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Abstract

The increasing power of computer systems over the last decades has influenced many areas
of our civilisation. It has changed our daily life but also had a broad impact on science and
research. Here, computers are, for example, used to simulate natural and physical processes.
The scientific field of Molecular Dynamics (MD) is about the simulation of molecular particles
in a spatial system where the individual particles interact through intermolecular forces to
each other. As the number of particles usually is extraordinary high, efficient numerical
approaches and algorithms are necessary. One of these approaches uses so-called Verlet lists.
The goal of this Bachelor’s thesis was to extend an existing MD Simulation with a Verlet list
implementation and test it on Intel Xeon Phi Processors.



Zusammenfasung

Die Leistungsfähigkeit von Computern hat in den letzten Jahrzehnten exponentiell
zugenommen und damit viele Bereiche stark verändert, sowohl im täglichen Leben als auch in
Wissenschaft und Forschung. Dort werden Computer unter anderem verwendet um natürliche
physikalische Prozesse zu simulieren. Ein Forschungsfeld in diesem Bereich ist die
Molekulardynamik (MD), die sich mit der Simulation von molekularen Partikeln in einem
räumlichen System beschäftigt. wobei die einzelnen Partikel über atomare Wechselwirkungen
gegenseitig Kräfte aufeinander ausüben. Da die Anzahl der Partikel üblicherweise sehr hoch
ist, sind effiziente numerische Herangehensweisen notwendig. Einer dieser Ansätze sind die sog.
Verlet-Listen. Im Rahmen dieser Bachelorarbeit wurde eine bestehende MD Simulation um
eine Variante mit Verlet-Listen erweitert und auf Intel Xeon Phi Prozessoren getestet.
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1. Introduction

The increasing power of computer systems over the last decades has led to rising importance
and influence of computer simulations in many areas of science and research. Here, often one is
interested in the progress of physical processes. Examples, therefore, are the flow of water
through a channel or the behaviour and distribution of smoke in a room. In Civil Engineering,
one is interested in the stresses on the individual components of a building and their resulting
deformations whereas, in medicine, it could be lifesaving to predict the pressure that strains
the ventricles of a human heart due to blood flow. One possible approach is to construct a
physical replication of the real scenario with much smaller scale and to simulate the process on
that model. Hence in many cases, this is expensive either in time as in money, and often, as in
the medical example from above, it is quite impossible. Another disadvantage is that in most
cases it is only possible to determine physical quantities like force, velocity, temperature or
pressure on specific points by measuring instead of their distribution along the whole scenario.

Figure 1.1.: Moving particles

Computer simulations are a new and different approach
to deal with the problems mentioned. Instead of building
a physical model, one tries to develop a model on the
computer and to simulate the process there. From that,
several challenges arise. First of all, all laws of nature
that are relevant, as well as their correlations, have
to be known and formulated by mathematical equations.
Second, these equations have to be solved. In most cases,
this is not possible in an analytical way, so numerical
methods are used to approximate the analytical solution.
To achieve useful results, it is necessary that the model
is sufficiently subtle and describes the real scenario
accurately enough. As raising fineness and accuracy of
the model usually lead to a raising computational effort
of at least polynomial order, it is necessary either to use
efficient numerical algorithms and data structures but
also to make a compromise between accuracy and computational effort. A good model is
precisely as subtle that the simulation yields useful results in a reasonable time. The scientific
field of Molecular Dynamics (MD) is about the numerical simulation of molecular particles in a
domain system. This system can, for example, be a spatial room, but also a 2-dimensional area
is possible. The mentioned example of smoke in a room would be a possible application for
MD (see also Fig.1.1). As the number of particles usually is exceptionally high, MD is
challenging, even for today’s supercomputers. Most approaches to deal with molecular
dynamics use domain decomposition methods, i.e. they divide the domain into smaller
subdomains and assign each particle to the subdomain corresponding to the position of the
particle in the domain. The calculations for the individual subdomains then mostly can be
done independently of each other and therefore in parallel. That makes MD well suited for
high-performance computing (HPC) on today’s many-core processors. The Xeon Phi processor
(also named Knights Landing, KNL), which Intel released in June 2016 is a many-core
processor with 64 up to 72 cores, designed for high-performance computing on supercomputers
and therefore well appropriated for MD simulations. In September 2017 the
Leibnitz-Supercomputing-Centre (LRZ) in Garching near Munich installed a Linux cluster
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named CoolMuc3, consisting of 148 Intel Xeon Phi processors. In the scope of this Bachelor’s
thesis an approach for MD simulations, using Verlet lists in combination with linked cells was
implemented and tested on this cluster. As a basis for the implementation, the program
AutoPas was used, which is currently developed at the Technical University of Munich. The
aim was to measure the performance of this approach. In chapter 2, molecular dynamics will
be introduced, including linked cells and Verlet lists. Chapter 3 will give a quick overview of
the Intel Xeon Phi processor and the Linux cluster CoolMuc3. It will also be shown, what
performance gains are generally possible with this processor. For that, another MD simulation
called Lammps was tested on CoolMuc3 and compared to other results. In chapter 4, the
developed implementation of the Verlet lists approach will be described, and how it was
integrated into AutoPas, the performance results will be presented in chapter 5. The last
chapter will give an outlook for future works, that could be done using the Verlet lists
approach.
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2. Molecular Dynamics

The simulation of molecular dynamics (MD) is a so-called N-Body problem. That means it
deals with the problem of the physical interaction of a certain amount of objects in a domain
system and their physical influence to each other. In MD simulations these objects often are
called either particles or molecules, their number typically is exceptionally high while the
individual particles itself are rather small, mostly they are simple chemical molecules. The
domain system can, for example, be a spatial room or a two-dimensional area. One main
characteristic, which distinguishes MD from other numerical simulations like fluid dynamics or
the Finite-Element-Method, is that each particle is associated with a position ~r(t) and a
velocity ~v(t) which are bound to it during the whole simulation. The aim is now to simulate
the movement of the particles i.e. to compute their positions ~r(t) and velocities ~v(t),
additionally aims could for example be the resulting distribution of pressure or temperature in
the domain. The computation is done by numerical integration over time. There exist many
classical methods for numerical integration, ranging from explicit and implicit Euler methods
up to the so-called Leapfrog method which is frequently used in MD because of its numerical
stability [1]. With the Leapfrog method the positions and velocities of the molecules at each
timestep are calculated as

~v(t+
∆t

2
) = ~v(t− ∆t

2
) + ∆t · ~a(t)

~r(t+ ∆t) = ~r(t) + ∆t · ~v(t+
∆t

2
)

(2.1)

To calculate the acceleration ~a(t) of the molecules, it is necessary for each molecule to
determine the total force that acts on it due to the influence of all other molecules. For every
two molecules there exists a physical force between them, which can either be attractive or
repulsive depending on the distance between them. If the molecules are close to each other, the
repulsive part, resulting from overlapping electron orbitals, prevails. If the distance is rather
far, the attractive part, resulting mainly from Van-der-Waals forces overweights. There are
many approximations to describe the resulting force of these repulsive and attractive parts, the
Lennard-Jones-(12-6) potential is one of them, which is often used in molecular dynamics. The
Lennard-Jones-(12,6) potential approximates the potential between two particles and is given
as

ULJ(r) = 4ε ·
[(σ
r

)12
−
(σ
r

)6
]

(2.2)

where r denotes the actual distance between the two particles. σ and ε are parameters, which
depend on the types of the two concrete molecules. σ denotes the distance, at which the
potential becomes zero and ε the minimal potential in Joule. The Lennard-Jones potential for
σ = 0.8 and ε = 1.5 is exemplary shown in Fig. 2.1. According to [1], from this potential the
force between the molecules can be derived as

F (r) = −dULJ
dr

=
24ε

r
·
[
2 ·

(σ
r

)12
−
(σ
r

)6
]

(2.3)

Therefore, to calculate the total resulting forces that invoke on each molecule at a timestep, a
simple way would be to calculate the Lennard-Jones potentials for all molecule-molecule pairs
and sum up the resulting forces for each molecule. Because of Newton’s 3rd law (’Actio =
Reactio’), the force that a particle p1 invokes on another particle p2 is equal and directed into
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Figure 2.1.: Lennard-Jones potential for σ = 0.8 and ε = 1.5

the opposite direction to the force, that p2 invokes on p1. So for each particle-particle pair, the
force between them has just to be calculated once, not twice. Nevertheless, this results in a
computational effort of O(N2) where N is the total amount of molecules in the system and is
therefore not very practical. Fortunately, there are better approaches based on the observation
that the Lennard-Jones potential and its deviation decrease rapidly with increasing distance
(see Fig. 2.1). So two particles whose distance is rather large have a negligible influence on
each other. Hence it is useful to define a cutoff radius rc. Then for every molecule, all other
molecules whose distance is greater than the cutoff radius are ignored. If the particles are
almost equally distributed in the spatial system and the cutoff radius rc is chosen inversely
proportional to the total amount of particles N , this results in an improved computational
effort of O(N). Two approaches for MD, which make use of a cutoff radius are linked cells and
Verlet lists. In the following, both will be briefly described.

2.1. Linked Cells

As already mentioned, if a cutoff radius rc is used, then for a specific particle p, all other
particles, whose distance to p is greater than rc are considered to have a negligible influence on
p and are therefore ignored. The basic idea behind the linked cells method is to divide the
domain into cubic resp. square cells along a Cartesian grid with edge lengths greater or equal
to rc (usually the edge length is chosen equal to rc). Then, for every particle p in a particular
cell c, only other particles in cell c itself or other cells neighbouring c can be within the cutoff
radius rc. This is exemplarily shown in Fig 2.2 where the domain is a two-dimensional grid
consisting of 16 cells. To determine all particles that are within the cutoff radius of the red
particle and thus have a non-negligible influence on it, only the violet particles in the nine
grey-coloured cells have to be considered and checked. The green particles in the remaining
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Figure 2.2.: Decomposition into linked cells

cells can be ignored. As already mentioned, this results in an improved complexity of O(N) in
contrast to O(N2) for an all-particle-pairs check. Another advantage of this locality of
dependency is that it allows to divide the domain into subdomains which can be processed
mostly independent to each other. This offers the possibility to process the particles of
different subdomains in parallel. That makes the linked cells method well appropriated for
today’s multi-core resp. many-core processor architectures. In Fig. 2.3 on the left, a possible
domain decomposition of a two-dimensional area is shown. The domain consists of 144 linked
cells, divided into nine subdomains, each containing 16 cells. These nine subdomains now
could be assigned to nine processor cores and be processed in parallel. However, there are
restrictions, which is shown based on the dark-green marked cell of the red domain in Fig. 2.3.
Three of the eight neighbouring cells that this cell has to check for influencing particles do
belong to a different domain (violet) and are thus running on another processor. Another
problem is that particles can migrate from one cell to another at a timestep and thus it is
possible that particles migrate from one cell in one domain to another cell in a different
domain. Hence, each domain has to keep a copy of its directly neighbouring cells from
neighbouring domains and of all particles in there, as shown in Fig. 2.3 on the right. These
cells are called halo cells, the particles within are often referred to as ghost atoms. Hence, after
each timestep, the processors have to communicate with each other and exchange the data of
their halo cells and also exchange migrated particles. For the domain decomposition, it is not
necessary to distribute the linked cells into square subdomains like in Fig. 2.3. The
distribution into subdomains rather should be done in a way that two main properties are
fulfilled. The first one is to minimise the inter-process communication between the processors.
The second one is to distribute the load equally on the processors so that all processors take
approximately the same time to calculate their timesteps. That is important because, at each
timestep, the processors have to wait until all other processors have finished their step as well,
to exchange the data of their halo cells, so the slowest processor is decisive. The field that
deals with finding suitable distributions of the cells onto the subdomains is called Load
Balancing. Space-Filling curves and k-d-trees are examples for load balancing approaches. For
further information on load balancing, see, for example [4].
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Figure 2.3.: Decomposition of a two-dimensional domain (left) and halo cells (right)

2.2. Verlet Lists

Although with linked cells a massive performance gain can be reached, there are still
improvements possible. If one looks again at Fig. 2.2 and the considered red particle, one can
see that from all checked particles (violet), only a small part (yellow) is indeed within the
cutoff radius. For a two-dimensional area, assuming almost equally distributed particles, nine
cells have to be checked, which results in an area of Acells = 9 · r2c , whereas the area for
particles within the cutoff radius is Arc = r2c · π. So, only Arc/Acells ≈ 35% of the checked
particles are statistically within the cutoff radius, whereas ≈ 65% are checked unnecessarily. In
a three-dimensional domain, where 27 cells have to be checked, the ratio is
Vrc/Vcells =

4/3·π·r3c
27·r3c

≈ 15%, so statistically 85% of the checked particles are checked unnecessarily.

Figure 2.4.: Cutoff domain and skin layer for
Verlet lists

Another
approach is the use of Verlet lists (also
named neighbour lists). For each particle p,
a Verlet list is used, which stores all particles
(usually just the unique ID-numbers of the
particles) that are within a certain distance
rv to p. If one chose rv = rc, the lists would
store, for each particle, all other particles,
that are within the cutoff radius, what would
be exactly what is needed. The problem
would be, that at each timestep, particles
can leave the cutoff domain as well as new
particles can enter it. Therefore, the lists had
to be recomputed at each timestep which
would not result in a performance gain.
A better way is to set rv = rc + dskin, as
shown in Fig. 2.4. Then, for every particle,
all other particles within the cutoff radius
plus additional particles within a skin layer
are stored in its Verlet list. Hence, at the
moment a Verlet list was built, it stores all particles that are within the cutoff radius plus all
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particles that are outside of it but can enter it within a certain time ∆tv = dskin/vmax, where
vmax denotes the maximum velocity of all particles. As well, the list will contain every particle,
which was at the beginning of the list-build within the cutoff domain and left it during ∆tv.
Hence, the Verlet lists only need to be rebuild after ∆tv but not after each timestep. Therefore,
for the computation of the total resulting force for a particle p , one just needs to check, for all
particles in its Verlet list, if they are indeed within the cutoff domain or just within the skin
domain, all other particles that are not in the list can be ignored during all timesteps within
∆tv. So the basic procedure, using Verlet lists is shown in pseudo-code in Listing 2.1.

while(t < tend)
{
for(int i = 0; i < N; i++) // iterate over all particles in the domain resp.

subdomain
{

lst = vlists[i]; // assign the Verlet list of particle pi to lst

for (Particle p : lst) // iterate over all particles in lst
{

if (dist(p[i], p) < cutoff radius) // check if particle p is within the
cutoff radius of pi

{
UpdateForces(); // Update the forces for pi and p and do further

calculations possibly needed
}

}
}

t = t + ∆t;
if (CheckRebuildVerletLists()) // check, if the Verlet lists have to be rebuild ..

RebuildVerletLists(); // .. if yes, then rebuild them
}

Listing 2.1: Basic scheme with Verlet lists
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3. The Intel Xeon Phi Processor

Today, modern graphics cards are fitted with powerful processors itself, additionally to the
general CPU. These so-called GPU’s 1 have the aim to unburden the CPU. They are
specialised and optimised for graphical operations. As these often consists in applying one
simple operation (for example an addition) to a high amount of data (for example, the pixels
of an image), GPU’s are optimized for SIMD2-Instructions in a high parallel way. Therefore,
GPU’s are typically many-core processors that consist of many simple cores. As an example,
the Fermi architecture, developed by NVIDIA, consists of 16 streaming multiprocessors (SM)
with 32 cores each, so it has a total amount of 512 cores. It reaches a peak performance of 1.5
TFLOPS3 [9]. These architectures are therefore very interesting for scientific simulations like
molecular dynamics. NVIDIA also recognised this potential, and in June 2007, a programming
interface named CUDA was released, which offers the possibility to run the GPU of a graphics
card as a coprocessor to the CPU and hence use it for general-purpose programming.

3.1. Knights Corner and Knights Landing

Programming on GPU’s like the Fermi architecture has the disadvantage, that these
architectures have their own ISA 4 and thus are incompatible to the Intel x86-64 architecture,
so it takes much effort to make a program runnable with such a GPU as a coprocessor. In
2012, Intel released the first generation of a new many-core processor, called Intel Xeon Phi
(codename Knights Corner). It is not a standalone processor but a coprocessor and needs to
be used in combination with a central processor like Intel Xeon. The advantage of this
processor is that its ISA is the x86-64 architecture. Thus it is compatible to other CPUs like
the Intel Xeon processor. The amount of cores per processor ranges from 57 up to 61, and
every core is, due to hyper-threading, able to run up to four hardware threads, so up to 244
hardware threads are possible per processor. The Knights Corner processors do not support
the SIMD instruction set extensions MMX, SSE and AVX, instead they offer their own SIMD
instruction set extension called Intel-IMCI 5 which consists of 32 512-bit large vector registers
[8]. In 2016, the second generation, called Knights Landing (KNL) was released by Intel. In
contrast to its predecessor, this is a full standalone processor. Variants are available with 64,
68 and 72 cores, so up to 288 hardware threads are available per processor. MMX, SSE, AVX
as well as the AVX-2 SIMD instruction set extensions are supported. Additionally, they
support the new AVX-512 vector instruction set, which offers a register file of 32 SIMD
registers, each 512 bit wide. Each processor is suited with an on-package high bandwidth
MCDRAM6 memory with a size of 16 GB, which can be used either as third level cache or as
memory. In Fig.3.1, a scheme of a Xeon Phi processor with 72 cores is shown, the cores are
distributed into 36 tiles, two cores in each tile. Every two cores in a tile have to share their
L2-cache. With 1.3 GHz, the clock cycle of the Xeon Phi is relatively low, compared to other

1Graphics-Processing-Unit
2SIMD=Single-Instruction-Multiple-Data
3FLOP = Floating Point Operation Per Second, 1 TFLOP = 1012 FLOPS
4Instruction-Set-Architecture
5Intel-Initial Many Core Instructions
6Multi-Channel DRAM
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Figure 3.1.: The Intel Xeon Phi processor (left), one single tile (right), pictures from [5]

processors. Hence, for high-performance computing, it is especially important to use the
AVX-512 vector instructions efficiently.

3.2. CoolMuc3

In September 2017, the Leibnitz-Supercomputing-Centre (LRZ) in Garching near Munich put
a new Linux cluster named CoolMuc3 into operation. The cluster consists of 148 Intel Xeon
Phi 7210-F processors. Each processor has 64 cores. Additionally to its 16 GB MCDRAM,
each processor is suited with 96 GB DDR4RAM. The processors are connected via the Intel
Omnipath technology, which offers a bandwidth of 25 GB/s. The total system reaches a
theoretical peak performance of 394 TFLOPS [10].

3.3. Performance of Lammps on KNL processors

Lammps7 is an open-source software project that performs MD simulations. It is programmed
in C++ and maintained and distributed by Sandia National Laboratories, a US Department of
Energy. The software is highly flexible and configurable concerning potential energy models.
Due to its expandability, there exist many packages to optimise the simulation for different
architectures, including the Knights Landing processor. Lammps can run on single-, multi-
and many-core systems. It uses a domain decomposition method as described in chapter 2.
The spatial domain is divided into subdomains and assigned to the available cores and
processors, which communicate with each other via MPI8, a message-exchange interface
standard. A further internal parallelisation of each MPI process by shared memory threads is
also possible due to the OpenMP standard. Lammps uses Verlet lists as described in Section
2.2. As molecular dynamics offer a certain kind of spatial as well as temporal locality, Lammps

7Large-scale Atomic/Molecular Massively Parallel Simulator
8Message Passing Interface
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Figure 3.2.: AoS layout (top line) vs. SoA layout (bottom line)

tries to exploit that fact. For example, the Verlet lists of two particles that are close together
will have many particles in common, so it is likely that a particle if it was accessed once, it will
be reaccessed shortly after. As well, if a particle is accessed (because it is in a Verlet list of
some particle), then particles that are close by that particle might also be accessed shortly
after because they are likely to be in the list as well. To exploit this fact, at certain intervals,
Lammps sorts and reorders the particles in memory, so that particles that are close to each
other in the domain, are nearby in memory as well. The sorting is done by a bucket sort
algorithm. The particles are binned to the individual cells of the domain. Further
optimisations, which are specially intended for KNL processors are (based on [2], page 449 -
459)

1. 64 Byte Alignment:
Data in Lammps is aligned to 64 Byte boundaries in memory which corresponds to the
cache line size of the KNL processors. This shall prevent false sharing. False sharing
occurs when data of two different threads belong to the same cache line. If the data of
one thread changes frequently, the data of the other thread also has to be updated to
ensure cache coherence, even if it does not change at all. This slows down the second
thread.

2. AoS instead of SoA:
Data layout i.e. the question in what way the data of the particles is stored in memory is
very important. There are two main types of layout: Array of Structures (AoS) or
Structure of Arrays (SoA). With an AoS layout, the particle data i.e. the x, y and z
position plus additional the type of each particle will be stored consecutive in memory
while with an SoA layout, the individual properties of the particles will be stored
together. This is shown in Fig. 3.2 (for simplicity, just the x, y and z values of the
particle’s position are shown). Because in MD, if a particle is accessed, mostly more than
one property is needed (for example to calculate the distance between two particles), the
AoS layout is better suited and thus taken in Lammps. As mentioned, additional to the
three position values, the type of the particle is also stored in the AoS layout. At first,
this is, because the particle type is also needed for the potential calculation, secondly, it
ensures that the complete data for one particle will be stored in just one cache line, and
not distributed among several cache lines.

3. Vectorization:
As already mentioned, with the KNL processors it is important to exploit the AVX-512
vector instruction set efficiently. Important is here to not rely on the compiler’s skills to
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Figure 3.3.: Results of Lammps on one KNL node of CoolMuc3 with different combinations of
MPI processes x OMP threads per MPI process

auto-vectorize loops, because MD offers several possibilities to vectorize, which even
modern compilers are unable to detect. For example, in the Verlet list of a particle, no
other particle will occur twice, so no data dependency is possible here, so these loops can
be vectorized [2]. As well it is possible to inform the compiler that the data is aligned to
64 Byte boundaries, which can also lead to optimized code [2]. To explicit vectorize loops
in C++, the available SIMD-PRAGMA directives can be used.

For this thesis, the performance of Lammps with several combinations of MPI processes and
OMP threads per MPI process was tested.

Figure 3.4.: Performance of Lammps on a
Sandy-Bridge Intel Xeon pro-
cessor, taken from [3]

The test suite contained 512K particles
with a cutoff radius of 2.5. As the intermolecular
potential, the Lennard-Jones potential as described
in chapter 2 was applied. The version of Lammps,
optimised for KNL processors was used and
the test was run on one single node of CoolMuc3.
The combinations of MPI processes and
OMP threads always exploit the full available 256
hardware threads. The results are shown in Fig.
3.3, the performance was measured in timesteps
per second. One can see that the performance
increases significantly with increasing amount of
MPI processes (i.e. distributed memory hardware
threads which work on different subdomains),
which is exactly as expected. The amount
of OMP threads, however, has a minor influence
on the performance. Furthermore, to compare
the performance of Lammps on KNL processors to
other processors, additional tests were performed.

11



Figure 3.5.: 32 hardware threads used

In [3], a test is described, where Lammps was run on one node of the SuperMuc Phase 1
cluster of the LRZ in Garching, which means two 8-core Intel Sandy-Bridge-EP Xeon E5-2680
processors. The results are shown in Fig. 3.4. Again, the test suite contained 512K particles,
and the Lennard-Jones potential was used with a cutoff of 2.5. The test was run with 32
hardware threads in different combinations of MPI processes and OMP threads. This time the
performance was measured in MMUPS9. One can see, that the maximum performance of
about 45 MMUPS is reached at a combination of 16 MPI processes and two OMP threads per
MPI process. For this thesis, the same test was run twice on one node of CoolMuc3. At the
first test, also 32 hardware threads were used in different combinations, the second test used
the full available 256 hardware threads. The results of the first test are shown in Fig. 3.5. One
can see, that the performance is about equal to the results on the Intel Xeon processors.
However, a massive performance increase can be reached, if the full 256 hardware threads are
used, as can be seen in Fig. 3.6. The best performance of 132.35 MMUPS was reached with
128 MPI processes and two OMP threads per process and is almost about three times as the
maximum performance on the Intel Xeon processors.

9Million Molecule Updates per Second
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Figure 3.6.: 256 hardware threads used
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4. Verlet Lists Implementation in AutoPas

AutoPas is a software, that is currently developed at the Technical University of Munich in
context of the TalPas project and shall become an auto-tuned library for particle simulations
with optimised node-level performance. It is written in C++, and it already offers a linked
cells domain decomposition, which was used as the basis for this thesis and extended. In this
chapter, the developed implementation of Verlet lists and its integration into AutoPas will be
described. Therefore at first, the existing classes of AutoPas will be described, including the
class hierarchy. Then, the newly developed classes will be introduced.
Annotation: The following UML class diagrams and explanations do not contain all classes of
the AutoPas project. As well, in the classes, just the methods and attributes that are relevant
for this thesis are shown and explained.

4.1. Existing Classes of AutoPas

The classes, in which the particles resp. molecules are implemented are shown in Fig. 4.1.
Base class is the class particle. It stores three-dimensional arrays of type array<double, 3>

for the position, velocity and the invoking force of the particle, and offers getter and setter
methods for these values. Additionally, two methods, addF and subF, are provided to add/sub
a force to/from the force array. Finally, every particle gets an ID of type unsigned long and
the associated get/set methods. From this base class, the class MoleculeLJ is derived, which
extends the particle class with two attributes of type double, EPSILON and SIGMA, which
describe the Lennard-Jones potential as described in chapter 2. The printableMolecule class,
which is derived from MoleculeLJ, extends this class with a print method to output the data
of the particle on console.
The container classes are shown in Fig. 4.2. To store the particles and to represent one cell,
the class FullParticleCell is used. It contains a vector of type vector<TParticle> to store
the particles of the cell, where TParticle is a template parameter for the concrete type of
particle that is used. The abstract class ParticleContainer works as a container for the cells
and therefore represents the whole domain. The cells are stored in a vector of type
vector<TParticleCell> with TParticleCell as a template parameter. It also contains
values to store the dimensions of the domain ( boxMin and boxMax) as well as a double value
to store the cutoff radius. The abstract method addParticle has to be overwritten in
subclasses. The class LinkedCells is the concrete type of container to implement the linked
cells method and is thus derived from ParticleContainer. It uses an object of type
CellBlock3D, which maps the one-dimensional vector of cells to the three-dimensional domain
and offers associated methods, like returning the cell index that belongs to a spatial point
within the domain. With the help of this object, it implements the methods addParticle

from ParticleContainer and iteratePairwiseAoS2. The last method iterates once over all
particle-particle pairs in the whole domain who are either in the same cell or neighbouring cells
and thus enables the functionality to implement the linked cells method as described in section
2.1. As an argument, it takes an object of type functor<TParticle> (see Fig. 4.3). This
functor has a method called AoSFunctor which takes two arguments of type TParticle. This
method is applied to all of the particle-particle pairs during the iteration. In this way, for
example, a functor of type LJFunctor (Fig. 4.3) can be used to calculate the forces for all
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Figure 4.1.: Uml class diagram of the Particle classes

particles due to the Lennard-Jones potential.

4.2. Verlet Lists Implemenation

For the Verlet list implementation, at first, a new particle type had to be created. It was
named VLTParticle and is derived from the PrintableMolecule class. It extends this class
by an additional attribute of type unsigned long, called verletID. This attribute gives every
particle a unique ID which is used for the build-up of the Verlet lists. The source code for the
VLTParticle class is shown in Appendix A.1.
Furthermore, a new functor class called VerletFunctor was created, which is used to build the
Verlet lists. It is derived from the Functor class and thus implements the method AoSFunctor

to iterate over particle pairs. The complete source code of the class is shown in Appendix A.3
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Figure 4.2.: Uml class diagram of the container classes
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Figure 4.3.: Uml class diagram of the functor classes

The main object of the extension is the VerletLists class, where the mechanism of Verlet
lists is implemented. It is directly derived from ParticleContainer and has the following
additional attributes:

• vIDCount ...

... is of type unsigned long, stores the number of particles in the domain and is the
value that the next added particle will get assigned as verletID.

• cs square ...

... is of type double and stores the value r2v = (rc + dskin)2

• vlists

This is the vector, that stores the Verlet lists. Each list is of type vector<unsigned

long>, so vlists is of type vector<vector<unsigned long>>. The particles are stored
in the Verlet lists by their unique verletID.

• cells ...

... is an object of type LinkedCells<TParticle, TParticleCell> and will be used to
efficiently build the Verlet lists.

• particles ..

is a vector that stores all particles of the domain. It is therefore of type
vector<TParticle>.

In the following, the implemented methods of VerletLists will be explained

4.2.1. Constructor

The constructor, inherited from ParticleContainer is extended with a fourth argument,
which is a value of type double that denotes the thickness of the skin layer dskin. The base
class as well as the LinkedCells object cells are initialized with a cutoff radius of
rv = rc + dskin, so that the cells in the cells object have the size of the Verlet radius rv.
Also, the attribute cs square is initialized with the value (rc + dskin)2.
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template<class Particle, class ParticleCell>
VerletLists<Particle, ParticleCell>::VerletLists(const std::array<double, 3> &

boxMin, const std::array<double, 3> &boxMax, double cutoff, double skin)
: ParticleContainer<Particle, ParticleCell>(boxMin, boxMax, cutoff +

skin), cells(boxMin, boxMax, cutoff + skin) {

cs square = (cutoff + skin) ∗ (cutoff + skin);
}

4.2.2. addParticle

This method is inherited from the base class ParticleContainer, its only parameter is a
reference to a particle that shall be added to the domain.

void addParticle(Particle &p) override {

p.verletID = vIDcount++;
cells.addParticle(p);
particles.push back(p);
vlists.push back(std::vector<unsigned long>());

}

At first, the particle gets its unique VerletID, then it is added to the LinkedCells object as
well as to the global particle vector. At the end, a new empty Verlet list for this particle is
added to the Verlet list vector.

4.2.3. buildVerletLists

This is the method, that builds resp. updates the Verlet lists.

void buildVerletLists() {

for(auto &vlist: vlists)
vlist.clear();

VerletFunctor<Particle> vfunctor(& vlists, cs square);
cells.iteratePairwiseAoS2(&vfunctor);

}

At first, all Verlet lists are cleared. Next, a functor object of type VerletFunctor is created
and initialized. Then, the LinkedCells object cells is used to iterate over all
particle-particle pairs, that are either in the same cell or in neighboured cells and to apply the
VerletFunctor to them. The code of the Functor method which is applied to each
particle-particle pair of the iteration is shown below.

inline void AoSFunctor(Particle &p1, Particle &p2) override {

std::array<double, 3> dist = arrayMath::sub(p1.getR(), p2.getR());
double distsquare = dist[0] ∗ dist[0] + dist[1] ∗ dist[1] + dist[2] ∗

dist[2];

if (distsquare < cs square)
(∗vlists)[p1.verletID].push back(p2.verletID);

}

First, the distance between the two particles p1 and p2 is calculated and squared. Then, it is
checked, if this squared distance is less than (rc + dskin)2 i.e. if p2 is within the Verlet radius rv
of p1 (and vice versa). If it is, then the VerletID of p2 is added to the Verlet list of p1. Due to
Newton’s third law, it is not necessary to also add p1 to the Verlet list of p2.
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4.2.4. buildVerletListsSimple

This is an alternative method to build the Verlet lists, but in a less efficient way without linked
cells.

void buildVerletListsSimple() {

std::array<double, 3> dist;
double distsq;

for (unsigned long i = 0; i < particles.size(); i++) {
vlists[ particles[i].verletID].clear();

for (unsigned long j = i + 1; j < particles.size(); j++) {

dist = arrayMath::sub( particles[i].getR(), particles[j].getR()
);

distsq = dist[0] ∗ dist[0] + dist[1] ∗ dist[1] + dist[2] ∗ dist
[2];

if (distsq < cs square)
vlists[ particles[i].verletID].push back( particles[j].

verletID);
}

}
}

Within a double nested for loop it is iterated over completely all particle-particle pairs of the
whole domain. Like in the method before, the distance between the pairs is computed and if
the particles are within the Verlet radius of each other, the second particle is added to the
Verlet list of the first particle.
Annotation: Because in both methods, the order in which the particle pairs are iterated differs,
the individual Verlet lists that both methods create will be different. But overall, both created
sets of Verlet lists will contain the same particle pairs.

4.2.5. iteratePairwiseAoS2

This method is similar to the equivalent method of the LinkedCells class.

template <class ParticleFunctor> void iteratePairwiseAoS2(ParticleFunctor ∗f
) {

Particle p1, p2;
std::array<double, 3> dist;
double distsq;

for (unsigned long i = 0; i < particles.size(); i++ )
{

p1 = particles[i];

for (auto j: vlists[i])
{

p2 = particles[j];
dist = arrayMath::sub(p1.getR(), p2.getR());
distsq = dist[0] ∗ dist[0] + dist[1] ∗ dist[1] + dist[2] ∗ dist

[2];

if (distsq < cs square)
f−>AoSFunctor(p1,p2);

}
}
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}

It iterates over all particle-particle pairs of the Verlet lists, checks if their distance is less than
the cutoff-radius rc and, if so, applies the passed Functor object to the pair. The distance
check is mandatory as the Verlet lists contain all particles whose distance is less than
rc + dskin, so it has to be checked if the distance is indeed less than rc.
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5. Performance Tests

For the tests, the target build md-main of the AutoPas project was used and modified. First, it
was modified to accept six command line arguments instead of three. Additional to the type of
simulation (direct sum , linked cells or Verlet lists), the number of particles and the number of
iterations to be done, also the cutoff radius rc, the skin distance dskin and the number of
timesteps until to rebuild the Verlet lists has to be passed on command line. A method called
fillVLTContainerWithMolecules was written, that fills an object of type VerletLists with
particles of type VLTParticle. That was necessary because, in contrast to the already
available method fillContainerwithMolecules, after the particles were added to the
container, the Verlet lists have initially to be built. The following four tests were done:

1. Varying the number of particles

2. Varying the cutoff radius

3. Varying the skin distance

4. Varying the iterations between rebuilding the Verlet lists

Additional to the Verlet lists simulations, the tests were also run with the linked cells method
as well as with a direct sum method, which does a simple all-particle-particle-pair iteration.
All tests were run in a spatial domain of size 5.0 x 5.0 x 5.0. The performance was measured
by the elapsed time in seconds that the tests required for the simulation.

5.1. Number Of Particles

This test was run with a cutoff radius of 1.0 and a skin distance of 0.2, 50 timesteps were run.
The rebuild interval, i.e. the number of timesteps until the Verlet lists are rebuild was set to
10. The number of particles starts at 1000 and increases up to 10000. The results for all three
methods are shown in Fig. 5.1. The duration of the direct sum method increases significantly
in a non-linear way with increasing amount of particles while the duration of the linked cells
and the Verlet lists method increases distinctly less. The Verlet list approach performs
significantly better than the linked cells method.

5.2. Cutoff Radius

This test was run with 5000 particles, a skin distance of 0.2 and a rebuild interval of 10. Again,
50 timesteps were run. The cutoff radius varies between 1.0 and 2.0. The results are shown in
Fig. 5.2. Because the direct sum method is independent of the cutoff radius, it stays constant
at an elapsed time of about 683 seconds. Both, the runtime of the linked cells and the Verlet
lists method increase with increasing cutoff radius. The elapsed time of the linked cells method
stays constant for several timesteps (for example between 1.1 and 1.2) and then performs a
massive runtime increase, for example of about 100% between 1.2 and 1.3 until it reaches at a
cutoff radius of 1.7 its maximum of about 681 seconds. From there, it performs similar to the
direct sum method. The runtime of the Verlet list method instead increases in a more smooth
way. Again, the Verlet list method performs significantly faster than the linked cells method.
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Figure 5.1.: Varying the Number of Particles
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Figure 5.2.: Varying the Cutoff Radius

5.3. Skin Distance

For this test, the skin distance was varied between 0.1 and 0.7. Again, the number of particles
was set to 5000, and 50 timesteps were run. The cutoff radius was set to 1.0 and the rebuild
interval to 10. The results can be seen in Fig. 5.3. Because neither the direct sum nor the
linked cells method depends on the skin distance, they stay constant at an elapsed time of
about 683 resp. 95 seconds. With a skin distance of 0.1, the Verlet list method is about 2.7
times faster than the linked cells method. With increasing skin distance, the elapsed time
approaches towards the linked cells method. At a skin distance of 0.6 both methods are about
equal in runtime. For skin distances greater than 0.6 the Verlet list method becomes inefficient
and the linked cells method performs better.

5.4. Rebuild Interval

In the last test, the rebuild interval was varied. This test was also run with 5000 particles, a
cutoff radius of 1.0 and a skin distance of 0.2. This time, 100 timesteps were run. The rebuild
interval was varied between 2 and 50. The results are shown in Fig. 5.4. Again, neither the
direct sum nor the linked cells method depends on the rebuild interval, so they stay constant
at an elapsed time of about 1366 resp. 191 seconds. With increasing interval, the number of
rebuilds decreases and so the elapsed time in total decreases. But even if the Verlet lists are
rebuilt every second timestep, the Verlet list method still performs about 25% better than the
linked cells method.

23



Figure 5.3.: Varying the Skin Distance

Figure 5.4.: Varying the Number of Timesteps between rebuilding the Verlet Lists
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6. Conclusion and Outlook

In this thesis, either the performance of MD simulations on Intel Xeon Phi processors in
contrast to other processors in general as well as the performance of the Verlet list approach in
comparison to the linked cells method was investigated. It was shown, that the Xeon Phi
processor can improve the performance of MD simulations significantly. Also, it was revealed,
that the Verlet list approach has the potential to lead to a significant performance gain.
Further studies that are possible are, for example, to investigate the performance on more than
one processor, i.e. more than one node of CoolMuc3 as well as to examine and exploit the
AVX-512 instructions in a more detailed way. Also, further studies could deal with the
inter-process parallelisation with OpenMP threads on a shared memory level.
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A. Source code of the implemented classes

A.1. class VLTParticle

class VLTParticle : public PrintableMolecule
{
public:

VLTParticle();
VLTParticle(std::array<double, 3> r, std::array<double, 3> v, unsigned long

i);
VLTParticle(double x, double y, double z, unsigned long id);

unsigned long verletID;

};

VLTParticle::VLTParticle() : VLTParticle ({0.0,0.0,0.0}, {0.0,0.0,0.0}, 0){}

VLTParticle::VLTParticle(std::array<double, 3> r, std::array<double, 3> v,
unsigned long i) : PrintableMolecule(r, v, i) {}

VLTParticle::VLTParticle(double x, double y, double z, unsigned long id) :
PrintableMolecule({x,y,z},{0.0,0.0,0.0}, id) {}
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A.2. class VerletLists

template<class Particle, class ParticleCell>
class VerletLists : public ParticleContainer<Particle, ParticleCell> {
public:

VerletLists(const std::array<double, 3> &boxMin, const std::array<double, 3>
&boxMax, double cutoff,

double skin);

void addParticle(Particle &p) override {

p.verletID = vIDcount++;
cells.addParticle(p);
particles.push back(p);
vlists.push back(std::vector<unsigned long>());

}

void buildVerletListsSimple() {

std::array<double, 3> dist;
double distsq;

for (unsigned long i = 0; i < particles.size(); i++) {
vlists[ particles[i].verletID].clear();

for (unsigned long j = i + 1; j < particles.size(); j++) {

dist = arrayMath::sub( particles[i].getR(), particles[j].getR()
);

distsq = dist[0] ∗ dist[0] + dist[1] ∗ dist[1] + dist[2] ∗ dist
[2];

if (distsq < cs square)
vlists[ particles[i].verletID].push back( particles[j].

verletID);
}

}
}

void buildVerletLists() {

for(auto &vlist: vlists)
vlist.clear();

VerletFunctor<Particle> vfunctor(& vlists, cs square);
cells.iteratePairwiseAoS2(&vfunctor);

}

void iteratePairwiseAoS(Functor<Particle> ∗f) override {}
void iteratePairwiseSoA(Functor<Particle> ∗f) override {}

template <class ParticleFunctor> void iteratePairwiseAoS2(ParticleFunctor ∗f
) {

Particle p1, p2;
std::array<double, 3> dist;
double distsq;

for (unsigned long i = 0; i < particles.size(); i++ )
{

p1 = particles[i];
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for (auto j: vlists[i])
{

p2 = particles[j];
dist = arrayMath::sub(p1.getR(), p2.getR());
distsq = dist[0] ∗ dist[0] + dist[1] ∗ dist[1] + dist[2] ∗ dist

[2];

if (distsq < cs square)
f−>AoSFunctor(p1,p2);

}
}

}

private:
LinkedCells <Particle, ParticleCell> cells;
std::vector<std::vector<unsigned long>> vlists;
std::vector<Particle> particles;

unsigned long vIDcount = 0;
double cs square;

};

template<class Particle, class ParticleCell>
VerletLists<Particle, ParticleCell>::VerletLists(const std::array<double, 3> &

boxMin, const std::array<double, 3> &boxMax, double cutoff, double skin)
: ParticleContainer<Particle, ParticleCell>(boxMin, boxMax, cutoff +

skin), cells(boxMin, boxMax, cutoff + skin) {

cs square = (cutoff + skin) ∗ (cutoff + skin);
}
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A.3. class VerletFunctor

template<class Particle>
class VerletFunctor : public Functor<Particle> {
public:

VerletFunctor(std::vector<std::vector<unsigned long>> ∗lists, double
cssquare)

{
cs square = cssquare;
vlists = lists;

}

inline void AoSFunctor(Particle &p1, Particle &p2) override {

std::array<double, 3> dist = arrayMath::sub(p1.getR(), p2.getR());
double distsquare = dist[0] ∗ dist[0] + dist[1] ∗ dist[1] + dist[2] ∗

dist[2];

if (distsquare < cs square)
(∗vlists)[p1.verletID].push back(p2.verletID);

}

private:
double cs square;
std::vector<std::vector<unsigned long>> ∗vlists;

};
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