
Appeared in:
J.M. Kunkel, T. Ludwig, and H.W. Meuer (Eds.): ISC 2014, LNCS 8488, pp. 1–18, 2014.
http://link.springer.com/chapter/10.1007%2F978-3-319-07518-1 1
c©Springer International Publishing Switzerland 2014

Sustained Petascale Performance of Seismic
Simulations with SeisSol on SuperMUC

Alexander Breuer1, Alexander Heinecke1, Sebastian Rettenberger1, Michael
Bader1, Alice-Agnes Gabriel2, and Christian Pelties2

1 Department of Informatics, Technische Universität München, Germany
2 Department of Earth and Environmental Sciences, Geophysics,

Ludwig-Maximilians-Universität München, Germany

Abstract. Seismic simulations in realistic 3D Earth models require peta-
or even exascale computing power to capture small-scale features of
high relevance for scientific and industrial applications. In this paper,
we present optimizations of SeisSol – a seismic wave propagation solver
based on the Arbitrary high-order accurate DERivative Discontinuous
Galerkin (ADER-DG) method on fully adaptive, unstructured tetrahe-
dral meshes – to run simulations under production conditions at petas-
cale performance. Improvements cover the entire simulation chain: from
an enhanced ADER time integration via highly scalable routines for mesh
input up to hardware-aware optimization of the innermost sparse-/dense-
matrix kernels. Strong and weak scaling studies on the SuperMUC ma-
chine demonstrated up to 90% parallel efficiency and 45% floating point
peak efficiency on 147k cores. For a simulation under production con-
ditions (108 grid cells, 5 · 1010 degrees of freedom, 5 seconds simulated
time), we achieved a sustained performance of 1.09 PFLOPS.

Keywords: seismic wave and earthquake simulations, petascale, vector-
ization, ADER-DG, parallel I/O

1 Introduction and Related Work

The accurate numerical simulation of seismic wave propagation through a re-
alistic three-dimensional Earth model is key to a better understanding of the
Earth’s interior. It is thus utilized extensively for earthquake simulation and seis-
mic hazard estimation and also for oil and gas exploration [15,34,47]. Although
the physical process of wave propagation is well understood and can be described
by a system of hyperbolic partial differential equations (PDEs), the numerical
simulation of realistic settings still poses many methodological and computa-
tional challenges. These may include complicated geological material interfaces,
faults, and topography. In particular, to resolve the high-frequency content of
the wave field, which is desired for capturing crucial small-scale features, compu-
tational resources on peta- and probably exascale level are required [16, 28, 45].
Therefore, respective simulation software must be based on geometrically flex-
ible and high-order accurate numerical methods combined with highly scalable
and computationally efficient parallel implementations.
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In this paper we present optimizations of the seismic wave propagation soft-
ware SeisSol to realize such high-order adaptive simulations at petascale perfor-
mance. SeisSol is based on the Arbitrary high-order accurate DERivative Discon-
tinuous Galerkin (ADER-DG) method on unstructured tetrahedral meshes [8].
It has been successfully applied in various fields of seismology [23,41,50], explo-
ration industry [24] and earthquake physics [36, 37, 39] – demonstrating advan-
tages whenever the simulations need to account for highly complicated geomet-
rical structures, such as topography or the shapes of geological fault zones.

With our optimizations, we consequently target high-frequency, large-scale
seismic forward simulations. To achieve high sustained performance on respective
meshes consisting of 108–109 elements with resulting small time step sizes, it is
essential to leverage all levels of parallelism on the underlying supercomputer to
their maximum extent. The related question of sustained peak performance on
application level has received growing interest over the last years [26, 33]. For
example, the BlueWaters project aims on sustained petascale performance on
application level and thus chose to not have their supercomputer listed in the
Top500 list [31], despite its aggregate peak performance of 13 PFLOPS.

The demand for sustained performance at the petascale and scaling to hun-
dreds of thousands of cores is also well reflected by related work on large-scale
seismic simulations. Cui et al. [5] demonstrated respective earthquake and seis-
mic hazard simulations, recently also utilizing heterogeneous platforms: for sim-
ulations on the GPU-accelerated Titan supercomputer, they reported a speed-up
of 5 due to using GPUs [4]. That the reported performance is less than 5% of
the theoretical peak performance of the GPU accelerators shows the challenge
of optimizing production codes for these platforms. SpecFEM [40], a well-known
community seismic simulation code, has been finalist in the Gordon Bell Award
2008 for simulations on 62k cores [3] and an achieved 12% peak performance
on the Jaguar system at Oak Ridge National Laboratory. In 2013, SpecFEM
was executed with 1 PFLOPS sustained performance on the BlueWaters super-
computer utilizing 693,600 processes on 21,675 compute nodes which provide
6.4 PFLOPS theoretical peak performance3.

To achieve sustained petascale performance with SeisSol, optimizations in
its entire simulation chain were necessary. In Sec. 2, we outline the ADER-DG
solver for the wave equations and present an improved ADER time integration
scheme that substantially reduced the time to solution for this component. Sec. 3
describes a highly-scalable mesh reader and the hardware-aware optimization of
innermost (sparse and dense) matrix operators – two key steps for realizing
simulations with more than a billion grid cells at a performance of 1.4 PFLOPS
(44% peak efficiency) on the SuperMUC machine. Respective strong and weak
scaling tests, as well as a high-resolution benchmark scenario of wave propagation
in the Mount Merapi volcano under production conditions, are presented in
Sec. 4.

3 http://www.ncsa.illinois.edu/news/stories/PFapps/
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2 An ADER-DG Solver for the Elastic Wave Equation

SeisSol solves the three-dimensional elastic wave equations, a system of hyper-
bolic PDEs, in velocity-stress formulation. In the following we give a short de-
scription of the fully-discrete update scheme, with focus on issues relevant for
implementation at high performance. Details about the mathematical derivation
of the underlying equations, handling of boundary conditions, source terms, vis-
coelastic attenuations, and more of SeisSol’s features, can be found in [7–9,25].

For spatial discretization SeisSol employs a high-order Discontinuous Galerkin
(DG) Finite Element method with the same set of hierarchical orthogonal poly-
nomials as ansatz and test functions [20,25] on flexible unstructured tetrahedral
meshes. For every tetrahedron Tk, the matrix Qk(t) contains the degrees of free-
dom (DOFs) that are the time-dependent coefficients of the modal basis on the
unique reference tetrahedron for all nine physical quantities (six stress and three
velocity components) [8]. The ADER time integration in SeisSol allows arbitrary
high order time discretization. Adopting the same convergence order O in space
and time results in convergence order O for the overall ADER-DG scheme. O = 5
and O = 6 are the typically chosen orders for production runs.

2.1 Compute Kernels and Discrete Update Scheme

The ADER-DG scheme in SeisSol is formulated as time, volume and boundary
integrations applied to the element-local matrices Qnk = Qk(tn), which contain
the DOFs for tetrahedron Tk at time step tn. Application of the different inte-
grations leads to the DOFs Qn+1

k at the next time step tn+1. In fully explicit
formulation each of these integration steps is formulated as a compute kernel
that may be expressed as a series of matrix-matrix multiplications.

Time Kernel: The first compute kernel, consisting of the ADER time integration,
derives an estimate I(tn, tn+1, Qnk ) of the DOFs Qnk integrated in time over the
interval [tn, tn+1]:

In,n+1
k := Ik(tn, tn+1, Qnk ) =

O−1∑
j=0

(tn+1 − tn)j+1

(j + 1)!

∂j

∂tj
Qk(tn), (1)

where the time derivates ∂j/∂tjQk(tn) are computed recursively by:

∂j+1

∂tj+1
Qk = −K̂ξ

(
∂j

∂tj
Qk

)
A?k − K̂η

(
∂j

∂tj
Qk

)
B?k − K̂ζ

(
∂j

∂tj
Qk

)
C?k , (2)

with initial condition ∂0/∂t0Qk(tn) = Qnk . Matrices K̂ξc = M−1(Kξc)T , with the
reference coordinates ξ1 = ξ, ξ2 = η and ξ3 = ζ, are the transpose of the stiffness
matrices Kξc over the reference tetrahedron multiplied (during preprocessing) by
the inverse diagonal mass matrix M−1. A?k, B?k and C?k are linear combinations
of the element-local Jacobians.
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Volume Kernel: SeisSol’s volume kernel Vk(In,n+1
k ) accounts for the local prop-

agation of the physical quantities inside each tetrahedron using the time inte-
grated unknowns I(tn, tn+1, Qnk ) computed by the time kernel expressed in Eqs.
(1) and (2):

Vk
(
In,n+1
k

)
= K̃ξ

(
In,n+1
k

)
A?k + K̃η

(
In,n+1
k

)
B?k + K̃ζ

(
In,n+1
k

)
C?k . (3)

Analog to the time kernel, the matrices K̃ξc = M−1Kξc are defined over the
reference tetrahedron. Matrices A?k, B?k and C?k are defined as in Eq. (2).

Boundary Kernel: The boundary integration connects the system of equations
inside each tetrahedron to its face-neighbors. Here the DG-characteristic Rie-
mann problem is solved, which accounts for the discontinuity between the ele-
ment’s own quantities and the quantities of its face-neighbors. The kernel uses
the time integrated DOFs In,n+1

k of the tetrahedron Tk itself and In,n+1
k(i) of the

four face-neighbors Tk(i), i = 1, . . . , 4:

Bk
(
In,n+1
k , In,n+1

k(1) , . . . , In,n+1
k(4)

)
=

4∑
i=1

(
M−1F−,i

)
In,n+1
k

(
|Sk|
|Jk|

Nk,iA
+
kN
−1
k,i

)

+

4∑
i=1

(
M−1F+,i,jk(i),hk(i)

)
In,n+1
k(i)

(
|Sk|
|Jk|

Nk,iA
−
k(i)N

−1
k,i

)
.

(4)
F−,i and F+,i,jk(i),hk(i) are 52 integration matrices defined over the faces of the
reference tetrahedron [8]. The choice of these matrices depends on the three
indices i = 1 . . . 4, jk(i) = 1 . . . 4 and hk(i) = 1 . . . 3, which express the dif-
ferent orientations of two neighboring tetrahedrons relative to each other with
respect to their projections to the reference tetrahedron [1]. Nk,iA

+
kN
−1
k,i and

Nk,iA
−
k(i)N

−1
k,i denote the element-local flux solvers, multiplied by the scalars

|Jk| and |Sk|, which are the determinant of the Jacobian of the transformation
to reference space ξ − η − ζ and the area of the corresponding face, during ini-
tialization. The flux solvers solve the face-local Riemann problems by rotating
the time integrated quantities to the face-local spaces and back via the transfor-
mation matrices Nk,i and N−1k,i .

Update Scheme: Combining time, volume and boundary kernel, we get the com-
plete update scheme from one time step level tn to the next tn+1:

Qn+1
k = Qnk − Bk

(
In,n+1
k , In,n+1

k(1) , . . . , In,n+1
k(4)

)
+ Vk

(
In,n+1
k

)
(5)

Matrix Computations: SeisSol’s update scheme is heavily dominated by matrix-
matrix operations. The size BO × BO of all matrices over the reference tetra-
hedron – K̂ξc , K̃ξc , F−,i and F+,i,jk(i),hk(i) – depends on the order O of the
scheme. In turn, the order O defines the number of used basis functions BO:
B1 = 1, B2 = 4, B3 = 10, B4 = 20, B5 = 35, B6 = 56, B7 = 84, . . .. The
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(a) Computation of the first time derivative ∂1/∂t1Qk.
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(b) Computation of the second derivative ∂2/∂t2Qk.

Fig. 1. First two recursions of the ADER time integration for a fifth-order method.
Orange blocks generate zero blocks in the derivatives, light-gray blocks hit zero blocks.

element-local matrices – A?, B?, C?, Nk,iA
+
kN
−1
k,i and Nk,iA

−
k(i)N

−1
k,i – are of

size 9× 9, which correlates to the nine quantities of the elastic wave equations.
A detailed description of the involved sparsity patterns is given in [1].

2.2 Efficient Evaluation of the ADER Time Integration

In this subsection, we introduce an improved scheme that reduces the compu-
tational effort of the ADER time integration formulated in [25] and in discrete
form in Sec. 2.1.

Analyzing the sparsity patterns of the involved stiffness matrices, we can
substantially reduce the number of operations in the ADER time integration.
This is especially true for high orders in space and time: The transposed stiffness
matrices (Kξ)T , (Kη)T and (Kζ)T of order O contain a zero block starting at
the first row that accounts for the new hierarchical basis functions added to
those of the preceding order O−1. According to Eq. (1) we have to compute the
temporal derivatives ∂j/∂tjQk for j ∈ 1 . . .O−1 by applying Eq. (2) recursively
to reach approximation order O in time.

The first step (illustrated in Fig. 1a) computes ∂1/∂t1Qk from the initial
DOFs Qnk . The zero blocks of the three matrices K̂ξc generate a zero block in the
resulting derivative and only the upper block of size BO−1×9 contains non-zeros.
In the computation of the second derivative ∂2/∂t2Qk we only have to account
for the top-left block of size BO−1 × BO−1 in the matrices K̂ξc . As illustrated
in Fig. 1b the additional non-zeros hit the previously generated zero block of
derivative ∂1/∂t1Qk. The following derivatives ∂j/∂tjQk for j ∈ 3 . . .O − 1
proceed analogously and for each derivative j only the K̂ξc -sub-blocks of size
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BO−j+1 × BO−j+1 have to be taken into account. Obviously, the zero blocks
also appear in the multiplication with the matrices A?, B? and C? from the
right and additional operations can be saved.

3 Optimizing SeisSol for Sustained Petascale Performance

In order to ensure shortest execution time and highest efficiency of SeisSol, all
levels of parallelism of the considered petascale machine have to be leveraged.
This starts with an efficient usage of the parallel file system and ends at a
carefully tuned utilization of each core’s vector instruction set. Additionally, we
have to ensure that the problem’s decomposition is efficiently mapped onto the
computing resources. The state-of-the-art is to join several thousands of shared
memory multi-core systems to large distributed-memory cluster installations.
This system layout needs to be addressed for best performance, cf. [42, 43]: the
shared memory within each node must be leveraged, which results in a faster
intra-node communication and less partitions of the problem under investiga-
tion. Friedley et al. [10] presented strategies on how to address the first item
within a pure distributed-memory programming model (MPI) [30]. Although
such an approach utilizes the fast shared memory for intra-node communica-
tions, it still requires a partitioning of the problem handling all processing ele-
ments separately. We address this issue in SeisSol by switching to the explicit
shared-memory programming model OpenMP [35] for parallel subtasks, such as
loops over all process-local elements or gathering elements from the unstructured
mesh into data exchange buffers.

In the following two subsections, we present the two major steps of our rig-
orous performance re-engineering process of turning SeisSol into a sustained
petascale application, even on entry-level petascale systems. First, we describe
how to read input data in a highly-parallel and efficient manner, and second, we
elaborate how to achieve close-to-peak node-level performance by a highly-tuned
BLAS3 implementation for dense and sparse matrix operations of small rank.

3.1 Highly Scalable Mesh Reader

SeisSol’s approach is especially well-suited for the simulation of seismic wave
propagation in highly complex geometries and heterogeneous 3D Earth mod-
els, relying on the flexibility offered by fully adaptive, unstructured tetrahedral
meshes [8]. Comparable approaches, which first generate coarse unstructured
meshes and successively refine these in a structured way (such as [2,13]), do not
provide the same approximation quality in terms of geometry and thus in the
accuracy of the obtained results [38].

SeisSol’s workflow for the generation and parallel input of high-resolution
discretization grids requires three main steps: (1) Starting from a sufficiently de-
tailed CAD model of the system geometry, a fully adaptive, unstructured tetra-
hedral mesh needs to be generated using a suitable meshing software; the desired
high-quality meshes (e.g., without degenerated mesh cells) consisting of 10s to
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100s of million mesh cells can only be generated by few packages – our preferred
software being SimModeler by Simmetrix4. The mesh information is stored to
be used for multiple simulations: for these mesh files we used the ASCII-based
GAMBIT format, so far. (2) To generate compact and balanced parallel parti-
tions, we use the multilevel k-way partitioning algorithm [21, 22] implemented
in ParMETIS (or similar partitioning software). The output is typically a par-
titioning file that maps each grid cell to a specific partition. (3) From the mesh
file and the partition-mapping file, not only the partitions need to be generated
for each MPI process, but also the communication structures and ghost layers
(virtual elements of neighboring MPI domains) for communication. In previous
versions of SeisSol, this step had been part of the initialization phase. However,
it limited simulations to meshes with only a few million grid cells, because com-
puting the required information did not scale to several thousand MPI ranks
and did not allow parallel I/O.

In order to retain the flexibility regarding mesh generator and partitioning
software for individual users, we decided not to integrate the mesh generator into
SeisSol, as for example proposed in [3]. Instead, we reorganized steps (2) and (3)
of our workflow into an offline part to compute partitions and communication
structures, and a highly-scalable input phase that remains in SeisSol.

In the offline part, we read the GAMBIT mesh file and use ParMETIS to
construct the so-called dual graph of the mesh. As the dual graph reflects the data
exchange between grid cells in the ADER-DG scheme, both the partitioning and
the computation of communication structures are based on this graph. After the
partitioning with ParMETIS, we sort the elements and vertices according to their
partition and duplicate vertices that belong to multiple partitions. The small
overhead due to boundary vertex doubling easily pays off by the simplifications
in the resulting new format. Then, we precompute the communication structures
and ghost layers required by SeisSol from the dual graph. The ordered elements
and vertices are stored together with the precomputed data in a customized
format. This new file format is based on netCDF [44], a generic binary file
format for multidimensional arrays that supports parallel I/O. Our offline tool
is parallelized to satisfy the memory requirements of large meshes. To convert a
mesh with 99,831,401 tetrahedral elements for our strong scaling setup (Sec. 4.2)
from GAMBIT to netCDF we required 47.8 minutes on 64 cores and consumed
32.84 GB memory. 65% of this time was spent reading the original file.

Reading the netCDF file during the redesigned input phase exploits netCDF’s
efficient MPI-I/O-based implementation and strongly profits from parallel file
systems available on the respective supercomputer. For our largest simulation
with a mesh of 8,847,360,000 tetrahedrons the parallel mesh input required only
23 seconds on 9,216 nodes (using the GPFS file system, see the description of
the weak scaling setup, Sec. 4.1).

4 http://simmetrix.com/
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3.2 (Sparse-)DGEMM Functions for Matrices of Small Rank

According to the equations and matrix structures elaborated in Sec. 2, several
matrix operations with different sparsity patterns and small ranks had to be op-
timized. Before the re-engineering process, SeisSol stored all sparse matrices in
a simple coordinate format, regardless of the actual sparsity pattern of a certain
matrix. Dense matrix structures were only used for the DOFs, Qk. The goal of
our optimization was to replace the kernel operations by high-performance and
specialized (sparse-)DGEMM functions within SeisSol. Throughout the integra-
tion schemes (compare Sec. 2.1), the following types of matrix-matrix multipli-
cations are required: sparse × dense = dense, dense × sparse = dense and dense
× dense = dense.

In previous work [1], we adopted the original approach of SeisSol and handled
all matrices except DOF matrices as sparse. Since the sparsity patterns of all
matrices are known up-front, we generated specialized sparse-DGEMM routines
that efficiently leverage the hardware’s vector instruction extensions. This was
achieved by hard-wiring the sparsity pattern of each operation into the generated
code through unrolling [29]. Note that such a generation has to take place in
an offline step, because compilers’ auto-vectorizer, source-to-source vectorizers
such as Scout [27] or highly-efficient BLAS libraries such as Intel MKL [19] or
Blaze [18] regard the index-structures of the sparse matrices as variables since
they are runtime parameters. Through this approach we were able to accelerate
SeisSol by a factor of 2.5–3.0 as presented in [1].

Besides handling either operand matrix A or B of a DGEMM call as sparse,
it is profitable to generate optimal code for dense matrix kernels as well, because
many of the operands feature dense blocks, cf. [32,49,53]. Due to the small size
of the matrices (56×56, 56×9, 9×9 for O = 6), calling highly-efficient BLAS3
functions offered by vendor implementations does not lead to satisfying results.
From Sec. 2 we know that the number of columns N of at least two operands is
always 9, so we hard-wired N = 9 into our code. Additionally, this optimization
prevents reusing inner-most block-operations of processing 4 × 4 blocks or 8 ×
4 blocks as proposed in [14, 54, 55]. However, we applied identical ideas to an
inner-most kernel of 12 × 3 blocks which perfectly match with the size of Intel’s
AVX registerfile (16 32-byte registers).

In order to select the fastest alternative between the operation-specific sparse
kernel and its highly-tuned dense counterpart, we extended our time, volume
and boundary kernels by a sparse-dense switch: during initialization we hard-
wire function pointers to an optimal matrix kernel (sparse or dense) for each
individual matrix operator appearing in the different kernels. In order to de-
cide whether sparse or dense kernels for a specific matrix lead to shorter time
to solution, we performed dry-runs on the first 100 time steps of the represen-
tative SCEC LOH.1 benchmark [6] with 7,252,482 elements for approximation
orders O ∈ {2, 3, . . . , 6}. Such a tuning process for linear algebra is well-known
from projects such as ATLAS [51, 52] or OSKI [48]. For each run we identified
the percentage of non-zeros required to make the corresponding matrix kernel
perform better as dense (instead of sparse) kernel. These automated training
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runs in the preparation phase of SeisSol returned the desired collection of kernel
operations that provides the shortest time to solution. The identified kernels
were used afterwards to compile the final SeisSol binary for a certain order of
approximation. A detailed discussion of this switch can be found in [17], which
in general suggests to switch to the discussed sparse computing kernels if more
than 80% of the matrix’s entries are zeros.

In conclusion we want to highlight that both of the implemented kernel vari-
ants support the improved ADER time integration scheme presented in Sec. 2.2.
This was realized by injecting jumps that skip the processing of unused sub-
blocks in the case of generated sparse-DGEMM kernels. When using their dense
counterpart, no change was required as our highly-optimized DGEMM kernel
features variable values for M and K (BLAS notation). However, M is rounded
towards the next multiple of the blocking width of our inner-most kernel. Such a
‘zero-padding’ is required to ensure best-possible performance, as it reduces the
complexity of the instruction mix and thus optimally exploits level 1 instruc-
tion caches. Note that such a rounding is not needed along K since there is no
vectorization in place.

4 Performance Evaluation on SuperMUC

In this section we analyze the behavior of SeisSol in strong and weak scaling
benchmarks executed on SuperMUC5 at Leibniz Supercomputing Centre. Su-
perMUC features 147,456 cores and is at present one of the biggest Intel Sandy
Bridge systems worldwide. It comprises two eight-core Intel Xeon E5-2680 pro-
cessors per node at 2.7 GHz. With a collective theoretical double-precision peak
performance of more than 3 PFLOPS, it was ranked #10 on the November 2013
Top500 list [31]. In contrast to supercomputers offered by Cray, SGI or IBM’s
BlueGene, the machine is based on a high-performance Infiniband commodity
network organized in a fat tree with 18 islands that consist of 512 nodes each. All
nodes can communicate within each island at full IB-FDR-10 data-rate. In case
of inter-island communication, four nodes share one uplink to the spine switch,
leading to reduced bandwidth for inter-island communication.

For all of the following results we derived the number of double-precision
floating point operations (FLOP) in a preprocessing step. In addition, we vali-
dated the obtained numbers by aggregating FLOP-counters integrated into Seis-
Sol’s compute kernels. We followed this combined approach for all strong-scaling
runs and small weak-scaling runs (< 512 cores). For reasons of practicability we
restricted the application of the runtime method to smaller weak-scaling jobs.
The obtained floating point operations per second (FLOPS) rates allow us to
calculate directly the peak efficiency of SeisSol on SuperMUC.

Before scaling SeisSol to the full SuperMUC petascale machine, we again ran
the SCEC LOH.1 benchmark in a strong-scaling setting to determine the perfor-
mance increase of our optimized version of SeisSol in comparison to the classical
SeisSol implementation in Fig. 2. We see a factor-5 improvement in time to solu-

5 http://www.lrz.de/services/compute/supermuc/
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Fig. 2. Strong scaling of the SCEC LOH.1 benchmark with 7,252,482 elements using
approximation order O = 6 for the classic version of SeisSol (red) and our highly tuned
derivate (blue and orange). The slight efficiency decrease for >8,000 cores is mostly
due to SuperMUC’s island concept.

tion, which translates into 25% peak performance without accounting for vector
instruction set padding and nearly 50% machine efficiency on vector instruction
level. Note that the kink in all three performance series, when increasing the core
count from 8,000 to 16,000 cores, is due to SuperMUC’s island concept. Besides
a raw performance gain of 5× on the same numbers of cores, our optimized ver-
sion of SeisSol is able to strong-scale to larger numbers of cores due to its hybrid
OpenMP and MPI parallelization approach leading to an aggregate speedup of
nearly 10 in this setting.

4.1 Weak Scaling

For a weak scaling study, and also to test SeisSol’s limits in terms of mesh
size, we discretized a cubic domain with regularly refined tetrahedral meshes.
The computational load was kept constant with 60,000 elements per core and a
total of 100 time steps per simulation. To complete the setup, we used a sinu-
soidal wave as initial condition and 125 additional receivers distributed across
the domain. We performed the weak scaling simulations starting at 16 cores as
a baseline. Then, we doubled the number of cores in every next run up to 65,536
cores and performed an additional run utilizing all of the available 147,456 cores.
Fig. 3 shows the fraction of the theoretical peak performance. We observed the
maximum performance using all 147,456 cores with a sustained performance of
1.42 PFLOPS, which correlates to 44.5% of theoretical peak performance and a
parallel efficiency of 89.7%.

In contrast to the observations made for the LOH.1 strong scaling bench-
mark presented in the previous section, a performance kink is identifiable when
more than two islands are employed, specifically, when moving from 16,000 to



Appeared in:
J.M. Kunkel, T. Ludwig, and H.W. Meuer (Eds.): ISC 2014, LNCS 8488, pp. 1–18, 2014.
http://link.springer.com/chapter/10.1007%2F978-3-319-07518-1 1
c©Springer International Publishing Switzerland 2014

Fig. 3. Weak scaling of the cube benchmark with 60,000 elements per core using ap-
proximation order O = 6. Shown are hardware FLOPS (blue) and non-zero operations
(orange). The slight efficiency decrease for >16,000 cores is mostly due to SuperMUC’s
island concept.

32,000 cores. Since inter-island communication only happens in one dimension
of the computational domain and we performed a weak scaling study, we have
lower requirements on the communication infrastructure compared to the LOH.1
benchmark. Therefore, in the case of two islands only 100 (< 1

4 of the nodes per
island) inter-island communication channels are used. However, when utilizing
four or more islands the 128 up-links per island, given by the islands’ pruned
tree organization, become a limiting factor as these runs demand more than 200
channels.

4.2 Strong Scaling

The strong scaling setup was based on a typical scenario setup as used in geo-
physical forward modeling. We discretized the volcano Mount Merapi (Java,
Indonesia) with a total number of 99,831,401 tetrahedrons. The setup contained
two layers of different material properties (density, seismic wave speeds), topog-
raphy obtained from local digital elevation models [11,12] and a moment tensor
representation of a double-couple seismic point source approximation. We elab-
orate the geophysical specifications in Sec. 4.3, where a run under production
conditions is presented.

In the strong scaling runs, we performed 1000 time steps on 1024 to 65,536
cores by doubling the number of cores in every next run. Finally, an additional
run on all 147,456 cores was executed. In the extreme case of using the entire
SuperMUC, the load per core was only ≈ 677 elements. Fig. 4 shows the fraction
of theoretical peak performance for all runs. The sustained performance on all
147,456 cores was 1.13 PFLOPS, which is 35.58% of theoretical peak performance
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Fig. 4. Strong scaling of the Mount Merapi benchmark with 99,831,401 tetrahedrons
using approximation order O = 6. Shown are hardware FLOPS (blue) and non-zero
operations (orange).

and correlates to 19.42%, if only non-zero operations are considered. The parallel
efficiency with 1024 cores as baseline was at 73.04%.

4.3 Production Run

Finally, we performed a simulation under production conditions on all 147,456
cores of SuperMUC. As a test case scenario, we chose the volcano Mount Merapi
to demonstrate the solver’s capabilities and that its optimizations regarding
parallel I/O, hybrid parallelization as well as vectorization are sustained for
arbitrary mesh and model complexity.

Several eruptions of Mount Merapi have caused fatalities and the stratovol-
cano is still highly active. Thus, Mount Merapi is subject of ongoing research
and a network of eight seismographs monitors tremors and earthquakes, with the
goal of implementing a functional early warning system in the future. Seismic
forward modeling could help to locate such tremors and to gain a better image
of the geological subsurface structure. Therefore, synthetic time series and 3D
wave field visualization are required to support the interpretation.

Our simulation setup was identical to the strong scaling runs, with the ad-
dition of a set of 59 receivers distributed throughout the domain, sampling the
physical wave field every 0.001 seconds. Also, in contrast to the strong scaling
runs, we now computed 166,666 time steps to accomplish 5 seconds in simulation
time. The total simulation took 3 hours and 7.5 minutes with 1 minute and 22
seconds being initialization. The remainder was spent in the time marching loop,
which ran at 1.09 PFLOPS. This correlates to 34.14% theoretical peak perfor-
mance. Thus, we conclude that our optimization can be fully exploited under
realistic research conditions.
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Fig. 5. Wave field of the Mount Merapi benchmark after 4 seconds. For illustration
purposes a smaller mesh with 1,548,496 tetrahedrons was used. The tetrahedral ap-
proximation of the topography is shown as overlay on the surface. Insight into the
interior is provided by virtually removing a section in the front. Warmer colors denote
higher wave field energy.

Fig. 5 illustrates the model setup and shows the wave field at 4 seconds sim-
ulation time. The achieved high resolution (due to applied order and element
size) allows accurate modeling of the highest frequencies (more than 20 Hz) cap-
turing small-scale details in the wave-form modulation due to topography or
wave interaction at material contrasts. Wave field complexity is already visible
in Fig. 5, although the image is based on data from a much coarser mesh for
visualization purposes. In Fig. 6 we compare results from the presented high-
resolution simulation with a coarser simulation. The coarser mesh discretized
the model domain by 100 m in the shallower region and 500 m in the remain-
der resulting in 1,548,496 tetrahedrons, whereas the fine meshes used an element
edge length of 28 m and 100 m, respectively resulting in 99,831,401 tetrahedrons.
Both simulations were performed with O = 6. The receiver station for Fig. 6 was
randomly picked and is located in the interior of the volcano. As an example,
we plot the vertical stress component σzz. In (a) the time series are plotted,
showing a higher amount of wave form details for the fine-mesh simulation. The
increased frequency content is also reflected by plotting the spectrum (b) of the
time series. Due to the decreased numerical errors by using the fine mesh more
details and small scale features are uncovered.
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Fig. 6. In (a) we compare the time series produced with the fine mesh (red) and the
coarse mesh (black). Clearly, the fine mesh shows larger amplitudes (e.g. at second 2.3)
that might be damped out for the coarse mesh simulation due to increased numerical
dissipation. More difficult to identify, but visible in the spectrum (b), is the increased
frequency content beyond 20 Hz of the fine mesh.

5 Conclusions

Performing a head-to-toe performance re-engineering, we have enabled SeisSol
for seismic simulations at petascale. The improved mesh input allows SeisSol to
run simulation settings on meshes with billions of grid cells and (for order O = 6)
more than 1012 degrees of freedom. Based on the generation of optimized sparse-
and dense-matrix kernels, we achieved 20–25% effective peak efficiency, i.e., disre-
garding instructions due to vector padding or dense computations. These results
demonstrate that SeisSol is competitive with earlier discussed codes reaching
10–16% peak efficiency. The aggregate performance gain due to hardware-aware
single-node optimizations and hybrid OpenMP and MPI parallelization leads to
speedups of 5–10 for typical production runs. The accomplished 5 seconds in
simulation time for the Mount Merapi scenario show that the optimizations pre-
sented in this paper enable SeisSol to run not only scaling, but also production
runs at petascale performance.

Considering the trend towards supercomputing architectures that are based
on accelerators and many-core hardware, in general (GPUs, Intel MIC, e.g.), we
demonstrated that substantial performance gains that address vectorization and
efficient use of hybrid programming models also lead to substantial performance
gains on commodity CPUs. In fact, the respective optimizations have prepared
SeisSol for current and future many-core chips, such as Intel Xeon Phi [46].
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