
Fakultät für Mathematik
Technische Universität München

Non-local methods in Haag-Ruelle scattering theory

Maximilian Duell

t

x

Dissertation

München, 2019





Fakultät für Mathematik
Technische Universität München

Technische Universität München

Lehrstuhl für mathematische Physik

Non-local methods in Haag-Ruelle scattering theory

Maximilian Duell
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Abstract

The main aim of the present thesis is the rigorous scattering-theoretic analysis of quantum field

theory models, which are beyond the scope of the classical Haag-Ruelle theory. In the first

part we consider wedge-local quantum field theories, which have been intensely studied in the

recent literature. In the general wedge-local case only two-particle scattering states have been

constructed and states of three or more particles have not been considered physically meaningful

for geometrical reasons. In the present work we prove the convergence and Fock structure of

velocity-ordered scattering states with an arbitrary number of particles relying only on the

mass gaps and wedge duality. The development of wedge-local N -particle scattering theory also

provides the means for future studies of asymptotic completeness in various recently constructed

interacting wedge-local models. Our wedge-local investigations conclude with the definition of

multi-particle wave operators and scattering data, and an analysis of the asymptotic action of

space-time symmetries in general wedge-local quantum field theories.

In the second part we consider the scattering problem in presence of massless particles. In

this case the scattering theoretic analysis becomes technically more challenging already in local

quantum field theory. We construct Haag-Ruelle scattering states of massive Wigner particles

via non-local Reeh-Schlieder vacuum correlation effects, developing the required non-equal-time

commutator and clustering estimates, together with suitable energy norm bounds. We expect

that this method applies for example to neutral particles such as hydrogen atoms as described

within quantum electrodynamics. Our strategy complements the previously used approach of I.

Herbst involving spectral regularity conditions, whose physical status is not clear. The required

strengthened form of the Reeh-Schlieder property has been verified in simple non-interacting

models. The status of this condition in the context of the Herbst regularity condition and in

integrable quantum field theories is also discussed.
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Zusammenfassung

Ziel dieser Arbeit ist die streutheoretische Untersuchung von Modellen der Quantenfeldtheorie,

welche bei mathematisch strenger Herangehensweise jenseits der Anwendbarkeit der klassischen

Haag-Ruelle Theorie liegen. Im ersten Teil betrachten wir Keil-lokale Quantenfeldtheorien,

die in den letzten Jahren in der Literatur intensiv erforscht wurden. In solchen Theorien

wurden jedoch nur zwei-Teilchen Streuzustände konstruiert. Die Existenz und physikalische

Bedeutung von Zustände mit drei oder mehr Teilchen konnte angesichts Keil-geometrischer

Einschränkungen bisher nicht geklärt werden. In der vorliegenden Arbeit beweisen wir die

Konvergenz und Fock-Struktur von geschwindigkeitsgeordneten Streuzuständen mit beliebiger

Teilchenzahl allein auf Basis der Massen-Lücken und Keil-Dualität in allgemeinen Keil-lokalen

Theorien. Die Entwicklung der Keil-lokalen N -Teilchen Streutheorie ermöglicht auch zukünftige

Untersuchungen der asymptotischen Vollständigkeit verschiedener wechselwirkender Keil-lokaler

Modelle, die in jüngerer Zeit konstruiert wurden. Unsere Keil-lokalen Betrachtungen schließen

mit der Definition von Wellenoperatoren und Streudaten und einer allgemeinen Analyse der

asymptotischen Wirkung der Raumzeit-Symmetrien in Keil-lokalen Quantenfeldtheorien.

Im zweiten Teil betrachten wir das Streuproblem bei Anwesenheit masseloser Teilchen.

In diesem Fall ist die streutheoretische Analyse bereits in der lokalen Quantenfeldtheorie

technisch anspruchsvoller. Wir konstruieren Haag-Ruelle Streuzustände massiver Teilchen

mittels spezifischer nicht-lokaler Reeh-Schlieder Vakuumkorrelationseffekte und entwickeln

sowohl die erforderlichen asynchronen Kommutator- und Clustering-Abschätzungen, als auch

geeignete Energienormschranken. Wir erwarten, dass die Methode bei ungeladenen Teilchen,

beispielsweise dem Wasserstoffatom im Rahmen der Quantenelektrodynamik, anwendbar ist.

Sie ist komplementär zu der von I. Herbst entwickelten Herangehensweise mittels spektraler

Regularitätsbedingungen, auf der alle vorherigen Konstruktionen für Teilchen mit eingebetteter

Massenschale basieren, obgleich deren physikalische Interpretation noch nicht geklärt werden

konnte. Die verwendete starke Form der Reeh-Schlieder Bedingung wurde in einfachen nicht-

wechselwirkenden Modellen verifiziert, und wir diskutieren Varianten dieser Annahme für

integrable Modelle der Quantenfeldtheorie und im Kontext der Herbst’schen Spektralbedingung.
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1 Introduction

1.1 Scientific context and motivations for wedge-local quantum
field theory

Quantum field theory (QFT) is the standard framework of theoretical physics to describe

nature at shortest distance scales and high energies. These regimes are accessible via scattering

experiments, such as the current generation of the LHC (Large Hadron Collider) at CERN.

Theoretical physicists have devised successful computational schemes based on quantum field

theory such as perturbation theory or lattice discretizations, which provide deep explanations

and predictions for various experimental results in this context. On the other hand there exist

only very few non-perturbative QFT models which have been established with full mathematical

rigour, and these examples are quite far from experimental reality. This is a rather unsatisfactory

situation considering that almost a century has passed since the inception of the quantum theory

of fields.

The most prominent rigorously studied non-perturbative interacting QFT models are simplified

theories defined on lower-dimensional space-times [GJ], where the high-energy behaviour of

quantum fields is less singular. This has demonstrated that the fundamental objective of

QFT, the unification of quantum mechanics and special relativity, is mathematically consistent

with non-trivial interactions. However for the various interacting QFT models relevant in

high-energy physics, there are presently no rigorous constructions with full mathematical control

[Sum12]. The mathematical challenges are so formidable, that we are in fact lacking any

rigorously established local and non-perturbative QFT models which display interactions on

four-dimensional Minkowski space-time.1

In more recent works of Grosse, Lechner, Buchholz, and Summers, novel construction methods

have been developed, which yield non-trivial relativistic QFT-like models for space-times of

arbitrary dimension, including the physical case d = 3 + 1 [GL07; BS08; BLS11]. These models

are non-perturbative, but the physical notion of localization in bounded space-time regions

is not manifest in the construction and there is some evidence against strict locality of the

models in dimension d > 1 + 1 [BLS11]. A distinguishing feature of this approach is that an

important weakened localization concept is available: there exist numerous quantum mechanical

observables which are localized in certain unbounded wedge-shaped space-time regions. Due

to the weaker notion of localization, the current knowledge about physical applications and

interpretation of such wedge-local models is still very limited. Yet it has been verified that

these models are interacting in the sense of scattering theory, but due to geometrical limitations

arising from wedge locality this claim was so far restricted to two-particle scattering processes

[GL07; BS08].

1Concrete lattice or perturbative schemes used for physical predictions can indeed be put onto rigorous footings,
but typically important physical properties are lost in these approaches. For example causality and relativistic
symmetry are broken in lattice models, and in perturbation theory the construction of physical states and
their Hilbert-space structure is problematic. Recent examples for such mathematical endeavours are the
perturbative AQFT approach [FR15], and the non-perturbative construction of lattice QCD [GR17].
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1 Introduction

1.2 The scattering problem in wedge-local QFT

The main objective of this thesis is to establish and study multi-particle scattering theory for

general relativistic QFT models, with special emphasis on the modern wedge-local perspective.

Scattering theory in general is concerned with the qualitative and quantitative behaviour of a

given dynamics, considering the limits of large times (and large distances). In mathematical

scattering theory the basic task is to establish the relation of a given interacting dynamics

to a suitable comparison dynamics at asymptotic times τ → ±∞. This limiting regime is

practically relevant for physics, as scattering occurs in the standard experimental situation

that a specified configuration of non-interacting particles is prepared in the far past to collide

in a fixed space-time region, where the physical interactions determine the configurations of

particles that can be measured in the far future. Another important physical aspect of scattering

situations is that they should feature interactions which are small in magnitude and typically

take place only within a small spatial region during a short time frame. For many approximative

computations in physics it is relevant that outside of the interaction region, one can describe the

time evolution by a comparison dynamics which is usually non-interacting or explicitly solvable

[RS3, Sec. XI.1].

The above scattering-theoretic perspective can also be seen as motivation and justification

for perturbative methods, where the interactions are treated as small correction to some non-

interacting model. More importantly, from the conceptual and axiomatic perspective, the

rigorous interpretation of interacting QFT in terms of particles is in fact obtained via scattering

theory2. For these reasons the study of scattering has deep roots within the development of QFT

[LSZ55; Ha58; Ru62; Hep65]. On the other hand, the first application of Haag-Ruelle theory in a

general wedge-local setting is more recent and the conventional approach yields only two-particle

scattering states [BBS01; GL07; BS08]. Our main contribution is a well-defined wedge-local

scattering theory for scattering states composed of arbitrarily many massive particles. Another

interesting problem we will consider is the scattering theory for models with embedded mass

shells. This situation can appear if a given theory describes massless particles, or multiple

massive particles. While the purely massless situation is under complete control by the results

of Buchholz [Bu77], it is possible to approach the massive embedded case via different strategies

[Hrb71; Dy05; Hrd13; DH14; Du17] and some mathematically interesting open questions remain.

The physical significance of such scattering-theoretic results lie in their implications for

the experimental interpretation of a given QFT model: if well-defined scattering states can

be constructed, they may be used to define wave operators and the scattering matrix. The

S-matrix is defined via the scalar product between outgoing and incoming scattering states, and

interactions lead to deviation of S from the identity map. Therefore the S-matrix provides the

basic criterion to distinguish interacting and non-interacting theories. Further the S-matrix also

plays an important role in applications. Namely, it yields the quantitative scattering amplitudes,

scattering probabilities, and scattering cross sections as they are observed in experiments [IZ,

Ch. 5].

After successfully establishing a scattering theory for a class of models, many new questions

with important physical motivations arise. For example the asymptotic data constrain the

possible mathematical structure of a model, and vice versa any space-time or internal symmetries

present in a theory are expected to yield corresponding symmetries of the scattering data. In

this regard we will investigate and make more precise earlier claims that wedge-local models

can have broken Lorentz symmetry on the level of the scattering states, even if the model itself

2More precisely, particles can also arise in other limiting regimes such as the short-distance renormalization
group analysis [BV95; BV98], cf. the discussions in [Bu93].
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1.3 Wedge-locality in quantum field theory

is Poincaré covariant. This effect is reflected in a corresponding non-invariance of the S-matrix,

which has been demonstrated in [GL07; BS08].

But even in models where the scattering data can be worked out explicitly, it is not guaranteed

that the asymptotic analysis captures all physical aspects of the interacting dynamics. Here a

deep and technically very difficult, but conceptually basic, question is whether there exist states

which cannot be uniquely described by specifying their asymptotic particle content. This property

of asymptotic completeness (AC) is well understood in non-relativistic quantum mechanics

[DeG1], but remains largely open in relativistic quantum field theory [CD82; Le08; DyG13].

It may be regarded as the physical interpretation of AC that the evolution by the dynamics

under consideration will, after sufficiently long time, disintegrate any state of the interacting

system into suitable “elementary constituents” (particles). This picture aligns particularly

well with the experiences and expectations gained over the years from the study of free and

perturbative quantum field theory. Yet a sufficiently general mathematical theory of asymptotic

completeness in non-perturbative interacting quantum field theories apparently still needs to be

developed [Bu93; Dy10]. Wedge-local models can help shed some light on such questions by

providing rigorous testing grounds and pedagogically valuable examples and counterexamples.

In addition there are various mathematically more tractable and more explicitly describable

wedge-local interacting models, many of them related to integrable quantum field theories. The

first full asymptotic completeness results for a family of local interacting relativistic quantum

field theories has in fact been achieved only recently by means of wedge-local operator-algebraic

methods [Le08].

Finally let us note that in asymptotically complete models all information about the interacting

system is in principle accessible from scattering experiments. On the other hand asymptotic

completeness does not imply that the interacting dynamics is already fixed by the asymptotic

data. This uniqueness question falls into the domain of the Inverse Scattering Problem, which

has also received past and recent attention in QFT [BF77; Le08; Tan12; AL17], but which will

not be treated here. These are some examples how the scattering theoretic perspective leads to

various interesting further physical and mathematical questions in quantum field theory, which

remain to be answered.

1.3 Wedge-locality in quantum field theory

1.3.1 Operator-algebraic formulation of local and wedge-local QFT

The mathematical settings of our investigations are the Haag-Kastler framework [HK64; A; Ha]

and its wedge-local variant [Bor92; BLS11]. They provide an axiomatic approach to relativistic

quantum theory emphasizing the algebraic structure of physical observables and describe their

space-time localization. A central notion in this formulation is the basic physical principle of

locality, which states that measurements or more generally physical operations which are carried

out in separated space-time regions must be independent.

The algebraic viewpoint is mathematically based on the work of Stone and von Neumann,

and builds upon the basic postulate that physical observables generate a unital ∗-algebra A. In

the operator-algebraic formulation, the concept of localization of observables A ∈ A corresponds

to an additional algebraic structure

A ⊃
⋃

O∈Reg

A(O) =: Aloc, (1.3.1)

3



1 Introduction

where Reg denotes an admissible family of space-time regions O ⊂ Rs+1 and for each O ∈ Reg

there is an associated ∗-algebra A(O), whose elements are interpreted as localizable in O ∈ Reg.

This physical interpretation also relies on the axioms of Isotony,

∀O1,O2 ∈ Reg : O1 ⊂ O2 =⇒ A(O1) ⊂ A(O2), (HK1)

and Locality,

∀O1,O2 ∈ Reg : O1 ⊂ O′2 =⇒ A(O1) ⊂ A(O2)′. (HK2)

Here A(O2)′ := {B ∈ A : [A,B] := AB − BA = 0 ∀A ∈ A(O2)} denotes the commutant of

A(O2) relative to A and the causal complement O′ (more precisely: the open causal complement)

of O ⊂ Rs+1 is defined as

O′ := {y ∈ Rs+1 : sup
x∈O

dM (x, y) < 0}, (1.3.2)

with respect to the Minkowski causal distance of two space-time points xk = (tk,xk) ∈ Rd,
(k = 1, 2),

dM (x1, x2) := (t2 − t1)2 − (x2 − x1)2. (1.3.3)

Further it is of interest to keep the dimension of space-time d := s + 1 general, s ∈ N. This

makes it possible to apply our results also for the analysis of lower-dimensional constructive

efforts and displays the independence of our scattering-theoretic investigations regarding the

space-time dimension.

At this point let us briefly remark that QFTs describe physical systems with an infinite

number of degrees of freedom, so that any meaningful mathematical analysis will require that

the localizable algebras A(O) and the global algebra A are topological ∗-algebras and complete.

We adopt the standard setting, where A(O) are taken to be von Neumann algebras. In the

present context and in most concrete examples there is a distinguished representation on a

Hilbert space H such that A(O) ⊂ B(H ) are *-subalgebras which are closed with respect to the

weak operator topology, i.e., they are jointly represented as concrete von Neumann subalgebras

of B(H ).

For a strictly local theory one demands that its physical content is completely accessible from

observations within bounded regions. At the present level one may take A(O) to be defined a

priori only for regions from

Regb := {O ∈ Rs+1 : O open and bounded}. (1.3.4)

Additionally the algebra of all observables A is then taken as the quasilocal algebra Aloc, where

the closure is taken with respect to the C∗-norm topology of the inductive limit ∪O∈RegA(O).

If necessary or convenient it is also possible to make more restrictive choices for Reg. For

example a further restriction to contractible regions is appropriate in theories with (global)

gauge symmetries [Ha, Secs. III.3.3, III.4.2]. Extending a given net A to a larger class of regions

Regext ⊃ Reg can then be accomplished e.g. by setting for O ∈ Regext

Aext(O) :=
( ⋃

O1∈Reg,
s.t. O1⊂O

A(O1)
)′′
. (1.3.5)

Mathematically the above construction also makes sense for unbounded regions. An important

class of unbounded regions in quantum field theory is given by the Rindler wedges.

4



1.3 Wedge-locality in quantum field theory

Definition 1.3.1 (wedge regions). The family of wedge regions is defined as the orbit

RegW (Rd) := {λWr ⊂ Rd : λ ∈ P}, (1.3.6)

under the canonical action of the Poincaré group P = Rs+1 o L of the standard Rindler wedge3

Wr := {x ∈ Rd :
∣∣x0
∣∣ < x1}. (1.3.7)

Remark 1.3.2. For d > 1 + 1 one may restrict λ in the definition of RegW to the proper

orthochronous Poincaré group P↑+ = Rs+1 o L↑+. The case d = 2 is exceptional with

RegW (R2) := {±Wr + a ⊂ R2 : a ∈ R2}. (1.3.8)

For the present introduction let us just note two simple geometric advantages of the wedge-

local perspective. The first point concerns space-time symmetries and their action on Reg and

its regions. For the case of flat Minkowski space as considered in the present thesis, the geometric

space-time symmetry is given by the Poincaré transformations λ = (a,Λ) ∈ P = Rs+1 o L,

λx := Λx + a. The Lorentz group L = O(1, s) ⊂ GLs+1(R) contains in particular spatial

rotations, space-, and time-inversions, and the standard Lorentz boosts

Λβx =




coshβ sinhβ 0 . . . 0

sinhβ coshβ 0 . . . 0

0 0 1 0
...

...
. . .

0 0 0 1



·




x0

x1

...

xs




for β ∈ R. (1.3.9)

It is easily seen that Regb is invariant under the action of the Poincaré group P and similarly

RegW is invariant under P by construction. Mathematically it is further natural to consider

space-time regions which are highly symmetric with respect to the action of the Poincaré group

themselves. The standard double cones

CR := {(t,x) ∈ Rs+1 : |t|+ |x| < R}, (R > 0), (1.3.10)

are an important example of a family of bounded regions which is invariant under the full

rotation group SO(s) ⊂ L and which is causally complete in the sense that C ′′R = CR. It

is clear that a given bounded region O ∈ Regb can at best be invariant under a subgroup

of the Poincaré group, which in particular cannot contain any translations or boosts. Any

wedge-region W ∈ RegW on the other hand is mapped into itself by a semigroup of translations

and a subgroup of boosts.

The second geometrical motivation for considering wedge regions is their symmetry under

causal complements. Namely, for W ∈ RegW we have that W ′ = (λWr)
′ = (ΛWr + a)′ =

−ΛWr + a is congruent to W. Bounded regions O ∈ Regb however have unbounded O′, so

that a family of bounded regions such as Regb is never closed under causal complements. We

summarize:

Proposition 1.3.3 (elementary properties of RegW ). Let W ∈ RegW . Then

(i) W =W ′′,

3In the literature Wr is also sometimes called the right wedge, reference wedge, [GL07] or standard wedge [BS08].
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1 Introduction

Wr

x1

t

Figure 1.1: The reference wedge Wr ⊂ Rs+1 in the (t, x1)-plane.

(ii) W ′ ∈ RegW ,4

(iii) λW ∈ RegW for all λ ∈ P.

(iv) The standard double-cones CR, (R > 0), and their Poincaré transforms can be obtained as

intersections of wedges. Further, unions of double cones generate Regb.

(v) The stabilizer of any W ∈ RegW contains a one-parameter subgroup of Poincaré boosts,

StabP↑+
W ∼= SO(1, 1)↑ × SO(s− 2).

The above geometrical symmetries of wedge regions have been of importance for various

fundamental structural theorems and constructive results, cf. Sections 4.1 and 4.2. These

provide further motivation to consider the general operator-algebraic framework for wedge-local

quantum field theory. In this case observables associated to wedge regions are collected by a

family of von Neumann algebras

RegW 3 W 7−→ A(W). (1.3.11)

In the wedge-local case there is no unique inductive limit of the family (A(W))W∈RegW on

which a covariant action of the full space-time symmetry group can be defined.5 This leads us

to demand that jointly A(W) ⊂ B(H ) for all W ∈ RegW on a separable Hilbert space H .

So far we described the basic algebraic structure of observables. Proceeding towards the

scattering theoretic analysis we will require to have the space-time translation symmetry at our

disposal: it is assumed that translations are represented on H by a strongly-continuous group

of unitaries Rs+1 3 (t,x) 7−→ U(t,x). By the Stone-Naimark-Ambrose-Godement (SNAG)

Theorem [RS1, Thm. VIII.12] we can write the translation group in terms of self-adjoint strongly

4In many references the causal complement and the notation O′ denotes the set {x ∈ Rd : dM (x, y) < 0 ∀y ∈ O}.
This is distinct from our definition and less convenient in the wedge-local context as it leads to causal
complements of open sets being closed and vice versa.

5The non-uniqueness of inductive limits is also reflected in the structure of KMS states of higher-dimensional
wedge-local theories. Namely, Lechner and Schlemmer have observed that fibers associated to different wedges
decouple in KMS representations of the covariant Grosse-Lechner model [LS16].

6



1.3 Wedge-locality in quantum field theory

commuting generators as U(t,x) = eitH−ix·P , where H denotes the Hamiltonian and P the total

momentum operator. The joint spectral resolution of the energy-momentum operators (H,P )

by projection-operator-valued measures will be denoted by ∆ 7−→ E(H,P )(∆) = E(∆) for Borel

sets ∆ ⊂ Rs+1. The spectral condition demands that the support of E is contained in the closed

forward lightcone V̄ + := {(ω,p) ∈ Rs+1 : ω ≥ |p|}.
The vacuum state is a distinguished normalized vector Ω ∈ H which is invariant under

translations,

U(t,x)Ω = Ω ∀(t,x) ∈ Rs+1. (1.3.12)

Wedge algebras must further contain sufficiently many non-trivial operators to allow a meaningful

analysis of the physical content of the theory. This is enforced by the requirement that Ω is

cyclic for any A(W), i.e. A(W)Ω = H . At the same time cyclicity together with locality (HK2)

also restricts the size of the wedge algebras, as these properties imply that Ω is also separating

for A(W) ⊂ A(W ′)′.
Additionally space-time translations are required to act geometrically on the family of wedge

algebras. Namely for any A ∈ A(W) and x ∈ Rs,

αx(A) = U(x)AU(x)∗ ∈ A(W + x), (1.3.13)

defines an isomorphism of the two von Neumann algebras A(W) and A(W + x).

An analogous requirement can be imposed for a representation of the proper orthochronous

Poincaré group P↑+ 3 λ 7−→ U(λ) on H , such that

αλ(A(W)) := U(λ)A(W)U(λ)∗ = A(λW). (1.3.14)

This identity suggests that we can also define a wedge-local theory by specifying the von

Neumann algebra M = A(W) for only one reference wedge W ∈ RegW together with U(λ).

The isotony and locality assumptions then become the compatibility conditions of a causal

Borchers triple (M, U,Ω),

αλ(M) ⊂M, ∀λ ∈ P↑+, s.t. λW ⊂W,

αλ(M) ⊂M′, ∀λ ∈ P↑+, s.t. λW ⊂W ′. (1.3.15)

see [BLS11, Sec. 4]. Here we can see that the formulation of the theory in terms of the family of

wedge algebras contains some redundancies if Poincaré transformations are available. As the

latter are not necessary for the scattering-theoretic analysis, we prefer the description in terms

of the full family of wedge algebras W 7−→ A(W). This formulation also appears to be more

helpful for guiding intuition when discussing the Haag-Ruelle construction of scattering states.

For scattering theory we further require uniqueness of the vacuum state (up to a phase), the

standard Haag-Ruelle mass gap assumption on the energy-momentum spectrum, and wedge

duality, which is a strengthened form of wedge locality. We conclude this section with the

condensed definition of the wedge-local framework.

Definition 1.3.4 (wedge-local QFT). We consider a quadruple (A, α,H ,Ω), where

• H is a separable Hilbert space,

• Ω ∈H a distinguished unit vector (the “vacuum”),

• A(W) ⊂ B(H ) a family of von Neumann algebras labeled by wedge regions W ∈ RegW ,

and

7
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• αλ(A) := U(λ)AU(λ)∗ denotes the action of Poincaré transformations λ = (x,Λ) ∈ P↑+
on observables A ∈ A(W), W ∈ RegW , which are implemented by a strongly continuous

unitary group λ 7−→ U(λ).

The energy-momentum operators are defined as the generators of the translation sub-

group U(x) = U(t,x) = eitH−ix·P and their joint POVM-resolution will be denoted by

∆ 7−→ E(∆) := E(H,P )(∆).

These mathematical objects are constrained by the following conditions for any choice of wedge

regions W,W1,W2 ∈ RegW ,

Isotony A(W1) ⊂ A(W2) for W1 ⊂ W2, (HK1)

Locality A(W1) ⊂ A(W2)′ for W1 ⊂ W ′2, (HK2)

Wedge-Duality A(W ′) = A(W)′, (HK2])

Translation-Covariance αx(A(W)) = A(W + x), x ∈ Rd, (HK3)

Poincaré-Covariance αλ(A(W)) = A(λW), λ ∈ P↑+, (HK3])

where A(W)′ := {B ∈ B(H ) : [A,B] = 0 ∀B ∈ A(W)} is the commutant of A(W) relative to

B(H ). Secondly, we note the representation-theoretic properties

Uniqueness of Ω E({0})H = CΩ, (HK4)

Cyclicity of Ω A(W)Ω = H , (HK5)

Spectral Condition suppE ⊂ V̄ +, (HK6)

Mass Gap Hm ⊂ suppE ⊂ {0} ∪Hm ∪ H̄M ⊂ V̄ +, (HK6])

for some M > m > 0, where Hm := {(ωm(p),p) ∈ Rs+1 : p ∈ Rs}, ωm(p) :=
√

p2 +m2, is the

(positive) hyperboloid of mass m > 0 and H̄M := {(ω,p) ∈ Rs+1 : p ∈ Rs, ω ≥ ωM (p)} denotes

the convex hull of HM . A wedge-local QFT is a quadruple (A, α,H ,Ω) satisfying the basic

postulates (HK1)–(HK6).

Definition 1.3.5 (local QFT). The definition of a local QFT in the sense of Haag-Kastler

is analogous. Instead of a wedge-local family, the local algebras form a net of von Neumann

algebras O 7−→ A(O) ⊂ B(H ) labeled by O ∈ Regb. A local QFT is a quadruple (A, α,H ,Ω)

with α, H , and Ω as in (1.3.4), satisfying analogous basic assumptions (HK1)–(HK6) where

all wedges have been replaced by bounded open regions O,O1,O2 ∈ Regb.

The constructions of two simple models which can be accommodated by the wedge-local and

local framework as given by Definitions 1.3.4 and 1.3.5 are sketched in Section 1.3.2. One of

the first general structural results on wedge-local theories is due to Borchers [Bor92]. Earlier

works assumed that there is an underlying local theory, e.g. Bisognano and Wichmann study

the wedge algebras specifically constructed from a Wightman quantum field theory [BW75].

Let us note that the wedge-local setting is mathematically more general than the local Haag-

Kastler setting in the sense that it is possible to construct a canonical wedge-local theory from

a local QFT. The opposite passage is much more challenging and requires deep mathematical

methods, see [BDL90; BL04; Le06; Le15] and the concluding remarks in [BS08]. We will return

to these points in Sections 4, where it is explained how the wedge-local perspective has so far

proven itself beneficial for various structural and constructive efforts in quantum field theory.

Our present scattering theoretic analysis for wedge-local models requires the Haag-Ruelle

mass gap assumption (HK6]). It will be stated explicitly which of our arguments additionally
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1.3 Wedge-locality in quantum field theory

require wedge duality (HK2]), Poincaré symmetry (HK3]), or when specific consequences of

these assumptions will be used.

1.3.2 Two basic examples

The construction of wedge-local models is a non-trivial mathematical problem, even though

wedge-locality is a less stringent constraint when compared to strict locality. The most direct

way to obtain a wedge-local theory with methods familiar from theoretical physics makes use

of the standard free scalar field φ0 and certain modified fields φQ, respectively, on the bosonic

Fock space H = Γ(L2(Rs)).
Example 1.3.6. For W ∈ RegW we define

A(W) := span{eiφ0(f) : f ∈ S (Rd,R), supp f ⊂ W}w.o.t. ⊂ B(H ). (1.3.16)

Let further Ω ∈H denote the Fock vacuum and αx(A) := U(x)AU(x)∗, where U(x) = Γ(U1(x)),

(x ∈ Rd), is defined as the second quantization of the one-particle space-time translations acting

on H1 = L2(Rs) via

(U1(x)Ψ)(k) := eiωm(k)t−ik·xΨ(k). (1.3.17)

Then (A, α,H ,Ω) defines a wedge-local quantum field theory.6 This construction is standard

and works analogously when replacing the wedges W by bounded space-time regions O ∈ Regb,

so that we actually obtain a strictly local quantum field theory.

This standard example gives the wedge-local and local algebras for the scalar free field. A

more modern construction without reference to quantum fields can be achieved with the method

of standard subspaces [BGL02].

Another interesting class of wedge-local models has been constructed and studied by Grosse

and Lechner [GL07]. Below we will follow the presentation of [GL07] using the compact but

a priori formal notation of operator-valued distributions. More elaborate constructions using

operator-algebraic and oscillatory integral methods have been worked out by Buchholz, Lechner,

and Summers [BLS11], and Lechner [Le12]. The basis of the original construction of Grosse and

Lechner [GL07] is a deformed CCR-algebra defined by

a(Q,p)a(Q,p′) = e−ip·Qp′a(Q,p′)a(Q,p),

a(Q,p)a∗(Q,p′) = eip·Qp′a∗(Q,p′)a(Q,p) + δ(s)(p− p′),
(1.3.18)

where p = (ωm(p),p) ∈ Rd, ωm(p) =
√

p2 +m2, and similarly for p′. The deformation depends

on a matrix parameter Q ∈ Rd×d. For consistency of (1.3.18) with their adjoint relations Q is

required to be antisymmetric, p ·Qp′ = −p′ ·Qp, with respect to the Minkowski scalar product

p · q := p0q0 − p · q. Such deformed CCR-algebras also appear in the context of QFT models on

non-commutative space-times, as explained in [GL07]. The operator-valued field distributions

are then defined by

φ(Q, x) :=

∫
dsk

(2π)s/2ωm(k)1/2

(
a∗(Q,k)eikµxµ + a(Q,k)e−ikµxµ

)
. (1.3.19)

Grosse and Lechner have shown that φ(Q, f) define a wedge-local quantum field theory in

the sense of a wedge-local generalization of the Wightman framework, if the deformation

6A similar construction can also be carried out for general Wightman fields φ satisfying energy-bounds∥∥φ(f)(1 +H)−N
∥∥ <∞ for all f ∈ S (Rd,R) and some N > 0. The latter are used for establishing bounded

functions of φ(f) satisfying locality, see e.g. [Bu90b].
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parameters Q are suitably chosen. More precisely, (1.3.18) can be realized on the bosonic Fock

space via

a(Q,p) = e
i
2p·QPa(p), (1.3.20)

where a(p) denote the usual bosonic annihilators and P = (H,P ). Covariance requires

Q = QWr :=




0 κ 0 · · · 0

κ 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0



, (1.3.21)

with κ ∈ R.7 For general centered W = ΛWWr one further sets QW := ΛWQΛ−1
W . Then

φW(x) := φ(QW , x) are wedge local and Poincaré covariant [GL07]. Explicitly, we have in a

distributional sense on a dense domain D ⊂H

[φW ′(x), φW(y)] = 0, for any centered wedge W and all y − x ∈ W,

U(Λ, x)φW(y)U(Λ, x)∗ = φΛW(Λy + x), (1.3.22)

where U(Λ, x) denotes the scalar unitary representation of the Poincaré group on the bosonic

Fock space.

In this model, the wedge algebras can be defined by a similar construction as in Example 1.3.6,

additionally taking into account the wedge-dependence of the field,

A(W) := span{eiφW (f) : f ∈ S (Rd,R), supp f ⊂ W}w.o.t.
. (1.3.23)

Then together with the Fock vacuum Ω and denoting by αλ(A) := U(λ)AU(λ)∗ the adjoint

action of U(λ) = U(Λ, x), (λ = (Λ, x) ∈ P↑+), a wedge-local quantum field theory (A, α,H ,Ω)

is obtained [Le12, Prop. 5.3].

1.4 Preliminaries on Haag-Ruelle scattering theory

Haag-Ruelle theory provides a general construction of asymptotic scattering states in quantum

field theory [Ha58; Ru62]. In local quantum field theories it yields a justification for the

LSZ-reduction formulae [Hep65], which are used in most perturbative computations of scattering

data and collision cross sections. In the wedge-local context, scattering theory is at an earlier

stage of development. Until now only the construction of two-particle scattering states via

wedge-localized operators has been studied, see the previous works [BBS01; GL07; BS08].

The underlying physical intuition of scattering theory is that asymptotic states should resemble

separating configurations of non-interacting one-particle states. Thereby the interacting models

acquire a corpuscular interpretation at large times. Mathematically the construction yields a

Fock-space structure of states resembling the intrinsic particle structure of free QFT models.

We will focus in the following on the scattering theory based on the Wigner particle concept,

which has an analogous formulation in the wedge-local setting of Definition 1.3.4. Similarly as in

the local setting, the information about the Wigner one-particle structure of a given wedge-local

7For s = 3 the exceptional form Q =


0 κ 0 0
κ 0 0 0
0 0 0 η
0 0 −η 0

 is also admissible, with κ, η ∈ R [GL07].
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p

ω

suppE(H,P )

0

Hm

Figure 1.2: Typical energy-momentum spectrum compatible with the mass gap condition (HK6]).

model is obtained from the spectral analysis of the energy-momentum operators (H,P ). For

our present investigations we further restrict ourselves to the vacuum sector, so that the pure

one-particle states can be described by vectors in the vacuum Hilbert space.

Definition 1.4.1 (Wigner particle). A one-particle state of mass m ≥ 0 in the sense of Wigner

is an eigenvector Ψ1 ∈H of the relativistic mass operator M :=
√
H2 − P 2 with eigenvalue m.

In the vacuum representation, the subspace of Wigner one-particle states is defined as

H1 :=
⋃

m≥0

E(Hm)H , (1.4.1)

where E(Hm) = E(H,P )(Hm) denotes the energy-momentum spectral projection onto the mass

hyperboloid Hm := {(ωm(p),p), p ∈ Rs}.

An important insight of the Haag-Ruelle construction is that the basic operation of space-

time translations together with locality of observables suffice to develop a mathematically

rigorous multi-particle scattering theory. Following the Haag-Ruelle prescription, we require

as input a wedge-localizable operator A ∈ A(W) ⊂ B(H ) such that E(Hm)AΩ 6= 0. The

creation operator approximants are then defined by “smearing” of A with respect to space-time

translations and a suitable weight function. We recall that the translates of A will be written

as αx(A) = α(t,x)(A) = U(t,x)AU(t,x)∗, x = (t,x) ∈ Rs+1.

Definition 1.4.2 (Haag-Ruelle creation operator approximants). With A ∈ A(W), χ ∈
S (Rs+1), and f a regular positive-energy Klein-Gordon solution we set for τ ∈ R

B := A(χ) =

∫
ds+1x χ(x)αx(A), (1.4.2)

Bτ (f) :=

∫
dsx f(τ,x)α(τ,x)(B). (1.4.3)

Here, a regular positive-energy Klein-Gordon solution f is defined as having an integral

representation in terms of its wave packet f̃ ∈ C∞c (Rs),

f(t,x) =

∫
dsk

(2π)s
eik·x−iωm(k)t f̃(k), ωm(k) :=

√
k2 +m2. (1.4.4)

In local quantum field theories the existence of asymptotic limits τ → ±∞ and their role as

asymptotic creation operators have been established by Haag and Ruelle [Ha58; Ru62].
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Theorem 1.4.3 (Haag-Ruelle). Consider a local quantum field theory satisfying the mass gap

assumption (HK6]) for the particle mass m > 0. Let A1, . . . , An ∈ A(O), fk regular positive-

energy Klein-Gordon solutions of mass m with disjointly supported wave packets, (k = 1, . . . , n),

and let χ ∈ S (Rs+1) be an admissible8 Haag-Ruelle auxiliary function. Then the scattering

state approximants

Ψτ := B1 τ (f1)B2 τ (f2) . . .Bn τ (fn)Ω, (τ ∈ R) (1.4.5)

converge in norm for τ → ±∞ and are independent of χ. The scalar products of any two

outgoing or incoming scattering states

Ψ± := lim
τ→±∞

B1 τ (f1)B2 τ (f2) . . .Bn τ (fn)Ω, (1.4.6)

Ψ′± := lim
τ→±∞

B′1 τ (f ′1)B′2 τ (f ′2) . . .B′n′ τ (f ′n′)Ω (1.4.7)

can be obtained from the Fock formula

〈Ψ+,Ψ′+〉 = δnn′
∑

π∈Sn

n∏

k=1

lim
τ→∞
〈Bk τ (fk)Ω,B′π(k) τ (f ′π(k))Ω〉, (1.4.8)

and similarly for incoming states. The limit on the right side can be dropped, as Bk τ (fk)Ω do

not depend on τ by construction.

Proof. See [Ha58; Ru62; Hep66] for the original approach via clustering estimates. A proof

using more modern energy-momentum transfer arguments is given in [Dy14, Sec. 2.1].

To conclude this section let us briefly discuss the basic Haag-Ruelle argument for proving

convergence of scattering states in non-technical terms to explain the distinction between the

local and the wedge-local situations. We begin by recalling that the spatial smearing with a

Klein-Gordon solution f can be understood as a comparison dynamics in the scattering-theoretic

sense. The χ-smearing on the other hand is used to solve the one-particle problem. Namely,

we can arrange for particles with isolated mass shells that BΩ ∈ H1 for suitable choices of

χ ∈ S (Rs+1). Then the secondary Klein-Gordon smearing precisely cancels the time evolution

ατ (B)Ω = eiHτBΩ = eiωm(P )τBΩ, and we obtain

∂τBτ (f)Ω = 0. (1.4.9)

Here only the mass-gap assumption, spectral calculus, and translation-invariance of the vacuum

enter. Hence at the one-particle level the same argument works in both local and wedge-local

theories, and convergence of one-particle states is trivial.

The difference between the local and wedge-local setting appears when we move on to the

existence argument for multi-particle states. The Haag-Ruelle convergence proof is based on

8More precisely, admissibility of χ ∈ S (Rs+1) requires χ̂ to be compactly supported in a neighbourhood of the
mass shell, such that

(1) χ̂(ωm(k),k) = (2π)−(s+1)/2 for all k ∈ supp f̃j , (1 ≤ j ≤ n),

(2) supp χ̂ ∩ suppE(H,P ) ⊂ Hm,

(3) (supp χ̂− supp χ̂) ∩ suppE(H,P ) = {0}.

Via spectral calculus and spectral transfer relations, these properties imply that B = A(χ) create one-particle
states from the vacuum and satisfy a clustering property, as explained in Sections 3.1 and 3.2.
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Cook’s method,

‖Ψt2 −Ψt1‖ =

∥∥∥∥
∫ t2

t1

dτ ∂τΨτ

∥∥∥∥ ≤
∫ t2

t1

dτ ‖∂τΨτ‖ . (1.4.10)

This elementary estimate shows that integrability of ‖∂τΨτ‖ when taking the limit t2 →∞ is

a sufficient criterion for the existence of scattering states. For the two-particle Haag-Ruelle

approximants we expand the derivative,

∂τΨτ = ∂τB1 τ (f1)B2 τ (f2)Ω

= (∂τB1 τ (f1))B2 τ (f2)Ω + B1 τ (f1)∂τB2 τ (f2)Ω, (1.4.11)

and the second term vanishes immediately due to (1.4.9). For estimating the first term we

would like to make use of the available localization information. This can be accomplished by

commuting the creation operator approximants,

(∂τB1 τ (f1))B2 τ (f2)Ω = B2 τ (f2)(∂τB1 τ (f1))Ω + [∂τB1 τ (f1),B2 τ (f2)]Ω, (1.4.12)

where the first term vanishes again due to (1.4.9). Altogether we can estimate

‖∂τΨτ‖ = ‖[∂τB1 τ (f1),B2 τ (f2)]Ω‖ ≤ ‖[∂τB1 τ (f1),B2 τ (f2)]‖ . (1.4.13)

The commutator can be bounded from above using locality and propagation-geometrical

estimates for the Klein-Gordon solutions. At this point one can see the important difference

between local and wedge-local theories:

• In local theories the creation-operator approximants are defined from local Ak ∈ A(O),

O ∈ Regb. Then the norm of the commutator (1.4.13) for creation operator approximants

with disjointly supported regular wave packets f̃k ∈ C∞c (Rs) is rapidly decreasing. That

is, for any N ∈ N there exist CN > 0 (depending on fk and χ) such that

‖[∂τB1 τ (f1),B2 τ (f2)]‖ ≤ CN
(1 + |τ |)N ∀τ ∈ R, (1.4.14)

and analogously without the τ -derivative acting. This implies the required integrability in

(1.4.10) and thus the convergence of two-particle scattering states with disjointly supported

wave packets. In the local setting the convergence argument extends directly to states

with arbitrarily many particles.

• In a wedge-local setting the same arguments can be applied for the two-particle case,

but the geometrical situation is much more restrictive. Firstly, choosing a wedge-local

A1 ∈ A(W), we can derive an analogous commutator estimate from wedge-locality of the

theory only if A2 ∈ A(W⊥) with W⊥ := W ′ + y for some y ∈ Rs+1. In particular we

cannot choose A2 from a slightly rotated wedge, and similarly we cannot take A2 = A1,

even though this is admissible in (1.4.14).

Secondly, even if the restriction A1 ∈ A(W), A2 ∈ A(W⊥) is honored, the wedge-local

analog of (1.4.14) requires additionally more restrictive support conditions to be imposed

on the wave packets f̃k. For example, if f and f⊥ describe wave packets propagating

into the directions of respective wedges W =Wr and W⊥ =Wr
′ = −Wr for τ →∞ (e.g.
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1

τVf + Oτ

Vf

t

x

1

τVf + Wrτ

Vf

t

x

Figure 1.3: Propagation region spanned by the classical velocity supports Vf and approximate local-

ization of generating operators for one-particle states Ψ1 = Bτ (f)Ω = f̃(P )E(Hm)AΩ for
fixed τ ∈ R (schematically), comparing the cases of local A ∈ A(O) (left), and wedge-
local A ∈ A(Wr) (right).

supp f̃ ⊂ {k = (k1, . . . , ks) ∈ Rs, k1 > 0}, supp f̃⊥ ⊂ {k ∈ Rs, k1 < 0}), we obtain

∥∥∥
[
∂τB1τ (f),B2τ (f⊥)

]∥∥∥ ≤ CN
(1 + τ)N

, ∀τ > 0. (1.4.15)

Here we see, thirdly, that wedge geometry leads to a distinction between the outgoing

regime τ → +∞ and the incoming regime τ → −∞. The analogous commutator estimate

for the latter requires the opposite geometrical propagation for wave packets. For example,

if f and f⊥ are kept as above, we have

∥∥∥
[
∂τB1τ (f⊥),B2τ (f)

]∥∥∥ ≤ CN
(1 + |τ |)N , ∀τ < 0. (1.4.16)

Summarizing, we obtain for A := A1 ∈ A(W), A⊥ := A2 ∈ A(W⊥) and suitably propagat-

ing wave packets f , f⊥ existence of the limits [BBS01]

Ψ+ := lim
τ→+∞

Bτ (f)B⊥τ (f⊥)Ω,

Ψ− := lim
τ→−∞

Bτ (f⊥)B⊥τ (f)Ω. (1.4.17)

In this thesis we investigate in detail two specific situations, where these standard arguments

fail. Firstly, in wedge-local theories the Haag-Ruelle theorem (1.4.3) has so far been proven only

for n = 2 using the arguments sketched above [BBS01; Le03; GL07; BS08]. With three or more

particles the geometric limitations of wedge geometry become an obstruction for constructing

corresponding scattering states.

Secondly, the present method does not apply when considering embedded mass shells. As a

simple example for the latter situation one can think of a quantum field theory describing two

stable Wigner particles of masses m1 > 0, m2 > 2m1. If the lighter mass shell Hm1 is isolated in

the energy-momentum spectrum, we can use Theorem 1.4.3 to construct corresponding scattering

states Ψ±1 . Now, when the spectral analysis is performed to investigate the neighbourhood

of the mass shell Hm2 of the second particle, one finds that it is embedded in the continuous
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energy-momentum spectrum consisting of the scattering states Ψ±1 . Then the static χ-smearing

procedure (1.4.2) is in general no longer sufficient for solving the one-particle problem. On

the technical level the standard approach is to introduce a τ -dependent χ-smearing, which

corresponds in to an ergodic τ -averaging in configuration space [Dy05]. This leads to a norm-

convergent solution of the one-particle problem, but it is not sufficient to establish convergence

of multi-particle states in the massive case. So far convergence in the massive embedded case

has only been proven under additional assumptions, e.g. on the spectral background present

in the vicinity of the mass shell of vectors AΩ, A ∈ A(O) [Hrb71; Dy05; Hrd13; DH14]. In

the attached publication [Du17] we developed an alternative approach which does not require

τ -dependent χ-smearing. Instead we make use of a strengthened form of the Reeh-Schlieder

property.
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2 Summary of results

This section provides an overview of the main results that were obtained during the research

period for this thesis work. The results have been published in the papers [Du17; Du18], which

are the research articles serving as the core publications for this thesis. In the following we will

be emphasizing the central ideas and arguments. The full technical details from these papers

will not be reproduced here.

2.1 Wedge-local N-particle scattering theory

We begin with a summary of results of [Du18] concerning multi-particle scattering theory

for general wedge-local theories. While two-particle scattering states have been studied in

wedge-local theories [BBS01; Le03; GL07; BS08], a construction of scattering states with more

than two particles has so far not been achieved in the literature. First indications that N -particle

scattering states with N ≥ 3 are also meaningful in wedge-local theories can be found in the

thesis of Lechner [Le06]. Namely it is shown in [Le06, Ch. 6] that velocity-ordered N -particle

scattering states constructed via conventional Haag-Ruelle theory in certain two-dimensional

integrable local QFT models can be re-expressed in terms of wedge-local fields. In our analysis

the comparison to standard Haag-Ruelle theory is not required, and N -particle scattering states

are rigorously constructed directly in the general wedge-local framework.

2.1.1 Wedge-local N-particle Haag-Ruelle theorem

To formulate the wedge-local N -particle Haag-Ruelle theorem let us consider the scattering

state approximants

Ψτ := B1 τ (f1)B2 τ (f2) . . .Bn τ (fn)Ω. (2.1.1)

For Bk := Ak(χ) defined on the basis of wedge-local Ak ∈ A(W) for some fixed W ∈ RegW
and regular positive-energy Klein-Gordon solutions fk, (1 ≤ k ≤ n), the conventional Haag-

Ruelle method cannot be used to justify the convergence of Ψτ , or their interpretation as

particle states via the Fock structure. Our approach yields convergence, Fock structure and

covariance properties of Ψτ for τ → ±∞ for suitable geometrical propagation configurations of

the Klein-Gordon solutions fk.

From standard non-stationary-phase estimates we obtain that fk are rapidly decreasing

outside the semi-classical propagation region1 defined by

Υfk := {κ(ωm(k),k) ∈ Rs+1 : k ∈ supp f̃k, κ ∈ R}. (2.1.3)

1The non-stationary phase argument from [RS3, App. 1 to XI.3] actually leads to the rapid decay estimate

|fk(t,x)| ≤ CδN
(1 + |τ |+ |x|)N for all (t,x) ∈ Rs+1 \Υ

[δ]
fk

(2.1.2)

on the complement of any δ-extended propagation region Υ
[δ]
fk

:= {κ(ωm(k),k) ∈ Rs+1 : k ∈ (supp f̃k)δ, κ ∈
R}, for δ > 0, where (supp f̃k)δ := supp f̃k +Bδ(0) = {k′ ∈ Rs : ∃k ∈ supp f̃k, |k′ − k| < δ}. For specification
of the propagation geometry the non-extended regions Υfk suffice by compactness of supp f̃k.
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The localization and commutation properties of the creation-operator approximants Bkτ (fk)
can be conveniently described by introducing the velocity supports

Vfk := {(1,k/ωm(k)) : k ∈ supp f̃k} = Υfk ∩ {(t,x) ∈ Rs+1 : t = 1}. (2.1.4)

Due to the wedge-localization the disjointness of velocity supports is no longer sufficient for

asymptotic vanishing of the commutators of the Bkτ (fk) and corresponding opposite localized

B⊥kτ (fk) and has to be strengthened to ordering of velocity supports with respect to the precursor

relation [BBS01] defined with respect to a given wedge W ∈ RegW by

V1 ≺W V2 :⇐⇒ V2 − V1 ⊂ Wc, (2.1.5)

where Vk ⊂ Rs+1 andWc := ΛWWr denotes the centering of the given wedgeW = ΛWWr+xW ∈
RegW . In the present section we make use of the standard creation-operator approximants

from Definition 1.4.2. While this definition is simple and notationally convenient, it is based

on singling out a distinguished family of Lorentz frames. In space-time dimension d ≥ 2 + 1

this also leads to a preference for localizing wedges W ∈ RegW which are upright in the sense

that their edges are contained in constant-time hyperplanes Tτ := {(τ,x) ∈ Rs+1 : x ∈ Rs}
(equivalently, W = RWr + x for some spatial rotation R ∈ L, x ∈ Rs+1). Having established

the necessary notation we can now state our main result on the existence and Fock structure of

ordered scattering states in the wedge-local setting.

Theorem 2.1.1. Consider a wedge-local QFT with mass gap (HK6]), fix a wedge W and let

Ψ
(1)
k ∈H1 (1 ≤ k ≤ n) be single-particle vectors isolated from the remaining energy-momentum

spectrum which satisfy the swapping relation Ψ
(1)
k = E(Hm)AkΩ = E(Hm)A⊥k Ω, for some

Ak ∈ A(W), A⊥k ∈ A(W⊥). Let further χ ∈ S (Rs+1) be an admissible Haag-Ruelle auxiliary

function supported in a sufficiently small neighbourhood of the mass shell Hm (cf. Lemma 3.2.4).

(i) For any family of regular positive-energy Klein-Gordon solutions fk satisfying

Vfn ≺W Vfn−1 ≺W . . . ≺W Vf1 , (2.1.6)

the scattering state approximants

Ψτ := B1τ (f1)B2τ (f2) . . .Bnτ (fn)Ω, (τ ∈ R), (2.1.7)

converge in norm for τ →∞.

(ii) Let Ψ+
n := limτ→∞Ψτ , Ψ′+n′ := limτ→∞Ψ′τ be scattering states as in (i), constructed from

operators localizable with respect to the same wedge W. Then for upright W their scalar

products can be computed using the Fock identity

〈
Ψ+
n ,Ψ

′+
n′
〉

= δnn′
n∏

k=1

〈
Bkτ (fk)Ω,B′kτ (f ′k)Ω

〉
, (2.1.8)

where the right-hand side is independent of τ .

Analogous statements hold for the convergence and Fock structure of any two incoming scattering

states (τ → −∞) defined using the reversed ordering of wave packets

Vfn �W Vfn−1 �W . . . �W Vf1 . (2.1.9)
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2.1 Wedge-local N -particle scattering theory

Let us now explain the essential ingredient in the proof and the central idea in this thesis,

which is the applicability and implications of the wedge-swapping symmetry of states for the

construction of multi-particle scattering states. We will say that a vector Ψ ∈ H satisfies

the swapping property with respect to W if there exists A ∈ A(W) and A⊥ ∈ A(W⊥) with

W⊥ =W ′ + y for some y ∈ Rs+1, such that

Ψ = AΩ = A⊥Ω. (2.1.10)

For the scattering theory we require an analogous swapping symmetry for one-particle states,

and we will say that the one-particle vectors Ψ
(1)
k ∈ E(Hm)H , (k = 1, . . . , n), are swappable

with respect to W if

Ψ
(1)
k = E(Hm)AkΩ = E(Hm)A⊥k Ω, Ak ∈ A(W), A⊥k ∈ A(W⊥). (2.1.11)

We note that one-particle vectors satisfying (2.1.11) can be easily obtained from swappable

vectors Ψ satisfying (2.1.10) and E(Hm)Ψ 6= 0.

The swapping partners A⊥k ∈ A(W⊥), W⊥ = W ′ + x, themselves do not appear in the

definition of the scattering states Ψ+
n . Yet the existence of swapping partners is essential for

proving the convergence and Fock structure. The admissibility of overlap in (2.1.11) (that is,

W⊥ =W ′ + x, x ∈ W, or equivalently W⊥ ∩W 6= ∅) leads to trivial realizability of swapping

in local QFT. Yet overlap of the wedges is not necessary, and for general wedge-local models

it has been pointed out by Buchholz that the swapping symmetries (2.1.11), (2.1.10), can be

established by using wedge-duality (HK2]) and Tomita-Takesaki theory for the case of “touching”

wedges W⊥ =W ′ [Bu17].

In the remainder of this section the construction of three particle scattering states will be

discussed more explicitly. In the wedge-local setting they are exemplary, as we can use them to

both illustrate the obstruction in the conventional approach and the basic proof idea of using

swapping symmetry. Further the three-particle convergence proof already requires the essential

manipulations and estimations which enter in the general inductive proof.

We now consider a scattering state approximant Ψτ := B1τ (f1)B2τ (f2)B3τ (f3)Ω, defined

in terms of Bk := Ak(χ), Ak ∈ A(Wk), where suitable localization wedges Wk have to be

determined. Inspection of the conventional Haag-Ruelle argument then shows that we run into

the mentioned geometrical obstruction: abbreviating Bkτ := Bkτ (fk), Ḃkτ := ∂τBkτ (fk), and

following the traditional approach, we obtain from the Cook estimate (1.4.10) that

‖Ψt2 −Ψt1‖ ≤
∫ t2

t1

dτ ‖∂τΨτ‖ ≤
∫ t2

t1

dτ
∥∥∥Ḃ1τB2τB3τΩ

∥∥∥+
∥∥∥B1τ Ḃ2τB3τΩ

∥∥∥+
∥∥∥B1τB2τ Ḃ3τΩ

∥∥∥

≤
∫ t2

t1

dτ
∥∥∥[Ḃ1τ ,B2τ ]B3τΩ

∥∥∥+
∥∥∥B2τ [Ḃ1τ ,B3τ ]Ω

∥∥∥+
∥∥∥B1τ [Ḃ2τ ,B3τ ]Ω

∥∥∥ , (2.1.12)

where we used that terms involving ḂkτΩ = 0 vanish. Now we expand into operator norms and

from the basic estimate ‖Bkτ (fk)‖ ≤ ‖Bk‖ ‖fkτ‖L1(Rs) ≤ Ck(1 + |τ |s/2), where fkτ (x) := fk(τ,x)

we obtain

‖Ψt2 −Ψt1‖ ≤ C
∫ t2

t1

dτ |τ |s/2
(
‖[Ḃ2τ ,B3τ ]‖+ ‖[Ḃ1τ ,B2τ ]‖+ ‖[Ḃ1τ ,B3τ ]‖

)
. (2.1.13)

After this estimation we see that it has become impossible to assign localizing wedges Wk,

(k = 1, 2, 3), in such a way that integrability in (2.1.13) can be established on general grounds.

The problem is of a simple geometrical nature, as illustrated by Figure 2.1: if we take A1 ∈ A(W)
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Figure 2.1: Geometrical obstruction due to wedge-localization for constructing 3-particle scattering
states (right) compared to the local setting (left): at most two wedge regions can be
mutually space-like separated.

for some W, we require A3 ∈ A(W3) in a spacelike separated wedge or more generally in a

translate W⊥ :=W ′ + x for some x ∈ Rs+1. But now there are no wedge regions W2 ∈ RegW
which are spacelike separated to both W and W⊥. The two-particle case is not affected by

this obstruction, as we can take e.g. A1 ∈ A(W) and A2 ∈ A(W ′) and impose Vf2 ≺W Vf1 for

τ → +∞. Clearly, this opposite localization ansatz already described in (1.4.17) based on the

conventional Haag-Ruelle argument has no obvious generalisation to three or more particles.

Let us now address the resolution of the geometrical puzzle encountered in Figure 2.1, and

explain the basic idea of the wedge-local Haag-Ruelle argument for the three particle case. In

contrast to the two-particle case and as stated in Theorem 2.1.3 we will fix a common wedge W
for localizing Ak ∈ A(W), (1 ≤ k ≤ 3). Letting fk be regular positive-energy Klein-Gordon

solutions satisfying

Vf3 ≺W Vf2 ≺W Vf1 , (2.1.14)

we set Bk := Ak(χ) with admissible χ ∈ S (Rs+1) and define Bkτ (fk) as before. We recall

that due to the mass-gaps the one-particle problem is solved by Bkτ (fk)Ω, (k = 1, 2, 3), at any

finite τ , i.e.

Bkτ (fk)Ω = f̃k(P )E(Hm)AkΩ = f̃k(P )Ψ
(1)
k =: Ψ

′(1)
k ∀τ ∈ R (2.1.15)

with Ak ∈ A(W). At this point the swapping property (2.1.11) provides for each Ψ
′(1)
k an addi-

tional oppositely wedge-localized operator A⊥k ∈ A(W⊥) such that E(Hm)AkΩ = E(Hm)A⊥k Ω.

This yields for each Ψ
′(1)
k similarly an additional oppositely localized Haag-Ruelle opera-

tor B⊥kτ (fk), such that

B⊥kτ (fk)Ω = f̃k(P )E(Hm)A⊥k Ω = f̃k(P )E(Hm)AkΩ = Ψ
′(1)
k . (2.1.16)

For these Haag-Ruelle operators we obtain from Vf3 ≺W Vf2 ≺W Vf1 together with Ak ∈ A(W),

A⊥k ∈ A(W⊥), the ordered outgoing commutator estimates

∥∥∥
[
∂τBjτ (fj),B⊥kτ (fk)

]∥∥∥ ≤ CN (1 + τ)−N

∥∥∥
[
Bjτ (fj),B⊥kτ (fk)

]∥∥∥ ≤ C ′N (1 + τ)−N



 for 1 ≤ j < k ≤ 3 and τ > 0. (2.1.17)
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2.1 Wedge-local N -particle scattering theory

With these preparations let us now consider the expansion of the Cook integrand ‖∂τΨτ‖ from

(1.4.10) for Ψτ := B1τ (f1)B2τ (f2)B3τ (f3)Ω. The derivative again splits into three terms, yielding

‖∂τΨτ‖ ≤ ‖(∂τB1τ (f1))B2τ (f2)B3τ (f3)Ω‖
+ ‖B1τ (f1)(∂τB2τ (f2))B3τ (f3)Ω‖
+ ‖B1τ (f1)B2τ (f2)∂τB3τ (f3)Ω‖ . (2.1.18)

Here the third term B1τ (f1)B2τ (f2)(∂τB3τ (f3))Ω already vanishes due to the τ -independence of

B3τ (f3)Ω. Instead of attempting to commute these operators as in the conventional Haag-Ruelle

argument, we shall estimate the remaining terms by first applying the swapping symmetry. This

gives

B1τ (f1)(∂τB2τ (f2))B3τ (f3)Ω = B1τ (f1)(∂τB2τ (f2))B⊥3τ (f3)Ω

= B1τ (f1)
[
∂τB2τ (f2),B⊥3τ (f3)

]
Ω

+ B1τ (f1)B⊥3τ (f3)∂τB2τ (f2)Ω (2.1.19)

where we may drop the second term due to ∂τB2τ (f2)Ω = 0. The first term is treated analogously

with an additional step of swapping,

(∂τB1τ (f1))B2τ (f2)B3τ (f3)Ω = (∂τB1τ (f1))B2τ (f2)B⊥3τ (f3)Ω

= (∂τB1τ (f1))
[
B2τ (f2),B⊥3τ (f3)

]
Ω

+
[
∂τB1τ (f1),B⊥3τ (f3)

]
B2τ (f2)Ω

+ B⊥3τ (f3)(∂τB1τ (f1))B2τ (f2)Ω, (2.1.20)

where the last summand can be rewritten as before,

B⊥3τ (f3)(∂τB1τ (f1))B2τ (f2)Ω = B⊥3τ (f3)
[
∂τB1τ (f1),B⊥2τ (f2)

]
Ω. (2.1.21)

Collecting the terms of (2.1.19) and (2.1.20) we obtain with some C > 0 that for all τ > 0

‖∂τΨτ‖ ≤ C |τ |s/2 ·
( ∥∥∥
[
∂τB2τ (f2),B⊥3τ (f3)

]∥∥∥+
∥∥∥
[
B2τ (f2),B⊥3τ (f3)

]∥∥∥

+
∥∥∥
[
∂τB1τ (f1),B⊥3τ (f3)

]∥∥∥+
∥∥∥
[
∂τB1τ (f1),B⊥2τ (f2)

]∥∥∥
)

≤ CNτ−N . (2.1.22)

Here we applied the standard estimate ‖Bkτ (fk)‖ ≤ C |τ |s/2, and in the last step we used

that all operator pairs are correctly ordered to obtain rapid decay from the outgoing ordered

commutator estimates (2.1.17). Now the convergence of the outgoing 3-particle scattering-state

approximant Ψτ follows as usual from Cook’s method.

The Fock structure of such scattering states is established on the basis of analogous swap-

ping arguments, assuming that the localization wedges of the two states under consideration

are compatible. An additional geometrical argument is required to obtain outgoing ordered

commutators (2.1.17) also across two families of Bkτ (fk), B′kτ (f ′k) with their swapping partners

B⊥kτ (fk), B′⊥kτ (f ′k). For this, one can make use of the fact that the precursor relation ≺W behaves

almost like a total order for upright wedges W when restricted to velocity supports. Finally let

us note that for this reason the one-particle state matrix elements with additional permutations

are indeed absent from the Fock relation (2.1.8), cf. (2.2.10).
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2 Summary of results

2.1.2 Scattering theory with general wedge and reference frames

For wedge-local theories the Lorentz covariance property (HK3]) is a basic physical requirement,

which becomes particularly stringent in higher dimensions d > 1 + 1. Yet, the Lorentz invariance

of the S-matrix may fail as shown in various wedge-local constructions [GL07; BLS11]. For a

model-independent study of this effect we generalize the above discussion, which was based

on a distinguished reference frame. A clear resolution of this problem specific to the higher-

dimensional (s ≥ 2) wedge-local context consists in passing to Haag-Ruelle operators BΛ
τ (f),

which are adapted to Lorentz frames specified by a boost Λ ∈ L↑+. This also strengthens the

construction so that scattering states and their Fock structure can be obtained from Ak ∈ A(W)

for any wedge W = ΛWr + x, without requiring W to be upright.

Definition 2.1.2 (adapted Haag-Ruelle operators). Fix a wedge W ∈ RegW , A ∈ A(W), and

let B := A(χ), with χ ∈ S (Rs+1) as before. For any regular positive-energy Klein-Gordon

solution f , and τ ∈ R we define

BΛ
τ (f) :=

∫
dsx f(Λ(τ,x))α(Λ(τ,x))(B), (2.1.23)

where Λ ∈ L∗(W) := {Λ ∈ L↑+ : ΛWr =Wc} or more generally Λ ∈ L↑+.

The approximate space-time localization of BΛ
τ (f) is again relevant for obtaining outgoing

ordered commutator estimates and for specifying the propagation geometry. For (2.1.23) it is

described by adapted velocity supports

VΛ
f := (ΛT1) ∩Υf , (2.1.24)

for T1 := {(1,x) : x ∈ Rs}, and where Υf denotes the propagation region of f .

Theorem 2.1.3 (Wedge-local N -particle Haag-Ruelle theorem). Let Λ ∈ L↑+ and Ψ
(1)
j =

E(Hm)AjΩ = E(Hm)A⊥j Ω with Aj ∈ A(W), A⊥j ∈ A(W⊥) and let χ ∈ S (Rs+1) be an

admissible auxiliary function (supported in a sufficiently small neighbourhood of the isolated

mass shell).

(i) For regular positive-energy Klein-Gordon solutions fj satisfying the outgoing ordering

condition

VΛ
fn ≺W VΛ

fn−1
≺W . . . ≺W VΛ

f1 , (2.1.25)

the scattering state approximants ΨΛ
n(τ) := BΛ

1τ (f1)BΛ
2τ (f2) . . .BΛ

nτ (fn)Ω converge in norm

for τ →∞.

(ii) For Λ ∈ L∗(W) the scalar products of any two outgoing scattering states

Ψ+,Λ
n := lim

τ→∞
BΛ

1τ (f1) . . .BΛ
nτ (fn)Ω, (2.1.26)

Ψ′+,Λn′ := lim
τ→∞

B′Λ1τ (f ′1) . . .B′Λn′τ (f ′n′)Ω, (2.1.27)

constructed w.r.t. the same wedge W satisfy

〈
Ψ+,Λ
n ,Ψ′+,Λn′

〉
= δnn′

n∏

j=1

〈
BΛ
jτ (fj)Ω,B′Λjτ (f ′j)Ω

〉
. (2.1.28)

Analogous statements hold for incoming scattering states assuming opposite ordering of wave

packets (while preserving the order of applying the creation-operator approximants to the vacuum).
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2.1 Wedge-local N -particle scattering theory

2.1.3 Wedge-local scattering data and covariance

On the basis of Theorem 2.1.3 and following arguments familiar from the local setting, it

is possible define wave operators and a multi-particle S-matrix. In [Du18] we proposed a

specialized wedge-local formulation, with the purpose of making the wave-packet and operator

ordering assumptions more transparent for future investigations of wedge-local scattering data.

In particular it provides a simple explanation for the previously observed Lorentz covariance

breaking effects at the level of scattering states, and we established the precise residual Lorentz

covariance of the scattering data, which must be present in all wedge local theories satisfying

Lorentz-covariance (HK3]). We begin by introducing general ordered Fock spaces, on which the

wave operators will be defined.

Definition 2.1.4. The ordered tensor products over one-particle Hilbert space H1 with respect

to a given partial order ≺ on H1 are defined as closure ⊗n≺H1 := ⊗̂n≺H1 of the finite linear

spans

⊗̂n≺H1 := span{Ψ1
1 ⊗ . . .⊗Ψn

1 : Ψk
1 ∈H1,Ψ

1
1 ≺ Ψ2

1 ≺ . . . ≺ Ψn
1}. (2.1.29)

Using the conventions ⊗̂0
≺H1 := CΩ, ⊗̂1

≺H1 := H1, we obtain corresponding ordered Fock

spaces Γ≺(H1) :=
⊕∞

n=0⊗n≺H1. The subspace of finite linear combinations of ordered tensor

product vectors with Ψk
1 ∈H ′

1 where H ′
1 is any subset or subspace of H1 shall be denoted by

Γ≺0 (H ′
1 ) :=

⊕̂∞
n=0⊗̂

n
≺H ′

1 .

Of particular importance for the applicability of Theorem 2.1.3 are the velocity-ordered Fock

spaces spanned by swappable one-particle vectors, and we recall that our present results require

their mass shells to be isolated (HK6]).

Definition 2.1.5 (swappable one-particle subspace and vectors of bounded energy).

H W
1 := {Ψ1 ∈H1 : Ψ1 swappable w.r.t.W + x for some x ∈ Rd},

H W
1c := {f̃(P )Ψ1 : Ψ1 ∈H W

1 , f̃ ∈ C∞c (Rs)}. (2.1.30)

Let us note that due to H W
1c = H W

1 we have density in H1 if wedge-duality (HK2]) is

satisfied.2 The velocity ordering with respect to the opening directions of a given wedge W can

be lifted from Klein-Gordon solutions to one-particle vectors Ψ1 ∈H1 via the energy-momentum

spectral measure E(H,P )(∆), (∆ ⊂ Rs+1 Borel).

Definition 2.1.6. The propagation region, adapted velocity supports, and the precursor ordering

of one-particle vectors Ψ1,Ψ
′
1 ∈H1 are defined by

ΥΨ1 := {t · (ω,k) : (ω,k) ∈ supp(E(H,P )Ψ1), t ∈ R},

VΛ
Ψ1

:= ΥΨ1 ∩ ΛT1, T1 := {(1,x) : x ∈ Rs}, (2.1.31)

Ψ′1 ≺W Ψ1 :⇐⇒ VΛ
Ψ′1
≺W VΛ

Ψ1
, (2.1.32)

with some Λ ∈ L∗(W).

2The introduction of H W
1c is required for technical reasons. Namely, we cannot expect H W

1 to contain vectors
which have compact energy-momentum spectrum [BBS01, Lem. 3.4]. For the same analyticity reasons H W

1c is
neither a linear space, nor contained in H W

1 . One may introduce the linear span H̃ W
1c of H W

1c , but clearly
Γ≺W
0 (H̃ W

1c ) = Γ≺W
0 (H W

1c ).
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2 Summary of results

The well-definedness of (2.1.32) with respect to the choice Λ ∈ L∗(W) follows from a correspond-

ing property of the relativistic velocity-transformation law. With the above definitions it is

possible to express the scattering-theoretic content of Theorem 2.1.3 at the level of Møller-type

wave operators.

Definition 2.1.7 (wave operators). For any given centered wedge W we define

W+
W :

{
Γ�W0 (H W

1c ) −→H ,

Ψ1
1 ⊗ . . .⊗Ψn

1 7−→ lim
τ→∞

BΛ
1τ (f1) . . .BΛ

nτ (fn)Ω,
(2.1.33)

W−W :





Γ≺W0 (H W
1c ) −→H ,

Ψ1
1 ⊗ . . .⊗Ψn

1 7−→ lim
τ→−∞

BΛ
1τ (f1) . . .BΛ

nτ (fn)Ω.
(2.1.34)

Here the creation operators BΛ
kτ (fk) are chosen such that BΛ

kτ (fk)Ω = Ψk
1 with Λ ∈ L∗(W). Such

operators with Bk = Ak(χ) for swappable Ak ∈ A(W) can be obtained due to Ψk
1 ∈ H W

1c by

definition. In two dimensions we take any Λ ∈ L↑+ = L∗(Wr) also for W =Wr
⊥.3

The well-definedness and covariance properties of W±W are non-trivial consequences of the Fock

structure (Theorem 2.1.3 (ii)) and a technical covariance result which concerns the dependence

on the reference frame specified by Λ. If Lorentz transformations are implementable in the

given wedge-local theory (HK3]), we obtain as a corollary of these technical considerations also

the precise covariance relation obeyed by the scattering states.

Theorem 2.1.8. Assuming wedge-duality (HK2]), the wave operators (2.1.33), (2.1.34) are

well-defined and extend to bounded linear isometries W+
W : Γ�W (H1) −→ H , and W−W :

Γ≺W (H1) −→H . For λ = (a,Λ) ∈ P↑+ we have further

W±W+a = W±W ,
U(λ)W±W = W±ΛWU0(λ),

where U0(λ) denotes the unitary representation of the Poincaré group on the unsymmetrized

Fock space over H1 restricted to Γ�W/≺W (H1). Thereby the wave operators W±W depend on

the localization wedge W only modulo translations, and it suffices to consider W±W for centered

wedges Wc ∈ RegW .

Most notably, a dependence of the wave operators W±W on the localization wedge of referenceW
cannot be completely ruled out in the general wedge-local setting. Such dependences are

confirmed by computations of Grosse-Lechner [GL07] and Buchholz-Summers [BS08] in a

class of recently constructed higher-dimensional wedge-local QFT models. If we seriously take

into account this possible wedge-dependence of the wave operators, a systematic study of the

scattering data also has to contain the specification of the reference wedges.

Definition 2.1.9 (S-matrix and wedge-transition maps). The scattering data in the wedge-local

setting are the S-matrices defined by the matrix elements between final and initial states

SWf ,Wi

f i := (W+
Wf

)∗W−Wi
,

3The two-dimensional case is exceptional as L↑+ acts non-transitively on RegW , and in particular L∗(Wr
′) = ∅.

In this case one can easily define WWr
⊥ by taking Λ = 1, but due to swapping this does not produce new

scattering states which cannot be obtained by WWr .
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2.2 Scattering theory via Reeh-Schlieder non-local correlations

k

ω

(a) (b) (c) (d) (e)

Figure 2.2: Energy-momentum spectra in QFTs with structurally different Wigner-particle contents. In
(a) and (b) all mass shells are isolated, whereas the remaining examples contain embedded
mass shells. The results of Haag and Ruelle [Ha58; Ru62] address (a), (b), and the massless
case (e) has been solved by Buchholz [Bu77]. Aside from superselection theory, the massive
embedded cases have first been treated for (c) in [Hrb71], and (d) in [Dy05].

where Wf ,Wi ∈ RegW are centered wedges. Additionally we define the wedge-transition maps

SW
′,W

f f := (W+
W ′)
∗W+
W , SW

′,W
i i := (W−W ′)

∗W−W , (2.1.35)

depending on centered wedges W,W ′.

With the explicit wedge-dependences we obtain also a clear description of the admissible

asymptotic Poincaré-symmetry breaking in wedge-local theories. If we consider the problem

from the opposite direction we can in fact restore Poincaré covariance of the scattering data

by including the correct transformation of the wedge-dependences of S-matrices and wedge-

transition maps.

Theorem 2.1.10. The wedge-local S-matrices are Poincaré-covariant in the sense that for

λ = (a,Λ) ∈ P↑+ we have

U0(λ)SWf ,Wi

f i U0(λ)∗ = SΛWf ,ΛWi

f i , (2.1.36)

and similarly the wedge transition maps (2.1.35) satisfy

U0(λ)SW,W ′
f f U0(λ)∗ = SΛW,ΛW ′

f f , (2.1.37)

U0(λ)SW,W ′
i i U0(λ)∗ = SΛW,ΛW ′

i i . (2.1.38)

If the wave operators are asymptotically complete (i.e. have dense range in H ) it is possible to

explicitly compute the influence of the wedge-localization choices via transition identities such as

SWf ,Wi

f i = S
Wf ,W ′f
f f S

W ′f ,W ′i
f i S

W ′i ,Wi

i i .

2.2 Scattering theory via Reeh-Schlieder non-local correlations

We now consider the scattering problem in presence of massless particles. On the technical

level our wedge-local constructions from Sections 2.1.1–2.1.3 are substantially based on the

Haag-Ruelle mass gap assumption (HK6]). Yet in models describing massless particles (HK6])

this assumption is necessarily violated, as can be seen in Figure 2.2 (d), (e).

In local QFT models the scattering theory of massless particles is under complete mathematical

control [Bu75b; Bu75a; Bu77; DH14; AD17] and there exist various results also for massive

particles with embedded mass shells [Hrb71; Dy05; Hrd13]. It is an interesting question whether

these presently available methods can be applied in the wedge-local setting to provide an

extension of the constructions from Sections 2.1.1–2.1.3 to models describing massless particles

or for massive particles with embedded mass shells. We will consider the scattering problem for
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2 Summary of results

Wigner particles, noting that depending on the physical context the more general infraparticle

concept may be necessary [BPS91].4

In the scattering theoretic analysis of particles with embedded mass shells we are faced with

two challenges, which require additional technical considerations. Broadly speaking they are

associated to the absence of the upper mass gap above embedded mass shells as in Figure 2.2

(c)–(e), and absence of the lower mass gap separating the vacuum from the remaining energy-

momentum spectrum as in Figure 2.2 (d)–(e), respectively.

Firstly, the presence of spectral background leads to ∂τBkτ (fk)Ω 6= 0 and there are no

currently known general arguments which show that the one-particle problem can be solved

using operators from the quasi-local or from a quasi-wedge-local algebra. The standard strategy

adopts a τ -dependent χ-smearing in the definition of the creation-operator approximants. While

this construction allows to restore integrability of ‖∂τBkτ (fk)Ω‖, the Cook convergence argument

additionally requires decay of the commutators ‖[Bkτ (fk),Bjτ (fj)]‖ and depending on the proof

strategy and the strength of the commutator decay also additional energy bounds [Dy05] or

clustering properties [Hrb71]. For the method of time-dependent smearing the uncertainty

principle leads to a tension between the one-particle integrability and the commutator decay

due to

A(χτ )Ω = (2π)(s+1)/2χ̂τ (H,P )AΩ. (2.2.1)

In the smearing method, χ̂τ ∈ S (Rs+1) are constructed pointwise convergent with shrinking

supports, e.g. χ̂τ (ω,k) −→ 1∆m(ω,k) for τ → ±∞, where 1∆m is the characteristic function of

a compact subset of the mass shell. Then the uncertainty principle implies that the improved

localization of χ̂τ (ω,p) in energy-momentum space as required for better one-particle integrability

leads to delocalization of χτ (t,x) in configuration space. This in turn enters in the decay estimates

for commutators, which also have to be sufficiently decaying for the success of Cook’s method.

In the literature this tension between localization in configuration space and localization in

energy-momentum space is usually resolved by imposing additional spectral conditions on AΩ

[Hrb71; Dy05; Hrd13; DH14] for suitable A ∈ Aloc.

For our investigations we would like to avoid the delocalization of creation-operators in the

solution of the one-particle problem resulting from the smearing strategy (2.2.1). Similarly

we do not want to impose assumptions on the action of individual operators A ∈ Aloc. In the

scattering theory of massless particles such additional assumptions are not required, as has been

shown by Buchholz [Bu75a; Bu77].

There is in fact a well-known model-independent feature of relativistic quantum field theories,

by which the one-particle problem can be solved without delocalization in the sense of (2.2.1):

in local quantum field theories the Reeh-Schlieder property states that the vacuum vector Ω is

cyclic for the algebras A(O) associated to bounded space-time regions O ∈ Regb, that is

A(O)Ω = H . (2.2.2)

In particular given any one-particle vector Ψ1 ∈ E(Hm)H , there exists a family of operators

Aβ ∈ A(O), (β > 0), such that

lim
β→0

AβΩ = Ψ1. (2.2.3)

4A physical example for infraparticles are electrically charged particles in Quantum Electrodynamics. On the
other hand electrically neutral particles such as hydrogen atoms are within the scope of the classical Wigner
particle concept. The scattering theoretic analysis is even more challenging for infraparticles, see e.g. [Pi05;
AD17; Dy17; CD18]. In quantum electrodynamics the nonexistence of eigenvalues of the mass operator for
charged particles can be derived as a consequence of the Gauss’ law [Bu86].
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2.2 Scattering theory via Reeh-Schlieder non-local correlations

For wedge-local theories we can analogously find a family of operators Aβ ∈ A(W), (β > 0),

for any given W ∈ RegW .5 We will say that (Aβ)β>0 is a local, respectively wedge-local,

Reeh-Schlieder family for Ψ1.

Let us begin with a preliminary definition for a Haag-Ruelle-type creation operator ap-

proximants which make use of Reeh-Schlieder effects for solving the one-particle problem by

setting

Aτ (f) :=

∫
dsx f(τ,x)Aβ(τ)(τ,x). (2.2.4)

Here β(τ) denotes a scaling function satisfying limτ→±∞ β(τ) = 0. For now we have to leave

open the choice of the scaling function, as we will need to adapt it to both the family Aβ and

to properties of the scattering states to be constructed. For concreteness we note that a specific

but sufficiently flexible choice which will become relevant in the following is given by the power

law scalings β(τ) := |τ |−µ, (µ > 0).

The creation-operator approximants Aτ (f) satisfy the two mentioned requirements of the

Cook method of having good localization properties and fast convergence in the one-particle

case. Yet, we have so far not been able to establish a scattering theory directly on the basis

of the operators Aτ (f). This is due to the fact that Aτ (f) is in general expected to become

unbounded in the asymptotic limits τ → ±∞ and this has to be taken into account for N ≥ 2

particles when computing the Cook derivative, e.g. for N = 2

∂τΨτ = A1τ (f1)∂τA2τ (f2)Ω + (∂τA1τ (f1))A2τ (f2)Ω. (2.2.5)

The modern method for estimating such terms in local QFT uses the energy-bounds established

by Buchholz [Bu90a; Dy05], whereas the traditional approach is based on space-like clustering

properties of vacuum expectation values [Ha58; Ru62; Hrb71]. In the present context the latter

amount to writing

‖A1τ (f1)∂τA2τ (f2)Ω‖2 = 〈Ω, (∂τA2τ (f2)∗)A1τ (f1)∗A1τ (f1)∂τA2τ (f2)Ω〉
= 〈Ω,A1τ (f1)∗A1τ (f1)(∂τA2τ (f2)∗)∂τA2τ (f2)Ω〉

+ (commutators). (2.2.6)

For suitably propagating wave packets the two product operators C1τ := A1τ (f1)∗A1τ (f1) and

C2τ := (∂τA2τ (f2)∗)∂τA2τ (f2) will have space-like separating space-time localization when

taking τ →∞. In local QFT with and without lower mass gap model-independent clustering

estimates have been established for such vacuum expectation values [AHR62]. These imply that

in the limit of large space-like separation, i.e. for τ →∞ we have (up to error terms depending

on ‖Ckτ‖+ ‖[H,Ckτ ]‖)

〈Ω, C1τC2τΩ〉 − 〈Ω, C1τΩ〉 · 〈Ω, C2τΩ〉 = 〈Ω, C1τE
⊥
ΩC2τΩ〉 −→ 0. (2.2.7)

This brings us to the second challenge posed by the presence of massless particles, namely

absence of the lower mass gap and the associated question of validity of clustering estimates. The

clustering estimates derived in [Fre85; AHR62] apply in the wedge-local setting with lower mass

5The original Reeh-Schlieder theorem established cyclicity of Ω for local polynomial field algebras in Wightman
quantum field theories [RS61] [SW00, Thm. 4.2]. The Reeh-Schlieder argument can also be used to show
cyclicity of Ω in the Haag-Kastler setting for domains O ⊂ Rs+1, which are such that any bounded region
K ∈ Regb can be translated into O [A, Sec. 4.7, Rem. 2]. By this argument Ω is always cyclic for wedge
algebras A(W). Cyclicity of Ω also for the local algebras A(O) is not automatic, but can be derived from
other properties such as weak additivity, see e.g. [A, Sec. 4.7] or the introductory discussions in [Bu90b].
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gap. To our knowledge there are presently no model-independent clustering estimates available

in the general wedge-local framework which do not require the lower mass gap assumption, i.e.

which are compatible with the presence of massless particles. Yet all presently known rigorous

scattering theoretic constructions in quantum field theory require space-like clustering properties

or the more stringent lower mass gap assumption. Hence the case without mass gaps appears

presently out of reach in the wedge-local setting.

In the following we will consider the scattering problem in absence of mass gaps for strictly

local framework from Definition 1.3.5. Then the conventional clustering estimates, and energy

bounds from [Bu90a] are at our disposal. Further we will consider the case of four-dimensional

Minkowski space-time as the clustering estimates without lower mass gap have been established

in this context [AHR62].

So far we have argued that the Reeh-Schlieder property can be used to accelerate the

convergence in the one-particle problem and improve the localization of creation-operator

approximants for particles with embedded mass shells. Both of these achievements are helpful

for proving convergence of multi-particle states. At first sight they appear to be suitable

for resolving the commutation versus integrability tension in Haag-Ruelle theory without

introducing the Herbst spectral condition. Yet the detailed inspection of the Cook convergence

proof reveals additional requirements. While these have been rather straighforwardly satisfied

in the smearing-approach (2.2.1), they do require special attention in the present Reeh-Schlieder

context.

(1) We require differentiability of Bkτ (fk) with respect to τ in the uniform operator topology. In

the smearing method this can be easily obtained by choosing χτ with smooth τ dependence.

On the other hand the differentiability of Reeh-Schlieder families Aβ as a function of β > 0

is unclear due to the non-constructive nature of the Reeh-Schlieder argument.

(2) The use of clustering and energy-bound arguments as in [Hrb71; Dy05] to estimate terms

such as ‖A1τ (f1)∂τA2τ (f2)Ω‖ also produces specific error terms. In the Reeh-Schlieder

context we expect these to be less well-behaved, but controllable relative to
∥∥Aβ(τ)

∥∥. Yet

the construction via the Reeh-Schlieder property yields convergence only for AβΩ, and the

norms ‖A∗βΩ‖ and ‖Aβ‖ are in general expected to diverge as β → 0.

We address (1) by a discretized Cook argument, requiring additionally that the norm growth of

‖Aβ‖ mentioned in point (2) is not too strong as β → 0. Using the methods we developed in

[Du17], it turns out that any polynomial growth ‖Aβ‖ ≤ β−γ is sufficient for the construction

of multi-particle states. In particular, the exponents γ > 0 may be arbitrarily large for this

purpose.

Definition 2.2.1 (Reeh-Schlieder operator family). A family of observables (Aβ)β>0 localized

in some fixed bounded region O which satisfies for all sufficiently small β > 0

‖AβΩ−Ψ‖ ≤ β, ‖Aβ‖ ≤ β−γ . (2.2.8)

will be called a Reeh-Schlieder family of degree γ ≥ 0 for Ψ ∈ H . We further define the

Reeh-Schlieder degree γRS ∈ [0,∞] of a vector Ψ as the infimum over all γ ≥ 0 for which there

exists a corresponding Reeh-Schlieder family for Ψ of degree γ.

One particle states Ψ = Ψ1 ∈H1 with γRS(Ψ1) <∞ may be regarded as a sharpened Wigner

particle concept. Reeh-Schlieder families Aβ for one-particle states Ψ1 ∈ E(Hm)H are easy

to obtain in free QFT models, but the status of this strengthened Reeh-Schlieder condition in

interacting theories is at present mostly unclear, see Section 5.2.
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2.2 Scattering theory via Reeh-Schlieder non-local correlations

In the construction of scattering states for one-particle vectors Ψ1 ∈H1 with γRS(Ψ1) <∞,

the technical challenge consists in handling of the divergent norms of Aβ as β → 0. For

technical reasons we will have to retain the χ-smearing in the definition of the creation-operator

approximants. In the present approach it plays a different role compared to (2.2.1), namely to

assure the applicability of energy bounds.

Definition 2.2.2 (Reeh-Schlieder creation-operator approximants). Let Aβ ∈ A(O) be a Reeh-

Schlieder family for Ψ1 ∈ E(Hm)H , m ≥ 0. Fixing χ̂ ∈ C∞c (R4 \ V̄ −) we set Bβ := Aβ(χ) and

for τ ∈ R \ {0} and a regular positive-energy Klein-Gordon solution f of the same mass m we

define

Bτ :=

∫
dsx f(τ,x)Bβ(τ)(τ,x), (2.2.9)

where β(τ) := |τ |−µ for some fixed µ > 0.

The main result of our work [Du17] is a Haag-Ruelle theorem based on the Reeh-Schlieder

effect with a temperate norm growth as in (2.2.8). Its conclusions apply both for massive and

massless particles and allow a uniform treatment of these two cases.

Theorem 2.2.3 (Haag-Ruelle theorem based on strengthend Reeh-Schlieder property). Let

A1β, . . . , Anβ be Reeh-Schlieder families of finite degree less than some γ > 0, let f1, . . . , fn be

regular positive-energy Klein-Gordon solutions with disjoint velocity supports, and take a scaling

exponent µ ∈ (0, κ
4nγ ) (here κ = 3/2 for m > 0 and κ = 1− ε with some ε ∈ (0, 1] when m ≥ 0).

Then

(i) Ψτ := B1τ . . .BnτΩ is convergent in norm as τ → ±∞.

(ii) The limit is independent of the choice of µ, Akβ and fk within the specified restrictions,

as long as the associated operators B′kτ create from the vacuum the same family of single-

particle states Ψ
(1)
k = limτ→∞ BkτΩ.

(iii) Scalar products of any two outgoing scattering states of the above form are given by

〈
Ψ+,Ψ′+

〉
= δnn′

∑

π∈Sn

n∏

k=1

〈
Ψ

(1)
k ,Ψ′(1)

π(k)

〉
, (2.2.10)

and similarly for incoming states.

Let us now consider the convergence proof for two-particle states Ψτ = B1τB2τΩ as an example

to illustrate how the Reeh-Schlieder norm divergence ‖Aβ‖ → ∞ enters in the limits τ →∞
and β → 0. This also allows to motivate and explain the technical tools which were developed

in [Du17] for treating this problem. Firstly we should use a discrete analog of Cook’s method,

‖ΨτN −Ψτ0‖ ≤
N−1∑

k=0

∥∥Ψτk+1
−Ψτk

∥∥ , (2.2.11)

where (τk)k∈N ⊂ R>0 is monotone increasing with τN −→ ∞ for N →∞.6 Let us note

here that A. Pizzo has previously constructed asymptotic states for charged infraparticles in

the nonrelativistic setting of the massless Nelson model [Pi05] via a similar discretized Cook

6Here we consider only the outgoing case τ → +∞. The incoming case τ → −∞ can be treated analogously.
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argument. The first application of such discretizations in the relativistic context appears to be

our work in [Du13; Du17].

One motivation for using the discretized Cook method is the mentioned unclear differentiability

status of β 7−→ Aβ . A second and perhaps more interesting reason for studying the discretized

Cook argument is that it allows to explore precisely how far one can safely move away from the

conventional Haag-Ruelle-Cook argument towards the strategy taken by D. Buchholz in the

scattering theory for massless particles. Similarly as in [Bu75a; Bu77], the computation (2.2.11)

can be used to reduce the convergence of Ψτ to the one-particle problem.

It will be our goal to establish estimates on
∥∥Ψτk+1

−Ψτk

∥∥, which are sufficiently strong to

obtain existence of the limit N → ∞ on the right-hand side of (2.2.11). Analogously to the

conventional Cook argument (1.4.10), (1.4.11), we write

‖Ψτ2 −Ψτ1‖ = ‖B1τ2B2τ2Ω− B1τ1B2τ1Ω‖
≤ ‖(B1τ2 − B1τ1)B2τ2Ω‖+ ‖B1τ1(B2τ2 − B2τ1)Ω‖
≤ ‖[B1τ2 − B1τ1 ,B2τ2 ]Ω‖

+ ‖B2τ2(B1τ2 − B1τ1)Ω‖+ ‖B1τ1(B2τ2 − B2τ1)Ω‖ . (2.2.12)

It is intuitively plausible that the equal-time commutator estimates used in standard Haag-

Ruelle theory extend also to non-equal-time commutators ‖[B1τ1 ,B2τ2 ]‖ under the restriction

that |τ2 − τ1| is sufficiently small. Already rapid decay
∥∥[B1τk ,B2τk+1

]
∥∥ ≤ CN |τk|−N for equally

spaced τk = τ0 + kδ for some δ > 0, k ∈ N, would be sufficient for summability for N →∞ of

these commutator terms inserted into (2.2.11). Yet, in the relativistic setting there is further

room for improvement, and we shall return to this point in a moment.

Let us now consider the terms from (2.2.12) involving one-particle differences. Using the

basic norm estimate

‖B1τ1‖ ≤
∫

dsx
∥∥f1(τ1,x) Bβ(τ1)(τ1,x)

∥∥ ≤
∥∥Aβ(τ1)

∥∥ ‖χ‖L1(Rs+1) ‖f1τ1‖L1(Rs) (2.2.13)

with ‖Aβ(τ1)‖ ≤ β(τ1)−γ ≤ |τ1|γµ, and ‖f1τ1‖L1(Rs) ≤ Cf1(1 + |τ1|s/2), we can estimate for large

enough τ2 > τ1 > 0 that

‖B1τ1(B2τ2 − B2τ1)Ω‖ ≤ ‖B1τ1‖
∥∥∥B2τ2Ω−Ψ

(1)
2

∥∥∥+
∥∥∥Ψ

(1)
2 − B2τ1Ω

∥∥∥

≤ C(1 + |τ1|s/2) · β(τ1)−γ1 · (β(τ2) + β(τ1))

≤ C ′ |τ1|s/2 · β(τ1)−γ1 · β(τ1) ≤ C ′ |τ1|s/2−µ(1−γ1) , (2.2.14)

where Ψ
(1)
2 := limτ→∞ B2τΩ, γ1 denotes the Reeh-Schlieder degree of the family (A1β)β>0, and

where we also used monotone decrease of β(τ) = |τ |−µ for τ > 0. Therefore, if the Reeh-Schlieder

degree satisfies γ1 < 1 it is easy to obtain convergence in (2.2.11) simply by choosing a sufficiently

large scaling µ > 0 and equidistant τk := τ0 + kδ.

However, we expect that the assumption γ < 1 is too strong for interacting QFT, and we will

conclude this section with a brief description of our strategy to improve on the estimates (2.2.11),

(2.2.14), such that the convergence of scattering states can also be established for γ > 1. We shall

explain the various technical estimates for the general n-particle approximants Ψn
τ = B1τ . . .BnτΩ

and then briefly discuss the application to the two-particle case.

For γ > 1 the χ-smearing in Definition 2.2.2 becomes relevant, as it restricts the energy-

momentum transfer of the creation-operator approximants. From this it follows that for any
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2.2 Scattering theory via Reeh-Schlieder non-local correlations

number of particles k, the Ψk
τ = B1τ . . .BkτΩ have finite energy-momentum for any τ , i.e.

Ψk
τ ∈ E(supp χ̂1 + . . .+ supp χ̂k)H ⊂ E(∆)H (2.2.15)

for some large enough compact set ∆ ⊂ Rs+1 independent of 1 ≤ k ≤ n.

This allows us to address the problematic polynomially growing term |τ1|s/2 in (2.2.14), whose

speed of divergence cannot be directly controlled via the choice of the scaling µ > 0. To achieve

this we replace the basic norm estimate (2.2.13) with an energy-bound derived using the method

of Buchholz [Bu90a]. In contrast to energy-bounds from [Dy05; Hrd13; DH14; AD17] the

estimates in the present context are no longer uniform in τ as the bound inherits the norm

growth of the Reeh-Schlieder family, which is controllable via the choice of scaling τ 7−→ β(τ).

Lemma 2.2.4 (Energy bounds). Without further restrictions on the families of operators Aβ
and Akβ ∈ A(O), we have for any compact ∆ ⊂ Rs+1,

‖BτE(∆)‖ ≤ C
∥∥Aβ(τ)

∥∥ , (2.2.16)

‖B1τ1 . . .BnτnE(∆)‖ ≤ C
n∏

k=1

∥∥Akβ(τk)

∥∥ , (2.2.17)

where the constant C depends on ∆, O, supp χ̂, the number of operators n, and the corresponding

wave packets f̃ , f̃k, but it is independent of τ .

For the two-particle case with energy-bound estimation, ‖B1τ1(B2τ2 − B2τ1)Ω‖ ≤ C |τ1|−µ(1−γ1),

and hence we still require γ1 < 1. Yet we see that the result has improved: for fixed scaling

µ > 0 we obtain faster convergence, and we also have achieved admissibility of a larger range of

scalings µ.

A further convergence improvement can be obtained from a closer investigation of the

admissible time discretizations. With regard to the latter there are two basic observations when

considering the expansion

N−1∑

k=0

∥∥Ψτk+1
−Ψτk

∥∥ ≤
N−1∑

k=0

(∥∥[B1τk+1
,B2τk+1

]
∥∥+

∥∥[B1τk ,B2τk+1
]
∥∥

+
∥∥B2τk+1

(B1τk+1
− B1τk)Ω

∥∥+
∥∥B1τk(B2τk+1

− B2τk)Ω
∥∥) .
(2.2.18)

Firstly, if we are given fixed τ ′ > τ0 > 0, the estimation term obtained from summation over

the one-particle terms (τN = τ ′)

N−1∑

k=0

(∥∥B2τk+1
(B1τk+1

− B1τk)Ω
∥∥+

∥∥B1τk(B2τk+1
− B2τk)Ω

∥∥) (2.2.19)

appears to become stronger if we reduce the number of discretization steps to be summed over.

In other words we would like to increase the spacing δ > 0 of the time steps τk := τ0 +kδ as far as

possible. Secondly, the commutator terms in (2.2.18) exhibit the exact opposite behaviour. This

resembles the situation encountered in the smearing approach, cf. the discussion below (2.2.1).

Yet here we have more refined control, as we can adjust the time discretization independently

of the one-particle convergence speed.

Remark 2.2.5 (vanishing Reeh-Schlieder degree). To take this idea to the extreme let us suppose

that ‖BkτE(∆)‖ ≤ C uniformly in τ , as we could write via energy-bounds (2.2.16) for the case
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of vanishing degree γ = 0. Then for fixed spacing δ, the summability in (2.2.19) only depends

on the speed of convergence of BkτΩ→ Ψ
(1)
k . Further, if we could choose the trivial spacing with

δ = τ ′ − τ0 (i.e. N = 1 and τ1 = τ ′), summability in (2.2.19) would be trivial and independent

of the speed of convergence in the one-particle problem. In the massive case the presence of the

non-equal-time commutators
∥∥[B1τk ,B2τk+1

]
∥∥ in (2.2.18) prevents us from deriving a meaningful

estimate on (2.2.18) for arbitrarily large τ1 > τ0. In the massless case the situation is different,

as the commutant of a suitably constructed creation-operator family (Bτ )τ>0 is non-trivial due

to Huygens’ principle [Bu75a; Bu77].

Regarding the optimal choice of the discretization we see that an investigation of non-equal-

time commutators is warranted. We have established a rapid decay estimate for the case of

disjoint velocity supports, with τk constrained to linearly growing intervals

τ1, τ2 ∈ [τ, (1 + ρ)τ ] (2.2.20)

where τ > 0, and ρ > 0 is a constant, which depends on the geometry and on the separation of

velocity supports as illustrated in Figure 2.3.

Lemma 2.2.6 (non-equal-time commutator estimate). Let Akβ, (k = 1, 2), be Reeh-Schlieder

families of finite degree, take regular Klein-Gordon solutions fk with disjoint velocity supports

and assume a fixed scaling β(τ) = |τ |−µ, µ > 0. Then there exists ρ > 0 and for any N ∈ N
a constant CN > 0, such that for arbitrary τ ∈ R \ {0} and all τ1, τ2 from the corresponding

interval spanned by τ and τ + ρτ ,

‖[B1τ1 ,B2τ2 ]‖ ≤ CN (1 + |τ |)−N . (2.2.21)

By means of Lemma 2.2.6 it follows that the relativistic discretized Cook method admits a

geometric time-spacing τk := (1 + ρ)kτ0, with ρ > 0 depending on the separation of the velocity

supports, and some τ0 > 0, as recognized in [Du13]. Returning to our benchmark case of degree

γ < 1, we now obtain convergence for any choice of the scaling µ > 0.

With this improved estimation strategy it finally becomes possible to address the convergence

issue also for γ ≥ 1. Here we use clustering estimates from [AHR62] which give space-like decay

of vacuum correlations that can compensate the norm growth
∥∥Aβ(τ)

∥∥ ≤ β(τ)−γ for sufficiently

small scaling µ > 0, and which yield corresponding clustering identities for creation-operator

approximants. A convenient formulation for proving our main result (Theorem 2.2.3) admits

multiple pairs B∗kτkBkτk at distinct times τk, which are not restricted relative to each other.

Lemma 2.2.7 (multi-operator clustering). For τ1, . . . , τn ∈ R \ {0} denote by |τmin| and |τmax|
the minimum and maximum of absolute values |τk|, (1 ≤ k ≤ n), respectively. Then for large

enough τmin we have

∥∥∥∥∥E
⊥
Ω

(
n∏

k=1

B∗kτkBkτk

)
Ω

∥∥∥∥∥ ≤ C |τmax|2nγµ · |τmin|−κ/2 . (2.2.22)

The constant C is independent of the τk, but depends on the number of creation-annihilation-

operator approximant pairs n, wave packets, Reeh-Schlieder families, and the smearing χ, and

the cluster coefficient κ is as in Theorem 2.2.3.

An important step for proving Lemma 2.2.7 is the case n = 1, which is obtained by refining

the clustering results from [Dy05] to admit the Reeh-Schlieder operator dependence and norm

growth. Here it is important that the τk agree within each creation-annihilation-operator

approximant pair. In particular, the clustering estimate of [AHR62] by itself is not suitable for

32



2.2 Scattering theory via Reeh-Schlieder non-local correlations

OAkβ

ΥU1 ΥU2

A↑1τ1
A↑2τ2

1

(1+ρ)τ1

τ1

τ2

(1−ρ)τ1

d

Vf̃1 Vf̃2

x

t

Figure 2.3: Localization regions of asymptotically dominant parts A↑
kτk

with disjoint velocity supports
and τ1 6= τ2 (schematically; a separating pair of wedges is indicated, restricting |τ2 − τ1|).

the geometric τk-spacing. This is also what prevents us from applying Lemma 2.2.7 to estimate

the norm differences
∥∥Ψτk+1

−Ψτk

∥∥ directly. Yet by combining Lemma 2.2.7 with energy bounds

and the commutator estimates, we obtain that the multi-particle difference terms in the discrete

Cook approach can indeed be bounded by the corresponding one-particle differences.

Proposition 2.2.8 (local difference estimate). Consider two families of creation operators

Bkτ := Bkτ (fk), B′kτ := B′kτ (f ′k), (1 ≤ k ≤ n) with disjoint velocity supports within each family

and such that the velocity supports of fk and f ′j are mutually disjoint for k 6= j. Then there

exists ρ > 0 and some sufficiently small scaling coefficient µ > 0, so that with certain constants

C1, C2 > 0 and for sufficiently large |τ | > 0 and any subsequent choice of τ1, τ2 from the interval

spanned by τ and (1 + ρ)τ , we have

∥∥Ψτ2 −Ψ′τ1
∥∥ ≤ C1

n∑

k=1

∥∥Bkτ2Ω− B′kτ1Ω
∥∥+ C2 |τ |nγµ−κ/4 . (2.2.23)

Here κ > 0 is as in Theorem 2.2.3, and n denotes the number of particles.

In fact, this proposition collects all technical estimates for the convergence proof of Theo-

rem 2.2.3, and provides the desired reduction to the one-particle convergence within the specified

τk-restriction.
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3 Mathematical methods

Beyond the challenges faced in the construction and analysis of non-perturbative physical

QFT models, quantum field theory also remains an inspiring source of fascinating and deep

mathematics. In this section we will give a brief overview of the general mathematical methods,

on which our constructions and investigations rely.

3.1 Spectral theory of strongly-continuous unitary groups

The Wigner particle concept is defined in terms of the infinitesimal generators G = (H,P ) of

space-time translations. In the QFT setting, these generators are unbounded and only defined

on their respective domains. From this perspective it is mathematically not automatic that

objects such as the relativistic mass operator

M :=
√
H2 − P 2

1 − . . .− P 2
s (3.1.1)

are well defined. The existence of the generators, and the domain and self-adjointness properties

required to define (3.1.1) can be derived from the description of space-time translations as a

strongly continuous group of unitary operators

Definition 3.1.1. A map Rn 3 x 7−→ U(x) ∈ B(H ) defines a strongly continuous n-parameter

unitary group if for all x, x′ ∈ Rn,

U(x)U(x′) = U(x+ x′),

U(x)∗ = U(x)−1 = U(−x), (3.1.2)

lim
x→x′

U(x)Ψ = U(x′)Ψ ∀Ψ ∈H . (3.1.3)

Theorem 3.1.2 (Stone-Naimark-Ambrose-Godement (SNAG), [RS1] Thm. VIII.12). Every

strongly-continuous n-parameter unitary group Rn 3 x 7−→ U(x) can be uniquely represented by

a projection-operator valued measure E(∆) defined on Borel sets ∆ ⊂ Rn via

U(x) =

∫
dE(k) exp


i

n∑

j=1

xjkj


 , x = (x1, . . . , xn) ∈ Rn. (3.1.4)

The spectral measure E(∆) yields a decomposition of vectors Ψ ∈ H into their spectral

components. Equivalently one can define infinitesimal generators on a dense domain of vectors Ψ

by

GjΨ = lim
ε→0

U(εej)− 1
iε

Ψ =

∫
dE(k) kjΨ, (3.1.5)

where (ej)1≤j≤n denotes the canonical basis in Rn. In general the generators Gj are unbounded

operators, which are strongly commuting and essentially self-adjoint on a common U -invariant

dense domain of vectors DG. The joint spectral calculus of the Gj for Borel measurable
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f : Rn −→ C is conventionally written as

f(G) = f(G1, . . . , Gn) :=

∫
dE(k)f(k), (3.1.6)

so that in particular U(x) = eiG·x.

Theorem 3.1.3 (spectral theorem for strongly commuting families of self-adjoint operators

[RS1]). Let G = (G1, . . . Gn) be a family of strongly commuting self-adjoint operators.

(i) The joint spectral calculus (3.1.6) provides a continuous homomorphism from the ∗-algebra

of bounded Borel measurable functions g : Rn −→ C to the von Neumann algebra generated

by G1, . . . , Gn. That is,

g1(G) + λg2(G) = (g1 + λg2)(G),

g(G)∗ = g∗(G),

g1(G)g2(G) = (g1 · g2)(G),

‖g(G)‖ ≤ ‖g‖∞ .

(ii) If gj : Rn −→ C is a bounded family of measurable functions which converge pointwise to

g(x) := limj→∞ gj(x), then gj(G) converges to g(G) with respect to the strong operator

topology.

The generators Gk are often also physically significant as they can be interpreted as quantities

that are conserved under the action of U(x). When considering a local or wedge-local quantum

field theory on Minkowski space-time of dimension d := s+1, the generators of the representation

of space-time translations are most conveniently defined using the relativistic convention U(x) =

U(t,x) = eiHt−iP ·x, x = (t,x) ∈ Rs+1, to obtain the energy-momentum operators (H,P ) =

(H,P1, . . . Ps). We recall that one-particle states Ψ1 ∈H1 are eigenvectors of the Klein-Gordon

operator M2 = H2 − P 2. Clearly the eigenspaces for fixed mass m > 0, can be equivalently

written using the spectral measure as E(H,P )(Hm)H , where Hm := {(ωm(k),k) ∈ Rs+1 : k ∈
Rs} and ωm(k) :=

√
k2 +m2.

Let us conclude this section by discussing the application of the multivariate spectral calculus

in Haag-Ruelle theory. There it provides a natural method for solving the one-particle problem

by an explicit construction in terms of local or wedge-local operators.

Lemma 3.1.4 (basic Haag-Ruelle separation lemma). Consider a wedge-local quantum field

theory whose energy-momentum spectrum contains an isolated mass shell of mass m > 0, i.e.

H1 = E(H,P )(Hm)H 6= {0}. For any wedge W we consider vectors of the form

Ψ1 = g(H,P )AΩ (3.1.7)

with A ∈ A(W) and g ∈ C∞c (Rs+1). Then for supp g∩ (suppE(H,P ) \Hm) = ∅ we have Ψ1 ∈H1

and the subspace spanned by such Ψ1 is dense in H1.

Proof. Let Ψ′1 ∈ H1 be a given one-particle state and let ε > 0. Then by cyclicity of Ω for

A(W) there exists A ∈ A(W) s.t. ‖AΩ−Ψ′1‖ ≤ ε/2. Next we can approximate Ψ′1 to arbitrary

precision by vectors of finite-energy momentum of the form g(H,P )Ψ′1 with g ∈ C∞c (Rs+1)

satisfying supp g ∩ (suppE(H,P ) \Hm) = ∅ and g ≤ 1. Here we make use of the fact that we

can separate any compact subset ∆ ⊂ Hm from the remaining energy-momentum spectrum

suppE(H,P ) \Hm by such g = g∆ ∈ C∞c (Rs+1) satisfying g∆(p) = 1 for p ∈ ∆ and g∆(p) = 0
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on suppE(H,P ) \Hm, as can be shown by a mollification argument. The claims now follow from

the spectral calculus and Theorem 3.1.3: firstly we conclude from the support properties of g

and E(H,P ) that

g(H,P )AΩ =

∫
dE(ω,p) g(ω,p)AΩ

=

∫
dE(ω,p)1suppE(H,P )∩supp g(ω,p) g(ω,p)AΩ

=

∫
dE(ω,p)1Hm(ω,p)g(ω,p)AΩ

= (1Hm · g)(H,P )AΩ = 1Hm(H,P )g(H,P )AΩ

= E(Hm)g(H,P )AΩ, (3.1.8)

so that g(H,P )AΩ ∈ E(Hm)H .

Secondly we obtain from Theorem 3.1.3 (ii) similarly that g∆(H,P ) −→ E(Hm) strongly for

∆ ↗ Hm, so that for sufficiently large ∆ ⊂ Hm we have ‖g∆(H,P )AΩ− E(Hm)AΩ‖ ≤ ε/2.

Finally we can estimate

∥∥Ψ′1 − g∆(H,P )AΩ
∥∥ = ‖E(Hm)(Ψ1 − g∆(H,P )AΩ)‖
≤ ‖E(Hm)(Ψ1 −AΩ)‖+ ‖E(Hm)(AΩ− g∆(H,P )AΩ)‖ ≤ ε, (3.1.9)

establishing density of these one-particle vectors in E(Hm)H .

Here we have used only the cyclicity (HK5) and the spectral gap condition (HK6]), but

otherwise the argument is identical to the strictly local case. Let us note that the axiomatic

operator-algebraic approach itself does not provide much further structural information on the

state space H . Identity (3.1.7) is the first step for making the connection from the spectral

analysis of the Wigner particle content of a wedge-local QFT model to the localization structure

of observables A ∈ A(W). Together with the translation isomorphisms αx(A) := U(x)AU(x)∗

these are the central mathematical objects of the wedge-local operator-algebraic framework. But

in Lemma 3.1.4 the relation of the constructed vectors Ψ1 in terms of the space-time structure

provided by A(W) is not yet clear. Heuristically the choice of vectors AΩ, A ∈ A(W), and the

fact that the construction (3.1.7) can be accomplished with g ∈ C∞c (Rs+1) having a smooth

continuation outside the mass shell Hm implies that the wedge-localization information is not

completely destroyed when passing from AΩ to g(H,P )AΩ.

Lemma 3.1.5. Let f ∈ L1(Rs+1) and A ∈ A(W).

(i) The weak integral

A(f) := αf (A) =

∫
ds+1xf(x)αx(A) (3.1.10)

defines an element of the inductive limit ∪x∈Rs+1A(W + x)
‖·‖ ⊂ B(H ).

(ii) For rapidly decreasing f , A(f) is almost-wedge-local with respect to W in the following

sense: denoting by Wr ∈ RegW a wedge containing W + Cr there exists a family of

operators Ar ∈ A(Wr) (r > 0) converging rapidly to A(f). That is, for any N ∈ N there

exists a constant CN with

‖Ar −A(f)‖ ≤ CN
1 + rN

. (3.1.11)

Here Cr := {(t,x) ∈ Rs+1 : |t|+ |x| < r} denotes the standard double cone of radius r > 0.
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(iii) Due to translation-invariance of Ω we have

A(f)Ω = (2π)(s+1)/2f̂(H,P )AΩ. (3.1.12)

Proof. (standard) (i) follows by writing Ar := A(fr), where fr(x) := f(x)1Cr(x). Here Ar ∈
B(H ) is well defined due to continuity of αx(A) = U(x)AU(x)∗ with respect to the weak

operator topology. Further Ar ∈ A(Wr) because αx(A) ∈ A(Wr) for all x ∈ supp fr ⊂
Cr by covariance (HK2), isotony (HK1), and weak integration preserves this inclusion as

A(Wr) is weakly closed. The norm limit as r → ∞ exists due to ‖A(f)−A(fr)‖ ≤ ‖A‖ ·∥∥1Rs+1\Cr · f
∥∥
L1(Rs+1)

−→ 0 as r →∞ as a consequence of f ∈ L1(Rs+1), so that it is in the quasi-

wedge-local algebra associated to the centering of the localization wedge of A. For (ii) we note

that for rapidly decreasing f we have the stronger estimate
∥∥1Rs+1\Cr · f

∥∥
L1(Rs+1)

≤ CN/(1+rN ).

Finally, (iii) follows from the translation invariance of the vacuum by direct computation,

A(f)Ω =

∫
ds+1xf(x)αx(A)Ω =

∫
ds+1xf(x)U(x)AU(x)∗Ω

=

∫
ds+1xf(x)U(x)AΩ =

∫
ds+1xf(x)

∫
dE(k)eik·xAΩ

= (2π)(s+1)/2

∫
dE(k)AΩ

∫
ds+1x

(2π)(s+1)/2
f(x)eik·x

= (2π)(s+1)/2

∫
dE(k)AΩ f̂(k) = (2π)(s+1)/2f̂(H,P )AΩ, (3.1.13)

where (3.1.6) has been used twice and the integrations can be exchanged as a consequence of

the integrability of f(x)eik·x with respect to the product measure (due to integrability of f and

finiteness of the spectral measure).

Let us conclude this section by noting that (ii) and (iii) provide the theoretical background

for the construction of almost-wedge-local creation operators B = A(f). Namely we can take

f = (2π)(s+1)/2ǧ with g ∈ C∞c (Rs+1) and A ∈ A(W) as in Lemma 3.1.4: smoothness of g implies

that the inverse Fourier transform ǧ is rapidly decreasing so that Lemma 3.1.5 (ii) applies. An

interesting point of the two constructions is the fact that the operators g(H,P ) in Lemma 3.1.4

do not depend on g(k) for k 6∈ Hm due to the restrictions on supp g and suppE(H,P ) (and

thereby also A(ǧ)Ω due to (iii)), whereas the smeared operators A(ǧ) in general do depend on

g(k) also for k 6∈ Hm.

3.2 Spectral theory of automorphism groups

In Lemma 3.1.5 (iii) we have seen that the smearing operation (3.1.10) can be used to control the

energy-momentum spectrum of A(f)Ω. In fact, there holds a corresponding spectral restriction

also for the action of A(f) on the general spectral subspaces E(∆)H , ∆ ⊂ Rs+1. This can be

established by means of the Arveson spectral theory for automorphism groups of C∗-algebras

[Arv80] [BR1, Sec. 3.2.3]. Here we will briefly introduce the Arveson spectrum and describe its

application to Haag-Ruelle scattering theory.

Let A be a C∗-algebra, and let Rn 3 x 7−→ αx : A −→ A be an additive automorphism group of

A such that the smeared operators αf (A) as in (3.1.10) are well defined for all f ∈ S (Rn), A ∈ A.

In the present context this can be justified using the quantum field theory structure as sketched

in the proof of Lemma 3.1.5 (i), but in a general C∗-algebraic setting an additional continuity
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condition1 on the action of αx is required. Due to the bound ‖αf (A)‖ ≤ ‖A‖ ‖f‖L1(Rn), the

mapping α(A) : S (Rn) 3 f 7−→ αf (A) defines for each A ∈ A an operator-valued distribution,

whose Fourier transform can be defined by duality as the operator-valued distribution

α̂(A) : g 7−→ α̂g(A) := αǧ(A), (3.2.1)

where ǧ denotes the inverse Fourier transform of g ∈ S (Rn).

Definition 3.2.1 (Arveson spectrum). The Arveson spectrum SpA α of an operator A ∈ A with

respect to the automorphism group Rn 3 x 7−→ αx is defined as the support of the operator-valued

distribution S (Rn) 3 g 7−→ α̂g(A).

Proposition 3.2.2 (elementary properties of the Arveson spectrum). For A,B ∈ A we have

SpA+λB α ⊂ SpA α ∪ SpB α, (λ ∈ C), (3.2.2)

SpA∗ α = −SpA α, (3.2.3)

Spαx(A) α = SpA α, (x ∈ Rn), (3.2.4)

Spαf (A) α ⊂ SpA α ∩ supp f̂ , (f ∈ S (Rn)). (3.2.5)

Proof. The above relations on the supports of α̂(A) are consequences of corresponding elementary

relations for the Fourier transform (3.2.1), see e.g. [BR1, Lem. 3.2.38, 3.2.42].

For automorphism groups which are implemented by a strongly continuous unitary group x 7−→
U(x), i.e., αx(A) = U(x)AU(x)∗, the spectral transfer relation establishes a useful connection

between the Arveson spectrum of A ∈ A and the action of A on the spectral subspaces EG(∆)H
associated to the generators G = (G1, . . . , Gn) of U(x) = exp(ix ·G).

Lemma 3.2.3 (Spectral transfer relation). Let A ∈ B(H ). Then for any Borel set ∆ ⊂ Rn,

AEG(∆)H ⊂ EG(∆ + SpA α)H . (3.2.6)

Proof. Follows from [Arv80, Thm. 3.5], or see [BDN15, App. B].

Let us return to the setting of local or wedge-local quantum field theory and the analysis

of the action of A(f) with respect to energy-momentum spectral measure E(∆) := E(H,P )(∆).

From (3.2.5) and (3.2.6) we can infer that

A(f)E(∆)H ⊂ E(∆ + supp f̂)H , (3.2.7)

or equivalently

A(f)E(∆) = E(∆ + supp f̂)A(f)E(∆). (3.2.8)

When choosing ∆ = {0} this is clearly consistent with the computation of A(f)Ω carried out

in Lemma 3.1.5 (iii). Further we obtain analogously from (3.2.3) that

A(f)∗E(∆) = E(∆− supp f̂)A(f)∗E(∆). (3.2.9)

In the following we will also have compact ∆ ⊂ Rn and compactly supported f̂ so that the

closures inside the spectral projections can be dropped.

For quantum field theory the first conclusion is that the smearing operation can be used

to construct creation-operator approximants whose action and iterated action preserve the

1See e.g. [Arv80, p. 213 f.] or [BR1, Secs. 3.1.2 and 2.5.3].
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(non-closed) subspace of finite energy states. This is a prerequisite for the applicability of energy

bounds, which can be proven in local quantum field theories using the method of Buchholz as

described in Section 3.3.

As a second application which is important for Haag-Ruelle theory one may use the annihilation

relation (3.2.9) to obtain the clustering properties for massive creation-operator approximants

in models with lower mass gap using an argument found in [DG14; Dy14], cf. also [BF82, Sec. 3]

and [BDN15]. Here a refinement of the choice of the smearing function taken in Lemma 3.1.4 is

required.

Lemma 3.2.4. Consider a local or wedge-local quantum field theory with an isolated mass shell

Hm ⊂ suppE(H,P ). Let K ⊂ K ′ be compact subsets of Hm, such that K and Hm \ K ′ are

separated by a positive distance, and A ∈ A. Then there exists a Haag-Ruelle auxiliary function

χ ∈ S (Rs+1) such that

(i) A(χ)Ω ∈ E(K ′)H .

(ii) E(K)A(χ)Ω = E(K)AΩ.

(iii) A(χ)∗Ψ = Ω · 〈Ω, A(χ)∗Ψ〉 for all Ψ ∈ E(K ′)H , and in particular for Ψ = A(χ)Ω.

Proof. (i) and (ii) follow from Lemma 3.1.5 (iii) as one can construct χ̂ ∈ C∞c (Rs+1) satisfying

χ̂(k) = 1 for k ∈ K, and which has support in an arbitrarily small neighbourhood N ⊃ K. In

particular we can arrange due to the mass gap that N ∩ (suppE \Hm) = ∅ and similarly that

N ∩ (suppE \K ′) = ∅.
To obtain (iii) we see from (3.2.9) that

A(χ)∗Ψ = A(χ)∗E(K ′)Ψ = E(K ′ − supp χ̂)A(χ)∗E(K ′)Ψ

= E((K ′ − supp χ̂) ∩ V̄ +)A(χ)∗E(K ′)Ψ, (3.2.10)

where we used the spectral condition (HK6). Hence it only remains to show that there exists

a sufficiently small neighbourhood N ⊃ K within which to construct χ̂ as above, such that

(K ′ − N) ∩ Hµ = ∅ for all µ ≥ m, where m denotes the lower mass gap of the theory as

in (HK6]). For this we can make the ansatz N := K + N0, where N0 ⊂ Rs+1 is some

compact neighbourhood of zero energy-momentum. Now (K−K ′) \ {0} contains only space-like

vectors due to the geometry of the relativistic mass shell. Therefore K −K ′ is disjoint from

∪µ≥mHµ ⊃ suppE\{0} and by compactness of K−K ′ these two sets are separated by a positive

distance δ > 0. Hence we have for sufficiently small neighbourhoods N0 of zero and N = K+N0

that (K ′ − N) ∩ suppE = {0} and if required we can further shrink N0 to assure that the

restrictions from (i) are satisfied. Hence for χ̂ ∈ C∞c (Rs+1) satisfying χ̂(k) = 1, supp χ̂ ⊂ N

the final claim (iii) follows from (3.2.10), the Haag-Ruelle mass gap condition (HK6]) and the

uniqueness of the vacuum (HK4).

The clustering relations B1τ (f1)∗B2τ (f2)Ω = Ω · 〈Ω,B1τ (f1)∗B2τ (f2)Ω〉 for creation-operator

approximants constructed in terms of Bk = Ak(χ) with χ as above follow from Lemma 3.2.4 (iii)

by a direct computation.

3.3 Spectral analysis of local operators

Energy bounds provide a general strategy for obtaining control over unbounded operators, which

have the special property of becoming norm bounded when restricted to subspaces of finite

energy-momentum E(∆)H , (∆ ⊂ Rs+1 bounded). With the method of Buchholz [Bu90a], such
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energy bounds can be established in the context of local Haag-Kastler nets for energy decreasing

almost-local operators as a consequence of locality and the C∗-property ‖A∗A‖ = ‖A‖2. The

analysis of Buchholz is based on two versatile central lemmas, which are an important tool

in many modern treatments of scattering theory in local QFT. In the present section we will

use the standard abbreviations A(t,x) := α(t,x)(A) and A(x) := α(0,x)(A) for (t,x) ∈ Rs+1 and

A ∈ B(H ).

Lemma 3.3.1 ([Bu90a], Lemma 2.1). Let B ∈ B(H ), n ∈ N, and denote by Pn the orthogonal

projection onto the kernel of Bn. Then

‖BPn‖2 = ‖PnB∗BPn‖ ≤ (n− 1) ‖[B,B∗]‖ . (3.3.1)

Proof. By definition we have ‖P1B
∗BP1‖ = ‖BP1‖2 = 0, and the result follows by induction

‖PnB∗BPn‖ = ‖BPn‖2 = ‖Pn−1BPn‖2 ≤ ‖Pn−1B‖2 = ‖Pn−1BB
∗Pn−1‖

≤ ‖Pn−1B
∗BPn−1‖+ ‖[B,B∗]‖ ≤ (n− 2) ‖[B,B∗]‖+ ‖[B,B∗]‖ .

Lemma 3.3.2 ([Bu90a], Lemma 2.2). Let K ⊂ Rs+1 compact, B ∈ B(H ) and denote by Pn
the orthogonal projection onto the intersection of the kernels of the n-fold products of space-like

translated operators B1(x1) . . . Bn(xn) for any configuration of x1, . . .xn ∈ Rs. Then

∥∥∥∥Pn
∫

K
dsx (B∗B)(x)Pn

∥∥∥∥ ≤ (n− 1)

∫

K−K

dsx ‖[B∗, B(x)]‖ . (3.3.2)

These bounds also enable a refined analysis of the spectral structure of the automorphisms

of space-like translations [Bu90a; Dy10; Hrd14]. For scattering theory the method has been

successfully applied in various contexts. Some examples are the massless scattering theory [DH14;

AD17; Du17], Haag-Ruelle theory for embedded mass shells [Dy05; Hrd13; Du17], the analysis

of Araki-Haag detectors [Bu90a; DyG13; Du13], and applications in the theory of particle

weights [BPS91].

For the Reeh-Schlieder-based construction the strengthened bound (3.3.2) has been used

[Du17], but the proof of this bound is more elaborate and will not be reviewed here. Let us now

briefly discuss the basic strategy of the derivation of τ -uniform energy bounds for the standard

creation-operator approximants

Bτ (f) :=

∫
dsxf(τ,x)B(τ,x), (3.3.3)

where f is a regular Klein-Gordon solution for m > 0, B = A(χ) with χ ∈ S (Rs+1) whose

Fourier transform χ̂ is compactly supported inside the interior of V̄ +, and A ∈ A(O) for some

bounded region O ⊂ Rs+1. We recall that the direct estimate (cf. also Section 3.5)

‖Bτ (f)‖ ≤ ‖A‖ ‖χ‖L1(Rs+1) ‖fτ‖L(Rs) ≤ C(1 + |τ |s/2) (3.3.4)

becomes trivial in the scattering theoretic limits τ → ±∞.

Proposition 3.3.3. For any compact ∆ ⊂ Rs+1 we have ‖Bτ (f)E(∆)‖ ≤ C∆ with C∆ inde-

pendent of τ ∈ R.
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Proof. First we use the energy-momentum transfer relation to write

‖Bτ (f)E(∆)‖ = ‖E(∆ + supp χ̂)Bτ (f)E(∆)‖
≤ ‖E(∆ + supp χ̂)Bτ (f)‖ = ‖Bτ (f)∗E(∆ + supp χ̂)‖ . (3.3.5)

Setting ∆′ := ∆ + supp χ̂ we apply Lemma 3.3.1 to the energy-decreasing operator B := Bτ (f)∗

and obtain

‖BPn‖2 ≤ (n− 1) ‖[B,B∗]‖ = (n− 1) ‖[Bτ (f)∗,Bτ (f)]‖ . (3.3.6)

To establish the energy bound it remains to show that E(∆′) ≤ Pn for sufficiently large n

(depending on ∆ and supp χ̂), and that the commutator norm can be uniformly bounded in τ .

For the former we note that as a consequence of the energy-momentum transfer relation and

the spectral condition (HK6) we have

BnE(∆′) = E(∆′ −
∑

n

supp χ̂)BnE(∆′) = E(V̄ + ∩ (∆′ −
∑

n

supp χ̂))BnE(∆′), (3.3.7)

which vanishes for sufficiently large n by compactness of ∆′ and using the fact that χ̂ is by

assumption compactly supported at strictly positive energies. Hence we have for sufficiently

large n that E(∆′)H ⊂ kerBn = PnH and

‖Bτ (f)∗E(∆ + supp χ̂)‖ = ‖Bτ (f)∗PnE(∆ + supp χ̂)‖ ≤ ‖Bτ (f)∗Pn‖ . (3.3.8)

Finally, to estimate the commutator we write

‖[Bτ (f),Bτ (f)∗]‖ ≤
∫

dsx dsy |f(τ,x)| |f(τ,y)∗| ‖[B(τ,x), B(τ,y)∗]‖

≤ ‖fτ‖∞
∫

dsx dsy |f(τ,x)| ‖[B,B∗(0,y − x)∗]‖

≤ ‖fτ‖∞
∫

dsx dsy′ |f(τ,x)|
∥∥[B,B∗(0,y′)∗]

∥∥

= ‖fτ‖∞ ‖fτ‖L1(Rs)

∫
dsy′

∥∥[B,B∗(0,y′)∗]
∥∥

≤ Cf,χ(1 + |τ |)−s/2 · (1 + |τ |s/2) ‖B‖2 ≤ C ′ ‖B‖2 ,

where we used the standard estimates for regular Klein-Gordon solutions and the integrability

of ‖[B,B∗(0,y′)∗]‖ ≤ Cχ̂N ‖B‖
2 (1 + |x′|)−N for sufficiently large N .

Remark 3.3.4. The energy bounds of Proposition 3.3.3 can also be derived as in [Bu90a] by

making use of deeper results from [Bu90a] on the Fourier transform of the space-like translates

αx(A) of local operators A ∈ A(O).

3.4 Tomita-Takesaki modular theory

The Tomita-Takesaki modular theory is an essential tool in the theory of von Neumann algebras.

Let M ⊂ B(H ) be a von Neumann algebra and Ω ∈ H and be a vector which is cyclic and

separating for M. In this general context the modular theory provides an important emergent

symmetry structure.
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Definition 3.4.1 (modular objects). Using the adjoint ∗-operation on M one obtains via

S :

{
MΩ −→MΩ

AΩ 7−→ A∗Ω
(3.4.1)

a closable unbounded operator. The polar decomposition S = J∆1/2 yields the antiunitary

modular conjugation J and the positive modular operator ∆.

Details can be found e.g. in [BR1, Sec. 2.5] or [KR2, Sec. 9.2]. For our purposes we will only

require the fundamental Tomita-Takesaki theorem, which justifies the importance of the above

construction.

Theorem 3.4.2 (Tomita-Takesaki).

JMJ = M′, ∆iτM∆−iτ = M (∀τ ∈ R). (3.4.2)

Proof. See [BR1, Sec. 2.5].

Tomita-Takesaki theory has found various fruitful applications to QFT in the operator

algebraic approach, see e.g. [BW75; BDL90; Bor95; Bor00; BGL02; BL04]. In the wedge-local

multi-particle scattering theory, modular theory provides a method to obtain a dense subspace of

vectors HW ⊂H which satisfy the wedge swapping symmetry for any given wedge W ∈ RegW .

More precisely, for Ψ ∈HW there exist A ∈ A(W) and A⊥ ∈ A(W ′) such that

Ψ = AΩ = A⊥Ω. (3.4.3)

This symmetry is a central ingredient for justifying the construction of ordered multi-particle

scattering states and for proving their Fock structure in the general wedge-local setting.

Let us briefly describe the argument establishing the existence of swappable Ψ in general

wedge-local models. For A = A∗ ∈M := A(W) we have formally2

AΩ = A∗Ω = SAΩ = J∆1/2AΩ = J∆1/2A∆−1/2JΩ, (3.4.4)

and the linear combinations of the vectors Ψ = AΩ are dense by cyclicity of Ω for M. For a

suitable weakly dense set of A ∈M one can proceed to show that A1 := ∆1/2A∆−1/2 defines an

element of M (here one has to take into account that ∆ is unbounded and that (3.4.2) requires

τ ∈ R). Then we obtain from the Tomita-Takesaki theorem A⊥ := JA1J ∈M′, and the wedge

duality condition (HK2]) yields A⊥ ∈ A(W)′ = A(W ′) as required to establish the swapping

symmetry.

3.5 Stationary phase analysis

The original Haag-Ruelle estimates for the construction of two- and multi-particle scattering

states have been significantly strengthened by Hepp [Hep65; Hep66], by taking into account the

propagation geometry of Klein-Gordon wave packets. Geometrical propagation estimates for

regular Klein-Gordon solutions can be established using standard stationary- and non-stationary

phase techniques, and have been first worked out by Ruelle [Ru62, Sec. 3].

2I am grateful to Detlev Buchholz for pointing out this argument.
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The stationary phase analysis is a method to establish bounds on the asymptotics of integrals

of the form ∫
dsk eiξω(k)u(k) (3.5.1)

as a function of ξ > 0 in the oscillatory regime of large ξ. Typical assumptions are u ∈ C∞c (Rs)
and ω : Rs −→ R being arbitrarily often differentiable on the support of u. In many practical

applications the analysis of (3.5.1) can be reduced to two basic estimates concerning the special

cases that the phase function ω has no critical point or a single critical point k0 ∈ Rs with

invertible second derivative on the support of u.

Lemma 3.5.1 (non-stationary phase estimate, [RS3], Thm. XI.14). Let the phase function

ω : Rs −→ R be arbitrarily often differentiable, u ∈ C∞c (Rs), and ∇ω(k) 6= 0 for all k ∈ suppu.

Then for any ξ ∈ R
∣∣∣∣
∫

dsk eiξω(k)u(k)

∣∣∣∣ ≤ CN (1 + |ξ|)−N ‖u‖CN (Rs) , (3.5.2)

where the constants CN can be chosen uniformly for all functions u ∈ C∞c (Rs) with support in a

fixed compact set K ⊂ Rs, and ‖u‖CN (Rs) := supx∈Rs
∑

α∈Ns0,|α|≤N |∂
αu(x)|.

Lemma 3.5.2 (stationary-phase estimate, [RS3], Thm. XI.15). Let the phase function ω :

Rs −→ R be arbitrarily often differentiable, u ∈ C∞c (Rs). Assume that ∇ω(k) 6= 0 for all

k ∈ suppu \ {k0} with the exception of one stationary point k0 ∈ suppu, ∇ω(k0) = 0, with

invertible second derivative D2ω(k0). Then

∣∣∣∣
∫

dsk eiξω(k)u(k)

∣∣∣∣ ≤ C(1 + |ξ|)−s/2 ‖u‖CN (Rs) , (3.5.3)

for some N > s/2 and with C depending on ω.

It is instructive to begin by visualizing the geometrical meaning of the different regimes of

the Klein-Gordon stationary-phase estimates by a simple example using the classical dynamics

of free classical point particles.

Remark 3.5.3 (propagation of classical point particles). The classical trajectory of a point

particle passing through a point x0 ∈ Rs at time t = 0 with non-relativistic velocity v ∈ Rs
is given by x(t) = x0 + tv, t ∈ R. If only the initial positions and velocities are known to be

constrained within some given sets X0 ⊂ Rs and V ⊂ Rs, respectively, we get simply

x(t) ∈ X0 + tV. (3.5.4)

Finally for scattering theory we are interested in large |t|. In this regime there is a simple trick

which allows to assume X0 = {0}. Using that velocities are at most equal to the speed of light,

V ⊂ B1(0), and X0 ⊂ BR(0) for some R > 0, we simply pass to a slightly larger neighbourhood

(δ > 0)

Vδ := {w ∈ Rs : ∃v ∈ V : |w − v| < δ} = V + Bδ(0). (3.5.5)

Then we have for sufficiently large t ≥ T0 := T0(X0, δ) := R/δ that x(t) ∈ tVδ. This provides

a heuristic explanation for the enlargement of the essential support regions in the following

Lemma 3.5.4.

With this example in mind let us return to regular positive-energy Klein-Gordon solutions

f(t,x) :=

∫
dsk eik·x−iωm(k)tf̃(k), f̃ ∈ C∞c (Rs), ωm(k) :=

√
k2 +m2. (3.5.6)
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Figure 3.1: Velocity supports and classical propagation region.

Setting ξ := t inspection of the phase function ωx/t(k) := k · x/t− ωm(k) shows that it is free

of critical points on the support of the integrand when evaluated for parameters (t,x) ∈ Rs+1

satisfying
x

t
6∈
{

k

ωm(k)
∈ Rs : k ∈ supp f̃

}
=: Vf . (3.5.7)

Comparison to Remark 3.5.3 shows that Vf can be interpreted as a set of velocities and from

this we may expect |f(t,x)| to decay rapidly outside the propagation region

Υf := {ξ · (ωm(k),k) ∈ Rs+1 : k ∈ supp f̃ , ξ ∈ R}. (3.5.8)

For uniform decay estimates it is helpful to introduce the uniformly enlarged neighbourhoods

Υ
[δ]
f := {ξ · (1,v′) ∈ Rs+1 : v′ ∈ Vδ

f , ξ ∈ R}, where Vδ
f := Vf + Bδ(0), (δ > 0), (3.5.9)

and Bδ(0) ⊂ Rs denotes the centered open ball of radius δ.

Lemma 3.5.4 (Klein-Gordon estimates). Let f be a regular positive-energy solution of the

Klein-Gordon equation for mass m > 0 of the form (3.5.6) and let δ > 0.

(i) |f(t,x)| ≤ CN,δ(1 + |t|+ |x|)−N for all (t,x) ∈ Rs+1 \Υ
[δ]
f and any N ∈ N.

(ii) |f(t,x)| ≤ Cf (1 + |t|)−s/2 for all (t,x) ∈ Rs+1.

Proof. Estimate (ii) is established in [RS3, Thm. XI.17]. For (i) see e.g. [A, Sec. 5.3].

The geometric bound (ii) is of particular significance for Haag-Ruelle theory. It can be used to

prove commutator estimates for creation-operator approximants with rapid asymptotic decay

via the Hepp strategy, if the corresponding velocity supports are disjoint or suitably ordered.

45
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In this section we will briefly review related and relevant works, which provide the wider scientific

context and potential applications for our results. We will begin with a short summary of

motivations for the axiomatic and wedge-local perspectives, and comment on the important role

of the wedge-local view-point in the more recent operator-algebraic approach to constructive

quantum field theory [Le15]. Within this wedge-local constructive programme the existence

of a large classes of integrable QFT models in two dimensions has been established, and also

constructions for wedge-local theories in higher dimensions are available in the literature.

4.1 Emergence of the wedge-local perspective

Let us begin with a brief description of influential general results which highlight the importance

of wedge algebras in QFT. The first appearance of operator algebras A(W) associated to

wedge-regions W in axiomatic quantum field theory is found in the work of Bisognano and

Wichmann [BW75]. They compute the modular objects J and ∆ as defined in Section 3.4 for

wedge algebras A(W) which are generated by a Wightman field φ(f). In this case the action of

the modular objects is geometric, and for W =Wr explicitly given by the Bisognano-Wichmann

property

∆iτ = U(Λ2πτ ),

J = ΘU(R1(π)),
(BW)

where U denotes the representation of the Lorentz group of the Wightman QFT, Λβ are the

standard Lorentz boosts (1.3.9) with rapidity β ∈ R, Θ denotes the PCT operator of the

Wightman theory and R1(π) is the rotation by π about the x1-axis. The main objective of

[BW75] was the verification of Haag duality A(O)′ = A(O′). For regions O ⊂ Rs+1 which

are intersections of wedges, duality of the corresponding intersection algebras is inferred via

wedge-duality (HK2]) and this is the point where (BW) enters. One should mention that the

modular objects for bounded space-time regions O ⊂ Rs+1 are in general unknown. There are

some notable exceptions such as the computation of the modular objects for the massless free

field by Hislop and Longo [HL82], cf. [Bor00] and references therein. For wedge regions the

situation is much better: the fact that the arguments of Bisognano and Wichmann apply for

interacting Wightman theories suggest that (BW) is an important general structural property

of quantum field theory which holds in all reasonable and physically relevant models.

Moving ahead to the general two-dimensional operator-algebraic formulation, Borchers [Bor92]

has established a far-reaching generalization of (BW). He investigated the setting of the modular

objects of an abstract von Neumann algebra M together with a unitary group ξ 7−→ U(ξ) which

satisfies U(ξ)M ⊂M for ξ > 0 and has a positive generator. In this context he established the

commutation relations

∆iτU(ξ)∆−iτ = U(e2πτξ), JU(a)J = U(−a), (4.1.1)
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on general grounds. Here, the requirements imposed on U can be seen as an abstraction of the

properties of light-like translations ξ 7→ U(ξ, ξ) acting on a wedge algebra M = A(Wr). This

explains the connection to (BW), as in the latter setting the relations (4.1.1) are consequences of

(BW). These results of Borchers also mark the beginning of the investigation of wedge-local nets

in their own right, going beyond the study of wedge algebras in the context of the Wightman or

local Haag-Kastler frameworks.

Yet the relations (4.1.1) are in essence weaker properties compared to (BW), as they are

independent of the Lorentz covariance and the geometric action of the modular group, see

[Bor00, Sec. 3] and references otherein. The latter modular covariance property has important

physical implications in the operator-algebraic formulation, such as the spin-statistics connection

[GL95].

In the scattering-theoretic context perhaps the most interesting and important general insight

motivating the study of wedge-local observables and the corresponding operator algebras is

the discovery of wedge-local polarization-free generators in interacting models. In integrable

interacting quantum field theories they were identified by Schroer [Sch99; SW00], and a

subsequent general existence result was obtained with Borchers and Buchholz [BBS01].

Definition 4.1.1 (Polarization-free generator). Consider a local or wedge-local QFT with

one-particle space H1. A polarization-free generator (PFG) is a closable operator G such that

(1) GΩ ∈H1 \ {0},

(2) G is affiliated to A(O) for some (possibly unbounded) region O ⊂ Rd.

In other words, G creates one-particle states from the vacuum and is non-trivially localizable.

A basic example of a PFG is a smeared scalar free Wightman field φ0(f) evaluated for a

compactly supported test function f ∈ C∞c (Rd). On the other hand, in interacting theories this

simple example with bounded localization appears to be in conflict with a classical theorem

of Jost and Schroer [SW, Thm. 4.15], cf. [Mun12]. Remarkably it can be shown that PFG

which are wedge-local always exist in any local or wedge-local quantum field theory, as long as

the Bisognano-Wichmann condition (BW) is satisfied [BBS01]. At the same time the authors

caution the reader that PFG will in general have rather complicated domains. The PFG should

further be expected to be mathematically less regular than free quantum fields, and for the

clarification of this issue a tentative notion of well-behaved PFGs has been investigated in

[BBS01].

Definition 4.1.2 (temperate PFG). A PFG G is temperate iff its domain D(G) is invariant

under the action of space-time translations U(x), and for any Ψ ∈ D(G) the norm of the vector-

valued function x 7−→ GU(x)Ψ, (x ∈ Rd), is bounded by some polynomial in |x|c := |x0|+ |x|.

Non-temperateness is a serious obstruction for the scattering-theoretic analysis in terms of

the PFG. Yet only non-temperate polarization free generators are compatible with interaction

in higher dimensional local QFT, with the exception of two-dimensional interacting models

without particle production [BBS01]. And even in theories without particle production, non-

temperateness may appear, posing a difficult challenge for the construction of wedge algebras

[CT15]. Let us conclude by noting that our presently developed wedge-local scattering theory is

formulated in terms of bounded wedge-local observables, so that our results apply also in the

non-temperate situation.
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4.2 Constructive wedge-local QFT

It appears evident that the class of wedge-local theories is strictly larger than the class of wedge-

local theories which can be obtained from an underlying local Haag-Kastler net, cf. [LTU17].

The recent literature points to the fact that the wedge-local setting is more flexible in comparison

to the local framework of quantum field theory, and that wedge-local models are more accessible

for direct and rigorous constructions. The most notable family of models, which appears to

be naturally accommodated by the wedge local setting are the two-dimensional integrable

quantum field theories with factorizing S-matrices, which have been intensely studied in the

physics literature, see [AAR] and references therein. To illustrate the domain of applicability of

the wedge-local scattering theory, we will describe a few examples of such constructions. The

detailed reviews of Lechner and Summers [Le15; Sum12] contain most relevant references from

the literature. Hence we will only describe some important concepts and ideas.

4.2.1 Direct constructions of wedge-local nets

One of the first direct constructions of wedge-local theories appeared in the context of the

theory of standard subspaces of Brunetti, Guido and Longo [BGL02]. Here a wedge-local second

quantized net is constructed in a canonical way for any given positive-energy representation of

the Poincaré group. In this case there are also general arguments to show that intersections of

wedge algebras corresponding to space-like cones are also non-trivial and act cyclically on the

Fock vacuum.1

In particular in space-time dimension two, important examples of interacting wedge-local

nets can be directly constructed in a very explicit way in terms of polarization-free generators

[Sch99; Le03]. In this approach the input is the two-particle S-matrix. The classification and

construction of such two-particle S-matrices with the required properties has been a central

topic in the form-factor programme.2 Wedge algebras can be generated similarly as for free

quantum fields,

A(W`) := {eiφ(f), f ∈ S (R2), supp f ⊂ W`}′′, (4.2.1)

and similarly for translates W` + x, (x ∈ R2) of the left wedge W` = Wr
′ = −Wr. Here the

explicit ansatz for polarization-free generators recognized by Schroer is given by

φ(x) =

∫
dθ
(

eipµ(θ)xµz∗(θ) + e−ipµ(θ)xµz(θ)
)
, (4.2.2)

where pµx
µ := p0x0 − p1x1, and pµ(θ) := m(cosh θ, sinh θ). The single difference in comparison

to the ordinary scalar free field is that the bosonic creation-annihilation operator-distributions

have been replaced by the Zamolodchikov-Faddeev generators z(θ) defined by the relations

(θ, θ′ ∈ R),

z(θ)z(θ′) = S2(θ − θ′)z(θ′)z(θ),
z∗(θ)z∗(θ′) = S2(θ − θ′)z∗(θ′)z∗(θ),
z(θ)z∗(θ′) = S2(θ′ − θ)z∗(θ′)z(θ) + δ(θ − θ′). (4.2.3)

1In some cases the localizability can be further improved to cyclicity of the vacuum for the intersection algebras
of bounded regions, but for infinite-spin representations satisfying the Bisognano-Wichmann property it has
been shown that one cannot go beyond localization in space-like cones [LMR16].

2Many examples of such S-matrices have been constructed, see [AAR] and references therein. In the scalar case
there even exists a complete classification, see [Le06], Sec. 3 and App. A.
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The wedge-local theory is then constructed on the representation within the unsymmetrized

Fock space. This representation contains the Fock vacuum Ω and can be used to construct the

exponentiated generators. Thus the weak closure in (4.2.1) yields a von Neumann algebra for

which Ω is cyclic and separating, if the S2-function has a holomorphic extension to the physical

strip R + i(0, π) [Le03].

Precisely at the transition to the operator-algebraic description the wedge-local perspective

enters and has to be justified. By explicit computation the field operators (4.2.2) appear to be

completely delocalized unless S2(θ) = 1 for all θ ∈ R. Still, Schroer realized that φ(x) can be

interpreted as localized in W` + x, for the reason that in the vacuum Hilbert space there also

exists a corresponding reflected field

φ′(x) = Jφ(−x)J (4.2.4)

satisfying

[φ(x), φ′(y)] = 0 for any y − x ∈ Wr. (4.2.5)

Here the antilinear involution J is defined via its action on improper states

Jz∗(θ1) . . . z∗(θn)Ω := z∗(θn) . . . z∗(θ1)Ω. (4.2.6)

As consequence of the existence of the reflected field one obtains that Ω is separating for A(W`).

In other words, φ′ generates corresponding von Neumann algebras A(Wr + x) which commute

with A(W` + x) [Le03; Le06].

The analysis of these models can be carried much further. Locality is established by showing

that Ω is also cyclic for the intersection algebras A(W` ∩ (Wr + x)) := A(W`) ∩ A(Wr + x),

(x ∈ W`). This is accomplished using advanced operator-algebraic techniques [BDL90; BL04;

Le06]. A notable point in these constructions is that the local observables enter the wedge

algebras with the weak closure operation (4.2.1). This is seen e.g. in wedge-local operator

expansions [BC13]. Explicit examples of local operators have been constructed and can be

characterized in terms of their expansion with respect to the Zamolodchikov generators [BC18].

For the known tractable examples the algebraic structure of wedge-local operators appears to

be mathematically simpler. In this regard it is important to understand which physical features

of QFT models are contained in the general wedge-local description.

Constructions of integrable models with more general particle spectra and non-scalar S-

matrices have been initiated out by Lechner, Schützenhofer, and Alazzawi [LS14; Ala14; AL17].

Their approach also requires analyticity of the two-particle S-matrix in the physical strip.

This class of scattering data is claimed to contain many physically interesting theories such

as the Sinh-Gordon [Le06] or O(n)-symmetric nonlinear sigma models studied in [Ala14]. As

the two-particle S-matrix is the defining input, one also obtains many models for which no

corresponding Lagrangian is known. The correspondence between models with a Lagrangian

description and the suitable factorizing S-matrices does not seem to be established with full

mathematical rigour. The proof of locality in such theories has so far been completed for scalar

models with S(0) = −1 [Le08] (cf. [Ala14]), and for certain “diagonal” tensor models with

analogous antisymmetry at zero rapidity [AL17], establishing non-triviality of A(CR) up to

double cone regions CR with certain minimal radius R > R0 > 0. Locality up to R0 = 0 has

been shown for a class of generalizations of the Federbush model [Tan14].

Many examples of the discovered S-matrices from the form factor programme also contain

isolated poles in the physical strip, which are physically interpreted as the presence of bound

states. For such models the ansatz (4.2.2) will no longer work. Cadamuro and Tanimoto

constructed a compensating bound-state operator χ(f) which restores wedge locality of φ̃(f) :=
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φ(f) + χ(f) at the level of weak commutation on a suitable domain. These new wedge-local

fields are more singular compared to the Zamolodchikov generators used by Lechner. Together

with their reflections the φ̃(f) are no longer temperate and many technical challenges arise in the

construction of wedge-algebras, e.g. bounded functions such as exp(iφ̃(f)) are difficult to define

[CT15]. More precisely, the problems of constructing self-adjoint extensions and establishing

their strong commutativity have to be addressed [Tan16]. These constructions are particularly

interesting as non-temperate polarization-free generators would also arise in non-integrable

models with particle production or in higher dimensional theories [BBS01]. Hence progress in

this direction can be expected to provide more experience and relevant technical tools for novel

operator-algebraic constructions, and can be seen as important step towards non-integrable and

higher-dimensional theories.

In the literature wedge-local and other partially localizable fields have also been investigated

on higher-dimensional Minkowski space-time. Buchholz and Summers studied a scalar fermionic

model and explicitly construct observables localized in wedge-regions as well as with localization

in wedge-intersectionsW∩(W ′+x), with x ∈ W [BS07]. Another interesting class of wedge-local

models has been constructed and studied by Grosse and Lechner [GL07], see Section 1.3.2.

They explicitly computed the two-particle S-matrix using Haag-Ruelle theory and discovered

that the matrix elements carry a non-trivial phase factor, which shows that these models are

interacting quantum field theories. There are further explicit expressions for higher correlation

functions [GL07], but it was not yet clear whether these correlations can be interpreted in terms

of scattering reactions.

There are various arguments which support that the Grosse-Lechner models in higher di-

mensions are genuinely wedge-local. That is, intersections of algebras over families of wedges

resulting in compact regions are expected to be small or trivial [BLS11]. The problem of

concretely determining the intersection algebras

A(Wr) ∩ A(Wr
′ + x), (x ∈ Wr) (4.2.7)

is still open even in two-dimensional Grosse-Lechner models. Buchholz and Summers [BS07]

have shown that in the case of the Ising model the size and structure of intersections of two

opposite wedge algebras depends on the dimension of space-time. The insights of [GL07] also

inspired a larger body of research on deformation constructions in wedge-local quantum field

theory, which is briefly discussed below.

4.2.2 Construction of wedge-local QFT via deformations

Buchholz and Summers have shown that the model of Grosse and Lechner can be re-expressed

as a deformation of the scalar free field theory on the operator algebraic level. The remarkable

aspect of the deformation procedure is that it can be formulated entirely in terms of the

general wedge-local structure [BS08; BLS11]. In this form it can be applied to any given

wedge-local net (A0(W), α,Ω) to define a continuous family of new inequivalent wedge-local

theories (AQ(W), α,Ω) for any admissible Q (see (1.3.21)). An essential ingredient of the

construction is the warped convolution

AQ :=

∫
dE(H,P )(p) αQp(A), (4.2.8)

formally written here as an oscillatory operator-valued integral [BS08], where A ∈ A0(W). Due

to the operator valued integrand, the integration with respect to the energy-momentum spectral

measure E(H,P ) goes beyond standard spectral calculus. A rigorous definition of (4.2.8) yielding
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AQ ∈ B(H ) for suitably regular A ∈ Areg(W) ⊂ A(W) can be given using oscillatory integral

techniques [BLS11], and it can be shown that the von Neumann algebras

AQ(W) := {AQW , A ∈ Areg(W)}′′, (4.2.9)

with QW as in Section 1.3.2, satisfy the required commutation relations to define a new wedge-

local net. Again at the level of the two-particle scattering matrix computed using Haag-Ruelle

theory, the inequivalence can be seen as the deformed S-matrix acquires an additional phase

factor relative to the undeformed two-particle S-matrix.

Subsequently more general deformations of (free) Wightman fields leading to various modifica-

tions of the scattering matrix have been found [Le12]. Another operator-algebraic approach based

on Longo-Witten endomorphisms [LW11] has been used to construct interesting two-dimensional

massless theories, some of which even display features in the scattering data resembling particle

creation [BT13]. The problem of constructing wedge-local massive models featuring particle

production in scattering reactions is a difficult but important open question.

Finally the deformation approaches also convey a very valuable pedagogical message about

quantum field theory: in these constructions the time evolution and the Hamiltonian are

taken over unchanged from the undeformed theory, and in the simplest cases the latter is

non-interacting. Hence one may perceive it as puzzling that the new theories exhibit non-trivial

scattering without requiring modification of the free time evolution. This strongly reinforces

the old wisdom that the physically relevant data are contained in the algebraic structure of the

observables of a theory and the relevance of their localization properties [Ha, Chap. III].

4.2.3 Construction of wedge-local product theories and asymptotic completeness

The free product construction for von Neumann algebras has been applied to construct novel

products of wedge-local models in the work of Longo, Tanimoto and Ueda [LTU17]. These

authors show that local algebras constructed from free product algebras with infinitely many

identical factors must be trivial. It appears to be unknown whether finite free product models

can contain non-trivial strictly local subtheories in the wedge-local setting, as discussed in

[LTU17, Sec. 5].

The free product construction also illustrates an interesting aspect of wedge-local scattering

theory: in the free product theory of two massive free fields, the incoming and outgoing

velocity-ordered two particle scattering states with one-particle vectors from different factors

are orthogonal. Due to the simple geometric characterization of the outgoing and incoming

two-particle scattering states, one may conclude a failure of asymptotic completeness of velocity-

ordered two-particle states in these models [LTU17]. The insights obtained from these examples

provided significant motivation to carefully define the wedge-local wave operators on velocity

ordered Fock spaces, as explained in Section 2.1.3.

4.3 Scattering for particles with embedded mass shells

The scattering theory for quantum fields as originally developed by Haag, Ruelle and Hepp

[Ha58; Ru62; Hep65] provided the first mathematically rigorous construction of scattering states

in axiomatic quantum field theory. One notable motivation in this construction came from the

fact that an interacting quantum field theory can give rise to bound states of particles, and in

this case there are no corresponding “elementary fields” describing these composite particles.

This suggests that the collision theory should be constructed and analyzed in an axiomatic

setting.
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In the Haag-Kastler framework the basic Haag-Ruelle construction makes use of almost-

local B ∈ A =
⋃
O∈Regb

A(O)
‖·‖

which create one-particle states from the vacuum, that is

BΩ ∈ E(Hm)H . The construction of such B via space-time smearing and spectral calculus for

particles with isolated mass shells is well known, see Section 3.1, or [Hep66, § 5.] for a discussion

within the Wightman framework.

The basic smearing argument can also be successful for theories with more general particle

spectra. In this case a natural approach is to make use of more refined information about the

algebraic structure of the observables of the model. Doplicher, Haag and Roberts [DHR69,

Sec. VII] construct collision states for one-particle states having mass shells isolated within

the corresponding localizable superselection sector. It was later recognized by Buchholz and

Fredenhagen that the localizability assumption is not required. They established localizability in

space-like cones for any charged representation of the quasilocal algebra whose energy-momentum

spectrum is bounded from below by an isolated mass shell [BF82].

The first construction of scattering states for particles with embedded mass shells was given

by Herbst [Hrb71, Sec. IV. C], assuming an isolated vacuum state and certain regularity of the

background spectrum.

Definition 4.3.1 (Herbst spectral condition). A one-particle state Ψ1 ∈ E(H,P )(Hm)H is

regular in the sense of Herbst with exponent ε > 0 if there exists a local operator A s.t.

(i) Ψ1 = E(H,P )(Hm)AΩ,

(ii)
∥∥E(H,P )(H

δ
m \Hm)AΩ

∥∥ ≤ Cδε, for some C > 0 and all δ > 0,

where Hδ
m := {(ωµ(k),k) ∈ Rs+1 : k ∈ Rs, |µ−m| < δ} denote covariant δ-neighbourhoods of

the mass shell Hm.

The construction of scattering states of Herbst-regular one-particle vectors without the lower

mass gap requirement was achieved by Dybalski [Dy05], and also LSZ-reduction formulas can be

established in this setting [BS05]. On the other hand, it had in the mean time become clear that

the Herbst particle picture of Definition 4.3.1, relying on the Wigner definition, does not apply

to electrically charged particles. This has been shown by a general argument based on the Gauss

law [Bu86]. A more general particle concept which is deemed suitable for the model-independent

analysis of electrically charged particles is the theory of particle weights developed by Buchholz,

Porrmann, and Stein [BPS91]. The challenges of constructing inclusive collision cross sections

in a setting of particle weights have so far not been addressed in a satisfactory manner and are

discussed e.g. in [Dy12]. An alternative approach which is conjectured to provide better control

for scattering situation is based on infravacuum representations of Kraus-Polley-Reents type, cf.

[AD17; CD18] and also the discussions in [Hrd13; DH14].

In this context the Herbst particle concept is relevant, in particular for electrically neutral

particles. Some concrete physical examples are the analysis of S-matrix elements of configurations

of Hydrogen atoms or other stable electrically neutral bound states. In a more recent contribution

Herdegen observed that the spectral background condition (ii) of Herbst can be further relaxed

[Hrd13]. It would be interesting to understand whether the Reeh-Schlieder effect [Du17] can

contribute to a further relaxation of the required assumptions, cf. Chapter 5.

The necessity to impose the Herbst condition does not arise in the construction of scattering

states for massless Wigner particles [Bu75a; Bu75b; Bu77], as one can rely on Huygens’ principle

to establish convergence of asymptotic fields. Improvements and simplifications of Buchholz’

argument have been discussed in [Bu90a] and more recently in [DH14; AD17].

Let us conclude this section with a brief discussion of models which exhibit embedded mass

shells and are accessible for rigorous construction. The simplest examples are obtained as tensor
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products of free fields with suitable mass spectrum or within the class of generalized free fields,

see e.g. [BLOT, Sec. 8.4 D]. These models obviously exhibit only trivial scattering and do not

require further analysis regarding their particle structure. The generalized free field models

with continuous Lehmann measure show further unphysical behaviour, namely concerning their

phase space structure, the failure of asymptotic completeness, and the time-slice property, cf.

the survey in [Hor, Sec. 3.3]. Nevertheless they provide relevant examples for the context of

embedded mass shells, as they demonstrate that the violation of Herbst-type spectral conditions

by local observables is compatible with the Wightman and Haag-Kastler axioms, cf. [Dy05,

Sec. 4].

Within rigorously constructed interacting theories only few models with embedded mass

shells are known. Physically it has to be taken into account that in two-component models with

m2 > 2m1 the presence of interactions can cause the heavier particle to become unstable, as

suggested by perturbation theory [Wei95, Sec. 3.8]. Still, there are two examples for interacting

models with embedded mass shells which are outside the perturbative regime due to the formation

of bound states. In P (φ)2-models there can be two-particle bound states, but these have masses

below the scattering continuum. It has been shown that also models with three-particle bound

states exist [Nev81]. Another example for particles with embedded mass shells which may

soon be within reach of the operator-algebraic constructive programme are certain integrable

quantum field theories with bound states. For example, relevant mass spectra with stable

embedded massive particles appear in the Sine-Gordon model for sufficiently small values of the

coupling constant ν < 1/3, cf. [CT16, Sec. 2.1].

Returning briefly to the wedge-local setting, we expect that the constructions of Sections 2.1.1

and 2.1.3 can be generalized along similar lines as in [Hrb71; Dy05] or [Du17] to the case of

massive particles with embedded mass shells. In the general wedge-local analysis a Herbst- or

Reeh-Schlieder-type condition for the particle with embedded mass shell is required, for the

same technical reasons that have been encountered in local QFT. In particular the class of

wedge-local models with lower mass gap appears to be within reach due to the availability of

general clustering estimates, see e.g. [Fre85] or the energy-momentum transfer method described

in Section 3.2. In massless wedge-local models the status of such clustering estimates has not

yet been clarified. A scattering theory of waves has been constructed in the two-dimensional

wedge-local massless case in the work of Dybalski and Tanimoto [DT11]. Here clustering of

asymptotic fields can be established on kinematical grounds, cf. [Bu75b]. The general higher-

dimensional massless wedge-local case appears to be challenging and requires more advanced

techniques, perhaps similar to the ergodic theory argument used in [AD17].
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In this thesis, N -particle Haag-Ruelle scattering theory for massive wedge-local quantum field

theory has been developed in the general operator algebraic setting. In local QFT we studied

the situation of massive particles with embedded mass shells, and established a novel approach

for the construction of corresponding scattering states using non-local vacuum correlation effects.

Our work may be regarded as contributions to what we may call the central conjecture of the

Haag-Ruelle approach to scattering theory.

Conjecture. Any quantum theory with vacuum and one-particle states, and sufficiently strong

localization of observables must also describe corresponding N-particle states and (possibly

trivial) scattering processes.

Previously it appeared that geometrical properties of wedge-local theories require restriction

of the scattering theoretic analysis to N = 2. In our approach this is no longer necessary,

and the convergence and Fock structure of velocity-ordered scattering states with arbitrarily

many particles has been proven. The required wedge-swapping symmetry of one-particle vectors

is trivially realized in local quantum field theories, and it has been established in general

wedge-local models using Haag duality for wedges (HK2]) and Tomita-Takeski theory. In local

QFT our construction is consistent with conventional scattering theory, cf. [Du18, Lem. 20]. Let

us remark, that in comparison to standard Haag-Ruelle theory our Fock structure argument

is technically slightly simpler, as we do not require double commutator estimates due to the

velocity ordering. In the wedge-local context our results imply that the multi-particle structure

in general wedge-local models with isolated mass shells must be as rich as in local quantum

field theories.

5.1 Excluding QFT models with pathological Wigner particles

So far the existence of scattering states cannot be claimed for massive Wigner particles in

general if the mass shells are embedded, not even in local QFT. More precisely, the currently

available results still permit the existence of local quantum field theories (A, α,H ,Ω), which

exhibit a non-trivial one-particle subspace

E(Hm)H 6= {0} (5.1.1)

for some m > 0, while at the same time the corresponding scattering state approximants

Ψτ := B1τ (f1)B2τ (f2)Ω, (τ ∈ R), (5.1.2)

behave pathologically at large τ , e.g. Ψτ ⇀ 0 as τ → ±∞. Here we wrote Bkτ (fk) for generic

creation-operator approximants which are suitable for embedded mass shells, e.g. using the

conventional τ -dependent smearing approach [Hrb71; Dy05; Hrd13], or Reeh-Schlieder-type

operator families [Du17].
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In the following we will refer to such hypothetical theories as models with pathological Wigner

particles, and we note that the results of Buchholz [Bu75a; Bu75b; Bu77] exclude the existence

of massless pathological Wigner particles. We believe that it is an interesting question whether

massive pathological Wigner particles can also be ruled out on general grounds.

To this end, we note that the results [Hrb71; Dy05; Hrd13] and [Du17] constrain the structure

of models with pathological Wigner particles. Namely the local algebras must be such, that

all A ∈ A(O) with E(Hm)AΩ 6= 0 violate the spectral condition introduced by Herbst (see

Definition 4.3.1), i.e. the spectral background satisfies the lower bound

∥∥∥E(Hδ
m \Hm)AΩ

∥∥∥ ≥ Cδε (5.1.3)

for any C > 0 and ε > 0 as soon as the δ-neighbourhood Hδ
m ⊃ Hm becomes sufficiently

small (depending on C and ε). As remarked in [Dy05], such violation of the Herbst bound is

indeed compatible with the Wightman and Haag-Kastler axioms, and examples are provided

by generalized free fields with suitable Lehmann measure. It is clear that the Haag-Ruelle

approximants Ψτ are convergent in these models, albeit rather slowly with the rate of convergence

solely governed by the convergence of the one-particle problem.

In addition we now know from our results in [Du17], that any counterexample must also

violate the Reeh-Schlieder condition1

‖AβΩ−Ψ1‖ ≤ Cβ,
‖Aβ‖ ≤ Cβ−γ .

(5.1.4)

One strategy to rule out the scenario of pathological Wigner particles could consist in a proof

that (5.1.4) and (5.1.3) are sufficient properties to conclude that the model must be equivalent

to a generalized free field. In fact there exist characterization theorems of similar kind, e.g. the

criterion of Baumann in terms of the decay of the two-point function at large energies [Bau86].

We believe that the failure of conditions (5.1.3) combined with the violation of (5.1.4) are strong

constraints. Yet the mathematical analysis of their status is not obvious, as we will further

discuss in Section 5.2.

From the viewpoint of physics, pathological Wigner particles might perhaps be difficult to

distinguish from regular Wigner particles. On the level of the Haag-Ruelle approximants Ψτ

we have that even if the Ψτ are not convergent, their variation is roughly proportional to

‖∂τΨτ‖ ∼ 1/τ and thus perhaps so slow to be non-detectable on typical experimental time

scales. Additionally the states Ψτ can be constructed with an approximate Fock structure

at each fixed τ , which improves as τ → ±∞, and from this perspective the mathematical

interpretation of Ψτ for large enough τ as approximate scattering states could be justified also

for pathological Wigner particles.

Yet, one may question the correctness of a phenomenological interpretation of the Ψτ in

this context. A more fundamental description of collision processes in QFT is the formulation

of Araki and Haag [AH67]. In this approach the collision cross sections may in principle be

well-defined and could be constructed in terms of coincidence arrangements of detectors along

the lines of [BPS91], even if the “approximate S-matrix elements” 〈Ψτ ,Ψ
′
−τ ′〉 fluctuate in the

limits of large τ, τ ′ > 0. However, so far the convergence of coincidence arrangements of detectors

can be established only for non-pathological Wigner particles, namely on domains of scattering

1Here (5.1.4) is written with an additional constant C > 0 which will be convenient for the discussion of the
status this condition. For the purposes of scattering theory such constants can be absorbed by rescaling,
slight enlargement of the degree γ and restricting to sufficiently small β > 0.
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states [AH67; Du13], and for particles with isolated mass shells also on arbitrary finite energy

states [DyG13] with the additional restriction to certain coincidence arrangements.

5.2 Status of the Reeh-Schlieder condition

For free fields and integrable models with temperate polarization free generators it is not

difficult to construct local or wedge-local Reeh-Schlieder families, respectively, as we pointed

out in [Du17]. Namely making use of self-adjointness of φ(f) for real-valued test functions

f ∈ C∞c (Rs+1) we can simply set for any γ > 0

Aβ := φ(f) exp(−β |φ(f)|1/γ), (5.2.1)

which will be a family of local, respectively wedge-local, operators satisfying the Reeh-Schlieder

conditions for degree γ. The ansatz (5.2.1) also works for polarization free generators G satisfying

Ω ∈ D(|G|1+ε), and this domain condition appears to be independent of the temperateness of G.

However, the Reeh-Schlieder families obtained from polarization free generators will in general

only be wedge-local, which is acceptable for the scattering-theoretic construction in presence of

a lower mass gap. Otherwise wedge-locality of Aβ may not be sufficient due to the unknown

status of clustering, as already discussed in Section 4.3.

A further construction of Reeh-Schlieder families can be given starting from the spectral

regularity condition of Herbst. The resulting operator families Aβ are local, but we have only

weaker control over ‖Aβ‖.

Proposition 5.2.1 (Construction of Reeh-Schlieder families of exponential type). Assume that

Ψ1 ∈ E(Hm)H is Herbst-regular. Then there exists for any ε′ > 0 a vector Ψ′1 ∈ E(Hm)H
with ‖Ψ′1 −Ψ1‖ < ε′ which satisfies the following Reeh-Schlieder condition: there exists a family

of local operators Aβ ∈ A(O), (β > 0), s.t. for any compact set ∆ ⊂ Rs+1

‖E(∆)(AβΩ−Ψ1)‖ ≤ C∆β, (5.2.2)

ln ‖Aβ‖ ≤ Cβ−γ , (5.2.3)

for suitable constants C,C∆, with γ proportional to the inverse ε−1 of the Herbst exponent.

Proof (sketch). Such Aβ can be constructed even without making use of the Reeh-Schlieder

effect, simply by taking suitable smearing functions. For this let χ ∈ C∞c (Rs+1) be a compactly

supported function with almost exponentially decaying Fourier transform |χ̂(p)| ≤ exp(− |p|ν),

with respect to the Euclidean norm and ν < 1, e.g. as constructed in [Hör90, Thm. 1.3.5]. Then

we set B = A(χ) where A ∈ A(O), s.t. Ψ1 = E(Hm)AΩ, is obtained from the Herbst condition.

To construct Aβ we apply the differential operators PN,α := (1− α(2 +m2)2)N , α > 0, N ∈ N,

with the d’Alembertian 2 = ∂2
x0 −∇2

x to define

Aβ := PN(β),α(β)B(x)
∣∣
x=0

,

which have the same compact localization region as B. For suitable choices of N(β) and

α(β) it can be shown that these operators fulfill the two bounds (5.2.2) and (5.2.3), by using

Herbst-regularity of AΩ and the almost-exponential decay of χ̂, respectively.

By a careful analysis of the Haag-Ruelle argument one can see, that Reeh-Schlieder families of

exponential type (5.2.2), (5.2.3) are also sufficient for the construction of scattering states, if the

QFT model under consideration has a lower mass gap. Let us note that the strong exponential
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norm divergence of the bound (5.2.3) does not give evidence of the failure of the strengthened

Reeh-Schlieder condition (5.1.4), as the Reeh-Schlieder effect has not even been used in the

rather naive construction given in Proposition 5.2.1.

As a next step the status of the Reeh-Schlieder condition should be investigated in generalized

free field models. In this case the construction of Reeh-Schlieder families reduces to the one-

particle problem, as we discussed with some partial results in [Du17, App. C]. It is well known

that the Reeh-Schlieder property for free theories is equivalent to anti-locality properties of the

fractional Klein-Gordon operators [SG65], and the Reeh-Schlieder property is also not specific

to flat space-times [Ver93; SVW02]. Havin and Jöricke [HJ94, Sec. 5] discuss various anti-local

operators which appear in mathematical physics. The difficulty to quantify anti-locality effects,

as would be required to establish the strengthened Reeh-Schlieder condition, seems to be due to

the fact that such aspects of anti-local operators are subtle and related to the study of ill-posed

problems in analysis [HJ94, p. 474].

Beyond the free models, one may conjecture that the strength of the Reeh-Schlieder effect is

stronger in interacting theories. E.g. in P (φ)2-models one can in principle use all higher Wick

powers to subtract vacuum polarization present in φ(f)Ω. This provides additional freedom

beyond the choice of the test function, but also leads to more singular large-energy behaviour.

In this regard, it appears be interesting to investigate the quantitative structure of the vacuum

polarization of more tractable interacting models. A large class of local observables which could

be analyzed has recently been constructed and described in fairly explicit form for the integrable

Ising model [BC18].

5.3 Asymptotic completeness in wedge-local quantum field theory

Finally, let us briefly discuss the question of completeness of the particle interpretation of

quantum field theories. The first full proof of asymptotic completeness in interacting relativistic

QFT is due to Lechner, and appeared in the context of the operator-algebraic construction of

integrable quantum field theories in two dimensions [Le08]. Here strict locality of the wedge-local

models described in Section 4.2 is established first, and then density of the standard Haag-Ruelle

scattering states in the S-symmetrized Fock space is proven [Le08]. The arguments of Lechner

could not be used to establish interacting asymptotically complete models for d > 1 + 1. The

reason is the unknown and questionable status of locality in the higher-dimensional interacting

wedge-local models constructed so far. Locality seemed an indispensable requirement to construct

N -particle scattering states with N ≥ 3. The necessity of such states for asymptotic completeness

was suggested by the structure of all interacting wedge-local models known so far.

Due to our existence result for N -particle states, it is now clear that the previously constructed

two-particle states can never be dense in the vacuum Hilbert space H of massive wedge-local

theories. Let us note that the necessity for N -particle states does not arise in the purely massless

two-dimensional case, where asymptotically complete interacting models have been established

by Dybalski and Tanimoto [DT11].

In the massive wedge-local case we may ask whether the ordered scattering states

Ψ± = W±WΨn, Ψn = Ψ1
1 ⊗Ψ2

1 ⊗ . . .⊗Ψn
1 ∈ Γ�W/≺W (H1) (5.3.1)

span dense subspaces of H . In local QFT models the ordering condition is not a problematic

restriction. Namely using the conventional bosonic or fermionic statistics we can rearrange

Ψ+ = lim
τ→∞

B1τ (f1)B2τ (f2) . . .Bnτ (fn)Ω (5.3.2)
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into any desired order specified by a permutation π ∈ Sn,

Ψ+ = ± lim
τ→∞

Bπ(1)τ (fπ(1))Bπ(2)τ (fπ(2)) . . .Bπ(n)τ (fπ(n))Ω. (5.3.3)

This can be used to obtain the required velocity-ordering of creation operators for non-exceptional

velocity configuration. In the covariant formulation of Section 2.1.2, the non-orderable velocity

configurations are sets of Lebesgue measure zero in Rns for any W ∈ RegW . Hence the ordered

asymptotic completeness of wave operators

W±WΓ�W/≺W (H1) = H (5.3.4)

can hold in wedge-local models, if the latter comply with our usual experiences about particle

statistics from local QFT. On one hand we are cautioned by the examples for the failure of

ordered two-particle asymptotic completeness in the wedge-local models from [LTU17] that such

intuitions from local QFT can be false in the general wedge-local setting. On the other hand it

is very reasonable to expect that constructions like the deformation method based on warped

convolutions as in [BLS11] do not create such unintuitive features.

As a matter of fact it is possible to compare the scattering states constructed in a wedge-local

QFT (A, α,H ,Ω) with the corresponding scattering states obtained in the deformed model

(AQ, α,H ,Ω) defined via warped convolution, cf. the discussion of the massless case in [DT11].

More explicitly, we consider an ordered outgoing scattering state

Ψ+ := lim
τ→∞

B1τ (f1)B2τ (f2) . . .Bnτ (fn)Ω, (5.3.5)

and we would like to understand its relation to the corresponding scattering state obtained in

the deformed theory

Ψ+
Q := lim

τ→∞
BQ1τ (f1)BQ2τ (f2) . . .BQnτ (fn)Ω. (5.3.6)

Using the definition of warped convolutions we can write the deformed scattering state approxi-

mants ΨQτ formally in terms of the spectral calculus of the energy-momentum operators and

the translates of the original Haag-Ruelle approximants as

ΨQτ :=

∫
dE(q1)αQq1(B1τ (f1))

∫
dE(q2)αQq2(B2τ (f2))

∫
dE(q3) . . .

. . .

∫
dE(qn)αQqn(Bnτ (fn))Ω. (5.3.7)

Here we know from Theorem 2.1.3 that the asymptotic limits

lim
τ→∞

αQq1(B1τ (f1))αQq2(B2τ (f2)) . . . αQqn(Bnτ (fn))Ω (5.3.8)

define scattering states in the range of the undeformed wave operator W+
WΓ�W (H1). This

comparison can be made rigorous using the oscillatory integral techniques from [BLS11], and it

can be inferred from expression (5.3.8) that the deformation produces phase factors depending

on the particle momenta. Such comparison arguments suggest that the spaces of deformed and

undeformed scattering states

W+
QWΓ�W (H1) = W+

WΓ�W (H1) (5.3.9)

coincide in the Hilbert space of the interacting theory, and from this one obtains that the

property of ordered asymptotic completeness is stable under warped convolutions. As the
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ordered configurations Γ�W/≺W (H1) are dense in the Fock space of the free theory, we also

obtain asymptotic completeness of the Grosse-Lechner models with respect to our construction of

scattering states. Thereby the models constructed by Grosse and Lechner are established as the

first asymptotically complete interacting quantum field theories in space-time dimension d > 1+1.

The detailed arguments will be provided in a forthcoming publication [Du18b].
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Ann. H. Poincaré 17 (2015), pp. 1–55. doi: 10.1007/s00023-015-0440-y. arXiv:

1412.2970.

[Bau86] K. Baumann. “On the two-point functions of interacting Wightman fields”. J. Math.

Phys. 27 (1986), pp. 828–831. doi: 10.1063/1.527188.

[BT13] M. Bischoff and Y. Tanimoto. “Construction of wedge-local nets of observables

through Longo-Witten endomorphisms. II”. Commun. Math. Phys. 317 (2013),

pp. 667–695. doi: 10.1007/s00220-012-1593-x. arXiv: 1111.1671.

[BW75] J. J. Bisognano and E. H. Wichmann. “On the duality condition for a Hermitian

scalar field”. J. Math. Phys. 16 (1975), pp. 985–1007. doi: 10.1063/1.522605.

[BLOT] N. Bogolubov, A. Logunov, A. Oksak, and I. Todorov. General Principles of Quantum

Field Theory. Springer, Dordrecht, 1990. doi: 10.1007/978-94-009-0491-0.

[Bor92] H.-J. Borchers. “The CPT-theorem in two-dimensional theories of local observables”.

Commun. Math. Phys. 143 (1992), pp. 315–332. doi: 10.1007/BF02099011.

[Bor95] H.-J. Borchers. “On the use of modular groups in quantum field theory”. Annales
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massless Nelson model”. Ann. H. Poincaré 13 (2012), pp. 1427–1449. doi: 10.1007/

s00023-011-0156-6.

[Dy14] W. Dybalski. “Algebraic Quantum Field Theory”. Lecture notes, Technische Univer-

sität München. 2014.

[Dy17] W. Dybalski. “From Faddeev-Kulish to LSZ. Towards a non-perturbative description

of colliding electrons”. Nucl. Phys. B925 (2017), pp. 455–469. doi: 10.1016/j.

nuclphysb.2017.10.018. arXiv: 1706.09057.

[DG14] W. Dybalski and C. Gérard. “Towards Asymptotic Completeness of Two-Particle

Scattering in Local Relativistic QFT”. Commun. Math. Phys. 326.1 (2014), pp. 81–

109. doi: 10.1007/s00220-013-1831-x.

[Fre85] K. Fredenhagen. “A remark on the cluster theorem”. Comm. Math. Phys. 97 (1985),

pp. 461–463. doi: 10.1007/BF01213409.

[FR15] K. Fredenhagen and K. Rejzner. “Perturbative Construction of Models of Algebraic

Quantum Field Theory”. Advances in Algebraic Quantum Field Theory. Ed. by R.

Brunetti, C. Dappiaggi, K. Fredenhagen, and J. Yngvason. Cham: Springer, 2015,

pp. 31–74. doi: 10.1007/978-3-319-21353-8_2.

[GJ] J. Glimm and A. Jaffe. Quantum Physics. Springer New York, 1987. doi: 10.1007/

978-1-4612-4728-9.

[GL07] H. Grosse and G. Lechner. “Wedge-local quantum fields and noncommutative

Minkowski space”. JHEP 2007.11 (2007), p. 12. doi: 10.1088/1126-6708/2007/

11/012. arXiv: 0706.3992.

[GR17] H. Grundling and G. Rudolph. “Dynamics for QCD on an Infinite Lattice”. Commun.

Math. Phys. 349.3 (2017), pp. 1163–1202. doi: 10.1007/s00220-016-2733-5. arXiv:

1512.06319.

[GL95] D. Guido and R. Longo. “An algebraic spin and statistics theorem”. Commun. Math.

Phys. 172 (1995), pp. 517–533. doi: 10.1007/BF02101806.

[Ha58] R. Haag. “Quantum Field Theories with Composite Particles and Asymptotic

Conditions”. Phys. Rev. 112 (1958), pp. 669–673. doi: 10.1103/PhysRev.112.669.

64

https://doi.org/10.1007/s00220-018-3183-z
http://arxiv.org/abs/1711.02569
https://doi.org/10.1007/s11005-005-2294-6
http://arxiv.org/abs/hep-th/0412226
https://doi.org/10.1007/s00220-014-2069-y
https://doi.org/10.1007/s00220-014-2069-y
http://arxiv.org/abs/1308.5187
https://doi.org/10.1007/s00220-010-1173-x
http://arxiv.org/abs/1006.5430
https://doi.org/10.1007/s00220-010-1091-y
https://doi.org/10.1007/s00220-010-1091-y
https://doi.org/10.1007/s00023-011-0156-6
https://doi.org/10.1007/s00023-011-0156-6
https://doi.org/10.1016/j.nuclphysb.2017.10.018
https://doi.org/10.1016/j.nuclphysb.2017.10.018
http://arxiv.org/abs/1706.09057
https://doi.org/10.1007/s00220-013-1831-x
https://doi.org/10.1007/BF01213409
https://doi.org/10.1007/978-3-319-21353-8_2
https://doi.org/10.1007/978-1-4612-4728-9
https://doi.org/10.1007/978-1-4612-4728-9
https://doi.org/10.1088/1126-6708/2007/11/012
https://doi.org/10.1088/1126-6708/2007/11/012
http://arxiv.org/abs/0706.3992
https://doi.org/10.1007/s00220-016-2733-5
http://arxiv.org/abs/1512.06319
https://doi.org/10.1007/BF02101806
https://doi.org/10.1103/PhysRev.112.669


BIBLIOGRAPHY

[Ha] R. Haag. Local Quantum Physics: Fields, Particles, Algebras. Theoretical and Math-

ematical Physics. Springer London, 2012. doi: 10.1007/978-3-642-61458-3.

[HK64] R. Haag and D. Kastler. “An algebraic approach to quantum field theory”. J. Math.

Phys. 5 (1964), pp. 848–861.
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Publication 1. N -Particle Scattering in Relativistic Wedge-Local
Quantum Field Theory

In this publication we study the multi-particle scattering problem in the general operator-algebraic
setting of wedge-local quantum field theory. Wedge-local models emerged from various recent
constructive results, such as [Le06; BLS11], but a general scattering-theoretic analysis for this class
of theories was only known at the two-particle level.

1. Construction of Scattering States

The first main result of this publication is the convergence of N -particle Haag-Ruelle scattering
states, based solely on a wedge-swapping symmetry and ordering of wave-packets.

Theorem 1 (Wedge-local N -particle Haag-Ruelle theorem). Let Λ ∈ L↑+ and Ψj
1 = EmAjΩ =

EmA
⊥
j Ω with Aj ∈ A(W), A⊥j ∈ A(W⊥) and let χ ∈ S (Rs+1) be an admissible auxiliary function

(supported in a sufficiently small neighbourhood of the isolated mass shell).

(i) For regular positive-energy Klein-Gordon solutions fj satisfying VΛ
fn
≺W VΛ

fn−1
≺W . . . ≺W VΛ

f1
,

the scattering state approximants ΨΛ
n(τ) := BΛ

1τ (f1)BΛ
2τ (f2) . . . BΛ

nτ (fn)Ω converge in norm for
τ →∞.

(ii) For Λ ∈ L∗(W) scalar products of any two outgoing Ψ+,Λ
n := limτ→∞BΛ

1τ (f1) . . . BΛ
nτ (fn)Ω,

Ψ′+,Λn′ := limτ→∞B′Λ1τ (f ′1) . . . B′Λn′τ (f ′n′)Ω constructed w.r.t. the same wedge W satisfy the Fock

structure relation
〈

Ψ+,Λ
n ,Ψ′+,Λn′

〉
= δnn′

∏n
j=1

〈
BΛ
jτ (fj)Ω, B

′Λ
jτ (f ′j)Ω

〉
.

This shows that the multi-particle structure of wedge-local quantum field theories with isolated mass
shells must be as rich as in the case of local QFT. To our knowledge there is no previous general
construction and existence result for n ≥ 3 in the literature. The result is also given in a covariant
formulation admitting general localization wedges, thereby the study of Lorentz-covariance properties
and their possible asymptotic breaking by wedge-locality becomes possible [BLS11].

2. Well-definedness of Scattering Data and Poincaré Covariance

We further find that wave-operators and scattering data are well defined, but may depend on the
localization wedge W used for their preparation.

Theorem 2. Assuming wedge-duality (HK2]), the wedge-local Haag-Ruelle construction induces
well-defined wave operators W±W : Γ�W/≺W (H1) −→H defined on velocity ordered Fock spaces. For

λ = (a,Λ) ∈ P↑+ we obtain covariance W±W+a = W±W and U(λ)W±W = W±ΛWU0(λ).

Theorem 3. S-matrices SWf ,Wi

f i := (W+
Wf

)∗W−Wi
, and wedge transition maps SW

′,W
f f := (W+

W′)
∗W+
W ,

SW
′,W

i i := (W−W′)∗W
−
W . satisfy Poincaré-covariance identities U0(λ)SWf ,Wi

f i U0(λ)∗ = SΛWf ,ΛWi

f i ,

U0(λ)SW,W
′

f f U0(λ)∗ = SΛW,ΛW′
f f , U0(λ)SW,W

′

i i U0(λ)∗ = SΛW,ΛW′
i i . If the wave operators are asymp-

totically complete we have further SWf ,Wi

f i = S
Wf ,W′f
f f S

W′f ,W′i
f i S

W′i ,Wi

i i .
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Abstract: Multi-particle scattering states are constructed for massive Wigner particles
in the general operator-algebraic setting of wedge-local quantum field theory. The ap-
parent geometrical restriction of the conventional wedge-local Haag–Ruelle argument
to two-particle scattering states is overcome with a swapping symmetry argument based
on wedge duality.

1. Introduction

Wedge locality has become an increasingly prominent concept in mathematical physics
ever since wedge duality was established in the Wightman framework by Bisognano
and Wichmann [BiW75]. In particular, while interacting local quantum field theories
(QFT) in four dimensions are still missing, non-trivial wedge-local QFT have emerged
in recent years [GL07,BLS11]. This provides strong motivation to develop N -particle
scattering theory in the wedge-local setting, which is the goal of the present paper.

The classical Wigner particle concept can still be consistently formulated in wedge-
local theories as it does not depend on any notion of localization in configuration space.
Accordingly, we may define massive single particle states �1 ∈H as eigenvectors cor-

responding to positive eigenvalues of the relativistic mass operator1 M :=
√

H2 − P2.
Two-particle scattering states were then constructed in [GL07,BS08] along the lines of
Haag–Ruelle, using that two particles can be separated by two wedge regions [BBS01].
Scattering states with a larger number of particles however appeared inaccessible or even
unnatural in the wedge-local setting as a result of a simple geometric consideration: it
is impossible to write down three or more wedge-local operators whose localization
regions are space-like separated.2

1 Here (H, P) denote the energy-momentum operators of a given wedge-local QFT model, and M ≥ 0
due to the relativistic spectral condition. The precise framework is presented in Sect. 2.

2 This is best visualized by noting that the standard wedge Wr = {|x0| < x1} restricted to the time-zero
hyperplane yields the half space {x1 > 0}—more than two half-spaces cannot be disjoint.
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In this paper we give a construction of scattering states for an arbitrary number of
massiveWigner particles in the generalwedge-local setting.Underlying our arguments is
a simple swapping symmetry, which follows fromwedge duality and augments cyclicity
of the vacuum � for wedge algebras. It states that for a given wedge-local bounded
operator A ∈ A(W) ⊂ B(H ) localized in awedgeW ⊂ Rd there exists3 A⊥ ∈ A(W⊥)

such that

A� = A⊥�, (1)

where A⊥ is localized in a translateW⊥ := W ′+x , x ∈ Rd , of the causal complementW ′
in Minkowski space of dimension d = s + 1. The symmetry (1) itself has been known
for some time in the context of integrable models,4 but its utility for the construction
of scattering states seems to have so far escaped the attention of the experts. In fact, its
application in scattering theory appears very natural from the perspective of the causal
geometry of wedge regions.

Let us nowexplain the role of the swapping relation (1) for scattering theory by sketch-
ing the convergence argument as an example. Recalling standard definitions of Haag–
Ruelle theory [Ha58,Ru62], we select Ak ∈ A(W) (1 ≤ k ≤ n) with non-vanishing
projection �k

1 = E{M=m}Ak� onto one-particle space of mass m > 0 and smear their
space-time translates αx (Ak) := U (x)AkU (x)∗ first with an auxiliary Schwartz func-
tion χ ∈ S (Rd) and afterwards with a positive-energy Klein–Gordon solution fk (also
for mass m) to obtain creation-operator approximants

Bk := Ak(χ) :=
∫

ddx χ(x)αx (Ak), (2)

Bkτ ( fk) :=
∫

dsx fk(τ, x)α(τ,x)(Bk), (τ ∈ R). (3)

The smearing operation (2) suitably restricts the energy-momentum transfer, while (3)
may be understood as a comparison dynamics in the sense of scattering theory. More
precisely due to mass gaps wemay arrange Bk� ∈ E{M=m}H for suitable χ (supported
in a sufficiently small neighbourhoodof themass shell) and then Bkτ ( fk)� = f̃k(P)Bk�

is a one-particle state created from the vacuum,which is independent of the parameter τ ∈
R. The n-particle scattering states are now to be constructed as

�±
n := lim

τ→±∞�n(τ ), �n(τ ) := B1τ ( f1)B2τ ( f2) . . . Bnτ ( fn)�, (4)

where existence of the limits can be reduced to the one-particle convergence if the norm
of pairwise commutators is sufficiently decaying with τ → ±∞. However, even if the
Klein–Gordon solutions fk describe wave packets which separate for large enough τ ,
we should not expect such mutual commutation of the Bkτ ( fk) in a general wedge-local
model.

Here the swapping relation (1) enters and yields a second family of creation operators
defined analogously in terms of A⊥k which satisfy

B⊥kτ ( fk)� = Bkτ ( fk)�. (5)

3 Up to technical points to be discussed in Sect. 3.1.
4 Swapping relations are mentioned e.g. in [BS08] above Thm. 3.2 for bounded operators, in [Le03] below

(3.13) for wedge-local fields, and indirectly in even earlier works of Schroer. The general connection to
wedge-duality has been investigated in depth by Borchers [Bor95], Rem. 1.1 and subsequent comments.
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Let us specialize to the exemplary outgoing case τ →∞. Then for suitably propagating
wave packets fk we obtain an asymptotic commutator decay across the two operator
families

∥∥∥
[

B jτ ( f j ), B⊥kτ ( fk)
]∥∥∥ ≤ CN (1 + τ)−N for 1 ≤ j < k ≤ n, τ > 0, (6)

where the emergence of an ordering constraint j < k conditionally on the outgoing
regime τ > 0 is a typical trait of the causal geometry ofwedges. To establish convergence
of (4) we estimate via Cook’s method (0 < τ1 < τ2)

‖�n(τ2)−�n(τ1)‖ =
∥∥∥∥

∫ τ2

τ1

dτ ∂τ�n(τ )

∥∥∥∥ ≤
∫ τ2

τ1

dτ ‖∂τ�n(τ )‖ , (7)

where the integrand on the right hand side is expanded using the product rule. To estimate
the resulting terms we make use of (5) to write

B1τ ( f1) . . . (∂τ Bkτ ( fk)) . . . Bnτ ( fn)�

= B1τ ( f1) . . . (∂τ Bkτ ( fk)) . . . Bn−1 τ ( fn−1)B⊥nτ ( fn)�

= B⊥nτ ( fn)B1τ ( f1) . . . (∂τ Bkτ ( fk)) . . . Bn−1 τ ( fn−1)�
+ (commutators),

where commutator terms vanish rapidly as τ →∞ by (6),
∥∥B jτ ( f j )

∥∥ ≤ C(1 + |τ |s/2)
and ‖B⊥jτ ( f j )‖ ≤ C(1 + |τ |s/2). Iterating a total of n − k times, the derivative term will
act directly on the vacuum so that we can make use of ∂τ Bkτ ( fk)� = 0 as in standard
Haag–Ruelle theory. Altogether (6) and polynomial norm growth of B jτ ( f j ), B⊥jτ ( f j )

yield for τ > 0 the rapid decay

‖B1τ ( f1) . . . (∂τ Bkτ ( fk)) . . . Bnτ ( fn)�‖ ≤ C ′N (1 + τ)−N .

Summing up these terms, we obtain convergence of outgoing scattering states �+
n

from Cook’s method (7). A similar swapping argument yields the Fock structure of
these scattering states for any number of particles n ≥ 0. For n ≤ 2 swapping is
strictly speaking not necessary, as scattering states can be directly constructed via
limτ→∞ Bτ ( f )B⊥τ ( f ⊥)� as in [BBS01,GL07]. Lastly it is important to point out that
beyond swapping, it is also necessary that all operators Ak entering in (4) are localizable
in a common wedge W . Further, the propagation velocities of fk must be suitably re-
stricted to match the wedge geometry and be in correspondence with the fixed ordering
of creation-operator approximants in (4), as will be made precise in Sects. 3 and 4.

Our construction applies in particular to the model of Grosse and Lechner [GL07].
This model originated from a proposed quantum field theory on a non-commutative
space-time, which may be motivated from gravitational considerations [DFR95]. Only
later a reinterpretation as wedge-local quantum field theory on ordinary Minkowski
space-time was discovered and it was shown that this model exhibits non-trivial 2-
particle scattering [GL07]. The curious message of [GL07] was that the model itself is
Poincaré-covariant, while Lorentz symmetry is broken at the level of scattering states.
To clarify this effect, which is impossible in local quantum field theories, we carry out
a general analysis of Poincaré covariance of the scattering states in Sect. 5. We intend
to apply our results to extend the pioneering analysis of Grosse and Lechner to the
multi-particle scattering data in a subsequent publication.
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This paper is structured as follows. In Sect. 2 we introduce the wedge-local variant
of the Haag–Kastler framework providing the standing assumptions of our construction.
Thewedge-localHaag–Ruelle theorem is established in Sect. 3 under certain geometrical
restrictions allowing for a streamlined proof. These restrictions are lifted in Sect. 4,where
we also obtain residual Lorentz covariance properties and pave the ground for a general
discussion of wave operators and S-matrices in Sect. 5.

2. Wedge-Local Quantum Field Theories

Our results are valid for Quantum Field Theory models defined on general Minkowski
space-time Rd , whose metric we take in the mainly-minus convention and we denote
the spatial dimension by s := d − 1. The family of wedge regions is defined as the
orbit PWr := {λWr = 	Wr + x : λ = (x,	) ∈ P} of the conventional Rindler
wedge5 Wr := {(t, x) ∈ Rd : |t | < x1} under the action of the Poincaré group P
[BiW75].

A wedge-local quantum field theory model in operator-algebraic formulation is spec-
ified by mathematical objects (A, α,H ,�), where H is the Hilbert space of pure
states containing the vacuum as a distinguished unit vector � ∈ H . The wedge-local
net A is a mapping from the family wedge regions PWr � W to von Neumann al-
gebras A(W) ⊂ B(H ), which serves to describe Einstein causality at the quantum
mechanical level. Poincaré symmetry acts on the wedge-local net A by a given group of
isomorphisms6 αλ and we denote by λ = (x,	) ∈ P↑+ = Rd � L↑+ the elements of the
proper orthochronous Poincaré group.

Guided by physical intuition we ask that these objects satisfy wedge-local variants of
the Haag–Kastler postulates, which are concerned with the algebraic and representation-
theoretic properties of A. Firstly, for any choice of wedge regions W,W1,W2 we have

Isotony A(W1) ⊂ A(W2) for W1 ⊂W2, (HK1)

Locality A(W1) ⊂ A(W2)
′ for W1 ⊂W ′

2, (HK2)

Wedge-Duality A(W ′) = A(W)′, (HK2
)

Translation-Covariance αx (A(W)) = A(W + x), x ∈ Rd , (HK3)

Poincaré-Covariance αλ(A(W)) = A(λW), λ ∈ P↑+ . (HK3
)

Here the Minkowski causal complement W ′ = −	Wr + x of W = 	Wr + x is also a
wedge region and A(W)′ denotes the commutant of A(W) relative to B(H ).

On the representation-theoretic side we further assume that translations are unitarily
implemented on the vacuum Hilbert space H by a strongly continuous s+1-parameter
group, αx (A) = U (x)AU (x)∗. The representing unitaries are generated by the energy-
momentum operators via U (x) = U (t, x) = eit H−ix·P , whose joint spectral resolution
in terms of projection-operator-valued measures will be denoted by � �−→ E(�) :=
E(H,P)(�). Focusing also in particular on the analysis of scattering theory it will be

5 In the literature, Wr is sometimes simply called the standard wedge or right wedge.
6 The formulation of our main results requires only space-time translations. With some abuse of notation

we denote translation automorphisms by the same letter α, or αx , where x ∈ Rd is identified with λx =
(x,1) ∈ P↑+ . In particular the basic version of the framework given by (HK1)–(HK6) suffices for multi-
particle scattering provided a suitable swapping assumption holds, and we will state explicitly when the
strengthened variants (HK2
) or (HK3
) are required.
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convenient to further impose the following standard assumptions concerned with the
vacuum representation and its one-particle spectrum,

Uniqueness of � E({0})H = C�, (HK4)

Cyclicity of � A(W)� =H , (HK5)

Mass Gap Hm ⊂ supp E ⊂ {0} ∪ Hm ∪ H̄M ⊂ V̄ +, (HK6)

for some M > m > 0, where Hm := {(ωm(p), p) : p ∈ Rs}, ωm(p) := √
p2 + m2, is

the (positive) hyperboloid of mass m > 0 and H̄M := {(ω, p) : p ∈ Rs, ω ≥ ωM (p)}
denotes the convex hull of HM . Note that (HK6) implies in particular that the one-particle
subspace H1 and the associated orthogonal projector Em := E(Hm) are non-trivial. We
may extend any given wedge-local net also to regions obtained as sum of a given wedge
and any open bounded region O ⊂ Rs+1 by setting A(O + W) := (∪x∈OA(W + x))′′.

For later convenience we will also introduce some refined terminology for wedge
regions concerning their geometry in the case of more than two dimensions. Recalling
that anywedge region can bewritten asW = 	Wr +x , wemay define the corresponding
centered wedge as Wc := 	Wr. Wc is uniquely characterized by the coordinate origin
being contained in its edge, and we will call such wedges centered. This concept may be
motivated heuristically by noting that scattering situations are concerned with phenom-
ena at very large distances, making finite translation by x ∈ Rd in a sense negligible.
Centered wedges W are convex cones in the sense that W +W ⊂W . This assures that
the causal ordering given via the precursor relation [BBS01]

O1 ≺W O2 :⇐⇒ O2 −O1 ⊂Wc (8)

for non-empty regionsO1,O2 ⊂ Rd is transitive, anti-symmetric, and irreflexive (hence
asymmetric). Thus the precursor relation is a (strict) partial order, which is in fact
Poincaré covariant. Namely, for any λ = (x,	) ∈ P , any wedge W and any sets
O1,O2 ⊂ Rs+1 we have

O2 ≺W O1 ⇐⇒ λO2 ≺	W λO1, (9)

as follows from the definition (8) and O1 − O2 ⊂ Wc ⇐⇒ λO1 − λO2 ⊂ 	Wc.
Individual points x1, x2 ∈ Rd can also be ordered, writing simply x1 ≺W x2 :⇐⇒
{x1} ≺W {x2}.

We recall that the causal complement W ′ of any wedge region W is also a wedge-
region, and it is clear that (Wc)

′ = (W ′)c. We say that W ′ is the complementary wedge
to W . More generally we will say that a wedge W⊥ is opposite to a given wedge W
if W⊥ can be translated into the complement of W , i.e. if for some x ∈ Rd we have
W⊥ + x ⊂ W ′. Lastly we will see that the construction of scattering states is most
convenient for the geometrical situation of a given wedge whose edge is parallel to the
time-zero hyperplane. This is equivalent to W = RWr + x for x ∈ Rd and some spatial
rotation R ∈ SO(s) ⊂ L↑+, and we will call such wedges W upright or non-tilted. This
is relevant as for upright W the restriction of≺W to certain hyperplanes behaves almost
like a total relation, which will be helpful for establishing the Fock structure of scattering
states in Sect. 3.2.

Lemma 1 (“quasi-totality” of ≺W for velocity supports). Let W be an upright wedge
and let Vk,V ′k ⊂ Rs+1, (k = 1, 2), be sets of the form (“velocity supports”)

Vk = {1} × Vk, Vk ⊂ Rs, (similarly for V ′k) (10)
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satisfying

V2 ≺W V1, and V ′2 ≺W V ′1. (11)

Then necessarily at least one of the two relations

V ′2 ≺W V1, or V2 ≺W V ′1 (12)

must be satisfied as well.

Proof. Let 	 be s.t. 	W = Wr and note that as W is upright we can choose 	 as a
spatial rotation. We obtain by (9) that

	V2 ≺Wr 	V1, and 	V ′2 ≺Wr 	V ′1.

Due to the choice as spatial rotation, the sets V̄k := 	Vk are still of the form (10), and
analogously for V̄ ′k . Dropping bars, the two assumptions (11) for W = Wr translate to
inequalities

e1 · (g1 − g2) > 0 and e1 · (g′1 − g′2) > 0 ∀ gk ∈ Vk, g′k ∈ V′k, (k = 1, 2), (13)

where e1 ∈ Rs denotes the spatial unit-vector in 1-direction. Assuming that V ′2 ≺Wr V1
is false, there must be g′∗2 = (1, g′∗2 ) ∈ V ′2, g∗1 = (1, g∗1) ∈ V1 forming an ordering
“obstruction”. Namely,

¬(V ′2 ≺Wr V1) ⇐⇒ ¬(∀ g1 ∈ V1 ∀ g′2 ∈ V′2 : e1 · (g1 − g′2) > 0)

⇐⇒ ∃ g∗1 ∈ V1 ∃ g′∗2 ∈ V′2 : e1 · (g∗1 − g′∗2 ) ≤ 0. (14)

For any given g2 ∈ V2 and g′1 ∈ V′1 we can now estimate by transitivity

e1 · (g′1 − g2) = e1 · (g′1 − g′∗2 ) + e1 · (g′∗2 − g∗1) + e1 · (g∗1 − g2) > 0,

where we used that the first and last term on the right are strictly positive for any g2 ∈ V2
and g′1 ∈ V′1 as particular instances of (13) and the middle term is non-negative due to
(14). By definition this implies V2 ≺Wr V ′1. ��

Finally, let us remark that given anyHaag–Kastler net of vonNeumann algebrasO �→
A(O) defined for open bounded regions O ⊂ Rd , there exists a canonical associated
wedge-local net. On the other hand starting from a wedge-local net the question of
existence or non-existence of local observables can be highly non-trivial, as explained in
the recent review of Lechner [Le15].While previously the existence of suitable localized
operators was always regarded as essential for going beyond two-particle scattering
states, cf. [BBS01] or [Le06] Section 6, we will see in the following that scattering
theory in most wedge-local models can be studied in reasonable generality without any
reference to local observables.
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3. Construction of Scattering States

3.1. Swapping relations for opposite wedge algebras. At the core of our subsequent
arguments to establish convergence and Fock structure of scattering states will be certain
swapping identities, such as (1). Due to the mass gap assumption and with our desired
application to the construction of scattering states it will be in fact sufficient if the
swapping relation holds only after projection to the one-particle subspace.

Definition 2 (swapping symmetry of single-particle states).We say that a single-particle
vector �1 ∈ EmH of mass m > 0 is swappable with respect to a given wedge W if
there exist operators A ∈ A(W), A⊥ ∈ A(W⊥), localized in W and an opposite
wedge W⊥ =W ′ + x , x ∈ Rd , respectively, such that

�1 = Em A� = Em A⊥�. (15)

As a matter of fact, the swapping relations (1), (15) can be obtained as a consequence
of wedge duality (HK2
), which is a basic and well-established structural property in
quantum field theory [BiW75,Mo18].

Lemma 3 (D. Buchholz, private communications (2017)). In a wedge-local QFT satis-
fying duality (HK2
) there exist A ∈ A(W), A⊥ ∈ A(W ′) such that

�W := A� = A⊥�. (16)

Moreover the subspace H W ⊂ H of swappable vectors �W associated to any fixed
wedge W is dense.

The proof of Buchholz relies on standard Tomita–Takesaki theory, but is somewhat
detached from our otherwise purely scattering-theoretic analysis. To make the present
paper self-contained we will provide a version of his argument in Appendix B. Alter-
natively it is possible to build the entire theory of Tomita and Takesaki upon swapping
relations A� = A′�, see e.g. [KR2, Ch. 9.2, p. 625 ff.]. In this context the space of
all swappable vectors sometimes appears the operator-algebraic literature as so-called
modular Hilbert algebra or Tomita algebra. In spite of the abstract general method, the
argument is constructive and hence may turn out useful for future studies of concrete
models.

Corollary 4. Assuming (HK2
), single-particle vectors satisfying the swapping rela-
tion (15) w.r.t. any given wedge W are dense in the single-particle space H1 := EmH .

The swapping relation (16) is established in Appendix B exactly for the case of
“touching” wedges W⊥ = W ′. Then W⊥ ∩W is empty, so that (16) becomes non-
trivial also for local theories. For space-time dimension d ≥ 2 + 1 the dense sets of
swappable vectors constructed in Appendix B have a non-trivial dependence on W .
For the purposes of scattering theory on the other hand it is sufficient if the wedges
are merely opposite, admitting overlaps as in Definition 2, so that swapping becomes
trivially satisfiable in local QFT. Interestingly certain wedge-local models also admit a
dense subspace of vectors which are swappable in the sense of Definition 2 for all wedges
simultaneously. An example for such behaviour is found in the class of deformed local
theories constructed in [BLS11], see loc. cit., eq. (2.7).

One simple and immediate consequence of the swapping relation is the consistency of
our definition of scattering states (4) with previous discussions of two-particle scattering
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in wedge-local models [GL07,BS08], where the physically more intuitive opposite-
localization prescription �+

2 := limτ→∞ Bτ ( f )B⊥τ ( f ⊥)� has been used. With the
swapping relation as main technical tool at hand, we may write

�+
2 = lim

τ→∞ Bτ ( f )B⊥τ ( f ⊥)� = lim
τ→∞ Bτ ( f )B̄τ ( f ⊥)�, (17)

where B̄τ ( f ⊥) is defined in terms of Ā ∈ A(W)with Ā� = A⊥�. The new prescription
from (17)with all operators localized in the samewedgeW nowgeneralizes to N -particle
scattering theory, as will be seen in the next section.

3.2. Wedge-local Haag–Ruelle theorem. As comparison dynamics for the construction
of scattering stateswemay restrict to regular positive-energyKlein–Gordon solutions fk ,
which are of the form

fk(t, x) =
∫

dsk

(2π)s
eik·x−iωm (k)t f̃k(k), (18)

ωm(k) :=
√

k2 + m2, f̃k ∈ C∞c (Rs). (19)

Definition 5 (Haag–Ruelle creation operator approximants). For A ∈ A(W), χ ∈
S (Rs+1), and f a regular positive-energy Klein–Gordon solution we set for τ ∈ R

B := A(χ) =
∫

ds+1x χ(x)αx (A), (20)

Bτ ( f ) :=
∫

dsx f (τ, x)α(τ,x)(B). (21)

Equations (18)–(21) provide the standing notation for the rest of the paper and in
particular for our main result Theorem 6. Further any operators B ∈ B(H ) in the
following are obtained via B := A(χ) from a corresponding A ∈ A(W), with χ chosen
as in Lemma 7, in accordance with the mass gap (HK6).

The restrictions on propagation of wave packets mentioned in the introduction are
made precise using the precursor relation (8), to constrain the velocity supports

V fk := {(1, k/ωm(k)) : k ∈ supp f̃k}. (22)

Basic intuition for handling localizations of creation-operator approximants comes from
the fact that regular fk are rapidly decreasing outside the coneϒδ

fk
:= RVδ

fk
generated by

any δ-neighbourhoodVδ
fk
⊃ V fk , as seen from standard non-stationary phase estimates.7

Theorem 6. Fix a wedge W and let �k
1 ∈ H1 (1 ≤ k ≤ n) be single-particle vectors

isolated from the remaining energy-momentum spectrum which satisfy the swapping
relation �k

1 = Em Ak� = Em A⊥k �, Ak ∈ A(W), A⊥k ∈ A(W⊥), and define Bk =
Ak(χ) (with χ as in Lemma 7 below).

7 The velocity support estimates for regular Klein–Gordon solutions are due to Ruelle [Ru62], see also
[RS3, Sec. XI.3, App. 1] or [A, Thm. 5.3]. Via such estimates, disjointness Vk ∩V j = ∅, (k �= j) is sufficient
for local QFT to control equal-time commutators [Hep65], and to some limited extent also non-equal time-
commutators [Du17].
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(i) For any family of regular positive-energy Klein–Gordon solutions fk satisfying

V fn ≺W V fn−1 ≺W . . . ≺W V f1 , (23)

�n(τ ) := B1τ ( f1)B2τ ( f2) . . . Bnτ ( fn)�, (τ ∈ R), (24)

converges in norm for τ →∞.
(ii) Let �+

n := limτ→∞�n(τ ), � ′+
n′ := limτ→∞� ′

n′(τ ) be scattering states as in (6),
constructed from operators localizable with respect to the same wedge W . Then for
upright W their scalar products can be computed using the Fock prescription

〈
�+

n , � ′+
n′

〉 = δnn′
n∏

k=1

〈
Bkτ ( fk)�, B ′kτ ( f ′k)�

〉
, (25)

where the right-hand side is independent of τ .

Analogous statements hold for convergence and Fock structure of any two incoming
scattering states defined as the limit of �n(τ ) for τ → −∞, assuming the reversed
ordering of wave packets

V fn �W V fn−1 �W . . . �W V f1 (26)

(while keeping the operator ordering of (24)).

We should point out that the ordering prescription (23) is not new. Such relations are
well known from the form-factor programme and related constructive QFT literature,
see e.g. [Smi, p. 8], [Le06, esp. Sec. 6], and references therein. The construction of The-
orem 6 is in fact consistent with these debut appearances of the ordering conditions (23),
(26),8 and enables the generalization to arbitrary Poincaré frames as needed for higher
dimensional space-times, to be established in Sect. 4. Even for the two-dimensional case
we note that in contrast to the results from [BBS01,Le06] our arguments require nei-
ther the existence of local observables, nor temperateness of suitable polarization-free
generators.

Lemma 7 (Haag–Ruelle Lemma, wedge-local version). Let A ∈ A(W) and K ⊂ K ′ ⊂
Hm be compact subsets of the mass shell, such that K can be separated from Hm \ K ′
by a smooth function. Then there exists a suitable χ ∈ S (Rs+1) (with χ̂ supported in a
sufficiently small neighbourhood of the mass shell as dictated by the mass gaps (HK6))
such that B := A(χ) satisfies

(i) B� ∈ E(K ′)H ⊂ E(Hm)H ,
(ii) E(K )B� = E(K )A�,

(iii) B∗� = 0,

8 To readers familiar with [Smi], [Le06] the ordering prescriptions (23), (26) may at first sight appear to be
in conflict with the established conventions that for rapidities β1 < β2 < . . . < βn ,

z∗(β1)z∗(β2) . . . z∗(βn)|�〉 = |β1, . . . , βn〉out,
z∗(βn)z∗(βn−1) . . . z∗(β1)|�〉 = |β1, . . . , βn〉in,

as e.g. in [Le06, Thm. 6.1.2]. Clearly, rewriting in terms of velocities vk := (1, tanh βk ) gives β1 < β2 <

. . . < βn ⇐⇒ v1 ≺Wr v2 ≺Wr . . . ≺Wr vn . Consistency with (23), (26) can be seen by noting that in the

conventions of [Le06] the combination φ( f ) = z∗( f̂ +) + z( f̂ −) is actually affiliated to the algebra of the left
wedge W� = −Wr , for which we have v1 ≺Wr v2 ≺Wr . . . ≺Wr vn ⇐⇒ v1 �W�

v2 �W�
. . . �W�

vn .
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(iv) B∗�1 = E� B∗�1 for all �1 ∈ E(K ′ ∩ Hm)H , where E� := |�〉〈�|.
(v) B is almost wedge-local (w.r.t. W), i.e. for any r > 0 there exists Br ∈ A(W + Cr )

so that for any N ∈ N we have for a suitable CN > 0 that

‖B − Br‖ ≤ CN

1 + r N
. (27)

Here Cr := {x ∈ Rs+1 : |x0| + |x| < r} denotes the double cone of radius r .

The main spectral statements above, (i), (iii), and (iv), may be understood by noting
that the smearing operation B := A(χ) restricts theArveson spectrum9 SpBα ⊂ supp χ̂ .
A significant modification in comparison to the standard results from the local case
[Ha58,Ru62] appears in (v), where the statement of the lemma needs to be adapted for
the wedge-local case. Leaving aside the localization for a moment, we directly obtain
that the creation-operator approximants Bτ ( f ) from Definition 5 satisfy most of the
standard properties required for the Haag–Ruelle construction.

Proposition 8 (elementary properties of B and Bτ ).

(i) Bτ ( f )� = f̃ (P)B� for all τ ∈ R.
(ii) If A� = A⊥�, the corresponding Haag–Ruelle operators satisfy Bτ ( f )� =

B⊥τ ( f )�.
(iii) ∂τ Bτ ( f )� = 0.
(iv) ‖Bτ ( f )‖ ≤ C(1 + |τ |s/2).
(v) ∂τ Bτ ( f ) exists in norm and ‖∂τ Bτ ( f )‖ ≤ C ′(1 + |τ |s/2).

(vi) B1τ ( f1)∗ B2τ ( f2)� = E� B1τ ( f1)∗ B2τ ( f2)�, independently of velocity supports
and operators possibly associated to different wedges W1, W2, where E� :=
|�〉〈�|.

The proofs of Lemma 7 and Proposition 8 carry over literally from standard Haag–
Ruelle theory up to aspects pertaining to the weakened localization and hence shall be
skipped here. For further details we refer to [A, Sec. 5] or [Du17]. The most serious
consequence of wedge-locality is expressed by the following localization and commu-
tator estimates, which provide the technical background responsible for the break-down
of the standard Haag–Ruelle arguments beyond the two-particle case.

Lemma 9. Let A ∈ A(W). For any τ ∈ R and δ > 0 the corresponding Bτ := Bτ ( f )

can be approximated by B(δ)
τ ∈ A(τV f + Cδ|τ | + W), (δ > 0), such that for any N ∈ N

∥∥∥B(δ)
τ − Bτ

∥∥∥ ≤ Cδ
N

1 + |τ |N , (28)

where the constants Cδ
N depend on f , A and χ , but are independent of τ .

For later use in Sect. 4 we note that analogous approximants B̄(δ)
τ exist if f is

replaced by the pointwise product f̄ := f h with a polynomially bounded measurable
function h : Rd → C.

9 See e.g. [Arv82] or [BDN15], Sec. 3.
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Corollary 10 (commutators with ordered velocity support). Let B, B⊥ be as in Lemma 7
for a pair of opposite wedges W,W⊥, respectively, and let f, f ⊥ be ordered by V f ⊥ ≺W
V f . Then for any τ > 0,

∥∥∥
[

B⊥τ ( f ⊥), Bτ ( f )
]∥∥∥ ≤ CN

1 + |τ |N , (29)

where CN depend on operators and smearing functions as in Lemma 9. For τ < 0 esti-
mate (29) holds under the reversed ordering assumption V f ≺W V f ⊥ . The commutator
estimate extends to the cases that one or both of the operators in (29) are replaced by
their adjoints or τ -derivatives.

For the convenience of the reader, the technical proofs of Lemma 9 and Corollary 10 are
provided in Appendix A.

Proof of Theorem 6. Ad (i). Setting �n(τ ) := B1τ ( f1)B2τ ( f2) . . . Bnτ ( fn)� we want
to establish convergence for τ →∞. Due to Proposition 8 (v) and (iv), Cook’s method
is applicable and we can write for 0 < τ1 < τ2

‖�n(τ2)−�n(τ1)‖ =
∥∥∥∥

∫ τ2

τ1

dτ ∂τ�n(τ )

∥∥∥∥ ≤
∫ τ2

τ1

dτ ‖∂τ�n(τ )‖ . (30)

Convergencewill follow from the rapid decay estimate ‖∂τ�n(τ )‖ ≤ CN τ−N for τ > 0.
The latter is obtained by induction with respect to the number of particles n, with

starting case n = 1 given by ∂τ�n(τ ) = 0 as seen in Proposition 8 (iii). For the induction
step we write

∂τ�n(τ ) = ∂τ (B1τ ( f1)B2τ ( f2) . . . Bn−1 τ ( fn−1)) Bnτ ( fn)�

+ B1τ ( f1) . . . Bn−1 τ ( fn−1) ∂τ Bnτ ( fn)�

= ∂τ (B1τ ( f1)B2τ ( f2) . . . Bn−1 τ ( fn−1)) B⊥nτ ( fn)�, (31)

where we first used Proposition 8 (iii) to drop the term with derivative operator acting
directly on the vacuum and used that the swapping relation (15) implies Bnτ ( fn)� =
B⊥nτ ( fn)�. Now there are oppositelywedge-localized pairs of HR-operators whose com-
mutators can be controlled using Corollary 10, and we may estimate for τ > 0

‖∂τ�n(τ )‖ ≤
∥∥∥B⊥nτ ( fn)

∥∥∥
∥∥∂τ�n−1(τ )

∥∥

+
∥∥∥
[
∂τ B1τ ( f1) . . . Bn−1 τ ( fn−1), B⊥nτ ( fn)

]∥∥∥ ‖�‖ . (32)

Here the first summand is rapidly decreasing for τ → ∞ by the induction assumption
and Proposition 8 (iv). The second summand can be generously bounded from above by
expanding the derivative and commutator as

n−1∑

k=1

n−1∑

j=1
B1τ ( f1) . . . (∂τ Bkτ ( fk)) . . .

[
B jτ ( f j ), B⊥nτ ( fn)

]
. . . Bn−1 τ ( fn−1). (33)

Estimating the corresponding operator norm in (32) by expanding in terms of ‖Bkτ ( fk)‖
≤ Ck(1+|τ |s/2), ‖∂τ Bkτ ( fk)‖ ≤ C ′k(1+|τ |s/2),

∥∥[
B jτ ( f j ), B⊥nτ ( fn)

]∥∥ ≤ CN (1+τ)−N ,
and

∥∥[
∂τ Bkτ ( fk), B⊥nτ ( fn)

]∥∥ ≤ CN (1 + τ)−N yields an overall rapid decay. Here we
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used that Corollary 10 applies due to transitivity of the precursor ordering. Together we
obtain that (32) decays faster than any polynomial, and thus convergence of outgoing
scattering states follows from (30). The existence of incoming states follows analogously
for opposite operator ordering.

Ad (ii).As before let�+
n := limτ→∞ B1τ ( f1) . . . Bnτ ( fn)�. Furtherwe take a second

scattering state� ′+
n′ := limτ→∞ B ′1τ ( f ′1) . . . B ′n′τ ( f ′n′)� definedwith respect to the same

wedge W and denote the minimum number of particles by N := min(n, n′). We will
assume instead of upright W only the following weaker technical ordering condition:
adjacent pairs of velocity supports are precursor-comparable from the rear also across
the two families, in the sense that

∀ 0 ≤ j < N : V fn− j ≺W V f ′
n′− j−1

or V f ′
n′− j

≺W V fn− j−1 . (34)

For upright wedges (34) follows from Lemma 1, but the argument based on (34) can be
applied also for non-upright W , e.g. to compute

∥∥�+
n

∥∥2 = 〈�+
n , �+

n 〉.
The proof of the Fock relation (25) is now by induction on the minimum number of

particles N . By continuity of the scalar product we may write
〈
�+

n , � ′+
n′

〉 = lim
τ→∞

〈
�, Bnτ ( fn)∗ . . . B1τ ( f1)

∗ B ′1τ ( f ′1) . . . B ′n′τ ( f ′n′)�
〉
. (35)

For N = 0 the Fock identity (25) follows from ‖�‖ = 1 or Lemma 7 (iii), in the respec-
tive cases vacuum-vacuum or for a non-zero number of creation operators. Assuming
(25) holds up to the minimum number of N − 1 particles, we now distinguish the two
cases V fn ≺W V f ′

n′−1
or V f ′

n′
≺W V fn−1 obtained from (34), as they determine the

side of (35) on which the swapping should be performed. Let us proceed for the case
V f ′

n′
≺W V fn−1 , by swapping

〈
�n(τ ),� ′

n′(τ )
〉 = 〈

�, Bnτ ( fn)∗ . . . B1τ ( f1)
∗ B ′1τ ( f ′1) . . . B ′n′τ ( f ′n′)�

〉

=
〈
�, Bnτ ( fn)∗ . . . B1τ ( f1)

∗ B ′1τ ( f ′1) . . . B ′⊥n′τ ( f ′n′)�
〉

=
〈
�, B∗nτ B ′⊥n′τ B∗n−1 τ . . . B∗1τ B ′1τ . . . B ′n′−1 τ�

〉

+
〈
�, B∗nτ

[
B∗n−1 τ . . . B∗1τ B ′1τ . . . B ′n′−1 τ , B ′⊥n′τ

]
�

〉
,

where in the last step and below we suppress obvious wave packet dependences. Ex-
panding the commutator gives

n−1∑

k=1
B∗n−1 τ . . .

[
B∗kτ , B ′⊥n′τ

]
. . . B∗1τ B ′1τ . . . B ′n′−1 τ

+ B∗n−1 τ . . . B∗1τ
n′−1∑

k=1
B ′1τ . . .

[
B ′kτ , B ′⊥n′τ

]
. . . B ′n′−1 τ .

Here Corollary 10 applies due to V f ′
n′
≺W V fn−1 , the assumed orderings (23) of the ve-

locity supports of fk and f ′k within each family, and transitivity of the precursor ordering.
This yields

∥∥[
Bkτ ( fk)

∗, B ′⊥n′τ ( f ′n′)
]∥∥ ≤ CN (1 + τ)−N and

∥∥[
B ′k′τ ( f ′k′), B ′⊥n′τ ( f ′n′)

]∥∥ ≤
CN (1 + τ)−N for 1 ≤ k ≤ n− 1 and 1 ≤ k′ ≤ n′ − 1, respectively, so that together with
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‖B∗jτ‖ ≤ C j (1 + |τ |s/2) and ‖B ′jτ‖ ≤ C ′j (1 + |τ |s/2) from Proposition 8 (iv), we can
estimate for τ > 0

∣∣∣
〈
�n(τ ),� ′

n′(τ )
〉−

〈
�, B∗nτ B ′⊥n′τ B∗n−1 τ . . . B∗1τ B ′1τ . . . B ′n′−1 τ�

〉∣∣∣ ≤ CN τ−N . (36)

As limτ→∞
〈
�n(τ ),�n′(τ ′)

〉
exists by part (i) of this theorem, which was established

above,

lim
τ→∞

〈
�n(τ ),� ′

n′(τ )
〉 = lim

τ→∞
〈
(B ′⊥n′τ )

∗Bnτ�, B∗n−1 τ . . . B∗1τ B ′1τ . . . B ′n′−1 τ�
〉

= lim
τ→∞

〈
�, (B ′⊥n′τ )

∗Bnτ�
〉 〈

�, B∗n−1 τ . . . B∗1τ B ′1τ . . . B ′n′−1 τ�
〉
,

where the right hand side was rewritten using the clustering identity from Proposition 8
(vi). The existence of the limit on the right-hand side now follows for the one-particle
matrix element in the first factor from Proposition 8 (iii), and for the second factor from
the induction assumption, respectively. Taken together we obtain the Fock formula (25).

For the complementary ordering V f ′
n′
≺W V fn−1 in (35) we swap instead on the

opposite side, making use of Bnτ ( fn)� = B⊥nτ ( fn)�. Following otherwise the same
chain of arguments we obtain the limit (25) also in this case, concluding the induction
step. ��

To close this section let us recall that in dimension 1 + 1 all wedges are upright in
a trivial sense. In higher dimension the restriction to upright wedges is unnatural as it
singles out a subfamily of localization wedges which is not fully Poincaré covariant. We
will later see that the uprightness restriction is of a technical nature arising due to the a
priori Lorentz-frame dependent formulation of Haag–Ruelle theory. Consequently it can
be lifted by passing to a variant of the Haag–Ruelle creation operator approximants (3)
adapted to the reference frame of a given (non-upright) operator localization wedge W .

4. Localization in General Wedges

The goal of this section is to remove the assumption of localization of operators in upright
wedges from Theorem 6 (ii), as will be needed for a physically satisfactory discussion
of the known Poincaré-covariant wedge-local models (e.g. as in [BLS11]). We recall
that these additional considerations are specific to the case of spatial dimension s > 1.
The following simple example illustrates the causal restrictions in the non-upright case
which invalidate Lemma 1 and allows to visualize how these are resolved below.

Remark 11 (canonical non-upright wedge). A non-upright wedge can be obtained by
boosting the Rindler wedge Wr = {x ∈ Rd : ∣∣x0

∣∣ < x1}, d ≥ 3, in x2-direction with
rapidity β ∈ R \ {0}, yielding

W := 	
(2)
β Wr = {x ∈ Rd :

∣∣∣cosh(β)x0 − sinh(β)x2
∣∣∣ < x1}. (37)

For concreteness we may take d = 3. The relevant part determining the precursor
ordering of velocity supports V1 ≺W V2 ⇐⇒ V2 − V1 ⊂ W is the restriction of W to
{x0 = 0}. For the upright case β = 0 this restriction is a half plane, and the opposite
ordering V2 ≺W V1 corresponds to inclusion in the complementary open half-plane.
Exactly this special geometrical situation is necessary for the validity of Lemma 1.
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Further it suggests the physical interpretation that the scattering states constructed in
Theorem 6 cover the entire 2-particle velocity space up to a set of measure zero.10

However for the non-upright case β �= 0 the restriction of W to {x0 = 0} yields
merely a cone C := {x ∈ Rd−1 : ∣∣sinh(β)x2

∣∣ < x1}. Hence there is a non-trivial region
of the two-particle velocity space which cannot be locally decomposed into ordered con-
figurations. For example we may take the corresponding velocity supports concentrated
in sufficiently small neighbourhoods of points v1 ∈ V1, v2 ∈ V2 for which

v1 �≺W v2 and v2 �≺W v1 ⇐⇒ v2 − v1 ∈ R2 \ (C ∪ (−C)) =: �, (38)

where a “causally forbidden” region� appears, having vanishingmeasure only if β = 0.

4.1. Haag–Ruelle theorem with adapted Lorentz frame. Difficulties as in (38) result
from the implicit Lorentz-frame dependence of the Haag–Ruelle operators Bτ ( f ). Nev-
ertheless the latter have turned out to be well suited for the construction with uprightW .
This motivates us to adjust the construction from Theorem 6 for general W by passing
to a suitable reference frame.11

Definition 12 (Adapted Haag–Ruelle operators). For a general (possibly non-upright)
wedge W , A ∈ A(W), B = A(χ) as before and regular positive-energy Klein–Gordon
solutions f , we set for τ ∈ R

B	
τ ( f ) :=

∫
dsx f (	(τ, x))α(	(τ,x))(B), (39)

where 	 ∈ L∗(W) := {	 ∈ L↑+ : 	Wr =Wc} or more generally 	 ∈ L↑+.

In fact, such B	
τ ( f ) appear naturally in the discussion of Lorentz covariance in

standard Haag–Ruelle theory. Here we just introduce them in an ad-hoc manner, even if
the wedge-local net may not be Lorentz covariant. In the following we will see that they
can equally well serve as creation-operator approximants, which will turn out suitable
for our cause. We should emphasize that no Lorentz transformation is applied to B—
only the hyperplane used for smearing the translates αx (B) is modified. Fortunately it is
not necessary to repeat our arguments from Sect. 3.2. We will instead infer the existence
of the limits

�+,	
n := lim

τ→∞ B	
1τ ( f1)B	

2τ ( f2) . . . B	
nτ ( fn)� (40)

and their Fock structure for suitably ordered wave packets from a redefinition of the
wedge-local net and the results of Sect. 3.2. The basic observation is that themodification
of passing from f to f 	(x) := f (	x) and from translation byαx tomodified translation
automorphisms α	

x := α	x entering in (39) are both compatible with the underlying
structures in a sense to be made precise now.

10 An important caveat here is that this simple and compelling picture contains implicitly the assumption of
conventional (e.g. bosonic) particle statistics. This may be misleading in the general wedge-local setting, as
illustrated in recent examples constructed by Longo, Tanimoto, and Ueda [LTU17, Sec. 5].
11 Constructions using Lorentz-covariant creation-operator approximants (e.g. [Her13]) face similar prob-

lems as in (38) when applied in a wedge-local setting.
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Lemma 13. Let 	 ∈ L↑+ .

(i) f 	(x) := f (	x) defines a regular positive-energy Klein–Gordon solution iff f is
a regular positive-energy Klein–Gordon solution.

(ii) Settingα	
x := α	x andA	(W) := A(	W), (A	, α	,�) is a wedge-local quantum

field theory satisfying (HK1)–(HK6), and possibly (HK2
), (HK3
), iff the corre-
sponding assumptions hold for (A, α,�).
If (HK3
) holds, we set further α	

λ (A) := α(	x,		1	−1)(A) for λ = (x,	1) ∈ P↑+ .

Proof. Lorentz invariance of the Klein–Gordon equation (i) is standard, so let us only
comment that the restriction to orthochronous Lorentz transformation is essential for
preserving the positive-energy property, and that the regularity property can be concluded
via the representation (19) and standard (non-)stationary phase estimates.

Statement (ii) follows from elementary computations which we illustrate for the
example of (HK3
). Letting λ = (x,	1) ∈ P↑+ we obtain

α	
λ A	(W) = α(	x,		1	−1)A(	W) = A(		1	

−1	W + 	x) = A	(	1W + x)

where we used that (HK3
) holds for the original net A. ��
It should be noted that Lemma 13 (ii) applies also to wedge-local nets which are
not Poincaré covariant (HK3
). In particular the basic definitions, α	

x := α	x , and
A	(W) := A(	W), do not make use of Lorentz-transformation isomorphisms, they
are only a passive redefinition on the level of the wedge-local net.

To establish the Haag–Ruelle theorem for the adapted scattering state approximants
in (40) we rewrite the adapted Haag–Ruelle operators in terms of the boosted net of
Lemma 13 as

B	
τ ( f ) =

∫
dsx f 	(τ, x)α	

(τ,x)(B), and similarly (41)

B = A(χ) =
∫

ddx ′ χ(x ′)αx ′(A)

=
∫

ddx χ(	x)α	x (A) =
∫

ddx χ	(x)α	
x (A),

where we used Lorentz invariance of ddx . Due to χ	(x) := χ(	x) ∈ S (Rd) we
know that B is almost wedge-local also for the redefined net A	. Therefore Theorem 6
may be applied to the rewritten operators (41). It remains to rephrase the statement of
Theorem 6 from the boosted net (A	, α	,�) to return to the terminology of the original
theory (A, α,�).

Let now W be any wedge, � j
1 = Em A j� = Em A⊥j �, A j ∈ A(W), A⊥j ∈ A(W⊥),

(1 ≤ j ≤ n), and 	 ∈ L↑+. Then �
j
1 are obviously also swappable with respect to

the boosted net and in particular A j ∈ A	(	−1W). For 	 ∈ L∗(W) we get A j ∈
A	(Wr + 	−1x), for some x ∈ Rd depending on W , where 	−1Wc = Wr is upright.
Hence assuming uprightness is redundant for the adapted Haag–Ruelle construction
with 	 ∈ L∗(W). Secondly we see from (41) that applying Theorem 6 to outgoing
scattering-state approximants interpreted via the boosted net now requires the ordering

V f 	
n
≺Wr V f 	

n−1
≺Wr . . . ≺Wr V f 	

1
, (42)
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with V f 	
j
as in (22), denoting the velocity support of f 	

j (x) := f j (	x). In terms of the

original net, (42) is by covariance of the ordering relation (9) equivalent to

	V f 	
n
≺W 	V f 	

n−1
≺W . . . ≺W 	V f 	

1
. (43)

This is also consistent with a corresponding localization of the adapted Haag–Ruelle
operators (41) similarly as in Lemma 9, but with respect to adapted velocity supports

V	
f j
:= 	V f 	

j
. (44)

The result of this discussion is summarized in Theorem 14.

Theorem 14. Let 	 ∈ L↑+ and �
j
1 = Em A j� = Em A⊥j � with A j ∈ A(W), A⊥j ∈

A(W⊥) (as in Theorem 6).

(i) For regular positive-energy Klein–Gordon solutions f j satisfying

V	
fn
≺W V	

fn−1 ≺W . . . ≺W V	
f1 , (45)

the scattering state approximants �	
n (τ ) := B	

1τ ( f1)B	
2τ ( f2) . . . B	

nτ ( fn)� con-
verge in norm for τ →∞.

(ii) For 	 ∈ L∗(W) scalar products of �
+,	
n := limτ→∞ B	

1τ ( f1) . . . B	
nτ ( fn)�,

�
′+,	
n′ := limτ→∞ B ′	1τ ( f ′1) . . . B ′	n′τ ( f ′n′)� constructed w.r.t. the same wedge W

satisfy

〈
�+,	

n , �
′+,	
n′

〉
= δnn′

n∏

j=1

〈
B	

jτ ( f j )�, B ′	jτ ( f ′j )�
〉
. (46)

Analogous statements hold for incoming scattering states assuming opposite ordering.

4.2. Lorentz-Frame Independence and Residual Covariance. For the adapted Haag–
Ruelle operators B	

jτ ( f j ), convergence of scattering-state approximants �	
n (τ ) :=

B	
1τ ( f1) . . . B	

nτ ( fn)� has now been established for general wedges, i.e. upright or tilted.
The new ordering restrictions (45) appear optimal in the context of Remark 11, and the
Fock structure follows without additional assumptions for 	 ∈ L∗(W). However as
in standard Haag–Ruelle theory, the choice of HR-operators B	

jτ ( f j ) creating a given

one-particle vector �
j
1 = B	

jτ ( f j )� is not unique. Fock structure [Theorem 14 (ii)]
implies only for fixed 	, that resulting scattering states do not depend on this freedom
of choosing B	

jτ ( f j ). In the following we will exclude also any unphysical dependence
on 	 ∈ L∗(W), for which one has to handle the possibility of associated non-trivial
changes in the localizations of B	

jτ ( f j ). We begin by considering the 	-dependence
of one-particle vectors, to be followed by a discussion of the influence on ordering
conditions and finally on scattering states. It should be emphasized that the present sec-
tion addresses only the Lorentz-frame independence of the construction of scattering
states. Covariance of scattering states under (HK3
) is a related but separate issue to be
considered later (see Theorem 24).
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Lemma 15. Let 	 ∈ L↑+ and f a regular positive-energy Klein–Gordon solution.

(i) The wave packet of f 	(x) := f (	x) as defined in (19) is given by

f̃ 	(k) = ωm(	m(k))

ωm(k)
f̃ (	m(k)), (47)

where f̃ is the wave packet of f and 	m(k) denotes the spatial part of 	·(ωm(k), k).
In particular, supp f̃ 	 = 	−1m (supp f̃ ).

(ii) The 	-dependence of one-particle vectors is

B	
τ ( f )� = ωm(P)

ωm(	−1m (P))
f̃ (P)E(Hm)B�. (48)

These one-particle formulas are well-known from the discussion of Lorentz-
covariance in the local case and we will only briefly sketch the computations in Ap-
pendix A. They are important for the present discussion, as (48) suggests a non-trivial
dependence of limτ→∞�	

n (τ ) on the auxiliary boost 	. However the dependence can

be absorbed by passing to Klein–Gordon solutions f (	)
j defined via modified wave

packets f̃ (	)
j (p) := ωm (	−1m (p))

ωm (p)
f̃ j (p), which have identical velocity supports and give

via (48) that

B	
jτ ( f (	)

j )� = f̃ j (P)E(Hm)B j�, for any 	 ∈ L↑+ . (49)

While the above argument coincides with the familiar result from local QFT, the
discussion of scattering-state dependence requires additional care in the wedge-local
case due to additional ordering requirements. For brevity reasons we shall focus on 	-
dependence only within the preferred class of reference frames for a given localization
wedge W defined by L∗(W) := {	 ∈ L↑+ : 	Wr =Wc} as in Theorem 14.12

Remark 16. Clearly any 	,	′ ∈ L∗(W) are related by an element 	̄ := 	−1	′
from

the stabilizer StabL↑+Wr := {	 ∈ L↑+ : 	Wr =Wr} ∼= O(1, 1)↑+×SO(d−2), where the

first factor is generated by boosts	β in x1-direction (β ∈ R), and the second by rotations
fixing x1. In particular we note for later reference that StabL↑+Wr is path connected, and

that we may smoothly interpolate between any 	,	′ ∈ L∗(W) via arbitrarily often
differentiable maps 	γ : [0, 1] → L∗(W) such that 	0 = 	, 	1 = 	′.

Proposition 17 (L∗(W)-invariance of velocity ordering). For regular Klein–Gordon
solutions f1, f2 and any 	,	′ ∈ L∗(W) we have

V	
f1 ≺W V	

f2 ⇐⇒ V	′
f1 ≺W V	′

f2 . (50)

Proof. By covariance (9) we have V	
f1
≺W V	

f2
⇐⇒ V f 	

1
≺Wr V f 	

2
and similarly

for 	′, allowing us to reduce (50) to the case W = Wr up to boosts acting on f j .
Thus (50) amounts to a property of the relativistic velocity transformation law. Let us
assume that V f 	′

1
≺Wr V f 	′

2
. By Remark 16 we may write 	′ = 		̄, 	̄ = 	β R1

12 Preliminary computations suggest that Theorem 14 also extends to all	 ∈ L↑+ as long as the ordering (45)
holds for 	 ∈ L∗(W).
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with a boost 	β in x1-direction of rapidity β ∈ R and a spatial rotation R1 preserving

x1. Hence from f 	′
j = f

		β R1
j = ( f

		β

j )R1 , ( j = 1, 2), we obtain for the spatial
projection V f 	′

j
of V f 	′

j
that

V f 	′
j
=

{
k

ωm(k)
: k∈ R−11 (supp f̃

		β

j )

}
=

{
R−11 k
ωm(k)

: k ∈ supp f̃
		β

j

}

= R−11 V
f
		β
j

.

Here we used Proposition 15 (i), that R from the rotation subgroup of L↑+ act on Hm by
Rm(k) = Rk, and ωm(R−11 k) = ωm(k). By covariance (9)

V f 	′
1
≺Wr V f 	′

2
⇐⇒ R−11 V

f
		β
1

≺Wr R−11 V
f
		β
2

⇐⇒ V
f
		β
1

≺Wr V
f
		β
2

,

where we used that R1Wr = Wr, as R1 is a rotation preserving x1. The remaining
x1-boost gives

V
( f 	

j )
	β =

{
k

ωm(k)
: k ∈ (	β)−1m (supp f̃ 	

j )

}
=

{
(	−β)m(k)

ωm((	−β)m(k))
: k ∈ supp f̃ 	

j

}

=
{

((sinh(−β)ωm(k) + cosh(−β)k1), k2, . . . , ks)

cosh(−β)ωm(k) + sinh(−β)k1
: k ∈ supp f̃ 	

j

}
,

where we used the group action property (	β)−1m (k) = (	−1β )m(k) = (	−β)m(k).

From this we obtain V
f
		β
1

≺Wr V
f
		β
2

⇐⇒ ∀k2 ∈ supp f̃ 	
2 , k1 ∈ supp f̃ 	

1 :

− sinh(β)ωm(k2) + cosh(β)k12
cosh(β)ωm(k2)− sinh(β)k12

− − sinh(β)ωm(k1) + cosh(β)k11
cosh(β)ωm(k1)− sinh(β)k11

> 0.

Passing to the common denominator and using cosh(β)2 − sinh(β)2 = 1, this is
equivalent to k12/ωm(k2) − k11/ωm(k1) > 0. As the equivalence holds for all k2 ∈
supp f̃ 	

2 , k1 ∈ supp f̃ 	
1 , we have shown that V f 	

1
≺Wr V f 	

2
. ��

This establishes that all choices 	 ∈ L∗(W) are equivalent with respect to the
ordering restriction. That is a prerequisite for the following commutator estimate, which
extends Corollary 10 and will be required for comparing scattering states defined for
distinct 	 ∈ L∗(W).

Lemma 18 (Uniform norm and commutator estimates). Let A ∈ A(W), A⊥ ∈ A(W⊥),
and let f, f ⊥ be regular Klein–Gordon solutions. For a continuously differentiable
compact curve 	γ ∈ L∗(W), γ ∈ [0, 1], we define f (	γ ), f ⊥(	γ ), as in (49).

(i) The corresponding adapted HR-operators from Definition12 satisfy the norm bounds
∥∥∥B	γ

τ ( f (	γ ))

∥∥∥ ≤ C(1 + |τ |s/2),
∥∥∥∂γ B	γ

τ ( f (	γ ))

∥∥∥ ≤ C ′(1 + |τ |s/2+1), (51)

and analogously for B⊥	γ

τ ( f ⊥(	γ )). The constants C, C ′ are uniform in γ ∈ [0, 1]
and τ ∈ R but depend on A, χ , f and on the curve 	γ .
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(ii) For τ > 0 and ordered V	
f ⊥ ≺W V	

f (w.r.t. any one 	 ∈ L∗(W)) we have

∥∥∥[B	γ

τ ( f (	γ )), B⊥	γ

τ ( f ⊥(	γ ))]
∥∥∥ ≤ CN τ−N , (52)

∥∥∥[∂γ B	γ

τ ( f (	γ )), B⊥	γ

τ ( f ⊥(	γ ))]
∥∥∥ ≤ C ′N τ−N , (53)

with CN , C ′N independent of γ ∈ [0, 1], τ > 0, but otherwise depending on oper-
ators, smearing functions, and 	γ as in (i). Analogous estimates hold for τ < 0 if
the opposite ordering of wave packets is assumed.

The γ -independent estimates of Lemma 18 are established in Appendix A. Together
with the previous results it cannowbe seen that for any scattering state�

+,	
n ,	 ∈ L∗(W)

given any other 	′ ∈ L∗(W), we can construct a corresponding �
′+,	′
n s.t. �

′+,	′
n =

�
+,	
n . This shows also that for any given wedge W the range of scattering states from

Theorem 14, constructed via correspondingly localized operators Ak ∈ A(W) (and
A⊥k ∈ A(W⊥)), is independent of the reference frame specified by the auxiliary 	 ∈
L∗(W).

Theorem 19 (	-independence of scattering states). Let �
j
1 = Em A j� = Em A⊥j �

with A j ∈ A(W), A⊥j ∈ A(W⊥), and let fk be regular KG-solutions such that for some

	0 ∈ L∗(W) we have V	0
fn
≺W V	0

fn−1 ≺W . . . ≺W V	0
f1

. Then for any 	′ ∈ L∗(W)

the scattering states

�+,(	′)
n := lim

τ→∞ B	′
1τ ( f (	′)

1 ) . . . B	′
1τ ( f (	′)

n )� (54)

are well-defined and the limiting outgoing state �
+,(	′)
n is independent of 	′. An anal-

ogous result holds for incoming scattering states.

Proof. Convergence follows from Proposition 17 and Theorem 14. Using the above
preparations we can establish 	-independence by generalizing the arguments familiar
from the local case. Due to Remark 16 we can interpolate between the two reference
frames specified by 	0 = 	0 and 	1 = 	′ with a differentiable curve 	γ ∈ L∗(W),
γ ∈ [0, 1]. Now we estimate for τ > 0 inductively with respect to the particle number n
that

∥∥∥�(	)
n (τ )−�(	′)

n (τ )

∥∥∥ ≤
∫ 1

0
dγ

∥∥∥∂γ �(	γ )
n (τ )

∥∥∥ ≤ CN τ−N .

For n = 1 this follows from (49) with CN = 0. The induction step is established by
expanding ‖∂γ �

(	γ )
n (τ )‖ ≤ ∥∥(∂γ (Bγ

1τ . . . Bγ
n−1 τ ))Bγ

nτ�
∥∥ +

∥∥Bγ
1τ . . . Bγ

n−1 τ ∂γ Bγ
nτ�

∥∥

where we abbreviated Bγ

jτ := B	γ

jτ ( f (	(γ ))
j ). Here the second term vanishes due to (49)

and the first term may be estimated by swapping
∥∥(∂γ (Bγ

1τ . . . Bγ
n−1 τ ))Bγ

nτ�
∥∥ =

∥∥∥(∂γ (Bγ
1τ . . . Bγ

n−1 τ ))B⊥γ
nτ �

∥∥∥

≤
∥∥∥B⊥γ

nτ

∥∥∥
∥∥(∂γ (Bγ

1τ . . . Bγ
n−1 τ ))�

∥∥

+
∥∥∥[∂γ (Bγ

1τ . . . Bγ
n−1 τ ), B⊥γ

nτ ]
∥∥∥
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where both terms are rapidly decreasing in τ . For the first term this is obtained from the
induction assumption and ‖B⊥γ

jτ ‖ ≤ C(1+ |τ |s/2) (uniformly in γ ∈ [0, 1]). The second
term is estimated by expansion of the commutator similarly as in (33) and inserting the
γ -uniform bounds from Lemma 18. ��

5. Wave Operators, S-Matrix, and Wedge Transitions

We have now sufficient understanding of the construction from Sect. 4.1 to begin with a
general and model-independent analysis of the multi-particle scattering data in wedge-
local models. In particular we propose a formalism for wave operators and S-matrices,
which emphasizes the potential physical peculiarities of multi-particle scattering in the
wedge-local setting. These considerationswill provide the foundation for the study of the
multi-particle structure of the Grosse-Lechner model and related wedge-local theories
in subsequent work.

Guided by conventional Haag–Ruelle theory we additionally need to address restric-
tions of our construction regarding swapping and ordering conditions. Regarding the for-
mer it will be convenient to introduce in addition to the one-particle spaceH1 := EmH
the (non-closed) subspaces

H W
1 := {�1 ∈H1 : �1 swappable w.r.t. W + x for some x ∈ Rd},

H W
1c := { f̃ (P)�1 : �1 ∈H W

1 , f̃ ∈ C∞c (Rs)}. (55)

It is clear that H W
1 = H

W+y
1 = U (y)H W

1 = H
W ′+y′
1 for any y, y′ ∈ Rd by

symmetry of the definition, and if covariance (HK3
) applies U (	)H W
1 = H 	W

1 .

Lastly Lemma 3 shows that wedge-duality (HK2
) yields H W
1 = E(Hm)H for any

wedge W . Further independent of duality H W
1c ⊂ H W

1 is dense by spectral calculus,
but one should not expect H W

1c to be a subspace of H W
1 , cf. [BBS01] Lemma 3.4. It

is clear by definition that for any one particle vector �k
1 ∈H W

1c we can find associated
creation operators such that �k

1 = B	
kτ ( fk)� = B⊥	

kτ ( fk)�, so that we can proceed to
the corresponding ordered scattering states. The basic conceptual issue to be addressed
in the passage from the Haag–Ruelle construction to the wave operators and the S-
matrix concerns the potential implicit dependence of scattering states on the choice of
creation-operator approximants B	

kτ ( fk).

Lemma 20. Let Ak, A′k ∈ A(W) together with KG-solutions fk, f ′k and auxiliary func-

tions χ , χ ′ ∈ S (Rd) (cf. Lemma 7) such that B	
kτ ( fk)� = B ′	′kτ ( f ′k)� with Vn ≺W

Vn−1 ≺W · · · ≺W V1 where Vk := V	
fk

and analogously for V ′k := V	′
f ′k

, 	,	′ ∈
L∗(W). Then the outgoing limits �+

n , � ′+
n′ of �n(τ ) := B	

1τ ( f1) . . . B	
nτ ( fn)� and

� ′
n(τ ) := B ′	′1τ ( f ′1) . . . B ′	′nτ ( f ′n)� coincide. The same holds for incoming limits with

ordering assumptions replaced by V1 ≺W V2 ≺W · · · ≺W Vn.

Proof. For 	 = 	′ we find directly
∥∥�+

n −� ′+
n

∥∥2 = ∥∥�+
n

∥∥2−2Re〈�+
n , � ′+

n 〉+
∥∥� ′+

n

∥∥2.
This vanishes, as due to Fock structure (Theorem 14 (ii)) and coinciding one-particle
vectors we obtain 〈�+

n , � ′+
n 〉 =

∥∥�+
n

∥∥2 = ∥∥� ′+
n

∥∥2. The case of general 	,	′ ∈ L∗(W)

follows from the above via Theorem 19. ��
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Further one can make sense of velocity supports and the corresponding ordering as-
sumptions without reference to Klein–Gordon solutions. For a single-particle state�1 ∈
H1 the classical propagation region and the corresponding	-velocity support (	 ∈ L↑+)
are given in terms of the energy-momentum spectral measure E(H,P)(�) (� ⊂ Rs+1

Borel) by

ϒ�1 := {t · (ω, k) : (ω, k) ∈ supp(E(H,P)�1), t ∈ R},

V	
�1
:= ϒ�1 ∩	T1, T1 := {(1, x) : x ∈ Rs}. (56)

The precursor ordering is lifted to a relation on one-particle vectors �1, �
′
1 ∈H1 by

� ′
1 ≺W �1 :⇐⇒ V	

� ′1
≺W V	

�1
, (57)

with some 	 ∈ L∗(W). We recall from Sect. 4.1 that this prescription is distinguished
in the non-upright case, as it leads to the largest range of constructed scattering states in
terms of admissible wave-packet configurations, or equivalently to the weakest ordering
restrictions possiblewith the presentmethod. The definition is consistent, as the resulting
relation does not depend on the choice of 	 within L∗(W) due to Proposition 17.

The multi-particle configurations accessible via our wedge-local Haag–Ruelle con-
struction can be conveniently expressed by the following notion of ordered Fock spaces
replacing the conventional definition based on bosonic or fermionic statistics.

Definition 21. The ordered tensor products over one-particle Hilbert space H1 with

respect to a partial order ≺ on H1 are defined as closure⊗n≺H1 := ⊗̂n
≺H1 of the finite

linear spans

⊗̂n
≺H1 := span{�1

1 ⊗ . . .⊗�n
1 : �k

1 ∈H1, �
1
1 ≺ �2

1 ≺ . . . ≺ �n
1 }. (58)

Using the conventions ⊗̂0
≺H1 := C�, ⊗̂1

≺H1 := H1 we obtain corresponding ordered
Fock spaces �≺(H1) := ⊕∞

n=0⊗n≺H1. The subspace of finite linear combinations of
ordered tensor product vectors with �k

1 ∈ H ′
1 ⊂ H1 will be denoted by �≺0 (H ′

1 ) :=
⊕̂∞

n=0⊗̂n
≺H ′

1 .

To proceed to the scattering data note that �
≺W
0 (H W

1c ) ⊂ �≺W (H1) is dense and
the wave operators are defined by linear extension of the isometries obtained from the
wedge-local Haag–Ruelle construction of Theorem 14. Just as for ordinary bosonic-
and fermionic statistics, unsymmetrized Fock space �u(H1) := ⊕∞

n=0 H ⊗n
1 provides

a common enveloping space into which ordered tensor products and Fock spaces embed
naturally. The possible dependence of scattering states on a given wedge of reference
W , noted by Grosse and Lechner [GL07], extends also to multi-particle scattering states
and is most consequently expressed on the level of wave operators.

Definition 22 (Wave operators). For any given centered wedge W we set

W+
W :

⎧
⎨

⎩

�
�W
0 (H W

1c ) −→H ,

�1
1 ⊗ . . .⊗�n

1 �−→ lim
τ→∞ B	

1τ ( f1) . . . B	
nτ ( fn)�,

(59)

W−
W :

⎧
⎨

⎩

�
≺W
0 (H W

1c ) −→H ,

�1
1 ⊗ . . .⊗�n

1 �−→ lim
τ→−∞ B	

1τ ( f1) . . . B	
nτ ( fn)�,

(60)



224 M. Duell

where for 	 ∈ L∗(W) suitable B	
kτ ( fk)� = �k

1 with Bk swappable and almost wedge-
local w.r.t. the given wedge W can be obtained for �k

1 ∈ H W
1c via (48). In the two-

dimensional case we can take any 	 ∈ L↑+ also for translates of Wr
′.13

Proposition 23. Assuming wedge-duality (HK2
), the wave operators (59), (60) are
well-defined and extend to bounded linear isometries W+

W : ��W (H1) −→ H , and
W−

W : �≺W (H1) −→H .

Proof. Well-definedness of W+
W on �

�W
0 (H W

1c ) follows by noting that the computation
from the proof of Lemma 20 extends to linear combinations of �+

n . As the Fock struc-
ture also implies isometry of W+

W , the wave operators further extend to the closures

��W (H1) = �
�W
0 (H W

1c ) by continuity and using that H W
1c = H1 (Lemma 3). The

construction of W−
W is analogous on the oppositely ordered spaces. ��

Due to translation covariance it is sufficient to consider W±
W for centered wedges

W = 	Wr. In other words we will now see that the wave operators in fact depend on
the wedge W only modulo translations. Given (HK3
) this symmetry consideration in
fact extends to the full Poincaré group, whose action U0(λ) on �u(H1) is defined by

U0(λ)
(
�1

1 ⊗�2
1 ⊗ · · · ⊗�n

1

)
:= (U (λ)�1

1 )⊗ (U (λ)�2
1 )⊗ · · · ⊗ (U (λ)�n

1 ). (61)

WhileU0(x) preserves velocity-ordered Fock spaces, boosts act in general non-trivially.
Explicitly, (9) shows that U0(	)�≺W (H1) = �≺	W (H1), U0(	)��W (H1) =
��	W (H1), and analogously for the subspaces �

≺W
0 (H W

1c ).

Theorem 24. For λ = (a,	) ∈ P↑+ we have W±
W+a = W±

W and U (λ)W±
W =

W±
	WU0(λ).

Proof. The first statement follows trivially from translation symmetry of Definition 22.
For the second statement let us consider only the outgoing case, and note that it is
sufficient to establish the identities for special �+

n of ordered tensor product form

�+
n = W+

W (B	′
1τ ( f1)�⊗ · · · ⊗ B	′

nτ ( fn)�)

= lim
τ→∞ B	′

1τ ( f1) . . . B	′
nτ ( fn)�.

with auxiliary boost 	′ ∈ L∗(W) and velocity supports ordered correspondingly, that
is by V	′

f1
�W V	′

f2
�W · · · �W V	′

fn
. From continuity of U (λ), we obtain

U (λ)�+
n = lim

τ→∞U (λ)B	′
1τ ( f1)U (λ)∗U (λ) . . . U (λ)∗U (λ)B	′

nτ ( fn)�. (62)

Using U (λ)U (x) = U (	x)U (λ), the adjoint action of U (λ) yields due to

U (λ)B	′
jτ ( f j )U (λ)∗ =

∫
dsx f j (	

′(τ, x)) U (λ)α	′(τ,x)(B j )U (λ)∗

=
∫

dsx f ′j (		′(τ, x)) α		′(τ,x)(B ′j ) = B ′		′
jτ ( f ′j ) (63)

13 The d = 2 exception can be dropped by extending the formalism, and results of Sect. 4.2, to make use of

the larger sets of auxiliary Lorentz transformations {	 ∈ L↑+ : 	−1W upright} instead of L∗(Wr
′) = ∅.
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again aHaag–Ruelle operator with B ′j := U (	, a)B jU (	, a)∗ from the class of almost-
wedge local operators considered in Lemma 7 (with respect to the transformed wedge
	W) and f ′j (x) := f j (	

−1x). Starting from (62) covariance of W+
W is now obtained

via

U (λ)�+
n = lim

τ→∞ B ′		′
1τ ( f ′1)B ′		′

2τ ( f ′2) . . . B ′		′
nτ ( f ′n)�

= W+
	W ((B ′		′

1τ ( f ′1)�)⊗ . . .⊗ (B ′		′
nτ ( f ′n)�))

= W+
	W ((U (	)B	′

1τ ( f1)�)⊗ . . .⊗ (U (	)B	′
nτ ( fn)�))

= W+
	WU0(	)(B	′

1τ ( f1)�⊗ . . .⊗ B	′
nτ ( fn)�).

Here we first used (63), well-definedness of the wave-operators (Proposition 23), then
again (63), and lastly (61). Finally we extend by linearity and continuity to all of
��W (H1), whereby we obtain the covariance identity. ��

For local theories W±
W are equivalent to the conventional Haag–Ruelle wave op-

erators as a consequence of Lemma 20. Therefore in local theories they must be W-
independent and Lorentz-covariant up to suitable identification of ordered Fock spaces
by standard arguments. In the general wedge-local setting on the other hand, a non-
trivial dependence of W±

W on the wedge W should be expected, as noticed in [GL07].
The resulting asymptotic breaking of Lorentz symmetry in higher dimensions will be
strongly model dependent, so that it is beyond the scope of our present general analysis.
The lesson to be learned is that there must be a residual Lorentz covariance with respect
to the stabilizer of Wc in any wedge-local theory.

Finally let us note that also the S-matrix in wedge-local theories, as accessible via
our construction with suitable ordering restrictions, will inherit the wedge-dependence
of the wave operators.

Definition 25 (S-matrix and wedge-transition maps). The S-matrices and wedge-
transition maps between final and initial states are defined as

SWf ,Wi
f i := (W+

Wf
)∗W−

Wi
, SW ′,W

f f := (W+
W ′)∗W+

W , SW ′,W
i i := (W−

W ′)∗W−
W .

(64)

depending on centered wedges Wf ,Wi,W,W ′ entering in the Haag–Ruelle construc-
tion.

Theorem 26. S-matrices and wedge transition maps (64) are Poincaré-covariant in the
sense that for λ = (a,	) ∈ P↑+ we have

U0(λ)SWf ,Wi
f i U0(λ)∗ = S	Wf ,	Wi

f i ,

U0(λ)SW,W ′
f f U0(λ)∗ = S	W,	W ′

f f , U0(λ)SW,W ′
i i U0(λ)∗ = S	W,	W ′

i i .

If the wave operators are asymptotically complete (i.e. have dense range in H ) we have

additional transition identities such as SWf ,Wi
f i = S

Wf ,W ′
f

f f S
W ′

f ,W ′
i

f i S
W ′

i ,Wi
i i .

Proof. Covariance identities follow from Proposition 24. The wedge-transition formula
is a consequence of (64) using that asymptotic completeness and isometry of W+

W ′
f

imply

W+
W ′

f
(W+

W ′
f
)∗ = 1 and analogously for W−

W ′
i
. ��
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It is important to highlight that in our construction the localization wedge W must
agree among all creation operators used to define a scattering state. Additionally even if
there is a non-trivial overlap between two distinct ordered Fock spaces, for non-vanishing
� ∈ ��W (H1) ∩ ��W ′ (H1) one will in general have W+

W� �= W+
W ′�. The analysis

of this localization-dependence can be carriedmuch further in models with stronger (e.g.
string-like) localization. In this case also scattering states can be constructed for mixed
string-directions and the dependence on these directions can be taken into account on
the level of the asymptotic Fock spaces [FGR96].

6. Concluding Remarks

We developed N -particle scattering theory for general wedge-local quantum field theo-
ries with isolated mass shells. In particular, we constructed scattering states for arbitrar-
ily many particles, even with reduced localization information available from wedge-
locality. This implies also that the asymptotic particle structure of wedge-local models
with isolated mass shells must be as rich as for strictly local theories.

With multi-particle scattering states at hand, we may proceed to the problem of
asymptotic completeness (AC) which, in spite of recent progress [Le06,DT11,DG14],
is largely open both in the local and wedge-local setting. Using our construction of N -
particle scattering states, we intend to establish AC in the wedge-local model of Grosse
and Lechner [GL07]. This will give the first example of a relativistic wedge-local theory
in 4-dimensional space-time, which is interacting and asymptotically complete. Further-
more, we expect that the non-trivial S-matrix of this model will be factorizing, which is
an unusual feature in higher dimensions. On the other hand, interesting counterexamples
to two-particle asymptotic completeness have recently been constructed in wedge-local
setting [LTU17, Sec. 5]. These models also ought to be instructive at the multi-particle
level within the presently developed multi-particle scattering theory.

Returning to the axiomatic viewpoint, it is not known whether the existence of an
interpolating wedge-local net has any consequences on the properties of an S-matrix
beyond the basic symmetry principles discussed in Sect. 5. As a first step, one may
ask whether there is any meaningful generalization of the LSZ reduction formula for
the wedge-local setting. The latter provides the conventional point of departure for
investigating analyticity properties of the S-matrix [A, Sec. 5.6]. Phrased differently,
one may ask in which generality the inverse scattering problem is solvable within the
class of wedge-local models. While this appears to be an ambitious question, there are
in fact related positive results for non-local models [BaW84], or for a certain class of
field theories formulated on Krein spaces [AG01].

Lastly, let us point out that a general scattering theory for massless particles in the
wedge-local setting curiously appears to require new ideas. In particular many of the
conventional technical results may fail without mass gaps, including energy bounds
and clustering estimates. These were indispensable tools in all previous constructions
of scattering states in the local setting without mass gaps, see e.g. [Bu77,Dy05,Her13,
AD17,Du17].

A. Some Technical Arguments

For the convenience of the reader we will briefly explain how the standard proof of
commutator estimates for Haag–Ruelle operators also yields the corresponding results
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in the wedge-local setting. Due to the covariance arguments from Sect. 4.1 it is sufficient
to consider the case of non-adapted HR-operators corresponding to B	

τ ( f )with	 = 1.

Lemma 27. Let f be a regular Klein–Gordon solution of mass m > 0.

(i) | f (t, x)| ≤ C/(1 + |t |s/2) for any (t, x) ∈ Rs+1,
(ii) | f (t, x)| ≤ Cε,N /(1 + |t |N + |x|N ) for (t, x) ∈ Rd \ ϒε

f ,

(iii) ‖ ft‖L1(Rs) ≤ C(1 + |t |s/2), where ft (x) := f (t, x),

where ε > 0, and N ∈ N are arbitrary, C > 0, Cε,N > 0 are suitable constants
depending on f , and ϒε

f := RVε
f is the cone generated by the ε-enlarged velocity

support Vε
f := {(1, v) ∈ Rd : ∃(1, v′) ∈ V f ,

∣∣v − v′
∣∣ < ε}.

Lemma 27 follows from (non-)stationary phase analysis, see e.g. [RS3, Sec. XI.3,
App. 1] or [A, Thm. 5.3].

Proof of Lemma 9. Let δ > 0 be given and Br ∈ A(W +Cr ), ‖B − Br‖ ≤ CN /(1+r N )

as in Lemma 7. Suitable wedge-local approximants may then be obtained by restricting
the integration in the definition of Bτ ( f ) to the asymptotically dominant part f ↑(x) :=
f (x)1

ϒ
δ/2
f

(x) (Lemma 27) and setting r(τ ) := δ |τ | /2 to obtain

B(δ)
τ := (Br(τ ))τ ( f ↑) =

∫
dsx f ↑(τ, x)α(τ,x)(Br(τ )) ∈ A(W + Cδ|τ |/2 + τVδ/2

f ),

where the localization was computed for given τ ∈ R by covariance, isotony and noting
thatϒδ/2

f ∩{x ∈ Rd : x0 = τ } = τVδ/2
f ⊂ τV f +Cδ|τ |/2 andCδ|τ |/2+Cδ|τ |/2 ⊂ Cδ|τ |. The

approximation in norm is established by ‖Bτ ( f )−B(δ)
τ ‖ = ∥∥Bτ ( f )− (Br(τ ))τ ( f ↑)

∥∥ ≤∥∥(B − Br(τ ))τ ( f )
∥∥ +

∥∥(Br(τ ))τ ( f − f ↑)
∥∥ ≤ ∥∥B − Br(τ )

∥∥ ‖ fτ‖L1(Rs ) + ‖Br(τ )‖‖ fτ −
f ↑τ ‖L1(Rs ) using ‖Br‖ ≤ ‖B‖+C1, ‖ fτ − f ↑τ ‖L1(Rs ) ≤ C ′N /(1+ |τ |N ) due to Lemma 27
and that

∥∥B − Br(τ )

∥∥ ≤ CN /(1 + δN |τ |N ) is sufficient to compensate the polynomial

growth in Lemma 27 (iii) and obtain overall ‖Bτ ( f )− B(δ)
τ ‖ ≤ Cδ,N /(1 + |τ |N ).

Proof of Corollary 10. To estimate
∥∥[B⊥τ ( f ⊥), Bτ ( f )]∥∥, let δ > 0 and B(δ)

τ , B⊥(δ)
τ

corresponding approximants as from Lemma 9, i.e. B(δ)
τ ∈ A(τV f + Cδ|τ | + W), s.t.∥∥∥B(δ)

τ − Bτ ( f )

∥∥∥ ≤ Cδ
N /(1+ |τ |N ), and let analogously B⊥(δ)

τ ∈ A(τV f ⊥ +Cδ|τ |+W⊥),

s.t. ‖B⊥(δ)
τ − B⊥τ ( f ⊥)‖ ≤ C ′δN /(1 + |τ |N ).

Choosing δ > 0 sufficiently small the localization regions of B(δ)
τ and B⊥(δ)

τ will
be space-like separated for any large enough τ > 0: By assumption we have V f −
V f ⊥ ⊂ Wc with V f − V f ⊥ compact and Wc open. Thus there exists ε > 0 such that
V f − V f ⊥ + Cε ⊂ Wc, where Cε := {x ∈ Rd : |x |c = |x0| + |x| < ε} and as Wc
is a convex cone this implies also τ(V f − V f ⊥ + Cε) ⊂ Wc for any τ > 0. To obtain
space-like separation recall that W = Wc + x1, W⊥ = W ′

c + x2, for x1, x2 ∈ Rd . Thus
we get for δ < ε/3 and τ > 3(|x1|c + |x2|c)/ε and any

∣∣x ′1
∣∣
c < δ,

∣∣x ′2
∣∣
c < δ that

τ(V f − V f ⊥ +
x1 − x2

τ
+ x ′1 − x ′2) + Wc ⊂Wc = (W⊥

c )′

"⇒ τV f + x1 + τ x ′1 + Wc ⊂ (W⊥
c + τV f ⊥ + x2 + τ x ′2)′,
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where we used Wc + Wc = Wc and that O1 + O2 ⊂ O′3 ⇐⇒ O1 ⊂ (O3 − O2)
′

for arbitrary Ok ⊂ Rd . Due to τCδ = Cδτ this is equivalent to W + τV f + Cδτ ⊂
(W⊥ + τV f ⊥ + Cδτ )

′ for δ < ε/3 and τ > 3(|x1|c + |x2|c)/ε, as claimed.

For such τ, δ we now obtain from locality that [B⊥(δ)
τ , B(δ)

τ ] = 0, which implies the
commutator estimate by expanding

∥∥∥[B⊥τ ( f ⊥), Bτ ( f )]
∥∥∥ =

∥∥∥[B⊥τ ( f ⊥)− B⊥(δ)
τ + B⊥(δ)

τ , Bτ ( f )− B(δ)
τ + B(δ)

τ ]
∥∥∥

≤
∥∥∥[B⊥τ ( f ⊥)− B⊥(δ)

τ , Bτ ( f )− B(δ)
τ + B(δ)

τ ]
∥∥∥

+
∥∥∥[B⊥(δ)

τ , Bτ ( f )− B(δ)
τ ]

∥∥∥ +
∥∥∥[B⊥(δ)

τ , B(δ)
τ ]

∥∥∥ , (65)

where ‖[B⊥τ ( f ⊥) − B⊥(δ)
τ , Bτ ( f )]‖ ≤ 2‖B⊥τ ( f ⊥) − B⊥(δ)

τ ‖ ‖Bτ ( f )‖ ≤ 2Cδ
N ′C/(1 +

|τ |N ′) · (1 + |τ |)s/2 ≤ C ′N τ−N due to Lemma 9 and Proposition 8 (iv) and analogously
for the second non-vanishing commutator.

Proof of Proposition 15. Ad (i)Thewave packet f̃ 	
τ of f 	

τ can be computed via Fourier
inversion theorem by noting that

f 	
τ (x) =

∫
dsk

(2π)s
e−i(ωm (k),k)μ(	(τ,x))μ f̃ (k)

=
∫

dsk

(2π)sωm(k)
e−i(	−1(ωm (k),k))μ(τ,x)μ f̃ (k) ωm(k)

=
∫

dsk′

(2π)sωm(k′)
e−i(ωm (k′),k′)μ(τ,x)μ f̃ (	m(k′)) ωm(	m(k′)),

where we substituted k′ := 	−1m (k) after rewriting with respect to the standard Lorentz-
invariant measure dsk/ωm(k) (more precisely	m-invariant, see e.g. [RS2] Thm. IX.37)
and used that (	(ωm(k), k))0 = ωm(	m(k)) due to (ωm(k), k) ∈ Hm and Lorentz-
invariance of the mass hyperboloid Hm .

Ad (ii) We obtain

B	
τ ( f )� =

∫
dsx f 	(τ, x) ei(	

−1P)μ(τ,x)μ B� = eiH	τ

∫
dsx f 	(τ, x) e−iP	·x B�

= eiH	τ

∫
dsx dEP	

(p) f 	
τ (x) e−ip·x B� = eiH	τ f̃ 	

τ (P	)B�. (66)

Here we first used translation-invariance of �, Pμ(	x)μ = (	−1P)μxμ, and then
we abbreviated (H	, P	) := 	−1(H, P), f 	

τ (x) := f (	(τ, x)). Further due to (47),
f̃ 	
τ (k) = ωm (	m (k))

ωm (k)
f̃ (	m(k))e−iωm (k)t , and therefore e−iωm (P	)t B� = e−iωm (P	)t

E(Hm)B� = e−iH	t E(Hm)B�, so that τ -dependent terms cancel in (66). Finally (48)
is obtained by inserting P	 = 	−1m (P). ��
Lemma 28. Let { f γ }γ∈I be a family regular KG-solutions whose associated family of
wave packets is compact with respect to the Schwartz topology. Then estimates (i)–(iii)
of Lemma 27 hold also with constants which can be chosen uniformly in γ . The rapid
decay from (ii) holds in particular with respect to ϒε := ⋃

γ∈I ϒε
f γ .
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Proof (sketch). As (iii) is obtained from (i) and (ii) by integration, it suffices to establish
the latter two uniformly in γ . These follow from the fact that the (non-) stationary-phase
analysis yields constants C, CN ,ε with explicit wave packet dependences (see [RS3, Sec.
XI.3, App. 1]) via the Ck-norms

‖ f̃ ‖Ck (Rs ) :=
∑

|α|≤k

sup
p∈Rs

|(∂α
p f̃ )(p)|, k ∈ N0, (67)

with summation over multi-indices α ∈ Ns
0 of order at most k. Hence Cγ

N ,ε , Cγ are

continuous w.r.t. f̃ γ , from which it follows by compactness that γ -uniform constants
can be chosen, as claimed. ��
Proof of Lemma 18 (sketch). We begin by noting for the second estimate in (51) and for
(53) that

∂γ B	γ

τ ( f (	γ )) =
∫

dsx (∂μB)(	γ (τ, x)) f (	γ )(	γ (τ, x))w
μ

(τ,x,γ )

+
∫

dsx B(	γ (τ, x))∂γ f (	γ )(	γ (τ, x)), (68)

with implied Minkowski summation over μ, and where w
μ

(τ,x,γ ) := (∂γ 	γ (τ, x))μ

satisfies the γ -uniform bound |wμ

(τ,x,γ )| ≤ C(|τ |+|x|) due to continuous differentiability
and compactness of γ �→ 	γ .

Ad (i). To obtain the norm estimates (i) uniformly, we write

‖B	γ

τ ( f (	γ ))‖ ≤
∫

dsx | f (	γ )(	γ (τ, x))| ∥∥B(	γ (τ, x))
∥∥=‖B‖ · ‖( f (	γ ))	

γ

τ ‖L1(Rs ),

(69)

where due to (47) we have for ( f (	γ ))	
γ
(τ, x) := f (	γ )(	γ (τ, x)) the wave packet

f̃ (	
γ
m(p)), and ( f (	γ ))	

γ

τ (x) := ( f (	γ ))	
γ
(τ, x). For the second estimate in (51) we

can analogously estimate the two summands in (68) using also
∥∥∂μB

∥∥ ≤
‖A‖ ∥∥∂μχ

∥∥
L1(Rs+1)

. The desired γ -uniform τ -estimates (51) now follow from corre-

sponding bounds obtained via Lemma 28 on ‖( f (	γ ))	
γ

τ ‖L1(Rs ), ‖∂γ ( f (	γ ))	
γ

τ ‖L1(Rs ),
‖( f (	γ ))	

γ

τ wτ‖L1(Rs ), where wτ (x) := C(|τ | + |x|) was inserted as upper bound on
w

μ

(τ,x,γ ). There we can argue by verifying the γ -uniform norm bounds (67) by direct
computation, yielding the uniform variants of bounds (i), (ii) from Lemma 27. The esti-
mates (51) follow by integration, and presence of wτ yields an additional power of |τ |
in the inner region |x| < (1 + ε) |τ | of the integral and can be compensated by (ii) on
the complement of this region.

Ad (ii). The γ -uniform commutator estimates (52), (53) are obtained by analogous
arguments as given in the proofs of Lemma 9 and Corollary 10, again making use of
the γ -uniform KG-estimates from Lemma 28. More precisely we obtain wedge-local
approximants (B⊥γ

τ )(δ) := (B⊥	γ

τ ( f ⊥(	γ )))(δ) ∈ A(W⊥ + τV	γ

f ⊥ + Cδ|τ |) (δ > 0) such

that for any N ∈ N, ‖(B⊥γ
τ )(δ) − B⊥	γ

τ ( f ⊥(	γ ))‖ < CN /(1 + τ N ). Analogously there
are wedge-local approximants (Bγ

τ )(δ) ∈ A(W + τV	γ

f + Cδ|τ |) for B	γ

τ ( f (	γ )) and

(∂γ Bγ
τ )(δ) ∈ A(W + τV	γ

f +Cδ|τ |) for ∂γ B	γ

τ ( f (	γ )), which are rapidly converging in
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norm with γ -uniform constants. Here we also used that V	γ

f (	γ )
= V	γ

f and V	γ

f ⊥(	γ )
=

V	γ

f ⊥ for all γ . Estimates (52), (53) now follow as in (65) assuming correctly orderedwave
packets, depending on the incoming or outgoing cases, τ < 0 and τ > 0, respectively.
��

B. Swapping Relations and Modular Theory

According to Tomita–Takesaki theory one defines for a von Neumann algebra M with
cyclic and separating vector� the positive self-adjointmodular operator � and the anti-
unitary modular conjugation J as the unique polar decomposition of S :M� −→M�

given by

S A� := A∗�, S = J�1/2. (70)

The central Tomita-Takesaki theorem [BR1, Thm. 2.5.14] states that

JMJ =M′, and �iτM�−iτ =M, (τ ∈ R). (71)

In our case we take M = A(W), so that the modular objects SW , JW and �W will
depend on the wedge W . It is clear that SW� = SW1� = � = SW ′� and one has
further [BR1, Prop. 2.5.11]

�W� = �, JW� = �. (72)

The basic idea for the proof of Lemma 3 is that for given self-adjoint A = A∗ ∈
A(W), SW acts trivially on A� so that (70)–(72) yield up to domain questions

A� = A∗� = SW A� = JW�
1/2
W A� = JW�

1/2
W A�

−1/2
W JW

︸ ︷︷ ︸
=:A⊥

�. (73)

Proof of Lemma 3. We follow the argument of Buchholz [Bu17]. As we keep W fixed,
we dropwedge indices on themodular objects. To establish existencewe consider vectors
of the form� = A�with A∗ = A ∈ A(W). Rigorous control over (73) is then obtained
by passing to operators Aδ , (δ > 0), which are “regularized” with respect to the adjoint
action of the modular group by setting

Aδ :=
∫

dτ√
2πδ

e−
τ2
2δ �iτ A�−iτ . (74)

From the Tomita-Takesaki theorem (71) we see that the integrand is pointwise in A(W)

so that Aδ ∈ A(W) as wedge-algebras are weakly closed. Secondly we obtain from
strong continuity of �iτ that Aδ ⇀ A in the weak operator topology, so that by modular
invariance of � we have Aδ�→ A� in norm as δ → 0. Further due to (74) the adjoint
action of the modular group on Aδ may be computed explicitly as

�it Aδ�
−it =

∫
dτ√
2πδ

e−
τ2
2δ �iτ+it A�−iτ−it =

∫
dτ ′√
2πδ

e−
(τ ′−t)2

2δ �iτ ′ A�−iτ ′ .

(75)

Returning to (73) we now define Āδ := �1/2Aδ�
−1/2 as a quadratic form on a

suitable domain. It will be convenient to restrict to Dω(�±) := {E�([k, K ])� : � ∈
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H , 0 < k < K }, which is dense in H by spectral calculus. For �1, �2 ∈ Dω(�±)

the function t �−→ 〈�1,�
it Aδ�

−it�2〉 is entire analytic. It further coincides for t ∈ R
with the entire function defined by the right hand side of (75). By analyticity these two
entire functions coincide for all t ∈ C so that

〈�1,�
1/2Aδ�

−1/2�2〉 =
∫

dτ√
2πδ

e−
τ2
2δ 〈�1,�

iτ+1/2A�−iτ−1/2�2〉 (76)

=
∫

dτ ′√
2πδ

e−
(τ ′+i/2)2

2δ 〈�1,�
iτ ′ A�−iτ ′�2〉. (77)

From (77) we see firstly that (76) in fact defines a bounded bilinear form, so that Āδ

extends to a bounded operator on all of H , and secondly that Āδ ∈ A(W) by repeating
the argument below (74). Thus the swapping partnermay be obtained as in (73) by setting
A⊥δ := J Āδ J , and noting that A⊥δ ∈ A(W ′) due to (71) and wedge duality (HK2
).

To establish density of swappable vectors let � ∈ H and ε > 0. By cyclic-
ity of � there exists A ∈ A(W) such that ‖� − A�‖ ≤ ε/2. We may then de-
compose A = 1

2 (A + A∗) + 1
2 (A − A∗) =: A1 + iA2 such that the above argu-

ment applies to Ak�, k = 1, 2, and the swapping partner of Aδ is then given by
A⊥δ := (A1)

⊥
δ + i(A2)

⊥
δ . Choosing δ > 0 sufficiently small yields ‖� − Aδ�‖ ≤

‖� − A�‖ + ‖A1�− (A1)δ�‖ + ‖A2�− (A2)δ�‖ ≤ ε so that we obtain density. ��
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Publication 2. Strengthened Reeh-Schlieder Property and Scattering
in Quantum Field Theory without Mass Gaps

Let Ψ ∈H . A Reeh-Schlieder family for Ψ of degree γ ≥ 0 is an operator family (Aβ)β>0 localized
in some fixed bounded region O ⊂ R4 satisfying for sufficiently small β > 0

‖AβΩ−Ψ‖ ≤ β, ‖Aβ‖ ≤ β−γ . (1)

In this publication we construct multi-particle scattering states using (1), and develop required
non-equal-time commutation estimates, energy-bounds, and clustering estimates compatible with
the β → 0 norm singularity in (1). The status of (1) in models is also discussed. The main result is
the following Haag-Ruelle theorem based on the Reeh-Schlieder condition (1).

Theorem 1. Let A1β, . . . , Anβ be Reeh-Schlieder families of finite degree less than some γ > 0, let
f1, . . . , fn be regular positive-energy Klein-Gordon solutions with disjoint velocity supports, and take
a scaling exponent µ ∈ (0, κ

4nγ )

(i) Ψτ := B1τ . . .BnτΩ is convergent in norm as τ → ±∞.

(ii) The limit is independent of the choice of µ, Akβ and fk within the specified restrictions, as
long as the associated operators B′kτ create on the vacuum the same family of single-particle

states Ψ
(1)
k = limτ→∞ BkτΩ.

(iii) The scalar products of any outgoing scattering states are given by the Fock formula 〈Ψ+,Ψ′+〉 =

δnn′
∑
π∈Sn

∏n
k=1

〈
Ψ

(1)
k ,Ψ

′(1)
π(k)

〉
, and similarly for incoming states.

Non-equal time commutators and Haag-Ruelle construction

The following estimate collects the basic idea from [Du13], which enables the reduction of the
scattering state convergence to the one-particle problem and is used in the discretized Cook’s method.

Lemma 2 (local difference estimate). Let f1, . . . fn be regular KG-solutions with disjoint velocity
supports. Then there exists ρ > 0 and a suitable scaling, so that N -particle state approximants can
be estimated w.r.t. one-particle differences with controlled error terms

∥∥Ψτ2 −Ψ′τ1
∥∥ ≤ C1

n∑

k=1

∥∥Bkτ2Ω− B′kτ1Ω
∥∥+ C2 |τ |nγµ−κ/4 , where τ1, τ2 ∈ [1, 1 + ρ] · τ . (2)

The geometrical limitation here is important and required due to the corresponding restrictions in
non-equal time commutator estimates.

Lemma 3 (non-equal-time commutator estimate). Let Akβ, (k = 1, 2), be Reeh-Schlieder families
of finite degree, take regular Klein-Gordon solutions fk with disjoint velocity supports and assume a
fixed scaling β(τ) = |τ |−µ, µ > 0. Then there exists ρ > 0 and for any N ∈ N a constant CN > 0,
such that for arbitrary τ ∈ R and all τ1, τ2 from the corresponding interval spanned by τ and τ + ρτ ,

‖[B1τ1 ,B2τ2 ]‖ ≤ CN (1 + |τ |)−N .
Together with novel multi-operator clustering estimates and energy-bounds developed in the paper,

the local difference estimate (2) is obtained. Cook-type summation of the left-hand side differences
in (2) over a telescopic expansion of a geometric series τk := (1 + ρ)kτ0 yields the convergence of
scattering states. The Fock stucture is established by adapting the strategy from [Dy05].
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Abstract: We develop Haag–Ruelle scattering theory for Wigner particles in local rel-
ativistic Quantum Field Theory without assuming mass gaps or any other restrictions on
the spectrum of the mass operator near the particle masses. Our approach is based on
the Reeh–Schlieder property of the vacuum state. It is shown that a strengthened variant
of this property, concerning the relative approximation error for single-particle states,
implies the existence of scattering states.

1. Introduction

The infrared problem inQuantumElectrodynamics (QED) has attracted a lot of attention
in the mathematical physics literature of the last decade. Consistent scattering theory has
been developed for various physical processes involving charged particles (‘electrons’),
neutral massive particles (‘atoms’) and massless particles (‘photons’). Some of these
results were obtained in non-relativistic models of QED [CFP10,DyP13,MS14], others
in the general setting of algebraic QFT [BR14,AD15,Dy05,Hrd13,DH14]. In spite of
all these efforts, even the seemingly simple case of scattering of several atoms is still
not fully under control.

This may be explained by the fact that atoms in QED constitute a prototypical exam-
ple of an embedded particle. In otherwords, single-atom states correspond to eigenvalues
of the mass operator which are not isolated, but embedded in a continuous mass spec-
trum, arising e.g. from states consisting of multiple lighter particles (photons). For the
construction of scattering states, such background particles need to be separated from
the desired single-atom states. In the framework of Haag–Ruelle theory, this separation
could so far only be achieved with the help of technical assumptions1 on the spectral
measure of the mass operator near the particle masses. Such spectral conditions were
first proposed by Herbst [Hrb71] and we might consider them to be a remnant of the
original Haag–Ruelle mass-gap assumption [Ha58,Ru62,Hep65].

1 See e.g. [Hrb71,Dy05,Hrd13,DH14].
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As the physical meaning of these assumptions has remained obscure, the existence
of scattering states of atoms still lacks a conceptually clear explanation. Aiming at
such an explanation, we develop Haag–Ruelle scattering theory for atoms, relying on
certain non-local correlations of the vacuum state. The required condition is only slightly
stronger than the well-established Reeh–Schlieder property and it permits to the best of
our knowledge the first proof of existence of scattering states of massive embedded
Wigner particles without a priori requiring a spectral condition of Herbst type.

The Reeh–Schlieder property states that the vacuum� is cyclic for any algebraA(O)

of observables2 localized in a bounded space-time region O. That is, given any vector
� ∈ H (for example describing an atom essentially localized far from the region O),
there exists a family of observables (Aβ)β>0 from A(O) such that

lim
β→0

‖Aβ� − �‖ = 0. (1)

While
∥
∥Aβ�

∥
∥ clearly remains bounded, we note that the operator norms

∥
∥Aβ

∥
∥ may

tend to infinity as β → 0. As it will be important for our investigation to quantify this
growth, we will say that � is a vector of finite Reeh–Schlieder degree if there exists a
family of operators (Aβ)β>0 localized in some fixed bounded space-time regionO, such
that for some γ > 0 we have

∥
∥Aβ

∥
∥ ≤ β−γ and

∥
∥Aβ� − �

∥
∥ ≤ β. (2)

In this paper we will construct scattering states of configurations of atoms whose
single-particle states are generated by such families with finite Reeh–Schlieder
degree γ . Condition (2) is readily verified for free scalar fields,3 but it seems that not
much progress has been made in understanding such relations since the seminal work
of Haag and Swieca [HS65]. In theories where Herbst’s spectral condition is satisfied,
one can construct an operator family (Aβ)β>0 satisfying a weakened variant (RS�) of
(2) (see concluding discussion), but the status of (2) in interacting theories is currently
not clear and constitutes a difficult technical problem outside the scope of this work.

Let us now describe in non-technical terms the relevance of (2) for Haag–Ruelle
scattering theory. Take a single-atom state � of finite Reeh–Schlieder degree and let
(Aβ)β>0 be a corresponding Reeh–Schlieder family from formula (2). Since (Aβ)β>0
play a role of creation operators, it is technically convenient to smear them with the
Fourier transform of a function χ̂ ∈ C∞

c (R4 \ V̄ −) yielding a family of almost-local
operators

Bβ :=
∫

d4x χ(x)Aβ(x), (β > 0), (3)

where Aβ(x) denotes the translate of Aβ in space-time by x . Following the standard
prescription we pick a regular positive-energy solution f of the Klein–Gordon equation
with the mass of the atom and set

Bτ :=
∫

d3x f (τ, x)Bβ(τ)(τ, x), with β(τ) := τ−μ, μ > 0 fixed. (4)

2 In the case of QED these algebras should be generated by bounded functions of suitably smeared elec-
tromagnetic fields and the electric current, cf. [Bu86].

3 A free scalar field φ( f ) is self-adjoint for real-valued f and φ( f )�, f ∈ C∞
c (R4), yield a dense subset

of single-particle states. If supp f ⊂ O we can simply set Aβ := φ( f ) exp(−β|φ( f )|1/γ ) ∈ A(O) to obtain
Reeh–Schlieder families of arbitrarily small degrees γ > 0. For further examples see Appendix C.
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We will call Bτ an (approximating) creation operator of � since it has the property

lim
τ→∞Bτ� = (2π)2χ̂(H, P) f̃ (P)

(

lim
τ→∞ Aβ(τ)�

)

= (2π)2χ̂ (H, P) f̃ (P)� (5)

(see Proposition 3). That is, it asymptotically creates � from the vacuum up to an
inessential function of the energy-momentum operators (H, P) (which can be arranged
to be equal to one if � has bounded energy). Since we inserted a Reeh–Schlieder family
in (4), we obtain convergence in (5) without the ergodic averaging used in earlier works
[Dy05,Bu77]. We also note that (5) holds even for � of infinite Reeh–Schlieder degree.
The need to assume finiteness of the Reeh–Schlieder degree of � arises only at the level
of n-atom scattering states, n ≥ 2—the case to which we now proceed.

Let�1, �2 be two single-atom states with disjoint velocity supports and finite Reeh–
Schlieder degree. Let B1τ ,B2τ be the corresponding creation operators constructed as
above. The scattering state describing these two atoms is given by the limit as τ → ∞
of the family4

�τ := B1τB2τ�.

The conventional Cook-argument to establish convergence does not apply here due to
the additional τ -dependence via the Reeh–Schlieder family in (4). Therefore, we base
our proof on a discretized analog of Cook’s argument involving summability of the
telescopic expansion

∥
∥�τN − �τ0

∥
∥ ≤

N−1
∑

k=0

∥
∥�τk+1 − �τk

∥
∥ (6)

in the limit N → ∞ (here τk := (1 + ρ)kτ0, τ0 > 0, and ρ > 0 is sufficiently small).
The first term in this sum has the form

�τ1 − �τ0 = B1τ1(B2τ1 − B2τ0)� + (B1τ1 − B1τ0)B2τ0�. (7)

Exploiting locality and the fact that |τ1−τ0| is small, we obtain that [(B1τ1 −B1τ0),B2τ0 ]
is rapidly decreasing with τ0 and thus it suffices to study the expressions

B1τ1(B2τ1 − B2τ0)�, B2τ0(B1τ1 − B1τ0)�. (8)

Let us concentrate on the first term above: Thanks to the smearing operation (3) which
restricts the energy-momentum transfers of the creation operators, we can write

‖B1τ1(B2τ1 − B2τ0)�‖ ≤ ‖B1τ1 E(�)‖‖(B2τ1 − B2τ0)�‖, (9)

where E(�) is a projection onto a compact subset � of the energy-momentum spec-
trum. Now exploiting formula (5) and results from [Bu90a], which give ‖B1τ1 E(�)‖ ≤
C‖A1β(τ1)‖, we can estimate (9) by

‖A1β(τ1)‖‖A2β(τ1)� − A2β(τ0)�‖ ≤ ‖A1β(τ1)‖(‖A2β(τ1)� − �2‖ + ‖A2β(τ0)� − �2‖)
(10)

up to an overall constant, and the analysis of the second term in (8) gives an analogous
bound. By substituting such estimates into (6), it is easy to obtain convergence of �τ ,
provided �1, �2 are of Reeh–Schlieder degree γ < 1 [cf. relations (2), (4)]. A similar

4 For clarity reasons we consider here only outgoing states. The incoming case τ → −∞ is analogous.



938 M. Duell

discussion of n-atom scattering states could suggest that single-atom states of arbitrarily
small Reeh–Schlieder degree are needed. It turns out that this is not the case: by careful
geometrical analysis and application of corresponding novel multi-operator clustering
estimates (cf. Lemmas 8 and 16, respectively) we develop complete Haag–Ruelle scat-
tering theory for single-atom states of arbitrarily large Reeh–Schlieder degree. Although
atoms are our prime example, the construction works equally well for photons,5 which
demonstrates the robustness of our approach. We hope that this investigation will pave
the way to a definite unifying solution of the problem of scattering of Wigner particles
in algebraic QFT.

This paper is structured as follows: In Sect. 2 we state the basic assumptions un-
derlying this work and introduce the Reeh–Schlieder degree of Hilbert-space vectors.
Section 3 gives an exposition of our variant of Haag–Ruelle creation operators and es-
tablishes some of their basic properties. Section 4 provides the fundamental technical
tool of the discretized Cook’s method: we derive rapid norm decay of non-equal time
commutators of creation operators. In Sects. 5 and 6 we establish clustering estimates
and study their consequences relevant for refined handling of the norm growth of the
creation operator approximants. All these results are then combined in Sect. 7 to prove
convergence of scattering states and to establish their Fock structure in Sect. 8.

2. Framework and Assumptions

As the basis for our considerations we take a Haag–Kastler theory in the vacuum rep-
resentation, i.e. a net O 	−→ A(O) ⊂ B(H ) of von Neumann algebras associated to
bounded open regions O ⊂ R

4 in Minkowski space-time.6 Space-time translations by
vectors x = (t, x) ∈ R

4 are represented on theHilbert spaceH by a strongly-continuous
group of unitary operators U (t, x) = eit H−ix·P , generated by the strongly-commuting
family of the self-adjoint energy-momentum operators (H, P). Their joint spectral mea-
sure is denoted by E(�) := E(H,P)(�) for any Borel set � ⊂ R

4. The vacuum is
a normalized translation-invariant vector � ∈ H . Finally, translations of operators
A ∈ B(H ) are induced by U according to A(x) := αx (A) := U (x)AU (x)∗. We will
use the following version of the Haag–Kastler postulates,

Isotony A(O1) ⊂ A(O2) for O1 ⊂ O2 (HK1)

Locality A(O1) ⊂ A(O2)
′ for O1 ⊂ O′

2 (HK2)

Covariance αx (A(O)) = A(O + x) (HK3)

Uniqueness of � E({0})H = C� (HK4)

Spectrum Condition supp E(H,P) ⊂ V̄ + (HK5)

Reeh–Schlieder Property A(O)� = H (HK6)

for any non-empty open bounded regionsO,O1,O2 ⊂ R
4 and any x ∈ R

4. Here,A(O)′
is the commutant ofA(O) in B(H ) andO′ := {y ∈ R

4 : (y − x)2 < 0 ∀x ∈ O} defines
the causal complement of O. Further, V̄ ± := {x ∈ R

4 : x2 ≥ 0,±x0 ≥ 0} is the future
or past light cone, respectively. For future reference we denote by A the C∗-inductive
limit of the local net and by Hm := {p ∈ R

4 : p0 = √p2 + m2} the mass hyperboloid
of a particle of mass m ≥ 0.

5 In contrast to atoms, scattering theory of photons is well understood since [Bu77].
6 We take the space-time metric with signature (+, −, −,−).
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Next, we define the Reeh–Schlieder degree γRS ≥ 0 of a vector � ∈ H as the
infimum over all γ ≥ 0 for which there exists an open bounded region O and a family
of observables (Aβ)β>0 from A(O) such that for all sufficiently small β > 0 we have

∥
∥Aβ� − �

∥
∥ ≤ β,

∥
∥Aβ

∥
∥ ≤ β−γ . (11)

We will call (Aβ)β>0 a Reeh–Schlieder family (of degree γ ). If no such family exists,
we will say that � is a vector of infinite Reeh–Schlieder degree. But we note that, by
the standard Reeh–Schlieder property (HK6),7 at least the first inequality of (11) can
always be satisfied for non-empty regions O ⊂ R

4.
We amend the Haag–Kastler postulates by the following more specific assumptions,

which can be seen in combination as a sharpened Wigner concept of a particle:

(HK5′) In addition to (HK5), the relativistic mass operator M :=
√

H2 − P2 has an
eigenvalue m ≥ 0. In other words Em := E(Hm) = 0.

(HK6′) The single-particle subspaceHm := EmH contains a dense subset of vectors
of finite Reeh–Schlieder degree.

Under the above assumptions, (HK1)–(HK4), (HK5′), and (HK6′), our results from
Sects. 7 and 8 below allow to construct wave-operators and the S-matrix in the usual
manner (see e.g. [Dy09] App. A).

3. Creation Operators and Their Basic Properties

Given a single-atom state �1 ∈ E(Hm)H of mass m ≥ 0 we now want to find a
corresponding family of creation operators Bτ , which is suitable for the construction of
scattering states. By the Reeh–Schlieder property (HK6) we can always fix some non-
empty bounded open regionO ⊂ R

4 and pick a corresponding family of local operators
(Aβ)β>0 ⊂ A(O) as in formula (1).

TheKlein–Gordon equationwill provide a free reference dynamics for comparison to
the large-τ asymptotics of the translatedoperator family Aβ(τ, x) := U (τ, x)AβU (τ, x)∗,
x = (τ, x) ∈ R

4, β > 0, when taking the simultaneous limit β → 0. We will say that
f : R4 −→ C is a regular positive-energy Klein–Gordon solution (of mass m ≥ 0) if it
can be written as

f (t, x) =
∫

d3k

(2π)3
eik·x−iωm (k)t f̃ (k), ωm(k) :=

√

k2 + m2, (12)

where thewave-packet f̃ has to be smooth and compactly supported. For the casem = 0
we will also add the standard requirement 0 ∈ supp f̃ , as it leads to improved decay in
the interior of the light cone which will be technically convenient in Sect. 4.

Taking a Reeh–Schlieder family Aβ for a given single-particle state � ∈ E(Hm)H
of mass m ≥ 0 and a regular positive-energy Klein–Gordon solution f of the same
mass, we may modify the standard prescription for creation-operator approximants by
admitting the following additional time-dependence of the smeared operators,

Aτ :=
∫

d3x f (τ, x)Aβ(τ)(τ, x). (13)

7 If the Haag–Kastler net under consideration is obtained from a suitable Wightman theory (e.g. satisfying
certain energy bounds [Bu90b]), property (HK6) holds as a consequence of the original results of Reeh and
Schlieder [RS61]. Alternatively, (HK6) follows from assuming additivity of the Haag–Kastler net, see e.g.
[A], Thm. 4.14.
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For now it will suffice to demand that the scaling function β satisfies β(τ) −→ 0
for τ → ±∞.8 The operator family Aτ then already satisfies some properties which
are characteristic for creation operators, as might be expected from the close similarity
to standard Haag–Ruelle theory.9 Before proceeding we would like to perform some
further standard modifications needed for the multi-particle case, which will lead to
improved differentiability and impose restrictions on energy-momentum transfers [see
Proposition 3 (iii)].

Remark 1 (uniform differentiability of Aβ ).By a standard smearing argument, restricting
Aβ (for fixed β) to the ∗-algebra of smooth operators A0(O), for which (t, x) 	−→
Aβ(t, x) is arbitrarily often differentiable in norm, results in no loss of generality. It
is important for our purposes that this smearing argument directly generalizes to yield
uniformly differentiable families, i.e.

∥
∥∂α Aβ

∥
∥ ≤ Cα

∥
∥Aβ

∥
∥ (14)

for all multi-indices α ∈ N
4
0 and some β-independent constants Cα . In the following

we will therefore assume that all appearing Reeh–Schlieder families Aβ are smooth and
uniformly differentiable.

Further it will be convenient to have at hand a related operator family with common
compact energy-momentum transfers disjoint from a neighbourhood of the origin. To
achieve this we have to give up strict localization and smear the family Aβ with the
Fourier transform of a function χ̂ ∈ C∞

c (R4 \ V̄ −). We will denote the resulting family
of almost-local10 operators by

Bβ := Aβ(χ).

With these preparations we can introduce our family of creation operator approximants.

Definition 2 (Creation operator approximant). Let Aβ ∈ A(O) be a uniformly differen-
tiable Reeh–Schlieder family for�1 ∈ E(Hm)H ,m ≥ 0. Fixing χ̂ ∈ C∞

c (R4\ V̄ −)we
set Bβ := Aβ(χ) and for τ ∈ R and a regular positive-energy Klein–Gordon solution f
of the same mass m we define creation-operator approximants as

Bτ :=
∫

d3x f (τ, x)Bβ(τ)(τ, x). (15)

Wewill oftenmake use of the fact thatBτ are related to the simpler operator familyAτ

by convolution algebra. Let us collect the most important properties of these families of
operators.

Proposition 3 (Basic properties of creation operators). For an arbitrary operator family
Aβ ∈ B(H ) define Bβ , Aτ and Bτ as before. Then

(i) Bτ = Aτ (χ).
(ii) ‖Bτ‖ ≤ C ‖Aτ‖ ≤ C ′(1 + |τ |N )

∥
∥Aβ(τ)

∥
∥ with suitable constants C, C ′, N > 0.

8 For concreteness the reader may take β(τ) := |τ |−μ, with μ > 0 fixed. We will later see that this is a
suitable choice in the context of Reeh–Schlieder families of finite degree.

9 See e.g. [Ha58,Ru62], [Dy05], or [A] Ch. 5.
10 See Appendix B.
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(iii) For any closed � ⊂ R
4, we have the energy-momentum transfer relations

Bβ E(�)H ⊂ E(� + supp χ̂ )H ,

B∗
β E(�)H ⊂ E(� − supp χ̂ )H .

(iv) There exists a neighbourhood of zero U ⊂ R
4 such that B∗

β E(U) = 0.
(v) B∗

β� = 0.
(vi) If Aβ� → �1 ∈ E(Hm)H where m ≥ 0 denotes the mass of f , then

lim
τ→±∞Aτ� = f̃ (P)�1, and similarly lim

τ→±∞Bτ� = f̃ (P)� ′
1, (16)

with � ′
1 := lim

β→0
Bβ� = (2π)2χ̂ (H, P)�1.

Properties (iii)–(v) also hold with Bτ in place of Bβ without further modifications.

Proof. (i) is equivalent to (ατ (Aβ(τ)(χ)))( fτ ) = ((ατ (Aβ(τ)))( fτ ))(χ), where fτ (x) :=
f (τ, x), and this follows from convolution algebra. Property (ii) is a consequence of
Hölder’s inequality ‖A( f )‖ ≤ ‖A‖ · ‖ f ‖1 and the standard polynomial bounds for
spatial L1-norms of Klein–Gordon solutions [RS3, Appendix 1 to XI.3]. For the proof
of relation (iii) we refer to the literature of Arveson spectral theory—e.g. [Arv80]. To
establish (iv), we note that by assumption − supp χ̂ is compact and disjoint from the
closed set V̄ +, so that for a sufficiently small neighbourhood U of the origin there holds
(U − supp χ̂) ∩ V̄ + = ∅. By (iii) and the spectrum condition (HK5) it follows that
B∗

β E(U)H ∈ E(U − supp χ̂)H = {0}. Identity (v) is a direct consequence of (iv), as
� ∈ E(U)H for any neighbourhood of zero U . The relations for Bτ follow by similar
argument after using identity (i).

It remains to verify that Aτ and Bτ provide solutions for the single-particle prob-
lem (vi). By spectral calculus we obtain

Aτ� = f̃τ (P)U (τ )Aβ(τ)� = f̃ (P)ei(H−ωm (P))τ Aβ(τ)�.

As �1 is invariant under the unitaries V (τ ) := ei(H−ωm (P))τ we may directly estimate

‖Aτ� − f̃ (P)�1‖ = ‖Aτ� − f̃ (P)V (τ )�1‖ ≤ ‖ f̃ ‖∞
∥
∥Aβ(τ)� − �1

∥
∥ .

The convergence of Bτ� follows then from (i) by writing Bτ� = (2π)2χ̂(H, P)Aτ�.
��

An important consequence of the energy-momentum transfer relation (iii) is the
following energy bound. The key point is that the estimate can be made uniform in τ

relative to the norm of the underlying Reeh–Schlieder families, as long as we consider
the restriction of creation operators to a subspace of bounded energy. Our analysis was
somewhat inspired by Herdegen’s work [Hrd13], but we rely on different aspects of
Buchholz’ results [Bu90a] given in Lemma 4.

Lemma 4 ([Bu90a], Lemma 2.2). Let K ⊂ R
3 compact, B ∈ B(H ) and denote by Pn

the orthogonal projection onto the intersection of the kernels of the n-fold products of
translated operators B(x1) . . . B(xn) for any configuration of x1, . . . , xn ∈ R

3. Then
∥
∥
∥
∥
∥
∥

Pn

∫

K

d3x (B∗B)(x)Pn

∥
∥
∥
∥
∥
∥

≤ (n − 1)
∫

�K

d3x
∥
∥[B∗, B(x)]∥∥ ,

where integration on the right is over all element-wise differences �K := K − K .
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Proposition 5 (Energy bounds).Without further restrictions on the families of operators
Aβ , Akβ ∈ A(O), we have for any compact � ⊂ R

4,

‖Bτ E(�)‖ ≤ C
∥
∥Aβ(τ)

∥
∥ , (17)

∥
∥B1τ1 . . .Bnτn E(�)

∥
∥ ≤ C

n
∏

k=1

∥
∥Akβ(τk )

∥
∥ , (18)

where the constant C depends on �, O, supp χ̂ , the number of operators n, and the
corresponding wave packets f̃ , f̃k , but it is independent of τ .

Proof. To establish (17), let � ⊂ R
4 be a given compact set. By a partition argument,

we can assume that supp χ̂ is contained in a compact, convex set disjoint from V̄ −. The
compact common energy-momentum transfer (cf. Proposition 3 (iii)) of Bτ then allows
us to write

‖Bτ E(�)‖ = ∥∥E(� + supp χ̂ )Bτ E(�)
∥
∥ ≤ ∥∥E(�′)Bτ

∥
∥ = ∥∥B∗

τ E(�′)
∥
∥ ,

where �′ := � + supp χ̂ is compact as well.
To make the connection with Lemma 4, we note that by iterated application of Propo-

sition 3 (iii) and translation-invariance of finite-energy subspaces, we obtain

B∗
β(x1) . . . B∗

β(xn)E(�)H ⊂ E(� − �n supp χ̂ )H ,

where �n supp χ̂ := {y1 + · · · + yn : yk ∈ supp χ̂} = n supp χ̂ due to convexity.
By the Hyperplane Separation Theorem, we obtain (�′ − �n supp χ̂ ) ∩ V̄ + = ∅ for
sufficiently large n ∈ N. This implies via the spectrum condition (HK5) that for such n,
the projections Pn appearing in Lemma 4 may be estimated from below by E(�′)H ⊂
PnH . With these preparations we can estimate

∥
∥B∗

τ E(�′)
∥
∥ ≤ ∥∥B∗

τ Pn
∥
∥ ≤ sup

�∈H‖�‖=1

∫

d3x | f (τ, x)|
∥
∥
∥B∗

β(τ)(τ, x)Pn�

∥
∥
∥

≤
(∫

d3x | f (τ, x)|2
)1/2

⎛

⎜
⎝ sup

�∈H‖�‖=1

∫

d3x
∥
∥
∥B∗

β(τ)(τ, x)Pn�

∥
∥
∥

2

⎞

⎟
⎠

1/2

.

The first factor is constant by the Plancherel identity (cf. Prop. 12 (iv )). For estimating
the second factor we choose an arbitrarily large compact region K ⊂ R

3 and obtain
from Lemma 4 that

sup
�∈H‖�‖=1

∫

K

d3x
∥
∥
∥B∗

β(τ)(τ, x)Pn�

∥
∥
∥

2 = sup
�∈H‖�‖=1

〈

�, Pn

∫

K

d3x(Bβ(τ) B∗
β(τ))(τ, x)Pn�

〉

=
∥
∥
∥
∥
∥
∥

Pn

∫

K

d3x(Bβ(τ) B∗
β(τ))(τ, x)Pn

∥
∥
∥
∥
∥
∥

≤ (n − 1)
∫

�K

d3x
∥
∥
∥

[

Bβ(τ), B∗
β(τ)(x)

]∥
∥
∥ .
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The family Bβ and its adjoint are uniformly almost-local (as defined in Appendix B),
so that the remaining integral can be estimated by 2Cχ‖Aβ(τ)‖2 · d3, where d depends
only on the size of the localization region of Aβ . This yields a bound which is uniform
in �K and by taking K ↗ R

3 we obtain the energy bound for a single operator.
Then the bound (18) on multiple creation operators follows directly by induction: the

compact common energy-momentum transfer of the family Bkτ yields
∥
∥B1τ1 . . .Bnτn E(�)

∥
∥ = ∥∥B1τ1 . . .Bn−1 τn−1 E(� + supp χ̂)Bnτn E(�)

∥
∥

≤ ∥∥B1τ1 . . .Bn−1 τn−1 E(� + supp χ̂ )
∥
∥ · ∥∥Bnτn E(�)

∥
∥

≤ C (n−1)
�+supp χ̂

(
n−1
∏

k=1

∥
∥Akβ(τk )

∥
∥

)

· C�

∥
∥Anβ(τn)

∥
∥ .

��

4. Geometry of Non-equal Time Commutators

The goal of this section is to study the decay behaviour of commutators
[B1τ1 ,B2τ2

]

for
distinct asymptotic parameters τ1 = τ2. The strongest known decay estimates for equal
times τ1 = τ2 have been established for the case, where the defining Klein–Gordon
solutions f1, f2 have disjoint support in momentum space [Hep65]. This corresponds to
the physically reasonable assumption that the two particles will separate at large times.
We will restrict our analysis to this setting and begin by reviewing required results on
regular Klein–Gordon solutions f : R4 −→ C with mass m ≥ 0, as defined in (12).

The geometry of the asymptotic behaviour of f can be intuitively understood in terms
of the set of velocities corresponding to themomenta k ∈ supp f̃ . Accordinglywe define
the velocity support of f by � f̃ := {k/ωm(k) ∈ R

3 : k ∈ supp f̃ }. Let us recall how
this definition allows for a compact formulation of the classical result of Ruelle [Ru62]
on the decay of Klein–Gordon solutions outside the velocity-support cone. We provide
a unified treatment of the massive and massless case.

Lemma 6 (Velocity-support estimate). Let f be a regular solution of the Klein–Gordon
equation with mass m ≥ 0. The following estimate holds for any N ∈ N with suitable
constants CN > 0 and any (t, x) ∈ R

4 satisfying x/t ∈ � f̃ ,

| f (t, x)| ≤ CN

δN |t |N
,

where δ denotes the distance of x/t from the set � f̃ .

For regular massive Klein–Gordon solutions, geometrical propagation properties
such as the above can be found in various textbooks, e.g. [A] Thm. 5.3. We will skip the
standard proof, which makes use of the non-stationary phase method (see e.g. [RS3],
Appendix 1 to XI.3). Lemma 6 is applicable in particular in the case of x/t approaching
the velocity support � f̃ . This will be needed later in Proposition 12 to establish certain
norm estimates in the massless case.

For the purpose of rapid decay of commutators, it is actually sufficient to make use
of Lemma 6 in some fixed neighbourhood U ⊃ � f̃ . One obtains the following simple
rapid-decay estimate with respect to time and space outside a corresponding enlarged
neighbourhood of the cone generated by the velocity support.
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OAkβ

ΥU1 ΥU2

A↑
1τ1

A↑
2τ2

1

(1+ρ)τ1

τ1

τ2

(1−ρ)τ1
d

Γf̃1
Γf̃2

x

t

Fig. 1. Localization regions of asymptotically dominant partsA↑
kτk

with disjoint velocity supports and τ1 = τ2

(schematically; a separating pair of wedges is indicated, restricting |τ2 − τ1|)

Corollary 7. Let f be a regular solution of the Klein–Gordon equation with mass m ≥ 0
and let U ⊃ � f̃ be any (slightly larger) neighbourhood of the velocity support. Then
the restriction of f to the complement of the cone

ϒU := {(t, tv) ∈ R
4, v ∈ U, t ∈ R}

is rapidly decreasing, i.e. for any N ∈ N we have

| f (t, x)| ≤ CN (1 + |t | + |x|)−N ∀ (t, x) ∈ R
4 \ ϒU,

with suitable CN > 0 depending on N, f̃ , and the distance between R
3 \ U and � f̃ .

While our construction of collision states will make use of the creation operatorsBkτ ,
it is clear that additional technical difficulties arise due to the loss of strict locality when
passing from localized Reeh–Schlieder families Akβ ∈ A(O) (withO independent of β)
to the almost-local operators Bkβ := Akβ(χ). We recall that the thus obtained compact
energy-momentum transfers of Bkβ were essential for establishing energy bounds in
Proposition 5.

One strategy to resolve these complications,whichmakes arguments based on locality
particularly transparent, is to first establish corresponding results for the operatorsAkτ ,
as these have better localization properties. Statementswhich are sufficiently stable under
smearing can then be carried over toBkτ = Akτ (χ) [see Proposition 3 (i)]. For this reason
we want to additionally allow space-time translates αx (Bτ ) with x ∈ R

4 restricted to
suitable bounded regions in space-time. We note for clarification that αx (Ak τ+t ) differs
from αx+(t,0)(Akτ ) due to the time evolution of the Klein–Gordon solution and the
underlying time-dependent Reeh–Schlieder family.
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The geometrical content of Lemma 8 is illustrated in Fig. 1. Regarding the
depicted situation it is clear that in order to obtain rapid decay the allowed translation
vectors x = (x0, x) ∈ R

4 will have to be subjected to a similar restriction as the time
differences |τ2 − τ1|. In the context of causal distance estimates, it will be convenient
to specify this restriction by introducing the norm |x |c := |x0| + |x|, where |x| := √

x2
denotes the Euclidean length of x ∈ R

3. The centered open balls generated by this norm
are the familiar double cones CR = {x ∈ R

4 : |x |c < R} with radius R > 0.

Lemma 8. There exists a constant C > 0, such that for any f1, f2 with velocity supports
separated by a positive distance d > 0, the following estimate holds for any N ∈ N,
x ∈ R

4 and τ1, τ2 ∈ R satisfying |x |c + |τ2 − τ1| ≤ Cd2 · τmin,
∥
∥[A1τ1, αx (A2τ2)]

∥
∥ ≤ CN

∥
∥A1β(τ1)

∥
∥
∥
∥A2β(τ2)

∥
∥ · (1 + τmin)

−N . (19)

Here, τmin := min(|τ1| , |τ2|) and the constants CN depend only on N, fk and the size
of the localization regions of Akβ .

Proof. We can assume without restriction that τmin = |τ1|. Further it is enough to es-
tablish (19) for |τ1| sufficiently large,11 and for this case we will make use of a suitable
common asymptotic decomposition of the Klein–Gordon solutions fk . By definition,
the corresponding velocity supports � f̃1

and � f̃2
are closed subsets of the closed unit

ball. Aiming at the application of Corollary 7, it is clear that we can find neighbourhoods
U1 and U2 of the velocity supports � f̃1

and � f̃2
, which are separated by a distance of at

least d/2 and which are contained in some fixed larger ball. For concreteness we may
assume without loss of generality that v ∈ U1/2 always satisfy12 |v| ≤ 2.

Denoting by 1ϒUk
the characteristic function of the cone ϒUk (as defined in Corol-

lary 7) we introduce the following decompositions into asymptotically dominant and
negligible parts,

fk = f ↑
k + f ↓

k , f ↑
k (x) := fk(x) · 1ϒUk

(x),

and similarly Akτ = A↑
kτ + A↓

kτ , (k = 1, 2), denote the induced decompositions of
creation operators. By Corollary 7, we obtain

∥
∥
∥Akτk − A↑

kτk

∥
∥
∥ =
∥
∥
∥A↓

kτk

∥
∥
∥ ≤ C ′

N

∥
∥Akβ(τk )

∥
∥ · (1 + |τk |)−N .

This implies that it is sufficient to analyse the commutator of the dominant parts as can
be seen from the following estimate, which holds uniformly in x ∈ R

4,
∥
∥
∥[A1τ1

,A2τ2(x)]
∥
∥
∥ ≤
∥
∥
∥[A↑

1τ1
,A↑

2τ2
(x)]
∥
∥
∥ + C ′′

N

∥
∥A1β(τ1)

∥
∥
∥
∥A2β(τ2)

∥
∥ · (1 + τmin)

−N .

Wewill nowverify that the commutator of the dominant parts vanishes for sufficiently
large τ1 in the claimed region of x and τk . As a standard consequence of theHaag–Kastler
axioms we obtain

A↑
kτk

∈ A(Ok,τk ), with Ok,τk := CR + τk · ({1} × Uk),

11 On any bounded interval |τk | ≤ τmax (τmax fixed), we may use Proposition 3 (ii) to obtain∥
∥[A1τ1 , αx (A2τ2 )]

∥
∥ ≤ Cτmax

∥
∥A1β(τ1)

∥
∥
∥
∥A2β(τ2)

∥
∥, which is compatible with (19) for sufficiently large CN .

12 Such a bound will be important later in the proof. The concrete choice of the constant has no physical
significance, but it will influence the magnitude of the proportionality constant C controlling time-differences
in the statement of the lemma.
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where we picked a sufficiently large radius R > 0 such that the double coneCR provides
a common bounded localization region of the families Akβ . Then we have by covariance

A↑
2τ2

(x) ∈ A(O2,τ2 +x). To estimate the causal distance of any two points y1 ∈ O1,τ1 and
y2 ∈ O2,τ2 +x from the respective support regions, wewrite them as y1 = o1+τ1 ·(1, v1),
y2 = o2 + τ2 · (1, v2) + x , with o1, o2 ∈ CR and vk ∈ Uk . We can then see that

y2 − y1 = [(τ2, τ2v2) − (τ1, τ1v1)] + o2 + x − o1.

In the end we will impose a suitable restriction on u := o2 + x − o1 and therefore the
space-like separation of y1 and y2 needs to be derived from the difference term inside
the brackets, which we denote by w := (τ2, τ2v2) − (τ1, τ1v1). We compute

w2 = (τ2 − τ1)
2 − (τ2v2 − τ1v1)2,

|τ2v2 − τ1v1| = |τ2v2 − τ1v2 + τ1(v2 − v1)|
≥ − |τ1 − τ2| |v2| + |τ1| |v2 − v1| , (20)

and thus

w2 ≤ −τ 21 (v2 − v1)2 + 2 |τ1 − τ2| |τ1| |v2 − v1| |v2| + (τ1 − τ2)
2.

We note that by the non-vanishing negative coefficient of the quadratic term, w will
become space-like for large enough |τ1| if sufficient restrictions are placed on |τ2 − τ1|.
By a similar argument also the perturbation of adding u can be controlled, as can be seen
from

(y2 − y1)
2 = w2 + 2w · u + u2 ≤ w2 + 2 |w|c |u|c + |u|2c , (21)

wherewe used theCauchy-Schwarz inequality. Now assume that |τ2 − τ1|+|x |c ≤ ρ̄ |τ1|
for some constant ρ̄ > 0 (to be determined).Using that our choice ofUk implies |vk | ≤ 2,
0 < d ≤ |v2 − v1| ≤ 4, we can then further estimate

w2 ≤ −d2τ 21 + (16ρ̄ + ρ̄2)τ 21 ,

|w|c ≤ 3 |τ2 − τ1| + 4 |τ1| ≤ (4 + 3ρ̄) |τ1| ,
|u|c ≤ |o1|c + |o2|c + |x |c ≤ 2R + ρ̄ |τ1| .

To simplify the resulting bound on (y2 − y1)2, let us choose firstly ρ̄ ≤ 1 and then
subsequently |τ1| ≥ 2R/ρ̄. This allows us to eliminate unimportant scales by writing
|w|c ≤ 7 |τ1|, |u|c ≤ 2ρ̄ |τ1| and ρ̄2 ≤ ρ̄. Then we obtain from (21) that with a suitable
numerical constant C > 0,

(y2 − y1)
2 ≤ −d2τ 21 + C−1ρ̄τ 21 .

This proves that any choice 0 < ρ̄ < Cd2 (< 1) leads to space-like localization regions
of the dominant parts, and so by locality [A↑

1τ1
,A↑

2τ2
(x)] = 0 for |τ1| > 2R/ρ̄ under

the assumed restriction on τ2 and x . ��
With this technical preparation we can now establish asymptotic commutation of the

creation operators Bkτ with disjoint velocity supports at non-equal times. We can also
appreciate now how the power-law scaling β(τ) = |τ |−μ (for large enough |τ |), μ > 0,
plays a distinguished role: for this choice the norm terms

∥
∥Akβ(τ)

∥
∥ can be absorbed due

to the rapid decay in Lemma 8.While these commutator estimates may still be improved
in a suitably adapted setting, already the results of the next section will impose sharp
restrictions on the scaling parameter μ.
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Theorem 9 (non-equal-time commutator estimate). Let Akβ , (k = 1, 2), be Reeh–
Schlieder families of finite degree,13 take regular Klein–Gordon solutions fk with dis-
joint velocity supports and assume a fixed scaling β(τ) = |τ |−μ, μ > 0. Setting
ρ := Cd2/2 ∈ (0, 1) with C, d as in Lemma 8, there exists for any N ∈ N a con-
stant CN > 0, such that for arbitrary τ ∈ R and all τ1, τ2 from the corresponding
interval spanned by τ and τ + ρτ ,

∥
∥[B1τ1,B2τ2 ]

∥
∥ ≤ CN (1 + |τ |)−N .

Proof. We have Bkτk = Akτk (χ), with χ ∈ S (R4) and so we obtain

∥
∥
[B1τ1 ,B2τ2

]∥
∥ ≤
∫

d4x d4y |χ(x)| |χ(y)| ∥∥[A1τ1,A2τ2(y − x)
]∥
∥ . (22)

We decompose the integral into the region |x |c ≤ ρ |τ | /2 and its complement, and sim-
ilarly for the y-integration. As a consequence of our assumptions we have a polynomial
bound

∥
∥Akβ(τ)

∥
∥ ≤ |τ |μγ and restricting to τ1, τ2 from the claimed interval we obtain

for fixed x ∈ R
4 that

∫

d4y |χ(y)| ∥∥[A1τ1 ,A2τ2(x − y)
]∥
∥ ≤ 2 ‖χ‖1

∥
∥ f1τ1
∥
∥
1

∥
∥ f2τ2
∥
∥
1

∥
∥A1β(τ1)

∥
∥
∥
∥A2β(τ2)

∥
∥

≤ C |τ |M ,

for some large enough M > 0 and the estimate holds uniformly in x . This now implies
that the integral of (22) restricted to the outside region |x |c ≥ ρ |τ | /2 is rapidly decreas-
ing: we can estimate it by a product of the above polynomially bounded function with
the rapidly decreasing function obtained by integrating |χ(x)| over the retracting regions
given by |x |c ≥ ρ |τ | /2. By a similar argument we can assume that also |y|c ≤ ρ |τ | /2
and so we can write with suitable constants C ′

N ,

∥
∥
[B1τ1 ,B2τ2

]∥
∥ ≤ C ′

N

1 + |τ |N
+
∫

|x |c,|y|c≤ρ|τ |/2
d4x d4y |χ(x)| |χ(y)| ∥∥[A1τ1 ,A2τ2(x − y)

]∥
∥ .

Assuming the given restriction |τ1 − τ2| ≤ ρ |τ | (≤ ρτmin) we obtain |τ2 − τ1| +
|x − y|c ≤ 2ρ |τ | ≤ Cd2τmin. Therefore Lemma 8 is applicable, which yields
∫

|x |c,|y|c≤ρ|τ |/2
d4x d4y |χ(x)| |χ(y)| ∥∥[A1τ1 ,A2τ2(x − y)

]∥
∥ ≤ C ′′

N ′
∥
∥A1β(τ1)

∥
∥
∥
∥A2β(τ2)

∥
∥

(1 + τmin)N ′ .

As τmin ≥ |τ |we can proceed similarly as before and choose N ′ large enough (depending
on the desired decay order N , the scaling μ, and

∥
∥Akβ(τk )

∥
∥) to compensate for the

polynomial growth of
∥
∥Akβ(τk )

∥
∥. ��

It is clear that the same reasoning applies, if we replace one or more creation operator
approximants by their adjoints. For later use in Sect. 8, we also mention the following
equal-time result regarding double commutators with one additional creation operator
which may have arbitrary velocity support. This follows from Theorem 9 by a well-
known decomposition argument.

13 For Lemma 9, it is sufficient if the operator families Akβ are uniformly localized (Akβ ∈ A(O), with
bounded O independent of β) and have at most polynomial norm growth

∥
∥Akβ
∥
∥ ≤ β−γ , (γ ≥ 0).
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Corollary 10 (Decay of double commutators). In the setting of Theorem 9 let Bτ be an
additional creation operator approximant defined in terms of a regular Klein–Gordon
solution f (without restrictions on its velocity support) and an additional Reeh–Schlieder
family Aβ of finite degree. Then,

‖[[Bτ ,B1τ ] ,B2τ ]‖ ≤ CN (1 + |τ |)−N

The same estimate holds if we replace one or more operators by their adjoints.

Proof. By a smooth decomposition of the wave packet f̃ = f̃1c + f̃2c , such that the
resulting commutators [Bkc

τ ,Bkτ ] are both rapidly decreasing in norm, the result follows
directly from Theorem 9 and the Jacobi identity. ��

The results of this section seem to be somewhat similar in spirit to Theorem 2 (i i )
of [Hrd13], although their role in our verification of convergence of scattering states by
discretized time sequences is quite different. A similar result can be found in [Du13].

5. Large Space-Like Translations and Clustering

In this section we prove the following clustering property for the operator familiesAkτ ,

lim
τ→∞ E⊥

� [A∗
1τ ,A2τ ]� = 0, (23)

with E� := |�〉〈�|, E⊥
� := 1 − E�, and where in contrast to Sect. 4 no restrictions

are imposed on velocity supports. We will require that the scaling μ > 0 has been
chosen sufficiently small (depending on the Reeh–Schlieder degrees). Combined with
the single-particle convergence established in Proposition 3 (vi), relation (23) implies
that also the limit of [A∗

1τ ,A2τ ]� exists and is proportional to the vacuum. Similarly as
in Sect. 4 we will admit some relative translations of the two operators in (23), so that the
results can be carried over to the corresponding expressions involving the operators Bkτ

in Sect. 6. These estimates will play a key role for our proof of convergence of scattering
states.

Our treatment is chiefly inspired by Section 3 of [Dy05] and corresponding earlier
results of Buchholz [Bu77]. We rely similarly on space-like decay of matrix elements
of local operators, as established by the well-known Araki–Hepp–Ruelle Theorem. For
smooth operators B ∈ A0(O) a variant of this decay estimate may be conveniently
expressed in terms of the norm ‖B‖AHR := ‖B‖ + ‖∂0B‖.
Theorem 11 (Araki–Hepp–Ruelle [AHR62]). Let Ak ∈ A0(CRk ), k = 1, 2. Then for
any |x| ≥ 2(R1 + R2), we have

∣
∣
∣

〈

�, A1U (x)E⊥
� A2�

〉∣
∣
∣ ≤ CAHR(R1+R2)

3

|x|2 ‖A1‖AHR ‖A2‖AHR . (24)

The constant CAHR is universal, but we note that estimate (24) with its quadratic decay
is specific to theories on physical Minkowski space-time R

4.

To establish the clustering estimate (23) we will have to assume that Aβ ∈ A0(O) for
small enough β > 0 and that

∥
∥Aβ

∥
∥
AHR is not growing too fast. Both assumptions follow

from the uniform differentiability property discussed in Remark 1. Further we will make
use of the velocity support estimate of Lemma 6 supplemented by well-known globally
valid norm estimates for Klein–Gordon solutions, which we collect in Proposition 12.
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Proposition 12. Let f be a regular solution of the Klein–Gordon equation with mass
m ≥ 0 and set fτ (x) := f (τ, x). Then for any p ≥ 1 and 0 < ε < 1 the following
estimates hold.

(i) | f (t, x)| ≤ CN ε−N (1 + |t | + |x|)−N for |x| ≥ (1 + ε) |t | and any N ∈ N.
(i0) If m = 0, then (i) holds also for any |x| ≤ (1 − ε) |t |.
(ii) For m > 0, we have ‖ fτ‖∞ ≤ C(1 + |τ |)−3/2 everywhere.

(ii0) ‖ fτ‖∞ ≤ C(1 + |τ |)−1 everywhere.

(iii) For m > 0, ‖ fτ‖p
p ≤ C p(1 + |τ | 32 ·(2−p)).

(iii0) If m = 0, then ‖ fτ‖p
p ≤ Cε,p(1 + |τ |2−p+ε) for any ε > 0.

(iv) ‖ fτ‖2 = (2π)−3/2 ‖ f̃ ‖2 is constant (even if m = 0).

All appearing constants depend on the wave packet of f and norms are taken in L p(R3).

Proof. (i ) and (i0 ) can be established as consequences of the velocity support estimate
of Corollary 7. Note that for m = 0 we assumed 0 ∈ supp f̃ . The global estimates (i i )
and (i i0 ) are proven e.g. in [RS3], Theorems XI.17 and XI.18. (i i i ) and (i i i0 ) with
ε = 1 follow by decomposing the integration according to the regions of validity of the
respective versions of (i ), (i i ), i.e. for m = 0 we may take Iτ := {||x| − |τ || ≤ d |τ |}
and its complement. The present result for (i i i0 ) with 0 < ε < 1 follows by setting
d = d(τ ) = |τ |−ν for any 0 < ν < 1 with ν := 1 − ε and by making use of Lemma 6.
Finally, (iv ) is a consequence of the Plancherel identity. ��
Lemma 13. Let the creation-operator approximantsAkτ be defined in terms of operator
families A1β and A2β which are localized in the standard double cone CR (R > 0). For
any x1, x2 ∈ R

4, we have

∥
∥
∥E⊥

� [A1τ (x1)
∗,A2τ (x2)]�

∥
∥
∥

2 ≤ C(R + |x2 − x1|c)9
|τ |κ · ∥∥A1β(τ)

∥
∥
2
AHR

∥
∥A2β(τ)

∥
∥
2
AHR ,

(25)

where |x |c := |x0| + |x|. Here κ = 3/2 in the case of m > 0 and for m = 0 we can
choose κ = 1 − ε for any ε > 0 with C depending on ε and the wave packets f̃k .

Proof. By translation invariance, it is sufficient to establish the estimate for the relative
translation by x := x2 − x1. We may express the norm square as a vacuum expectation
value by writing
∥
∥
∥E⊥

� [A∗
1τ ,A2τ (x)]�

∥
∥
∥

2 =
∣
∣
∣

〈

�, [A2τ (x)∗,A1τ ]E⊥
� [A∗

1τ ,A2τ (x)]�
〉∣
∣
∣

=
∣
∣
∣
∣

∫

d3x1 . . . d3x4 f ∗
2τ (x1) f1τ (x2) f ∗

1τ (x3) f2τ (x4)K (τ, x, x1, . . . , x4)

∣
∣
∣
∣

≤
∫

d3x1 . . . d3x4 | f2τ (x1)| | f1τ (x2)| | f1τ (x3)| | f2τ (x4)| · |K (τ, x, x1, . . . , x4)| ,
(26)

where due to time-translation invariance the matrix element K can be written as

K :=
〈

�, [A2β,x (x1)∗, A1β(x2)]E⊥
� [A1β(x3)∗, A2β,x (x4)]�

〉

.

For compact notation, we introduced the abbreviation A2β,x := αx (A2β) and we sup-
pressed the τ -dependence of β = β(τ).
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Now we can estimate K by combining its support properties resulting from locali-
ty (HK2) with the space-like decay estimates fromTheorem 11 in amanner which seems
to be originally due to Buchholz [Bu77]. More precisely, by covariance, isotony and the
geometry of double cones, the standard double cone CR2+|x |c provides a localization
region for the translated operator family A2β,x . Therefore K can only be non-zero if

|x1 − x2| ≤ R1 + R2 + |x |c
|x3 − x4| ≤ R1 + R2 + |x |c (27)

are both satisfied. This (for fixed x) finite restriction on the relative differences x1 − x2
and x3−x4 now allows for successfully estimating the integrand of (26) for large enough
relative distance x2 − x3 “across” E⊥

� by means of Theorem 11.
Restricting the integral (26) to the region subject to the constraints (27), which we

shall denote by M ⊂ (R3)4, we find that for points (x1, . . . , x4) ∈ M , the two appearing
commutators can be localized in suitably translated double cones, whose radii can be
simultaneously bounded from above by R′ := 2(R1 + R2) + |x |c, i.e.

C1 := [A2β,x (x1)∗, A1β(x2)] ∈ A(Ox2), Ox2 := CR′ + (0, x2),
C2 := [A1β(x3)∗, A2β,x (x4)] ∈ A(Ox3), Ox3 := CR′ + (0, x3).

Note that C1 and C2 are both differentiable by the product rule, as a consequence of
the assumed differentiability of the families Akβ . To apply Theorem 11 we subdivide
M into the region M1 := {(x1, . . . , x4) ∈ M : |x2 − x3| > 2R′} and its complement
M2 := M \ M1 and write

∥
∥
∥E⊥

� [A∗
1τ ,A2τ (x)]�

∥
∥
∥

2 ≤ IM1 + IM2 ,

where IMk denotes the integration part of (26) over the subregion Mk . On M1 we have
by Theorem 11,

|K | ≤ CAHR(2R′)3

|x2 − x3|2
CA, CA := ‖C1‖AHR ‖C2‖AHR ≤ 4

∥
∥A1β
∥
∥2
AHR

∥
∥A2β
∥
∥2
AHR .

Also note that trivially |K | ≤ CA holds everywhere. Here we made use of

‖C2‖AHR ≤ ∥∥[A∗
1, A2]
∥
∥ +
∥
∥[∂0A∗

1, A2]
∥
∥ +
∥
∥[A∗

1, ∂0A2]
∥
∥

≤ 2(
∥
∥A∗

1

∥
∥ ‖A2‖ +

∥
∥∂0A∗

1

∥
∥ ‖A2‖ +

∥
∥A∗

1

∥
∥ ‖∂0A2‖)

≤ 2
∥
∥A∗

1

∥
∥
AHR ‖A2‖AHR = 2 ‖A1‖AHR ‖A2‖AHR ,

and similarly for ‖C1‖AHR, where we suppressed dependencies on β, x and xk . This
allows us to estimate
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IM1 =
∫

M1

d3x1 . . . d3x4 | f2τ (x1)| | f1τ (x2)| | f1τ (x3)| | f2τ (x4)| · |K (τ, x, x1, . . . , x4)|

≤
∫

M1

d3x1 . . . d3x4 | f2τ (x1)| | f1τ (x2)| | f1τ (x3)| | f2τ (x4)| CAHR(2R′)3

|x2 − x3|2
CA

= CAHRCA(2R′)3
∫

|x2−x3|>2R′
d3x2d

3x3
| f1τ (x2)| | f1τ (x3)|

|x2−x3|2
∫

|x1−x2|<R′
d3x1 | f2τ (x1)|

∫

|x3−x4|<R′
d3x4 | f2τ (x4)|

≤ (2R′)9 ‖ f2τ‖2∞ · CAHRCA ·
∫

|x2−x3|>2R′
d3x2d

3x3 | f1τ (x2)| | f1τ (x3)| 1

|x2 − x3|2
. (28)

Here and below, all appearing p-norms (1 ≤ p ≤ ∞) are on L p(R3)-spaces associated
to spatial smearing functions. We proceed by first estimating the d3x3 subintegral for
fixed x2 using Cauchy-Schwarz (all integrals below over {x3 ∈ R

3 : |x2 − x3| > 2R′})
∫

d3x3
| f1τ (x3)|
|x2 − x3|2

≤ ‖ f1τ‖2 ·
(∫

d3x3
|x2 − x3|4

)1/2

≤ CR−1‖ f1τ‖2.

Here both terms are uniformly bounded in τ , by the Plancherel identity or explicit
computation,14 respectively.

Plugging this into the remaining d3x2-integration in (28), we have now shown that

IM1 ≤ CAHRCACR−1(2R′)9 ‖ f2τ‖2∞ ‖ f1τ‖2 ‖ f1τ‖1 .

On M2 we estimate similarly using |K | ≤ CA,

IM2 ≤
∫

M2

d3x1 . . . d3x4 | f2τ (x1)| | f1τ (x2)| | f1τ (x3)| | f2τ (x4)| CA

≤ CA(2R′)9 ‖ f2τ‖2∞ ‖ f1τ‖∞ ‖ f1τ‖1 .

The result now follows from Proposition 12. ��

6. Consequences of the Clustering Estimate

With the clustering estimate for the operatorsAkτ from Lemma 13 at hand, it is straight-
forward to prove clustering of the creation operators Bkτ for Reeh–Schlieder families
of finite degree.

Proposition 14. For uniformly differentiable Reeh–Schlieder families A1β , A2β , and
regular Klein–Gordon solutions f1, f2 of mass m ≥ 0, we have

∥
∥
∥E⊥

�B∗
1τB2τ�

∥
∥
∥ ≤ C

|τ |κ/2

∥
∥A1β(τ)

∥
∥
AHR

∥
∥A2β(τ)

∥
∥
AHR .

Here, C depends on χ , localization regions of Akβ , wave packets, and κ (see Lemma 13).

14 Performing the second integral in spherical coordinates around x2 leads to the radial integration beginning
at 2R′ > R > 0, which can be estimated uniformly in |x |c by a finite constant CR−1 .
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Proof. As B∗
1τ� = 0, we can replace the product B∗

1τB2τ acting on the vacuum by the
commutator [B∗

1τ ,B2τ ]. Making use of Bkτ = Akτ (χ), χ ∈ S (R4), and Lemma 13,
we obtain

∥
∥
∥E⊥

� [B∗
1τ ,B2τ ]�

∥
∥
∥ ≤
∫

d4x1d
4x2 |χ(x1)| |χ(x2)| ·

∥
∥
∥E⊥

� [A∗
1τ (x1),A2τ (x2)]�

∥
∥
∥

≤
∫

d4x1d
4x2 |χ(x1)| |χ(x2)| C ′(R +|x1−x2|c)9/2

|τ |κ/2

∥
∥A1β(τ)

∥
∥
AHR

∥
∥A2β(τ)

∥
∥
AHR

= C

|τ |κ/2

∥
∥A1β(τ)

∥
∥
AHR

∥
∥A2β(τ)

∥
∥
AHR .

��
For Reeh–Schlieder families of finite degree Proposition 14 simplifies further, yield-

ing a constraint for admissible choices of scaling. In the following γ always denotes the
(finite) largest appearing degree, i.e.

∥
∥Akβ
∥
∥
AHR ≤ β−γ for small enough β > 0 and all

k = 1, . . . , n. From now on we will also adopt the canonical scaling β(τ) := |τ |−μ,
μ > 0.

Corollary 15. Let the Reeh–Schlieder families A1β , A2β have finite degrees. Under the
assumptions of Lemma 14, there exists a C > 0 such that for large enough τ we have

∥
∥
∥E⊥

�B∗
1τB2τ�

∥
∥
∥ ≤ C |τ |2γμ−κ/2 ,

Consequently for any 0 < μ < κ
4γ we obtain

lim
τ→∞ E⊥

�B∗
1τB2τ� = 0.

Proof. Follows immediately from inserting
∥
∥Akβ(τ)

∥
∥
AHR ≤ C ′β(τ)−γ = C ′ |τ |γμ into

the estimate of Proposition 14. ��
While Corollary 15 will be sufficient to establish the Fock structure of scattering

states in Sect. 8, our proof of convergence relies on an extension of this result, which
is concerned with the case of multiple creation operators. The resulting Lemma 16
combines energy bounds and clustering estimates in a novel way. It may be considered
our main technical result.

Lemma 16 (multi-operator clustering). For τ1, . . . , τn ∈ R denote by |τmin| > 0 and
|τmax| the minimum and maximum of absolute values |τk |, (1 ≤ k ≤ n), respectively.
Then for large enough τmin,

∥
∥
∥
∥
∥

E⊥
�

(
n
∏

k=1

B∗
kτk

Bkτk

)

�

∥
∥
∥
∥
∥

≤ C |τmax|2nγμ · |τmin|−κ/2 . (29)

The constant C is independent of the τk , but depends on the number of pairs n, wave
packets, Reeh–Schlieder families, and the smearing function χ .
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Proof. We will show by induction that
∥
∥
∥
∥
∥

E⊥
�

(
n
∏

k=1

B∗
kτk

Bkτk

)

�

∥
∥
∥
∥
∥

≤ C
n
∑

j=1

⎛

⎝

j−1
∏

k=1

∥
∥E(�)B∗

kτk
Bkτk E(�)

∥
∥

⎞

⎠

∥
∥
∥E⊥

�B∗
jτ j

B jτ j �

∥
∥
∥ ,

(30)

where � ⊂ R
4 is a large enough compact set depending on supp χ̂ and the number of

pairs n ∈ N. From this we obtain by applying 2-operator clustering (Corollary 15), the
energy bound of Lemma 5, and the finite-degree Reeh–Schlieder estimates that for large
enough |τmin|, (29) holds as claimed. For n = 1, statement (30) has been established in
Corollary 15. Assuming that (30) holds for n − 1 pairs, we write

∥
∥
∥
∥
∥

E⊥
�

(
n
∏

k=1

B∗
kτk

Bkτk

)

�

∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥

E⊥
�

(
n−1
∏

k=1

B∗
kτk

Bkτk

)

(E� + E⊥
�)B∗

nτn
Bnτn �

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

E⊥
�

(
n−1
∏

k=1

B∗
kτk

Bkτk

)

E�B∗
nτn

Bnτn �

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

E⊥
�

(
n−1
∏

k=1

B∗
kτk

Bkτk

)

E⊥
�B∗

nτn
Bnτn �

∥
∥
∥
∥
∥

. (31)

Now we would like to estimate the second term by 2-operator clustering (Corollary 15).
Regarding the applicability of energy bounds from Proposition 5, we note that by Propo-
sition 3 (iii), B∗

nτn
Bnτn has compact energy-momentum transfer �′ := supp χ̂ − supp χ̂ .

Therefore we can insert an energy-momentum projection onto�′ (which commutes with
E⊥

� ) and estimate
∥
∥
∥
∥
∥

E⊥
�

(
n−1
∏

k=1

B∗
kτk

Bkτk

)

E(�′)E⊥
�B∗

nτn
Bnτn �

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

E⊥
�

(
n−1
∏

k=1

B∗
kτk

Bkτk

)

E(�′)
∥
∥
∥
∥
∥

·
∥
∥
∥E⊥

�B∗
nτn

Bnτn �

∥
∥
∥

≤
(

n−1
∏

k=1

∥
∥E(�)B∗

kτk
Bkτk E(�)

∥
∥

)

·
∥
∥
∥E⊥

�B∗
nτn

Bnτn �

∥
∥
∥ ,

where we have chosen the compact set� ⊂ R
4 large enough (depending on n) to contain

the sum of the energy-momentum transfers differences �′ of all creation-annihilation
operator pairs. Similarly we estimate the first term in (31) by making use of the one-
dimensional nature of the projection E�, and the induction assumption,
∥
∥
∥
∥
∥

E⊥
�

(
n−1
∏

k=1

B∗
kτk

Bkτk

)

E�B∗
nτn

Bnτn �

∥
∥
∥
∥
∥

= ∥∥Bnτn �
∥
∥
2 ·
∥
∥
∥
∥
∥

E⊥
�

(
n−1
∏

k=1

B∗
kτk

Bkτk

)

�

∥
∥
∥
∥
∥

≤ C ·
n−1
∑

j=1

∥
∥
∥E⊥

�B∗
jτ j

B jτ j �

∥
∥
∥ ·
⎛

⎝

j−1
∏

k=1

∥
∥E(�)B∗

kτk
Bkτk E(�)

∥
∥

⎞

⎠ .
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Here we also made use of the fact that
∥
∥Bnτn �

∥
∥ ≤ C is uniformly bounded in τn by

convergence to the corresponding single-particle state [see Proposition 3 (vi)]. Taken
together, these two estimates complete the induction step. ��

A useful consequence of multi-operator clustering, which will be important for us
later, is the boundedness of scattering-state approximants, i.e. vectors resulting from
iterated application of creation-operators to the vacuum. In fact, a similar result was
used by Buchholz for the collision theory of massless bosons [Bu77]. While the proofs
of Buchholz’ results can be simplified15 usingmethods from harmonic analysis [Bu90a],
our construction is based on operator families Aβ with diverging norms in the limit β →
0. This norm growth will be inherited by energy bounds for creation operators, if they
are derived by means of Proposition 5. In the vacuum sector of a local theory however,
we can establish uniform estimates on scattering-state approximants by relying on the
good behaviour of Aβ� via the previously established clustering properties, similarly
as in [Bu77].

Corollary 17. Assume disjoint velocity supports. For any scaling 0 < μ < κ
4γ (n−1) ,

there exists a C > 0, such that for all sufficiently large τ ∈ R and all τk from the
corresponding interval spanned by τ and τ + ρτ ,

∥
∥B1τ1 . . .Bnτn �

∥
∥ ≤ C,

with ρ as in Theorem 9 (for n = 1, any μ ∈ (0,∞) is admissible).

Proof. The proof is by induction on the number of particles n. For n = 1, the claim fol-
lows by convergence to the corresponding single-particle state as proven in Proposition
3 (vi). For the general case it will be sufficient to establish the claim for large enough
|τ |, as can be seen from the simple polynomial estimate of Proposition 3. Let us now
assume that the statement holds for n particles. For simplicity we set Bk := Bkτk and
write

‖B1 . . .Bn+1�‖2 = 〈�,B∗
n+1 . . .B∗

1B1 . . .Bn+1�
〉

= 〈�,B∗
n+1Bn+1B∗

n . . .B∗
1B1 . . .Bn�

〉

+
〈

�,B∗
n+1

[B∗
n . . .B∗

1B1 . . .Bn,Bn+1
]

�
〉

,

where the absolute value of the second term is bounded, as it vanishes for |τ | → ∞ for
any choice of scaling by the rapid decay of commutators (Theorems 9). This decay can
compensate the norm growth of the creation-operator approximants, which is at most
polynomial—even when using the naive estimate of Proposition 3.

Therefore it is sufficient to establish boundedness of the matrix element
〈

�,B∗
n+1Bn+1B∗

n . . .B∗
1B1 . . .Bn�

〉

=
〈

�,B∗
n+1Bn+1 (E� + E⊥

�)B∗
n . . .B∗

1B1 . . .Bn�
〉

= ‖Bn+1�‖2 ‖B1 . . .Bn �‖2 +
〈

�,B∗
n+1Bn+1 E⊥

�B∗
n . . .B∗

1B1 . . .Bn�
〉

. (32)

The first term of (32) provides the dominant contribution in the limit |τ | → ∞: its two
factors are bounded by the induction assumption and the one-particle case. The second
term can be written as the sum of

〈

�,B∗
n+1Bn+1 E⊥

�B∗
nBn . . .B∗

1B1�
〉

and further matrix

15 See e.g. [AD15].
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elements involving at least one commutator of operators involving disjoint velocity
supports. As before, the latter are rapidly decreasing by Theorem 9. We can conclude
the proof by applying the Cauchy-Schwarz inequality to the remaining term
∣
∣
∣

〈

�,B∗
n+1Bn+1 E⊥

�B∗
nBn . . .B∗

1B1�
〉∣
∣
∣ ≤
∥
∥
∥E⊥

�B∗
n+1Bn+1�

∥
∥
∥ ·
∥
∥
∥E⊥

�B∗
nBn . . .B∗

1B1�

∥
∥
∥

where both factors vanish in the limit |τ | → ∞ for any sufficiently small choice of
scaling μ by Lemma 16. ��

7. Convergence of Scattering State Approximants

For this sectionweadopt the standing assumptions that A1β, . . . , Anβ areReeh–Schlieder
families of finite degree and we take f1, . . . , fn to be regular positive-energy Klein–
Gordon solutions of the corresponding mass with pairwise disjoint velocity supports.

Theorem 18. Let the Reeh–Schlieder families A1β, . . . , Anβ have degrees less than some
finite value γ > 0 and take a scaling exponent μ ∈ (0, κ

4(n−1)γ ) (κ as in Lemma 13).

(i) The family �τ := B1τ . . .Bnτ� is convergent in norm as τ → ±∞.
(ii) The limit is independent of the choice of μ, Akβ and fk within the specified

restrictions, as long as the associated operators B′
kτ create on the vacuum the

same family of single-particle states �
(1)
k = limτ→∞ Bkτ�.

Avoidingdifferentiability assumptions on Akβ with respect to the parameterβ,wewill
proceed by a discrete variant of Cook’s method, thereby reducing the convergence of the
scattering state approximants�τ to the convergence of single-particle state approximants
Bkτ�. Recall that for Reeh–Schlieder families Akβ , we have quantitative control over
the convergence of the single-particle problem by Proposition 3 (vi).

The restrictions on the time differences to obtain rapid decay of commutators in
Theorem 9 suggests to consider the restrictions of �τ to sequences

τk = (1 + ρ)kτ0, τ0 = 0 arbitrary, (33)

and ρ > 0 depending on the separation of velocity supports as explained in Theorem 9.
As preparation for proving Theorem 18 we will first show that we can relate the norm

of differences�τ2 −�τ1 to corresponding single-particle expressions
∥
∥Bkτ2� − Bkτ1�

∥
∥

at least “locally”, i.e. if we place sufficient restrictions on the differences |τ2 − τ1|.
We will give a unified account for proving both parts of Theorem 18 by comparing
the scattering state approximants associated to two possibly distinct families of creation
operators with comparable velocity supports. Thereto let Akβ , A′

kβ ∈ A(O) be uniformly
differentiable Reeh–Schlieder families of finite degree, and choose regular positive-
energy Klein–Gordon solutions f1, . . . , fn and f ′

1, . . . f ′
n of mass m ≥ 0 such that all

pairs with j = k (including mixed pairs f j , f ′
k) have disjoint velocity supports. We

denote the corresponding creation operators by Bkτ , B′
kτ and set

�τ := B1τ . . .Bnτ�, � ′
τ := B′

1τ . . .B′
nτ�.

Remark 19 (change of scaling). Anticipating also the proof of Theorem 18 (i i ), we may
also allow the creation operator familiesBkτ andB′

kτ to be defined using distinct choices

of scaling βk(τ ) := |τ |−μk , β ′
k(τ ) := |τ |−μ′

k . On the first reading, this detail can safely
be ignored, but it is easily seen that the statement and proof of Lemma 20 can even
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be kept invariant under this generalization if we simply denote the smallest appearing
scaling exponent by μ := min{μk, μ

′
k (1 ≤ k ≤ n)} > 0. The required extensions of

Theorem 9, Lemma 16, and Corollary 17 follow directly by similar considerations.

Lemma 20. Take ρ > 0 as given in Theorem 9 (using the smallest value suitable for
all disjoint pairs of velocity supports), and choose sufficiently small scaling μ > 0
(cf. Corollary 17). Then there exist constants C1, C2 > 0, such that for sufficiently
large |τ | > 0 and any subsequent choice of τ1, τ2 from the interval spanned by τ and
(1 + ρ)τ , we have

∥
∥�τ2 − � ′

τ1

∥
∥ ≤ C1

n
∑

k=1

∥
∥Bkτ2� − B′

kτ1
�
∥
∥ + C2 |τ |nγμ−κ/4 .

Proof. For n = 1 the statement is trivial. For n ≥ 2 we can estimate telescopically

∥
∥�τ2 − � ′

τ1

∥
∥ ≤

n
∑

k=1

∥
∥B1τ2 . . .Bk−1 τ2(Bkτ2 − B′

kτ1
)B′

k+1 τ1
. . .B′

nτ1
�
∥
∥ .

The claim is obtained if the following estimate can be established for each 1 ≤ k ≤ n,
∥
∥B1τ2 . . .Bk−1 τ2(Bkτ2 − B′

kτ1
)B′

k+1 τ1
. . .B′

nτ1
�
∥
∥
2

≤ C1
∥
∥Bkτ2� − B′

kτ1
�
∥
∥2 + C2 |τ |2γ nμ−κ/2 . (34)

We will prove this inequality by making use of the rapid decay of restricted non-equal
time commutators together with the energy bound and clustering. Introducing the ab-
breviation �τBk := Bkτ2 − B′

kτ1
, we can write

∥
∥B1τ2 . . .Bk−1 τ2 (�τBk)B′

k+1 τ1
. . .B′

nτ1
�
∥
∥2

= 〈�,B′∗
nτ1

. . .B′∗
k+1 τ1

(�τBk)
∗B∗

k−1 τ2
. . .B∗

1τ2B1τ2 . . .Bk−1 τ2(�τBk)B′
k+1 τ1

. . .B′
nτ1

�
〉

≤ ∣∣〈�,B∗
1τ2B1τ2 . . .B∗

k−1 τ2
Bk−1 τ2 · B′∗

k+1 τ1
B′

k+1 τ1
. . .B′∗

nτ1
B′

nτ1
(�τBk)

∗(�τBk)�
〉∣
∣

+CM |τ |−M , (35)

and the rapidly decreasing error can be subsumed into the C2-term of (34). To obtain Eq.
(35), we made multiple use of the non-equal-time commutator estimate16 of Lemma 9,
which is sufficiently strong for overcompensating to any desired inverse polynomial
order the asymptotic growth of the elementary estimate ‖Bkτ‖ ≤ Ck(1 + |τ |N+γμ) and
similar estimates for adjoints and primed operators (see Proposition 3).

The remaining term in (35) still contains the asymptotically dominant contribution,
which we will now extract using the clustering estimate. Inserting an identity opera-
tor (E� + E⊥

�) after (�τB∗
k )(�τBk)� and making use of subadditivity and decay of

commutators yields
∣
∣
〈

�,B∗
1τ2B1τ2 . . .B∗

k−1 τ2
Bk−1 τ2 · B′∗

k+1 τ1
B′

k+1 τ1
. . .B′∗

nτ1
B′

nτ1
(�τB∗

k )(�τBk)�
〉∣
∣

≤ ‖E⊥
�B′∗

nτ1
B′

nτ1
. . .B′∗

k+1 τ1
B′

k+1 τ1
· B∗

k−1 τ2
Bk−1 τ2 . . .B∗

1τ2B1τ2�‖
· ‖(�τB∗

k )(�τBk)�‖
+ ‖B1τ2 . . .Bk−1 τ2 · B′

k+1 τ1
. . .B′

nτ1
�‖2 · ‖(�τBk)�‖2 + CM |τ |−M .

16 For the status of Theorem 9 in the context of non-equal scaling, cf. Remark 19 and Footnote 13.
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Both terms depend on the convergence speed of the single-particle problem, although—
anticipating the results of Sect. 8—we expect the second summand to be dominant for
large τ : By boundedness of scattering state approximants (Corollary 17)

∥
∥B1τ2 . . .Bk−1 τ2 · B′

k+1 τ1
. . .B′

nτ1
�
∥
∥
2 ≤ C1

for suitable C1 > 0. It remains to be shown that the first summand has the same asymp-
totics as the C2-term of (34). By the clustering result with multiple pairs of creation-
and annihilation-operator approximants of Lemma 16, we obtain that
∥
∥
∥E⊥

�B′∗
nτ1

B′
nτ1

. . .B′∗
k+1 τ1

B′
k+1 τ1

· B∗
k−1 τ2

Bk−1 τ2 . . .B∗
1τ2B1τ2�

∥
∥
∥ ≤ C2 |τ |2(n−1)γμ−κ/2 ,

which also made use of the time restriction yielding |τ | ≤ |τk | ≤ (1+ρ) |τ |. The second
factor is estimated making use of the energy bound,

∥
∥(�τB∗

k )(�τBk)�
∥
∥ = ∥∥(�τB∗

k )E(�)(�τBk)�
∥
∥

≤ ∥∥(�τB∗
k )E(�)

∥
∥ · ‖(�τBk)�‖

≤ C3 |τ2|γμ ≤ C3(1 + ρ)γμ |τ |γμ =: C ′
3 |τ |γμ ,

where the energy-momentum projection onto the compact set � := supp χ̂ can be
inserted due to �τBk� ∈ E(�)H . Altogether we obtain (34), completing the proof. ��

The convergence of scattering state approximants �τ is now easily established by
iterated application of Lemma 20.

Proof of Theorem 18. Ad (i). We estimate by writing a telescopic sum and making use
of subadditivity of the norm,

∥
∥�τL − �τ0

∥
∥ ≤

L
∑

k=1

∥
∥�τk − �τk−1

∥
∥ .

We have by construction that τk, τk−1 are contained in the interval spanned by τk−1
and (1 + ρ)τk−1. Thus Lemma 20 is applicable with Bkτ = B′

kτ . Fixing the scaling
parameter μ > 0 such that δ := κ/4 − nγμ > 0, all assumptions of Lemma 20 are
satisfied and we obtain

∥
∥�τL − �τ0

∥
∥ ≤

L
∑

k=1

⎛

⎝C1

n
∑

j=1

∥
∥B jτk � − B jτk−1�

∥
∥ + C2 |τk−1|−δ

⎞

⎠ . (36)

Now, the single-particle convergence property of the Reeh–Schlieder families implies

∥
∥B jτk � − B jτk−1�

∥
∥ ≤
∥
∥
∥B jτk � − �

(1)
j

∥
∥
∥ +
∥
∥
∥�

(1)
j − B jτk−1�

∥
∥
∥ ≤ C |τk−1|−μ ,

where �
(1)
j = limτ→±∞ B jτ�. Applying this estimate and inserting τk = (1 + ρ)kτ0,

we can take care of both terms in (36) by writing

∥
∥�τL − �τ0

∥
∥ ≤ C ′

L
∑

k=1

|τk−1|−μ′ = C ′ |τ0|−μ′ ·
L
∑

k=1

(1 + ρ)−μ′(k−1), (37)
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with μ′ := min(μ, δ). Clearly, the geometric series is convergent for L → ∞. Inde-
pendence of the limit from the choice of the sequence τk , i.e. convergence of �τ as a
function of the continuous parameter τ , may be inferred from a second invocation of
Lemma 20 or directly from (37).

Ad (ii). This is another direct consequence of Lemma 20, which implies for equal
times but distinct creation operators, with possibly distinct choices of scaling in the
allowed region, that

∥
∥�τ − � ′

τ

∥
∥ ≤ C1

n
∑

j=1

∥
∥
∥B jτ� − B′

jτ�

∥
∥
∥ + C2 |τ |−δ ,

where as before δ := κ/4 − nγμ > 0. If limτ B jτ� = limτ B′
jτ�, we obtain that the

limits of �τ and � ′
τ coincide and that they are invariant under changes of scaling as

claimed. ��

8. Fock Structure of Scattering States

Finally, we want to establish the Fock structure of scattering states, which provides a
simple formula for computing scalar products of any two scattering states in terms of their
single-particle components. An important consequence is the non-vanishing of the limits
defining the scattering states and it is the essential ingredient to establish the extension
of wave operators to the full asymptotic Fock spaces (cf. [Dy09] App. A). With the
clustering relation of creation-operators of Corollary 15 at hand, the arguments leading
to the Fock structure of scattering states are well-known and we can not refrain from
rephrasing them, e.g. from [Dy05]. We will use the abbreviation [n] := {1, 2, . . . , n} ⊂
N for finite subsets of natural numbers andSn denotes the symmetric group of degree n
in its defining representation, i.e. acting on [n].

We now consider two scattering state approximants (n, n′ ∈ N0)

�τ := B1τ . . .Bnτ�, � ′
τ := B′

1τ . . .B′
n′τ�,

such that Bkτ and B′
kτ have disjoint velocity supports within each family. Assuming

finite Reeh–Schlieder degrees, the outgoing and incoming scattering states �± :=
limτ→±∞ �τ , respectively, arewell-definedbyTheorem18 for sufficiently small choices
of scaling β(τ) = |τ |−μ, μ > 0, and similarly for � ′± := limτ→±∞ � ′

τ . We denote

the corresponding single-particle states by �
(1)
k := limτ→∞ Bkτ�, (1 ≤ k ≤ n) and

�
′(1)
k′ := limτ→∞ B′

k′τ�, (1 ≤ k′ ≤ n′).

Theorem 21 (Fock structure). The scalar products of any two outgoing scattering states
of the above form are given by17

〈

�+, � ′+〉 = δnn′
∑

π∈Sn

n∏

k=1

〈

�
(1)
k , �

′(1)
π(k)

〉

, (38)

and similarly for incoming states.

17 As usual, the right-hand side of (38) is consistently interpreted for n > n′, yielding vanishing scalar
products also in this case (as a consequence of the vanishing Kronecker delta δnn′ ).
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Proof. For simplicity we treat only the outgoing case τ → +∞. By continuity of the
scalar product, the left-hand side of (38) can be written as the limit τ → ∞ of

〈

�τ ,�
′
τ

〉 = 〈B1τ . . .Bnτ�,B′
1τ . . .B′

n′τ�
〉

, (39)

where we can assume identical scaling μ > 0 for both sides by Theorem 18 (ii). Now
we perform induction with respect to the number of particles n′ (assuming without
restriction that n′ ≥ n). For each n′ and n = 0, statement (38) is equivalent to ‖�‖ = 1
for n = 0 and

〈

� ′+,�
〉 = 0 for n′ > 0. The latter follows from eq. (39) and the spectral

support argument of Proposition 3 (v).
Assuming now that (38) holds for n − 1 particles, one can show by means of

Corollary 10 and Corollary 15 that, up to terms vanishing for |τ | → ∞, (39) equals

n′
∑

k=1

〈

�,B∗
nτ . . .B∗

2τB′
1τ . . .B′

k−1 τB′
k+1 τ . . .B′

n′τ E�B∗
1τB′

kτ�
〉

τ→∞−→
n′
∑

k=1

((

δn−1,n′−1

∑

π∈Sn−1(1,k)

n
∏

l=2

〈

�
(1)
l , � ′(1)

π(l)

〉 )

·
〈

�
(1)
1 , �

′(1)
k

〉 )

,

where Sn−1(1, k) denotes the set of bijective maps π between the two sets of
numbers [n] \ {1} and [n] \ {k} and convergence is inferred from the induction
assumption. Note that while Sn−1(1, k) is by itself not a group (its elements are maps
between different sets and thus cannot be composed), it can nevertheless be identified
with the subset of π ∈ Sn for which π(1) = k. This implies that

lim
τ→∞
〈

�τ ,�
′
τ

〉 = δnn′
n
∑

k=1

∑

π∈Sn
π(1)=k

n
∏

l=1

〈

�
(1)
l , � ′(1)

π(l)

〉

= δnn′
∑

π∈Sn

n
∏

l=1

〈

�
(1)
l , � ′(1)

π(l)

〉

.

��

9. Conclusions and Outlook

Wehave established the existence andFock structure of scattering states corresponding to
single-particle states �1 ∈ E(Hm)H with finite Reeh–Schlieder degree. This requires
the existence of a family of local operators (Aβ)β>0 ⊂ A(O) such that

∥
∥Aβ� − �1

∥
∥ ≤ β,

∥
∥Aβ

∥
∥ ≤ β−γ . (RS)

Beyond (RS) our method has no further dependence on the concrete mechanism (e.g.
additional ergodic averaging as in [Dy05]) yielding a limit of Aβ� in the single-particle
space. We have seen that the Haag–Ruelle construction can be adapted, so that any finite
degree γ is feasible. Thus an arbitrarily strong polynomial growth of

∥
∥Aβ

∥
∥ relative to

the convergence of Aβ� to the single-particle vector �1 can be handled.
As mentioned in the introduction, Assumption (RS) is readily verified in free field

theory (cf. also Appendix C). Its status in concrete interacting models or within the
general axiomatic framework is beyond the scope of the present work and poses an
interesting problem for future research. We will briefly summarize our current under-
standing regarding the validity of conditions of strengthened Reeh–Schlieder type and
also give some additional supporting arguments for our approach to the construction
of scattering states. We shall refrain from going into technical details, as we intend to
provide them elsewhere.
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(a) Quantitative improvements in the construction of scattering states regarding the
strength of condition (RS) are possible. Most notably in theories with lower mass
gap one can show that already (Aβ)β>0 ⊂ A(O),

∥
∥E(�)(Aβ� − �1)

∥
∥ ≤ C�β, ln

∥
∥Aβ

∥
∥ ≤ β−γ , (RS�)

is sufficient for establishing scattering theory. Here � ⊂ R
4 is an arbitrary compact

set, and C� > 0 does not depend on β. Intuitively, the stronger norm increase in
(RS�) may be compensated by the exponential space-like clustering in these models.

(b) It was already pointed out that previous constructions of scattering states of em-
bedded (massive) particles commonly need to assume additional regularity of the
spectralmeasure near the particlemasses.Herewe briefly comment on the relation of
such regularity assumptions to conditions of Reeh–Schlieder type. For spectral reg-
ularity according to Herbst, one requires that there exist local operators A ∈ A(O)

such that in addition to a nonvanishing single-particle component Em A�, one has
for a suitable ε > 0 and all small enough δ > 0, [Hrb71,Dy05]18

∥
∥E(H δ

m \ Hm)A�
∥
∥ ≤ Cδε, where H δ

m :=
⋃

|μ−m|<δ

Hμ, (H)

and that the set of single particle vectors obtained from such operators is dense in
the single particle space EmH .
Starting from an operator A ∈ A(O) as in (H), one can show by a very crude but
general construction using differential operators that there exists a dense set of single
particle states �1 ∈ EmH , which are generated by operators satisfying (RS�), with
γ > 0 inversely proportional to the Herbst constant ε from (H). Here we do not
even need to invoke the Reeh–Schlieder property—one may make use of the non-
local nature of the energy-projection E(�) in condition (RS�) to generate single-
particle states (even if� is larger than a subset of the mass hyperboloid). Improving
upon this result appears to require a more detailed quantitative understanding of
the non-local correlations implied by the Reeh–Schlieder theorem, which may be
model-dependent—cf. also Appendix C.

(c) We restricted our analysis to uniformly localized Reeh–Schlieder families solely for
technical convenience. The present method may be refined to admit families Aβ ∈
A(CRβ ) similarly as in (RS), but localized in double cones CRβ of polynomially
growing radii Rβ := β−N (for some N > 0).
A similar delocalization commonly enters in previous approaches via ergodic aver-
aging prescriptions [Hrb71,Dy05,Hrd13,DH14]. Due to the geometrical limitations
discussed in Sect. 4, this delocalization appears to necessitate Herbst-type spectral
conditions [Hrb71] in these works. Allowing a weakened localization Aβ ∈ A(CRβ )

might help to understand the relation of such spectral conditions to the Reeh–
Schlieder condition (RS).

A more concrete investigation of (RS) can be carried out using the concept of
polarization-free generators [BBS01]. In this setting, we can derive a wedge-local vari-
ant of the Reeh–Schlieder condition from the domain condition � ∈ D(T 1+ε) for
some ε > 0, where T ≥ 0 denotes the self-adjoint part of the polar decomposition
of a suitable polarization-free generator G = U T . With this input we can proceed
as in free field theory and set Aβ := U T e−βT ε

to obtain wedge-local Reeh–Schlieder

18 Weakened variants of (H) have also been discussed recently, see e.g. [Hrd13,DH14].
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families of degree γ = ε−1. If a correponding variant of Theorem11 holds for oppositely
localized pairs of such wedge-local operators, as it is the case in purely massive theories
[Fre85], our results may be extended to yield a construction of two-particle scattering
states for embedded Wigner particles.

In this setting, it is problematic to imitate the Haag–Ruelle construction by directly
smearing polarization-free generators G due to the complicated structure of the
domains D(G). It has been shown that even ostensibly weak temperateness assumptions
with respect to the action of space-time translations on D(G) imply triviality of scat-
tering in massive theories on Minkowski space with spatial dimension s > 1 [BBS01].
Therefore it is a subtle question whether the above domain condition is compatible with
non-trivial scattering.19

Acknowledgements. I am indebted to Klaus Fredenhagen for the suggestion to accelerate the convergence in
the single-particle problem via the Reeh-Schlieder property. Similarly I would like to thankWojciech Dybalski
for encouragement and numerous insightful advice extended during the course of this work. Further I profited
from helpful discussions with Sabina Alazzawi, Detlev Buchholz, Maximilian Butz, Daniela Cadamuro, and
Yoh Tanimoto. Financial support from the Emmy Noether Programme of the DFG (grant DY107/2-1) is
gratefully acknowledged.

A. Notation and Conventions

For the Minkowski space-time metric we use the convention k · x := k0x0 − k · x for
k, x ∈ R

4. Accordingly, the Fourier transform of a Schwartz functions f ∈ S (R4) is
defined by

f̂ (k) := 1

(2π)2

∫

d4x eik·x f (x). (40)

The wave-packet f̃ of a regular Klein–Gordon solution f (as defined in Section 3), is
related to a corresponding partial (spatial) inverse transform of ft (x) := f (t, x) at t = 0
by a factor (2π)3/2.
The Fourier transform on the extended space x = (x, s) and space-time x = (x0, x, s)
(see Appendix C) is defined for f ∈ S (R5) and f ∈ S (R4) by

f̂ (ω, k, μ) := 1

(2π)5/2

∫

d5x eiωx0−ik·x−iμs f (x0, x, s),

f̂(k, μ) := 1

(2π)2

∫

d4x e−ik·x−iμs f(x, s).

For x = (t, x) ∈ R
4 we write A(x) := αx (A) := U (x)AU (x)∗ and similarly for αt (A)

and αx(A). By weak integration, these automorphisms of the global algebra induce for
given A ∈ A (regular) operator-valued distributions

A( f ) :=
∫

d4x f (x)αx (A), f ∈ S (R4)

and similar distributions A(g) are obtained for spatial smearing with g ∈ S (R3).

19 Preliminary computations suggest that � ∈ D(T 1+ε) could be fulfilled in certain 1+1-dimensional inte-
grable models with non-temperate polarization free generators G [CT15] [Yoh Tanimoto, private communi-
cations]. A definite assessment requires the construction of a Borchers triple for these models, which has not
yet been completed at the time of writing of this work.
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B. Uniformly Almost-Local Operator Families

An operator A ∈ A is almost-local if there exists for any r > 0 a double-cone localized
operator Ar ∈ A(Cr ), such that for each N ∈ N with a suitable constant CN we have

‖A − Ar‖ ≤ CN

(1 + r)N
. (41)

For certain families (Aβ) ⊂ A of almost-local operators, the behaviour of corresponding
constants CN ,β in (41) with respect to the parameter β > 0 can be quantified in a simple
manner.

Proposition 22. Let Aβ ∈ A(O) (β > 0) be an operator family localized in a fixed
bounded region O ⊂ R

3 and let χ ∈ S (R4). Then the family of almost-local operators
Bβ := Aβ(χ) is uniformly almost-local relative to

∥
∥Aβ

∥
∥ in the following sense: for

each β > 0 there are Bβ,r ∈ A(Cr ) (r > 0), such that for all N ∈ N

∃CN > 0 ∀β > 0 : ∥∥Bβ − Bβ,r
∥
∥ ≤ CN

∥
∥Aβ

∥
∥

1 + r N
. (42)

Notably, the constants CN are uniform in β. This also implies
∫

d3x
∥
∥
∥

[

Bβ, B∗
β(x)
]∥
∥
∥ ≤ Cχ,O

∥
∥Aβ

∥
∥2 . (43)

Proof. Let us assume for concreteness that Aβ ∈ A(CR)with the double-cone radius R >

0 fixed. As χ ∈ S (R4), we obtain natural candidates for approximating local operators

Bβ,r :=
∫

|x |c<r−R

d4x χ(x)Aβ(x) ∈ A(Cr )

(for r ≤ R we simply set Bβ,r = 0). By the rapid decay of χ , we get for r > 2R,

∥
∥Bβ − Bβ,r

∥
∥ ≤ ∥∥Aβ

∥
∥ ·
∫

|x |c≥r−R

d4x |χ(x)| ≤ CN
∥
∥Aβ

∥
∥

1 + (r − R)N
≤ C ′

N ,R

∥
∥Aβ

∥
∥

1 + r N
.

Together with the trivial estimate
∥
∥Bβ

∥
∥ ≤ ∥∥Aβ

∥
∥ ‖χ‖1 for r ≤ 2R, this implies (42).

To obtain (43) we use an |x|-dependent local approximation Bβ,r under the integral:
choosing r = r(x) := |x| /2 the commutator [Bβ,r(x), B∗

β,r(x)(x)]will vanish by locality
and thereby we have reduced the integrand to terms proportional to the approximation
error. More explicitly we rewrite the left-hand side as

∫

d3x
∥
∥
∥

[

(Bβ − Bβ,r(x)) + Bβ,r(x), (B∗
β(x) − B∗

β,r(x)(x)) + B∗
β,r(x)(x)

]∥
∥
∥ .

After expanding the commutator (preserving the two differences in brackets) and uti-
lizing subadditivity, ‖[Bβ,r(x), B∗

β,r(x)(x)]‖ vanishes for all x by construction (due to
locality). All remaining terms will contain at least one difference Bβ − Bβ,r(x) or its
translate. Using (42) we can now directly estimate the integral,

∥
∥
∥

[

Bβ − Bβ,r(x), B∗
β,r(x)(x)

]∥
∥
∥ ≤ 2

∥
∥Bβ − Bβ,r(x)

∥
∥

∥
∥
∥B∗

β,r(x)(x)

∥
∥
∥ ≤ 2CN

∥
∥Aβ

∥
∥
2

1 + r N
.

Taking N sufficiently large we obtain convergence of the integral and (43). ��
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C. Reeh–Schlieder Families in Generalized Free Models

Let us briefly discuss the status of condition (RS) for noninteracting theories with em-
bedded mass shell. Generalized free theories have proven useful to study Herbst-type
spectral conditions (H) ([Dy05], Sec. 4, see also [Hor90, Ch. 3.3, esp. p. 264 ff.] for a
general review), and we think that the following considerations might also give some
hints concerning strengthened Reeh–Schlieder properties in interacting theories.20 The
generalized free field φ( f ), f ∈ S (R4), may be interpreted as a certain superposition
of ordinary free fields φμ( f ) of mass μ ≥ 0 with weight measure dρ(μ) describing the
mass spectrum of the theory. For our purposes, ρ should consist of a delta measure at
the desired particle mass m ≥ 0 and some continuous background spectrum. We will
take

ρ := δm + ρcont, ρcont(�) :=
∫

�∩[0,m+1]
dμ

1

|μ − m|1−ε
+ αλ(�), (44)

for Borel sets � ⊂ [0,∞), where λ denotes Lebesgue measure. The parameter ε > 0
controls the regularity in the vicinity of the particle mass, i.e. regarding the Herbst
condition (H). Additionally, the support properties of ρ, governed by α ∈ {0, 1}, are of
(perhaps unexpected) relevance for the Reeh–Schlieder problem.
On the bosonic Fock space Fρ := �(H1,ρ) over the single-particle space H1,ρ :=
L2(R3) ⊗ L2([0,∞), dρ) we obtain a Wightman field in terms of the Segal operators
�S(ψ) := (a∗(ψ) + a(ψ))/

√
2, ψ ∈ H1,ρ , for real-valued test functions f ∈ SR(R4)

by

φ( f ) = �S(ω
−1/2 f̂+), (45)

where the argument contains the restriction f̂+(p, μ) := f̂ (ωμ(p), p), ωμ(p) :=
√

p2 + μ2, and ω denotes the corresponding (unbounded) multiplication operator on
H1,ρ . The representation of translation group is generated by the second quantization
of the multiplication operators (ω, p), and setting W ( f ) := eiφ( f ), we obtain a corre-
sponding Haag–Kastler net for bounded open regions O ⊂ R

4 by

A(O) := {W ( f ) : f ∈ SR(R4), supp f ⊂ O}′′. (46)

It will be convenient to adopt Landau’s formulation [Lan74], as it gives a simple rein-
terpretation of A(O) in terms of time-zero fields. For Schwartz test functions f (x),

x = (x0, x, s), from here on assumed to be symmetric in s, where s may be interpreted as
new auxiliary space-like21 variable conjugate to the massμ, set φ( f ) := �S(ω

−1/2 f̂
+
),

f̂
+
(p, μ) := f̂ (ωμ(p), p, μ). Analogously to (46), we obtain an extended net A(O)

on R
5.

It is easily seen that extended field φ( f ) and its time derivative φ
t
( f ) := −φ(∂t f ) admit

well-defined restrictions to time-zero fields

φ
0
(f) = �S(ω−1/2 f̂), π0(f) = �S(iω

1/2 f̂) (47)

20 Due to vacuum polarization φ( f )� cannot have sharp mass for interacting theories, i.e. there is some
spectral background E⊥

m φ( f )� = 0. Generalized free fields simulate this in a simplistic way via (44).
21 However the field φ( f ) should not be expected to be local in the direction of s.
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for test functions f ∈ S (R4,R) defined on the extended (x, s)-space. In terms of
corresponding extended double cones C R := {(t, x, s) ∈ R

3+2 : |t | + √
x2 + s2 < R},

(R > 0), Landau gave the following characterization of the net (46).

Theorem 23. [Lan74]. A(CR) = A(C R). Furthermore, these algebras are generated
by bounded functions of the time-zero fields (47) with test functions f ∈ S (R4,R)

supported in the ball BR = C R

∣
∣
t=0.

Proposition 24. [Lan74]. If the defining measure ρ of the generalized free field is expo-
nentially decreasing, then A(CR) = A(CR × R).

For choosing α = 0 in (44), we may conclude that the strengthened Reeh–Schlieder
property holds for the net A: take a family of test functions fβ ∈ C∞

c (R4), such that
{0} × supp fβ ⊂ O×R and with Fourier transforms converging sufficiently rapidly to a
smooth limit supported on the sharp-mass subset R3 × {m}. By Proposition 24 we can
make such a choice which is compatible with bounded functions of φβ := φ

0
(fβ), such

as Aβ := φβe−β|φβ |N
, being contained in the local algebra A(O), thus confirming the

validity of (RS). Regarding (RS) we may summarize:

Proposition 25. For generalized free field models defined by (44)with α = 0, there exists
a dense set of sharp-mass single-particle states generated by Reeh–Schlieder families
of arbitrarily small degree γ > 0 independently of the choice of ε in (44).

A fortiori, a continuity argument then shows that the sharp-mass free field net Am(O)

is a subnet of A(O). To obtain a non-trivial example we should thus choose α = 1. We
conclude with a short consideration of this difficult case, for which the assumptions of
Proposition 24 are violated.
Given a bounded double-cone region CR and a single-particle vector �1 ∈ H1,ρ (say
�1 = φ

0
(f)�, with f ∈ S (R4) supported in a very large region) we would like to find

a family of smeared field operators φβ localized in CR , such that
∥
∥φβ� − �1

∥
∥ ≤ β.

For this purpose it will be convenient to introduce the following closed single-particle
subspaces (f ∈ S (R4)) in the setting of Theorem 23,

Hφ
0
,BR := {φ0(f)�, supp f ⊂ BR}, Hπ0,BR := {π0(f)�, supp f ⊂ BR}. (48)

The orthogonal projections Pφ , Pπ corresponding to (48) may be used to iteratively
define approximations of �1 by vectors from (48) or equivalently, generated by CR-
localized operators. Underlining error terms after each half-step we begin with

�1 = Pφ�1 + (1 − Pφ)�1 = Pφ�1 + Pπ P⊥
φ �1 + P⊥

π P⊥
φ �1 = · · ·

Similarly, after N iterations the remaining error is given by ‖(P⊥
π P⊥

φ )N �1‖. By the

von Neumann alternating projection theorem [vN50, Thm. 13.7], (P⊥
π P⊥

φ )N in fact

converges strongly to the orthogonal projection onto the intersectionH ⊥
φ
0
,BR

∩H ⊥
π0,BR

=
(Hφ

0
,BR + Hπ0,BR )⊥. The latter is trivial by the Reeh–Schlieder theorem, implying

convergence of our iterative procedure. An upper bound on the degree of sharp-mass
Reeh–Schlieder families along the lines of (RS) or (RS�) may be inferred from the
speed of convergence ‖(P⊥

π P⊥
φ )N �1‖ → 0, �1 ∈ EmH1,ρ or equivalent geometrical

information regarding the situation of �1 in relation to the spaces (48). This is presently
still under investigation.
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