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Abstract—One of the primary challenges for a successful
Highly Assisted and/or Autonomous Vehicle is its localization.
To improve the precision of location of the vehicle, not only
the internal sensors are being used, but also using data from
external sensors is attracting increasing attention from the re-
search community. One such proposed sensor is an infrastructure
RADAR which can be used to improve the localization of the ego-
vehicle. Although a RADAR indeed is a supplementary source
of information, it suffers a unique type of clutter which have
trajectories like real objects and can therefore result in “ghost
measurements”, i.e., measurements which do not correspond to
any real vehicles. This deteriorates the quality of the fused state
estimates. This paper proposes a robust method to fuse the
RADAR readings in presence of such outliers. This methodology
builds upon a previously proposed solution where the problem
was formulated as a factor graph. The RADAR measurements
were added as a novel constraint of sum of inter-vehicle distance,
called Topology Factor. Our previous work assumed clutter
free environment. This paper proposes a novel robust Topology
Factor which is also resilient against above mentioned outliers.
Simulations (based on real data) show promising results in the
direction of lowering the degradation of fused state estimates in
presence of such clutter.

I. INTRODUCTION

The ability to communicate in real time using technologies
like 5G [1] accompanied with increasing deployment of sen-
sors in the environment has enabled cooperative localization
to become a viable solution for Highly Automated and fully
Autonomous vehicles.

Cooperative localization is not a new concept. One of the
earliest work of Kurazume et. al. [2] showed the potential
and power of the concept in the domain of Autonomous
Robots. Since then researchers have proposed many innovative
solution using various Data Fusion algorithms and technolo-
gies. Various solutions use Kalman Filter (or its non-linear
extensions like Extended Kalman Filter or Unscented Kalman
Filter) [3], [4] to track the cooperative state variables and the
corresponding covariances. Howard et. el. [5] uses Maximum
Likelihood Estimation (MLE) to achieve the cooperative lo-
calization by combining relative measurements between robots
in a least square formulation. This formulation is solved for
the fused state estimates of the robots. Ahmad et. el. [6] does
the same but also includes moving landmarks. Various other
novel works include, but not limited to, Markov Localization
[7], split covariance intersection filter [8], random finite set
framework [9], Symmetric Measurement Equation Filter [10]
and non-parametric Belief Propagation [11].

Graph-based methods have also been used to formulate and
solve the problem of cooperative localization. GTSAM [12]
and g?o [13] are two such graph-based frameworks which
facilitate the state estimation for robots. Our previous work
[14] used the GTSAM framework to propose an innovative
solution of Topology Factor formulated from the external radar
measurements to perform cooperative localization. In addition
other challenges, namely bandwidth limitations; data associ-
ation uncertainties; unknown coordinate transformations; and
scalability are also simultaneously addressed. [15] proposes
the use of Symmetric Measurement Equation Factors to per-
form the cooperative localization.

Although most of the clutter handling is achieved at hard-
ware in radar [16], some can still be present as measurements.
Tracking Algorithms are able to handle it fairly well. Random
Finite Set Statistics filters like GMPHD [17] and GLMB [18]
drop measurements which do not meet a certain frequency
threshold. Multiple-Hypothesis Tracker constructs multiple
possible trees and prunes them regularly to eliminate false
positives [19]. Data Association algorithms like Probability
Data Association (PDA) Filter and Joint Probability Data
Association (JPDA) Algorithm are able to partially avoid
clutter measurements which are outside the defined Gate [20].

Graph-based methods mostly rely on the front end or any
other association algorithm to handle the outliers. Our previous
solution [21] used PDA Filter along side the Topology Factor
solution to tackle the challenge of clutter measurements. The
solution tracked the resulting Topology Measurements and
applied PDA Filter to reject any measurements which did
not meet the threshold and the remaining were assigned a
probability. These probabilities were used as weights for the
Topology Factors by the optimizer. In terms of Factor Graphs
(for an overview of Factor Graphs, the reader can refer the
Section IV), the proposed solution can be formulated as:
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where f7 is the Topology Factor between the states X,
Vi = 1---n, h is the Topology function, z] is the j'
Topology Measurement constructed from radar, J is the mini-
mization function, and j3; is the probability for 4t Topology
measurement obtained using PDA Filter.

On the other hand, Siinderhauf et al. [22] developed the
solution of Switchable Constraints to strengthen the pose graph
based solution specifically against false loop closures. They

demonstrated their solution using GTSAM and g”o. They do
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not use any data association algorithm in parallel to SLAM,
but let the optimizer reject any false loop closures.
Therefore, the challenges are two-fold:

e Solve the problem of clutter using only the optimizer and
remain independent of any other methods.

o Previous work [21] demonstrated the results using 2
vehicles simulation. The PDA Filter uses a Kalman Filter
and tracks the Topology Measurements, this implies we
require a Model for the Topology Measurements. For
2 vehicles we assumed a Linear Model, but for multi-
vehicle scenario this assumption is highly inaccurate and
unlikely. Such model even if it exists, is mathematically
complex to arrive at. Hence the problem of multi-vehicle
scenario remains unaddressed.

This work presents a new robust Topology Factor addressing
the above two criterion. The simulation is run for more than
two vehicles and its effectiveness is analysed using Root Mean
Square Error (RMSE). The results demonstrate the feasibility
of the proposed solution to keep the error in check. The
simulation data is based on analysis of real radar data observed
on a highway. We also compare its performance against the
solution of Switchable Constraints used for Topology Factor.

The rest of the paper is structured as follows: Sec. II
briefly describes the assumptions and complete scenario for
cooperative localization. Sec. III and IV present an overview
of radar and Factor Graphs respectively. Sec. V and VI present
the proposed solution and simulation results. Finally, Sec. VII
concludes the paper.

II. PROBLEM DESCRIPTION

For sake of completeness, we describe a simple cooperative
localization scenario in presence of clutter. The basic problem
definition remains same as in [21] and can be seen in the
Fig. 1. Dotted blue lines represent the radar coordinate system.
The radar measurements are represented with stars. One extra
black star represents the clutter measurement.

The assumptions are as follows:

1) Vehicles have Odometer sensors to measure the relative
distance travelled in unit time.

2) Vehicles have GPS sensors to measure their position in
an absolute reference of a 2D global coordinate system.

3) The infrastructure radar sensor measures positions of
the vehicles in its own local 2D coordinate system. Its
configuration information is not available, such that its
location and orientation is unknown.

4) The vehicles and the radar Sensor can communicate in
either direction to exchange data. There is no timing
delay or data error in communication.

5) No mechanism is available, including communication
mechanism and/or the protocol to identify individual ve-
hicles. This introduces a challenge from the perspective
of data association.

6) The radar detects clutter and can also have miss detec-
tions.

Local Coordinates

Vehicle 1 {

‘/
w0/
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Global Coordinates

Fig. 1. Topology for vehicle infrastructure cooperative localization. Dashed
Axis in blue represent the coordinate system of the radar. Stars represent the
radar measurements. The black star is a clutter measurement.

Then the task of cooperative localization is to lower the error
in position estimation in presence of clutter measurements by
fusing the measurements from all the sensors.

III. CLUTTER FROM INFRASTRUCTURE RADAR

This section gives a quick overview of the functioning of an
Infrastructure radar. This helps in better understanding the kind
of clutter which can be observed on a scenario like that of a
highway. For detailed functioning of a radar, reader is advised
to consult references like Radar Handbook by Skolnik [16]
and online references like [23].

A typical radar deployed in a traffic scenario to oversee
4 — 8 lanes is a Moving Target Indicator (MTI) Radar. Like
the name suggests, the aim for an MTI Radar is to detect a
moving target and reject the measurements from fixed or slow-
moving unwanted targets like buildings, trees or rain. These
radar types fall under Frequency-Modulated Continuous-Wave
Radar (FMCW Radar). These are special kind of sensors
which radiate continuous transmission power with change in
the frequency. That is, the transmission signal is modulated in
frequency. This increase or decrease of the frequency of the
sent signal is measured against the change of frequency in the
received signal. This helps in measuring the distance of the
moving object and the relative velocity simultaneously.

The state-of-the-art MTI Radars use real time sophisticated
circuits and physics principles to operate. Therefore, they also
have hardware based filters to remove lots of clutter from the
scenarios. Details of such filters can be found in [16]. This
is also a topic of active reserach in radar domain. Despite all
the advancements, sometimes high winds, rain and reflections
result in detections which could not be filtered at hardware
and appear as clutter measurements which do not belong to
any real target. This can induce errors in the state estimation.
All these clutter measurements which escaped the signal-level



Fig. 2. Measurements detected by the radar (plotted as cubes) when mapped on the Camera plane highlight the clutter points. The radar could not filter all
the possible clutter measurements. In Fig. (a) the clutter point is marked with a circle. Its progression can be seen through all the subsequent pictures (b-f)
where it is also encircled.

sensor filtration process have to be addressed in the high-
level fusion process. Therefore, we consider a specific situation
(infrastructure radar on a highway) which allows us to make
use of higher-level information to get rid of clutter that usual
methods cannot deal with.

To understand real clutter phenomenon we analysed the
actual radar data which was collected as part of the Providentia
Project [24] on German A9 Highway. Figure 2 highlights one
set of such data measurements of the radar plotted as cubes
on the Camera data. In the Fig. 2(a)-2(f) the clutter point is
highlighted with a black circle.

The contribution of this paper is to propose a solution for
above kind of realistic clutter scenarios for improved state
estimation.

IV. FACTOR GRAPHS

A. Factor Graphs

Definition: A factor graph is a bipartite graph G, =
(Fky Vi, &) with two types of nodes: factor nodes f; € Fy
and variable nodes v; € V. Edges e;; € Ej can exist only

between factor nodes and variable nodes, and are present if
and only if the factor f; involves a variable v; [25].

Factor Graphs can represent Probabilistic Graphical Models
(PGM) and can also be used to implement Bayesian networks
[26] and Markov Random Fields [27].

We can use the factorized probability distribution to rep-
resent the entire trajectories of all the participating vehicles
as an optimization problem. For a control input U = {u;|i €
0,...,n}, the localization problem can then be expressed as
estimating the trajectory X = {z;|i € 0,...,n}, where x;
represents the position in any dimensional coordinates.

P(X,U) x P(x) H P(&i41|m, us)

For any additional sensor measurements, for example from
S = {s;li €0,...,m}, the joint density becomes:

P(X,8,U) o< P(xo) [ [ P(wigalai,ui) [[ Psklzin) (1)
i k

where sj is the measurement from the sensor s at position
z;;. The concept can be extended to any number of sensors.



Assuming all the distributions as Gaussian, we can convert
equation (1) into a least squares formulation as follows:

1 €T
P(wigalzi i) oc exp(— |If(@i, wi) = 27|1%,)

where x;41 = f(z;,u;) + w, {f denotes the Odometer function
which connects the current position with the previous, w is
the unknown Gaussian sensor noise, z; is the actual Odometer
measurement, and Y, is the covariance matrix. For any sensor
s, the formulation can be written as:

il

1
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where s, = h(z;x) + v, h denotes the sensor function to map
the current position to the sensor value, v is the unknown
Gaussian sensor noise, zj, is the actual sensor measurement
with covariance matrices .

In this paper, we calculate the maximum likelihood estima-
tion (MLE), X, by using the non-linear least square method:

X = argmax P(X|S,U) =
T

n m
arg min { > i, ui) = 27115, + > |h(in) — m%}

r i=1 k=1
B. Topology Factor

To perform cooperative localization we had proposed a
novel Topology Factor in [14]. Here we give only a brief
overview. Topology Factor is formulated using the radar
measurements and consists of sum of inter-vehicle distance.
The sum of inter-vehicle distance can be written as:

dist®> = Nz_:l i (7 — 2")?
i T

i=1 j=i+1

where z! represents the radar measurement for the i** target.
The corresponding topology formulation can be written as:

P(tel(z1x) - (wnk)) o

2
exp(— 3 (@) -+ ane) — 24l18)
where t;, = d((x1x) -+ (xnk)) — 7%, d denotes the topology
function which maps the sensor measurement to the current
position, 7y is the corresponding Gaussian noise and zj, is
the topology measurement calculated from the actual radar
measurements with covariance matrices ;.

The Topology measurement is a pseudo measurement, there-
fore we also need to calculate the covariance, X, for it. If aii
is the x; variances for the radar, then we have (see [28] for
more details) Cov(z) = diag[o2 ,---,02 ]. Then we obtain
the covariance for the topology estimate as:

o M - Cov(z) - M” 3)

top =

where M is a 1 x n matrix as follows:

M= [52:(d), 52 (d)] )

C. Smoothing

The formulated factor graph is solved using the Levenberg
Marquardt Optimizer. Using an initial estimate x it iteratively
finds an update A from the linearized system:

argmin{J (zo)A — b(xo)} (5)
A

where J(xg) is the sparse Jacobian Matrix at the current
linearization point z¢ and b(zg) = f(xo)— 2 is the residual for
given the measurement z. After solving (5), the linearization
point is updated to the new estimate o + A. Further detail on
this process is presented within [29].

V. SOLUTION

The Topology Factor requires the coordinates of the targets
detected by the radar. The factor performs optimal when the
radar detects the same number of targets as the number of pair
of Odometer/GPS measurements received from the vehicles.
However, in presence of clutter as seen in Section III, radar
will result in more measurements than the targets, but the
fusion system will still receive same number of Odometer/GPS
pair of measurements. This results in more Topology Factors
between the states which influence the final state estimation.

For example, for 2 vehicles, an extra clutter measurement
means a total of 3 Topology Factors (°Cy = 3). That is,
2 of the 3 factors contribute false information for the state
estimation. The problem becomes worse for higher number of
targets or higher number of clutter measurements. For example
for 1 clutter measurement for 4 targets results in 5 factors, 4
of which (80%) are based on the clutter measurement. And 2
clutter measurements for 2 targets, gives 6 Topology Factors,
of which 5 are false.

Stinderhauf et al. [22] proposed the solution of Switchable
Constraints. This added a latent variable which “switches oft”
the factors that contribute higher errors to the final state esti-
mation. A possible solution would be to apply the Switchable
Constraints for the Topology Factors, i.e. introduce one switch
variable per Topology Factor. The Topology Factors contribut-
ing higher error to the final state estimates would be switched
off, i.e. the ones from the clutter measurements. Applying
Switchable Constraints from [22] on Topology Factor from
equation (2) results in :

P(tx](VXp), Skj) o

1 (6)
exp(— 5|1 (Sk;) - (dr(VX0) = 21113,

where W is the switch function, Sj; is the switch variable
for the j** factor. N is the number of radar measurements
(including clutter) and (VX,,) is the set of n measurements
where n is the number of Odometer/GPS pairs received of xy,
assuming N > n.

On the other hand, we know, among all the possible
Topology Factors, only one of them is based on the true radar
measurement. Therefore, only that should result in the least
error. Hence, instead of the Topology Factor controlled by a



switch variable, we propose a Minimization Topology Factor
as follows:

P(t|(VXn)) o

2
)
)

max
=

exp(— [minl} (@ %) ~ 541

where min is the minimization factor which returns the
minimum error from all the possible “sub-factors” from the
set of measurements in (VX,,).

Important point which needs to noted here is that for this
Minimization Factor we require covariance which is maxi-
mum, i.e. 3;***. It is shown in the equations (3) and (4), each
factor requires its own derived covariance. The Minimization
Topology Factor constitutes of sub-factors therefore it requires
a covariance which covers all of the sub-factors. Therefore we
choose the biggest covariance from all possible covariances
and use that as the covariance for the Minimization Factor.

Therefore 2, for Topology Factor can be written as:

o2 .. =max(M- Cov(z) M), V(z) c (VX,) (8)

max

where M is a 1 X n matrix as defined in equation (4).

The solution can be understood from the Fig. 3 representing
states of two vehicles. Figure 3(a) represents the ideal scenario
of no clutter, hence we have only one Topology Factor. Figure
3(b) represents the scenario with one clutter measurement,
hence we have three possible Topology Factors. The square
in black represents the one generated from the measurement
from true targets. Figure 3(c) represents when Switchable
Constraints are implemented for the Topology Factor. Finally,
Fig. 3(d) represents the case proposed in this paper. The
Minimization Topology Factor contains sub-factors for all the
possible combinations (here 3). And only the one which results
in the least error is chosen.

VI. EVALUATION
A. System Setup

The proposed solution is evaluated on a simulated data
set which is based on real radar observations on German
A9 Highway. The simulation is implemented with up to four
vehicles on a highway for 200 steps. To implement the factor
graphs and the corresponding factors we use the Georgia Tech
Smoothing and Mapping (GTSAM) open source library [12].

Simulated vehicles have Odometer sensors to measure their
relative movement per unit time. They are also equipped with
GPS Sensor to provide the location in global coordinates. A
radar sensor is assumed to be located outside the simulated
vehicles, and provides location of the observed vehicles within
its local coordinate system. No configuration information for
the radar is available and hence the transformation between
the two coordinate systems, internal to vehicle and external
radar, is unknown.

All the sensors are assumed to have zero mean Gaussian
noise. The covariances are assumed as diag[1.0,1.0]m and
diag[10.0,10.0] m for the Odometer and the GPS respectively.

(a) (b)
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Fig. 3. State of two vehicles and the Topology Factor. Filled square
represents the Topology Factor constructed with radar measurements. Circle
with X . represents the ztP state estimation of yt" target. Circle with S;
represent the Switch Variable for the it Topology Factor. (a) The ideal
case of no clutter, there exists only one Topology Factor for two targets.
(b) The radar gives three measurements with one of them being a clutter,
hence there are three possible Topology Factors. The black box represents
the Topology Factor from true target measurements. (c) Possible solution
using Switch Variables for Topology Factor for the scenario depiction in
3(b) (d) Minimization Topology Factor which has three “sub-factors” and
uses the one which results in least error for 3(b).
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Fig. 4. Ground Truth and upto 3 simultaneous clutter measurements for 4
vehicles on a highway.

We assume the step interval 7" to be 1. The radar has one valid
reading for the true target with covariance diag[0.1,0.1]m.

As already mentioned in Section III, MTI Radars are used
in Infrastructure and are capable of filtering the static clutter
using hardware filters. The big risk of clutter comes from
“Ghost Objects” which result from motion originating from
phenomena like high winds, rain or reflections. From our
observations of the recorded data, we notice the clutter is most
likely seen moving parallel to the vehicle. Therefore, clutter
measurements are simulated which move parallel to the vehicle
movement.

A sample of Ground Truth and corresponding clutter mea-
surements of upto 3 simultaneous clutter measurements for
4 vehicles on a highway is shown in Fig. 4. By “upto 3 si-



multaneous clutter measurement”, we mean that the simulator
randomly generates the clutter measurements, therefore it can
be only 1 or 2 or 3 measurements.

Various characteristics for the simulated clutter are defined
rigorously. The clutter can appear along any randomly chosen
vehicle (any of the 4 simulated vehicles). The length of the
clutter trajectory is also random with 5 to 10 time steps. The
clutter can occur on any side of the simulated vehicle. The
clutter measurements are divided into sets of 1 to 5. Therefore,
there are at least 5 clutter measurements in one simulation.
The maximum number of simultaneous clutter measurements
at any given time step is 3. So theoretically, the maximum
number of clutter points in the system is 3 x 5 x 10 = 150.

The simulation also makes sure that clutter measurements
should not jump around or across the simulated vehicles
at every time step. In addition, after one set of clutter is
generated, the system waits for at least 30 time steps before a
new set may be randomly generated. We randomize the various
properties of the clutter measurements in order to get a realistic
simulation of the system.

The performance is measured by calculating the RMSE
value for the complete system. The total error is the sum of
the RMSE of each vehicle for n steps:

1 n
E st Gr dTruth
E (xzeb — § roundTru )2

i=1

RMSE =

We perform the simulation, and compare and contrast our
results five ways. Various cases for the comparison are:

1) the fused trajectory only using Odometer and GPS
measurements.

2) the fused trajectory for Odometer, GPS measurements
and Topology Factor for each state (assuming no clutter).

3) the fused trajectory for Odometer, GPS measurements
and multiple Topology Factors for each state (assuming
clutter). This implies we incorporate all the Topology
Factors resulting from radar.

4) the fused trajectory for Odometer, GPS measurements
and multiple Topology Factors for each state (assuming
clutter) with Switchable Constraints. The switch vari-
ables control the contribution of each of the Topology
Factor. We use the linear version of the switch variable.

5) the fused trajectory for Odometer, GPS measurements
and Minimization Topology Factor with all possible
Topology Factors as sub-factors for each state (assuming
clutter). That is, the solution proposed in this paper.

We perform a Monte Carlo simulation of the above mentioned
cases 1000 times and analyse the results.

B. Results

First consider the simulated scenario highlighted in Fig.
(4). For the simulation plotting all the fused trajectories does
not highlight the differences between the 5 different cases
discussed in the previous “System Setup” section as they are
too dense. Therefore, we plot the total system RMSE and
analyse how much error did various cases contributed to the
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Fig. 5. Total System RMSE for all Cases for the 4 vehicles with clutter for
scenario presented in Fig. 4.

system. Figure (5) shows the RMSE of the complete system
for the 5 cases for Fig. (4).

It can be seen that for a system without any clutter, the
Topology Factor performs better than the one without Topol-
ogy Factor. The RMSE plotted in the Fig. (4) is for 4 vehicles
and 54 clutter measurements. It can be seen that for adding
Topology Factor with Switchable Constraints and adding all
Topology Factors, both perform worse than the ideal solution
of no Clutter. Although it is interesting to see adding all the
Topology Factors performs better than when Topology Factors
are added with Switchable Constraints. On the other hand, the
solution proposed in this paper performs almost the same as
the one without clutter. It also converges almost at the same
rate. Between time steps 20 and 40 the Minimization Topology
Factor seems to perform better than no clutter scenario. This
is possible when the randomly simulated clutter measurement
is near to the ground truth than the one considered as the true
measurement.

It is likely both other solutions, one with Switchable
Constraints and using all the Topology Factors) for Fig. (4)
will eventually converge but time is a critical resource for
Autonomous or Highly Automated Vehicles. Hence overall our
solution not only converges faster but also performs as good
as the ideal case of no clutter for the given simulated data.

Further analysis and comparison of the results we refer
to the Table I, which shows the average RMSE for 1000
iterations for 2, 3 and 4 vehicles. The simulation is run for
all the Cases and for upto 1, 2 and 3 simultaneous clutter
measurements. Each row in the table uses the same set of
simulated data. This implies that for a simulation run for upto 1
clutter measurement for 2 vehicles all the 5 cases use the same
set. Case 1 and 2, ignore the clutter measurements. The RMSE
is rounded off to 4 decimal points. The last row mentions the
average number of clutter measurements rounded off to an
integer.

It can be clearly seen from Table I that among all the
cases where clutter measurements are used to construct the
Topology Factor, the solution proposed in this paper is su-
perior. The performance does not match the ideal case, but
this is expected as sometimes the solution may use a clutter
measurement during optimization because the Minimization



TABLE I
AVERAGE RMSE FOR 1000 ITERATIONS FOR 2, 3 AND 4 VEHICLES.
(TF = TOPOLOGY FACTOR, ADD ALL = ADD ALL POSSIBLE TOPOLOGY FACTORS,
SC = TOPOLOGY FACTOR WITH SWITCHABLE CONSTRAINTS, MIN = MINIMIZATION TOPOLOGY FACTOR)

TF/Up-to 1 Clutter

TF/Up-to 2 Clutter TF/Up-to 3 Clutter

Vehicles No TF TF/No Clutter Add All SC Min Add All SC Min Add All SC Min

(Case 1) (Case 2) (Case 3) (Cased4) (Case5) (Case3) (Cased4) (Case5) (Case3) (Cased) (Case5)
2 42194 3.1798 7.1168 7.1168 3.2173

42114 3.1869 15.3884 15.3884 3.2545

4.2023 3.1837 22.2722 22.2722 3.2871
3 5.1788 4.1613 5.6935 5.4637 5.2990

5.1888 4.1854 6.2963 6.2185 5.5548

5.1753 4.1564 7.7915 6.8170 5.7304
4 5.9432 4.7399 4.8610 5.0605 4.8079

5.9562 4.7497 5.1731 6.1106 4.8836

5.9629 4.7642 5.4044 7.0797 4.9908

Average Clutter Values in System 22 33 45

Topology Factor returned a lower error. And since the radar
has a higher precision therefore the lower error gets a higher
weight and the solution may be swayed away from the true
value. Nevertheless, overall the solution successfully stops the
effect of the false information and lets the optimizer converge
to a solution which near to the ground truth.

For lower number of clutter measurements the solution with
Switchable Constraints also performs optimally. This is visible
for 3 and 4 vehicles for upto 1 clutter measurement. In this
scenario only an average of 22 clutter points were present for
3 and 4 vehicles. However, for 2 vehicle simulation, when
the number of clutter points per vehicle increases, the case
3 of adding all the Topology Factors and case 4 for using
Switchable Constraints both result in bigger RMSE errors.
On the other hand, the proposed solution of case 5 performs
optimally. This trend can be seen again in case of upto 3
simultaneous clutter measurements for 2, 3 and 4 vehicles.
For upto 3 clutter simultaneous measurements, the simulation
generated an average of 45 clutter measurements. Therefore,
clutter measurement per vehicle for 2 is quiet high and for
per vehicle for 4 vehicles is lower. For 4 vehicles, the Case 3
with Switchable Constraints is able to curtail the influence of
Clutter, but our proposed solution is superior and the RMSE
is not far from the ideal case of no clutter. And for higher
clutter measurements per vehicle, 2 vehicles, the error is very
high for both cases 3 and 4. On the other hand Case 5 still
performs optimally.

The RMSE performance for case 3 and 4, for 2 vehicle
scenario is same. This can happen when the switch variables
are set to 1 for all the factors thereby all the factors equally
contribute to the final optimization. Another interesting ob-
servation is, when Case 3 (that is adding all the Topology
Factors) performs better than the case 4 (that is the Topology
Factor with Switchable Constraints). This is possible when
the optimizer ends up tuning the wrong Topology Factor with
higher contribution.

Our approach avoids both the pitfalls as the Minimization

Topology Factor partially controls the optimizers behaviour.

The last row of Table I mentions only the average clutter
measurements in the system. The actual minimum, maximum
and average number of clutter values for 1000 iterations in
each case is presented in Table II. As it can be seen, during
our simulation there was always some clutter present in the
system.

TABLE 11
CLUTTER IN THE SYSTEM FOR 1000 ITERATIONS.
NoOV = NUMBER OF VEHICLES, MIN = MINIMUM NUMBER,
MAX = MAXIMUM NUMBER, AVG = AVERAGE NUMBER

Up-to 1 Clutter Up-to 2 Clutter Up-to 3 Clutter

NoV Min/Max Avg Min/Max Avg Min/Max Avg
2 5/46 223 5/83 334 5/116 44.5
3 5/49 22.1 5/81 33.6 5/113 459
4 5/47 22.4 5/86 33.4 5/123 44.7
C. Remarks

The Minimization Topology Factor proposed in this paper
retains all the properties of the original Topology Factor; i.e.
bandwidth limitations; data association uncertainties; unknown
coordinate transformations; and scalability. Additionally, it can
handle clutter scenario and is not dependent on any other
external solution.

Current implementation of the Minimization Topology Fac-
tor uses the linear search for the minimum error. However, the
“sub-factors” can be executed in parallel, thereby avoiding any
performance loss.

Presently, the solution is implemented as a batch process.
A online solution like iISAM2 of GTSAM can be used for
run-time state estimation. Further it also has the potential of
supporting plug-and-play paradigm [30].

VII. CONCLUSION

With Intelligent Highways becoming a reality, cooperative
localization is no longer constrained to laboratories. However,



false positive measurements influence the final state estimates
which can be dangerous for the safety critical Autonomous
and Highly Automated Vehicles. Therefore there is a need of
robust state estimation process which can handle such false
positive measurements. The Minimization Topology Factor is
an attempt in this direction for Graph Based Solutions which
can provide resilience against such clutter, that may have
escaped the initial RADAR filtering. Results, from simulation
set up built from the observation of real data, highlight
that a graph with Minimization Topology Factors is able to
successfully avoid the influence of clutter measurements on the
final state estimation. Although the RMSE performance does
degrade, when compared against the ideal situation of only
Topology Factors and no clutter, but the degradation is small
and the system performs better than Switchable Constraints.
Therefore, this has a potential to solve the challenge of
cooperative localization in realistic dynamic scenarios where
(1) location and configuration of RADAR is unknown; and
(2) clutter, obscuration and miss detections degrade the state
estimates.

Future work will focus on the evaluation of the presented
approach for vehicle systems with incremental smoothing
using real data.
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