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Motivation for Flexibility
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Promising technologies and techniques: 

Network Virtualization (NV), Software-Defined Networking (SDN), Artificial Intelligence (AI)

Fast Network 

Provisioning

Predictable Network 

Control

Efficient Network 

Provisioning

Low Control Plane 

Latency

Frequently changing demands need flexible adaptation



Simply Combining Technologies and Still Predictable?
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Network Virtualization
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Virtual Nodes Virtual Links

Flexible? Adaptive?

Programmable?

Combine with Software-Defined Networking



Software-Defined Networking
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 Split control from data plane

 Centralized control

 Flexible control of forwarding (networking) resources

Open Interfaces and Protocols (OpenFlow)



 Virtual Networks according to service and application demands

 Flexible control of virtual networking resources

Programmable virtual software-defined networks (vSDNs) [1]

Combining Network Virtualization and Software-Defined Networking
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And what is the problem now?
[1] A. Blenk, A. Basta, M. Reisslein, W. Kellerer, Survey on Network Virtualization Hypervisors for Software Defined Networking,

IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 655-685, January 2016.



The Challenges
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 Virtualization itself can introduce overhead

 Interference due to sharing

Sources of unpredictability

Good understanding (models) of virtualization layer design needed for correct provisioning

Architecture Design, Measurements Function Placement, Optimization

[2] A. Blenk, A. Basta, J. Zerwas, W. Kellerer, Pairing SDN with Network Virtualization; The Hypervisor Placement Problem, IEEE NFV-SDN Conference, pp. 

198-204, 2015

[3] A. Blenk, A. Basta, J. Zerwas, M. Reisslein, W. Kellerer, Control Plane Latency with SDN Network Hypervisors: Cost of Virtualization, IEEE Transactions on 

Network and Service Management, September 2016



State of the art: Measurements and Models
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51 Packets/second! [FlowVisor]

No detailed performance study! Why? No Tool available!

1 Tenant only! [Onvisor2018]



Measurement Procedure

From non-virtualized SDN networks to virtualized SDN networks
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 Challenge: Coordination and emulation complexity

 Goal: One tool emulating single tenant, single switch, multi-tenant, multi-switch



Multi-tenant/multi-switch emulation

 Traffic modeling: inter-arrival time, burstiness

Modular measurements: either controller(s), switch(es), or 

both entities

Perfbench [4,5]
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https://github.com/tum-lkn/perfbench

Open

Source!

[4] A. Blenk, A. Basta, L. Henkel, J. Zerwas, S. Schmid, W. Kellerer, perfbench: A Tool for Predictability Analysis in Multi-Tenant Software Defined Networks. ACM 

SIGCOMM 2018 Conference Posters and Demos, 2018, 

[5] A. Basta, A. Blenk, S. Dudycz, A. Ludwig, S. Schmid ,Efficient Loop-Free Rerouting of Multiple SDN Flows. IEEE/ACM Transactions on Networking 26 (2), 

2018, pp. 948-961



Multi-Tenancy Measurement Setup
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 Hypervisor: FlowVisor

 OpenFlow Message: FLOWMOD

 Key performance indicator:

 Latency [milliseconds]

 CPU [%] (100% = 1 Core)

Multi-tenancy impact on CPU consumption

 Impact on control plane latency?



Multi-Tenancy Latency Results
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Already 10 tenants show a notable 

latency gap of 6ms (high variance)

The more switches and controllers, 

the less predictable

HyperFlex: An SDN virtualization architecture with flexible hypervisor function 

allocation," 2015 IFIP/IEEE International Symposium on Integrated Network 

Management (IM), Ottawa, ON, 2015, pp. 397-405



Fast and Efficient (Virtual) Network Provisioning
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New Opportunities Introduce New Problems and Challenges
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 Optimal Algorithm: 

• Improves solution quality given more flexibilities

• Expensive, exponential runtime

 Heuristic Algorithm:

• Can exploit flexibility

• But cannot achieve optimal solution

Machine Learning/Neural Computation:

• Improves solution quality

• Impact of learning time? Computational 

overhead? RESEARCH!
Increasing Possibilities

S
o
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o
n
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o
s
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Improvement feasible? 

Cheap to achieve?
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How some people see AI and Machine Learning!
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If you work a bit with it … 

it should be your friend and helper!



Machine Learning for Networking
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Neural

Computation Prediction

Towards Self-Driving and 

Intelligent NetworksAlpha GO inspired

(Monte Carlo Tree 

Search)

Probabilistic 

Modeling

IEEE INFOCOM 2018 Main conference paper: NeuroViNE

ACM SIGCOMM 2017 Big-DAMA Workshop, 2017: o zapft‘is

IFIP/IEEE CNSM, 2016: Boost VNE

IFIP Networking 2018. Data-Driven Admission Control

IEEE INFOCOM Poster 2018: Botnet Detection

IEEE ICNP 2017: Data-Driven Algorithm Improvement

IEEE JSAC 2018. Elijah: Deep Representations (submitted)

ACM SIGCOMM Poster 2018: Weighted SBMsEmpowering 

Networks

ACM SIGCOMM Self-DN Workshop 2018: Empowerment

Deep 

Reinforcement 

Learning

XXX (submitted) Routing (confidential)

IEEE NetwSoft 2016: Performance Prediction for VNFs

IEEE AnNet Workshop 2017: Generating Topologies with SBMs



Overview in this talk: NeuroViNE
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Neural

Computation Prediction

Towards Self-Driving and 

Intelligent Networks
Probabilistic 

Modeling

IEEE INFOCOM 2018 Main conference paper: NeuroViNE

ACM SIGCOMM 2017 Big-DAMA Workshop, 2017: o zapft‘is

IFIP/IEEE CNSM, 2016: Boost VNE

IEEE INFOCOM Poster 2018: Botnet Detection

ACM SIGCOMM Poster 2018: Weighted SBMsEmpowering 

Networks

ACM SIGCOMM Self-DN Workshop 2018: Empowerment



Use case study: Online Virtual Network Embedding (VNE) problem
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Hard Problem

(1) Optimal solutions do not scale

(2) Heuristics may result in 

large footprints

Substrate

Virtual Network

Embed Virtual

Network

Next Virtual Network

Substrate hosting

virtual network

Neural Preprocessing 

to achieve

(1) scalability and (2) 

quality

Vs.



Reduce embedding cost of heuristics (search on close substrate nodes)

Improve runtime of optimal algorithms (shrink search space)

The Idea: Subgraph Extraction
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But how do we find good subgraphs?!

1. Extract 

subgraph
2. Execute VNE 

with subgraph

3. Embed (if 

possible) on 

subgraph



Contribution: NeuroViNE [6]
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Neural Computation Parallel Computation
Implementable on 

hardware

Reuse existing VNE 

algorithms

Hopfield network solution provides nodes 

with high capacity close to each other
[6] A. Blenk, P. Kalmbach, J. Zerwas, M. Jarschel, S. Schmid, W. Kellerer, NeuroViNE: A Neural Preprocessor for Your Virtual Network Embedding Algorithm, 37th

IEEE Conference on Computer Communication (INFOCOM),pp. 405-413, 2018



Neural Computation of Decisions in Optimization Problems
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John Hopfield



Hopfield Network

An Artificial Recurrent Neural Network (which can be used for optimization)

23

 Number of neurons and states 𝑽

 Input bias vector 𝑰

 Connection weigths 𝑻

 Energy of network

𝐸 = −
1

2
𝑽𝑇𝑻𝑽 − 𝑽𝑇𝑰

 Fullfils Lyapunov function property

 Convergence to local (global) optima guaranteed

Input bias vector 𝑰

Connection weigths 𝑻
Neurons 

Ex. State 𝑽(𝒕)

Hopfield Network PropertiesHopfield Network

No Learning

No Training

Energy-based model

How to map Virtual Network Embedding problem?



Hopfield Network

Hopfield Network

How to use for optimization ...
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We do not solve VNE directly ... 

But show Hopfield‘s preprocessing capabilities

Hopfield Optimization Procedure

1. Optimization problem: find subgraph with low resource 

footprint and high probability for accepting virtual network

2. VNE problem energy function

𝐸 = 𝑽𝑇 𝚿 t + α ⋅ 𝐓constraint 𝑽 + 𝑽𝑇(𝚵 t + α ⋅ 𝐈constraint)

3. Derive: 𝚿 t , 𝐓constraint, 𝚵 t , 𝐈constraint

4. Execute network: solve 

5. After exectution  Neuron states (values) indicate 

subgraph nodes



𝐸 = 𝑽𝑇 𝚿 t + α ⋅ 𝐓constraint 𝑽 + 𝑽𝑇(𝚵 t + α ⋅ 𝐈constraint)

NeuroViNE‘s Hopfield Network Energy Function
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Select paths

with low costs = 

low energy

Satisfying 

constraint  = 

low energy

Select physical nodes

with high CPU ratio = 

low energy



3 substrate nodes with CPU resource

Node ranking

NeuroViNE‘s Hopfield Network Construction
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3 neurons - Input bias vector considers CPU

Example for 3-Node Substrate and 2-Node Virtual Network

𝚵i(𝑡) =

max
𝑁𝑗∈𝒩

𝐶𝑗(𝑡)−𝐶𝑖(𝑡)

max
𝑁𝑗∈𝒩

𝐶𝑗(𝑡)

𝜩𝐢(𝒕)



3 links with datarate attributes

Path Ranking
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3 times 3 entries of weight matrix

NeuroViNE‘s Hopfield Network Construction

Path ranking 𝚿𝑖𝑗(𝑡) = 𝛾
 𝑫𝑖𝑗(𝑡

max
𝑖𝑗

𝐷𝑖𝑗(𝑡)

𝜳(𝑡)



2 Virtual nodes

Keeping Constraints
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2 out of 3 neurons should be chosen

NeuroViNE‘s Hopfield Network Construction

Node number selection

constraints

𝑻𝑖𝑗
𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 =  

1 𝑖𝑓 𝑖 ≠ 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝐼𝑘
𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = −(2 ⋅ 𝜁 − 1



𝐸 = 𝑽𝑇 𝚿 t + α ⋅ 𝐓constraint 𝑽 + 𝑽𝑇(𝚵 t + α ⋅ 𝐈constraint)

NeuroViNE‘s Hopfield Network Energy Function
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Select paths

with low costs = 

low energy

Satisfying 

constraint  = 

low energy

Select virtual nodes 

with high CPU ratio = 

low energy

1 1
1

10

5

5
10

105

10

11

Low Energy High Energy Low Energy



NeuroViNE: An Illustrative Example for GRC on 750 nodes ISP network
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NeuroViNE selects 

substrate nodes close to 

each other!

Selected nodes by GRC 

lead to long paths!



Same Behavior for Datacenters
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Virtual Machines Spread

Among Racks

Virtual Machines Close to

Each Other

Heuristic NeuroViNE



NeuroViNE: Efficient also in Datacenters

Uses a datacenter modifcation (see paper)
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NeuroViNE shows similar 

acceptance ratios
... but saves cost

Better



Overview in this talk: o zapft‘is [7]
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Neural

Computation Prediction

Towards Self-Driving and 

Intelligent Networks
Probabilistic 

Modeling

IEEE INFOCOM 2018 Main conference paper: NeuroViNE

ACM SIGCOMM 2017 Big-DAMA Workshop, 2017: o zapft‘is

IFIP/IEEE CNSM, 2016: Boost VNE

IEEE INFOCOM Poster 2018: Botnet Detection

ACM SIGCOMM Poster 2018: Weighted SBMsEmpowering 

Networks

ACM SIGCOMM Self-DN Workshop 2018: Empowerment

[7] A. Blenk, P. Kalmbach, S. Schmid, W. Kellerer, o'zapft is: Tap Your Network Algorithm's Big Data!, ACM SIGCOMM 2017 Workshop on Big Data Analytics and 

Machine Learning for Data Communication Networks (Big-DAMA), pp. 19-24, 2017



The Limitation – Fire and Forget
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Place Cache Place Cache Place Cache

The Opportunity – Tap into your Algorithm’s Big Data

Place Cache Place Cache Place Cache



Traditional vs. Proposed System
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Problem

Instances

Optimization 

Algorithm Problem

Solutions

produce

Problem

Solutions

Problem

Instances

Machine 

Learning

Solution 

Information

Optimization 

Algorithm

produce

learn from (offline)

Traditional System

o’zapft is

Data Available at: [8] Patrick Kalmbach, Johannes Zerwas, Michael Manhart, Andreas Blenk, Stefan Schmid, and Wolfgang Kellerer. 2017. Data on "o’zapft is: Tap 

Your Network Algorithm’s Big Data!". (2017). https://doi.org/10.14459/2017md1361589

https://doi.org/10.14459/2017md1361589


Potentials
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Predict Value of Objective Function

Search Space Reduction reduction/Initial Solutions



 Learn and predict the acceptance and embedding cost of a VNR

 Supervised learning

 Offline training!
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Virtual Network Embedding Prediction/Classification Pipeline [9]

[9] A. Blenk, P. Kalmbach, P. van der Smagt, W. Kellerer, Boost Online Virtual Network Embedding: Using Neural Networks for Admission Control. 12th 

International Conference on Network and Service Management (CNSM), pp. 10-18, 2016



Learning to Accept and to Predict the Cost
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Graph features:

• Node degree

• Closeness

• Betweeness

• Spectral Features

Classifier/Regressor:

• Recurrent Neural Network (RNN)

• Linear Regression (LR)

• Bayesian Ridge Regressor (BRR) 

• Random Forest Regressor (RF) 

• Support Vector Regression (SVR)

Model Training and Selection:

60% Training 20% Testing

Min Max Min Max

Parameter selection

Parameters

Training Set
Test 

Set

Final

Results

Best 

Parameters

[9] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

Library:

• Sci-Kit Learn [9]

Feature Extraction Feature Extraction

Measures:

• R2 (goodness of fit for

ML models)

• TPR/TNR/Accuracy/…

20% Validation

Feature Extraction

Min Max

Validation 

Set



Supervised Learning & Speed-Up Results [10]
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Efficiently filter infeasible

and inefficient requests
… save runtime!

[10] Blenk, A. A. (2018). Towards Virtualization of Software-Defined Networks: Analysis, Modeling, and Optimization (Doctoral dissertation, 

Technische Universität München).



And keep the performance …
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 Realizing flexible virtualized networks introduces new challenges

 Overhead and interference

 New dimensions for optimization

 This talk

 A tool for measuring virtualization layers

 Application of neural computation and machine learning to network algorithms

Conclusion
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Thank you!

Questions?



Research Trailers
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Where did we apply Artificial Intelligence (Machine Learning) so far?
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 Create network service 

graphs

 Detect anomalies

Research Towards Self-Driving Networks

Network Monitoring

 Virtual network provisioning

 Function placement

 Admission control

 Flow routing

Network Resource 

Allocation Algorithms

 Prepare your network for 

failures

 Generate network topologies 

with realistic characteristics

Network Planning 

and Dimensioning



 (Weighted) Stochastic Block Models

Machine Learning for training 

(unsupervised)

Who communicates with whom 

→ Create service graph layout

 Plan and benchmarking

→ Generate realistic communication patterns

 Communication pattern changes over time 

→ Detect anomalies (abnormal bot 

communication)

Network Monitoring
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SBM has many applications!

ACM SIGCOMM Poster 2018: 

Weighted SBMs [13]

IEEE INFOCOM Poster 2018: 

Botnet Detection [12]

IEEE AnNet Workshop 2017: 

Generating Topologies with SBMs [11]

[11] P. Kalmbach, A. Blenk, M. Kluegel, W. Kellerer, Generating Synthetic Internet- and IP-Topologies using the Stochastic-Block-Model. 2nd IFIP/IEEE International 

Workshop on Analytics for Network and Service Management (AnNet), 2017

[12] P. Kalmbach, A. Blenk, S. Schmid, W. Kellerer, Themis: Data Driven Approach to Botnet Detection. 37th IEEE Conference on Computer Communications 

(INFOCOM), 2018

[13] P. Kalmbach, L. Gleiter, J. Zerwas, A. Blenk, W. Kellerer, Modeling IP-to-IP communication using the Weighted Stochastic Block Model. ACM SIGCOMM 2018 

Conference Posters and Demos, 2018



SBM in Action
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 Router Level Graph of the Internet

 939 nodes, 988 edges

 Intelligent grouping based on 

communication patterns only



 Empower your network to be prepared

 For failures

 For changing traffic

 For new services

 ...

Network Planning and Dimensioning
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Empowerment towards Network Intelligence?

ACM SIGCOMM Self-DN Workshop 

2018: Empowerment [14]

[14] P. Kalmbach, J. Zerwas, P. Babarczi, A. Blenk, W. Kellerer, S. Schmid, Empowering Self-Driving Networks. Proceedings of the Afternoon 

Workshop on Self-Driving Networks - SelfDN 2018, ACM Press, 2018


