Chair of Communication Networks 'I'I-r"
Department of Electrical and Computer Engineering
Technical University of Munich

From SDN Network Hypervisor Measurements to Fast
Virtual Network Provisioning: A Long Story Short

Andreas Blenk

*Technical University of Munich, Germany

University of Vienna, 2018-10-10

©2018 Technical University of Munich



Motivation for Flexibility TUTI

Winter Storm Jonas - FaceTime Traffic Comparison - East Coast US Network

Predictable Network Fast Network Control Plane Efficient Network

Control Provisioning Latency Provisioning

= 5SS ==:SsSSs==23s35ss3==Isss:s==2:s35s3ss3ss3==:sz=s=s¢:s°:3
d @ d 9 €« €« &aaaaaagagaaaad<aaaaaagagaaaa<<gaeaaaaaa
QQQQQ0800008999000800008990000800008
SS90 2222222286022 22esc88222222 e
N N S O 0o NN AN O WO NN W o NN T WO NN YT O WO NN O 0O
— — = - — = = — = -

—January 15-17 —January 22-24 Ssandvine

Frequently changing demands need flexible adaptation

Promising technologies and techniques:
Network Virtualization (NV), Software-Defined Networking (SDN), Artificial Intelligence (Al)

2



Simply Combining Technologies and Still Predictable?



Network Virtualization T|.|T|

-/
Internet Service Provider (ISP)

Flexible? Adaptive?
Programmable?

Virtual Nodes Virtual Links

\ .
nfrastructure Provider (InP

Combine with Software-Defined Networking



Software-Defined Networking TLTI

( | Control Plane | )

Open Interfaces and Protocols (OpenFlow)

Legacy Network Software-defined Network

= Split control from data plane
= Centralized control
= Flexible control of forwarding (networking) resources



TUTI

Combining Network Virtualization and Software-Defined Networking

&
b5 .
* &
Y [
% s
.
LY &
*

O . ( SDN Controller )
s A
: _ : ( Virtualization Layer ] A AN
VNil ; 7RIS
> @ M o
Physical Network Physical SDN Network Physical SDN Network

= Virtual Networks according to service and application demands

= Flexible control of virtual networking resources
=» Programmable virtual software-defined networks (VSDNS) [1]

And what iIs the problem now?

[1] A. Blenk, A. Basta, M. Reisslein, W. Kellerer, Survey on Network Virtualization Hypervisors for Software Defined Networking,
IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 655-685, January 2016.



The Challenges TUTI

&
i‘ &
LY &
LY &
LY &
LY +

&
r
LY &
* &

( Virtua]i;at;c)n Layer )

*
LY

Architecture Design, Measurements Function Placement, Optimization

= Virtualization itself can introduce overhead
= [nterference due to sharing

=» Sources of unpredictability

=» Good understanding (models) of virtualization layer design needed for correct provisioning

[2] A. Blenk, A. Basta, J. Zerwas, W. Kellerer, Pairing SDN with Network Virtualization; The Hypervisor Placement Problem, IEEE NFV-SDN Conference, pp.

198-204, 2015
[3] A. Blenk, A. Basta, J. Zerwas, M. Reisslein, W. Kellerer, Control Plane Latency with SDN Network Hypervisors: Cost of Virtualization, IEEE Transactions on

Network and Service Management, September 2016



State of the art: Measurements and Models

FlowVisor: A Network Virtualization Layer

Rob Sherwood*, Glen Gibb?, Kok-Kiong Yapt, Guido Appenzellerf,
Martin Casado®, Nick McKeownt, Guru Parulkart
* Deutsche Telekom Inc. R&D Lab, Los Altos, CA USA
T Stanford University, Palo Alto, CA USA
© Nicira Networks, Palo Alto, CA USA

ABSTRACT

Network virtualization has long been a goal of of the
network research community. With it, multiple iso-
lated logical networks each with potentially different
addressing and forwarding mechanisms can share the
same physical infrastructure. Typically this is achieved
by taking advantage of the flexibility of software (e.g.
[20, 23]) or by duplicating components in (often spe-
cialized) hardware[19].

In this paper we present a new approach to switch
virtualization in which the same hardware forwarding
plane can be shared among multiple logical networks,
each with distinct forwarding logic. We use this switch-
level virtualization to build a research platform which
allows multiple network experiments to run side-by-side
with production traffic while still providing isolation
and hardware forwarding speeds. We also show that
this approach is compatible with commodity switching
chipsets and does not require the use of programmable
hardware such as FPGAs or network processors.

We build and deploy this virtualization platform on
our own production network and demonstrate its use
in practice by running five experiments simultaneously
within a campus network. Further, we quantify the over-
head of our approach and evaluate the completeness of
the isolation between virtual slices.

1. INTRODUCTION

This paper explores how to virtualize a network, and
describes a particular system that we prototyped - called
FlowVisor - that we have deployed to slice! our own
production network. Similar to computer virtualiza-
tion [22, 1, 21, 17], network virtualization promises to
improve resource allocation, permits operators to check-
point their network before changes, and allows compet-
ing customers to share the same equipment in a con-
trolled and isolated fashion. Critically, virtual networks
also promise to provide a safe and realistic environment
"Borrowing from the GENI [4] literature, we call an instance

of a virtual network a slice, and two distinct virtual networks
on the same physical hardware slices.

to deploy and evaluate experimental “clean slate” pro-
tocols in production networks.

To better understand virtual networking, we first look
closely at computer virtualization. Computer virtualiza-
tion’s success can be linked to a clean abstraction of the
underlying hardware. That is, the computer virtualiza-
tion layer has a hardware abstraction that permits slicing
and sharing of resources among the guest operating sys-
tems. The effect is that each OS believes it has its own
private hardware. A well defined hardware abstraction
enables rapid innovation both above and below the vir-
tualization layer. Above, the ability to build on a con-
sistent hardware abstraction has allowed operating sys-
tems to flourish (e.g., UNIX, MacOS, several flavors of
Linux, and Windows) and even encouraged entirely new
approaches [24, 28]. Below, different hardware can be
used (e.g., Intel, AMD, PPC, Arm, even Nvidia’s GPU),
so long as it can be mapped to the hardware abstraction
layer. This allows different hardware to have different
instruction sets optimized for higher performance, lower
power, graphics, etc. Allowing choice above and below
the virtualization layer means a proliferation of options,
and a more competitive, innovative and efficient mar-
ketplace.

Our goal is to achieve the same benefits in the net-
work. Thus, by analogy, the network itself should
have a hardware abstraction layer. This layer should
be easy to slice so that multiple wildly different net-
works can run simultaneously on top without interfer-
ing with each other, on a variety of different hardware,
including switches, routers, access points, and so on.
Above the hardware abstraction layer, we want new pro-
tocols and addressing formats to run independently in
their own isolated slice of the same physical network,
enabling networks optimized for the applications run-
ning on them, or customized for the operator who owns
them. Below the virtualization layer, new hardware can
be developed for different environments with different
speed, media (wireline and wireless), power or fanout
requirements.

The equipment currently deployed in our networks

Cumulative Probability

without FlowVisor o
09 with FlowVigor ------- o

——maa,

Avg ov

0.1 1 10 100
OpenFlow New Flow Latency (ms)

51 Packets/second! [FlowVisor]

80000 | " ONOS m
ONVisor —&—
70000 | ]
60000 .
il | '\"w 1
40000 | ]

30000 1
20000 1

Throughput (responses/s)

10000 1
0

10 20 30 40 50 60 70 80 90 100
Number of switches

(B) Throughput comparison
1 Tenant only! [Onvisor2018]

No detailed performance study! Why? No Tool available! ,



Measurement Procedure

From non-virtualized SDN networks to virtualized SDN networks

[ SDN Controller J
)

Control Plane
Channel

[ SDN Ctrl. Benchmark TD’D'S]

= Challenge: Coordination and emulation complexity

Control Plane
Channels (D-CPI)

Hypervisor

Control Plane
Channels (D-CPI)

Ctrl. Ben.
Tool 1

= Goal: One tool emulating single tenant, single switch, multi-tenant, multi-switch



Perfbench [4,5] TLTI

= Multi-tenant/multi-switch emulation

Control Plane (1
| ST612) R G101
Network | Hypervisor
Hypervisor | Functions

(TCP) (TCP)

= Traffic modeling: inter-arrival time, burstiness

dDYyouaqjiad

= Modular measurements: either controller(s), switch(es), or
o] both entities

Control F‘Iane/éé ............
1 ] 1

o
Si.rl:i]tr:h Control Plane % O p e n
[ N e =
Data Plane % SO u rce!

https://github.com/tum-lkn/perfbench

[4] A. Blenk, A. Basta, L. Henkel, J. Zerwas, S. Schmid, W. Kellerer, perfbench: A Tool for Predictability Analysis in Multi-Tenant Software Defined Networks. ACM
SIGCOMM 2018 Conference Posters and Demos, 2018,

[5] A. Basta, A. Blenk, S. Dudycz, A. Ludwig, S. Schmid ,Efficient Loop-Free Rerouting of Multiple SDN Flows. IEEE/ACM Transactions on Networking 26 (2), 10
2018, pp. 948-961



Multi-Tenancy Measurement Setup

Control Plane Connections

lperfbenchCPj l l

o e e e e e ey

L -

= Hypervisor: FlowVisor
= OpenFlow Message: FLOWMOD

= Key performance indicator:

= Latency [milliseconds]
= CPU [%] (100% = 1 Core)

OpenFlow [msg/s]

500 1000 1500 2000
| ] | |

~O- Single T ! !

300 - lngI:e enant I
<} Mulﬁ-tenancy : :

200 - : l l
| | |

| ! | |

100 = | | L |
| | |

| | |

I | |

1 5 1 10 1 15 1 20
Tenants [#]

= Multi-tenancy impact on CPU consumption
* [mpact on control plane latency?

11



Multi-Tenancy Latency Results TUTI

F .
[ 4 Y i '
; N\ wil .
. s i A .-'.
- T g f
o </ %) A

HyperFlex: An SDN virtualization architecture with flexible hypervisor function

allocation,” 2015 IFIP/IEEE International Symposium on Integrated Network
Management (IM), Ottawa, ON, 2015, pp. 397-405

Tenants |#

Already 10 tenants show a notable The more switches and controllers,

latency gap of ms (high variance) the less predictable




Fast and Efficient (Virtual) Network Provisioning

13



New Opportunities Introduce New Problems and Challenges TLTI

= Optimal Algorithm:
* Improves solution quality given more flexibilities
* Expensive, exponential runtime

Improvement feasible?
Cheap to achieve?

» Heuristic Algorithm:
« Can exploit flexibility
» But cannot achieve optimal solution

Solution Cost

* Improves solution quality

. ibiliti  Impact of learning time? Computational
Increasing Possibilities overhead? RESEARCH!

14



How some people see Al and Machine Learning!

15



If you work a bit with it ...
it should be your friend and helper!

16



Machine Learning for Networking TUTI

XXX (submitted) Routing (confidential)

ACM SIGCOMM 2017 Big-DAMA Workshop, 2017: o zapft'is

IEEE INFOCOM 2018 Main conference paper: NeuroViNE

IEEE ICNP 2017: Data-Driven Algorithm Improvement

Deep
Neural Reinforcement IEEE NetwSoft 2016: Performance Prediction for VNFs

Computation a Learning Prediction

IEEE JSAC 2018. Elijah: Deep Representations (submitted) IFIP/IEEE CNSM, 2016: Boost VNE

Towards Self-Driving and

. . IEEE AnNet Workshop 2017: Generating Topologies with SBMs
Alpha GO inspired Intelligent Networks

(Monte Carlo Tree PYObabi!iStiC
Search) Modeling

ACM SIGCOMM Poster 2018: Weighted SBMs

Empowering

IFIP Networking 2018. Data-Driven Admission Control Networks

IEEE INFOCOM Poster 2018: Botnet Detection

ACM SIGCOMM Self-DN Workshop 2018: Empowerment

17



Overview In this talk: NeuroVINE

ACM SIGCOMM 2017 Big-DAMA Workshop, 2017: o zapft'is

IEEE INFOCOM 2018 Main conference paper: NeuroViNE

Neural

Computation

Prediction

IFIP/IEEE CNSM, 2016: Boost VNE

Towards Self-Driving and

Intelligent Networks e
J Probabilistic

Modeling

Empowering ACM SIGCOMM Poster 2018: Weighted SBMs

Networks

IEEE INFOCOM Poster 2018: Botnet Detection

ACM SIGCOMM Self-DN Workshop 2018: Empowerment

18




Use case study: Online Virtual Network Embedding (VNE) problem TUTI

Virtual Network Next Virtual Network _ _
(1) Optimal solutions do not scale
o— ° Vs.
2) Heuristics may r It in
Hard Problem (2) Heuristics aY esult
Embed Virtual large footprints
Network

Neural Preprocessing
to achieve *-..
Substrate Substrate hosting (1) scalabi Ity and (2) I—I |
virtual network

quality

=




The Idea: Subgraph Extraction

L SEgtr;Cth 2. Execute VNE
grap with subgraph

3. Embed (if
possible) on
subgraph

—~>Reduce embedding cost of heuristics (search on close substrate nodes)
- Improve runtime of optimal algorithms (shrink search space)

But how do we find good subgraphs?!

20



Contribution: NeuroVINE [6] TUT]

Reuse existing VNE
Neural Computation Parallel Computation Implementable on . XI. nJ
hardware algorithms
Hopfield Network
> ' T — >
ﬁ'—@ > VNE
Sil —D Algorithm
-

T.I _@
> -—</> >
gp - |
gp,subgraph

Hopfield network solution provides nodes
with high capacity close to each other

[6] A. Blenk, P. Kalmbach, J. Zerwas, M. Jarschel, S. Schmid, W. Kellerer, NeuroViNE: A Neural Preprocessor for Your Virtual Network Embedding Algorithm, 37t
IEEE Conference on Computer Communication (INFOCOM),pp. 405-413, 2018 21




Neural Computation of Decisions in Optimization Problems TLTI

“‘Neural” computation of decisions in optimization problems
JJ Hopfield, DW Tank - Biological cybernetics, 19835 - Springer

Abstract Highly-interconnected networks of nonlinear analeg neurons are shown to be
extremely effective in computing. The networks can rapidly provide a collectively-computed
solution (a digital cutput) to a problem on the basis of analog input information. The ... =g

vr YUY  Zitiert von: 7329 Ahnliche Artikel Alle 33 Versionen =

John Hopfield

22



Hopfield Network TLTI

An Artificial Recurrent Neural Network (which can be used for optimization)

Input bias vector I

= Number of neurons and states V
= [nput bias vector I

= Connection weigths T

= Energy of network

Energy-based model '
-rﬂv‘l—'a

No Learning
2

iR = Fullfils Lyapunov function property
No Training ': - Convergence to local (global) optima guaranteed

1
E=—=-VITV —VTI

Connection weigths T
Neurons Hopfield Network Hopfield Network Properties

Ex. State V(t)

How to map Virtual Network Embedding problem?

23



Hopfield Network TLTI

How to use for optimization ...

1. Optimization problem: find subgraph with low resource
footprint and high probability for accepting virtual network
2. VNE problem energy function
E=yT (llj(t) +a- Tconstraint)V +yT (E(t) +a- Iconstraint)
3. Derive: llj(t)’ Tconstraint’ E(t), Iconstraint
4. Execute network: solve
5. After exectution - Neuron states (values) indicate
subgraph nodes

c 0.5
Xterna| Value Neuron 1 1

Hopfield Optimization Procedure

We do not solve VNE directly ...
But show Hopfield‘s preprocessing capabilities

24



NeuroVIiNE's Hopfield Network Energy Function TUTI

Select paths Satisfying

Select physical nodes
with low costs = constraint =

low energy low energy

with high CPU ratio =
low energy

F = VT (‘P(t) + o - Tconstraint)V 1+ VT (E(t) + o - Iconstraint)

25



NeuroVINE's Hopfield Network Construction

Example for 3-Node Substrate and 2-Node Virtual Network

3 substrate nodes with CPU resource

Node ranking

E;i(t)

3 neurons - Input bias vector considers CPU

max C](t) —Ci(t)

NjEN

max C;(t
NjEN ]( )

Ei(t) =

26



Path Ranking
NeuroViNE's Hopfield Network Construction

+ — +
S S
¥ (t)
3 links with datarate attributes 3 times 3 entries of weight matrix

Path ranking

27



Keeping Constraints
NeuroViNE's Hopfield Network Construction

- 4
! DIG

2 Virtual nodes 2 out of 3 neurons should be chosen

qumstraint — {1 if [ :/:j

. lj .
Node number selection 0 otherwise

constraints

I}gonstraint — _(2 . ( o 1)




NeuroVIiNE's Hopfield Network Energy Function TUTI

F = VT (q’(t) + o - Tconstraint)V 1+ VT (E(t) + o - Iconstraint)

Select paths Satisfying Select virtual nodes

with low costs = constraint = with high CPU ratio =
low energy low energy low energy

o
X ke 1Y

Low Energy High Energy Low Energy 29




TUTH

NeuroVINE: An lllustrative Example for GRC on 750 nodes ISP network

g0 : 4.‘.‘.’( Y ame

. : ..: : “--_E’:-:-:- . ..,:’ ......... HY

Selected nodes by GRC

lead to long paths! substrate nodes close to

each other!

30



. .
_ m__..,___I w.— ..lr..ulril“.

Wy _ ‘ ! a
i [ —
it .- i \““.'TJ.-T I-.-.._-‘..

31

Same Behavior for Datacenters

Virtual Machines Spread

Each Other

@ B

(

Among Racks

((((((

NeuroVINE

Heuristic



NeuroVINE: Efficient also in Datacenters
Uses a datacenter modifcation (see paper)

-} GRC —/x— HF-GRC-DC

== Greedy

Retter

0.55 -
2 095 4% x
Ixn
& X
S 0.90 - % e 050 -
S g %
L
2 0.85 - ﬁ a
2 0.45 -
0.80 o

fﬁ:

FT BC

NeuroVINE shows similar

acceptance ratios

... but saves cost

32



Overview in this talk: o zapftiis [7] TUTI

ACM SIGCOMM 2017 Big-DAMA Workshop, 2017: o zapft'is

IEEE INFOCOM 2018 Main conference paper: NeuroViNE

Neural

Computation Prediction

IFIP/IEEE CNSM, 2016: Boost VNE

Towards Self-Driving and

Intelligent Networks e
J Probabilistic

Modeling

Empowering ACM SIGCOMM Poster 2018: Weighted SBMs

Networks

IEEE INFOCOM Poster 2018: Botnet Detection

ACM SIGCOMM Self-DN Workshop 2018: Empowerment

[7]1 A. Blenk, P. Kalmbach, S. Schmid, W. Kellerer, o'zapft is: Tap Your Network Algorithm's Big Data!, ACM SIGCOMM 2017 Workshop on Big Data Analytics and 33

Machine Learning for Data Communication Networks (Big-DAMA), pp. 19-24, 2017



The Limitation — Fire and Forget

Place Cache Place Cache

The Opportunity — Tap into your Algorithm’s Big Data

>

Place Cache @ Place Cache @

Place Cache

Place Cache @

34



Traditional vs. Proposed System TUT]

produce
Problem

Solutions

Traditional System
learn from (offline)

Problem Machine Solution Optimization produce

A 4

Problem

Instances Learning Information Algorithm |
Solutions

o'zapft is

Data Available at: [8] Patrick Kalmbach, Johannes Zerwas, Michael Manhart, Andreas Blenk, Stefan Schmid, and Wolfgang Kellerer. 2017. Data on "o’zapft is: Tap
Your Network Algorithm’s Big Data!". (2017). https://doi.org/10.14459/2017md1361589

35


https://doi.org/10.14459/2017md1361589

Potentials

750 & 500 4 —— Prediction
95% confidence interval

Objective
w
o
o

200 A

100 T T T T T T
X1 X2 X3 Xa Xs Xe

Feature Space
Predict Value of Objective Function

10 35 oy e 0.1

30
NUmber of Neighpooe 40 45

Search Space Reduction reduction/Initial Solutions



Virtual Network Embedding Prediction/Classification Pipeline [9]

G? — Gf—l G? — G?—l

reject T rejectT
v (GY) | Machine I G VNE
—_— . —l .
Learning | accept Algorithm

Y ,
VNR ds(GF 1) Gy,

A

e

accept
&
embed

Gy

.lllll immm
*
- *
#
*
*
*
¥
+

Substrate Substrate & embedded VNR

= Learn and predict the acceptance and embedding cost of a VNR

= Supervised learning
= Offline training!

[9] A. Blenk, P. Kalmbach, P. van der Smagt, W. Kellerer, Boost Online Virtual Network Embedding: Using Neural Networks for Admission Control. 12th

International Conference on Network and Service Management (CNSM), pp. 10-18, 2016

37



TUTH

Learning to Accept and to Predict the Cost

Library: Model Training and Selection:

« Sci-Kit Learn [9] 60% Training 20% Validation 20% Testing

Graph features: ARV I > '1\. \1;‘

Node degree
Closeness 1 1 1 1

Feature Extraction

Feature Extraction

Betweeness
Spectral Features

Measures:

* R?(goodness of fit for
ML mOdGIS) Training Set Validation
« TPR/TNR/Accuracy!/... Set

Classifier/Regressor:

* Recurrent Neural Network (RNN) parameters
* Linear Regression (LR)
« Bayesian Ridge Regressor (BRR)
® RandOm FOFGSt Regressor (RF) Parameter selection 1BeSt —)
. Parameters
» Support Vector Regression (SVR)
[9] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

Final
Results
38



Supervised Learning & Speed-Up Results [10] TLTI

WA Accepted RN Infeasible DP —— SDP-M
NNX\N  No Solution B Filtered
1.00 - ' 80
5 =
=) —
= 0.75 = 60 N = "
o o0 — — — —
£ 050 = 40 =fl |= : = ||E
S 3 = E E -~ = ||E
5 0.25 20 S e — =M |I=
S -~ E =
Efficiently filter infeasible = : =
0-00 : y : - ... save runtime! —
and inefficient requests ! !
< . . . . . . <
cdododododododod o S S = < o = = = <
3 ) ) %! et Nt o o o o N o O \O O N (o)) ™
G S P L A
N N N N A N )
- - — - - — — - —
[10] Blenk, A. A. (2018). Towards Virtualization of Software-Defined Networks: Analysis, Modeling, and Optimization (Doctoral dissertation, 39

Technische Universitat Minchen).



And keep the performance ...

F

SDP-ML

op

- 1 = Y'06=1
- €= Y 06=1
- C=Y'06=1
- 1 = Y'09=1
- €= Y09=1
- C=Y'09=1
- 1 = Y'0e=1
- €= Y0e=1

- ¢ = y0e=1

dO

“ 0.4

0.0

40



Conclusion

= Realizing flexible virtualized networks introduces new challenges
= Overhead and interference
= New dimensions for optimization

= This talk

= Atool for measuring virtualization layers
= Application of neural computation and machine learning to network algorithms

Thank youl!
Questions?

41



Research Trailers

42



Where did we apply Artificial Intelligence (Machine Learning) so far? TUTI

&
BPte Sy
5 A e ¥ q(e), 2 - l-.r‘tpguvc:ri/‘«?;('v,u all
S ' L ® = r(alc), b) & bpunialey);
E & ¢ ; & ol W o> logged").a(), * - q(a), & = a.replace
— = 3€ € a.length;ce+) { @ == r(alc], b) & bowiGle);
N A ® b.length - 1; return c; } funct‘mn 0 '=' by
Network Planning Network Monitoring Network Resource
and Dimensioning Allocation Algorithms
= Prepare your network for = Create network service = Virtual network provisioning
failures graphs = Function placement
= Generate network topologies = Detect anomalies = Admission control
with realistic characteristics = Flow routing

Research Towards Self-Driving Networks

43



Network Monitoring

= (Weighted) Stochastic Block Models

= Machine Learning for training
(unsupervised)

= \Who communicates with whom

— Create service graph layout
* Plan and benchmarking

— Generate realistic communication patterns
= Communication pattern changes over time

— Detect anomalies (abnormal bot

communication)

update from

T

Anomal

Detection

SBM has many applications!

IEEE AnNet Workshop 2017:
Generating Topologies with SBMs [11]

IEEE INFOCOM Poster 2018:
Botnet Detection [12]

ACM SIGCOMM Poster 2018:
Weighted SBMs [13]

[11] P. Kalmbach, A. Blenk, M. Kluegel, W. Kellerer, Generating Synthetic Internet- and IP-Topologies using the Stochastic-Block-Model. 2nd IFIP/IEEE International
Workshop on Analytics for Network and Service Management (AnNet), 2017
[12] P. Kalmbach, A. Blenk, S. Schmid, W. Kellerer, Themis: Data Driven Approach to Botnet Detection. 37th IEEE Conference on Computer Communications

(INFOCOM), 2018

[13] P. Kalmbach, L. Gleiter, J. Zerwas, A. Blenk, W. Kellerer, Modeling IP-to-IP communication using the Weighted Stochastic Block Model. ACM SIGCOMM 2018 44

Conference Posters and Demos, 2018




SBM in Action

o
SO
A\ ra
N A '!:,.,.‘\\!

W\ @)
,‘\ \k "1),‘ /X S
(Y "\fl"}’ i WA % N
P N [\ &5 (/ l"," W
"\’4, l, 'I.v:‘—

. 4
“

%
;

= Router Level Graph of the Internet
= 939 nodes, 988 edges

= |ntelligent grouping based on
communication patterns only

45



Network Planning and Dimensioning TLTI

= Empower your network to be prepared @ @ﬁ?edégfgt?én

= For failures 'L
= For changing traffic
= For new services

Manageable b
A S

(a) Simple. (b) Robust. (c) Empowerment.

ACM SIGCOMM Self-DN Workshop
2018: Empowerment [14]

Empowerment towards Network Intelligence?

[14] P. Kalmbach, J. Zerwas, P. Babarczi, A. Blenk, W. Kellerer, S. Schmid, Empowering Self-Driving Networks. Proceedings of the Afternoon

Workshop on Self-Driving Networks - SelfDN 2018, ACM Press, 2018 46



