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Abstract

Neutron beta decay provides an excellent toolkit for the investigation of the structure of
the weak interaction and potential deviations from the predictions of the standard model
of particle physics.
Measuring the experimental beta asymmetry provides the most precise way to determine
the ratio of axialvector- and vector-coupling, λ, and is also sensitive to non-zero scalar
and tensor couplings via the Fierz interference term, b.
In this thesis the analysis of the experimental beta asymmetry measured with Perkeo III
at the Institut Laue-Langebin, Grenoble, in 2009 is presented. This includes the data
reduction process, as well as the analyis of the measured spectra including detector and
background systematics as energy-dependent effects. Major refinements to the detector
model are presented with regards to the non-linearity and energy resolution of the detec-
tors.
The result of this analysis is a new results for the beta asymmetry A = −0.11985(21)
which is two times more precise than previous measurements. A correlated analysis of λ
and b is performed. With b = 0.017(21) this analysis provides the currently most precise
limit from a single measurement in neutron decay.

Zusammenfassung

Die Untersuchung des Zerfalls des freien Neutrons ist ein exzellentes Werkzeug zur Un-
tersuchung der Struktur der schwachen Wechselwirkung und erlaubt die Beobachtung
potentieller Abweichungen von den Vorhersagen des Standardmodells der Teilchenphysik.
Die präsziseste Methode zur Bestimmung des Verhältnisses von Axial- und Vektorkop-
plungskonstanten, λ, ist die Messung der Beta Asymmetrie im Neutronenzerfall. Diese
beschreibt die Korrelation von Elektronenimpuls und Neutronenspin. Durch ihre Ab-
hängigkeit vom Fierz Interferenz Term, b, ist diese ebenfalls sensitiv auf Skalar- und
Tensorkopplungen abweichend von 0.
Im Rahmen dieser Arbeit wird die Analyse der experimentellen Beta Asymmetry, gemessen
mit dem Zerfallsspektrometer Perkeo III, durchgeführt und beschrieben. Dies beinhaltet
die Reduktion der Rohdaten und die Analyse der gemessenen Spektren inklusive Detektor-
und Untergrundsystematiken. Wesentliche Erweiterungen des verwendeten Detektormod-
ells in Bezug auf die Nichtlinearität und Energieauflösung wurden implementiert und
erlauben eine unabhängige Kalibrierung mit Elektronenquellen.
Das Ergebnis dieser Analyse ist ein neues Resultat für die Beta Asymmetry A =
−0.11985(21) und λ = −1.27641(56). Dies ist um einen Faktor zwei präziser als vorige
Messungen und ist die derzeit präziseste Messung von λ.
Alle Systematiken sind als energieabhängige Korrekturen implementiert. Dies erlaubt
die Extraktion des Fierz Interferenz Terms aus einer simultenen Analyse von λ und b.
Das Ergebnis dieser Analyse ist b = 0.017(21) und das derzeit beste Limit auf den Fierz
Interferenz Term aus einer einzelnen Messung im Neutronenzerfall.
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Introduction

The free neutron decays into a proton, electron and electron antineutrino:

n→ p+ + e− + ν̄e (0.1)

Within the Standard Model of particle physics the decay of the neutron is described
using only two free parameters, the first element of the CKM-matrix Vud and the ratio of
axialvector to vector coupling λ = gA/gV .
Due to the abscence of nuclear structure neutron beta decay requires only small

theoretical corrections. This makes investigations of neutron decay one of the most
important probes to test the structure of the weak interaction.

Neutron decay observables may be seperated into two types, the neutron lifetime, which
is sensitive to Vud and λ, and the correlations between the kinematic properties of the
neutron and its decay products. Within the Standard Model these correlations only depend
on λ. The most precise measurements of λ are measurements of the partiy-violating beta
asymmetry in neutron decay.

Neutron decay observables are sensitive to other couplings not described in the Standard
Model. Combining measurements of several correlation coefficients allows to derive
competitive limits on some of these couplings, as their dependence on the coupling
parameters is different. The Fierz interference b in particular, is a direct probe for
scalar and tensor interactions. It may be measured directly via the electron spectrum,
but also enters the measured spectra which are used to extract some of the correlation
coefficients in an energy-dependent fashion. Usually a combination of several correlation
parameters is used to extract b, since the direct measurement of the Fierz interference
term is experimentally challenging. However, to a certain extent this neglects experimental
details such as energy range, detector resolution and background effects of the individual
measurements. This can be solved by performing a correlated λ-b analysis. For the beta
asymmetry such an analysis requires the knowledge of all major systematics effects and
their energy dependent contribution to the measured spectra.

The spectrometer Perkeo III has been developed in order to measure several correlation
coefficients in neutron decay. Within this thesis the analysis of a new measurement of the
beta asymmetry is presented which has been performed by Perkeo III in 2009. This
includes the selection and reduction of the recorded data, as well as the analysis of detector
and background systematics in an energy-dependent fashion. To blind the analysis of
the beta asymmetry, the neutron beam polarisation and systematic effects related to the
magnetic field have been analysed seperately.
The work presented in this thesis is partly based on a first analysis performed after

the beamtime [Mes11]. Several additions to this initial analysis are made, including
refinements to the theoretical description of the measured data as well as an analysis of
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background induced by the neutron beam. Major additions to the detector response model
address the description of the detector non-linearity and energy resolution. These are
supported by off-line measurements to understand the origin of the detector non-linearity.
This finally allows to use independent measurements for the detector calibration.

The result presented for the beta asymmetry is the most precise measurement of the beta
asymmetry and includes the contribution of all systematic effects in an energy-dependent
fashion. This allows for correlated λ-b analysis which provides the most precise limits on
the Fierz interfernece term from a single measurement in neutron decay.
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Chapter 1

Theoretical Background

1.1 Beta Decay of the free Neutron

A free neutron decays into a proton, electron and electron anti-neutrino with a measured
lifetime of τ = 880.2 (1.0) s [PDG18]

n→ p+ e+ ν̄e. (1.1)

The total energy release is given by the mass difference of the neutron and the decay
products

Etot = mn −mp −me = 782.33324 (42) keV, (1.2)

neglecting the neutrino mass. This energy is distributed among the kinetic energies of the
decay products fulfilling energy and momentum conservation.

This weak semi-leptonic decay is mediated by aW-Boson

Fig. 1.1: Feynman Graph of
Neutron Decay.

as illustrated in the Feynman Graph figure 1.1. The
propagator of the W -Boson can be written as

W
(
q2
)

= −i
gµν − qµqν

m2
W

q2 −m2
W
, (1.3)

where gµν is the metric tensor, q the momentum transfer
and mW = 80.385 (15) GeV the mass of the W-Boson.
Using mW � E0 the propagator term can be approxi-
mated as

W
(
q2
) mW�q≈ i

gµν
m2

W
(1.4)

which is equal to a point like interaction where the hadronic and leptonic currents couple
directly [CB83].

3



Chapter 1 Theoretical Background

1.2 Neutron Beta Decay within the Standard Model

The most general Lorentz-invariant Hamiltonian that describes the semileptonic charge
current can be written as [LY56]

HW =
(
ψ̄pψn

) (
CSψ̄eψν + C ′Sψ̄eγ5ψν

)
+
(
ψ̄pγµψn

) (
CV ψ̄eγµψν + C ′V ψ̄eγµγ5ψν

)
+ 1

2
(
ψ̄pσλµψn

) (
CT ψ̄eσλµψν + C ′T ψ̄eσλµγ5ψν

)
−
(
ψ̄pγµγ5ψn

) (
CAψ̄eγµγ5ψν + C ′Aψ̄eγµψν

)
+
(
ψ̄pγ5ψn

) (
CP ψ̄eγ5ψν + C ′P ψ̄eψν

)
.

(1.5)

Where ψp, ψn, ψe and ψν denote the wave functions of the proton, neutron, electron and
electron antineutrino. The indices V, A, S, T, P indicate vector, axialvector, scalar, tensor
and pseudoscalar couplings respectively. The coefficients Ci, C ′i are necessary to introduce
parity non-conservation into the theory and are allowed to be complex only in the case
that time reversal invariance is not fulfilled. Accounting for the fact that only left-handed
neutrinos are observed (maximum parity violation) the relation between the coefficients is
fixed by Ci = −C ′i [CB83],

Ciψ̄eOiψν + C ′iψ̄eOiγ5ψν → Ciψ̄eOi(1− γ5)ψν . (1.6)

Based on experimental observations [Wu+57; GGS58] this general Hamiltonian is restricted
by the V-A theorem to contain vector and axialvector couplings with opposite signs [LY56;
FG58]. The resulting Hamiltonian is given by

HW (x) = 1√
2

(
JV,hadrµ + JA,hadrµ

)
J lept,µ,

with JV,hadrµ (x) = CV ψ̄p (x) γµψn (x) ,
JA,hadrµ (x) = CAψ̄p (x) γµγ5ψn (x) ,

J lept,µ (x) =
[
ψ̄eγ

µ
(
1− γ5

)
ψν (x)

]
,

(1.7)

The vector coupling CV is given in terms of the Fermi coupling constant GF as measured
in muon decay [PDG16]

CV = GF Vud gV , with GF = 1.1663787 (6) · 10−5 GeV−2 (1.8)

where gV = 1 and Vud the first element of the CKM-matrix, that accounts for the rotation
of weak and mass eigenstates of quarks [Cab63; KM73]. The axialvector coupling CA on
the other hand is given by

CA = GF Vud gA = GF Vud λ, with λ = CA
CV

= gA
gV
. (1.9)
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1.2 Neutron Beta Decay within the Standard Model

The couplings gA and gV are the couplings on nucleon level as relevant in β-decay and
implicitly contain QCD corrections for the nucleon structure and radiative corrections
[Sha71]. These couplings must not be confused with the weak coupling constants at quark
level where the ratio of vector and axialvector couplings is defined to be unity by the V-A
theorem giving rise to the universality of the weak interaction as it is described by the
single parameter GF .

1.2.1 Electron Spectrum and Neutron Lifetime

The decay width dΓ of an unpolarised neutron depending on the kinetic energy of the
decay electron can be derived by using Fermi’s Golden Rule

d5Γ = 2π
h̄
|Mfi|2 ρ (Ee) dEedΩedΩν , (1.10)

where Mfi denotes the transition matrix element, Ee the electrons kinetic energy and
ρ (Ee) the phase space density. The decay rate can be calculated with the approximation
of an infinitely massive nucleus and without consideration of electromagnetic interaction
between the decay products,

dΓn = G2
F |Vud|

2

32π5

(
1 + 3λ2

)
(E0 − Ee)2EepedEe (1.11)

where the integration over the solid angles of electron and anti-neutrino as well as the
anti-neutrino energy has been carried out. These assumptions are equivalent to a setup
where antineutrino momenta and electron momentum directions remain undetected. The
phase space density has become [Wil82]

ρ0 (Ee) = (E0 − E)2Eepe, (1.12)

where the endpoint energy of the electron spectrum E0 contains a correction for the finite
mass of the proton that leads to

E0 =
m2
n −m2

p +m2
e

2mn
. (1.13)

For precision analysis some theoretical corrections for the phase space volume are required
which are discussed in detail in section 2.1.
After integration over the electron phase space the total decay probability for the neutron
is given by [MS06]

1
τ

= |Vud|2
1 + 3 |λ|2

4908.7(1.9)s. (1.14)

This illustrates that within the Standard Model neutron decay can be calculated requiring
two parameters λ and |Vud| to be determined by experiment. The uncertainty in the
numerator accounts for the theoretical uncertainties of the radiative corrections.

5



Chapter 1 Theoretical Background

1.2.2 Decay Parameters for Polarized Neutrons
A formulation for the differential β-decay rate for oriented spin-1/2-nuclei depending on
the electron and neutron momentum directions and the electron energy has been derived
by Jackson, Treimann and Wyld [JTW57]:

dΓn (Ee,Ωe,Ων , 〈σn〉) dEedΩedΩν =
1

32π5 ρ (Ee) ξ
{

1 + a
pe · pν
EeEν

+ b
me

Ee
+ 〈σn〉

[
A
pe
Ee

+B
pν
Eν

+D
pe × pν
EeEν

]}
. (1.15)

Here 〈σn〉 = 〈J〉 /J is the average spin orientation of the neutron and ρ (Ee) is the phase
space density including corrections as shown in section 1.2.1. The decay parameters
ξ, a, b, A, B, D describe the amplitude of dependences of or correlations between
different particle momenta. The values of these decay parameters are a function of the
considered (in general complex) coupling constants without necessarily being restricted to
V-A couplings only. However, within the Standard Model all the correlation coefficients
are a function of λ or predicted to be 0.
The first parameter ξ just contains the influence of coupling constants on the decay rate

Coefficient λ-dependence Value

X Name X (λ)
∣∣∣∂X∂λ (λ0)

∣∣∣ Recent World Average

a Electron Neutrino
Angular Correlation

1−|λ|2

1+3|λ|2 0.30 −0.1090(41)[1] −0.1059(28)

b Fierz Interference
Term 0 0 0.067

(
+0.090
−0.061

)
[2] none

A Beta Asymmetry −2 |λ|
2+Re(λ)

1+3|λ|2 0.37 −0.12015(71)[3] −0.11840(10)

B Neutrino Asymmetry 2 |λ|
2−Re(λ)

1+3|λ|2 0.08 0.9802(50)[4] 0.9807(30)

C Proton Asymmetry 4xC Re(λ)
1+3|λ|2 0.12 −0.2377(26)[4] −0.2377(26)

D Triple Correlation 2 Im(λ)
1+3|λ|2 0 −0.9(2.1) · 10−4[5] −1.2(2.0) · 10−4

τ Neutron Lifetime ∝ 1
1+3|λ|2 0 877.7(0.7)[6] 880.2(1.0) s

1: [Dar+17], 2: [Hic+17], 3: [Bro+18], 4: [Sch+07] and [Sch+08], 5: [Chu+12], 6: [Pat+18]

Tbl. 1.1: Correlation coefficients and their dependence on λ = gA/gV within the Standard Model.
For the comparison on the λ sensitivity a value of λ0 = −1.2748 has been used. The
most recent published results and the world averages according to [PDG18] are listed.

and is identified with the factor
(
1 + 3λ2) within the standard model. The correlation

coefficients a and b are observed for unpolarised neutrons and fulfil C, P and T symmetries,
whereas A, B, D correlate particle momenta with the neutron spin and are either P or
T violating. Table 1.1 summarizes the correlation coefficients with their λ-dependence
and the most recent experimental results. The neutron lifetime plays a special role in this
compilation as it is the only parameter that is not only dependent on λ but also on |Vud|.
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1.2 Neutron Beta Decay within the Standard Model

The CKM-matrix element |Vud| can be determined from neutron decay, by combining
results from measurements of λ and the neutron lifetime. The correlation coefficient
C describes the preferred recoil direction of the proton with respect to the neutron
polarisation which effectively is a combination of the Beta and Neutrino Asymmetries

C = −xC (A+B) (1.16)

with a kinematic factor of xC = 0.27484.
In addition to the correlation coefficients mentioned above there are plenty more observables
when considering other kinematic observables such as the electron polarisation, providing
about a dozen decay parameters in total. This over-determined system of observables
is an excellent probe to test the consistency of the Standard Model and the underlying
assumptions about the nature of the weak interaction.

1.2.3 The Beta Asymmetry

The most sensitive parameter to determine λ is the beta asymmetry A. This parameter
is measured in terms of the asymmetry between the number of decay electrons emitted
parallel and antiparallel to the neutron spin, which is called the experimental asymmetry.

Aexp (Ee) = N↑ (Ee)−N↓ (Ee)
N↑ (Ee) +N↓ (Ee)

. (1.17)

Where N↑ and N↓ denote the electron count rates measured with emission direction
parallel and antiparallel to the neutron spin, respectively. Using equation 1.15 the
emission probability with respect to the electron emission direction relative to the neutron
spin can be written as

dΓn (Ee) dEe = 1
8π3 ρ (Ee) ξ

{
1∓A 〈σ〉 pe

Ee
cos (θ)

}
, (1.18)

where integration over the complete solid angle of neutrino emission has been carried out
and the electron emission angle θ is defined relative to the neutron spin axis. In analalogy
to the experimental setup to measure the beta asymmetry described in chapter 3 the
integration over electron emission angles of the half-spaces finally leads to

Aexp (Ee) = 1
2APnβ (Ee) . (1.19)

Where the average neutron beam polarisation Pn is introduced, β (Ee) = pe/Ee and A is
the beta asymmetry as defined in table 1.1.
The most precise measurement of the beta asymmetry has been performed with

Perkeo II. The combined results of three measurements performed yields [Mun+13;
Abe+02; Abe+97]

APerkeo II = −0.11926(+47
−53). (1.20)

The combined value from the UCNA collaboration is recently updated including a new
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Chapter 1 Theoretical Background

measurement [Bro+18]

AUCNA = −0.12054(34)stat(63)sys. (1.21)

1.2.4 Experimental Status of λ and τ from Neutron Decay

Current experimental limits for both the neutron lifetime as well as the ratio of coupling
constants λ = gA/gV are shown in figures 1.2 and 1.3. Except for the measurement of
Mostovoi et. al. and Schumann et. al. all measurements of λ have been performed by
measuring the beta asymmetry A or the triple correlation coefficient a. However, the
current world average calculated by the Particle Data Group is currently scaled by a factor
of 2.2 in order to account for the discrepancy between recent measurements performed
by Perkeo II and UCNA and older measurements [PDG18]. This leads to the fact that
the world average λ = 1.2724(23) does not fully reflect the achieved precision by newer
measurements.
For the neutron lifetime a similar observation can be made. Here the scaling for the

world average is 1.9 to account for the discrepancy observed between storage experiments
performed with ultracold neutrons and beam experiments. In typical storage experiments
ultracold neutrons are stored in a magnetic or material trap and the number of remaining
neutron is measured for different observation times. In beam experiments on the other
hand the neutron decay probability is measured by counting the decay products for a
neutron beam passing a well defined decay volume. This method requires a very precise
determination of the geometry of the decay volume as well as a precise measurement of
the neutron flux.

So far these discrepancies severely limit the potential power of neutron decay for testing
the validity of the Standard Model and determining the parameters to describe the process
of neutron decay.

1.2.5 Experimental Status of |Vud| from Neutron Decay

Using equation 1.14 and the current limits for λ and τ the value of Vud from neutron
decay is:

|Vud| = 0.97585 (18)RC (55)τ (146)λ = 0.97585(157). (1.22)

This result is currently limited dominantly by the experimental limit obtained for λ, which
again illustrates the necessity for more precise experimental results.
The Standard Model requires the CKM matrix to be unitary. In order to check this,

the overall norm of the first row is checked

∆ = 1−
(
|Vud|2 + |Vus|2 + |Vub|2

)
, (1.23)

where ∆ is required to compatible with zero in order to confirm the Standard Model.
The most precise determination of Vus is obtained from different decay modes of Kaons

[MB16] which are averaged to

|Vus| = 0.2252(10). (1.24)
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Fig. 1.2: Comparison of λ measurements currently included in the world average. The letter in
braces denotes the correlation coefficient measured to obtain λ if this is not A.
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Fig. 1.3: Comparison of neutron lifetime measurements currently included in the world average.
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Using this value and the current limit on Vud (eq. 9.13) one obtains

∆ = −3.0(3.1) · 10−3, (1.25)

confirming the unitarity of the CKM matrix.
The best experimental limit on Vud is currently obtained from superallowed nuclear beta

decays [HT15], where the experimental ft values of 14 nuclei are averaged by including
radiative and isospin-symmetry-breaking corrections individual to each nucleus. The
validity of the applied corrections is simultaneously tested by this analysis and confirms
the CVC hypothesis of the Standard Model. The value obtained is

Vud = 0.97417(21), (1.26)

which is a factor 7 more precise than the result obtained using neutrons. In this case the
unitarity test leads to

∆ = 2.3(6.0) · 10−4. (1.27)

1.3 Neutron Decay and Physics Beyond the Standard Model

Neutron beta decay provides many more observables than free parameters required within
the Standard Model (see section 1.2.2). This allows to check the consistency of different
observables, effectively testing the validity of the Standard Model and its underlying
assumptions.

In [JTW57] the decay correlations listed in table 1.1 are given in their most general form
considering all potential couplings Ci. In the following only the amplitudes of potential
scalar and tensor couplings are considered, but still accounting for the left-handedness of
the weak interaction. The following leading order contributions to the decay observables
are obtained:

a = aV-A −
2
3

(
2

1 + 3λ2 −
2− C2

S + 3CT 2

1 + C2
S + 3λ2 + 3C2

T

)
' aV-A +O(C2

S/T ),

b = 2 CS + 3λCT
1 + C2

S + 3λ2 + 3C2
T

' 2CS + 3λCT
1 + 3λ2 +O(C2

S/T ),

A = AV-A + 2
1 + 3λ2

(
C2
Sλ(1 + λ) + C2

T (1 + 3λ+ 6λ2) + CS(CT + 3λ2CT )
1 + C2

S + 3C2
T + 3λ2

)
' AV-A +O(C2

S/T ),

B =
2
(
C2
T + λ(λ− 1)− CSCT + me

Ee
(−CT (2λ− 1)− CSλ)

)
1 + C2

S + 3λ2 + 3C2
T

' BV-A −
me

Ee

2(CT (1− 2λ) + CSλ)
1 + 3λ2 +O(C2

S/T ),

τ = τ(V−A) ·
(
1 + 3λ2)

1 + C2
S + 3λ2 + 3C2

T

' τV-A +O(C2
S/T ).

(1.28)
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1.3 Neutron Decay and Physics Beyond the Standard Model

The parameters τ , a and A only obtain corrections of quadratic order, but provide a
stronger sensitivity on λ. Linear contributions are obtained for b and B.

This way neutron decay provides a sensitive probe to set limits on CS and CT or other
potential non-Standard Model couplings by analysing multiple observables simultaneously.

1.3.1 The Fierz Interference Term
In case of non-zero scalar and tensor coupling the Fierz interference term also becomes
non-zero. The spectra and experimental asymmetries accessed by experiments to extract
the decay parameters then obtain additional changes due to the Fierz interference term
(see eq. 1.15). The neutron beta decay rate is modified in an energy dependent fashion:

dΓ′n (Ee)→ dΓn (Ee) ·
(

1 + b
me

Ee

)
. (1.29)

This modification is transferred to the numerator of the experimental beta asymmetry
(see eq. 1.19):

A′exp (Ee)→ Aexp (Ee) ·
1

1 + bmeEe
. (1.30)

This then provides a first order dependence on scalar and tensor couplings and dominates
the modification of the beta asymmetry A as derived in equation 1.28. Figure 1.4 shows
the differences in the Neutron Beta Decay spectrum and the Experimental beta asymmetry
for a Fierz interference term of b = 0 and b = 0.1.
Since it enters multiple spectra, there exist several options for the Fierz interference

term to be extracted from neutron decay. The option most commonly used is to perform a
combined analysis of multiple correlation coefficients fitting λ and b and to extract limits
from this comparison [SBN06; WGH14]. In this case the energy dependent contribution
of the Fierz interference term needs to be averaged over the whole energy region

A′ → A · 1
1 + b

〈
me
Ee

〉 . (1.31)

This method makes it very difficult to account for experimental details of each experiment
as there usually limited information to account for the statistical sensitivity over the
analysed energy region, background contributions and detector resolution correctly. These
affect the parameter correlations between λ and b.

A first direct result on b extracted from the unpolarised decay spectrum measured with
the UCNA spectrometer yields [Hic+17]

b = 0.067(0.005)stat
(

+0.090
−0.061

)
sys
, (1.32)

where the result is limited severely by systematics related to electron detection. Although
providing superior statistical sensitivity, a strong sensitivity on detector systematics
is inherent to this method. The norm of the unpolarised decay spectrum is fitted
simultaneously which reduces the signature of the Fierz interference term to a small
spectral distortion. The statistical sensitivity is at least one order of magnitude larger
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(a) Unpolarised electron spectrum
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Fig. 1.4: Comparison of the unpolarised electron spectrum from Neutron Beta Decay and the
experimental beta asymmetry for a Fierz interference term of b = 0 and b = 0.1
according to equations 1.29 and 1.31.

compared to the beta asymmetry. For the Perkeo III data the improvement in statistical
sensitivity is a factor of 13 for a fit range of 300-700 keV and increases strongly when
including lower energies in the fit. Due to its superior statistical sensitivity such direct
measurements are planned by the PERC collaboration at the FRMII [Dub+08; Kon+12a]
and the Nab collaboration at the SNS [Bae+13] and also involve improved detector
concepts.
Using the spectral analysis of an experimental asymmetry on the other hand provides

limited statistical sensitivity. However, it allows to limit the contribution of detector and
background systematics as the norm is not determined by the number of events detected
[GJL95]. For the beta asymmetry such an analysis involves a combined λ-b-fit to the
experimental beta asymmetry considering the full energy dependent contribution of the
Fierz interference term as in equation 1.30.
Along with the analysis of the beta asymmetry data measured with Perkeo III this

thesis deals with the understanding and improvement of systematic uncertainties. The
present analysis provides the current best limit on b obtained from neutron decay (see
chapter 6).

1.3.2 Current and future limits on Scalar and Tensor Interactions

The best limits on scalar couplings are dominated by the Fierz interference term obtained
from comparing different superallowed nuclear decays [HT15] which leads to

bF = −0.0028(26) → CS = −bF2 = 0.0014(13) (68% C.L.), (1.33)

where bF is only sensitive to scalar couplings due to the superallowed nature of the
decays. A recent global analysis on multiple datasets provides limits on scalar and tensor
currents assuming only coupling to left-handed neutrinos. This analysis includes nuclear
and neutron decay data [GNS18] and provides consistency with the Standard Model
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1.3 Neutron Decay and Physics Beyond the Standard Model

expectation CS = CT = 0. The projected single parameter limits are:

CS/CV = 0.0014(12) (68%C.L.),
CT /CA = 0.0020(22) (68%C.L.).

(1.34)

Since a potential tensor coupling does not modify the 0+ → 0+-decays, bF directly
limits the amplitude of CS . The limits obtained for CT are dominated by the measurement
of neutron decay and other low energy nuclear decays such as 6He. Similar limits on CT
are derived in [PHY13] where measurements of the beta asymmetry A in neutron decay,
the neutron lifetime and CS from superallowed Fermi decays are used. As illustrated in
figure 1.5 the combination of the beta asymmetry and the neutron lifetime actually yields
strong limits on the Fierz Interference term b, when the value of Vud is constrained by
superallowed Fermi decays. Using solely neutron decay data currently does not provide
competitive limits as the simultaneous determination of Vud and λ severely limits the
sensitivity to other couplings. New results for λ and b are presented in this thesis.

Including a direct measurement of the Fierz interference term on the 10−3-level combined
with improved limits on several correlation coefficients would allow to extract more stringent
limits from neutron decay data [Bha+12; Kon+12b; NG13].
Using an Effective Field Theory approach in the low energy limit the results obtained

for the nucleon level couplings discussed above can be projected onto the quark-level
[Bha+12; CGG13; CGH13] involving corrections for the nucleon structure from QCD
lattice calculations. These calculations allow a comparison of the limits obtained for
quark-level couplings from LHC data and precision measurements of nuclear and neutron
decays. The results of these comparisons show that future limits of nuclear and neutron
decay can provide limits which are complementary to those obtained by the LHC when
including a direct Fierz interference term measurement from neutron decays.
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Fig. 1.5: 68.27% confidence regions of the beta asymmetry A as measured with Perkeo II
[Mun+13] and the world average of the neutron lifetime [PDG18]. In order to infer the
neutron lifetime the value of Vud needs to be extracted from superallowed Fermi decays.
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Chapter 2

The Phase Space of Neutron Decay and the
Experimental Beta Asymmetry

With increasing precision of experiments also the influence of theoretical uncertainties on
the obtained results become more important. Performing a spectral analysis, especially
when aiming for the extraction of a Fierz interference term, requires the knowledge of
the correct energy dependence of any corrections, in order to account for the varying
statistical sensitivity due to influences of background and detector resolution.

Within this thesis the influence of theoretical corrections on the analysis of the experi-
mental beta asymmetry is investigated. Most of these corrections have been applied in
previous analyses already [Mun+13; Mes11]. In order to account for the improved precision
of the Perkeo III data all relevant corrections are recalculated as given in the literature
and corresponding uncertainties are investigated. This includes estimates on potential
higher order contributions to the corrections and some refinements to previous calculations
[Rei99] used for Perkeo. All relevant correction to the neutron decay phase space and
the experimental beta asymmetry are implemented into the fitting routine which is used
to analyse the spectra (see chapter 6). A compact analytical expression is calculated for
the energy-dependence of the radiative corrections which provide a 10−3-correction to
the experimental beta asymmetry. Inclusion of this correction into the fit reduces the
uncertainty related to this correction to 1 · 10−4.

In the following chapter the relevant corrections and their uncertainties are summarised.

2.1 The Neutron Beta Decay Phase Space

The general shape of the electron energy distribution from neutron beta decay is defined
by the phase space density ρ0 (see equation 1.11).

ρ0 (Ee) = (E0 − E)2Eepe. (2.1)

This basic description of the decay phase space demands additional correction due to the
interaction of charged decay products which are discussed in the following sections.
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Chapter 2 The Phase Space of Neutron Decay and the Experimental Beta Asymmetry

2.1.1 Coulomb Interaction

The change in phase space due to the coulomb potential of the proton is accounted for by
the relativistic Fermi function [IPT13]

FR (Ee, Z = 1) = 2 (1 + γ)
Γ (1 + 2γ)2 (2rppeh̄)2(γ−1) e

παEe
cpe

∣∣∣∣Γ(γ + iα

cpe

)∣∣∣∣2 ,
with γ =

√
1 + α2 and α = 1

137.036 ,
(2.2)

whith the proton radius rp and the electron momentum pe. This changes the phase space
density to ρ (Ee) = ρ0 (Ee)FR (Ee).

Previously, the non-relativistic approximation of the Fermi function has been used
[Wil82; Rei99],

FNR (Ee, Z = 0) = 2πα

β (Ee)
(

1− e−
2πα
β(Ee)

) . (2.3)

The deviation to the relativistic Fermi function results in an underestimation of the
correction on the level of 10−3.

In [Wil82] an estimate for the correction of the Fermi function to account for the proton
recoil and thus the movement of the source field is derived. This is done by modifying
β (Ee) by adding the projection of the protons mean velocity along the electron direction
to the electron velocity

β (Ee)→ β (Ee) +
√
E2
e +m2

e

memp

(
1 + 1− λ2

1 + 3λ2
E0 − Ee

3 (Ee +me)

)
. (2.4)

Calculating these corrections using λ = −1.2748 one finds that the corrections to the
Fermi function are < 5 · 10−5 for all possible electron energies.

The current deviation between the proton charge radius measured via proton-electron
scattering and atomic energy levels with rp = 0.8751 (61) fm on the one hand and the
recent measurements of the lamb shift in muonic hydrogen with rp = 0.84087 (39) fm
[Poh+10; Ant+13] on the other hand, turns out to be uncritical as it gives a 2 · 10−6

uncertainty in the value of the Fermi function.

2.1.2 Recoil Order Corrections

The Hamiltonian of the neutron decay as given in equation 1.7 is incomplete. Although
only vector and axialvector couplings participate, additional terms need to be considered
describing induced couplings resulting from the vector current conservation. When
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Fig. 2.1: Recoil order corrections to the electron phase space in neutron beta decay.

including these terms the hadronic currents in the Hamiltonian become [Hol74]:

JV,hadrµ (x) = GFVudψ̄p (x)
{
gV γµ + 1

2M (gISqµ − i (gM − gV )σµνqν)
}
ψn (x) ,

JA,hadrµ (x) = GFVudψ̄p (x)
{
gAγµγ

5 + 1
2M

(
gIP qµγ

5 − igITσµνqνγ5
)}

ψn (x) ,
(2.5)

where M = (mn +mp) /2 is the mass scale characteristic to the decay process. The
first term of the hadronic currents describes the conventional vector and axialvector
contributions. For the induced scalar coupling the assumption of strong conservation of
the vector current implies that gIS = 0. For the weak magnetism we get from the same
assumption that

gWM =
µap − µan

2M = κ

2M (2.6)

where µap, µan are the anomalous magnetic moments of the proton and neutron, respectively
[Wil82]. The induced tensor coupling constant is a so called second class current and it
follows gIT = 0 [CB83]. The resulting corrections as given in [Wil82] are:

Proton Recoil

RRecoil (W ) = 1
(1 + 3λ2)M

(
2W + λ2

(
10W − 2

W
− 2W0

))
, (2.7)

Weak Magnetism

RWM (W ) = 1
(1 + 3λ2)M

(
2λκ

(
2W0 − 4W + 2

W

))
, (2.8)
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gV − gA Interference

RgV −gA (W ) = 1
(1 + 3λ2)M

(
λ

(
2W0 − 4W + 2

W

))
, (2.9)

with W = (Ee +me) /me and W0 = (E0 +me) /me. These results are the same as given
in [IPT13]. As shown in figure 2.1, the most dominant contribution is the proton recoil
correction followed by the weak magnetism. The change to the measured decay rate is on
the order of 10−3.
The potential uncertainty of limiting the corrections to leading order 1/M is checked

by including corrections of order 1/M2 for Proton Recoil as given in [Wil82].

RRecoil2 (W ) = 1
(1 + 3λ2)M2

((
W 2

0
2 − 11

6 + W0
3W − 4W0W

3 + 16W 2

3

)

.+ λ2
(
−W

2
0

2 − 77
6 + 7W0

3W − 28W0W

3 + 88W 2

3

))
.

(2.10)

The contribution of these corrections is on the order of 10−6 and can be neglected.

2.1.3 Radiative Corrections

According to [Sir67; GT92] the radiative corrections can be separated into different
contributions each being handled separately:

• Model independent part / “outer” radiative corrections (virtual photon exchange in
external fermion lines)

• Model independent part / Bremsstrahlung

• Model dependent part / “inner” radiative corrections (virtual photon exchange on
internal lines, depending on strong interaction)

• Coulomb interaction between final states of electron and proton (non-virtual photon
exchange)

The radiative corrections account for higher order interactions involving photon exchange
between the hadronic and fermionic currents. According to [Sir67] they may be separated
into the model independent corrections, that are independent of the details of the strong
interaction and a model-dependent part. When restricted to order-α this second part,
also called “inner” radiative corrections, leads to contributions similar to those of the
vector and axialvector couplings and may be absorbed in the usage of effective couplings
constants

g′v = gv

(
1 + α

2πRe (c)
)

and g′A = gA

(
1 + α

2πRe (d)
)

(2.11)

where c, d represent the contributions due to radiative corrections [Sha71]. These relative
corrections are on the percent level and it is known that c and d are of similar order. They
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2.1 The Neutron Beta Decay Phase Space

modify the amplitude of the coupling constants and thus the neutron decay rate, though.
The measured value of λ = gA/gV inherently contains these corrections.

The model independent part on the other hand can be separated into the “outer”
photonic corrections which describe the virtual photon exchange in external fermion lines
and Bremsstrahlung.

As for the model independent part of the radiative corrections, an analytical expression
for the correction of the electron phase space volume in unpolarised neutron decay has
been derived considering contributions of order α [Sir67]

g(Ee) = 3 ln
(
mp

m

)
− 3

4 −
4
β
L2

( 2β
1 + β

)
+ 4

(
tanh−1 (β)

β
− 1

)(
ln
(2 (E0 − Ee)

m

)
− 3

2 + E0 − Ee
3Ee

)

+ tanh−1 (β)
β

(
2
(
1 + β2

)
+ (E0 − Ee)2

6E2 − 4 tanh−1 (β)
)
,

(2.12)

which transforms the differential neutron decay rate as

dΓn = G2
F |Vud|

2

32π5

(
1 + 3λ2

)(
1 + α

2πg(Ee)
)
ρ (Ee) dEe. (2.13)

The overall effect on the decay rate due to the “outer” radiative corrections is 1.5 %.
The theoretical uncertainty of the model-independent corrections is given by the missing
higher order contributions which are yet to be calculated. However, a further suppression
of order α would lead to contributions of order 1 · 10−4.

This provides the dominant limit on the achievable precision for the calculation of the
electron decay spectrum both integral and spectrally. Thus only corrections at or above
O
(
10−4) are considered for the corrected differential neutron decay probability. Other

contributions given in [Wil82] as the effect due to lepton-nucleon convolution can be
neglected.

The corrected neutron decay phase space then becomes

dΓn = G2
F |Vud|

2

32π5

(
1 + 3λ2

)
(E0 − Ee)2Eepe

× F (Ee, Z = 1) (1 +R (Ee))
(

1 + α

2πg (Ee)
)

dEe

with R (Ee) = RRecoil (Ee) +RWM (Ee) +RgV gA (Ee) .

(2.14)

A comparison of the uncorrected and corrected neutron decay spectrum is shown in figure
2.2.
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Fig. 2.2: Comparison of the electron phase space density in neutron decay with and without
corrections applied.

2.2 The Experimental Beta Asymmetry
The measured spectrum used to extract the beta asymmetry is the experimental beta
asymmetry as given in equation 1.19

Aexp (Ee) = N↑(Ee)−N↓(Ee)
N↑(Ee) +N↓(Ee)

= 1
2APnβ (Ee) . (2.15)

As the denominator basically represents an unpolarised neutron decay spectrum the same
corrections apply as for the neutron decay phase space discussed in section 2.1. The
relative corrections for the Coulomb interaction between the electron and proton are the
same for both spin directions. Therefore the correction due to the Fermi-function cancels
completely when performing a spectral analysis 1. However, the vector and axial-vector
contribution of the decay amplitudes are weighted differently in the numerator spectrum.
This leads to different contributions from the recoil order and radiative corrections which
do not cancel.

2.2.1 Recoil Order Corrections
The recoil order corrections discussed in section 2.1.2 for the experimental beta asymmetry
become [Wil82]

1Note that if a non-spectral analysis of the Experimental Asymmetry is performed (i.e. only the
integral counts of N↑ and N↓ are used) the correction for the Coulomb term needs to be considered
and depending on the energy region actually changes the sign of the combined correction for Coulomb
interaction and the radiative corrections.
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Fig. 2.3: Recoil order corrections to the experimental beta asymmetry.

Proton Recoil

RRecoil (W ) = λ

λ (1 + λ) (1 + 3λ2)MR0 (W ) ,

with R0 (W ) =
(
λ2 − 2

3λ−
1
3

)
W0 +

(
λ3 − 3λ2 + 5

3λ+ 1
3

)
W + 2λ2 (λ+ 1)

W
,

(2.16)

Weak Magnetism

RWM (W ) = −2κ
λ (1 + λ) (1 + 3λ2)MR0 (W ) , (2.17)

gV − gA interference

RgV −gA (W ) = −1
λ (1 + λ) (1 + 3λ2)MR0 (W ) . (2.18)

The resulting corrections are shown in figure 2.3. The shape of these corrections is
identical due to their common energy dependence R0 (W ). They increase the measured
experimental beta asymmetry by 1 - 2.5 % depending on the energy window of the analysis.
This consideration leads to an expected uncertainty of O

(
10−5) induced by neglecting

the second order of the corrections.
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2.2.2 Radiative Corrections

Similar to the O(α) radiative correction to the decay phase space of an unpolarised neutron
the corrections for a polarized neutron become [Sha71]

ρ (Ee) = ρ0 (Ee)
1

1 + 3λ2

[
(1 + 3λ2)

{
1 + α

2πg(Ee)
}

+ λ (1− λ)Pnβ (Ee) cos (θ)
{

1 + α

2πh (Ee)
}]

.

(2.19)

Here g(Ee) accounts for the common part for both spin directions and is the same as for
the unpolarised spectrum (compare equation 2.12). h(Ee) on the other hand accounts for
the spin-dependent part of the decay rate and is given by [Sha71]

h (Ee) = 3 ln
(
mp

me

)
− 3

4 + 4
(

tanh−1 (β)
β

− 1
)

×
(

ln
(2 (E0 − Ee)

me

)
− 3

2 + E0 − Ee
3Eeβ2 + (E0 − Ee)2

24E2
eβ

2

)

+ 4tanh−1 (β)
β

(
1− tanh−1 (β)

)
− 4
β
L2

( 2β
1 + β

)
.

(2.20)

These contributions modify the experimental beta asymmetry:

Aexp (Ee) = N↑(Ee)−N↓(Ee)
N↑(Ee) +N↓(Ee)

= λ (1− λ)
1− 3λ2 Pnβ (Ee)

1 + α
2πh (E)

1 + α
2πg(E)

' Aexp,0 (Ee) ·
(

1 + α

2πg(Ee)−
α

2πh(Ee)
)

= Aexp,0 (Ee) ·
(

1 + α

π
f(Ee)

)
,

(2.21)

with a common function f(Ee) to account for the radiative corrections. Using equations
2.12 and 2.20 an analytical expression for f (Ee) can be calculated as

2 · f (Ee) = h (Ee)− g (Ee)

= 4
(

tanh−1 (β)
β

− 1
)(

E0 − Ee
3Eeβ2

(
1 + E0 − Ee

8Ee

)
− E0 − Ee

3Ee

)

− tanh−1 (β)
β

(
2
(
1 + β2

)
+ (E0 − Ee)2

6E2
e

− 4
)
,

(2.22)

which is in agreement with the expression given in [IPT13]. The correction to the
experimental beta asymmetry is shown in figure 2.4. The effect is on the lower 10−3 level,
increasing the absolute value of the measured beta asymmetry.

The analytical results obtained using equation 2.22 are in agreement with the numerical
calculations performed in [GT92]. Within this thesis it has been found that the radiative
corrections have been applied with opposite sign in previous publications. This is already
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Fig. 2.4: O(α) radiative corrections to the experimental beta asymmetry calculated according to
equation 2.22.
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Fig. 2.5: Experimental beta asymmetry without any corrections and including radiative and
recoil order corrections.
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corrected in the most recent publication of the Perkeo II collaboration [Mun+13].
For the uncertainty of the radiative corrections, the expected amplitude ofO(α2)-corrections

need to be considered. This would lead to a suppression by two orders of magnitude.
However, the amplitude of the current correction is the result of two contributions which
appear to cancel at the level of 10%. This is not necessarily the case for higher orders.
Therefore, the conservative assumption of a 1 · 10−4 uncertainty is made.

Figure 2.5 compares the experimental beta asymmetry without any corrections applied
and including the radiative and recoil order corrections. While the correction is dominated
by recoil order corrections the dominant uncertainty for the theoretical corrections to the
experimental beta asymmetry is given by the 10−4 uncertainty of the radiative corrections.
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Chapter 3

The Spectrometer Perkeo III

The spectrometer Perkeo III has been developed in 2006 with the aim to measure several
correlation coefficients in neutron beta decay [Mär06]. In this chapter the basic principles
of the Perkeo spectrometer are outlined, with a focus on the setup as used during the
measurement of the beta asymmetry A in 2009. A more detailed description of the setup
can be found in [Mes11; Wan13].

3.1 Operation principle of Perkeo III

Fig. 3.1: Sketch of the Perkeo III experimental setup as utilized during the measurement of
the beta asymmetry in 2009. The sketch shows the neutron beam preparation part of
the setup and the main spectrometer including the magnetic field lines (indicated by
the red lines) which guide the decay electrons to the detectors.

Figure 3.1 shows a sketch of the full setup as used during the 2009 beam time to
measure the beta asymmetry. The setup can be separated into two major parts, the
neutron beamline and beam preparation, and the spectrometer itself.
A beam of cold neutrons from the ILL reactor source (see section 3.2), guided by the

neutron guide H113, features the source of neutrons that decay inside the spectrometer.
The velocity distribution of neutrons inside the beam is filtered before entering the setup.
Afterwards the beam is polarized using a polarisation sensitive transmission filter. An
additional spin flipper allows to switch the direction of neutron polarisation by 180◦.
The last part of the beam preparation consists of a collimation system featuring five LiF
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apertures and a mechanical disc chopper that allows to create a pulsed neutron beam.
This pulsed beam enters the main spectrometer where a fraction of about 10−6 of these
neutrons decay. The remaining neutrons are absorbed in a neutron beam stop made of
enriched 10B4C.

The spectrometer itself consists of a vacuum vessel build from non-magnetic, stainless
steel with a residual pressure of 10−6 to 10−7 mbar and is surrounded by normal conducting
coils that provide a curved magnetic field. Within the central part of the spectrometer
the magnetic field is designed to be homogeneous and features the highest magnitude of
150 mT. The function of the field in this region is to provide a quantisation axis for the
neutron spin, meaning that the spin of the neutrons is either aligned parallel of antiparallel
to the magnetic field lines. At the same time the charged decay products will gyrate
around and follow the magnetic field lines and are guided to the electron detectors.
Due to the homogeneous nature of the field in the central region of the spectrometer,

electrons are guided to the detector which is placed in the direction of their initial emission.
This effectively provides a separation into two half-spaces with respect to the neutron
spin and allows to measure the electron distributions N↑,↓ (Ee) for each spin direction
separately and calculate the experimental beta asymmetry

Aexp (Ee) = N↑ (Ee)−N↓ (Ee)
N↑ (Ee) +N↓ (Ee)

. (3.1)

Using spectra from two detectors to calculate the experimental asymmetry is very
challenging because an identical energy calibration of the two detectors is hard to achieve.
To this end a spin flipper is applied to flip the direction of the neutron spin every ten
seconds. Since the flight time of neutron through the setup is only about 7 ms, the
necessary N↑,↓ spectra are available for both detectors. This allows to calculate the
experimental beta asymmetry for each detector individually.
Besides the fact that using two detectors increases the amount of recorded events by

a factor of 2, the application of the symmetric two detector design allows to minimize
systematic effects due to the remaining inhomogeneity of the magnetic field (Magnetic
Mirror Effect), electron backscattering and noise related detector systematics. For this
reason all instruments of the Perkeo series apply this principle.

3.2 Reactor source and guide
The measurements performed with Perkeo III take place at the PF1B beamsite at the
neutron research centre Institut Laue-Langevin (ILL) in Grenoble. The reactor of the ILL
features a thermal power of 54 MW and provides the most intense neutron source in the
world. These neutrons are provided with different thermal properties (or velocities) to
about 40 instruments specialized for a variety of research applications such as condensed
and soft matter physics, magnetism, biology, nuclear and “fundamental” physics.

Cold neutrons, as used with Perkeo III, are created by cooling down thermal neutrons
from the reactor moderator (T ' 300 K, v ' 2200 m/s) with a liquid hydrogen moderator
to temperatures of T = 40 K (v ' 800 m/s). Due to their large wavelength of about
5 Å, these neutrons can be guided over distances of several 10 m using glass tubes with a
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3.3 Neutron beam

reflective coating. Traditionally, these coatings are made from Nickel that provides a very
high reflectivity under small angles of incidence or from multiple materials in a multilayer
structure that provide a slightly smaller reflectivity for but for larger angles of incidence.

The H113 neutron guide which provides neutrons to the PF1B has been installed at the
ILL in 2000 [Häs+02]. It is the first so called ballistic supermirror guide that allows to
benefit from a large acceptance of beam divergence of supermirrors even for longer cold
neutron guides by significantly reducing the number of reflections [Abe+06]. The guide
has a length of 74 m and a cross-section of 6× 20 cm2.

The capture flux1 provided at the exit of the guide is Ωc = 1.35 · 1010 cm−2s−1 making
PF1B the strongest source of cold neutrons in the world.
In addition to the neutron guide PF1B features several options for beam preparation

including a velocity selector and a polariser.

3.3 Neutron beam
After exiting the neutron guide the neutrons pass the beam preparation section (compare
figure 3.1). The design and characterisation of the beamline are discussed in [Wer09]. A
simulation of the resulting neutron beam profile inside the spectrometer is performed in
[Wan13]. The main components of the beam preparation are:

Neutron Velocity Selector
The neutron guide H113 provides a broad spectrum of neutron velocities. When
using a pulsed neutron beam this is detrimental as the longitudinal spread of the
pulse would be very large. To this end only a certain wavelength range around the
maximum of the spectrum is selected by the velocity selector which is a turbine
of neutron absorbing blades. The selected wavelength region is 4.4 < λ < 5.6 Å
[Wan13].

Supermirror Polariser
The neutrons are polarized by applying a so called bender supermirror polariser.
This device consists of multiple sheets parallel to the beam direction, which have a
supermirror coating similar to that used for the neutron guide. A special feature of
this particular coating is that the reflectivity is spin-dependent. The sheets, which
are spaced by 2 mm, are bent such that the neutrons make at least two reflections
when passing the system. This way neutrons with the “wrong” spin direction have
a very low transmission probability, leaving a polarized neutron beam. The system
used at PF1B has a length of 80 cm and is specified to achieve a beam polarisation
of > 98 % [Sol+02].

Spin Flipper
In order to flip the neutron spin as described in section 3.1, an adiabatic resonance
spin flipper is used [Baz+93]. In this system a static inhomogeneous magnetic field

1The capture flux is defined as the particle flux weighted by the inverse velocity of the neutrons
normalized to the velocity of thermal neutrons and is common to account for the 1/v-dependence of
interaction cross-sections.
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B0(z) and perpendicular to it a rotating magnetic field Brot with frequency ω are
applied. The rotating frequency ω is chosen equal to the Larmor frequency of the
neutron in the field B0(z)

ωL = −γnB0, (3.2)

where γ = 1.83 · 108 s−1T−1 is the gyromagnetic ratio for the neutron. In the
rotating frame moving with the neutron, the effective magnetic field becomes

Beff(t) = B0(t)− ω/γ +Brot. (3.3)

At the beginning, the spin of the neutron is oriented parallel to B0(z = z0). If the
adiabatic condition dBdt� γB2 is met the neutron spin will follow the direction of
Beff when passing the flipper and is reversed at the end of the flipping region [LT84].

Collimation System
The typical divergence of the neutron beam delivered by the neutron guide H113
is θ ≥ 7 mrad (FWHM) [Abe+06]. The off-axis dimensions of the neutron beam
within the spectrometer are critical for several aspects. Ideally, the neutron beam is
confined in a region where the magnetic field is homogeneous in the central decay
volume. This also ensures that the electrons emerging from neutron decay are
transported to the detectors without making contact with the vacuum vessel, which
would distort the measured data.

In order to limit the dimensions of the neutron beam which passes freely through
the Perkeo III spectrometer, a collimation system of five LiF apertures with a
diameter of 6× 6 cm2 with a total length of 3.2 m is used before the neutron beam
enters the spectrometer. Within the central region of the spectrometer this results
in a beam with a cross-section of 10× 10 cm2.

Rotating Disc Chopper
In order to create a pulsed neutron beam a Rotating Disc Chopper is used. This
chopper consists of a disc with neutron absorbing plates made of 6LiF attached to
it. An opening window of 22.11 deg allows the neutrons to pass through the disc
with a defined frequency fCh while the disc rotates.

The design of the chopper and the characterisation of the resulting neutron pulses
are discussed in [Wer09]. During the measurement of the beta asymmetry two
chopper frequencies, 94 Hz and 83 Hz, have been used.

Beamstop
After passing the spectrometer the neutrons are absorbed by the beamstop. Initially
a 6LiF tile was used which has been changed to a tile of 10B4C. While 6Li produces
no gamma background a high amount of secondary fast neutrons is generated. The
delayed emission of these neutrons disturbs the background measurement within
the background time window [Mes11]. 10B on the other hand has a much lower
probability to emit fast neutrons but produces a high gamma intensity. The detection
of these gammas in the electron detectors produces the pronounced peak in the
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count rate at around 8 ms in figure 3.2. Since the emission of these gammas is
instantaneous they do not affect the background measurement.

3.3.1 Using a pulsed beam to minimize background systematics

During previous measurements with Perkeo II, background has been determined by
performing separate measurements with the shutter of the neutron beamline closed paired
with a continuous monitoring of the environmental background by additional detectors.
A second background contribution that is created by the neutrons passing the beamline
and spectrometer is estimated by analysing the measured spectra beyond the electron
endpoint energy and comparing measurements with and without magnetic field [Mun+13].
The resulting uncertainty due to detector background for the measurement of the beta
asymmetry is ∆A/A = 1.0 · 10−3.

Using a continuous beam, the neutron decay rate within the Perkeo III spectrometer
is 50 · 103 s−1 [Mär+09]. This is due to the fact that neither the velocity selector nor the
rotating disc chopper are used. In this case detector background needs to be determined by
additional measurements to obtain the clean electron spectra required for the experimental
beta asymmetry.
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Fig. 3.2: Time-of-flight dependence of the detector count rates for detector 1 and 2.

For Perkeo III the scheme to determine the detector background is changed significantly
by applying the pulsed beam method [Mär+09]. Figure 3.2 shows the number of events
detected versus the time-of-flight of the neutrons inside the spectrometer. For the
extraction of the electron spectra required to calculate the experimental beta asymmetry
only events detected within a time window of 2 ms when the neutron beam is fully
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Fig. 3.3: Time-of-flight dependence of the count rate of detector 2 for both chopper frequencies.
The red lines indicate the time windows used to extract the background spectra. The
data is extracted with an energy cut of about 300-700 keV which corresponds to the
energy window used in the analysis of the experimental beta asymmetry.

contained within the central decay volume are selected. Depending on the chopper
frequency, these time windows have been chosen to minimize the systematic effect due to
the magnetic field structure (see section 3.4.1)

3100− 5100 µs (94 Hz),
3150− 5150 µs (83 Hz).

(3.4)

Background is measured in another time window after the neutrons are absorbed completely
in the neutron beamstop. This background contains environmental background as well as
all background created in the neutron beamline and can be measured simultaneously with
a time delay of a few ms only.
Figure 3.3 shows the detector count-rates after the absorption of neutrons in the

beamstop. Even after the switch to 10B4C as absorber material (see section section 3.3)
the structure of the count-rate is not perfectly constant for detector 2 which is closer to
the beamstop. Potential reasons for this behaviour are delayed background components
from the beamstop due to backscattered neutrons, the delayed emission of alpha particles
or fast neutrons. In section 8.2 the impact of this effect on the beta asymmetry is shown
to be on the order of ∆A/A = 1 · 10−4.
To reduce the effect of the delayed background from the beamstop, the time-of-flight

windows are chosen to be as late as possible. The chosen background time-windows for
the analysis are

9400− 10400 µs (94 Hz),
10800− 11800 µs (83 Hz).

(3.5)

These time windows are slightly shifted compared to the ones used in [Mes11].
Due to the fact that the neutrons pass freely through the spectrometer before hitting the

beamstop the only background component left, that is not covered by this measurement,
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3.4 The spectrometer Perkeo III and its magnetic field

is the background created due to the chopper itself. The contribution of this background
is estimated in section 8.2.
By applying the pulsed beam method, the overall uncertainties due to the detector

background are reduced to a level of ∆A/A = 2 · 10−4. Thanks to the longitudinal design
of the magnetic field, which allows to dramatically increase the size of the decay volume,
the instantaneous rate of detected decay events is still 103 s−1 which is a factor of three
larger than that achieved with Perkeo II.

3.4 The spectrometer Perkeo III and its magnetic field

Fig. 3.4: The spectrometer Perkeo III. The image shows the coil system (brown) and vaccum
vessel (blue). On the left side of the picture the neutron beam is shown as green line
and the electron trajectories are indicated as red lines.

Figure 3.4 shows a model of the Perkeo III spectrometer. The main components of
the spectrometer are a vacuum vessel with a vacuum of 10−6 − 10−7 mbar, pumped using
two turbo molecular pumps, and the coil system consisting of 50 water cooled, normal
conducting coils. The operating current for the nominal magnetic field strength is 600 A
which is supplied by two power supplies. The total power consumption of the system is
about 350 kW, most of which is lost as thermal power by the coils. Since the coils are
operated in series the current is the same in all coils. The geometry of the magnetic field
is thus solely given by the layout and design of the individual coils. The development of
the spectrometer and optimisation of its general layout are discussed in [Mär06].
The spectrometer consists of three parts, the central solenoid, containing the main

decay volume, and the two detector vessels. A cross section is shown in figure 3.1.

3.4.1 Central Solenoid

The central solenoid has a length of 2.7 m. The coils have a cross section of 60× 60 cm2

and the diameter of the vacuum vessel is 50 cm. The solenoid geometry provides a
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homogeneous magnetic field with the highest magnetic field strength of 152 mT. The
homogeneity of the field is critical in order to minimize corrections and uncertainties of
the measurement due to the magnetic field.

(a) Magnetic reflection of a charged particle
moving inside and inhomogeneous magnetic
field [Jac75].

(b) Illustration of the varying count-rate of both
detectors while the neutron pulse moves
through the slightly inhomogeneous
magnetic field of the central solenoid (from
[Wan13]).

Fig. 3.5: Illustration of a magnetic reflection of a charged particle inside an inhomegeneous
magnetic field (a). This leads to a different solid angles for electrons created in different
positions of the decay volume (b).

For particles moving towards an increasing magnetic field, their critical angle of emission
perpendicular to the magnetic field lines is given by [Wan13]

θc = arcsin
(√

B(z0)/Bmax
)
, (3.6)

where B(z0) is the magnetic field strength at the point z0 of particle emission and Bmax
is the maximum magnetic field strength. For particles emitted in lower field regions of the
spectrometer this leads to potential reflections at the point of maximum field strength,
which is in the centre of the central solenoid, if their initial angle relative to the magnetic
field vector is larger than θc. Due to this effect the count rates of the detectors vary while
the neutron pulse moves through the central solenoid, leading to a higher count rate if the
pulse is between the detector and the maximum of the magnetic field (compare figure 3.2).
Not only does this affect the count rates of both detectors, it also affects the magnitude of
the experimental beta asymmetry as the beta asymmetry induces an anisotropic angular
distribution of decay electrons. The symmetric two detector setup of Perkeo III also
helps to minimize this effect as the magnetic mirror effect partially cancels when summing
over both detectors. Details on the calculation of the magnetic field and simulations of
particle trajectories inside the system can be found in [Wan13]. The final analysis of the
magnetic mirror correction is derived in a separate analysis.

The signal window mentioned in section 3.3.1 is optimized to minimize the contribution
of the magnetic mirror effect. This is achieved by choosing the centre of the signal window
to be at the point where the neutron pulse is in the centre of the active decay volume. As
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this is the point of maximum field strength the count rate of both detectors at this point is
expected to be the same. In [Mes11] these points, in terms of the neutrons time-of-flight,
have been determined to be 4100 µs (fchop = 94 Hz) and 4150 µs (fchop = 83 Hz). The
width of the signal window is set to 2 µs which provides a reasonable amount of statistics
while providing a lossless projection of the decay electrons on the detector and keeping
the uncertainties due to the magnetic mirror effect small. This leads to the signal time
windows stated in equation 3.4.

3.4.2 Detector Vessels

The detector vessel features a magnetic field of 80 mT. While the electrons move from the
higher magnetic field regions of the central solenoid to the smaller field of the detector
vessel, the momentum fraction of the electrons total momentum parallel to the magnetic
field increases due to the same principles of motion that lead to the magnetic mirror effect.
The following relation describes this effect [Jac75]

p‖ = p2 − p⊥,0 ·
B(z)
B(z0) , (3.7)

where p⊥,0 is the particle momentum perpendicular to the magnetic field at the point of
emission, and B(z0) is the magnetic field strength. For particles emitted in the centre of
the decay volume with the maximum angle of θmax = 90◦ to the magnetic field vector,
the angle at the detector becomes

θdet = arcsin

√ 80 mT
150 mT

 = 47◦. (3.8)

This forward focussing of the electron momenta helps to reduce the backscattering at the
detectors as the backscattering probability becomes larger for lower angles of incidence.
In the case that backscattering occurs, higher angles of electron emission are more
likely. Due to the high critical angle it occurs that a fraction > 60% of backscattered
electrons are reflected back to the same detector. This reduces systematic effects related to
backscattering as discussed in section 7.4 which generally scale linearly with the fraction
of backscattering events that reach the opposite detector.

3.5 Electron Detectors

The electron detectors used to measure the beta asymmetry with Perkeo III are plastic
scintillators which are read out via acrylic light-guides. A schematic of the detector is
shown in figure 3.6.
The scintillator is a Bicron BC-400 plastic scintillator [Bic] with a refractive index

of n = 1.58 and an emission wavelength of λ = 423 nm. The size of the scintillator is
43×45 cm2 which is large enough to cover the whole electron beam created when neutrons
decay inside the decay volume. The scintillation light is transmitted via acrylic light-guides
to the photomultipliers. They provide a similar refractive index n = 1.49 as the scintillator
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Fig. 3.6: Schematic of the electron detectors (from [Mes11]). The detectors consists of a plastic
scintillator and are read out by 6 fine-mesh photomultipliers which are connected via
acrylic light-guides.

itself. For the detection of scintillation light fine-mesh photomultipliers of type Hamamatsu
R5504 / R5924 are used. Compared to conventional photomultipliers these fine-mesh
photomultipliers provide a superior performance when operated inside magnetic fields.
The absorption spectrum of the photocathode ranges from λ = 300− 650 nm and has its
maximum at λ = 420 nm which matches the emission wavelength of the scintillator.

3.5.1 Readout system

To read out the detector, a VME based data acquisition system is used. For each
channel this system features linear fan-outs (LeCroy 748) to split the signals from the
photomultipliers. One line is fed into a discriminator (CAEN V812, CAEN C808) and
the other line passes a cable delay line with length tdelay ' 300 ns before being fed into
a charge-to-digital converter (QDC). The trigger signal generated by the discriminators
is evaluated by a digital logic module that generates a global trigger if two out of six
photomultipliers are triggered for one of the detectors. This signal is used to trigger the
QDC modules that measure the charge integral of the delayed pulses from each channel.

One important feature of the system is that a global trigger always triggers the complete
detector system including both detectors. This way the full energy of the detected electrons
is recorded, even in case backscattering from the scintillator surface occurs. The timing
of the individual photomultiplier triggers generated in the discriminators relative to the
global trigger is measured using a TDC with a resolution of 0.8125 ns. This allows to
identify which detector triggered first in case both detectors are triggered due to electron
backscattering.
More details on the readout system including the timing scheme and several improve-

ments made to the QDCs in preparation of the 2009 measurement are discussed in
[Mes11].
The generated data is recorded using the data acquisition software dackel which has

been developed at the University of Heidelberg. The data is organized in measurement
cycles of a fixed length for each measurement run and for each run a file is saved using
the ROOT data analysis framework. Measurement cycles are numbered consecutively
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and this number is used as main identifier of the data.
For each event the following information is stored:

• Amplitudes of the 12 photomultiplier tubes as measured with the QDCs,

• global event time and time of the last chopper opening (giving the time-of-flight of
the neutrons inside the spectrometer),

• TDC data for the detector trigger and individual PMT triggers,

• type of measurement,

• current spin flipper setting (on / off),

• number of the measurement cycle.

Additional information concerning the monitoring of measurement times and chopper and
selector frequencies are stored per cycle in the same file. Another important information
stored is the consistency of the data stored, which is signalled to be valid by the data
acquisition software if the assembling of the data streams from the different modules into
separate events is successful. This is generally the case for count rates below 10 kHz but
occasionally fails for higher count rates.

3.5.2 Detector calibration
The main part of the measurement has been spent with measuring neutron decay electrons.
In order to monitor and calibrate the detectors, multiple electron conversion sources are
installed inside the decay volume of Perkeo III providing five peaks and Auger electrons
covering an energy range of 0 to 1 MeV (see table 3.1). This provides a higher sensitivity
to check the linearity of the detector system compared to the neutron decay spectra. The
sources are mounted on ultra thin carbon foils with a thickness of about 100 nm which
are installed in a scanner device which is shown in figure 3.7. This device allows to move
the sources in 2D to map out the whole detector response.
In the measurements performed with Perkeo II, the calibration of the detectors has

been determined from neutron decay spectra [Mun+13]. More precisely, the denominator
spectrum N↑(Ee) +N↓(Ee) and the numerator spectrum N↑(Ee)−N↓(Ee) of the experi-
mental asymmetry have been used. This determination of the detector calibration is in
general not statistically independent from the beta asymmetry as the same data is used.
Since the dominating uncertainty of the detector calibration is obtained by comparing the
results obtained for both spectra and is systematic in nature, this should pose no major
problem. However, when calibrating using these spectra certain assumptions about the
validity of the Standard Model are necessary. For example the unpolarised decay spectrum
N↑(Ee) +N↓(Ee) is modified in shape by a non-zero Fierz Interference Term (compare
equation 1.29). This likely reduces the sensitivity for the detection for contributions of
physics beyond the Standard Model or at least requires to consider the assumptions made
in the calibration process when extracting limits.
Although radioactive sources were available in the Perkeo II spectrometer, the

background for the measurement of these sources, due to gammas from the same sources,
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Fig. 3.7: Schematic of the scanner device used to move the five calibration sources inside the
decay volume (from [Wil07].

could not be determined well enough. The geometry of the Perkeo III spectrometer for
the first time allowed the use of electron conversion sources for all parts of the detector
calibration. This has been achieved with the long distance between decay volume and the
detectors. The movement of electron sources within the decay volume does not change
the solid angle covered for gamma radiation significantly.

Isotope Energy peak [keV] Half life Decay Mode Rate [103 s−1]

139Ce 75 137.6 d ε + Augers 3.17
207Bi 503, 995 32.9 y ε + Augers 2.36
113Sn 369 115.1 d ε + Augers 3.25
137Cs 630 30.1 y ε + Augers, β− 32.0

Tbl. 3.1: Calibration sources used during the 2009 measurement. The energy values given
represent the nominal energy of the conversion electrons while the measured spectra
also contain Auger electrons etc. detected in coincidence.

Using this setup the neutron decay measurements are interrupted regularly in order to
monitor the detector properties. More precisely the following measurements are performed:

Drift Monitoring (hourly)
The detector drift is monitored once per hour during the measurement allowing
to correct for the detector drift in the data reduction (see section 4.2.6). For the
monitoring of the detector drift, a single electron conversion source is used at a fixed
position with the neutron beam closed by a shutter. In total 978 drift measurements
have been performed having two to four measurement cycles of 150 s length. The
drift measurements are followed by a background measurement. This is measured
over the same duration with the source moved back into the parking position.
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3.5 Electron Detectors

Full Calibration (twice a day)
Twice a day a full calibration using all of the sources has been measured in order to
determine properties of the detector model. Between measurements with different
sources a background measurement has been performed in order to have statistically
independent background measurements for each source spectrum. 114 of these
calibration measurements have been performed during the beamtime.

2D Detector Scan (every few days)
In order to monitor the spatial response of the detector, scan measurements have been
performed. For each of those scans measurements similar to the drift measurements
have been performed at different positions on the detector surface consecutively.

The calculation of the detector response is discussed in chapter 5. The calibration fits
performed to extract the relevant detector properties are discussed in section 6.1.

37





Chapter 4

Data Reduction

The aim of this chapter is to describe the data reduction process from the recorded single
events to the final spectra. Systematic effects related to the data reduction process are
discussed whereas systematics related to the background and the properties of the electron
detection system are discussed in later chapters. Within this thesis a new software tool
chain, p3reduce has been developed in order to automatize the data reduction process,
which has been used successfully in the data analysis of the most recent Perkeo III
beamtime in 2015 as well [Raf16].

4.1 Collected data

In this section an overview of the data collected during the 2009 beamtime is given. Here
we focus on the “production” part of the measurement during which the data, relevant for
the analysis of the beta asymmetry, have been taken. This part of the measurement ranges
from measurement cycles 211906 to 627900. Several other measurements to characterize the
setup including magnetic field measurements, background checks and measurements of the
neutron beam polarisation have been performed. For more details on these measurements
see [Mes11].

4.1.1 Datasets

For the data reduction process and analysis the recorded data is divided into datasets. A
natural separation that occurs throughout all datasets is the separation of data assigned
to an individual detector. The spectra for both detectors are evaluated and analysed
separately to reduce systematic effects of the detector response.
In the following the other important steps of data separation are discussed, where the

data is grouped concerning certain properties. While for some parts of the analysis and
data reduction process larger datasets are more convenient to use, in some cases (e.g.
detector calibration) a more fine grained separation of the data is necessary to account
for the individual properties of the datasets correctly.

Calibration Sets

The main part of the measurements has been spent with measuring neutron decay events.
As mentioned in section 3.5.2 these measurements have been interrupted regularly to
perform measurements to monitor and characterize the detector properties. For the

39



Chapter 4 Data Reduction

analysis the neutron decay measurements are grouped into datasets (calibration sets)
containing the data between two consecutive full calibration measurements. For each of
these datasets the detector calibration is obtained by fitting a theoretical description of
the calibration spectra with the detector function applied as described in section 6.1. The
calibration used for each dataset is the one measured before the dataset.

Subsets

The calibration sets can be grouped into bigger datasets where the same settings to
operate the detector system and spectrometer are used. The critical parameters for this
selection are:

• Chopper frequency: Changing the chopper frequency implies changing the neu-
tron time-of-flight pattern which requires different parameters for extracting signal
and background spectra. Due to potentially different background conditions data
taken with different chopper frequencies is kept separated.

• High voltage:
Changing the high voltage of the photomultipliers obviously modifies the detector
gain. The PMT high voltages have been recalibrated once during the beamtime.

• Drift measurement:
The detector drift has been monitored using different electron conversion sources
and has been measured at different positions on the detector surface, changing the
amplitude of the drift peak due to the non-uniformity of the detector. Hence, the
drift corrected detector amplitude (see section 4.2.6) is not the same.

• Discriminator level:
The discriminator level chosen does not affect the neutron decay spectrum or the
beta asymmetry in the energy range used in the analysis. For analysis and checks
which critically depend on the trigger function the data is split up into parts where
the same discriminator level is used.

Table 4.1 shows the subsets resulting from this separation. The main motivation of
separating these datasets is to renormalise the detector gain to the same value for all of
these subsets. This then allows to create four larger datasets where only the separation of
data for both detectors and the chopper frequency is maintained (chopper sets) which
provide a convenient way to analyse some systematic effects. However, a normalized
detector amplitude for the different datasets does not imply the exact same detector
calibration. For this reason the asymmetry extraction which depends critically on the
knowledge of the detector function is performed for each single calibration set.

4.1.2 Chopper sets

For many studies of small systematic effects (e.g. the study of background systematics)
it is sufficient to group the data into even larger datasets. This is done by grouping all
subsets during which the same chopper frequency has been used. This also implies the
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4.1 Collected data

Set Cycles Chopper Drift measurement Electronics

First Last f [Hz] Source Pos. (x/y [cm]) HV Discr.
1 211906 230756 94 Bi 90/140 1 8
2a 230757 260912 94 Sn 100/140 1 8
2b 260913 273937 94 Sn 100/140 1 5
3 273938 299440 94 Sn 100/140 2 5
4 299441 342355 94 Sn 0/140 2 5
5 342359 430453 94 Sn 100/140 2 5
6 430457 446494 83 Sn 80/140 2 5
7 446526 470622 83 Sn 80/140 2 5
8 470991 500152 83 Sn 80/140 2 5
9 500157 503300 83 Cs -/- 2 5
10 503301 623102 83 Sn 80/140 2 5
11 623106 627900 83 Cs -/- 2 5

Tbl. 4.1: Datasets having the same detector and drift measurement parameters. The shown listed
information for each subset includes the chopper frequency and drift measurement
parameters. The last columns shows different settings used for the PMT high-voltage
and discriminator threshold. The numbers given in the”HV” column refer to one of the
two high-voltage configurations used and whereas the “Discr” column contains the
threshold setting of the discriminator, where a higher number means a larger threshold.
The detector amplitude can be assumed to be stable within each one of these sets.

same neutron time-of-flight windows to select signal and background spectra throughout
these datasets. The datasets are listed in table 4.2.

Set Cycles Subsets Chopper

First Last f [Hz]
1 211906 430453 1-5 94
2 430457 627900 6-11 83

Tbl. 4.2: Datasets having the same chopper frequency.

4.1.3 Data Selection
For the analysis of the experimental beta asymmetry only data where the operation
parameters of the setup are stable are selected. The following hardware parameters have
been monitored and used to filter the data for the analysis:

• Magnetic field At certain points during the measurements the power supplies for
the magnet coils have been switched off due to failure in the cooling water supply or
overheating. Data affected by these shutdowns is discarded in the analysis.

• Chopper and selector frequency The chopper frequency is monitored by the
data acquisition system. While the selector ran stable most of the time throughout
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the measurement, the chopper frequency measurement failed a few times due to
sensor problems. Beta decay data where the chopper or selector frequency do not
match the set frequencies are ignored.

• Flipper During some measurements the flipper did not work as intended. The
affected measurements are discarded.

• Detector high-voltage On a few occasions the detector high-voltage switched off
because the measured current exceeded the set limit. The data affected by these
shutdowns as well as a certain time after switching the high-voltage on again are
discarded. The latter allows for the detector amplitudes to stabilize after ramping
up the high-voltage.

In some cases the data acquisition system monitored the status of the hardware and
marked the affected data as invalid. In other cases the data has been filtered manually in
the beginning of the data analysis.

For the analysis only data are selected for which valid drift measurements are available.
Additionally, each dataset needs to start with a calibration measurement. If any of
the operation parameters is changed the data until the next calibration measurement is
ignored.

Calibration Measurements

The spectra for full calibration measurements are measured consecutively. The measure-
ment with each source is followed by a background measurement in order to subtract the
background for each individual source. Out of the 114 full calibration sets only the data
are selected where consistent data has been written. This is true for most of the spectra
with the exception of some measurements performed with Caesium during the beginning
of the beamtime. Here the data streams of the different data acquisition modules were
inconsistent due to the high intensity of the Caesium source.
Other criteria for data selection are the correct positioning of the sources relative to

the centre of the neutron beam as well as the stability of of the background count rates.
To this end the count rate of the different measurement cycles within a single file is
compared. This count rate is expected to be stable for the same source type as well as for
the background measurement. However, in case the environmental background changes
during a source measurement, e.g. due to opening or closing of neighbouring neutron
beamlines, the count rate between the measurement cycles fluctuates. The calibration
measurements have been performed using four measurement cycles with a duration of
30s each. The detected count rate of the individual cycles is required to be consistent
with a p-value of at least 10−5. If this criterion is not fulfilled the measurement of the
affected source is discarded. If a background measurement is found to have inconsistent
count rates for different measurements cycles it is discarded and a different background
measurement from the same calibration run is used, if possible.
In addition, the availability of drift data is checked. Since drift correction is crucial

for the calibration measurements, only those with drift measurements available 1.5 hours
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Fig. 4.1: Pedestal spectrum for a single datafile and the corresponding fits to determine pedestal
width and position.

before or after the calibration measurement are accepted. This is done, in order to limit
the effect of linear interpolation between the drift measurements.

After applying all these criteria 58 calibration sets with all four calibration spectra, 33
with three calibration spectra and one measurement with only two calibration spectra
available are selected and used for the detector calibration in the analysis.

4.2 Detector Amplitude
In this section the extraction of the detector amplitude from the raw data is discussed.
This involves a few corrections to the data. Their influence on recorded data and the
detector amplitude is studied as well. Except for the drift of the detectors, no effects are
found which have a significant impact on the results from the measurement.

4.2.1 Detector Pedestals

The first step in the data reduction process is the determination of the detector pedestals.
The photomultipliers are read out by QDCs consisting of an integrator circuit being read
out by 16-bit ADCs [Mes11]. The amplitude measured by the ADCs contains a bias
voltage that determines the value of the QDC amplitude if the PMT did not generate a
signal but a trigger is present.

In order to determine the baseline of the resulting spectra, this pedestal is determined
for each PMT/QDC channel by performing Gaussian fits to spectra generated from
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events where the corresponding detector has not triggered. Here, a sequence of two fits
is performed. The first fit is carried out with a broad fitrange that surely contains the
pedestal peak. The second peak is performed over a range of ±1σ as obtained from the
first fit. Figure 4.1 shows an example of such a spectrum and the corresponding fits. The
QDC pedestals are determined on a file by file basis for each individual channel. In the
data reduction process the QDC pedestals are subtracted from the measured amplitudes
to obtain offset free spectra.

The fit results also contain the width of the pedestal for each PMT. Since the detector
amplitude is calculated as the sum of the individual PMT amplitudes the corresponding
broadening to the complete detector is given as square root of the sum of squares of the
individual PMT pedestals

σdet j =

√√√√ 6∑
i=1

σ2
ji,

σtotal =
√
σ2
det1 + σ2

det2.

(4.1)
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Fig. 4.2: Pedestal position and width for all datafiles taken into account in the analysis. The
drop in pedestal position observed for some of the files is due to the high count rate of
the Cs source in conjunction with a rate dependence of the QDCs. This effect is
discussed in more detail in section 4.2.4.

Figure 4.2 shows the extracted pedestal positions for all files during the measurement.
The variation of the pedestal position over time is about 80 ADC channels which corre-
sponds to a relative variation of 0.5%. The mean value of the pedestal width is 97.6 ADC
channels with a standard deviation of 3.0 due to a variation over time. This width is
considered in all fits to the data in the detector response model as discussed in section 5.4.
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4.2.2 Spin Dependence of the Pedestal
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Fig. 4.3: Contributions of both detectors to the total detector pedestal width.

When splitting the pedestal extraction with respect to the state of the flipper device,
a dependence of the pedestal width with respect to the spin state is observed. Figure
4.3 shows the individual detector pedestals (compare equation 4.1) for both spin settings
which are significantly higher when the flipper is running. The average differences in
pedestal width are:

σ1,on − σ1,off = 4.1(2.3) ADC channels,
σ2,on − σ2,off = 0.7(1.0) ADC channels,

(4.2)

where the errors are calculated as standard deviation from the data in order to account for
non-statistical fluctuations. A likely explanation for this effect is that noise is introduced
from the spin-flipper or its driver into the signal lines of the detectors. Since detector 1
is much closer to the flipper, the effect is expected to be stronger for detector 1. The
observed shifts in pedestal position are ≤ 0.1 ADC channels for both detectors which is
considered negligible.

For the data analysis the actual difference between the magnitude of the pedestal width
shift for the detectors does not play a role since both detector amplitudes are summed up
for each event. The width shift for the total detector pedestal is

σtotal,on − σtotal,off = 3.4(1.8) ADC channels. (4.3)

For the experimental beta asymmetry a spin-dependence of the signal broadening can play
a significant role as the spectra N↑ and N↓ are affected differently. The resulting spectral
difference is amplified when calculating the difference of these spectra for the numerator
of the beta asymmetry. In the calculation of the detector response, as will be presented in
chapter 5, the spin-independent average for the width of the detector pedestal is assumed.
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The effect of neglecting the spin-dependence has been studied by assuming a difference
in the electronic noise contribution for N↑ and N↓ before calculating the experimental
beta asymmetry. The resulting spectral corrections for the Experimental Asymmetries of
detector 1 and 2 are plotted in figure 4.4.
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Fig. 4.4: Relative correction functions for the experimental beta asymmetry to account for the
spin-dependence of the pedestal width for both detectors. The oscillating structure at
lower amplitudes is due to the broadening of the signal generated by a discrete number
of photoelectrons. The corrections for both detectors cancel due to the fact that the
same pedestal width applies for different spin states.

At lower amplitudes the broadening of the signal around a discrete number of detector
photoelectrons creates an oscillating structure. Within the energy window used to fit
the data ranging from ADC channel 85 to 215 the amplitude of the correction is on the
level of 1 · 10−4. When applying the correction in the fit the, following integral relative
corrections are obtained:

(∆A/A)Det1 = −0.76 · 10−4,

(∆A/A)Det2 = 0.76 · 10−4 (4.4)

The exact value of the correction has a strong dependence on the overall broadening of the
spectrum (i.e. other noise contributions). However, the absolute value of the correction
for both detectors is the same, while being different in sign. This is due to the fact that
the effect is correlated with the flipper state, which affects different spin directions for the
detectors. The total correction when averaging over both detectors cancels up to a level
of ∆A/A = 10−6 which can be neglected safely.
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Fig. 4.5: Pedestal position for individual measurement source for 5000 files.

4.2.3 Calculating the full Detector Amplitude and Trigger Information

Using the extracted pedestals the raw total detector amplitude is extracted for each event
by calculating the sum of all QDC values with the pedestals subtracted.

Atot,raw =
2∑
i=1

6∑
j=1

(Aij − Pij) (4.5)

Here Aij represent the individual QDC amplitudes obtained from the raw data for detector
i and channel j and Pij denote the corresponding pedestals (compare section 4.2.1). For
the assignment of the events the data measured with the TDC is used to determine which
detector triggered first.

Using the raw detector amplitude from equation 4.5 and the trigger information allows
to histogram the detector amplitude obtaining the measured spectra for each file.

4.2.4 Rate dependence of the QDC Amplitude

Figure 4.5 shows the detector pedestals for each datafile broken down to the type of mea-
surement performed. The apparent effect here is that the pedestals for the measurements
with Caesium consistently are 84 channels lower compared to other measurements. In a
first analysis this effect has been explained with a rate-dependence of the QDC amplitudes
[Mes11]. In the following a more detailed analysis of this effect and its implications for
the present analysis are performed.

Table 4.3 shows the average shift of the pedestal for each calibration source compared
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Chapter 4 Data Reduction

Source Pedestal Shift to Background Count Rate

Position [ch] Width [ch] [cnts/s]

Background - - 930
Neutron Decay -1.7 +1.28 2200
Ce -5.1 +0.7 3170
Bi -7.1 +0.7 2360
Sn -7.2 +0.4 3250
Cs -83.8 +2.6 32000

Tbl. 4.3: Pedestal shifts and count rates for different measurement types. The rates given are
total rates including background events. The rate for neutron decay is the detection
rate including background within the ToF signal window (compare section 4.3).

to background measurements performed after each calibration and drift measurement.
The shifts for the other sources are much smaller. This is consistent with the hypothesis of
a rate-dependent effect. However, although measured with lower count rate the pedestals
during the Cerium measurements are shifted less compared to those of the Bismuth
measurements. This additionally indicates a dependence on the deposited energy which is
much higher for Bismuth.
Figure 4.6a shows the shift of the pedestal and peak position for all Sn measurements

versus the time since the previous detector trigger. The behaviour illustrates that the
pedestal shift and the shift in the total detector amplitude are the same, which confirms
that this particular behaviour of the QDCs can be explained as a shift in the pedestal only.
Figure 4.6b shows the pedestal behaviour broken down into different trigger constellations
where it is distinguished if the previous event triggered the same, the other or both
detectors. The data shows that the shift in the pedestal position is dominant if the
same detector has been triggered in the previous event which equates to a higher energy
deposition. If the previous event only triggered the other detector this equates to an
energy deposition below the trigger threshold and leads to a smaller shift in pedestal.

The Sn peak analysis shows that the shift in the pedestal position depends on the time
elapsed since the previous detector event and the amplitude detected in the respective
event. The shift of the measured QDC amplitude may then be written in the form

AQDC (A0, t) = A0 +
∞∑
i=1

f (ti, Ai) , (4.6)

where A0 determines the “real” amplitude as opposed to the measured amplitude AQDC ,
f (ti, Ai) describes the dependence of the shift on the “Delta-Time” ti, the time between
events, and the amplitude of the preceding event Ai. The index i in theory runs over all
preceding events.

During the beam time and offline test of the QDC channels has been performed where
two pulsers, one having a slightly detuned frequency compared to the other have been used
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4.2 Detector Amplitude
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(a) Comparison of peak position and pedestal
for both detectors.
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(b) Comparison of pedestal shift depending on
previous trigger for detector 1.

Fig. 4.6: Behaviour of the pedestal and peak position of the Sn drift measurements versus the
time elapsed since the previous trigger. For shorter times between events the drift peak
position is shifted to smaller channels by the same amount as the pedestal is shifted (a).
The effect for the pedestal is stronger when the previous event triggered the same
detector (b).

to feed signals into all QDC channels. This way all possible “Delta-Times” between events
from 0 to 1/f are recorded with the same input amplitude which allows to determine
the function f (t). Figure 4.7 shows the measured amplitude versus the delta-time where
the relative shift in the measured amplitude for each channel is equal to a few percent
and independent of the total signal amplitude. This justifies the linear dependence of the
correction on the detector amplitude f (ti, Ai) = Aif̃ (ti). The correction data obtained
from this measurement are used to fit three exponential functions in order to describe
f̃ (t). Due to the two pulser constellation the delta-times of all preceding events with even
index i originate from the same pulser that also triggers the signal under investigation.
This reduces accumulation effects. The resulting description of f̃ should thus provide a
good estimate.
In order to check the influence on the beta asymmetry an inverse correction of this

effect based on the estimate of f̃ has been applied to six calibration sets where only the
first order effect has been corrected

Acorr (AQDC, t) = AQDC −A1f̃ (t1, A1) . (4.7)

This correction has been applied to each single PMT amplitude in the pedestal analysis
and creation of spectra before summing up the amplitudes. The resulting mean shifts
in pedestal are summarized in table 4.4. The differences in pedestal position between
the background measurements and the other measurements is reduced by a factor of two
or more when correcting the QDC amplitude. The remaining differences as well as the
still significant deviation for the Cesium measurements can be explained by accumulation
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Chapter 4 Data Reduction

Peak I/II:  Position at 1kHz
Reference is mean peak position at t>500us: peak/mean - 1.

Pedestals substracted.
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Fig. 4.7: Relative shift in pedestal measured with a floating pulser setup for different pulse
amplitudes.
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4.2 Detector Amplitude

effects according to equation 4.6 which is not corrected for in this analysis.

Source Uncorrected Corrected

Position [ch] Width [ch] Position [ch] Width [ch]

Background - - - -
Neutron Decay -4.4 +2.1 -2.2 +1.9
Ce -2.6 +2.7 +1.1 +2.5
Bi -5.6 +7.9 -1.3 +6.3
Sn -10.1 +3.7 -4.7 +2.8
Cs -105.8 +11.5 -86.0 +10.2

Tbl. 4.4: Average deviation of the detector pedestal between background and other
measurements with and without correcting the QDC amplitude.

Since the delta-time dependence of the QDC amplitude affects the pedestal and the
measured signal amplitude in the same way, no effect on the measured spectra is expected.
This is checked by comparing the results for the beta asymmetry for the six calibration
sets with and without correcting the QDC amplitude in the raw data processing. For
each dataset the detector calibration is obtained separately using the same correction
applied to the Neutron Decay measurements. The deviation for the single datasets varies
between ∆A/A = 1 · 10−3 and −2.5 · 10−3. This is well below the statistical uncertainties
for these datasets. A likely cause of the variation being a modification of the binned
spectra due to the correction of amplitudes for individual events. The deviations observed
when averaging over the detectors gives

∆A/ADet1 = 1.9 · 10−4,

∆A/ADet2 = −1.8 · 10−4.
(4.8)

The total average is ∆A/A < 1 · 10−5. This indicates that applying the correction has no
significant impact. Vice-versa the pedestal subtraction mechanism used is considered to
account for the rate-dependence sufficiently. As a consequence of this analysis however,
for the neutron decay measurements a time-of-flight dependent extraction of the detector
pedestal for signal and background time windows is performed to obtain the correct
pedestals for each spectrum.

4.2.5 Recalibration of the PMT Amplitudes

In [Mes11] a recalibration of the individual PMT channels is derived in order to make the
detector more spatially uniform. For this the 2D maps measured during the beamtime
have been analysed and the amplitudes of the individual PMTs have been rescaled in a
way that the map follows the expectation of a cosh-shape. The resulting rescaling factors
cij for each PMT are included in the data reduction process by modifying the detector
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Fig. 4.8: All drift measurements performed with 113Sn.

amplitude given in equation 4.5

Atot =
2∑
i=1

6∑
j=1

cij (Aij − Pij) . (4.9)

Including these correction factors gives a more uniform detector response with a homo-
geneity of ±2.5 % over the area covered by the decay electrons from neutron decay.

4.2.6 Drift Correction

The hourly single point calibration measurements are performed mostly using the 113Sn
source in a fixed position of the scanner device. This provides a measurement of the relative
evolution of the raw detector amplitudes as shown in figure 4.8 for all measurements
performed with 113Sn. The data has been extracted using Gaussian fits to the main
peak of 113Sn, the mean amplitude being represented by the mean value of the fit. The
drift data shows a day-night variation of the detector amplitudes of about 2% as well
as long-term drifts. The likely origin of both effects is a temperature variation of the
photomultipliers sitting close to the magnet coils. As mentioned in section 3.4 these
coils are normal conducting and water cooled. The temperature of the coils in operation
depends on the temperature of the cooling water which is not regulated.

The variation of the detector amplitude for the beta data itself just results in a reduced
energy resolution. However, since the calibration measurements take place at a fixed
time during this variation, the application of the calibration may be shifted compared
to the average detector amplitude for the beta data. In order to reduce this effect, a
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Fig. 4.9: Comparison of the 113Sn main peak position for the calibration measurements with and
without drift correction.

drift correction is derived for both detectors by linear interpolation of the drift peak
measurements. This correction is applied during the data reduction process for all neutron
decay and calibration measurements giving a drift corrected detector amplitude

Atot,drift =
2∑
i=1

diri

6∑
j=1

cij (Aij − Pij) , (4.10)

where di are the drift correction factors for detector 1 and 2 respectively. The additional
rescaling factors ri in equation 4.10 are necessary in order to correct for changes in the
measurement of the drift data between different sets(see table 4.1).

Although mostly measured with 113Sn, a few measurements have been performed with
other sources and the position on the detector at which the drift is measured has been
changed a few times during the beamtime. In order to obtain comparable detector
amplitudes throughout the whole beamtime, the data is grouped in sets which use the
same set of parameters for the drift measurement. In contrast to the drift measurements,
the full calibration measurements have always been measured in the centre of the detector
which allows to use the 113Sn peak position to derive the correction factors ri for each of
those sets by requiring this peak position to be the same. The accuracy of these rescaling
factors is not important for the final result as the data is analysed for each calibration set
separately during which the drift parameters are stable. However, this renormalisation
allows to create larger datasets (subsets and chopper sets, compare section 4.1.1) for a
more convenient analysis of systematic effects.
The result of drift correction is illustrated by comparing the peak positions of the
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Set Rescaling χ2/NDF Add. Rel. Uncertainty

Det 1 Det 2 Det 1 Det 2 Det 1 Det 2

1 1.00391 1.00414 - - - -
2 1.01147 1.00071 25.2/10 28.3/10 1.19 · 10−3 1.19 · 10−3

3 1.08487 1.00001 34.1/5 33.0/5 2.41 · 10−3 2.13 · 10−3

4 1.10661 1.00464 135.7/4 40.7/4 5.84 · 10−3 2.82 · 10−3

5 1.10300 0.99603 126.6/20 123.8/20 2.51 · 10−3 2.24 · 10−3

6 1.10328 0.99596 17.5/5 3.6/5 1.71 · 10−3 0. · 10−3

7 1.12883 0.99847 4.5/3 1.1/3 0.80 · 10−3 0. · 10−3

8 1.10010 0.99629 24.1/6 26.0/6 2.00 · 10−3 1.84 · 10−3

9 1.10024 0.99721 - - - -
10 1.10010 0.99629 47.6/25 174.6/25 1.17 · 10−3 3.27 · 10−3

11 1.10024 0.99721 - - - -

Average 1.91 · 10−3 2.20 · 10−3

Tbl. 4.5: Rescaling factors used to account for differences in drift measurements for the different
subsets. The reduced χ2 values show that the remaining variance in the drift corrected
113Sn peak positions is larger than expected just from statistics. The increased
scattering of data points can be described by an additional uncertainty contribution
(according to equation 4.11) that accounts for interpolation uncertainties and statistical
uncertainties of the drift measurement and is listed as relative uncertainty in detector
gain in the last columns. This uncertainty is considered for all subsets where the
reduced χ2 is bigger than one and is assumed to be 0 otherwise. Generally this shows
that the drift correction works on a relative 2 · 10−3 level.

113Sn spectra in the full calibration measurements with and without drift correction as
shown in figure 4.9. Among a correction of the individual detector drift also a relative
normalisation of both detector amplitudes is achieved. This leads to similar calibrations for
both detectors which is important for full energy reconstruction in case of backscattering
events.

The remaining variation of the drift corrected 113Sn peaks within the mentioned datasets
is bigger than expected from the statistical fluctuations as indicated by the reduced χ2

values listed in table 4.5. This shows that the drift correction is limited due to interpolation
between the drift measurements. The additional relative uncertainties in table 4.5 are
calculated by introducing an additional uncertainty contribution to the χ2 calculation and
forcing the reduced χ2 to be 1 for each set:

χ2/NDF =
∑
i

(xi − 〈x〉)2

σ2
i + ω2

!= 1. (4.11)
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The non-statistical uncertainty ω then is a measure of the additional fluctuations in the
drift correction. This uncertainty is only assumed if the χ2/NDF value for the dataset is
larger than one. However, choosing a higher bound for the reduced χ2 (larger confidence
regions) does not impact the result as most subsets show a very large χ2.

4.3 Neutron Time-of-Flight and Detector Background

For each event the time relative to the last chopper opening is determined simply by
subtracting the time of the last chopper opening from the time stamp of the event. This
difference gives the time-of-flight of the neutrons within the spectrometer. The resulting
time-of-flight dependence of the count rates of the individual detectors has been discussed
in section 3.3.1.

4.3.1 Signal and Background spectra

For the extraction of beta decay spectra only events from within the signal time window
are selected. This time windown is defined by the time-of-flight when the neutron pulse
is in the central decay volume (see section 3.3.1). The events are histogramed with the
detector amplitude calculated according to equation 4.10. The same procedure is used to
extract the background spectra. These need to be rescaled by a factor of 2 to account for
the shorter length of the background time window.

Given the detected rate Ṅ , the real rate Ṅ ′ can be calculated from the non-extensible
dead-time τ to be [Leo87]:

Ṅ ′ = Ṅ

1 + Ṅ · τ
, (4.12)

where the dead-time has been set to be τ = 1.5 µs. The required dead-time corrections to
the signal and background spectra are applied to both spectra automatically by the data
reduction software. The measured event rate is calculated from the number of detected
events divided by the number of chopper rotations in the respective dataset multiplied
with the length of the time window.

The obtained signal and background spectra as well as the background free electron
spectrum are shown in 4.10.
Chapter chapter 8 contains furhter discussions of the background subtraction and

related systematics.

4.3.2 The Experimental Beta asymmetry

In a general formulation where background may depend on the spin the experimental
beta asymmetry is given by the following equation:

Aexp (E) =

(
N↑ (E)−B↑ (E)

)
−
(
N↓ (E)−B↓ (E)

)
(N↑ (E)−B↑ (E)) + (N↓ (E)−B↓ (E)) . (4.13)

For the case that background can be assumed to be independent (B↑ = B↓ = B/2) of
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Fig. 4.10: Spectra obtained by selecting data according to their neutron time-of-flight within the
spectrometer. The signal spectrum is obtained by selecting data for which the neutron
pulse is contained within the central decay volume. For the background spectrum on
the other hand only data recorded after all neutrons are absorbed in the beamstop is
considered. The background spectrum is scaled in order to account for the shorter
length of the background time window. The difference of the signal and background
spectra finally gives a background free electron spectrum.

the spin direction equation 4.13 becomes:

Aexp (E) = N↑ (E)−N↓ (E)
N↑ (E) +N↓ (E)−B (E) . (4.14)

The contribution of the statistical uncertainty of the background δB is given by:

(δAexp)bg,si =

√√√√ (N↑ −N↓)2
δB2

(N↑ +N↓ −B)4 . (4.15)

for the case of spin-independent background. In case the measured background would
depend on the spin-direction the statistical uncertainty would become

(δAexp)bg =

√(
∂Aexp
∂B↑

)2
· δB↑2 +

(
∂Aexp
∂B↓

)2
· δB↓2

= 2 ·

√√√√(B↑ −N↑)2 · δB↑2 + (B↓ −N↓)2 · δB↓2

(B↑ +B↓ −N↑ −N↓)4 .

(4.16)
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(a) Spin up / Spin down spectra with background subtraction.
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(b) Denominator and numerator spectra of the experimental beta
asymmetry.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●

●

●

●

●

●

●
●

●

●
●
●

●

●●

●
●
●
●

●

●

●

●
●
●
●

●

●

●
●

●

●
●

●

●

●

●
●●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●●

●

●
●
●

●

●

●●
●●●

●

●
●●

●

●

●

●

●

●●●

●
●

●

●
●

●

●

●●●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●●

●

●●●●
●●

●●

●

●

●●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● (N↑-N↓)/(N↑+N↓)

0 50 100 150 200 250 300
0.00

0.02

0.04

0.06

0.08

0.10

Amplitude [ADC channel]

-
A

ex
p

(c) Experimental beta asymmetry.

Fig. 4.11: Extracted spectra to calculate the experimental beta asymmetry. The plots are
created from the combined dataset for detector 1 with chopper frequency 83Hz.
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Chapter 4 Data Reduction

For a signal-to-background ratio of 2 and an energy region of 300− 700 keV the statistical
sensitivity per decay event N for both cases is:

(δAexp)bg ' 4.80 · P/
√
N

(δAexp)bg,si ' 4.14 · P/
√
N

(4.17)

with the neutron beam polarisation P . Hence the statistical sensitivity is increased by 20%
if the background can be considered spin independent. The validity of this assumption is
justified in chapter 8.

Figure 4.11a shows the extracted background free electron spectra for both spin direc-
tions. The spin dependent background is subtracted for illustration purposes only. For
the calculation of the experimental beta asymmetry as shown in figure 4.11c according to
equation 4.14 only the spin-independent total background is considered.
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Chapter 5

Model of the Detector Response

The spectral analysis of the Beta Asymmetry and the calibration measurements is per-
formed by fitting the theoretical spectra, modelled with a description of the detector
response, to the measured data. While the next chapter deals with the spectral analysis
of the data itself, this chapter is dedicated to outline the details of modelling the detector
response.
The description of the detector response is based on forward modelling of all relevant

physical processes ranging from electrons of a certain energy hitting the scintillator
surface to the charge accumulation in the QDCs and analog-to-digital conversion. This
technique has been used for the previous analyses of Perkeo data and limits the number
of necessary corrections to the measured spectra, such as unfolding to account for the
detector resolution. This would imply a considerable information loss and limit statistical
accuracy.
A critical part in the analysis is the fitting of calibration spectra in order to obtain

the detector properties independent of neutron decay spectra. Within this thesis several
improvements to the actual implementation have been made which especially improve
the description of the detector non-linearity and energy resolution. A phyiscally more
motivated description of the scintillator non-linearity is implemented, which accounts
correctly for events where multiple electrons hit the detectors at the same time. Further
improvment is achieved by implementing a precise approximation for the noise created by
the photomultiplers. Both changes strongly improve the fit quality achieved when fitting
the calibration spectra and extract the detector non-linearity from these fits. For the first
time this allows to analyse a Perkeo measuremnt solely with independent calibration
data. Additionally, the description of the photomultiplier noise is an important ingredient
for the exact calculation of the detector trigger function [Roi18], which is necessary to
analyse systematics related to backscattering (see section 7.4.2).
The following sections describe the steps in calculating the actual fit function and the

mentioned improvements.

5.1 Electron energy distribution
The initial electron energy distribution is calculated as a binned histogram. The range of
spectra implemented covers all relevant electron spectra from neutron beta decay (see
section 2.2) as well as a description of the used calibration sources [Roi18].
One important peculiarity about the spectra of the electron conversion sources is that
typically Auger electrons are emitted shortly after the emission of the conversion electron.
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(a) Coincident Electron Energy Distribution

0 50 100 150 200 250 300
0.000

0.001

0.002

0.003

0.004

Photoelectrons

F
re

q
u
en

cy
[a

.u
.]

(b) Photoelectron Distribution
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(c) PMT Output Charge Distribution

0 100 200 300 400
0.000

0.001

0.002

0.003

0.004

Amplitude [ADC channels (rebinned)]

F
re

q
u
en

cy
[a

.u
.]

(d) QDC Signal Distribution

Fig. 5.1: Evolution of the measured spectrum for different stages of the detector response for
Bi207. The shown spectra are: The discrete line spectrum, including coincident Auger
electrons (a), the resulting photoelectron distribution at the dynodes of the PMT (b),
the spectrum after calculating the noise contribution of the photomultipler (c) and the
spectrum measured by the QDC (d).

Since these Auger electrons may arrive at the detector within the same QDC integration
window, they contribute to the measured amplitude. The calculation of the calibration
spectra take these effects into account by calculating all possible combinations, considering
the length of the QDC integration window. The amplitudes of the combined events is
then calculated when filling the theoretical histogram. Image 5.1a shows the result of such
a calculation for the theoretical spectrum of Bi207 which is one of the used calibration
sources.

5.2 Scintillation

The first step of electron detection is their absorption in the scintillator of the electron
detection system (see section 3.5). Along their path inside a scintillator electrons deposit
all or part of their kinetic energy predominantly by interacting with other electrons,
leading either to ionization or molecular excitations of the bulk material. The resulting
secondary radiation has a much lower energy and may excite the primary fluors of the
scintillator. which deexcite by emitting photons in the UV range. A wavelength shift is
achieved by means of secondary fluors, leading to a photon emission spectrum ranging
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5.2 Scintillation

from 400 to 500 nm wavelength, with the most probable wavelength being 420 nm or
3 eV.
The maximum number of potentially generated photons is thus on the order of 105 per
MeV, whereas the expected number of photons for plastic scintillators is typically on the
order of a = 104 MeV−1. This allows describing the number of generated photons per
electron energy in terms of a Poisson distribution:

pscint (nph, E, a) = (a · E)nph

nph! e−a·E , (5.1)

where the mean number of photons per energy is described by the factor a.

5.2.1 Scintillator Non-linearity

A known property of organic scintillators is that they posses an intrinsic non-linearity. In
a general formulation a, non-linear scintillation output would modify equation 5.1 in a
way that the expectation value a ·E would be replaced by a non-linear relation a ·Enl(E)
which is equivalent to an energy-dependent light yield.

pscint (nph, E, a) = (a · Enl (E))nph

nph! e−a·Enl(E). (5.2)

This formulation is valid for any kind of non-linear light output, that does not or only
slightly increase the variance of the light yield.
The non-linearity of plastic scintillators is commonly described using a quenching model
developed by J.D. Birks [Bir51]. In this model the non-linearity is described as a local
quenching or saturation effect of the scintillation molecules along the charged particle
track. In regions where the stopping power is high, the amount of scintillation photons
generated is reduced as some of the scintillation molecules are damaged or already excited.
The differential light output along an infinitesimal track length dx in this model is defined
by

dL
dx =

a · dE
dx

1 + kB · dE
dx
, (5.3)

where a is the linear proportionality between electron energy deposit and light output
(compare equation 5.1), dE/dx is the differential energy deposit or stopping power and
kB, the Birks coefficient, accounts for the non-linearity and its value depends on the
scintillator material and the primary particle species. Without loss of generality equation
5.3 can be rephrased in terms of an effective energy deposit inside the scintillator that is
proportional to the light output

dEnl
dx =

dE
dx

1 + kB · dE
dx
. (5.4)
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(a) dE/dx from ESTAR data with log-log-linear
interpolation.
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Fig. 5.2: Energy loss of electron in Polyvinyltoluene from ESTAR data. The effective energy
contains the intrinsic scintillator non-linearity according to equation 5.6.

From this relation the dependence of the effective energy Enl on the electron kinetic energy
E follows to be

dEnl
dE = 1

1 + kB · dE
dx (E)

, (5.5)

where dE/dx(E) denotes the stopping power for a certain energy E. The effective energy
is the calculated by integrating over the complete electron energy loss:

Enl (E) =
∫ E

a

1
1 + kB · dE′

dx (E′) dE′
. (5.6)

In contrast to the previous implementation [Mes11] the Birks non-linearity is now calculated
from ESTAR data [Ber+05] for the stopping power of electrons inside the scintillator
material Polyvinyltoluene and implemented as an effective energy (proportional to the
light yield) instead of assuming a non-linear energy-channel-relation.

The interpolating function between two nodes i and i+ 1 of the dE/dx data may be
written as ki · Eyi . The integral 5.6 is then given by

Enl (E) =

i=j∑
i=0

∫ Ei+1

Ei

dE′

1 + kB · ki · E′yi
dE′

+
∫ E

Ej

dE′

1 + kB · kj · E′yj
dE′, (5.7)

where Ei is the energy of the i-th node and the index j is chosen such that Ej < E with
the highest possible node index. The integral to calculate the individual terms can be
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5.2 Scintillation

written as

∫ E2

E1

dE
1 + k · Ey

=



E2−E1
1+k , y = 0

2F1 (1, 1/y, 1 + 1/y;−k · Ey2 )E2 , E1 = 0, y > 0

2F1 (1, 1/y, 1 + 1/y;−k · Ey2 )E2

− k−1/yπ csc (π/y)
y

,E1 = 0, y < 0

2F1 (1, 1/y, 1 + 1/y;−k · Ey2 )E2

− 2F1 (1, 1/y, 1 + 1/y;−k · Ey1 )E1
, E1 6= 0, y 6= 0

(5.8)

where 2F1 (a, b, c; z) is the ordinary hypergeometric function.
Using these relations an efficient implementation is achieved by tabulating the sum in
equation 5.7 for a given kB so that for each energy only the last integral needs to be
calculated. The log-log interpolation is based on 40 nodes in the range of 1 keV up to
3.1 MeV as shown in figure 5.2a. For plastic scintillators typical values of kB are on the
order of 100 - 150 nm/keV [Abe+11]. The resulting fraction of detected non-linear energy
versus real electron energy is shown in figure 5.2b.

Multi-electron events

One peculiarity about the correct calculation of the non-linearity is its application to
multi-electron events of the calibration sources. The electrons from these kind of events
impinge on the detector separately, both spatially and in time. This leads to the fact
that - especially when explained as a local saturation effect - the non-linearity needs to
be applied separately for those electrons instead of being calculated for the summarized
amplitude that is usually considered. To this end the non-linearity is applied to the single
electron energies separately before summing up the detector amplitude

Etot =
∑
i

Enl (Ei) . (5.9)

Due to the separation in arrival time and the short signals produced by the detector, the
argument of separated events still holds when considering other types of non-linearities
(e.g. due to electronics).

5.2.2 Light Transport inside the Scintillator

The efficiency of light transport from the origin of scintillation to the photomultiplier
tubes depends on the light transport efficiency inside the scintillator and light guides.
Due to the refractive index of the scintillator material of nscint = 1.58 the critical angle
for inner total reflection of photons can be calculated to be:

θcrit = arcsin
(
nvac
nscint

)
' 39.3◦, (5.10)
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Chapter 5 Model of the Detector Response

where the refractive index of vacuum is nvac = 1. All photons hitting the scintillator
surface below this angle are reflected and guided to the light guides. The refractive index
of the light guide material PMMA is nPMMA ' 1.5 which means that nearly no refraction
occurs on the interface between scintillator and light guides and the condition for total
inner reflection is almost the same as inside the scintillator. However, due to surface
roughness and the fact that the interface usually contains a small slit, typical transmission
efficiencies for the interfaces are on the order of 0.8 [Plo00]. Another important aspect to
light transport is the self absorption of light inside the material. The attenuation length
of BC400 is 250 mm ([Bic]) whereas the typical light attenuation in PMMA is 1000 mm.
Image 5.3 shows the result of a light transport simulation inside the detector system.

The full geometry of the scintillator and light guides are implemented into an optical
ray tracing simulation performed with Geant4 [Ago+03] in order to better understand
several aspects of the light transport. If the surfaces of the scintillator and light guides
are assumed perfectly event the total light output measured on all 6 PMTs is averaged
over the scintillator surface is fpolish = 0.193 with a standard deviation of 0.5% over the
surface. This variation is due to the structure of the light guides and their curvature.

The optical photon transport code of Geant4 allows to parametrize the surface roughness
using the “polish” parameter of the Glisur model. The assumption in this model is that a
rough surface consists of multiple micro facets and the effective surfaces on which photons
reflect are tilted against the perfect surface. The polish parameter describes the amount
of tilt of the micro-facets against the perfect surface where a value of 0 corresponds to
maximum roughness and 1 corresponds to a perfectly polished surface. The effect of
varying this surface property for the scintillator and the light guides has been studied in
order to check how the light output and detector uniformity are influenced. Figure 5.4a
shows the light yield versus the roughness parameter of the light guides assuming a perfect
scintillator surface while figure 5.4b shows the same for varying the scintillator roughness
parameter only. The drop in light yield for the same roughness value is much bigger for
the light guides as for the scintillator as the path length inside the light guides is longer
which leads to more reflections. However, the roughness of the light guide surfaces does
not influence the uniformity of the detector. For the scintillator on the other hand the
roughness also increases the non-uniformity of the detector as the number of reflections
inside the scintillator is generally higher for photons originating from the centre of the
scintillator.
A more realistic 2D light yield profile has been extracted where a polish value of 0.6

has been assumed for the scintillator. In this case the average light output drops to
frough = 0.10 with a standard deviation of 13%. However, for the part of the detector that
is actually covered by the decay electrons, the standard deviation is still 0.8%. This roughly
resembles the measurements of the spatial detector response and is in agreement with an
analysis of the spatial response performed in [Mes11]. This matching is performed only
qualitatively and has potential for future improvement. Conservatively a large uncertainty
is assumed in the analysis of detector systematics related to the spatial response (see
section 7.3).

Concerning the mathematical treatment within the detector, the effect of light transport
efficiency can generally be described as a Binomial distribution. If one assumes a number
of generated scintillation photons nph at the origin of scintillation and their momenta
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5.2 Scintillation

(a) Light yield without surface roughness.

(b) Light yield with a scintillator surface roughness fpolish = 0.6.

Fig. 5.3: Comparison of the spatial light yield distribution for the Perkeo III detector
simulated with Geant4 with and without surface roughness. The first image shows the
spatial variation of the detector amplitude and a histogram for uniform illumination of
the scintillator surface (a). The line structure in the detector response results from the
geometry of the light guides. This structure vanishes if the scintillator surface is
assumed to be rough because the variation of the detector response is dominated by the
transport efficiency of the scintillator (b). This is modelled by using the Glisur model of
Geant4 that parametrizes the surface roughness by a single parameter fpolish.
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Fig. 5.4: Comparison of the simulated light yield for the Perkeo III detectors when varying the
surface roughness. The surface roughness of the light guides and scintillator are varied
seperately and studied for different points on the scintillator surface to investigate the
effect on the detector uniformity. The light yield is given as the fraction of 106

simulated photons at each point that reach one of the photomultipliers.

being distributed isotropically, this distribution of photons that reach the photomultipliers
can be written as:

ptrans (nt, nph, t) =
(
nph
nt

)
t (~x)nt (1− t (~x))nph−nt , (5.11)

where t (~x) describes the transmission probability for a single photon which depends on
the origin, ~x, of the photon inside the scintillator. In the following t (~x) = t is assumed
to be a constant as the results of the light transport simulations show that the spatial
variance is small. The error made by this assumption is investigated in [Roi18] based on
the simulations described above. The results of this analysis are discussed in section 7.3.

One can calculate the combined distribution of scintillation and light transport by making
use of cumulant and moment generating functions (CGF and MGF) of the respective
distribution. The moment generating function of the Poisson process of scintillation
(equation 5.1) is given as

Mscint (s;E) = e(es−1)aE (5.12)

whereas that of the Binomial process (equation 5.11) for a single scintillation photon is
given as

Mtrans (s; t) = ((es − 1) t) . (5.13)

The Moment generating function of the combined process is then given by nesting the
logarithm of the MGF (also known as cumulant generating function) of the second process
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5.3 Photomultipliers

into the MGF of the first process.

Mphoton (s;nph, t) = Mscint (lnMtrans (s, t)) = e(es−1)aEt (5.14)

Comparing this expression to equation 5.12 one can identify the MGF of a Poisson process
with mean aEt,

pphoton (nt;E, a, t) = (a · Et)nt

nt!
e−aEt, (5.15)

which describes the probability distribution of photons reaching the photomultipliers nt.

5.3 Photomultipliers

The photons successfully transported through the scintillator and light-guides are detected
using Hamamatsu R5924 fine mesh photomultipliers. In this section the influence of the
photoelectron conversion as well as the gain process inside the photomultiplier on the
measured spectra are discussed.

5.3.1 Photoelectron Production

The probability for conversion of a single photon reaching the photomultiplier surface is
given by the so called quantum efficiency, which is specified to be σ = 22% in the range of
the absorption maximum of 420 nm [Ham96]. This conversion process is independent for
any single photon. Thus, for a bunch of photons this again can be described as a Binomial
process:

ppe (npe, nt, σ) =
(
nt
npe

)
σnpe (1− σ)nt−npe , (5.16)

with the number of generated photoelectrons npe and initial photons nt. Making use of
the fact that a Poisson process followed by a Binomial process can be described as Poisson
process (compare section 5.2.2) the combined probability distribution for the generated
photoelectrons npe for a certain electron energy E can be written as:

ppe (npe;E, fpe) =
(fpe · E)npe

npe!
e−fpe·E , with fpe = atσ. (5.17)

Where the characteristic property fpe of the detector gives the characteristic number of
photoelectrons per detected energy and is determined by calibration measurements.
In case the non-linearity of the scintillator mentioned in section 5.2 is considered, the

photoelectron distribution may be modified so that the electron energy is replaced by an
effective energy that resembles the shape of the non-linear light output

Enl (E) = c · L (E) (5.18)

where c ' 1/a is a constant to rescale the light output to units of energy. This way the
definition of fpe in equation 5.17 remains unchanged. Figure 5.1b shows the resulting
photoelectron distribution for the discrete line spectrum of Bi207. Within the fitting tool
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Chapter 5 Model of the Detector Response

this is implemented as a discrete histogram that contains the folding of the theoretical
input spectrum with the photoelectron distribution in equation 5.17.

5.3.2 Photoelectron Multiplication

Usually the detector response is described in terms of the photoelectron distribution for a
certain electron energy as given in equation 5.17, which ignores the contribution of the
gain process of the photomultipliers to the energy resolution. This description leads to
effective fpe values which are smaller than the “real” number of photoelectrons per energy
but typically provide a sufficient description of the energy resolution at higher energies.

In the following section the influence of the photomultiplier gain process is investigated.
A description for the photomultiplier response is derived which describes the additional
variance as well as higher order momenta of the resulting signal distribution. Although
this higher order contributions do not have an impact on fits of the beta asymmetry,
especially for conventional energy windows above 300 keV, they improve the description
of the measured calibration spectra. Additionally, the gain process also modifies the
expectation value for signal extinction compared to the Poisson description and is thus
crucial for the determination of a correct trigger function.
Inside the photomultiplier the photoelectrons initially generated are amplified using

multiple dynodes. A high voltage circuit (usually a simple voltage divider) is used to set
the dynodes to an electric potential increasing with their distance to the first dynode.
This leads to electrons being accelerated from one dynode to the other starting with
the photocathode. If the acceleration potential is high enough, the electrons hitting the
dynodes release secondary electrons from the dynode material. These are accelerated onto
the next dynode. If the electron multiplication factor per stage, Λ, is greater than one
this finally leads to the well known avalanche of electrons arriving at the last dynode.

The amplification of a single electron between two dynodes can be described as a Poisson
process with mean value Λ, so that the probability distribution for a certain number of
electrons ne after this amplification stage is given by

p1 (Λ;ne) = e−ΛΛne
ne!

. (5.19)

For multiple initial electrons n0 the gain process for each electron stays the same and the
resulting distribution p1(ne) is a n0-fold convolution of p1 for a single primary electron

p1 (n0,Λ;ne) = (p1 (n0 − 1,Λ) ∗ p1 (1,Λ)) (ne) = e−n0Λ (kΛ)ne

ne!
= p1 (n0Λ;ne) (5.20)

Here, an idealised photomultiplier is considered where no screening of the electric field due
to the electron cloud occurs. This assumption is usually fulfilled when photomultipliers
are operated in the proportional regime.
In case of two stages the outcome can be calculated in the following way

p2 (n0,Λ;ne) =
∞∑

n1=0
p1 (n0,Λ;n1) p1 (n1,Λ;ne) . (5.21)
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Fig. 5.5: Electron number distribution inside a photomultiplier. The plots compare the electron
number distributions for N gain stages with mean amplification Λ and a single initial
electron. Distributions are renormalized by Λ−N for better comparison.

Figure 5.5 shows the resulting distributions for a different number of stages and different
amplification. Obviously, the skewness of the distribution increases asymptotically with
higher number of stages. The probability for having no electron at all is increasing with
increasing N .

For N = 19 stages the correct implementation for the photomultiplier response inside a
Monte Carlo simulation is trivial, calculating the exact analytical expression explicitly
requires to carry out 18 sums over Poisson distributions with mean values of the order of
the total photomultiplier gain g = 106 − 108 which is impracticable.

Galton-Watson Process

A way to overcome this problem is to use mathematical techniques initially developed to
describe population growth. The discrete-time Galton-Watson process describes the devel-
opment of a population where each individuals’ probability, for having a certain number
of descendants in the next generation, is given by the same offspring distribution p (n)
[Har89]. Such a process is identical to the electron amplification inside a photomultiplier,
if the dynodes are identified as generations and the offspring distribution is the Poisson
distribution 5.19.

The moment generating function of the probability density describing the number of
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individuals in the k-th generation is given by

Mk (s) = Mk−1 (C1 (s)) ,

with M (s) = E (esn) =
∞∑
n=0

eisnp (n) ,

and C1 (s) = lnM1 (s) .

(5.22)

Here the moment generating function M(s) of a discrete probability density function
p(n) is defined by its Z-transformation and the cumulant generating function C(s) is the
logarithm of the moment generating function.

In the present case of a Poisson offspring distribution the cumulant generating function
becomes

C1 (s; Λ) = (es − 1)Λ (5.23)

as already discussed in section 5.2.2. Assuming a discrete distribution of initial photoelec-
trons of the form

ppe (n;npe) =
{

1 n = npe

0 n 6= npe
(5.24)

the moment generating function for this distribution is given by

M0 (s;npe) = esnpe . (5.25)

From this the moment generating function of the full Galton-Watson process for the k-th
generation becomes

Mk (t; Λ, npe) = M0 (C1 (C1 (...,Λ) ,Λ) , npe)

= e(e(e
...−1)Λ−1)Λnpe

(5.26)

where the dots denote that nesting should continue up to the k-th level.

Instead of the discrete photoelectron distribution, the Poisson distribution from equation
5.17 can be used which has the following moment generating function:

M0 (t;E, fpe) = e(et−1)fpe·E . (5.27)

The k-th generation MGF then becomes

Mk (t;E, fpe,Λ) = e

(
e(e(e

...−1)Λ−1)Λ−1
)
fpeE

, (5.28)

which defines the complete detector response.
As the name suggests the moments of the distribution can be obtained from the moment
generating function via

mn = dnM
dtn (t = 0) , (5.29)
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where mn denotes the n-th moment. The mean µ and variance σ2 are then given by

µ = m1 = fpeEΛK ,

σ2 = m2 −m2
1 = fpeEΛK

(
K∑
k=0

Λk
)
.

(5.30)

The relative width of the signal distribution for a total number of stages N can then be
approximated as

(
σ

µ

)
Det

= 1√
fpeE

·

√∑N
k=0 Λk
ΛN =

N→∞

1√
fpeE

√
Λ

Λ− 1 =
(
σ

µ

)
pe
·

√
Λ

Λ− 1 . (5.31)

For typical values of the photomultiplier gain g = ΛN ' 107 the variance of the full
detector response is a factor of 1.75 bigger than that of the photoelectron distribution.

Another important property of the photomultiplier response is the extinction probability
which defines the probability that no signal is generated for a certain number of initial
photoelectrons. For this the probability generating function P (t) of the offspring and initial
photoelectron distributions need to be calculated which are defined as the expectation
value of tn of a discrete PDF with variable n

P (t) =
∞∑
n=0

p (n) tn =
∞∑
n=0

E (tn) . (5.32)

The important property for this concern being that P (0) defines the expectation value
E (0). For the initial photoelectron distribution 5.24 the PGF is given by

P0 (t;nph) = tnpe , (5.33)

whereas the PGF for the Poisson offspring distribution can be calculated to be

P1 (t; Λ) = e(t−1)Λ. (5.34)

For a Galton-Watson-Process the PGF for the k-th generation then is defined by nesting
the PGFs of each generation

Pk (t; Λ, npe) = p0 (p1 (p1 (· · · ,Λ) ,Λ) , npe) =
(
e(e(···−1)Λ−1)Λ

)npe
(5.35)

Although a bit lengthy this expression allows the exact calculation of the extinction
probability for any finite number of stages and gain values.

The complete electron number distribution representing the photomultiplier response
can be calculated by performing the inverse Z-transformation of the moment generating
function given in equation 5.26. However, there is no closed analytical solution for the
required integral and numerical integration is challenging due to the highly oscillating
nature of the integrand.
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Diffusion Approximation

In order to obtain an analytical approximation for the photomultiplier response a Diffusion
Approximation [Fel51] can be used. In [Tan82] this approximation method has been used
with a similar motivation.

The basic idea of this approximation is to approximate the behaviour of the discrete
time Markov Chain by a continuous time Markov Chain. This results in the following
moment generating function:

M (t;A,B) = e
−At
1+Bt . (5.36)

Compared to the MGF for the detector response derived above (compare equation 5.26)
the advantage of this formulation is that the inverse Laplace-transformation gives a closed
analytical expression as has been derived in [Tan82]

p (x;A,B) = e−A/B
(
δ (x) + e−x/B

√
A/x

B
I1

(
2
√
Ax

B

))
, (5.37)

where I1 (x) is the modified Bessel function of the first kind. The discrete number of
electrons n has been replaced with the continuous variable x. Using equations 5.36 and
5.29 the mean and variance can be calculated to be

µ = A,

σ2 = 2AB.
(5.38)

Comparing this to the moments of the photomultiplier signal distribution given by equation
5.26

µ = npeΛN ,

σ2 = npeΛN
(
N−1∑
k=0

Λk
)

(5.39)

the parameters A and B of the Diffusion Approximation follow

A = npeΛN ,

B =
N−1∑
k=0

Λk/2.
(5.40)

This fully defines the probability density given in equation 5.37.

Improved approximation

Figures 5.6a and 5.6b show a comparison between the simulated and calculated photo-
multiplier response where N = 19 stages have been simulated as single Poisson processes
with a photomultiplier gain of Λ = 2. Especially the response for npe = 1 obviously does
not represent the simulation well. This is due to the fact that the extinction probability
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(b) Diffusion Approximation, npe = 10
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(c) Improved Approximation, npe = 1
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(d) Improved Approximation, npe = 10

Fig. 5.6: Comparison calculated photomultiplier response with the Diffusion Approximation
according to equation 5.37 (a and b) and Improved Approximation according to
equation 5.41 (c and d). The photomultiplier gain has been set to Λ = 2 and the data
are binned in units of 0.2Λ19. The calculation results have been averaged by numerical
integration over the corresponding bins.
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p (0, A,B) is defined as e−A/B. This is not a goof approximation for the exact solution
derived in equation 5.35. However, even in the case of npe = 10 where the extinction
probability is negligible, the χ2 results in a probability of 0.0 %. Reasonable performance
is achieved for npe = 100 and above. With a typical value of fpe = 0.25 keV−1, this is
equal to an energy of E = npe/fpe = 400 keV.
In order to improve the approximation, first the value for p (0, A,B) is calculated

according to equation 5.35. Moreover, for lower numbers of initial photoelectrons the
Poisson distribution describing the electron distribution after the first photomultiplier
stage is calculated explicitly and then the Diffusion Approximation for N − 1 stages is
applied. This is repeated recursively for up to 4 stages and can be written in the form

p (x; Λ, npe, n) =


Pn (0; Λ, npe) x = 0,∑∞
i=1 p1 (i; Λ, npe) ∗ p (x; Λ, i, n− 1) x <= 20, n > 14

e−A/B
(
δ (x) + e−x/B

√
A/x

B I1
(

2
√
Ax
B

))
x > 20

, (5.41)

where the definitions of A andB in equation 5.40, Pn according to equation 5.35 and p1 from
equation 5.20 are used. This improved approximation provides a sufficient description of
the simulated photomultiplier response even for a single initial photoelectron as illustrated
in figure 5.6c.
Within the fitting routine the photomultiplier response is included by calculating the

response spectrum for each photoelectron bin. The resulting distribution is binned in
units of 0.2 · Λ19 where for lower initial photoelectron numbers trapezoidal integration
is used to calculate the binned response function. The resulting spectrum as shown in
figure 5.1c is then calculated as a composition of these response spectra according to the
photoelectron distribution.

The exact shape of the signal distribution only changes slightly with Λ so that variations
in the total photomultiplier gain of g = Λ19 = 106 − 108 only change the number of
photoelectrons fpe and have no impact on the result of the analysis. During the analysis a
gain of G ' 107 is assumed which gives Λ = 2.34. The number of photoelectrons extracted
during the calibration analysis (see section 6.1) is then

fpe = 0.25 keV−1. (5.42)

5.4 Energy-channel relation

The resulting charge output of the photomultiplier is measured with a charge integrating
QDC resulting in a binned amplitude. Due to the intrinsic resolution and noise of the
QDCs the resulting output for a discrete signal is a distribution of amplitudes that is
described by a Gauss distribution

p (ch;x,G, σQDC) = 1
σQDC

√
2π
e
− 1

2

(
ch−x·G
σQDC

)2

, (5.43)
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where the relation between the measured charge signal x and the QDC channel number
ch is given by the gain factor G. The characteristic width of the distribution is given by
the detector pedestal, σQDC ' 1 ch. Since the pedestals are subtracted during the raw
data reduction the energy-channel relation is a linear function without offset.
Folding the charge output spectrum with the resolution function 5.43 finally gives the

output spectrum describing the measured data. In order to decorrelate the number of
photoelectrons per electron energy fpe and the gain factor an effective gain in units of
channels per keV is used as a fit parameter

G = g · fpe · Λ19 ' 0.33 ch/keV. (5.44)

When fitting the detector model this way the light output fpe is solely determined by the
width of the spectrum whereas G is determined by the relation between the measured
peak position in QDC channels and the theoretical peak position in energy.

5.5 Multi-PMT model
Since multiple PMTs are used to read out the detector, the generated scintillation light is
distributed among several PMTs. For each of these photomultipliers and light-guides the
same photoelectron distribution as in equation 5.17 is valid. The fraction of scintillation
light reaching another PMT may be absorbed into a lower light transport probability. For
simplification readout by two photomultipliers with photoelectron numbers fpe,a and fpe,b
is assumed. Here fpe,a and fpe,b may account for different light transport probabilities
and different quantum efficiencies of the PMTs. The combined photoelectron distribution
of the two PMTs is then given by folding the two respective photoelectron distributions

ppe (npe;E, fpe,a, fpe,b) =
npe∑
i=0

(fpe,a · E)i

i! e−fpe,a·E (fpe,b · E)npe−i

(npe − i)!
e−fpe,b·E

= ((fpe,a + fpe,b)E)npe

npe!
e−(fpe,a+fpe,b)E .

(5.45)

This again follows a Poisson distribution with mean value fpe,a + fpe,b. For this reason
the photoelectron distribution for multiple PMTs even in the case of different quantum
efficiencies is correctly described using a single photoelectron number fpe.

Due to its nature as a Galton-Watson process the photoelectron multiplication for each
initial photoelectron is independent from the total number of photoelectrons in this PMT.
It is obvious that this also implies that the gain process is not affected by using multiple
photomultipliers with the same gain. However, the light transport and photocathode of
the single photomultipliers can not be considered perfectly equal. Since the individual
high voltages of the PMTs have been adjusted to give the most uniform detector response
it is likely that the output signal of the photomultipliers can be assumed to be equal
for the same amount of light input. This means that a potential variation of the light
transport and photocathode efficiencies is compensated by different gain factors in the
photomultiplier.
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Fig. 5.7: Simulated detector response for events with 100 keV electron energy for a scintillator
read out by two photomultipliers. (1) fpe,a = fpe,b = 0.1 MeV−1, λa = λb = 2,
Ga = Gb = 0.33ch / keV, (2) fpe,b = 0.15MeV−1, λb = 1.97, (3)
fpe,b = 0.15, Gb = 0.22. The fits to the simulations have been performed using the
detector model described in previous sections for a single PMT. The QDC gain factor
G and PMT gain factor λ are fixed in the fit using fpe and a norm as only parameters.
The results show that the model still describes the data well with an effective
photoelectron number that is slightly reduced compared with the expectation.

Figure 5.7 shows a comparison of combined spectra of 2 photomultipliers. The first
simulation has been performed assuming two PMTs with equal photoelectron number
fpe = 0.1 1/MeV and same gain λ = 2., whereas in the second simulation a higher
photoelectron number for the second PMT of fpe,a = 0.15 1/MeV is compensated by a
lower gain of λ2 = 2.251 and in the third case this compensation is made by linearly
rescaling the amplitude of the second PMT. For all simulations an initial electron kinetic
energy of 100 keV is used and 106 events are simulated.
The detector model derived above is fitted to the data where only the photoelectron

number fpe and a norm have been used as free parameters and the photomultiplier gain has
been fixed to λ = 2 in all cases. In both cases the fits describe the data well with a slightly
reduced number of photoelectrons compared to the expectation of fpe = fpe,a+fpe,b = 0.25.
Due to the higher average photoelectron number, the resulting the peak width for the
second simulation is reduced as expected. The slight reduction of the photoelectron
number when comparing the rescaling due to PMT gain versus linear rescaling is due
to the increase to the PMT response contribution to the standard deviation according
to equation 5.31. Although the total photomultiplier gain is reduced by 33% the gain
reduction per PMT step is just 2%. The same analysis has been performed assuming

76



5.6 Trigger function

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

ADC channel

T
ri

g
g
er

p
ro

b
a
b
il
it

y

Fig. 5.8: Triggerfunction extracted from backscattering data according to equation 5.47 and a fit
of the trigger function model.

an initial electron energy of 500 keV, which yields consistent results for the value of the
effective photoelectron number.

Bearing in mind that the resulting fpe value is an effective parameter, this shows that
the detector model is sufficient to describe data resulting from a detector setup with
multiple PMTs where different photoelectron numbers of the single PMTs are compensated
by their gain settings or linear rescaling of the amplitudes in the data reduction.

5.6 Trigger function

To account for the trigger efficiency of the detectors an effective model for trigger function
is used [Mun06]

T (ch) = 1− (1− p)a·ch
(

1 + a · ch · p
1− p

)
, (5.46)

where p is the probability for a photon to trigger a certain photomultiplier and a · ch is
the number of photons present for a certain channel. The trigger function can be derived
from the data by calculating the spectrum

T (ch) = P3(ch)
P2(ch) + P3(ch) ,

with P1(ch): events that trigger only detector 1,
P2(ch): events that trigger only detector 2,
P3(ch): events that trigger both detectors and detector 1 first.

(5.47)

Such a spectrum is shown in figure 5.8. Fitting the trigger function model to this spectrum
gives

a ' 0.32, p ' 0.78. (5.48)

In the present analysis no fits to the spectra below ADC channel 25 are performed. Here
the trigger function is essentially one and described sufficiently well by the trigger function
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Chapter 5 Model of the Detector Response

in equation 5.46. However, for systematic analysis of backscattering systematics this
description is insufficient. Extensions to this model including the correct photoelectron
statistics [Fri08; Mes11] only lead to a partial improvement. A new calculation of the
trigger function, motivated by the analysis of undetected backscattering corrections is
performed in [Roi18] and includes the complete model of the photomultiplier signal
described in section 5.3.2 as well as the spatial dependence of the light distribution.
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Chapter 6

Spectral Analysis

In this chapter the analysis of the measured spectra is outlined. The detector model
described in the previous chapter is applied to the theoretical spectra. This is necessary to
analyse the calibration measurements and to extract the free parameters of the detector
model. This information is then used to analyse the experimental beta asymmetry. The
latter is performed in two ways, a single parameter analysis extracting the beta asymmetry
parameter A, under the assumption of full validity of the Standard Model and an energy-
dependent analysis dealing with the simultaneous extraction of the Fierz interference term,
b, and λ, the ratio of axialvector and vector coupling constants.

The blinded analysis of the beta asymmetry has been carried out before the combined
analysis of λ and b in order to eliminate any potential bias implied by the consistency of
the result with the Standard Model. Both analyses are related concerning major parts of
the analysis, though.
This chapter focusses on the results of the analysis including statistical uncertainties.

The detailed consideration of systematic effects is then covered in the following chapters.

6.1 Calibration Fits
In order to obtain the remaining free parameters of the detector model described in
chapter 5, a simultaneous fit to spectra of each full calibration measurement is performed.
As opposed to the detector calibration scheme used previously [Mun+13], where neutron
decay spectra are used, this method provides a clean detector calibration in the sense that
it is independent of any assumptions about hypothetical additional effective couplings for
charged currents. This fulfils a major requirement for the analysis of physics beyond the
Standard Model.

Figure 6.1 shows the spectra and the corresponding fit for one of these calibration sets.
The analysis is performed separately for each calibration measurement. The free

parameters which require extraction from fitting the calibration spectra are the detector
gain, G (see section 5.4), the effective number of photoelectrons, fpe (see section 5.3.1)
and the Birks coefficient kB to describe the detector non-linearity (see section 5.2.1). In
addition the norms of the spectra are used as free fit parameters as well.

The results of such a calibration fit is shown in figure 6.1. Figure 6.2 shows the extracted
calibration parameters for all calibration measurements analysed. The individual parameter
sets obtained are not necessarily compatible with each other.

The comparatively strong scattering of the number of photoelectrons can be attributed
to the fact that, as discussed in section 5.5, the effective number of photoelectrons as a
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Fig. 6.1: Example for the measured calibration spectra and the simultaneous fit performed to
extract the free parameters of the detector response model (see chapter 5).

measure of detector resolution will vary when rescaling the detector amplitude differently
(e.g. when applying the drift correction). In the beginning of the measurements the
detector function differs in the extracted parameters. This is because of a different high
voltage setting and rescaling parameters used, which affects the energy resolution, the
detector non-linearity and, due to a strong correlation of about 0.97 between G and
kB, also the extracted detector gain. The deviation observed in the last parts of the
measurement on the other hand is correlated with the absence of measurements with
207Bi, which are due to a malfunction of the scanner device. Both these observations
indicate that only considering scintillator non-linearities for the description of the complete
detector non-linearity is not necessarily correct with respect to the underlying physics. A
systematic analysis of the detector non-linearity and its impact on the measurement of
the beta asymmetry is discussed in section 7.2.

The averaged reduced χ2 of these fits is 1.18 for detector 1 and 1.26 for detector 2. The
number of degrees of freedom varies between 282 and 562 depending on which spectra
are available in each individual calibration set. The improvements made to the detector
model provide a huge enhancement in the overall fit quality compared to the previous
analysis. Previously, reduced χ2 values on the order of 1.5 have been obtained for much
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Fig. 6.2: Results of the fits to the calibration spectra. Error bars are given as 68.23% C.L. for
three free parameters including parameter correlations.

narrower fit ranges [Mes11]. The remaining deviation from 1 can be attributed to detector
drifts in between different measurements of calibration sources, in conjunction with an
imperfect drift correction. This would slightly shift the different spectra with respect to
each other and thus cause an increase in χ2. This statement is supported by the fact that
performing fits to the individual spectra leads to lower χ2 values.

For each of these calibration fits the best fit parameters for G, fpe and kB including
the full covariance matrix are extracted. For the calibration fit shown in figure 6.1 the
results for the calibration are:

G = 0.3544(10) keV/ch, fpe = 0.2316(19) keV−1, kB = 430.5(10.3) nm/keV, (68.27%C.L.)

ρG,fpe,kB =

 1 0.16 0.98
0.16 1 0.14
0.98 0.14 1

 .
(6.1)

The average calibrations for the four chopper datasets are listed in table 6.1.
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Dataset G[keV/ch] fpe[keV−1] kB[nm/keV]

Det1 / 94 Hz 0.35493(14) 0.24196(29) 428.5(1.4)
Det1 / 83 Hz 0.35566(16) 0.23447(31) 437.2(1.6)
Det2 / 94 Hz 0.35105(12) 0.28548(34) 401.3(1.2)
Det2 / 83 Hz 0.35070(14) 0.28065(35) 402.6(1.4)

Tbl. 6.1: Weighted average of the calibration fit results for different chopper frequencies and
detectors. The uncertainties are the correlated 68.27% uncertainties without
considering any systematics.

6.1.1 Spatial Response Correction

As mentioned in section 5.2.2, the amplitude of the detector response varies over the
detector surface, giving lower amplitudes in the centre of the detector. This needs to
be taken into account when applying the calibration extracted from the calibration
measurements to the neutron decay data. To first order, neglecting the point spread of the
electrons due to their motion within the magnetic field [Dub15], the electron conversion
sources are assumed as point-like sources as opposed to the spread rectangular source of
the neutron beam.

In a first analysis [Mes11], based on the 2D scan measurements performed during the
beamtime, this effect has been studied by calculating the mean detector amplitude under
the area covered by the neutron beam and its variation. Figure 6.3 shows the relative
detector gain as measured during the scan measurements. From these measurements the
detector uniformity within the area covered by the neutron beam is calculated to be 1%
and the mean detector amplitude relative to a point source is 1.0032(15). However, in this
analysis the point spread of electrons is neglected. The result is a detector response which
appears more homogeneous as it just represents the variations of the detector amplitudes
measured in the scan measurements.

A more detailed calculation of the effect of the detectors spatial response has been
performed in [Roi18]. This new analysis is based on the detector response simulations
performed in this thesis (see section 5.2.2) and also includes the magnetic point spread
of electrons inside the magnetic field according to [Dub15]. Using this description the
detector uniformity within the same area is 2.5%.

For the results presented in this chapter a first correction is included based on the
old analysis. The detector gain G and light yield fpe extracted from the calibration
measurements are scaled by the factor of 1.0032. Moreover, an additional Gaussian
broadening with a width of 1% is considered. A refinement of this correction and related
uncertainties, based on the new analysis, are discussed in section 7.3.
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(a) Detector 1 (b) Detector 2

Fig. 6.3: Scan measurements performed during the 2009 beamtime taken from [Mes11]. The
variation of the measured detector amplitude within the area covered the neutron beam
is 1%.

6.2 Fitting the Beta Asymmetry

The spectra for the experimental beta asymmetry are extracted for each calibration
dataset corresponding to the data reduction process outlined in section 4.3.2. This is
done for all beta data between two calibration measurements resulting in 89 datasets
for each detector. Each of these is assigned to the calibration measurement performed
in advance, using the extracted calibration parameters. For the extraction of the beta
asymmetry parameter A from these datasets, the spectra are fitted using the experimental
beta asymmetry including recoil order and radiative correction as described in section 2.1.
The fit parameter used in this case is in fact λ instead of A. This is due to the fact that
the fit includes the recoil and radiative corrections that are a function of λ (compare
section 2.2.1). Most of the systematics however, can be best described as a relative
correction to the beta asymmetry ∆A/A, independent of the central value A. For this
reason the fit results are given in terms of the beta asymmetry A rather than λ.
Figure 6.4 shows the fits to the combined 4 datasets for each detector and chopper

frequency for a fit range of 291 - 694 keV. The calibration parameters used are the average
of the respective individual calibrations.

6.2.1 Weighted mean of individual Datasets

The statistical uncertainty obtained from the fit of the experimental beta asymmetry
gives the dominant contribution to the overall uncertainty for each dataset. Another
contribution comes from the statistical uncertainty of the calibration fits. Given the three
parameters detector gain G, fpe, kB the uncertainty contribution to the beta asymmetry
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(a) Detector 1, 94 Hz
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(b) Detector 1, 83 Hz
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(c) Detector 2, 94 Hz
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(d) Detector 2, 83 Hz

Fig. 6.4: Fits to the combined experimental beta asymmetry spectra for each detector and
chopper frequency. For these fits a mean detector calibration has been used.

can be calculated from the covariance matrix Σcal of the calibration:

(δA)cal =

√√√√√√(∂A∂G ∂A
∂pe

∂A
∂kB

)
· Σcal ·


∂A
∂G
∂A
∂pe
∂A
∂kB

. (6.2)

This way the strong correlations between the calibration parameters are considered
correctly. The required partial derivatives have been analysed by varying the values of
the individual calibration parameters in the fits of the beta asymmetry,

∂A

∂G
' −0.06 keV

ch
∂A

∂fpe
' 1.9 · 10−3 MeV (Det1), 1.4 · 10−3 MeV (Det2)

∂A

∂kBB
' 6 · 10−6 keV

nm .

(6.3)
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6.2 Fitting the Beta Asymmetry
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Fig. 6.5: Results of the fits to the experimental beta asymmetry for each dataset. The error bars
denote the statistical error as obtained from the fits. Differences between the average
for different chopper frequencies and detectors are expected due to the magnetic mirror
effect (see section 3.4.1).

The contribution to the uncertainty of the beta asymmetry is (δA)cal = 1.6 · 10−5 for
a typical calibration. This is small compared to the typical statistical uncertainty of
(δA)stat = 2.6 · 10−3.

Dataset A χ2/NDF P-Value

Det1 / 94 Hz -0.11812(33) 57.3/44 10.4%
Det1 / 83 Hz -0.11859(35) 28.4/43 96.7%
Det2 / 94 Hz -0.11795(31) 50.3/44 27.0%
Det2 / 83 Hz -0.11819(34) 35.6/43 81.2%

Tbl. 6.2: Averages of the beta asymmetry fits for each detector and chopper frequency over
multiple datasets. The uncertainties include the minor contribution from the statistical
uncertainty of the detector calibration.

In order to calculate the mean result over multiple datasets, the total uncertainty for
each dataset is calculated

(δA)tot =
√

(δA)2
stat + (δA)2

cal, (6.4)

and the weighted mean over all datasets is taken. The results of the individual datasets
are plotted in figure 6.5 together with the weighted mean for each detector and chopper
frequency which is summarized in table 6.2.

6.2.2 Fit Range Dependence
The analysis above has been reperformed varying the lower bound of the fit range. The
results are summarized in figure 6.6 and table 6.3. Obviously, shifting the lower bound to
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Chapter 6 Spectral Analysis

Fit Range δA/A Goodness of Fit

Stat. Calib. χ2/NDF Prob.
85-215 (291-694 keV) 14.0 · 10−4 0.10 · 10−4 128.1/130 0.53
70-215 (244-694 keV) 13.1 · 10−4 0.12 · 10−4 142.8/145 0.54
55-215 (197-694 keV) 12.5 · 10−4 0.13 · 10−4 158.1/160 0.53

Tbl. 6.3: Statistical uncertainties and reduced χ2 values for different fit ranges in the analysis of
the experimental beta asymmetry.

smaller energies increases the statistical sensitivity.

●
●

●

85 - 215 70 - 215 55 - 215
- 0.1186

- 0.1184

- 0.1182

- 0.1180

- 0.1178

Fit Range [ch]

A

Fig. 6.6: Comparison of the mean result of A when using different ranges for the fit (given in
rebinned ADC channels). The results are listed also in table 6.3.

When reducing the lower bound of the fit ranges to smaller energies, the result of the
fit is slightly shifted to smaller asymmetries. Between the 85-215 and 55-215 fit range
this shift is ∆A/A = 9 · 10−4. To check the hypothesis that the observed fluctuations
are purely caused by statistical flucturations the value for the 55-215 fit range may be
composed as the weighted mean of the result for the 85-215 fit range and an additional
component accounting for the lower energies.

A85-215 = −0.11819(17),
A55-85 = −0.11771(32).

(6.5)

The reduced χ2 when combining these two datasets is 1.76 which corresponds to a
probability of 0.18. Although some energy dependent systematic corrections are missing
in the analysis at this stage, the result does not contradict the hypothesis of statistical
fluctuations. A comparison of the fit range dependent results including the full systematics
is presented in section 9.1.1.
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6.3 The Fierz Interference Term and the experimental beta asymmetry

6.3 The Fierz Interference Term and the experimental beta
asymmetry

The analysis of the experimental beta asymmetry presented above has been extended to a
combined spectral analysis concerning the Fierz interference term, b, and λ as discussed in
section 1.3.1. This analysis takes advantage of the fact, that a non-zero Fierz Interference
term gives a spectral signature in the asymmetry spectrum which allows to simultaneously
extract λ and b, when fitting the following function

A′exp (Ee)→ Aexp (Ee) ·
1

1 + bmeEe
= − λ(λ+ 1)Pnβ(Ee)

(1 + 3λ2)
(
1 + bmeEe

) . (6.6)

For this analysis the same data as for the beta asymmetry analysis is used. However,
for the first three subsets (compare section section 4.1.1) insufficient data to extract
the trigger function and spatial response is available, which is necessary to correct for
undetected backscattering and the spatial response. For this reason the affected data is
ignored. Table 6.4 shows the datasets used in the analysis.

Set Cycles Subsets Chopper

First Last f [Hz]
1 273938 430453 3-5 94
2 430457 627900 6-11 83

Tbl. 6.4: Datasets used to analyse the Fierz Interference term. Compared to the data used for
the beta asymmetry, data in the cycle range 211906 - 273937 are removed since some
energy-dependent corrections are not available.

The analysis of the beta asymmetry is performed on individual calibration sets which
leads to datasets with statistically independent detector calibrations. While this is
possible for a single parameter fit of λ (or A) the small amount of statistics available in
the individual fits does not result in a symmetric χ2 environment when performing the
combined λ-b-fit.
For illustration figure 6.7 shows the extracted confidence regions for the full 83Hz

dataset for detector 1 and a smaller subset. The fact illustrated in these figures is that the
extracted confidence regions become asymmetric for smaller datasets. This in turn leads to
the fact that the extraction of the fit results in form of the best fit values and a covariance
matrix provides incomplete information. A more complex treatment would be required
in order to perform the fit on the smaller data sets with individual calibrations. To this
end the analysis is performed on the four large datasets using an average calibration (see
section 6.3.1). Although this method does not account for the fact that the calibration
results vary for the individual small datasets the systematic error made is negligible
compared to the complete statistical uncertainty of the λ-b fit. This can be seen by the
fact that the statistical uncertainty of the calibration (see section 6.3.1) is much smaller
even if it is scaled by a factor of 2 to account for the non-statistical variations between
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Fig. 6.7: Comparison of the resulting confidence regions from a λ-b-fit to a larger and smaller
dataset for detector 1. The asymmetry of the confidence regions of the smaller dataset
indicates a non-Gaussian likelihood function.

the individual calibration fits.

Set λ δλ b δb ρ χ2/NDF

Det 1 - 94 Hz -1.278 0.013 0.010 0.066 -0.993 166.6/159 (32%)
Det 1 - 83 Hz -1.288 0.012 0.064 0.063 -0.993 136.7/159 (90%)
Det 2 - 94 Hz -1.285 0.012 0.051 0.065 -0.993 190.1/159 (5%)
Det 2 - 83 Hz -1.274 0.010 -0.015 0.054 -0.993 139.3/159 (87%)
Total -1.2806 0.0059 0.025 0.031 -0.993

Tbl. 6.5: Results of the individual datasets. The uncertainties denote the correlated errors at the
68.27% confidence level for a fit region of 197 - 694 keV. The combined results of these
datasets is calculated as the weighted mean of the individual datasets. These results
already include corrections for polarisation and the magnetic mirror effect but no
corrections for detector and background systematics.

The results of the combined fits for the individual datasets are shown in figure 6.8
and are found to be consistent within the given 68.27% confidence intervals. The fits
are carried out over an energy range of 197 - 694 keV. Individual results as well as their
weighted mean are listed in table 6.5.

6.3.1 Calibration Uncertainty
The uncertainty in the result of the analysis due to the statistical uncertainties of the
calibration parameters can be estimated using a similar method as for the beta asymmetry
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Fig. 6.8: Results of the λ-b-fits including corrections for polarisation and the magnetic mirror
effect. Corrections for detector and background systematics are not included. The
results of the individual datasets are consistent within the statistical uncertainties
shown.

analysis section 6.2.1. For the beta asymmetry, the covariance matrix of the calibration
fits has been projected onto A. Due to the additional free parameter in this analysis, the
variation of a single calibration parameter induces correlated variations in λ and b which
can not be accounted for by a single derivative as these are individual to each calibration
parameter. This is overcome by mapping the parameter uncertainties of the calibration
and to project the corresponding variations in the calibration onto the result (λ, b).

The 69.27% confidence level contour described by the covariance matrix of the calibration
analysis can be visualized as an ellipsoid as illustrated in figure 6.9 for the 83 Hz / Det 1
dataset (see table 6.4). In order to achieve a meaningful presentation, the covariance
matrix Σcal is rescaled with a scaling matrix S to obtain the correlation matrix Ccal using
the relation:

Σcal = S · Ccal · S, with S = diag(Σ)1/2 =

σG 0 0
0 σpe 0
0 0 σkB

 . (6.7)

The resulting ellipsoid is discretized into disjoint triangles (meshed) using the geometric
computation capabilities of Wolfram Mathematica 1. From the corners of these triangles
42 points on the surface of the ellipsoid are generated to represent variations of the

1Wolfram Mathematica is a feature rich software package for computational algebra by Wolfram.
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Fig. 6.9: Illustration of the covariance matrix of the calibration analysis for the 83 Hz / Det 1
dataset. The corresponding ellipsoid is meshed using 42 points on the surface as
illustrated by the nodes of the mesh. These points are used to map the changes of the
fit results λ, b when varying the calibration parameters.
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Fig. 6.10: Shifts in (λ, b) when varying the calibration parameters on the 68.27% confidence
contour. The points are obtained by refitting the experimental beta asymmetry using
shifted calibration parameters as represented by the nodes of the meshed ellipsoid in
Fig. 6.9. The plot shows the difference to the result obtained when using the best fit
value for the calibration parameters. The ellipse constructed around the data points
defines an upper limit on the 68.27% covariance due to the statistical uncertainty of
the detector calibration.
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6.3 The Fierz Interference Term and the experimental beta asymmetry

calibration on the surface of the 68.27% confidence region. These variations are mapped
to shifts in λ and b by refitting the data with the varied calibration parameters. The
results are illustrated in figure 6.10 as shifts around the central value. Also shown is an
ellipse constructed containing all the data points which defines an upper limit on the
covariance due to the statistical uncertainty of the calibration.
For the given dataset the resulting parameter uncertainties and correlations are

σλ = 3.7 · 10−5, σb = 2.2 · 10−4, ρλ,b = −0.99. (6.8)

Similar results are obtained for the other datasets.
The uncertainties are more than two orders of magnitude smaller than the statistical

uncertainties of λ and b (compare table 6.5). In analogy to the beta asymmetry analysis
the combined covariance matrix including both statistical contributions is calculated
before forming the weighted mean of all datasets. This refinement, however, does not lead
to significant changes when compared to the results listed in table 6.5.

6.3.2 Fit Range Dependence

291 - 694 keV

244 - 694 keV

197 - 694 keV

-1.295 -1.290 -1.285 -1.280 -1.275 -1.270

-0.02

0.00
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0.08

λ

b

Fig. 6.11: Comparison of the 68.27% confidence region when using different fit ranges. Using a
reduced lower fit range bound decreases the correlation between λ and b.

While extending the fit range to lower energies only results in a slight increase in
statistical sensitivity for the beta asymmetry, the benefit in a combined fit with the Fierz
interference is significant. This is due to the fact that the signature of a potential Fierz
term is larger for lower energies, which in turn leads to a higher statistical sensitivity and
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Chapter 6 Spectral Analysis

less correlation between λ and b when including lower energies in the fit range. Figure 6.11
shows a comparison of the combined results for different fit ranges. Without quantitative
analysis it is obvious that the results are consistent with each other.

The optimal choice of fit range, however, minimises the overall uncertainty including all
systematic effects. These include detector and background systematics which are discussed
in the following two chapters. A final comparison of the result for different fit ranges
including systematics is presented in section 9.2.
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Chapter 7

Detector Systematics

In this chapter the analysis of systematic effects specific to the detector and its response
model is presented.

The dominant contributions to the error budget arise from the stability of the detector
amplitude and the detector non-linearity. Several offline measurements and checks on the
calibration spectra are performed in order to improve the understanding of the detector
non-linearity and to rule out some of its potential origins. Combined with the improved
implementation described in section 5.2.1, this in the end yields an acceptable uncertainty
related to the non-linearity, which is essential to perform energy-dependent analysis.
For most systematics the analysis is done by implementing corrections into the fit

function and refitting the experimental beta asymmetry as presented in the previous
chapter. The shifts observed directly allow the extraction of the respective correction for
the individual systematic effects. The uncertainty related to the strength of the respective
effect can be easily translated into a systematic uncertainty for the result.
This scheme is used in both analyses, the analysis of the beta asymmetry and the

λ-b analysis, and based on the same corrections. However, for the analysis of the beta
asymmetry A, the projection of the systematic effect onto a single parameter is of interest,
while in case of the two-parameter analysis of λ and b correlations between the parameters
need to be considered. The method used to estimate the correlated uncertainties is
described in detail in section 7.1 and then used for most systematic effects later on. The
differences in these methods and the fact that corrections and uncertainties are calculated
for different points in the λ-b parameter space yield slight differences in the result.
Some of the systematics effects discussed here are found to be negligible and are not

considered in the final error budget. The same is true for the rate dependence of the
QDCs and the spin-dependence of the pedestals (see chapter 4) which are not further
discussed in this chapter.
The effect of most systematic effects is studied for the different fit ranges used in

chapter 6 to allow optimisation of the total error budget and also test if results are
consistent. In cases, where this provides insight on the nature of the correction, the
results for the individual fit ranges are compared or explicitly stated. However, to avoid
repetitiveness, in some cases only the result for the final choice of fit range is given.

7.1 Drift uncertainty
The correction of the detector drift is based on hourly measurements with a single
calibration source as described in section 4.2.6 and included in the data reduction process.
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The current scheme of drift correction allows to stabilize the detector amplitude on a level
of 10−3 as shown in section 4.2.6. The remaining uncertainties in the detector gain for
any drift corrected measurement are(

δG

G

)
Det1

= 1.91 · 10−3,

(
δG

G

)
Det2

= 2.20 · 10−3. (7.1)

For the continuously measured neutron decay spectra, however, such fluctuations will
average out, leading only to a slightly reduced energy resolution. For the non-continuous
calibration measurements on the other hand, any insufficiency in the drift correction
becomes relevant, as the drift correction for these spectra is usually just derived from
one drift measurement before and one after the calibration measurement. When applying
the calibration parameters as extracted in section 6.1, the above uncertainties need to be
considered in addition to the statistical uncertainties.

Relative variations in the detector gain can be related to variations in the beta asymmetry
parameter A, simply by repeating the fits of the experimental beta asymmetry with a
modified gain. The result of such fits is:

∆A
A
' sA ·

∆G
G

,

with sA = 0.18 (297-694 keV)
sA = 0.18 (244-694 keV)
sA = 0.19 (197-694 keV),

(7.2)

given for different fit ranges of the experimental beta asymmetry. Based on this relation
the uncertainty due to the remaining detector drift can be estimated to be(∆A

A

)
Det1

= 3.4 · 10−4,

(∆A
A

)
Det2

= 3.9 · 10−4, (7.3)

for a fit range of 297 - 694 keV. In [Mes11] the uncertainty of the drift correction has been
studied by repeating the analysis with and without correcting for the detector drift. The
difference between the results is given as ∆A

A = 4 · 10−4 which is of similar magnitude as
the uncertainty estimated here directly from the drift and calibration data.

For the combined λ-b analysis this discussion needs to be extended to multiple parameters.
To extract the effect on λ and b for a variation in the detector gain a similar method as
for the beta asymmetry isused. However, uncertainties in b can only be given in terms of
absolute numbers. To this end all corrections and uncertainties relating to this part of
the analysis are given as absolute values ∆λ and ∆b. In order to relate the variation of
the detector gain to uncertainties in λ and b, the fits performed in section 6.3 have been
re-performed with a gain shifted by ∆G = 0.003, which roughly equals 1%. The observed
shifts in λ and b are (

∆λ
∆b

)
=
(

0.00048
−0.0055

)
, (7.4)

where both parameters are free parameters in the fit. Usually the extraction of the
covariance matrix is based on calculating the derivates of the observable (λ, b) with respect
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7.1 Drift uncertainty

to the varied parameter G. This would lead to

CDrift =


(
∂λ
∂G · δG

)2
0

0
(
∂b
∂G · δG

)2

 . (7.5)

The required derivatives can be estimated by the shifts of the parameters λ and b when
changing the gain leaving the other parameter fixed

∂λ

∂G
= ∆λ

∆G ' −0.17, ∂b

∂G
= ∆b

∆G ' −0.95. (7.6)

This method, however, neglects the fact that the variations in λ and b are correlated to
a certain extent. This is obvious as the resulting shifts in λ and b are larger when both
parameters are free fit-parameters (see equation 7.4). Figure 7.1a illustrates the resulting
covariance matrix as an error ellipse.
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(a) Diagonal covariance matrix constructed in
the unrotated parameters space.
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(b) Covariance matrix constructed as a diagonal
covariance matrix in a rotated parameter
space to account for parameter correlations.

Fig. 7.1: Comparison of the constructed covariance ellipses with and without considering
correlation in the covariance matrix.

A more realistic estimate of the covariance matrix can be obtained by rotating the
parameter space (λ, b):(

λ′

b′

)
=
(
λ
b

)
·R, with R =

(
cos(θ) − sin θ
sin(θ) cos(θ)

)
. (7.7)

The rotation angle θ is chosen such that the shift in equation 7.4 is accounted for as a
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shift of a single parameter (
∆λ
∆b

)
·R−1 =

(
∆λ′

0

)
. (7.8)

In the present case of gain variations this leads to θ ' −1.48. In this rotated parameter
space the covariance matrix can be constructed in analogy to equation 7.5

C ′ =


(
∂λ′

∂G · δG
)2

0

0
(
∂b′

∂G · δG
)2

 . (7.9)

The individual derivates are obtained by including the rotation into the fitting routine,
allowing to perform fits in the rotated parameter space. The covariance matrix for the
unrotated system C is now obtained by simply applying the rotation matrix:

C = R−1 · C ′ ·R. (7.10)

Using the gain variations from equation 7.1 the final covariance matrix describing the
uncertainty due to detector drift for detector 1 and 83 Hz reads

CDrift =
(

5.61 · 10−8 −2.25 · 10−7

−2.25 · 10−7 2.95 · 10−6

)
. (7.11)

Repeating the same extraction for the other datasets leads to similar results. The diagonal
elements of this covariance matrix describe correlated uncertainties and are scaled by
a factor of 2.29 to give a 68.27% confidence region in the two parameter space. The
corresponding uncertainties and correlation are

σλ,Drift = 2.37 · 10−4, σb,Drift = 1.72 · 10−3, ρλb,Drift = −0.553. (7.12)

The uncorrelated uncertainties can be calculated to be:

σλ,Drift,uncorrel. = 1.97 · 10−4, σb,Drift,uncorrel. = 1.43 · 10−3. (7.13)

The uncertainty in λ corresponds to a relative uncertainty of ∆A/A = 3.7 · 10−4 for
detector 1 for the beta asymmetry, when scaled down to a 1σ uncertainty. This is slightly
larger than the relative uncertainty derived in the beta asymmetry analysis (see equation
7.3). This can be mainly attributed to the larger fit range used.

7.2 Detector Non-linearity
So far Birks has been assumed during the analysis to account to account for the detector
non-linearity (see section 6.1). However, with a value of 400− 450 nm/keV the extracted
Birks coefficient kB is bigger than the expected 150 nm/keV. To this end some checks
concerning the scintillator and other detector non-linearities are performed to investigate
potential origins of the increased detector non-linearity. This includes spectral analysis of
the calibration data as well as some offline tests of the electronics used to read out the

96



7.2 Detector Non-linearity

Fig. 7.2: Compton-coincidence setup to measure the intrinsic scintillator non-linearity as used in
[Opp16]. The monoenergetic gammas emitted from the 137Cs-source produce Compton
electrons within the scintillator. The resulting scintillation light is measured with a
photomultiplier in coincidence with the gamma that is detected by a Germanium
detector. Image taken from [Opp16].

photomultipliers. Finally, a comparison between different models to describe the detector
non-linearity is used in order to evaluate the systematic uncertainty quantitatively.

7.2.1 Measurement of the Scintillator Non-linearity
For the measurement of the scintillator non-linearity an existing setup to measured
the scintillator response of Compton-Electrons created inside the scintillator from a
monoenergetic Gamma source. Usually this setup is used to characterize the scintillators
of several neutrino and dark matter experiments1.
The used setup is described in [Opp16] for the measurement of self-grown CaWO4-crystals
produced at TUM for the CRESST-experiment. Figure 7.2 shows an image of the setup.
Only slight mechanical adaptations to the setup have been made in order to perform a
similar measurement with a plastic scintillator. Due to the lack of an appropriate sample
a Bicron-408 scintillator has been used instead of the Bicron-400 that has been utilized in
the Perkeo III measurement.

The scintillation light created by Compton-electrons induced by monoenergetic Gammas
from a 137Cs source are measured by a photomultiplier. These signals are measured in
coincidence with the remaining Gamma which is measured with a Germanium detector.
The energy of the Compton electron is then known from the relation:

Eel = E0 − Eγ , (7.14)

where E0 = 662 keV is the energy of the Cs-gammas. This energy is then compared with
1We thank the E15 group of Prof. Schönert, especially C. Oppenheimer, for providing access to their

apparatus and their support.
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Fig. 7.3: Histogram of the measured integral PMT amplitude versus energy determined from the
residual gamma energy (compare equation 7.14). The region inside the red lines marks
the data selection for the analysis.

the integrated amplitude of the photomultiplier as shown in figure 7.3.
Due to the fact that the measured electrons are created within the bulk material of

the scintillator, this measurement is insensitive to surface effects of the scintillator. The
resulting non-linearity curve then only represents the intrinsic scintillator non-linearity as
described by the Birks model (see section 5.2.1). Additionally, electronics non-linearities
might influence this measurement. However, in this setup a fast sampling ADC is used,
which is expected to behave sufficiently linear.

In a first analysis only data in the energy region of 30 - 160 keV has been selected. For
energies beyond this multiple Compton scattering processes within the scintillator and
the Germanium detector make the description of the measured data more complex.
In the analysis the spectra for the PMT integral for each energy bin of 2 keV width

are fitted simultaneously. For this task the fitting tool PMTSpecFit has been developed
which is capable of analysing 1D and 2D spectra. It is based on the same algorithms as
the fitting tool p3fit used in the main analysis but uses binned log-likelihood instead of
χ2 minimisation. Given a certain input energy for each spectrum, this tool calculates
the resulting spectrum considering the whole detector response as discussed in chapter 5.
In the present case of analysing 2D spectra, these a represented as an array of 1D slices
which are fitted simultaneously. The number of parameters used to describe the norms of
the 1D slices is reduced by describing these by a fifth order polynomial in energy.
In addition to the Compton signal also background due to random coincidences is

observed in the selected energy region. Within the fit this background is described by
combining the PMT spectrum for energy 0 and the energy spectrum for PMT amplitude 0
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7.2 Detector Non-linearity

(a) 49 - 51 keV (b) 149 - 151 keV

Fig. 7.4: Spectra of the integral PMT amplitude for two different energy bins. The red lines
represent the best fit obtained by simultaneously fitting all spectra in the region of 30 -
160 keV. The fit function models the expected detector response for a single electron
energy including the scintillator non-linearity with an additional background
contribution due to random coincidences.

with a common normalisation constant.
The full fit includes the QDC Gain G, effective photoelectron number PE and the Birks

coefficient kB as free parameters in addition to the norms of the spectra and the overall
background normalisation constant. The result obtained for the Birks coefficient is

kB = 123(14) nm/keV. (7.15)

When varying the fit range and extending the background normalisation to a third-degree
polynomial in energy a shift in kB of up to 10 nm/keV is observed. This is considered as
a first measure of systematic uncertainties. For a final result a more detailed study of
systematic uncertainties including detector drifts, background checks and the investigation
of the influence of the calibration of the Germanium detector is required.
The preliminary result of this measurement, however, is in good agreement with the

expectations of kB = 100 − 150 nm/keV and agrees well with similar measurements of
other plastic scintillators [Abe+11].

7.2.2 Surface Effects

The difference between the non-linearity observed in the calibration measurements and the
intrinsic scintillator non-linearity as presented in section 7.2.1 may be the result of reduced
light generation close to the scintillator surface. Possible reasons for such effects are
“dead-layers” on the scintillator, that describe a layer of non-scintillating material on top
of the scintillator either due to damage of the fluors of the scintillator close to the surface
or condensed matter such as water. Previously such dead-layers have been discussed as
a potential reason for the difference between measured and calculated trigger functions.
However, these differences are not observed when calculating the trigger function correctly
under consideration of the photomultiplier signal distribution (compare section 5.6).
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Another effect that might lead to similar observations has been described by Birks as a
loss of scintillation excitations close to the surface [Bir52] for short range particles. In the
differential light yield such losses are accounted for by an additional multiplicative factor
φ, that depends on the distance to the surface(

dL

dx

)
exp

= φ (x) ·
(
dL

dx

)
theor

,

with φ (x) = 1−
e−x/a0 + x

a0
Ei (−x/a0)

2 .

(7.16)

Here Ei (z) is the exponential integral −
∫∞
−z exp (t) /t dt and a0 is the characteristic length

for excitations to travel inside the scintillator. In case of a dead-layer the same relation
can be used replacing φ (x) with the relation

φ (x)deadlayer =
{

1 x > a0

0 x ≤ a0
. (7.17)

This would correspond to a layer of thickness a0 of the scintillator in which no scintillation
takes place. Due to the similar energy dependence of the stopping power, this description
may also be used for other dead layers such as water or other organic materials.

A comparison of the resulting relative effective energy is plotted in figure 7.5. The
curves are calculated by numerical integration of equation 7.16 using the approximation
that the penetration depth inside the scintillator is equal to the path length. To test
this approximation a simulation has been performed using PENELOPE [SFS11]. Here
the angular distribution of incident electrons as well as backscattering are considered.
The effective energy is calculated assuming the same description as for the analytical
curves and summarizing over each step of the simulation. The comparison between the
calculation and simulation shows a good agreement between the approximate calculation
and the simulated data despite some smaller deviations for electron energies between 10
and 100 keV.

Comparing the different calculated models shows the effect of a0 which changes the
effective non-linearity for low energies. The signature of a non-linearity with kB =
158 nm/keV combined with a0 = 12 µm is similar to that for kB = 450 nm/keV. This
transition happens for energies of about 20 keV and below. For higher electron energies the
dead layer model resembles the same non-linearity as the surface effect described by Birks
when the value of a0 is adapted to smaller values. For lower energies however the dead
layer assumption leads to a more significant drop in the measured energy approaching 0
when the electron path length drops below the dead layer thickness.

In order to check whether the non-linearity found in the measured calibration spectra
can be explained by such surface effects, the calibration fits have been repeated using the
modified Birks non-linearity of equation 7.16. The formulation of φ has been modified to
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Fig. 7.5: Effective energy normalized to the incident electron energy for different strength of the
Birks non-linearity with and without surface effects (a0 6= 0).

allow for negative values of the thickness parameter a0,

φ (x) =

1−
e−x/a0+ x

a0
Ei(−x/a0)

2 a0 ≥ 0,

1 +
e−x/a0+ x

a0
Ei(−x/a0)

2 a0 < 0
. (7.18)

which would cause an increased effective energy. This avoids using boundaries for the
parameter a0, which would disturb the fit for values close to zero. However, when
performing calibration fits to the measured calibration data, the fit converges to values of
a0 < 0 and slightly higher values of kB for all full calibration fits as shown in figure 7.6.
For fits not including Bismuth spectra the resulting a0 converges to values slightly greater
zero but the observed shifts in the Birks coefficient are still small. The big error bars for
the a0 parameter are the result of a high correlation between the fit parameters. The
above results show no significance of surface effects that would explain a major effect on
the measured non-linearity.

7.2.3 Electronics Non-linearities

In the previous section potential effects increasing the observed non-linearity related to the
scintillator have been found to be neglibile. Another potential contribution to the detector
non-linearity is the electronics. A first indication that such effects are present could
already be observed by the dependence of the detector non-linearity on the photomultiplier
voltage (see section 6.1). In this section investigations concerning the origin of such an
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Fig. 7.6: Comparison of the resulting Birks coefficient kB with and without considering surface
effects within the fit and the resulting thickness parameter a0.

effect are presented which have been carried out by offline tests of the used electronics.

Pulser Tests

In order to check the linearity of the Linear Fan-Outs and QDCs a first check on the
response to static rectangular pulses have been performed within the Bachelor’s thesis of
R. Sachsenhauser [Sac16].
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Fig. 7.7: Measurement of the QDC linearity for a single QDC channel. The errorbars consist of
statistical errors for the determination of the peak center and the systematic uncertainty
in the voltage measuremet projected on the QDC axis which induces correlations.

In this test a Digital Pulser (RIGOL D4062) is used using trapezoidal pulse of 80 ns
total length with a rise- and fall-time of 15 ns. The pulser signal is fed into multiple
QDC channels using the Linear Fan-Out. The integral over these pulses is then measured
with individual QDC channels and the peak center is used as response value. For a
precise amplitude reference the voltage drop for these pulses over a 50 Ω resistance has
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been measured with a digital multimeter using longer pulses with the same amplitude.
The uncertainty for the measured reference voltage is 0.04mV which is given by the
reproducability of the voltage measurement for amplitude and baseline voltage. Image 7.7
shows the results of such a measurement for the first QDC. The results for the other QDC
channels give similar results and indicate that the measurement is limited by the precision
of the voltage measurement.r Within the precision of the measurement no non-linearity is
found. From figure 7.7b an upper limit on the the combined Fan-Out / QDC non-linearity
is estimated to be < 2 · 10−3. This is one to two orders of magnitude smaller than the
effect observed within the calibration data.

Real Photomultiplier Pulses

The static pulser setup described above gives a limit on the Fan-Out / QDC linearity for
longer trapezoidal signals. However, the pulses generated by the PMTs for real scintillator
signals are much shorter and have a broader spectral bandwidth spectrum. In contrast
to the QDCs which are designed to detect fast PMT pulses, the Linear Fan-Outs have a
limited bandwidth of 200 MHz. This might result in an amplitude dependent response.
In order to check the linearity of the electronic components for real detector signals a

measurement scheme initially implemented in [Sac16] has been improved. The basic idea
is to feed the same signal generated by a Mesh-photomultipler coupled to a scintillator
through one or two fan-out stages into multiple QDCs. Assuming the effect of the Linear
Fan-Out can be described via a function F (A) that describes the relative effect of the
Fan-Out on the signal amplitude A, the ratio of the measured amplitudes can be written
as

A2
A0

= Q2 (F (F (A)))A
Q0 (F (A))A , (7.19)

where the factors Q0 and Q2 account for the potentially different response of the QDCs.
Assuming small deviations from linearity this dependence can be approximated as

A2
A0
' Q2 (A)F 2 (A)A

Q0 (A)F (A)A = Q2 (A)
Q0 (A) · F (A) , (7.20)

where the relation F (F (A)) ' F 2(A) is used. Switching QDC channels inversely changes
the effect of the Fan-Out:

A2
A0
' Q2 (A)
Q0 (A) ·

1
F (A) . (7.21)

Dividing equations 7.20 and 7.21 and calculating the square root gives F

F (A) =
√

(A2/A0)a
(A2/A0)b

. (7.22)

In order to measure F for the Fan-Outs used in the Perkeo III, a setup using a
photomultiplier measuring background of a scintillator is used. The photomultiplier signal
passes either one or two Fan-Out stages before being fed into different QDC-channels.
Pedestal and drift measurements are realised by interrupting the background measurements
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Fig. 7.8: Scintillator background measured with a PMT. The signal is fed into two QDCs via
Linear Fan-Outs and the amplitudes are compared. Pedestals and drift of individual
QDC channels are corrected.

and measuring pulses generated with a LED-pulser. The pedestals are subtracted and
the drift is corrected by rescaling the data of each individual channel. In figure 7.8 the
resulting amplitudes of the two QDC channels are plotted against each other. This data
is binned with respect to the amplitude of channel 0 and the mean value of the second
channel is calculated for each bin. The ratio of the amplitudes according to equation 7.19
is plotted in figure 7.9a. Due to different intrinsic noise of the QDC channels the ratio
shows a drop of the ratio as the spectrum of channel 2 is shifted to lower amplitudes close
to the trigger threshold. This behaviour should not influence the present analysis as it is
constant for both measurements performed. However, amplitudes below channel 1000 are
not considered in the analysis for this reason. The Fan-Out response is calculated from
these datasets according to equation 7.22 and plotted in figure 7.9b.
The observed non-linearity in the data due to the Fan-Out response is on a level of

4 · 10−3 and may become stronger for amplitudes below channel 1000.. The constant offset
from 1 may describe the general damping produced by a second Fan-Out stage but may
as well be the result of imperfect drift correction. The behaviour of the data for medium
amplitudes (QDC channels 2000 - 12000) can be approximated with a quadratic function
as illustrated. When including lower amplitudes (QDC channels 800 - 8000) a better
approximation is achieved by a 1/A-dependence

F (A) = a+ b · (A+A0)2 ,

a = 0.99560(5), b = −2.26(10) · 10−11 1/ch2, A0 = 240(100) ch.
(7.23)

From this approximation the expected non-linearity for signal amplitudes close to zero can
be estimated to be 1.5 %. The observed non-linearity itself can not explain the deviation
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Fig. 7.9: Comparison of the measured amplitudes when guiding PMT pulses through a single or
two fan-outs. Calculating F (A) according to equation 7.22 shows that the damping in
the second fan-out stage is amplitude dependent.

between the observed non-linearity and the measured scintillator non-linearity. However,
the present experiment only tests for the effect in the second Fan-Out stage. Without
knowing the specific origin of this non-linearity no conclusion can be made for a single
fan-out stage.
This measurement leaves amplitude dependence of the fanouts as one of the potential

origins for the detector non-linearity.

7.2.4 Effect on the Beta Asymmetry

In order to evaluate the potential effect of different models for the detector non-linearity
the complete analysis (see chapter 6) is reperformed. The models used in this investigation
are found to provide a good description of the calibration and neutron decay spectra.
These models don’t exactly resemble the shape of the electronics non-linearity found
in section 7.2.3. The reason is that the results for the fan-out non-linearity can not be
applied to the fit function as the non-linearity. The exact shape and strength of the effect
is not known and may be different for each setup. Moreover, this kind of non-linearity
would apply to every individual PMT channel and not the complete detector amplitude.
A correct implementation would require also the inclusion of the light distribution among
the PMTs.
The used models are

• Birks

This is the model used in the initial fits. Although it is meant to describe non-
linearity effects in the scintillator it can account for other effects if the resulting
shape of the non-linearity is similar.
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Fig. 7.10: Results for the individual calibration parameters when extending the scintillator
non-linearity (with kB = 150 nm/keV) with an Exponential or 1/E2 model. The
errorbars denote the correlated uncertainties for the parameters.

• Exponential
This model describes an exponential non-linearity with strength a and a specific
threshold energy Eth:

Enl(E) = E ·
(

1− a · exp
(
− E

Eth

))
. (7.24)

• 1/E2

This model is motivated by the shape of the non-linearity observed in the Fan-Out
tests (see section 7.2.3).

Enl(E) = E ·
(

1− a

(E + E0)2

)
(7.25)

Except for the Birks model, which is the same that is used in chapter 6, these models
are considered as extension to the known scintillator non-linearity. The energy E used
as input for the additional non-linearity contribution already has the Birks non-linearity
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Fig. 7.11: Comparison of the detector calibration with and without the upper 207Bi-peak
included in the fit using the Birks model with kB free. Reducing the calibration fit
range leads to less variations of the detector gain and non-linearity when comparing
the individual results.

applied with a fixed value of kB = 150 nm/keV. This is within measurement uncertainties
of the measured Birks coefficient (see section 7.2.1).
Figure 7.10 shows the results of the calibration fits for the gain and non-linearity

parameters for each calibration dataset. The extracted parameters show a similar behaviour
for the different models. The later measurements performed without the 207Bi-source
result in a lower gain and smaller non-linearity. Similarly, the gain and the non-linearity
are different for the first measurements performed with different PMT high voltages.
While the latter effect is expected when the additional non-linearity is assumed to be an
electronics effect, the dependence on the source selection shows that the description of
the non-linearity does not provide an exact description over the whole energy range.

Although these models are primarily meant to describe additional non-linearities due to
the electronics they are implemented in the same way as the pure scintillator non-linearity.
The reasoning behind this is that, as already indicated in section 5.2.1, the non-linearity
generally requires seperate handling of the individual amplitudes in multi-electron events
as they appear e.g. within the calibration measurements2.
To account for this fact, the analysis for all models is repeated again. This time the

higher 207Bi-peak is excluded from the fits. This reduces the upper limit of the calibration
fit range from 1.2 MeV to 750 keV which is closer to the energy range used for the fits of

2This is also true for effects in the electronics as the non-linearity occurs for every single detector hit
due to the fast response time of the detector. Realizing this in higher layers (e.g. the energy-channel
relation) of the detector response model becomes very inefficient and only has a minor effect on the
obtained results.
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Fig. 7.12: Comparison of the resulting gains for detector 1 and the different non-linearity models.
For all models the analysis has been performed using the full calibration fit range and
limiting the fit range to energies below 750 keV. The plot shows the
energy-channel-relation normalized with the incident electron energy.

the experimental beta asymmetry. The results of the calibration parameters for the Birks
model for each dataset are shown in figure 7.11 and compared to the previous results. The
fits performed with the reduced fit range are not sensitive to the availability of the Bi-data
although the first peak at around 500 keV is still used. This shows that in the energy
range up to 750 keV a consistent description of the detector non-linearity is achieved.
The results of the calibration fits for the different models are illustrated in figure 7.12

in terms of the energy-channel-relation normalized with the incident electron energy. The
results for the beta asymmetry and the Fierz term analysis relative to the pure Birks
calibration are listed in table 7.1 and illustrated in figures 7.13 and 7.14. The resulting
detector calibrations differ for very low and very high energies. Within the fit range used
for the analysis of the experimental beta asymmetry the differences are small. The only
exception to this is the exponential model when fitting the calibration only with lower
fit ranges. Here the resulting detector response becomes much more linear for higher
energies and dominantly non-linear for very low energies. However, even for this case the
shift relative to the Birks model is smaller when using the full calibration fit range. This
illustrates that although the exact shape of the detector response may vary with respect
to the selection of fit ranges the available calibration peaks are composed well to pin the
detector response for the energies relevant in the fits of the experimental beta asymmetry.

For the models having two parameters the resulting calibration uncertainty is generally
higher than for the pure Birks fit (compare figure 6.2) which is due to strong parameter
correlations. This also holds for the case of the reduced fit range which does not affect the
statistical calibration uncertainty much. This is mainly due to the fact that in this energy
range the detector non-linearity is described better for any of these models providing
a sharper χ2-minimum and consequently smaller uncertainties relative to the available
statistics.
The reduced χ2 values for the calibration fits for all of these models are similar,
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Fig. 7.13: Comparison of the combined result for the beta asymmetry A, when using different
non-linearity models and fit ranges for the extraction of calibration parameters. The
errorbars represent the projected calibration uncertainty of the given model. The
region indicated by the red lines represents the estimate for the uncertainty. The
results are also summarized in table 7.1.
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Fig. 7.14: Comparison of the combined result for λ and b, when using different non-linearity
models and fit ranges for the extraction of calibration paramters. The error ellipses for
the individual model correspond to the respective calibration uncertainty. The black
ellipse represents a constructed ellipse that contains all models and represents the
uncertainty for the detector non-linearity. The results are also summarized in table
7.1.
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Model Calibration Results

Fit Range
〈
χ2/NDFcalib

〉
∆A/A [10−4] ∆λ [10−4] ∆ b[10−3]

Birks Full 1.18/1.25
< 750 keV 1.09/1.15 -0.9 6.3 -3.1

1/E2 Full 1.15/1.20 1.0 -1.7 1.6
< 750 keV 1.08/1.13 -4.6 6.0 -3.1

Exp Full 1.22/1.25 -1.3 1.6 -4.8
< 750 keV 1.08/1.12 -1.7 1.7 -4.4

Tbl. 7.1: Comparison of the combined result for the beta asymmetry A and the λ-b analysis,
when using different non-linearity models and fit ranges for the extraction of
calibration parameters.

with slightly smaller values when removing the upper Bi peak. This allows no further
discrimination of the selected models. Since the results obtained with the reduced
calibration fit range generally provide a better goodness-of-fit and agreement with each
other, the Birks result for the reduced fit range is used as final model for the beta
asymmetry. For the uncertainty related to the detector non-linearity an interval is choosen
that contains all results of the different models. For the λ-b analysis an error ellipse
is constructed which again contains all models. An additional requirement is that the
uncorrelated uncertainty in λ should reflect the single parameter uncertainty for A.

Fit Range Beta Asymmetry λ-b

δA/A [10−4] δλ [10−4] δb [10−3] ρλ,b

297 - 694 keV 4 5 3 -0.91
244 - 694 keV 5 5 3 -0.85
197 - 694 keV 6 4 2 -0.68

Tbl. 7.2: Systematic uncertainties due to detector non-linearity for the beta asymmetry and λ-b.
The uncertainties given for λ and b represent the correlated uncertainties.

The final uncertainties for the detector non-linearity for both analysis are given in table
7.2. While the uncertainty for A increases for larger fit ranges, the correlated uncertainties
for λ and b even decrease due to the reduction in correlation.

7.3 Spatial Detector Response

The non-uniformity of the light output of the detectors leads to slight variations in the
measured spectra compared to a uniform detector. This is caused by the magnetic point
spread of the electron beam [Dub15] as well as the spread of the neutron beam. So far only
the change in the mean light yield is accounted for when applying the detector calibration
to the experimental beta asymmetry (see section 6.1.1). In this section some refinements
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7.3 Spatial Detector Response

to this assumption are discussed which yield additional corrections to the calibration as
well as the beta asymmetry measurement.

Both corrections are calculated in [Roi18] and include the mentioned magnetic point
spread of electrons and use the simulation of the light transport efficiency presented in
section 5.2.2 as input. The simulations are matched to the measured detector response.
The correction of the calibration measurements includes additional effects concerning

the energy-loss of electrons inside the sample holder (thin carbon foil) and the potential
mixing of detectors in multi-electron events. The correction for the beta asymmetry on
the other hand includes the Asymmetric PSF which describes the influence of the beta
asymmetry on the angular distribution of electrons and thus the point-spread.

Due to the complexity of these calculations, which involve an extension of the detector
response calculations, it is not efficient to include the full corrections into the production
fits. Instead the results when including these corrections are extracted only once for a
reduced but representative dataset of 14 calibration sets and compared to the uncorrected
results of the beta asymmetry for these datasets. The individual corrections are shown in
figure 7.15. The effect is much stronger for detector 2. This is due to the fact that the
foils supporting the calibration sources are pointing to detector 2 and electrons emitted
towards this detector loose some of their energy. For the individual detectors the variation
between indidual datasets is rather strong. This is caused by considering the mixing of
detectors for multi-electron events in the calibration. When combining both detectors for
each dataset the resulting correction is stable.
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Fig. 7.15: Spatial response correction for the beta asymmetry for 14 datasets. The correction
includes effects of the magnetic point-spread of electrons in the magnetic field of
Perkeo III, the non-uniformity of the detector response, energy loss of electrons in
the calibration foil holder and detector mixing in multi-electron events.

The average correction for all used datasets becomes ∆A/A = 4.2(2.1) · 10−4. The
uncertainty is assumed to be 50% and accounts for the fact that the light transport
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Chapter 7 Detector Systematics

simulations are not yet matched perfectly to the scan measurements. Another potentially
important uncertainty arises from the fact that the position of the calibration scanner
and detectors are not known. This effect has been studied by varying the beam center for
the calibration and beta asymmetry measurements individually by 5 mm horizontally and
vertically. The resulting changes in the correction are on a level of ∆A/A = O(10−5) and
can be neglected.
The fit results presented in section 6.2 already include an initial correction to account

for the different detector coverage in calibration and neutron decay measurements (see
section 6.1.1). The effect of this first order correction is ∆A/A = 5.6 · 10−4. The net
correction to be applied to the fit results is then given as the difference:

∆A
A

= −1.4(2.1) · 10−4. (7.26)

297 - 694 keV Det 1

297 - 694 keV Det 2

197 - 694 keV Det 1

197 - 694 keV Det 2
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Fig. 7.16: Spatial response correction in the combined λ-b analysis for each detector and fit
range. The correction includes effects of the magnetic point-spread of electrons in the
magnetic field of Perkeo III, the non-uniformity of the detector response, energy loss
of electrons in the calibration foil holder and detector mixing in multi-electron events.
The ellipses denote the 68.27% uncertainty and the corrections are the centre of the
ellipses.

The analysis is repeated for the combined λ-bb analysis. Due to the high computational
effort only the 291− 694 keV and 197− 694 keV energy ranges have been used for this
analysis and the corrections are averaged for each detector. Figure 7.16 shows the
corrections and uncertainties for each detector and fitrange. Similar to the analysis of the
beta asymmetry the effect is larger for detector 2 due to the orientation of the sample
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7.4 Electron Backscattering

holders. With decreasing the lower limit of the fit range the correction becomes larger.
For the 197 - 694 keV fit range the correction obtained is

∆λ = 1.6(2.7) · 10−4, ∆b = −1.1(1.9) · 10−3, ρλ,b = −0.87, (7.27)

where the errors are given as correlated 68.27% uncertainties and ρλ,b is the correlation as
extracted from the covariance matrix. This correction is that necessary to correct the fit
results obtained in section 6.3. It already accounts for the fact that the fit results include
an initial correction.

7.4 Electron Backscattering

One important effect when detecting electrons in the keV-MeV energy range is that they
can backscatter from the detector surface. For plastic scintillators the backscattering
probability for electrons is angle and energy dependent. The typical backscattering
probability for electrons from neutron decay is about 11%. This is compared to other
detector types, e.g. Silicon based detectors, and makes scintillators a good for beta
spectroscopy. When being backscattered electrons usually deposit a large fraction of their
energy before escaping the scintillator.
In addition to reducing systematics related to the magnetic field, the symmetric two-

detector design of the Perkeo instruments allows to reconstruct the full electron energy
even in case that backscattering occurs. Backscattered electron either follow the mag-
netic field lines to the opposite detector or depending on the backscattering angle, are
reflected back onto the same detector by the magnetic potential of the decay volume (see
section 3.4.1). Every time one of the two detectors is triggered, the charge integral for
all PMTs of both detectors is measured and recorded. This allows to reconstruct the full
electron energy as both the energy deposited in the primary and secondary detector can
be summed up.
Figure 7.17 shows a measured neutron decay spectrum of detector 1 compared to the

amplitude measured in detector 2 with and without the trigger condition being satisfied
for detector 2. The increased number of events in case that the trigger condition is not
fulfilled for the second detector is mainly due to the detector pedestal (QDC noise). Due to
the magnetic mirror effect the fraction of triggered backscattering on the second detector
is 3.8%.

In this section two important systematic effect related to backscattering are discusssed.
The first effect deals with the dependence of the full energy reconstruction on the integration
time window used in the QDCs. The second effect accounts for events, where the energy
deposit of the electron before it is backscattered is below the trigger threshold.

7.4.1 Short gate-time of the QDCs

One requirement for full energy reconstruction in case of backscattering is a sufficient
integration time window of the QDCs. The effect of the limited gate time of the used
QDCs has been investigated by Monte-Carlo simulations of backscattering spectra in
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Fig. 7.17: Neutron decay spectrum of detector 1 and the simultaneously measured
backscattering spectra on detector 2 with and without trigger condition fulfilled.

[Mes11]. The expected shift of the measured beta asymmetry is

∆A
A

= 0.1(1.4) · 10−4. (7.28)

The analysis is limited by the number of simulated events and while the correction itself can
be considered negligible its uncertainty applies to the final result for the beta asymmetry.

7.4.2 Undetected and wrongly assigned backscattering

When backscattering occurs there is a certain probability that the energy deposit within
the primary detector is small and the trigger condition is not satisfied. If in these cases the
backscattered electron generates a trigger in the other detector, the event is assigned to the
wrong detector. Moreover, the fraction of the energy deposited in the primary detector is
now missing from the event independent of which detector detects the remaining electron
energy. These undetected backscattering events are by their nature not identifiable within
the data.

In case of polarized neutron decay the wrong assignment of events makes the magnitude
of the beta asymmetry smaller. The incomplete energy deposition on the other hand
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Fig. 7.18: Correction to the fit function for the experimental beta asymmetry for detector 1.
The correction accounts for undetected and wrongly assigned backscattering events
making the measured asymmetry smaller.

counteracts this effect as in the experimental beta asymmetry higher energetic events with
a larger asymmetry are shifted towards lower energies.
For Perkeo III these effects have been studied in [Mes11] based on the calculations

made for Perkeo II [SA08]. However, in this analysis the correct trigger function and
fractional energy deposition have not been considered. To this end a new estimate for
the effect on the beta asymmetry has been done [Roi18]. This analysis uses the response
model for the photomultipliers as derived in section 5.3.2 to calculate the correct trigger
function for the detector system. The detector calibration used is the one derived in section
section 6.1 and the backscattering simulations performed with GEANT4 are matched to
reproduce the backscattering data shown in figure 7.17.

The correction is derived as an energy dependent relative correction to the fit function
for the experimental beta asymmetry similar to the method used for the correction of the
detector’s spatial response in section 7.3. Figure 7.18 shows the correction for detector 1.
Applying this correction when fitting the beta asymmetry leads to a correction of

∆A
A

= 4.6(1.3) · 10−4, (7.29)

for the 297 - 694 keV fit range, where the uncertainty accounts for uncertainties in deriving
the trigger function from the data and in the backscattering simulations.

The resulting correction for the λ-b analysis is shown in figure 7.19. The correction and
its uncertainty become larger when reducing the lower limit of the fit range. Due to the
symmetric setup the correction is almost the same for both detectors. For the 197 - 694
keV fit range the correction obtained is

∆λ = 9.9(4.6) · 10−4, ∆b = −6.4(2.9) · 10−3, ρλ,b = −0.97, (7.30)
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Fig. 7.19: Correction for undetected backscattering of electrons from the scintillator. The ellipses
denote the 68.27% uncertainty and the corrections are the centre of the ellipses.

where the errors are given as correlated 68.27% uncertainties and ρλ,b is the correlation as
extracted from the covariance matrix.
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Detector Background

As discussed in section 4.3 the background subtraction is based on measuring with a
pulsed neutron beam. The neutron beam is pulsed using a rotating disc chopper. This
chopper is closed while the neutron pulses passes the central decay volume and still remains
closed while the neutron pulse is absorbed by the beamstop. The neutron decay signal
is extracted from events within the signal time window, which is choosen such that the
neutron pulse is in the central decay volume. A second time window after the neutrons
are absorbed is used to extract the detector background. Subtraction of the measured
background, with appropriate scaling for the different lengths of both windows, from the
signal finally gives a background free neutron decay spectrum.

This method allows to measure all kinds of background that are stable over the time of
a single chopper rotation. This covers all beam-independent background originating from
the reactor environment and other experiments as well as background produced within
the beam preparation of the Perkeo III experimental setup. However, beam-dependent
background, meaning background that is somehow produced by or correlated with the
neutron pulses passing the spectrometer is not fully covered by this method as it may
contribute differently within the signal and background time windows.
In this chapter the limitations of the background subtraction method are investigated

including potential sources of beam-dependent background. Some of these effects have been
addressed in [Mes11] and are updated to account for the different choice of background time
windows (see section 3.3.1). In particularx the checks for beam-dependent background from
the chopper as well as limits on the precision of the dead-time correction are performed
for the first time.

8.1 Sensitivity to background in the Experimental Beta
Asymmetry

As discussed in section 4.3.2, the contribution of the background to the statistical un-
certainty is already included in the calculation of the experimental beta asymmetry.
To investigate the effect of background uncertainties other than the statistical one the
influence of background shifts to the experimental beta asymmetry needs to be known.
This is obtained by calculating the relative shift in the beta asymmetry for fractional
shifts in the Background intensity:

∆A
A

=
∂A
∂B ·∆B

A
= ∆B

B
· r ·B (E)
N↑ (E) +N↓ (E)− r ·B (E) = ∆B

B
· SF (E) . (8.1)
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The statistical suppression function SF (E) describes the energy dependent relation between
background shifts and shifts in the beta asymmetry.
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Fig. 8.2: Statistical suppression function SF (E) for Det1 / 94Hz that relates relative shifts in
background intensity to relative shifts in the beta asymmetry according to equation 8.1.
The weighted average of SF (E) is used to obtain the net correction for the whole
analysis energy region of 300 to 700 keV.

Dataset 〈SF (E)〉

Det1 / 94Hz 0.344
Det2 / 94Hz 0.239
Det1 / 83Hz 0.329
Det2 / 83Hz 0.238

Tbl. 8.1: Weighted average of the statistical suppression function for the different datasets.

The net effect is obtained by performing a weighted average of SF (E) over the fit region
used for the analysis. As this function depends on the actual signal-to-noise ratio, different
results are obtained for individual datasets and detectors which are summarized in table
8.1.

In order to estimate the same effect for the λ-b analysis, generally the derivatives ∂λ/∂B
and ∂b/∂B are required. However, to extract small systematic corrections it is sufficient
to apply fractional changes in the background intensity. A linear rescaling factor r is used.
A modified background intenstiy B′(E) then can be written as

B′(E) = r ·B(E), (8.2)
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8.2 Time variation of background

where B(E) is the background spectrum as measured. This treatment includes the
assumption that the background spectrum does not change significantly for the systematics
discussed.
Additional datasets are created where background is rescaled by a factor r = 1.03.

Refitting and calculating the shifts relative to the data without rescaled background allows
to obtain the shifts necessary to calculate the derivatives ∂λ/∂r and ∂b/∂r. To give a full
covariance matrix for the uncertainty, the parameter system is again rotated with respect
to the observed shifts. The diagonal covariance matrix created in the rotated parameters
system then becomes a non-diagonal covariance matrix including an estimate for the
correlation when rotating back. This method is explained in more detail in section 7.1.

Det 1 - 94 Hz

Det 1 - 83 Hz

Det 2 - 94 Hz

Det 2 - 83 Hz

-5 0 5 10

-15

-10

-5

0

Δλ [10
-3]

Δ
b
[1

0
-

2
]

(a) Individual Datasets, Fit Range 197 - 694
keV.

297 - 694 keV

244 - 694 keV

197 - 694 keV

-10 -5 0 5 10

-15

-10

-5

0

Δλ [10
-3]

Δ
b
[1

0
-

2
]

(b) Different fit ranges, Det 1 - 94 Hz.

Fig. 8.3: Resulting correction, denoted by the centre of the ellipses, and the corresponding
uncertainties when assuming a systematic correction in the background rescaling
∆r = 0.03(3).

Figure 8.3 shows the corrections and uncertainties resulting from a background rescaling
of ∆r = 0.03(3). Due to different signal-to-noise ratios and background spectra the results
are individual to each dataset and especially different for both detectors. This has already
been observed for the statistical suppression function used for the beta asymmetry (see
table 8.1). Changing the fit range significantly changes the observed shifts in magnitude
and direction, which is expected due to the spectral shape of the background spectrum.

8.2 Time variation of background
In [Mes11] the time variation of the background count-rate is investigated. This investiga-
tion mainly addresses beam-dependent background that is created by a delayed signal
from the beamstop (see section 3.3.1) which is present only within the background time
window. In this section this analysis is repeated considering the statistical suppression
function for the individual datasets and the new background time windows.
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The time variation of the background signal is investigated by linear fits to the detection
rate vs. the time-of-flight where an energy cut of 300-700 keV has been applied to the
data. The resulting slopes of the linear fit indicate the amount of time variation present
within the background window. The “real” detector background that is also present within
the signal-window is assumed to be constant in time. Hence the slope is interpreted as
additional signal which must not be considered when subtracting the background.

Dataset Constant Fit Linear Fit

χ2/NDF Prob. χ2 / NDF Prob. Slope [10−3/ms] ∆A/A[10−4]

Det1 / 94 Hz 55.5/39 0.20 49.3/38 0.21 −1.0(0.9) −1.8(1.6)
Det2 / 94 Hz 33.5/39 0.72 31.2/38 0.77 −1.7(1.1) −2.0(1.3)
Det1 / 83 Hz 39.3/39 0.46 38.0/38 0.47 1.2(1.1) 2.0(1.7)
Det2 / 83 Hz 37.7/39 0.53 36.3/38 0.55 −0.8(1.2) −0.9(1.5)

Total −0.8(0.8)

Tbl. 8.2: Results of linear and constant fits performed within the count rate vs. neutron
time-of-flight histogram for each dataset. The fraction of background described by the
slopes is considered as additional background (e.g. due to the beamstop) that is not
present within the signal window. The correction for the beta asymmetry is calculated
by applying the statistical suppression function as derived in section 8.1.

The results of these fits including the corresponding corrections to the beta asymmetry
for each dataset are summarized in table 8.2 where the average statistical suppression
functions from table 8.1 have been used to calculate the correction for the beta asymmetry.
In order to test the significance of this slope, also constant fits have been performed
which show that the time variation can not be assumed as zero. The correction to the
beta asymmetry is smaller compared to the previous analysis, which result only in slight
improvements in the goodness of fit. Since the uncertainties of the individual corrections
are statistical in nature and independent, Gaussian uncertainty propagation is applied
when averaging over multiple datasets.

For the λ-b analysis the corresponding corrections are calculated accordingly reinter-
preting the slope as an error in the rescaling factor r. The total correction obtained for
the 197 - 694 keV fit range is:

∆λ = 0.4(4.9) · 10−5, ∆b = 0.6(3.5) · 10−4, ρλ,b = −0.58. (8.3)

As opposed to the results of the beta asymmetry analysis, here the uncertainty is much
larger than the correction itself. The corrections for the individual datasets cancel almost
completely. Projecting the covariance to a single parameter uncertainty in A (by assuming
b = 0) leads to δA/A = 1.1 · 10−4 when also considering the same fit range as for the
beta asymmetry analysis. The difference in the uncertainty is partly due to the fact that
part of the 94 Hz data is ignored in the analysis. Also the correction is developed using
different degrees of freedom around a different point in the λ-b parameter space. Thus one
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8.3 Chopper background

can expect different estimates for the uncorrelated parameter uncertainties, in particular
when the effects are small compared to the statistical uncertainty of the experimental
beta asymmetry.

8.3 Chopper background

Another source of beam-dependent background is the chopper itself. A measurement of
the background created by the chopper has been performed after installation of the full
experimental setup [Wer09]. A NaI counter has been placed close to the chopper in order
to detect gamma-radiation that is generated while the chopper rotates. Figure 8.4 shows
the detected count-rate vs. the chopper rotation angle for different chopper frequencies.
During the opening of the chopper at 18 ◦ the measured count rate is strongly decreased.
However, the created background shows a dependence on the chopper angle even if the
chopper is fully closed. This leads to differences in the background generated during
the signal and background time windows. The fact that the structure of the measured
count-rate is independent from the chopper frequency indicates that the background is
generated instantaneously.
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Fig. 8.4: Measurement of the chopper background using a NaI-counter for different chopper
frequencies. The data show the reduction of background during the chopper opening at
around 18 ◦ and a variation of the background while the chopper rotates. This
variation induces differences of the background measured within the signal and
background window. The intensity is normalized to the counts per second and
time-of-flight bin with a bin width of 20 µs.
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(a) Pulse height spectra extracted from the
background time window and a time window
that corresponds to the chopper being
completely open (see equation 8.4.
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(b) Spectrum of the background created by the
chopper. This spectrum is obtained by
subtracting the two spectra shown in figure
8.5a.

Fig. 8.5: Pulse height spectra to extract the chopper background.

Sensitivity of the Perkeo III detectors to Chopper Background

In order to estimate the influence of the varying chopper background on the measurement,
the spectral sensitivity of the electron detectors to this background needs to be estimated.
To this end the background measured within the background time window and during
chopper opening are compared. A corresponding time window is defined. Its center is
assumed to be 18◦ and the width to be 2◦, which matches the chopper opening window
determined in [Wer09]. The spectra used to extract the data have a neutron time-of-flight
binning of 25 µs. This leads to time windows of

475− 525 µs (94 Hz),
525− 600 µs (83 Hz).

(8.4)

Figure 8.5a shows a comparison of the spectra extracted from the background time
window and the mentioned time window where the chopper is open. The spectrum of
the chopper background is rescaled to account for the different lengths of the time-of-
flight windows. The difference of these spectra shown in figure 8.5b gives the spectral
contribution of the background created by the chopper. The spectrum shows that the
background priduced is predominantly low energetic, as expected for gamma radiation.
To estimate the effect of variations in the chopper intensity for the experimental beta

asymmetry a similar method as the one used to calculate the sensitivity for overall
background changes is used (see section 8.1). This time the statistical suppression function
is calculated only for variations of the chopper background to obtain the relation

∆A
A

(Ee) = SFC(Ee) ·
∆C
C

(Ee). (8.5)
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8.3 Chopper background

The description of the experimental beta asymmetry 4.14 is modified

Aexp (E) = N↑ (Ee)−N↓ (Ee)
N↑ (Ee) +N↓ (Ee)−B′ (Ee)− C (Ee)

, (8.6)

where the background contribution in the denominator is split into the chopper background
C(Ee) and the remaining background B′(Ee). These two spectra are not accessible directly,
but can be rewritten in the form of the accessible spectra B(Ee), which is the usual
background term, and Copen(Ee), which is the spectrum measured during the opening
window of the chopper scaled to account for the length of the time windows.

C(Ee) = B(Ee)− Copen(Ee),
B′(Ee) = Copen(Ee).

(8.7)

Assuming the chopper background during the background time window is changed by a
small fraction, the background that needs to be subtracted in the beta asymmetry needs
to be reduced accordingly:

B(Ee)→ B(Ee) + (r − 1) · C(Ee) = r ·B(Ee) + (1− r) · Copen(Ee), (8.8)

where r = 1−∆C/C describes the rescaling of the chopper background. Inserting this
into the experimental beta asymmetry and using r ' 1 after calculating the derivative,
allows to extract the statistical suppression function

∆A
A

=
∂A
∂r ·∆C
A

= ∆C
C
· B(Ee)− Copen(Ee)
N↑ (Ee) +N↓ (Ee)−B (E) = ∆C

C
· SFC (Ee) . (8.9)

The effect on the beta asymmetry is given by the weighted average 〈SFC(Ee)〉 over the
respective fit region. These averages are listed in table 8.3 for each dataset for the
297-694 keV fit range. Due to the larger distance the sensitivity of downstream detector 2
is five times smaller compared to updstream detector 1. The uncertainties of the given
results are statistical uncertainties dominated by the statistical uncertainty of the chopper
background spectrum.

Variations of the chopper background

To estimate the relative variation of the chopper background ∆C/C from the NaI measure-
ment the 95 Hz data is used. Only this dataset provides partial coverage of the background
time window. The average intensity of the NaI measurement during the chopper opening
is Ṅopen = 12.43(4) (s× 20 µs)−1. The average chopper background intensity within the
signal window is Ṅsig = 21.47(1) (s× 20 µs)−1.

The average intensity within the background time window is more difficult to estimate
due to the fact that the background time window is not covered fully by the data and
the count rate not being constant. Figure 8.6 shows the count rate measured with the
NaI detector within this window. Beyond the statistical uncertainties of the data points
the weighted average includes an additional uncertainty contribution that is introduced
to account for the fact that the data is not constant. This uncertainty contribution is
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Chapter 8 Detector Background

Dataset Correction

Detector fChopper 〈SF(Ee)〉 ∆A/A

1 94 Hz 10.7(0.4) · 10−3 −3.3(1.3) · 10−4

1 83 Hz 9.7(0.4) · 10−3 −3.0(1.2) · 10−4

2 94 Hz 2.1(0.4) · 10−3 −0.7(0.3) · 10−4

2 94 Hz 1.8(0.3) · 10−3 −0.6(0.2) · 10−4

Total −1.9(0.7) · 10−4

Tbl. 8.3: Averages of the statistical suppression function 〈SF(Ee)〉 for the chopper background
and each chopper set. These have been calculated for a fit region of 85 - 215 ADC
channels. The given errors denote the statistical uncertainty of the result which is
dominated by the statistical uncertainties of the chopper background spectrum (figure
8.5b). The correction values ∆A/A are obtained by multiplying 〈SF(Ee)〉 with ∆C/C
from equation 8.11

determined by forcing the modified reduced χ2 to be one,

χ2

NDF =
N∑
i=1

(xi − 〈x〉)2

(N − 1)
(
δx2

i + ∆2) != 1. (8.10)

With ∆ = 0.342 the weighted mean for the background time window becomes Ṅbg =
21.76(34) (s× 20 µs)−1.

Figure 8.6 also shows the count rate of detector 1 within the background time window.
To infer this data an upper energy cut of 30 ADC channels is applied, in order to increase
the sensitivity to the low energetic chopper background. The fraction of the chopper
background in this energy region is 5.97 % as determined by comparing the spectra in
figure 8.5a. The contribution of all other background is subtracted and the data is then
rescaled to match the intensity of the NaI measurement. The inferred count rates show
that the choice of a constant count rate within background time window is justified.

Using these results the shift of the chopper background between signal and background
time window is given by

∆C
C

= Ṅsig − Ṅbg

Ṅbg − Ṅopen
= −3.1(1.2)%. (8.11)

The relative corrections to the measured beta asymmetry are obtained using relation
8.9. The uncertainties for the individual datasets are dominated by the uncertainty of
∆C/C which is common for all datasets. Hence, the total correction and its uncertainty
is given by the average of all datasets.

In the λ-b analysis the same procedure as described in section 8.1 is performed. Relation
8.8 is used to extract the experimental beta asymmetry for r = 1− 0.03. Refitting the
spectra to extract the correction and again using the explicit construction technique for
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8.4 Dead time correction
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Fig. 8.6: Count rate of the NaI measurement of the chopper background within the background
time window only. In order to account for the non-statistical structure of the count
rate, the uncertainty of the weighted mean is scaled by a factor of 7 to obtain a 68.23%
confidence level. The background count rate of detector 1 with an energy
≤ 30 ADC channels is inferred by subtracting the fraction of the background that is not
produced by the chopper and rescaling the data to the same intensity as the NaI data.

the covariance matrix introduced in section 7.1.
The resulting corrections for different datasets and fit ranges are shown in figure 8.7.

The effect is much more dominant for detector 1 due to its larger sensitivity. Since the
chopper background spectrum is dominated by low amplitudes the correction becomes
much larger when the fit range is stretched to lower energies. The combined correction
for the 197 - 694 keV fit range is compatible with zero.

∆λ = −0.3(0.9) · 10−4, ∆b = 5.3(6.4) · 10−4, ρλ,b = −0.58. (8.12)

8.4 Dead time correction
After being triggered and recording an event the readout electronics of the detectors is
inactive until the QDCs are able to detect another event. This dead-time is set to be
1.5µs. Any detector signal creating during this non-extensible dead-time is ignored. Given
the detected rate Ṅ , the real rate Ṅ ′ can be calculated from the dead-time τ to be [Leo87]
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(b) Different fit ranges, Det 1 - 94 Hz.

Fig. 8.7: Resulting correction, denoted by the centre of the ellipses, and the corresponding
uncertainties for the chopper background.

Ṅ ′ = Ṅ

1 + Ṅ · τ
. (8.13)

The required dead-time corrections to the signal and background spectra are applied
before subtracting the background by rescaling signal and background spectra. Here the
measurement rate is calculated from the number of detected events divided by the number
of chopper rotations in the respective dataset times the length of the time window.
In [Mes11] the resulting dead-time correction has been calculated considering a dead

time of τ = 1.5(1) µs to be
∆A
A

= 5(2) · 10−4. (8.14)

As mentioned this correction is already applied in the data reduction process. This way
no correction to the asymmetry needs to be taken into account while the uncertainty still
needs to be considered.

The above correction of the dead-time is derived under the assumption of the detector-
events being distributed exponentially in time according to a Poisson process. The
expected delta-time distribution is only determined by the mean event rate 〈r〉

N (t) = N0e
−t
√
〈r〉, (8.15)

where t is the time difference of an event to the previous event and N0 a normalisation
constant.

For very short times between events the count-rate is increased compared to a Poisson
like behaviour, though. A corresponding plot is shown in figure 8.8. These events may
appear due to afterpulses of the photomultipliers or the slow component of the scintillation
process. In a previous analysis these events have been shown to have an energy of less
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Fig. 8.8: Number of events vs. time between two events. The data shows an increased number of
events for short delta-times compared to the expected exponential behaviour. These
events are resulting from afterpulses of the photomultipliers and the slow component of
scintillation and can be approximated by another exponential component.

than 30 keV [Mes11] and to not spectrally contribute in the energy region used in the
analysis. However, these events may influence the behaviour of the detector in terms of
dead time. The dead time after detecting afterpulses, provides an additional suppression
of electron or background events.

In order to check the influence of afterpulses on the dead time correction a Monte-Carlo
event simulation has been performed that distributes events according to an exponential
delta-time-distribution and also includes event non-detection due to dead time. In addition
a 2% probability for afterpulses with a short decay time of 2.5 µs is assumed. These
parameters are estimated by a double exponential fit to the delta-time distribution of
events in figure 8.8. The results of this simulation are summarized in table 8.4. Not
including afterpulses 1011 events have been simulated assuming a rate of 2200 s−1 of
which a fraction of 0.996656(3) has been simulated to be detected. Hence the real dead
time correction required to scale the detected rate to the simulated rate is

∆real = 1.003354. (8.16)

The naive dead time correction on the other hand is estimated according to equation 4.12
where the detected rate includes afterpulses. This leads to

∆naive = 1.003336. (8.17)

This means that the resulting shift in the dead time correction due to afterpulses is on
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Primary Events 1011

Mean Rate 2200 1/s
Dead time 1.5 · 10−6 s

Afterpulse Probability 0.02 1/Event
Afterpulse Rate 4 · 105 1/s

Detected Primary Events 0.9966563 · 1011

Detected Afterpulses 1.094000 · 109

Detected Total 1.007596 · 1011

Naive Dead Time Correction 1.003336
Real Dead time Correction 1.003354
Difference 1.8 · 10−5

Tbl. 8.4: Parameters and results of a Monte-Carlo simulation performed to estimate the effect of
afterpulses on the dead time correction. In this simulation events are distributed
according to an exponential time distribution. The occurrence of afterpulses for each
event is modelled with another exponential time distribution with a much shorter decay
length. Via this simulation the number of detected “real” events is determined and
compared to a conventional dead time correction.

the order of 2 · 10−5 which is much smaller than the estimated uncertainty in equation
8.14. Even for the case of this shift being different for signal and background spectra the
resulting uncertainty for the beta asymmetry would be below 10−6 which is considered
negligible for this analysis.

8.5 Test of background subtraction
The method presented above explicitly tests for time-variations of the background signal
in the same energy region as the one used for the fits to the experimental beta asymmetry.
A complementary check can be performed by testing the background subtraction in the
energy region above which electron signals from neutron decay are observed. Here the
background free electron spectra are expected to be zero. Such a test is performed by
a constant fit to the unpolarised decay spectrum N↑(Ee) +N↓ using ADC channels 400
to 800. This corresponds to energies of about 1.25 to 2.5 MeV. Figure 8.9 shows that
the signal and background spectra still contain enough background statistics within this
energy region to allow for this kind of analysis.

The results of the fits and the corresponding correction for each datasets are listed in table
8.5. For the 94 Hz dataset small deviations from 0 are observed. The resulting corrections
are calculated by using the statistical suppression functions derived in section 8.1. It is
important to note that this check has limited significance to test for beam-dependent
background contributions since it relies on the assumption that the spectral shape is the
same for different types of background. However, this method gives a much more stringent
limit on the uncertainty of the dead-time correction as the rescaling of spectra affects all
energy regions equally. The resulting correction on the other hand is not considered as it
is small and may have the same origin as the time-variation of the background that is
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Fig. 8.9: Fit to the electron spectrum N↑(Ee) +N↓ for detector 1 / 83 Hz above the electron
endpoint energy. This fit is used to determine how well the background subtraction
works. The results of these fits for all datasets are summarized in table 8.5.

already accounted for.
The total correction obtained for the 197 - 694 keV fit range in the λ-b analysis is

∆λ = 0.1(2.9) · 10−5, ∆b = 0.4(2.1) · 10−4, ρλ,b = −0.61. (8.18)

When comparing this to the correction for the beta asymmetry, the same behaviour as for
the time variation of the background is observed.

8.6 Spin dependence of Background

As already discussed in section 4.3.2 the statistical sensitivity of the measurement is
increased if the background can be considered spin-independent. When considering the
background being spin-independent in the analysis, remaining spin dependent contributions
to the background may provide a contribution to the experimental asymmetry that shift
the value of the extracted beta asymmetry A. An expression for such a contribution may
be obtained from equation 4.13 by isolating the background terms in the numerator:

Aexp,bg (E) = B↓ −B↑

N↑ +N↓ −B↑ −B↓
. (8.19)
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Dataset Constant [cnts/(bin · s)] Correction ∆A/A

Det1 / 94 Hz 2.6(1.6) · 10−7 1.3(0.8) · 10−4

Det2 / 94 Hz −6.2(1.7) · 10−7 −1.8(0.5) · 10−4

Det1 / 83 Hz −0.3(1.9) · 10−7 −0.1(0.9) · 10−4

Det2 / 83 Hz 0.4(2.0) · 10−7 0.1(0.6) · 10−4

Total −0.2(0.3)

Tbl. 8.5: Results of a constant fit to the electron spectrum N↑(Ee) +N↓(Ee) between ADC
channels 400 to 800. These fits are used to test background subtraction in and energy
region is beyond the electron endpoint energy where no signal is expected. The
calculation of the correction for the beta asymmetry is performed by normalizing the
result of the constant fit with the total background intensity and multiplying with the
statistical suppression function SF(E) obtained in section 8.1.

The relative correction for the experimental asymmetry is then given by

δAexp,bgspin (E) = B↓ −B↑

N↑ −N↓
. (8.20)

Dataset Fit Result Goodness of Fit

Constant Error χ2/NDF Probability
Det 1 / 94 Hz −7 · 10−4 21 · 10−4 113.7/109 0.36
Det 2 / 94 Hz 9 · 10−4 18 · 10−4 94.7/109 0.83
Det 1 / 83 Hz 10 · 10−4 23 · 10−4 106.7/109 0.54
Det 2 / 83 Hz 2 · 10−4 20 · 10−4 112.7/109 0.38

Tbl. 8.6: Fit results for the spin-dependent background spectra according to equation 8.20. The
fit region ranges from channels 85 to 215 (equivalent to about 300-700 keV).

In order to check if the treatment of the background being “unpolarised” is justified
the spectra corresponding to equation 8.20 are generated from the raw data for all four
datasets and analysed by constant fits in the same fit region used for the beta asymmetry.
The results summarized in table 8.6 show that there is no signature of a spin-dependence
of the background in any of the datasets. This analysis is clearly limited by overall
background statistics. Since the statistical uncertainty induced by the background and its
subtraction is already included within the experimental asymmetry no further uncertainties
are considered for its spin-dependence.
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Data
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Fig. 8.10: Constant fit to the background asymmetry spectrum of one of four datasets according
to equation 8.20. The results are limits by the number of background events and show
no spin-dependence of the background.
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Chapter 9

Results and Outlook

In this chapter the results of the analysis of the experimental beta asymmetry are
summarized and their potential impact on the low energy sector is studied. An additional
outlook gives an overview on future efforts on improving these results and relates these to
the findings of the present analysis.

9.1 Beta Asymmetry

The corrected results for the beta asymmetry are calculated based on the result obtained
in section 6.2.1. The corrections derived in chapters 7 and 8 are applied to the results of
the individual chopper sets.

Figure 9.1 illustrates the individual corrections and uncertainties for the combined result.
With ∆A/A = −0.02 · 10−4 the correction applied to fit results obtained in chapter 6
due to detector and background systematics is rather small. However, since this is a
combination of many individual corrections the combined uncertainty of these corrections
is δA/A = 6.4 · 10−4. The dominant contributions to the uncertainty from background
and detector systematics are due to detector drift and non-linearity.
Averaging over all datasets the combined result including these corrections becomes

A = −0.11819(6)sys(17)stat = −0.11819(18), (68.27% C.L.). (9.1)

The final results of the analysis including all corrections is presented later in section 9.1.3.

9.1.1 Fit Range Analysis

During the analysis several fit ranges have been used in order to check for consistency
and potentially optimize the overall uncertainty of the beta asymmetry. A comparison of
the fit results obtained for different fit ranges is presented in section 6.2.2. Additionally,
the systematic uncertainties have been evaluated for the different fit ranges. The results
are summarized in table 9.1 and illustrated in figure 9.2.
The increased statistical sensitivity when stretching the fit range to lower energies is

largely compensated by increasing systematics where the dominant contributions arise
from the detector non-linearity, spatial response corrections and undetected backscattering.
A check of the hypothesis that the variation between the fit ranges is consistent with

statistical fluctuations can be performed by extracting asymmetries for different energy
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Fig. 9.1: Error Budget for the analysis of the beta asymmetry using a fit range of 297 - 604 keV.
The corrections shown refer to the corrections necessary to correct the fit result
obtained in section 6.2. The neutron beam polarisation and magnetic mirror effect
corrections result from a seperate analysis and were blinded during the analysis. Both
are shown only with the corresponding errorbars.
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Fig. 9.2: Comparison of the experimental uncertainties when extracting the beta asymmetry
using different fit ranges. The systematic uncertainties include effects related to
background and electron detection. Not included in this overview are the contributions
from polarisation and magnetic mirror effect, which are not energy-dependent.

regions

A85-215 = −0.11819(17),
A55-85 = −0.11794(32),

(9.2)

where only the statistical uncertainties are considered since the systematic uncertainties
are correlated for these results. The reduced χ2 for these datasets is 0.51 which corresponds
to P = 47.6% and represents perfect agreement with the hypothesis.
By using larger fitranges, no significant improvement in the precision of the result for

the beta asymmetry is achieved. For the final result the 297 - 694 keV fit range is choosen
since this provides the smallest systematic uncertainty.

9.1.2 Neutron Beam Polarisation and Magnetic Mirror Effect

Not included in the results above are the correction for the magnetic mirror effect and the
neutron beam polarisation. The analysis of these effects is performed in seperate analysis
and the corresponding corrections were blinded while the analysis has been carried out.
The neutron beam polarisation Pn and flip efficiency Fn have been measured several

times during the beam time directly after the neutron beamline and behind the Perkeo III
spectrometer using polarised helium cells as analyser. The measured results are [Sol18]

Pn = 0.9910(6), Fn > 0.99964. (9.3)
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Fit Range Result Statistics Systematics

A δA/A δA/A ∆A/A δA/A
291-694 keV -0.11819 15.4 · 10−4 14.0 · 10−4 −0.02 · 10−4 6.4 · 10−4

244-694 keV -0.11816 14.8 · 10−4 13.1 · 10−4 1.9 · 10−4 7.0 · 10−4

197-694 keV -0.11814 14.6 · 10−4 12.5 · 10−4 3.8 · 10−4 7.6 · 10−4

Tbl. 9.1: Results of the beta asymmetry analysis when using different fit ranges. The corrections
and uncertainties given are those for detector and background systematics. The
increased statistical sensitivity is compensated by increased systematic uncertainties.

Using the relation
Aexp(Ee) = (1 + Fn)PnAβ(Ee)

4 (9.4)

the correction for the final asymmetry becomes(∆A
A

)
pol

= 2
(1 + Fn)Pn

− 1 = 90.8(6.4) · 10−4. (9.5)

The magnetic mirror effect (see section 3.4) is determined from several offline measurements
of the magnetic field, neutron pulse shape and neutron velocity [KM18]. The data obtained
from these measurements reproduce the neutron time-of-flight profile measured with the
electron detectors.

Dataset MM Correction

Detector Chopper Freq. ∆A/A[10−4]
1 94 Hz 23.7
1 83 Hz 41.7
2 94 Hz 61.4
2 83 Hz 57.6

Total 46.1(4.5)

Tbl. 9.2: Magnetic mirror effect corrections for the individual datasets and the combined
correction [KM18]. The systematic uncertainty for the combined correction accounts
for correlations between the uncertainties of the individual corrections.

Due to different chopper frequencies and the diverging behaviour of the neutron beam
the resulting corrections for each detector and chopper frequency are different. The
individual corrections for each dataset are listed in table 9.2. The uncertainty given for
the total correction accounts for the fact that the uncertainty becomes smaller when
averaging over both detectors.
Both corrections have been assumed to be zero in the fits performed to obtain the

uncorrected value of the beta asymmetry. This changes the value of A and consequently
λ. Applying the corrections for both the neutron beam polarisation and magnetic mirror
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Det1 / 94Hz Det1 / 83Hz Det2 / 94Hz Det2 / 83Hz Total

-0.120

-0.119

-0.118

-0.117

Det1 / 94Hz Det1 / 83Hz Det2 / 94Hz Det2 / 83Hz Total

Dataset

A
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applying the corrections the individual
datasets are consistent with P = 86%.
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(b) Comparison of the result obtained with
Perkeo III with the combined result of
Perkeo II [Mun+13] and UCNA [Bro+18],
which are in good agreement.

Fig. 9.3: Comparison of the results of the individual datasets with and without systematic
corrections and comparison of the final result with the two most recent measurements
of the beta asymmetry.

effect the beta asymmetry becomes

A = −0.11981(21), λ = −1.27632(56). (9.6)

However the change in λ also implies a change in the energy-dependent recoil-order
corrections (see section 2.2). These corrections are applied based on the value of λ which
corresponds to the value of A during the fit. Considering the corrections for neutron beam
polarisation and magnetic mirror effect in the fit function and comparing to the previous
result an additional correction is obtained:

∆A
A

= 3.0(2) · 10−4. (9.7)

Although this additional correction is two orders of magnitude smaller compared to the
correction for the Polarisation and Magnetic Mirror Effect itself, it certainly needs to be
considered at the current level of precision.

9.1.3 Final Result

Applying the corrections for the Polarisation and the Magnetic Mirror Effect, including
the higher order contributions due to the recoil-order corrections, the final standard model
result (b = 0) for the beta asymmetry and λ becomes

A = −0.11985(12)sys(17)stat = −0.11985(21)
λ = −1.27641(56) (68.27% C.L.).

(9.8)

Figure 9.3a shows a comparison of the results for the individual datasets with and
without systematic corrections. The total systematic correction to the raw fit result is
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1.399%. After applying these corrections the χ2-probability for consistency between the
individual datasets increases from P = 56% to P = 86%.

Figure 9.3b shows the result together with the two most recent measurements of the
beta asymmetry by Perkeo II [Mun+13]:

APerkeo II = −0.11926(+47
−53)

λPerkeo II = −1.2748(+13
−14)

(9.9)

and UCNA [Bro+18]

AUCNA = −0.12015(72)
λUCNA = −1.2772(19).

(9.10)

The results are in good agreement as indicated by the χ2-probabilities. Comparing the
result of Perkeo III to the current world average [PDG18]

APDG18 = −0.1184(10)
λPDG18 = −1.2724(23).

(9.11)

one finds a deviation of almost 2σ. Still this leads to P = 15% due to the larger uncertainty
of the world average, as it includes a scaling of the uncertainty by 2.2. Figure 9.4 gives
on overview over all measurements of λ entering the world average and the new results.
Recent quantum chromodynamics calculations of the axialvector coupling reach a relative
precision of 1% [Cha+18].

Using λ and the neutron lifetime, τ , one can calculate Vud (see section 1.2.4 and
section 1.2.5) solely from neutron data. Using the current world averages (τn = 880.2(1.0) s)
this becomes:

|Vud| = 0.97584 (19)RC (55)τ (146)λ = 0.97584(158)

⇒ ∆ = 1−
(
|Vud|2 + |Vus|2 + |Vub|2

)
= −0.30(0.31)%,

(9.12)

confirming unitarity of the CKM-matrix. Considering the Perkeo III result from above
the uncertainty on |Vud| is significantly improved

|Vud| = 0.97323 (19)RC (55)τ (35)λ(PIII) = 0.97323(68)
⇒ ∆ = 0.21(14)%.

(9.13)

The increased precision in λ leads to a significant improvement in the overall precision
which is now limited by the precision of the neutron lifetime. This result indicates a 1.5σ
deviation from CKM-unitarity. This would likely not be considered significant, especially
since the CKM-unitarity is tested to higher precision in superallowed Fermi-decays [HT15].
Conversely this deviation can be interpreted as a slight tension between the result obtained
for λ and the neutron lifetime.

Using Ft = 3072.27(72) from [HT15] in order to calculate the neutron lifetime from the
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Fig. 9.4: Comparison of λ measurements currently included in the world average and the new
result presented in this thesis. The letter in braces denotes the correlation coefficient
measured to obtain λ if this is not A. All measurements performed since 1997 are in
agreement including the new result.

Perkeo III result for λ gives:

τn,Perkeo III = 878.5(0.7) s. (9.14)

This results is consistent with recent measurements of the neutron lifetime performed
with magnetic storage of ultracold neutrons which give a shorter neutron lifetime,
τUCNτ = 877.7(0.7) [Pat+18], than the current world average.

9.2 The Fierz Interference Term

In chapters 7 and 8 several studies of systematic effects are summarized. Being analysed
with a focus on their energy-dependence, the resulting corrections and uncertainties
can be applied to the energy-dependent analysis of λ and b. The combined effects for
detector and background systematics can be written in terms of corrections to λ and b,
the corresponding correlated uncertainties and correlation:

Detector: ∆λ = 13.5(7.1) · 10−4, ∆b = −8.3(4.6) · 10−3, ρλ,b = −0.82,
Background: ∆λ = −0.2(1.1) · 10−4, ∆b = 0.6(0.8) · 10−3, ρλ,b = −0.71.

(9.15)

Figure 9.5 shows the respective individual contributions. Note that the spatial response
correction is the correction relative to the fit results in section 6.3. These already include a
first order correction. The effect of the spatial response for an uncorrected fit is of similar
order as the correction for undetected backscattering.
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Fig. 9.5: Systematic effects related to background and the electron detector for the combined λ-b
analysis. The corrections are represented by the centre of the ellipses, which denote the
corresponding 68.27% C.L. uncertainty.
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Fig. 9.6: Systematic effects related to background and the electron detector for the combined λ-b
analysis. The corrections are represented by the centre of the ellipses, which denote the
corresponding 68.27% C.L. uncertainty.
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The estimates for the correction for Polarisation and the Magnetic Mirror Effect
mentioned in section 9.1.2 are already included in the fits described in section 6.3. To
first order, these effects only provide a scaling of the experimental beta asymmetry and
thus λ. However, due to recoil-order corrections and their energy-dependence also an
uncertainty in b is induced. Figure 9.6a compares all systematic contributions. The full
result including statistics is illustrated in figure 9.6b. The measurement uncertainty is
clearly dominated by statistics and the combined two-parameter result for the fit range of
197 - 694 keV is:

λ = −1.2792(60), b = 0.017(0.031), ρλ,b = −0.985 (68.27% C.L.). (9.16)

This result is in agreement with the Standard Model assumption b = 0.

The parameter limits obtained may be reinterpreted as a single result for b by integration
over λ,

b = 0.017(21) (68.27% C.L.), (9.17)

which is the most precise limit on b obtained from a single measurement in neutron decay.

9.2.1 Fit Range Analysis

The fit range used for the result above is optimized to give the lowest overall uncertainty. A
comparison of the statistical uncertainty for different fit ranges is presented in section 6.3.2.
It shows that the statistical sensitivity is much higher when including lower energies
in the combined fit. In the beta asymmetry analysis this benefit is much lower due to
the fact that the signal-to-noise ratio is worse for lower energies. In the two-parameter
analysis, however, the signature of b becomes much more dominant for lower energies
which reduces the correlation between the parameters. When dealing with systematic
effects a similar behaviour is observed. The systematic uncertainties increase in the
beta asymmetry analysis when including lower energies usually due to the fact that the
systematic corrections here get larger. For the combined analysis this also holds for the
uncorrelated uncertainties of λ and b. The correlated uncertainties however decrease even
slightly, which again is the result of reduced correlation between the parameters. This is
illustrated in figure 9.7 which also shows the reduced overall uncertainty for the 197 - 694
keV fit range.

The precision of this result could likely be improved by stretching the fit range to even
lower energies. However, this would require a detailed study of additional systematics
which are not included in the present analysis. Examples for such effects are the trigger
function of the detector system, which is known but difficult to implement in production
fits due to the complexity of the calculation [Roi18], and afterpulses of the detector system
which don’t contribute at the present level.
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Fig. 9.7: Comparison of the results obtained for different fit ranges. The correlated systematic
uncertainties slightly decrease when including energies down to 200 keV due a reduced
correlation between the parameters. The total uncertainty which is dominated by
statistics also decreases.

9.2.2 Comparison with the Beta Asymmetry

The two-parameter result for λ and b given above can be projected to a λ result with the
assumption b = 0 which yields:

λ = −1.27607(68). (9.18)

This is in good agreement with the result obtained from the beta asymmetry analysis.
Slight deviations are expected since a different fit range and less data is used in this
analysis. This also increases the statistical uncertainty.

9.2.3 Limits on scalar- and tensor-interactions

Using the limit on the Fierz interference term, allows to place direct constraints on the
allowed parameter space for scalar- and tensor coupling constants. Figure 9.8 shows the
resulting error band. Combining this measurement with the measurement of the neutrino
asymmetry B performed with Perkeo II [Sch+07] allows to place limits on CS and CT
from neutrons only. The limit obtained for CS is on the 10−2 level whereas previous
neutron limits on CS without considering the energy dependence of the experimental beta
asymmetry restrict CS on the 10−1 level [Kon+12b].

Better limits are obtained when also including the world average of the neutron lifetime
[PDG16] and superallowed Fermi decays [HT15], which are used to constrain Ft in the
neutron lifetime and to limit CS . The single parameter limits obtained for this combination
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Fig. 9.8: 95% confidence regions obtained when combining the result of the λ-b analysis with
other measurements. A combination with the measurement of the B correlation
coefficient yields limits from neutrons only. The best limit is obtained by a combination
with superallowed nuclear decays (0+) and the neutron lifetime.

are

CS = 1.3(1.4) · 10−3 (68% C.L.)
CT = 1.7(1.3) · 10−3 (68% C.L.).

(9.19)

where the limit on CS is dominated by superallowed Fermi decays and CT is dominated
by neutron data. Note that similar limits could be achieved by using the result of A as
obtained from the beta asymmetry analysis, as the combination with the neutron lifetime
allows to disentangle λ and b (see e.g. [PHY13]). Besides placing a direct limit on b,
using the two-parameter analysis also allows to check for consistency of the results and
provides much higher sensitivity on b without sacrificing on λ when using neutron decay
data only. The detailed study of systematic uncertainties including parameter correlations
will become more important for future measurements where the statistics will be increased
and likely not be the limiting factor.
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9.3 Outlook
The measurement of the beta asymmetry will remain one of the most important topics in
neutron decay measurements. It provides the most precise determination of λ which is an
essential ingredient when describing semileptonic charged current interactions. As shown
in the previous section, the energy-dependent analysis of λ and b allows to set limits
on scalar and tensor-couplings from neutron decay data alone. This is useful especially
since current measurements of the Fierz interference term from the unpolarised neutron
decay spectrum are systematically limited. In combination with the neutron lifetime and
super allowed decays the measurement of the beta asymmetry allows to place competitive
bounds on scalar and tensor interactions.

Future measurements of the Electron-Neutrino Correlation Coefficient a may provide a
similar precision in λ. Such measurements are planned by the Nab spectrometer which
also aims to measure the Fierz interference term with a precision of |b| < 3 ·10−3 [Bae+13].

9.3.1 PERC
The new neutron decay facility PERC will allow to measure several correlation coefficients
with increased precision, including the beta asymmetry A [Kon+12a; Dub+08]. PERC
will be set up at the new beam facility MEPHISTO at the FRMII, Garching, which will
provide a similar neutron flux as the PF1B beamline at the ILL and is expected to start
operation by the end of 2020.

Fig. 9.9: Schematic of the PERC intrument.

Figure 9.9 shows a schematic view of PERC. The main component of PERC is a 12m
superconducting magnet which contains the 7m long decay volume. Here the neutrons
decay inside a non-depolarizing neutron guide, which allows to transport the diverging
neutron beam through the setup with only little losses. This strongly increases the number
of neutrons transported through the decay volume and thus the number of decay events
expected.
The charged decay products are guided along the magnetic field passing a high field

magnetic filter region that allows to limit the emission angle of decay products that are
transported to the end of PERC. The charged decay products are then delivered to the
exit of PERC, where different detector systems (secondary spectrometers) can be set up
dedicated to the measurement of a single or several observables.
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Fig. 9.10: PERC setup at the MEPHISTO beam facility in the Neutron Guide Hall East of the
research reactor FRM-II.

While the detector characteristics depend on the secondardy spectrometer, the design of
PERC allows to limit important systematics related to the magnetic field, background and
the neutron beam polarisation on the lower 10−4 level [Kon+12a]. Paired with the increase
in statistics this will allow to improve the precision of several correlation coefficients on
the 10−4 level.

Among the planned measurements are the beta asymmetry A, the proton asymmetry
C and a direct measurement of the Fierz interference term b. For the latter a new
spectrometer, NoMoS, is currently developed at the Stefan-Meyer Institut, Wien. This
spectrometer uses the drift of charged particles inside a curved magnetic field and a spatial
resolution detector to measure the momentum of the particles [WKA13]. The aim is to
provide a direct limit on the Fierz interference term with a precision of |b| < 10−3.

The measurement of the proton asymmetry C has a similar impact as the measurement
of the neutrino asymmetry B, with slightly reduced sensitivity on CS and CT , though.
The advantage of the proton asymmetry, however, is the fact that it can be extracted
without requiring the coincident detection of electrons and protons and thus will allow to
fully utilise the increased statistics of PERC.

A recent measurement of C performed with Perkeo III is currently being analysed and
will provide a relative precision of δC/C ' 0.01 [Roi18; Raf16]. In this experiment proton
detection is achieved by accelerating protons by a high voltage system to a thin conversion
foil made of carbon where electrons are released and measured with a scintillator based
electron detector. During the measurement a high contribution of background related
to this proton conversion setup was found. An improved setup for PERC will allow a
measurement with a precision in the lower 10−3 region [Roi18].

The first measurement performed with PERC will likely be the measurement of the
beta asymmetry using a detector setup similar to that used for the beta asymmetry
measurement. Based on the studies performed in this thesis several improvements related
to the detector setup and monitoring can be made. In the following some of these aspects
are addressed.
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Detector non-linearity and calibration

In order to improve systematic limitations due to the detector non-linearity dedicated char-
acterisation of the used electronics will be performed in advance (compare section 7.2). An
update of the anaolgue electronics or the use of sampling ADCs are currently investigated
and should allow to severely reduce the non-linearity contributions of the electronics.

The monitoring of the detector calibration performed with electron conversion sources
already provides sufficient precision to be applied for an improved measurement with
PERC for energy regions of about 200 - 700 keV. Another method using the time-of-flight of
electrons inside PERC can provide complementary information as it is sensitive especially
at lower electron energies. A prototype system has recently been tested showing promising
result [Roi+18].

Temperature drift of the detector

In both analysis performed within this thesis the detector drift provides one of the major
detector systematics. In the Perkeo III setup the drift is the result of the varying coil
temperature of the normal conducting magnet system which is not temperature stabilised.
The superconducting magnet system of PERC on the other hand is temperature stabilized
which will result in a largely reduced detector drift. Additionally, temperature stabilisation
of the photomultipliers is planned. Such a stabilisation is already included in an updated
detector design used for the measurement of the proton asymmetry [Raf16]. Dedicated
drift measurements to monitor the overall detector amplitude, can be complemented with
LED pulser monitoring of individual photomultipliers to monitor the stability of individual
photomultipliers and thus the spatial detector response. A first study of the feasibility for
electron beta spectroscopy has been performed in [Sac16]. A stable LED pulser which
allows the simultaneous distribution of pulses from the same LED to different PMTs is
currently under development [Ber18].

Spatial response of the detector

Although currently not providing a major systematic uncertainty the uniformity of the
detector becomes more important when decreasing the lower bound of the fit range.

The light transport simulations performed within this thesis (see section 5.2.2) can be
easily adopted to other detector configurations. The uniformity of the detector is given by
the light transport profile and the individual gain factors of individual photomultipliers.
Utilising the results of these simulations combined with mapping of the spatial detector
response will allow to extract these gain factors and either adjust the high voltage or the
simulation accordingly to have a reliable description of the detector uniformity.

These improvements should allow to reduce the contribution of the detector system-
atics for the beta asymmetry by a factor of two to δA/A =< 3 · 10−4. Replacing the
Mesh-Photomultipliers with a readout based on Silicon-Photomultipliers might give addi-
tional advantage if the capability of detecting single photoelectrons can be utilized. This
would eliminate the drift of the photomultipliers and any non-linearity from the electronics
completely.
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Combined with the increase in statistics provided by PERC a reasonable goal for such
a measurement is

∆A/A = 5 · 10−4. (9.20)

The analysis of the Fierz interference term b is currently limited by statistics and can be
improved with PERC immediately. The contribution of detector systematics currently is
δb ' 5 · 10−3 (68.27% two-parameter uncertainty). Assuming the same improvement for
the detector systematics and statistics, the limits on the Fierz interference term can be
improved to

δb = 7 · 10−3 (9.21)

for an extraction from the beta asymmetry.
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Summary

Neutron decay studies play an important role for studying the nature of the weak in-
teraction. They allow the precise determination of the ratio of axialvector and vector
couplings λ = gA/gV , as well as the measurement of the first element of the CKM-matrix
Vud. The measurement of the beta asymmetry provides the currently most precise method
to determine λ. The spectral shape of the experimental beta asymmetry, however, con-
tains further information about hypothetical scalar and tensor couplings, via the Fierz
interference term b, which are not predicted by the standard model.

Within this thesis the data analysis as well as the analysis of detector and background
systematics of the experimental beta asymmetry measured with Perkeo III at the Institut
Laue-Langevin are 2009 is presented. The analysis of the neutron beam polarisation and
the magnetic mirror effect have been performed seperately in order to achieve a blinded
analysis.
Using a pulsed beam allows to measure the background and neutron decay electrons

simultaneously. This allows to reduce the systematic corrections and uncertainties related
to the ambient background significantly. Background contributions induced by the neutron
beam itself are quantified and on the same order.
The electron detectors have been calibrated and monitored using electron conversion

sources placed inside the spectrometer. The small meshed monitoring of the temperature
drift allows to correct for this drift directly in the data reduction. A more fundamental
understanding and modelling of the detector response allows to describe the measured
calibration spectra and finally applying the extracted calibration to the beta asymmetry.
This is the first Perkeo measurement which uses a detector calibration performed with
electron conversion sources, solely. This is important in particular when searching for
physics beyond the standard model, as the calibration using neutron decay spectra is not
independent of the assumptions of the standard model.
A major fraction of the necessary enhancement in the detector modelling is achieved

through improving the description of the detector non-linearity. The potential origins are
identified by analysing the calibration spectra as well as offline measurements. However, a
small model uncertainty remains. The calculation of the detector non-linearity also takes
the multi-electron structure of the calibration spectral into account which is important
when applying the calibration to the beta asymmetry. Further, the gain process of
photomultipliers is modelled. Although the spectral effect is negligible for the experimental
beta asymmetry, it improves the description of the calibration measurements. A detailed
investigation of systematic effects related to undetected backscattering of electrons and
the spatial uniformity of the detector are investigated [Roi18]. These effects are included
as systemtic corrections.

All systematic uncertainties considered in the final error budget of the measuremnt are
well balanced and on the order of 10−4. The result of the measurement is the most precise
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measurement of the beta asymmetry and λ:

A = −0.11985(12)sys(17)stat = −0.11985(21)
λ = −1.27641(56) (68.27% C.L.).

(9.22)

All systematic effects and theoretical corrections to the experimental beta asymmetry
are analysed in an energy-dependent fashion. This allows to perform a correlated λ-b
analysis of the experimental beta asymmetry including the full correlation of statistics
and systematics. The resulting single parameter limit on b is

b = 0.017(21) (68.27% C.L.), (9.23)

which is the most precise measurement of the Fierz interference term in neutron decay
and compatible with the standard model assumption b = 0.
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