank ) ;
28 / / i n i t i a l i z e t h e o f f s e t a r r a y f o r t h e Gatherv
29 i n t * o f f s e t = NULL;
30 / / p o s i t i o n f o r t h e r e c e i v i n g d a t a o f t h e Gatherv

51



A. Source Code

31 i n t p o s i t i o n = 0 ;
32 / / number o f a l l l o c a l c l u s t e r s a b o v e t h e
33 / / c r i t i c a l s i z e o f a l l MPI p r o c e s s e s
34 numberOfClusters =0;
35 i f ( rank == 0){ / / ma s t e r
36 / / c a l c u l a t e o f f s e t a r r a y
37 o f f s e t = new i n t [ numberOfThreads ] ;
38 for ( i n t i =0 ; i< numberOfThreads ; i ++){
39 / / s e t o f f s e t t o c u r r e n t p o s i t i o n
40 o f f s e t [ i ] = p o s i t i o n ;
41 / / i n c r e a s e p o s i t i o n by t h e number
42 / / o f p a r a l l e l c l u s t e r s o f p r o c e s s i ;
43 / / s i z e o f a c l u s t e r i s 53 uns igned l ong
44 p o s i t i o n += ( i n t ) rbuf1 [ 2 * i ] * 5 3 ;
45 / / s e t l e n g t h b u f f e r a c c o r d i n g t o
46 / / t h e p a r a l l e l c l u s t e r s o f p r o c e s s i
47 l e ng thB uf fe r [ i ] = ( i n t ) rbuf1 [ 2 * i ] * 5 3 ;
48 / / add number o f l o c a l c l u s t e r s o f p r o c e s s i
49 numberOfClusters += rbuf1 [ 2 * i + 1 ] ;
50 }
51 / / a r r a y s i z e = l a s t p o s i t i o n v a l u e
52

53 rbuf2 = new unsigned long [ p o s i t i o n ] ;
54 }
55 / / c o l l e c t p a r a l l e l c l u s t e r s in send b u f f e r
56 unsigned long * sendBuf = new unsigned long [ k * 5 3 ] ;
57 for ( unsigned long i =0 ; i<k ; i ++){
58 sendBuf [ i * 5 3 ] = p a r a l l e l C l u s t e r [ i ] . f i r s t ;
59 for ( i n t j =0 ; j <26; j ++){
60 sendBuf [ i *53+2* ( j )+1]= p a r a l l e l C l u s t e r [ i ] . second [ j ] . f i r s t ;
61 sendBuf [ i *53+2* ( j +1)]= p a r a l l e l C l u s t e r [ i ] . second [ j ] . second ;
62 }
63 }
64 / / sendData
65 MPI Gatherv ( sendBuf , k * 5 3 ,MPI UNSIGNED LONG, rbuf2 , lengthBuffer ,
66 o f f s e t , MPI UNSIGNED LONG, 0 ,MPI COMM WORLD) ;
67

68 i f ( rank ==0){ / / ma s t e r
69 / / w r i t e d a t a i n t o p a r a l l e l C l u s t e r
70 for ( i n t i =k ; i<p o s i t i o n /53; i ++){
71 / / r e a d c l u s t e r S i z e o f c u r r e n t p a r a l l e l c l u s t e r
72 unsigned long s i z e = rbuf2 [ i * 5 3 ] ;

52



A.2. Local depth-first search for the parallel algorithm

73 / / r e a d p a r a l l e l e d g e s
74 std : : pair<unsigned long , unsigned long> * edges =
75 new std : : pair<unsigned long , unsigned long > [ 2 6 ] ;
76 for ( i n t j =0 ; j <26; j ++){
77 std : : pair<unsigned long , unsigned long> edge =
78 std : : make pair ( rbuf2 [ i *53+2* ( j ) + 1 ] ,
79 rbuf2 [ i *53+2* ( j + 1 ) ] ) ;
80 edges [ j ]= edge ;
81 }
82 / / i n s e r t p a r a l l e l c l u s t e r i n t o p a r a l l e l c l u s t e r v e c t o r
83 p a r a l l e l C l u s t e r . push back ( std : : make pair ( s ize , edges ) ) ;
84 }
85 / / f r e e a r r a y s
86 delete [ ] rbuf2 ;
87 delete [ ] o f f s e t ;
88 }
89 / / f r e e a r r a y s
90 delete [ ] rbuf1 ;
91 delete [ ] sendBuf ;
92 delete [ ] l en gth Bu f fe r ;
93 / / r e t u r n t h e t o t a l number o f a l l l o c a l c l u s t e r s
94 / / a b o v e t h e c r i t i c a l s i z e from a l l MPI p r o c e s s e s
95 return numberOfClusters ;
96 }

A.2. Local depth-first search for the parallel algorithm

1 unsigned long ComponentCalculator : : d e p t h F i r s t (
2 std : : vector<std : : pair<unsigned long , s td : : pair<
3 unsigned long , unsigned long> *> >& p a r a l l e l C l u s t e r ){
4 / / i n i t i a l i d 100 t o b e t t e r s e p a r a t e i t l a t e r
5 / / v i s u a l l y from t h e i d 0 from c l u s t e r s o f s i z e 0
6 i n t id = 1 0 0 ;
7 / / c u r r e n t c l u s t e r s i z e
8 unsigned long c l u s t e r S i z e ;
9 / / number o f c l u s t e r s a b o v e c r i t i c a l s i z e

10 unsigned long c l u s t e r s =0;
11 / / p a r a l l e l i n d i c a t e s i f p a r a l l e l c l u s t e r was found ;
12 / / i n i t i a l l y p a r a l l e l i s s e t t o t r u e so
13 / / t h a t i n i t i a l p a r a l l e l E d e s a r r a y i s a l l o c a t e d
14 p a r a l l e l = t rue ;
15 / / i n d i c a t e s i f p a r a l l e l E d g e s a r r a y i s i n i t i a l i z e d

53



A. Source Code

16 bool c r e a t e d P a r a l l e l E d g e s = f a l s e ;
17 / / c u r r e n t v e r t e x i d
18 unsigned long ver tex ;
19 / / t r a v e r s e a l l i n t e r a c t i n g Nodes
20 for ( unsigned long i =0 ; i<boundedPart ic les . s i z e ( ) ; i ++){
21 / / s e l e c t nex t v e r t e x
22 ver tex = boundedPart ic les [ i ] ;
23 i f ( v i s i t e d [ ver tex ] == −1){ / / t r a v e r s e on ly u n v i s i t e d nodes
24 i f ( p a r a l l e l ){
25 / / i n i t i a l i z e new p a r a l l e l E d g e s a r r a y
26 p a r a l l e l E d g e s =
27 new std : : pair<unsigned long , unsigned long> [ 2 6 ] ;
28 for ( i n t j =0 ; j <26; j ++){
29 / / d e f a u l t v a l u e s ULONG MAX
30 p a r a l l e l E d g e s [ j ]= std : : make pair (ULONG MAX,ULONG MAX) ;
31 }
32 / / r e s e t p a r a l l e l and s e t c r e a t e d P a r a l l e l E d g e s
33 p a r a l l e l = f a l s e ;
34 c r e a t e d P a r a l l e l E d g e s = t rue ;
35 }
36 / / d e p t h f i r s t s e a r c h from c u r r e n t v e r t e x
37 c l u s t e r S i z e = search ( vertex , id ) ;
38 i f ( ! p a r a l l e l ){ / / no p a r a l l e l c l u s t e r
39 / / push t h e s i z e and i n c r e a s e
40 / / c l u s t e r s i f a b o v e c r i t i c a l s i z e
41 s i z e . push back ( c l u s t e r S i z e ) ;
42 i f ( c l u s t e r S i z e >= c r i t i c a l S i z e ){
43 c l u s t e r s ++;
44 }
45 }
46 e lse { / / p a r a l l e l c l u s t e r
47 / / i n s e r t i n t o p a r a l l e l c l u s t e r s
48 p a r a l l e l C l u s t e r . push back (
49 std : : make pair ( c l u s t e r S i z e , p a r a l l e l E d g e s ) ) ;
50 / / r e s e t c r e a t e d P a r a l l e l E d g e s
51 c r e a t e d P a r a l l e l E d g e s = f a l s e ;
52 }
53 / / i n c r e m e n t c l u s t e r i d
54 id ++;
55 }
56 }
57

54



A.2. Local depth-first search for the parallel algorithm

58 i f ( c r e a t e d P a r a l l e l E d g e s ){ / / d e l e t e unused p a r a l l e l E d g e s a r r a y
59 delete [ ] p a r a l l e l E d g e s ;
60 }
61 return c l u s t e r s ;
62

63 }
64

65

66 unsigned long ComponentCalculator : : search ( unsigned long vertex ,
67 unsigned long id ){
68 i f ( v i s i t e d [ ver tex ] != −1){ / / s k i p v i s i t e d nodes
69 return 0 ;
70 }
71 / / b o o l e a n t h a t c h e c k s i f v e r t e x i s in h a l o a r e a
72 bool inHalo = f a l s e ;
73 / / b o o l e a n t h a t c h e c k s i f v e r t e x not in h a l o a r e a
74 bool notInHalo = f a l s e ;
75 / / s e t v e r t e x v i s i t e d and s a v e c l u s t e r i d
76 v i s i t e d [ ver tex ] = id ;
77 / / s e t c o u n t e r t o one b e c a u s e c u r r e n t edge was not v i s i t e d
78 / / n e e d s t o be d e c r e a s e d a g a i n i f t h i s i s a h a l o c e l l
79 unsigned long c l u s t e r S i z e = 1 ;
80

81 / / s e a r c h through e d g e s which e n t e r
82 / / h a l o o r a r e in t h e h a l o a r e a
83 std : : vector<std : : pair<unsigned long ,
84 std : : pair<unsigned short , unsigned short> > > : : i t e r a t o r
85 itHaloBoundary ( haloEdges [ ver tex ] . begin ( ) ) ;
86

87 while ( itHaloBoundary != haloEdges [ ver tex ] . end ( ) ) {
88 / / g e t l o c a t i o n s o f t h e m o l e c u l e s : h a l o v a l u e s s t a r t a t 2
89 unsigned short currentLocat ion =
90 ( ( * itHaloBoundary ) . second ) . f i r s t ;
91 unsigned short nextLocat ion =
92 ( ( * itHaloBoundary ) . second ) . second ;
93 unsigned long nextVertex = ( * itHaloBoundary ) . f i r s t ;
94 i f ( currentLocat ion < 2){ / / p a r a l l e l edge t o h a l o
95 i f ( nextLocat ion < 2){
96 / / c anno t happen s i n c e i t i s an p a r a l l e l edge
97 std : : cout<< ” Error ” ;
98 throw ;
99 }

55



A. Source Code

100 / / no t in Halo s i n c e l o c a t i o n < 2
101 notInHalo = t rue ;
102 / / p a r a l l e l s i n c e nex t l o c a t i o n > 2
103 p a r a l l e l = t rue ;
104 / / i n s e r t edge in p a r a l l e l e d g e s and s e t l o c a t i o n v a l u e s
105 i f ( p a r a l l e l E d g e s [ nextLocation −2] . f i r s t > ver tex ){
106 p a r a l l e l E d g e s [ nextLocation −2] . f i r s t = ver tex ;
107 }
108 i f ( p a r a l l e l E d g e s [ nextLocation −2] . second > nextVertex ){
109 p a r a l l e l E d g e s [ nextLocation −2] . second = nextVertex ;
110 }
111 }
112 e lse { / / c u r r e n t v e r t e x i s in h a l o
113 inHalo = t rue ;
114 i f ( nextLocat ion < 2){ / / incoming edge from h a l o
115 p a r a l l e l = t rue ;
116 / / i n s e r t edge in p a r a l l e l e d g e s and s e t l o c a t i o n v a l u e s
117 i f ( p a r a l l e l E d g e s [ currentLocat ion −2] . f i r s t > nextVertex ){
118 p a r a l l e l E d g e s [ currentLocat ion −2] . f i r s t = nextVertex ;
119 }
120 i f ( p a r a l l e l E d g e s [ currentLocat ion −2] . second > ver tex ){
121 p a r a l l e l E d g e s [ currentLocat ion −2] . second = ver tex ;
122 }
123 }
124 / / i f c o m p l e t l y in h a l o do not
125 / / a d j u s t a n y t h i n g in p a r a l l e l E d g e s
126

127 }
128 c l u s t e r S i z e +=search ( nextVertex , id ) ;
129 itHaloBoundary ++;
130 }
131

132 / / s e a r c h through normal e d g e s
133 std : : vector<unsigned long > : : i t e r a t o r i t ( edges [ ver tex ] . begin ( ) ) ;
134 while ( i t != edges [ ver tex ] . end ( ) ) {
135 c l u s t e r S i z e +=search ( * i t , id ) ;
136 i t ++;
137 / / c u r r e n t v e r t e x not in h a l o i f normal edge e x i s t s
138 notInHalo = t rue ;
139 }
140 / / d e c r e a s e c o u n t e r a g a i n i f v e r t e x
141 / / a p p e a r e d on ly in h a l o r e g i o n

56



A.3. Create graph

142 i f ( inHalo && ! notInHalo ) {
143 c l u s t e r S i z e −−;
144 }
145 / / r e t u r n c l u s t e r s i z e
146 return c l u s t e r S i z e ;
147 }

A.3. Create graph

1 void ComponentCalculator : : createGraph ( unsigned long numParticles ,
2 std : : vector<std : : pair<unsigned long ,
3 std : : pair<unsigned long , unsigned long> * > >& p a r a l l e l C l u s t e r ,
4 std : : vector<unsigned long> * p a r a l l e l E d g e s ){
5 / / i t e r a t o r f o r t h e p a r a l l e l c l u s t e r s
6 std : : vector<std : : pair<unsigned long ,
7 std : : pair<unsigned long , unsigned long> * > > : : i t e r a t o r
8 i t ( p a r a l l e l C l u s t e r . begin ( ) ) ;
9 / / c l u s t e r i d an l o o p v a r i a b l e

10 unsigned long i = 0 ;
11 / / number o f u n r e s o l v e d matches
12 unsigned long unresolvedMatches =0;
13 / / s i z e s o f t h e c l u s t e r s
14 / / c l u s t e r S i z e [ i ] = s i z e o f t h e i−th c l u s t e r in p a r a l l e l C l u s t e r s
15 p a r a l l e l C l u s t e r S i z e s . r e s i z e ( p a r a l l e l C l u s t e r . s i z e ( ) ) ;
16 while ( i t != p a r a l l e l C l u s t e r . end ( ) ) {
17 / / a s s i g n c l u s t e r s i z e
18 p a r a l l e l C l u s t e r S i z e s [ i ] = ( * i t ) . f i r s t ;
19 / / g e t t h e v e c t o r o f p a r a l l e l e d g e s
20 std : : pair<unsigned long , unsigned long> * edges = ( * i t ) . second ;
21 for ( i n t j =0 ; j <26; j ++){
22 i f ( edges [ j ] . f i r s t != ULONG MAX){ / / on ly c h e c k e x i s t i n g e d g e s
23 / / i n d i c a t e s i f c u r r e n t bond i s a l r e a d y c o n t a i n e d
24 bool match= f a l s e ;
25 / / p o s i t i o n o f match
26 unsigned long p o s i t i o n = 0 ;
27 / / s e a r c h f o r e x i s t i n g match
28 for ( unsigned long k =1;
29 k<matchArray [ edges [ j ] . f i r s t ] . s i z e ( ) ; k+=2){
30 i f ( matchArray [ edges [ j ] . f i r s t ] [ k ] == edges [ j ] . second
31 && matchArray [ edges [ j ] . f i r s t ] [ k+1] != ULONG MAX){
32 / / match found
33 match = t rue ;

57



A. Source Code

34 p o s i t i o n = k +1;
35 break ;
36 }
37 }
38 i f ( ! match ){
39 / / add p a r t i c l e p a i r t o t h e s p a r s e ma t r ix
40 matchArray [ edges [ j ] . f i r s t ] . push back ( edges [ j ] . second ) ;
41 / / add c l u s t e r i d
42 matchArray [ edges [ j ] . f i r s t ] . push back ( i ) ;
43 / / i n c r e a s e t h e u n r e s o l v e d matches
44 / / c o u n t e r a t p o s i t i o n 0
45 matchArray [ edges [ j ] . f i r s t ] [ 0 ] + + ;
46 / / add p a r t i c l e p a i r t o t h e s p a r s e ma t r ix
47 matchArray [ edges [ j ] . second ] . push back ( edges [ j ] . f i r s t ) ;
48 / / add c l u s t e r i d
49 matchArray [ edges [ j ] . second ] . push back ( i ) ;
50 / / i n c r e a s e t h e u n r e s o l v e d matches
51 / / c o u n t e r a t p o s i t i o n 0
52 matchArray [ edges [ j ] . second ] [ 0 ] + + ;
53 / / i n c r e a s e t o t a l c o u n t e r o f u n r e s o l v e d matches
54 unresolvedMatches ++;
55 }
56 e lse { / / match found
57 / / s a v e new edge be tween t h e
58 / / two p a r a l l e l c l u s t e r s
59 / / in p a r a l l e l e d g e s matchArray
60 p a r a l l e l E d g e s [ matchArray [ edges [ j ] . f i r s t ]
61 [ p o s i t i o n ] ] . push back ( i ) ;
62 p a r a l l e l E d g e s [ i ] . push back (
63 matchArray [ edges [ j ] . f i r s t ] [ p o s i t i o n ] ) ;
64

65 / / make found bonds i n v a l i d
66 matchArray [ edges [ j ] . f i r s t ] [ p o s i t i o n ] = ULONG MAX;
67

68 / / s e a r c h f o r s e c o n d e n t r y and make i t i n v a l i d
69 for ( unsigned long k =1;
70 k<matchArray [ edges [ j ] . second ] . s i z e ( ) ; k+=2){
71 i f ( matchArray [ edges [ j ] . second ] [ k]== edges [ j ] . f i r s t ){
72 p o s i t i o n = k +1;
73 break ;
74 }
75 }

58



A.3. Create graph

76 matchArray [ edges [ j ] . second ] [ p o s i t i o n ] = ULONG MAX;
77 / / d e c r e a s e t h e u n r e s o l v e d matches
78 / / v a l u e o f t h e v e r t e x ;
79 / / d e l e t e v e c t o r in matchArray
80 / / i f no u n r e s o l v e d match l e f t
81 matchArray [ edges [ j ] . f i r s t ][0]−− ;
82 i f ( matchArray [ edges [ j ] . f i r s t ] [ 0 ] == 0){
83 matchArray [ edges [ j ] . f i r s t ] . c l e a r ( ) ;
84 matchArray [ edges [ j ] . f i r s t ] . push back ( 0 ) ;
85 }
86 matchArray [ edges [ j ] . second ][0]−− ;
87 i f ( matchArray [ edges [ j ] . second ] [ 0 ] == 0){
88 matchArray [ edges [ j ] . second ] . c l e a r ( ) ;
89 matchArray [ edges [ j ] . second ] . push back ( 0 ) ;
90 }
91 / / d e c r e a s e t h e t o t a l u n r e s o l v e d matches
92 unresolvedMatches−−;
93 }
94 }
95 }
96 i t ++;
97 i ++;
98 }
99 i f ( unresolvedMatches != 0){ / / e r r o r c a s e

100 / / d e l e t e a l l e d g e s
101 for ( unsigned long i =0 ; i<numMolecules ; i ++){
102 i f ( array [ i ] [ 0 ] != 0){ / / d e l e t e r ema in ing p a i r s
103 std : : cout << ”\n” ; * /
104 array [ i ] . c l e a r ( ) ;
105 array [ i ] . push back ( 0 ) ;
106 }
107 }
108

109 / / throw e x c e p t i o n or i g n o r e
110 }
111 }

59





Bibliography

[1] Boost library - documentation. http://www.boost.org/doc/. (accessed on
30.08.2014).

[2] Paraview - documentation. http://www.paraview.org/documentation/. (accessed
on 30.08.2014).

[3] Munich centre of advanced computing. http://www.mac.tum.de/wiki/index.php,
February 2014. (accessed on 01.09.2014).

[4] Supermuc petascale system. http://www.lrz.de/services/compute/supermuc/,
August 2014. (accessed on 01.09.2014).

[5] F. F. Abraham. Chapter 1 - The Nature of the Nucleation Process. Academic Press, 1974.

[6] P. Allen and D.J. Tildesley. Computer simulation of liquids. Oxford science publications.
Clarendon Press, 1987.

[7] M. Buchholz. Framework zur Parallelisierung von Molekulardynamiksimulationen in ver-
fahrenstechnischen Anwendungen. Verlag Dr. Hut, 2010.

[8] M. Buchholz, H.-J. Bungartz, and J. Vrabec. Software design for a highly parallel
molecular dynamics simulation framework in chemical engineering. Journal of Com-
putational Science, 2(2):124 – 129, 2011. Simulation Software for Supercomputers.

[9] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction To Algorithms. MIT
Press, 2001.

[10] W. Eckhardt, A. Heinecke, R. Bader, M. Brehm, N. Hammer, H. Huber, H.-G. Klein-
henz, J. Vrabec, H. Hasse, M. Horsch, M. Bernreuther, C. W. Glass, C. Niethammer,
A. Bode, and H.-J. Bungartz. 591 TFLOPS Multi-trillion Particles Simulation on Super-
MUC, volume 7905 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2013.

[11] A. Fladerer. Keimbildung und Tröpfchenwachstum in übersättigtem Argon-Dampf - Kon-
struktion einer kryogenen Nukleationspulskammer. PhD thesis, University of Cologne,
2002.

61



Bibliography

[12] L. K. Fleischer, B. Hendrickson, and A. Pınar. On identifying strongly connected com-
ponents in parallel. In José Rolim, editor, Parallel and Distributed Processing, volume
1800 of Lecture Notes in Computer Science, pages 505–511. Springer Berlin Heidelberg,
2000.

[13] Message Passing Interface Forum. Mpi: A message-passing interface standard ver-
sion 3.0, 2012.

[14] M. Griebel, S. Knapek, and G. Zumbusch. Numerical Simulation in Molecular Dynamics.
Springer Verlag, 2007.

[15] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering algorithm.
Applied Statistics, 28(1):100–108, 1979.

[16] T. L. Hill. Molecular clusters in imperfect gases. The Journal of Chemical Physics,
23(4):617–622, 1955.

[17] M. Horsch, J. Vrabec, M. Bernreuther, S. Grottel, G. Reina, A. Wix, K. Schaber, and
H. Hasse. Homogeneous nucleation in supersaturated vapors of methane, ethane,
and carbon dioxide predicted by brute force molecular dynamics. The Journal of Chem-
ical Physics, 128(16):–, 2008.

[18] R. Kible. Clusteringalgorithmen zur keimdetektion in gasen. Master’s thesis, Univer-
sity of Stuttgart, Holzgartenstr. 16, 70174 Stuttgart, 2006.

[19] F. Knop and V. Rego. Parallel labeling of three-dimensional clusters on networks of
workstations. Journal of Parallel and Distributed Computing, 49(2):182 – 203, 1998.

[20] L. A. Pugnaloni and F. Vericat. New criteria for cluster identification in continuum
systems. The Journal of Chemical Physics, 116(3):1097–1108, 2002.

[21] J. Schluttig. A parallel cluster algorithm for monte carlo simulations applied to model
dna systems. Leipzig University.

[22] R. P. Sear. Nucleation: theory and applications to protein solutions and colloidal
suspensions. Journal of Physics: Condensed Matter, 19(3):033101, 2007.

[23] F. H. Stillinger. Rigorous basis of the frenkel-band theory of association equilibrium.
The Journal of Chemical Physics, 38(7):1486–1494, 1963.

[24] G. Stockman and L. G. Shapiro. Computer Vision. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1st edition, 2001.

[25] S. D. Stoddard. Identifying clusters in computer experiments on systems of particles.
Journal of Computational Physics, 27(2):291 – 293, 1978.

62



Bibliography

[26] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson. A computer simulation
method for the calculation of equilibrium constants for the formation of physical clus-
ters of molecules: Application to small water clusters. The Journal of Chemical Physics,
76(1):637–649, 1982.

[27] L. Verlet. Computer ”experiments” on classical fluids. i. thermodynamical properties
of lennard-jones molecules. Phys. Rev., 159:98–103, Jul 1967.

[28] J. Walter. Molekulare simulation und visualisierung der keimbildung in mischungen.
Master’s thesis, University of Stuttgart, June 2006.

[29] K. Yasuoka and M. Matsumoto. Molecular dynamics of homogeneous nucleation in
the vapor phase. i. lennard-jones fluid. The Journal of Chemical Physics, 109(19):8451–
8462, 1998.

63


	Acknowledgements
	Abstract
	Zusammenfassung
	Introduction
	Overview

	Theory
	Nucleation
	Molecular dynamics
	Force calculation
	Linked cell algorithm
	Periodic boundary condition
	Parallelization

	Clustering criteria
	Energy criterion
	Geometric criterion
	Hybrid criterion

	Cluster identification
	Sequential cluster identification
	Parallel cluster identification

	MarDyn
	Relation to connected component labeling

	Implementation
	Sequential cluster detection
	Implementation of the geometric criterion
	Depth-first cluster detection

	Parallel cluster detection
	General concept
	Evaluation of the geometric criterion in halo regions
	Local depth-first search
	Parallel cluster communication
	Global depth-first search
	Optimization
	Validation


	Results
	Simulation setup
	Visual verification
	Physical verification
	Scalability
	Strong scaling with argon
	Weak scaling of argon
	Performance analysis with ethane

	Evaluation of the clustering algorithm
	Problems
	Advantages


	Summary and outlook
	Summary
	Outlook

	Appendix
	Source Code
	Parallel cluster communication
	Local depth-first search for the parallel algorithm
	Create graph

	Bibliography


