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Abstract

Thermoacoustic oscillations, arising due to the interaction of the flame front and the acous-
tics of the system, can reduce the life span of combustion systems. To counteract any unde-
sirable qualities, an in-depth knowledge of the dominating processes is required. Therefore
often low order models are applied. A low order model describing the flame motion is the G-
equation. For the G-equation, an accurate velocity model is needed. Such a velocity model is
derived in this thesis. This model can capture the impact of the flame front induced gas ex-
pansion on the velocity field. Therefore, several modified sources are positioned on the flame
front. It is found that the velocity profile obtained by this model is well aligned with the veloc-
ity profile of Cantera simulations for an unstretched flame front. However, a big advantage of
this model is that it needs little computational cost. In combination with a G-equation solver,
the impact of the gas expansion on the linear response of premixed flames is investigated. It
is found that the gas expansion increases the flame shape curvature. In addition to that, the
gas expansion alters the linear response of the flame towards an acoustic excitation. It leads to
an oscillating impulse response accompanied with a high magnitude in frequency response
at that oscillation frequency. It is also found that the gas expansion has to be accounted for
the existence of convective waves in the upstream flow of an perturbed flame front and the
Darrius-Landau mechanism.

iv



Contents

Nomenclature vii

1 Introduction 1

2 Flame Physics and Flame Flow Interactions 3
2.1 Flame Thickness and Flame Regions . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Laminar Flame Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Velocity Acceleration through the Flame Front . . . . . . . . . . . . . . . . . . . . . 6

2.4 Flame Front is a Volume Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Barocline Vorticity Production at the Flame Front . . . . . . . . . . . . . . . . . . . 9

2.6 Flame Front Influence on Upstream Flow . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 Darrius-Landau Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Flame Modeling and Flame Response 13
3.1 G-Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Flame Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Velocity Models for the FTF Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Acoustic Based Velocity Models . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.2 Convective Velocity Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Acoustic Modeling 23
4.1 Governing Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Solving the Laplace Equation with Conformal Mapping . . . . . . . . . . . . . . . 24

4.2.1 Exponential Function Mapping . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.2 Schwarz-Christoffel Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.3 Kutta-Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Volume Production Modeling 31
5.1 The Laplace-Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 The Desingularized-Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.1 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.2 G-Equation Solver Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.3 Required Number of Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

v



CONTENTS

6 Impact of the Gas Expansion on the Flame Shape 39
6.1 Flame Shape Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Parameter Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3 Impact of the Duct Geometry on the Flame Shape . . . . . . . . . . . . . . . . . . . 42

7 Impact of the Gas Expansion on the FTF 45
7.1 Solver Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2 FTF Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.3 Parameter Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.4 Relation to Known Physical Phenomena . . . . . . . . . . . . . . . . . . . . . . . . 49

8 Conclusion 53

Bibliography 54

vi



Nomenclature

Acronyms

CFD Computational Fluid Dynamics

CID Convective Incompressible with Dirac Kernel

CIG Convective Incompressible with Gaussian Kernel

FFD Flame Foot Displacement

FR Frequency Response

FTF Flame Transfer Function

IR Impulse Response

SDF Signed Distance Function

Functions and Mathematical Operators

O (·) Order of Magnitude

∗ Temporal Convolution

δ(t ) Dirac Function

D·
Dt Substantial Derivative after the Time

∇ Nabla Operator

∂·
∂a Partial Derivative after the Parameter a

exp(·) Exponential Function

F (ω) Frequency Response Function

h(t ) Impulse Response Function

i Imaginary Number

vii



CONTENTS

sg n(·) Sign Function

Greek Symbols

α Angle between Flame and Horizontal Line [rad]

β Angle of Kutta-Panel [rad]

δ f Flame Thickness [m]

∆g Gap [m]

δM Markstein Length [m]

∆o Overlap [m]

η Horizontal Flame Coordinate [m]

κ Flame Stretching Rate [1/m]

κCur v Curvature [1/m]

κs Strain Related Stretch [1/m]

ω Circular Frequency [1/s]

Φ Potential / Equivalence Ratio

ρ Density [kg/m3]

σ Kernel Width [m]

σg Growth Rate [1/s]

τ Pseudo Time Step [-]

τc Convective Time Scale [s]

τr Time of Restoration [s]

~Ω Vorticity Vector [1/s]

ξ Complex Coordinate in Image Domain / Perturbation [m]

Roman Symbols

∆hR Heat of Reaction [J/kg]

∆s Length of the Flame Front Part [m]

Q̇ Heat Flux [J/s]

viii



CONTENTS

V̇E Entering Volume Flux [m3/s]

V̇l Leaving Volume Flux [m3/s]

V̇p Produced Volume Flux [m3/s]

~n Normal Vector [m]

~u Velocity Vector [u1,u2] [m/s]

~vF Absolute Flame Velocity [m/s]

~x Space Vector [x1, x2] [m]

A Flame Front Surface [m2]

aΨ Radius of Curvature of a Streamline [m]

Cr Confinement Ratio [-]

D Duct Diameter [m]

E Expansion Ratio [-]

f Frequency [1/s]

fb Parameter for FBD-Model [m/s]

G G-Field

H Length of Kutta-Panel [m]

He Helmholtz Number [-]

K Parameter for the CIG-Model [-]

k Wavenumber [1/m]

kcr i t Critical Wavenumber [1/m]

LF Flame Length [m]

M Mach Number [-]

N Number of Sources [-]

p Pressure [Pa]

r Radial Coordinate [m]

r0 Source Radius [m]

ix



CONTENTS

Ra Combustor Radius [m]

Ri Feed Channel Radius [m]

s0
L Unstretched Laminar Burning Velocity [m/s]

sΨ Coordinate along a Streamline [m]

sL Laminar Burning Velocity [m/s]

t Time [s]

Tb Burnt Temperature [K]

TR Reaction Temperature [K]

Tu Unburnt Temperature [K]

u Absolute Velocity / Complex Velocity [m/s]

u′
E Excitation Velocity [m/s]

u′
ac Acoustic Velocity [m/s]

uc Convective Velocity [m/s]

uE Entering Velocity [m/s]

ur Restoration Velocity /Radial Velocity [m/s]

ubulk Bulk Flow Velocity [m/s]

upot Potential Velocity [m/s]

ur e f Reference Velocity [m/s]

x Complex Coordinate [m]

xF Flame Aligned Coordinate System [m]

xL Laboratory Aligned Coordinate System [m]

Le Lewis Number [-]

Ma Markstein Number [-]

Superscripts and Subscripts

(·)′ Fluctuating Parameter

(·)∗ Non-Dimensional Parameter

x



CONTENTS

(·)∥ Parallel Parameter to the Flame Front

(·)⊥ Perpendicular Parameter to the Flame Front

(·)ξ Parameter in Image Domain

(·)b Burnt Parameter

(·)r Radial Direction

(·)s Induces Effect by a Source

(·)u Unburnt Parameter

(̄·) Averaged Value

(̃·) Complex Conjugate Parameter

xi



1 Introduction

In times of global warming it is necessary to reduce the consumption of fossil fuels, which pro-
duce toxic gases like NOx when burned with an oxidizer in engines or power plants. Therefore,
especially premixed flames got in the center of interest. The advantage of premixing the gas
mixture before burning it is that a lean combustion can be achieved and thus lower burning
temperatures [13]. The lower the burning temperature, the less nitrogen oxides are produced
and the thermal stress on the combustion system is decreased.
The problem about the premixed combustion technology is the sensitivity towards thermo-
acoustic-oscillations [13]. Those oscillations arise due to the interaction between the acous-
tics of the system and the combustion. The acoustics lead to velocity fluctuations u′, which af-
fect the flame front so that more or less heat Q̇ is emanated by flame. This heat release fluctu-
ation Q̇ ′ then influences the acoustics of the system once again [15], see Figure 1.1. The feed-
back loop between the acoustics and the flame can become unstable, leading to high pressure
waves [15]. Those pressure waves can cause mechanical damage and reduce the lifespan of
the entire combustion system.
To control the thermoacoustic-instabilities, an in-depth understanding of the connection be-
tween the acoustic velocity fluctuation and the heat release fluctuation is required. In terms
of linear analysis, both are connected by the flame transfer function (FTF). The FTF can either
be analyzed in the time domain as the impulse response or in the frequency domain as the
frequency response. Several analytic models have been developed predicting the FTF , see e.g.
Fleifil et al. [12] or Schuller et al. [22]. The most successful models are the so called convective
velocity models. Those models are based on experimental observations for acousticcaly ex-
cited flames. It was observed that convective waves arise in the upstream fluid traveling with
the bulk flow speed [2]. Those waves dominate the motion of the unburnt gas, especially in
the range of low frequencies [2]. Steinbacher et al. [26] demonstrated, that only the poten-
tial part of the acoustic velocity perurbation has to be considered for the FTF. However, the
potential acoustic velocity field is not the reason for the convective waves. The high magni-
tude of the frequency response at certain excitation frequencies cannot be explained by the
acoustic velocity perurbation alone. Hence, they concluded that the flame-flow feedback is
very important for the FTF. In general, the flame-flow feedback constists of two mechanisms,
barocline vorticity production and gas expansion. Blanchard et al. [3] modeled the effect of
barocline vorticity in combination with a G-equation solver. They showed that the barocline
vorticity can be accounted by the convective waves, but did not investigate the effect on the
flame transfer function with the G-equation solver. Schlimpert et al. [21] investigated the ef-
fect of gas expansion by solving the compressible conservation equations for the fluid. They
showed that the effect of gas expansion cannot be neglected when modeling the FTF.
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Introduction

Flame

Acoustics

u′
ū

Q ′
Q̄

Figure 1.1: Schematic representation of the feedback-loop, consisting of the flame and the
acoustics.

In this thesis, the effect of gas expansion on the FTF is investigated with a G-equation
solver from Steinbacher [24]. Therefore, a velocity field u is modeled. This velocity field is
decomposed as follows:

u = ubulk +u′
ac +uvol (1.1)

Here, ubulk , u′
ac and uvol denote the potential bulk flow without flame-flow feedback, the

potential aoustic velocity field and the gas expansion induced velocity field, respectively. The
apostrophe at u′

ac indicates that the acoustic velocity field is small compared to ubulk and
uvol . For uvol , a new model is derived, based on modified sources. This model is restricted to
a two dimensional inviscid and incompressible flow.

Before the new model is derived, a brief insight in the main flame physics and the flame-
flow interactions is given in Chapter 2. Chapter 3 goes on to explain the general idea behind
the G-equation solver which is used in this thesis to model the flame motion. Subsequently
the FTF theory is introduced and some of the aforementioned analytical velocity models for
the FTF are presented and compared to each other. For the acoustic excitation, the velocity
field has to be modeled. This is done in Chapter 4. In Chapter 5, the new model for uvol is
derived. Starting with potential sources in combination with conformal mapping, the poten-
tial sources are then modified to correct arising singularities from the potential sources. A
first analysis of the impact of the gas expansion on the flame shape is analyzed in Chapter 6.
Finally, the influence of the gas expansion on the FTF is investigated in Chapter 7.

2



2 Flame Physics and Flame Flow
Interactions

Before deriving the new velocity model, it is first necessary to understand the relevant flame
physics and in particular the flame flow interactions.

In Section 2.1, it is shown that a perfectly premixed flame front can be divided into two
different zones, a preheating zone and a reaction zone. The reaction zone is dominated by
diffusive processes, whereas in the preheating zone advection is also of importance. When the
flame front is stretched, the diffusive processes can vary in direction and strength. This leads
to an increase or decrease of the laminar burning velocity sL , which denotes the propagation
velocity relative to the fluid, see Section 2.2. Section 2.3 goes on to explain that the gas velocity
increases when passing the flame front. This increase is caused by a negative density gradient
as the temperature of the burnt gas is higher than of the unburnt gas. The decrease in density
subsequently causes an increase in volume. The volume generated by a flame front is derived
in Section 2.4. In Section 2.5 it is shown that due to pressure and density gradients barocline
vorticity is generated. Both, barocline vorticity and volume production affects the upstream
fluid and can lead to stream tube deflections, see Section 2.6. For a specific range of wave
numbers, the flame front then becomes unstable. This instability is called the Darrius-Landau
instability and is discussed in Section 2.7.

2.1 Flame Thickness and Flame Regions

Normally, the main chemical reaction between the fuel and the oxidizer takes place in the
range of millimeters [16](Ch. 9). In the case of a standing flame front, unburnt premixed gas is
streaming towards the flame front with a temperature Tu and leaves the flame front as burnt
gas with the temperature Tb , see Figure 2.1. The heat that is emanated from the chemical reac-
tion warms up the burnt gas, so that Tb > Tu . The difference between Tb and Tu is often in the
range of thousands of Kelvin so that a huge temperature gradient arises. This gradient leads
to a heat flux between the burnt and unburnt gas. Therefore, the unburnt gas is preheated till
it reaches the burning temperature TR and starts to react. In Figure 2.2, a temperature profile
of a typical flame front is shown. It is also depicted that the flame front can be sub-divided
into two different zones, the preheating zone where no chemical reaction appears and the re-
action zone, where the main chemical reaction takes place [16](Ch. 9). The width of those two
zones together is called the laminar flame thickness δ f [16](Ch. 9).
Another important process is species diffusion, as the gas composition differs over the flame
front. The reactants diffuse from the unburnt gas towards the flame front and burnt along with

3
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flame front

burnt gasunburnt Gas

thermal diffusion

species diffusion

uu ub

Figure 2.1: Unburnt gas streaming towards a standing flame front ( ) and leaving it as
burnt gas. Because of gradients in temperature and gas composition, thermal and
species diffusion takes place.

Figure 2.2: Temperature profile and the mole fraction of C-radicals profile in a methane-air
flame within the vicinity of the flame front of which the center is located approx-
imately at x1 = 8 [mm]. Data was obtained by a simulation, generated by Stein-
bacher [23] with a GRI 3.0 mechanism.

reaction intermediates diffuse into the unburnt gas [16](Ch. 9), see Figure 2.1. Those reaction
intermediates reduce the burning temperature TR in the unburnt gas. Both temperature and
species diffusion are important processes for the flame front. Which process dominates the
flame physics, can be expressed with the Lewis number [16] (Ch. 9):

Le = =̂ temperature diffusion

species diffusion
. (2.1)
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2.2 Laminar Flame Speed

flame front

unburnt gas

uu

s0
L

flame front

burnt gas

ub

unburnt gas

uu

burnt gas

ub

sL

(a) (b)

Figure 2.3: Schematic representation of the laminar flame speed at the flame front ( ). On
the left side (a) is an unstretched flame front with the unstretched burning velocity
s0

L depicted. On the right side (b), a curved flame front with the stretched burning
velocity sL is shown.

2.2 Laminar Flame Speed

As explained in Section 2.1, the flame front physics is dominated by diffusive processes, which
preheat the unburnt gas to the burning temperature TR , so that the chemical reaction takes
place. Hence, the flame front is propagating relative to the gas. This relative propagating ve-
locity is called the laminar burning velocity sL and its direction is perpendicular to the flame
front pointing towards the unburnt gas, see Figure 2.3. It is important to stress that the burn-
ing velocity can either be defined towards the unburnt gas (sL,u), or towards the burnt gas
(sL,b).
sL is not a constant and depends on the fuel mixture, the temperature and the pressure of the
premixed gas as well as on the flame front geometry [16] (Ch. 9).
For instance hydrogen flames have a burning velocity sL,u ≈ 2.5 [m/s] [5], while methane
flames normally burn with sL,u ≈ 0.25 [m/s] [16] (Ch. 9). The higher the unburnt gas tem-
perature Tu is, the less energy is needed to reach the burning temperature TR and therefore
the unburnt gas reacts faster and sL descends. Moreover, sL declines with an increasing pres-
sure, as sL ∝ p−0.5 [16] (Ch. 9). It is denoted that the pressure differences p ′ along the flame
front are small and therefore sL is not locally affected by p ′.
The most important thing in this thesis is the dependence of sL towards the flame geometry.
For an unstretched flame front with a constant gas velocity ~u, the laminar burning velocity is
often written as s0

L , see Figure 2.3 (a). Flame stretching effects lead to an increase or decrease
of the laminar burning velocity sL . Those stretching effects alter the flame front geometry and
can be expressed by the flame stretching rate κ as it was done by Lieuwen [16] (Ch. 9):

κ= κs +κCur v , (2.2)

with κs =−~n·~n : ∇·~u κCur v =−sL · (∇·~n) .

5
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The strain κs only exists if there are gradients in the velocity ~u along the flame front and is
in particular responsible for flame stretching tangential to the flame front [16] (Ch. 9). κCur v

represents the stretching effects from the curvature of the flame front [16] (Ch. 9). By multi-
plying the stretching rate κ with the Markstein length δM , one obtaines the formula for the
influence of those stretching effects towards sL [16] (Ch. 9):

sL = s0
L −δM ·κ . (2.3)

The Markstein length scales with the thickness of the flame front and can be set in ratio with
the laminar flame thickness δF , thus defining the Markstein number Ma [16] (Ch. 9):

M a = δM

δF
. (2.4)

The Markstein length δM represents the sensitivity of the flame towards stretching effects [16]
(Ch. 9), as examined in Section 2.7. It can be > 0 or < 0 depending on the gas mixture, and
therefore the laminar burning velocity sL can be bigger or smaller than the unstretched burn-
ing velocity s0

L [16] (Ch. 9). For most gas mixtures including the investigated case in this thesis,
the laminar burning velocity sL > s0

L for a concave (towards the unburnt gas ) flame front as it
is depicted in Figure 2.3 (b).
The reason why sL changes due to stretching effects is that temperature and species diffusion
vary with a curved flame front [16] (Ch. 9), and therefore the premixed gas burns faster or
slower. Hence, the Markstein length is a function of the Lewis number Le [16] (Ch. 9), which
has already been described in Section 2.1.

2.3 Velocity Acceleration through the Flame Front

As already described in Section 2.1, the incoming unburnt gas is heated while passing through
the flame front. At the same time the density of the fluid decreases, see Figure 2.4. With the
integral continuity equation: ∫

V

∂ρ

∂t
dV +

∫
S
ρ ·~u ·~n dS = 0 , (2.5)

a relationship can be derived between the density ρ and the velocity u. Therefore a control
volume with unit depth and unit height is set around the flame front, see Figure 2.5. Assuming
a stationary unstretched flame front, which is the case for ~u =−~s0

L , the partial derivation after

the time vanishes: ∂
∂t = 0. Under the assumption that the fluid just flows perpendicular to the

flame front, there is no fluid entering or leaving the control volume at the bottom or the top.
Hence, Equation (2.5) then reduces to:

ρu ·uu = ρb ·ub . (2.6)

The subscripts (·)u and (·)b represent the unburnt and the burnt fluid properties, respectively.
With the expansion ratio E defined as

E = ρu

ρb
, (2.7)

6



2.3 Velocity Acceleration through the Flame Front

Figure 2.4: Temperature and density profile in a methane-air flame in the vicinity of the flame
front, of which the center is located approximately at x1 = 8 [mm]. Data was ob-
tained by a Cantera simulation, produced by Steinbacher [23] with a GRI 3.0 mech-
anism.

flame front

unburnt gas

uu = s0
L,u

burnt gas

ub = s0
L,bcontrole

"1"

volume

Figure 2.5: Control volume ( ) with unit height and depth around an unstretched stationary
flame front ( ). Unburnt gas is entering the control volume with the velocity uu =
s0

L,u and leaving it as burned gas with the velocity ub = s0
L,b .
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flame front

burnt gasunburnt Gas

uu,∥

uu,⊥

uu

ub

ub,∥
ub,⊥

Figure 2.6: Schematic plot of the velocity of a fluid in the vicinity of a curved flame front
( ). A fluid particle enters the flame front with the velocity uu ( ) and leaves
it with the velocity ub . Thereby, the tangential unburnt velocity component uu,∥
( ) equals the tangential burnt velocity ub,∥. The normal unburnt velocity com-
ponent uu,⊥ ( ) is increased according to Equation (2.10).

the velocity difference before and after the flame front can be expressed as:

ub −uu = s0
L,u · (E −1) . (2.8)

As already mentioned, the derivation of Equation (2.8) is just valid under the assumption that
~u = −~s0

L . For a velocity ~u 6= −~s0
L , the flame front moves with the absolute flame velocity ~vF =

~u +~s0
L . To generalize the above derivation, the control volume can be moved with the flame

front. Then the inlet velocity is s0
L again and Equation (2.8) can be derived with the moving

control volume.
In the case of a curved flame front, only the velocity normal to the flame front is accel-

erated according to Equation (2.8), the tangential velocity remains unaltered [16] (Ch. 9), see
Figure 2.6. The relationship between the unburnt and burnt velocities then express as

ub,∥−uu,∥ = 0 (2.9)

ub,⊥−uu,⊥ = sL,u · (E −1) , (2.10)

with the subscripts (·)⊥ and (·)∥ indicating the normal and tangential quantities to the flame
front, respectively. Note that the unstretched burning velocity s0

L from Equation (2.8) now be-
comes the stretched burning velocity sL [16] (Ch. 9).

2.4 Flame Front is a Volume Source

As already mentioned in Section 2.3, a flame reduces the density of the incoming gas. Accom-
panied with that is an increase in fluid volume. This can be examined with the same approach
which was already used in Section 2.3. The flame is assumed to be stationary, unstretched and

8



2.5 Barocline Vorticity Production at the Flame Front

a control volume is set, as depicted in Figure 2.5. The balance of volume entering and leaving
the control volume is:

V̇E + V̇p = V̇l . (2.11)

In the above equation V̇E , V̇l and V̇p represent the entering and leaving volume flux and the
volume flux produced in that control volume, respectively. The entering and leaving volume
flux in that control volume with unit height and unit depth are:

V̇E

A
= uu (2.12)

V̇l

A
= ub . (2.13)

Using the above equations and Equation (2.8), Equation (2.11) can be solved for the volume
flux produced by the flame V̇p per unit height and unit depth as:

V̇p

A
= s0

L,u · (E −1) . (2.14)

As V̇p > 0, a flame front acts as a volume source. Equation (2.14) can also be derived for an
unburnt velocity ~u 6= −~s0

L using the same technique with the moving control volume as in
Section 2.3. It is denoted that the produced volume flux can vary when the flame front is
curved. The reason for that is that the velocities ~uu and ~ub can vary along the flame front,
see Section 2.7. To generalize Equation (2.14), s0

L,u has to be replaced by sL,u [19].

2.5 Barocline Vorticity Production at the Flame Front

Section 2.3 previously showed that the density and the velocity of a gas change while pass-
ing through a flame front. When analyzing the stationary integral momentum equation for a
frictionless fluid without any external forces∫

S
ρ ·~u ·~u ·~n dS =−

∫
S

p ·~n dS , (2.15)

one can derive that the static pressure also has to vary. Therefore a moving control volume is
set, as in Section 2.3 and Section 2.4, around an unstretched flame front, see Figure 2.5. The
velocities entering and leaving the control volume are s0

L,u and s0
L,b = s0

L,u ·E (comp. derivation
of Equation (2.8)) respectively. Then Equation (2.15) reduces to [16] (Ch. 7):

ρb · (s0
L,b)2 −ρu · (s0

L,u)2 =−pb +pu . (2.16)

With the definition of the expansion ratio E, Equation (2.16) can then be solved for the pres-
sure difference through the unstretched flame front:

pb −pu = (s0
L,u)2 · (1−E) ·ρu . (2.17)

9
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It is denoted that the relative pressure difference [16] (Ch. 7)

pb −pu

pu
=O (M 2

u) , (2.18)

is small as it is of the order of the square of the incoming Mach number Mu .
Equation (2.17) shows that in addition to the density gradient there is also a pressure gra-

dient existing through the flame front. When those two gradients are not coaligned, barocline
vorticity is produced. This vorticity production can be seen in the frictionless vorticity equa-
tion without any external body forces [16] (Ch. 7):

D~Ω

Dt
= (~Ω ·∇) ·~u −~Ω · (∇·~u)− ∇·p ×∇·ρ

ρ2
. (2.19)

Here, ~Ω is the vorticity vector. The last term on the right side of Equation (2.19) represents the
barocline vorticity production. It is obvious that no barocline vorticity is produced when the
pressure and density gradients are coaligned. Equation (2.19) can be solved for a two dimen-
sional stretched flame front as [16] (Ch. 7):

Ωb = Ωu

E
−

(
1− 1

E

)
·
(

uu

aΨ
+ ∂uu

∂sΨ

)
. (2.20)

Here, the vorticity points out of the two-dimensional plane. aΨ and sΨ are the radius of cur-
vature of streamlines in the unburnt gas and the coordinate along a streamline respectively.
Therefore, the vorticity in the burnt gas Ωb is only dependent on the vorticity in the unburnt
gas Ωu and the curvature of the streamlines. When the flame front is unstretched, the last
term in the brackets on the right hand side of Equation (2.20) vanishes and hence no baro-
cline vorticity is produced [16] (Ch. 7).

2.6 Flame Front Influence on Upstream Flow

Because of volume production, the gas is accelerated normal through the flame front, see
Section 2.3. In addition to that there is also an upstream influence of the flame front on the
velocity field, see Figure 2.7 (a).
When a fluid element approaches a convex (towards the unburnt gas) part of the flame front,
the pressure is increasing [16] (Ch.7). This pressure increase is illustrated in Figure 2.7 (b). For
low Mach numbers in the unburnt gas, the relationship between the pressure and the velocity
can be expressed with the stationary incompressible Bernoulli equation [16] (Ch.7):

p + ρ

2
·u2 = const . (2.21)

Hence, a pressure increase in flame direction leads to a velocity deceleration in flame direc-
tion, so that ∂u1

∂x1
< 0, see Figure 2.7 (b). The subscripts (·)1 and (·)2 denote the quantity in x1

and x2 direction. From the incompressible stationary continuity equation

∂u1

∂x1
+ ∂u2

∂x2
= 0 , (2.22)
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flame front

burnt gasunburnt gas

in
cr
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d
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g

pressure
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x2

x1

Figure 2.7: Streamline ( ) deflection at the flame front ( ) due to preheating effects and
vorticity at the flame front (a). Pressure and velocity at the blue line (a) are quali-
tative shown on the right (b). Graphic design from (a) is inspired by Rhee [19], the
qualitative pressure and velocity profile is adapted from Lieuwen [16] (Ch.7).

it can be seen that then ∂u2
∂x2

> 0. That means that a stream tube diverges and widens before the
convex part of a flame front, see Figure 2.7 (a). In contrast to that, the stream tubes are forced
to converge when approaching a concave part of a flame front.

It is questionable whether the volume production or barocline vorticity production dom-
inates the stream tube deflection. A short discussion about the impact of the volume produc-
tion is given in Section 7.3.

2.7 Darrius-Landau Instability

As described in Section 2.6, the gas is decelerated (accelerated) when approaching to a convex
(concave) flame front. Consequently, the flame front is affected by a varying upstream velocity
uu . Under the assumption that the burning velocity sL is constant, flame front deflections
then increase as the absolute velocity~vF of the flame front varies, see Figure 2.8. Hence, every
pertubation ξ with the wavenumber k grows in time and the flame front is unconditionally
unstable [18]. This instability is called the Darrius-Landau instability.

The assumption that the burning velocity sL is a constant, was already discussed in Sec-
tion 2.3. In general, the burning velocity sL decreases (increases) for a convex (concave) flame
front and therefore the flame movement~vF is reduced. The growth rateσg of the perturbation
ξ as a function of the perturbation wavenumber k is [18]:

σg = s0
L ·k

1+E
·
√

1+k2 ·δ2
M − 2 ·k ·δM

E
+ 1−E 2

E
− (1+k ·δM )

 . (2.23)

For a growth rate σg (k) < 0, the flame front absolute stabilizes towards that specific pertur-
bation wavenumber as the perturbation decreases in time [18]. Is σg (k) > 0, then the flame

11
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flame front

ξ

Figure 2.8: Schematic representation of an perturbed flame front ( ). The perturbation ξ

grows in time ( ) due to the Darrius-Landau instability. Graphic design is in-
spired by Pitsch [18].
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Figure 2.9: Schematic representation of the growth rate σg of an instability over the
wavenumber k. With increasing δM , the value of the critical wave number kcr i t

decreases. The graph is adapted from [18].

front is unstable. The critical wavenumber kcr i t up to which the flame front is unstable (0 <
k < kcr i t ) depends on the Markstein length, see Figure 2.8. With increasing δM , the value of
kcr i t decreases [18]. Hence, thicker flame fronts are more stable than thinner flame fronts.
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3 Flame Modeling and Flame Response

Chapter 2 gives a short insight into the flame physics and the flame flow interactions. Chap-
ter 3 explains how theses effects can be modeled. Section 3.1 presents a mathematical de-
scription of the flame front movement, relying on the so called G-equation. It is explained
that G is a scalar field which can be interpreted as a surface moving in space. For an accurate
description of the flame front movement, the G-field needs to be a signed distance function.
With usage of a simplified G-equation, it is possible to predict the response in heat release of
a flame front towards an acoustic excitation. This response is called the flame transfer func-
tion (FTF), see Section 3.2 . It is explained that the FTF can be analyzed either in the time or
in the frequency domain and each has it’s advantages. For an analytic description of the FTF,
several simplified velocity models are introduced. Those models are presented in Section 3.3
and briefly analyzed in both their accuracy and their physical motivation.

3.1 G-Equation

Some details of flame physics were already described in Section 2.1. This section outlines,
how a flame front can be described in a mathematical manner. The flame front is treated as
a discontinuous surface separating the unburnt gas from the burnt gas [12]. This surface is
advected through the velocity ~u and moves relative to the gas with the burning velocity~sL . In
general, moving surfaces can be described with a Level-Set-Method as proposed by Sethian
and Osher [17]. Therefore a n-dimensional surface is described in n+1 dimensions. Kerstein
et al. [14] adopted one of Sethian’s and Osher’s Level-Set equations and expressed it as the so
called G-equation:

∂G

∂t
+~u ·∇ ·G = sL · |∇ ·G| . (3.1)

In Equation (3.1), G is a scalar field depending on the location ~x and the time t . G is often
chosen so that it states the shortest distance from a point~x towards the flame front, which is
thereupon located at G = 0 [20]. The sign of G is defined as G < 0 in the unburnt gas and G > 0
in the burnt gas [12], see Figure 3.1. Hence, the G-field is a signed distance function (SDF) and
|∇ ·G| = 1 with ∇ ·G pointing towards the unburnt gas [20]. This SDF-property is important
for the computational accuracy of the flame front movement, as it was already described by
Satheesh et al. [20].
For a two-dimensional flame front, the G-field can be interpreted as a three-dimensional sur-
face with the flame front as an isoline. This surface moves with the velocity~vF , with reference
to Section 2.2. It is denoted that sL usually does not vary with the strain related stretch κs ,
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flame front

G < 0
G > 0

G < 0unburnt gas

burnt gas

Figure 3.1: Schematic presentation of the G-field for a Bunsen flame front with a pocket for-
mation. In the unburnt gas (grey), the sign of G is defined as G < 0 and in the burnt
gas as G > 0.

as it was expressed in Equation (2.2) and Equation (2.3) and therefore only depends on the
curvature κcur v of the G-field.

As ~u can vary in the two-dimensional domain, the G-field can lose it’s signed distance
properties [20]. To counteract this, several methods exist. For instance the G-field can be re-
shaped to a signed distance field by solving the equation

∂G

∂τ
+ sg n(G0) · ∇ ·G

|∇ ·G| = sg n(G0) , (3.2)

as proposed by Sussman et al. [28]. In Equation (3.2), sg n(G0) is the sign function of the G-
field and τ is a pseudo time step with which Equation (3.2) is iteratively solved until |∇·G| ≈ 1.
Another method is to propagate the velocity ~u at the flame front normal to the flame front in
the entire domain. This can be done with the so called Fast Marching Method, proposed by
Adelsteinsson et al. [1]

3.2 Flame Transfer Function

When a flame front is acoustically excited, it responds to that excitation with a shifting in heat
release Q̇ [15]. This response can be expressed with the Flame Transfer Function (FTF), either
in the time or the frequency domain [4]. To analyze the FTF, it is first necessary to divide the
velocity and the heat release in its averaged (̄·) and fluctuating (·)′ quantities:

u = ū +u′ (3.3)

Q̇ = ¯̇Q +Q̇ ′ . (3.4)

In the frequency domain, the excitation signal u′
E and the fluctuating heat release Q̇ ′ are con-

nected by the frequency response (FR) function F (ω) as [25]:

Q̇ ′

¯̇Q
= F (ω) · u′

E

ūE
. (3.5)

14



3.2 Flame Transfer Function

Figure 3.2: Illustration of two different coordinate systems. The flame aligned coordinate sys-
tem xF is aligned to the unperturbed flame front ( ), with the flame front de-
flection ξ. The laboratory aligned coordinate system xL describes the perturbed
flame front position ( ) with the unperturbed horizontal distance η̄ and the dis-
turbance distance η′. Also depicted is the flame length L f and the angle towards
the horizontal α. This figure is adopted from Steinbacher et al. [25].

F (ω) is often depicted in a bode diagram, with it’s phase and magnitude plotted over the ex-
citation frequency ω. The reason why the FTF is described in the frequency domain is that it
is easy to analyze the behavior of the flame towards a certain excitation frequency.
As already mentioned, the FTF can also be analyzed in the time domain. Therefore, the flame
is excited with a unit impulse u′

E = δ(t ) [4]. The impulse response (IR) function h(t ) can be
obtained with [25]:

Q̇ ′

¯̇Q
= h(t )∗ u′

E

ūE
. (3.6)

In Equation (3.6) the mathematical operator "∗" expresses the temporal convolution f ∗ g ≡∫
f (τ) · g (x −τ)dτ. The advantage of analyzing the FTF in the time domain is that it is often

more easy to interpret the impact of some important flame attributes like time scales towards
the FTF [4]. With system identification tools it is then possible to transform the IR in the FR
and vice versa [25].
According to Lieuwen [15], the heat release fluctuation Q̇ ′ can be calculated as:

Q̇ ′

¯̇Q
=

∫
xF
∆h′

R d A∫
xF
∆h̄R d Ā

+
∫

xF
s′Ld A∫

xF
s̄Ld Ā

+ A′

Ā
. (3.7)

Equation (3.7) indicates that Q̇ depends on sL , the flame surface A and the heat of reaction
∆hR . For an analytical expression of the FTF, the change of heat release through s′L and ∆h′

R is
often neglected. Combining Equation (3.5) and Equation (3.6) with Equation (3.7) then results
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Figure 3.3: Schematic representation of different flames types. This diagram is adopted from
Steinbacher et al. [25].

in:

A′

Ā
= F (ω) · u′

E

ūE
(3.8)

A′

Ā
= h(t )∗·u

′
E

ūE
. (3.9)

An equation describing A was already presented in Section 3.1, the G-equation. Under the
assumption that pertubations are small and that the velocity field is uniform, a first order
analysis of the G-equation yields to

∂ξ

∂t
+ ū∥ · ∂ξ

∂x1,F
= u′

⊥ , (3.10)

see, e. g., Schuller er al. [22]. In Equation (3.10), ξ is the perturbed flame position in a flame
aligned coordinate system xF , see Figure 3.2. It is also possible to transform Equation (3.10)
in a laboratory fixed coordinate system xL , see e.g. Steinbacher et al. [25]:

∂η′

∂t
−cos(α) · sin(α) · ū1 · ∂η

′

∂xL
2

= u′
1 +

cos(α)

sin(α)
·u′

2 . (3.11)

Here η′ is the horizontal flame front deflection andα is the flame angle towards the horizontal
line , see Figure 3.2. Both Equation (3.10) and Equation (3.11) express the flame front position
dependent on the velocity u and can be integrated to obtain the flame surface area A. As dis-
cussed by Steinbacher et al. [25], it is important to consider which coordinate system is chosen
for the integration, as a special treatment of the boundaries may be necessary depending on
the flame type. An overview of the most common flame types is depicted in Figure 3.3.
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3.3 Velocity Models for the FTF Prediction

For an analytical expression of the flame transfer function, it is necessary to derive a simplified
expression of the distorted velocity u′ at the flame front, see Equation (3.10).

In Section 2.6 it was previously shown that the flame front affects the velocity field due
to barocline vorticity production and heat release. Both processes are very complex and so
their influence along the flame front on u′ is hard to describe analytically. Furthermore, u′ is
affected by the excitation u′

E , depending on the combustor geometry, see Chapter 4.
There still exists several simplified models which are presented in this section. In general, one
can distinguish those models in acoustic based models (Section 3.3.1) and convective models
(Section 3.3.2).
Their impact on the IR is explained and the corresponding FR is shown. Subsequently, the
IR and FR of those models are compared to numerical results, obtained by CFD simulations.
Those simulations were made by Steinbacher et al. [26] for a backward facing step duct geom-
etry, with a feed channel radius of Ri = 5 [mm] and a confinement ratio of Cr = Ri /Ra = 0.66
and Cr = 0.4, see Figure 4.2. Ra denotes the combustor radius. The physical interpretation
technique used in this section is adopted from Blumenthal et al. [4]. They described the re-
sponsible processes for the linear flame response of Bunsen and Wedge Flames. It is denoted
that this section is restricted to Slit flames, as the differences between the velocity models are
most pronounced. Despite this, the techniques from Blumenthal et al. [4] can be used without
alterations. Details about the influence of velocity models on the FTF of other flame types can
be seen in [25] or [4].

3.3.1 Acoustic Based Velocity Models

Acoustic velocity models are based on neglecting the influence of the flame on u′ and only
modeling the acoustic response to the excitation u′

E . In Section 4.1 it will be shown that the
domain is acoustic compact [26] and a simplified relation between u′ and u′

E yields to the
Laplace equation. An important property of the Laplace equation is that the solution adjusts
immediately, as the equation does not contain any time derivation ∂

∂t . Hence, the boundary
condition u′

E affects u′ at the entire flame front without any time lag.
Consequently, Fleifil et al. [12] proposed the uniform velocity model. This model was de-

rived in a duct geometry without area jumps and is a solution of the Laplace-equation. The
velocity fluctuation u′ for the IR then expresses as [4]:

u′
1 = u′

E = δ(t ) u′
2 = 0 . (3.12)

In the above equation δ(t ) denotes the Delta function. Due to that impulse excitation, the
flame front is immediately advected downstream in the xL

1 direction, see Figure 3.4 (a). When
the flame front is stabilized at the burner rim, it then restores itself with the restoration veloc-
ity ur in the xF

1 direction. The restored part of the flame front consumes the incoming unburnt
gas, so that the perturbed part of the flame front is stifling, see Figure 3.4 (b). The overlap ∆o

arises and increases the flame front surface area. ∆o is transported downstream with ur until
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ur

unburnt gas

burnt gas

ur

unburnt gas

burnt gas

∆o

t0 = 0+

x2

x1 x1

x2(a) (b)

t > t0

Figure 3.4: Depicted is a displaced flame front ( ), anchored at the burner rim. The initial
flame front restores itself with the velocity ur (a). For later times (b) an overlap ∆o

arises which travels with the velocity ur along the flame front. The unburnt gas is
depicted in grey. Diagram is adapted from Blumenthal et al. [4].

it reaches the flame tip and vanishes. The time it takes for the overlap to advect from the flame
base to the flame tip is called τr and is a typical timescale for the flame restoration process. τr

can be expressed as [26]:

τr = Ri

sL ·cos(α)
. (3.13)

The normalized IR function h∗ = h · τR plotted over the normalized time t∗ = t/τr can be
seen in Figure 3.5. Also depicted is the FR magnitude and the FR frequency plotted over the
Strouhal number f ∗ =ω/(2 ·π ·τr ). The IR of the uniform model ( ) directly jumps to h∗ = 1
at the time t = 0+, when ∆o is created, as A′ > 0. At t∗ = 1 (t = τr ), when the overlap reaches
the flame tip and vanishes, the IR decreases to the value h∗ = 0, as the flame front is restored
and subsequently A′ = 0. Comparing the FTF prediction to the FTF obtained by the CFD sim-
ulation ( ), it can be seen that the FR magnitude is underestimated by the uniform model.
In addition to that, the phase does not correspond to the numerical results.
The reason for that is that the uniform velocity model was developed for Bunsen flames in
a duct without any area jump. The area jump leads to a higher velocity fluctuation u′ at the
flame base than at the flame tip, see Figure 4.5. Furthermore, Slit flames are very sensitive to-
wards any kind of flame tip movement [25] and so the velocity difference in u′ along the flame
front is of importance.

An improvement of this was made with the Flame-Foot-Displacement (FFD) model, pro-
posed by Steinbacher et al. [26]. The FFD model uses a triangular velocity profile, where
u′
⊥ = 2 ·sin(α) ·u′

E / fb at the flame base and shrinks towards the flame tip. This velocity profile
is a better approximation for u′, but does not satisfy the local continuity equation [26]. The
parameter fb can be used to fit the initial flame foot displacement [25].
The IR predictions of the FFD model ( ) can capture the first deflection of the impulse
response as well as improving the phase predictions towards the uniform model. It is, how-
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Figure 3.5: Predictions for the FTF of Slit flames from the Uniform model ( )(τr = 18.7 [ms])
and the FFD model ( ) (τr = 18.7 [ms]), compared with results from a CFD simu-
lation ( ) (τr = 11.4 [ms]). The simulation was made by Steinbacher et al. [26] for
a backward facing step duct geometry, with a feed channel height of Ri = 5 [mm]
and a confinement ratio of Cr = 0.66.

ever not able to predict the high deflection of the FR magnitude about f ′∗ = 0.8. The second
and third deflection of the impulse response are also not captured. This is due to the miss-
ing flame-flow feedback towards u′ [26]. The predictions of the FTF of Slit flames worsen for
smaller confinement ratios Cr . Further discussion about this effect can be seen in Section 7.3.
It is noted that for the above comparison the timescale τr was smaller for the CFD simulation
than for the theoretical models. This is due to the fact that the bulk flow speed is increased in
the CFD simulation.

3.3.2 Convective Velocity Models

Experiments of the flame behavior towards acoustic excitation, lead to the observation that
the excitation signal is convected with the bulk flow as waves in an axial direction [2], see
Figure 3.6. Those waves arise due to the flame-flow feedback [2]. According to Birbaud et al.
[2], the motion of the unburnt gas is dominated by those waves, especially in the range of low
Strouhal numbers. With an increasing Strouhal number, the acoustics get more important.
Based on that convective behaviour, Schuller et al. [22] proposed the so called convective
velocity model. The excitation signal u′

E is transported with the bulk flow in the axial direction
xL

1 and has no velocity in the xL
2 direction. The velocity can then be written for the IR as:

u′
1 = δ

(
t − xL

1

ū

)
u′

2 = 0 . (3.14)
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Figure 3.6: Experimental velocity observation of a conical flame front. Plotted is the veloc-
ity fluctuation in the axial direction u′

1 in [m/s], for an excitation frequency f0 =
70[Hz] at four instants φ= 0,π/4,π/2,3π/4. The figure is adopted from Birbaud et
al. [2].

In terms of flame aligned coordinate system, the impulse is convected with the velocity uc

along the flame front, see Figure 3.7. By virtue of that impulse, the flame is excited at the
position of the impulse and the gap∆g arises. The flame front then restores itself, as explained
for the uniform model. The gap and the overlap neutralize each other and as long as both exist
the flame front surface is not affected. The time it takes for the gap to reach the flame tip is τc

[26]:
τc = cos(α) ·τr . (3.15)

As τc < τr , first the gap and then the overlap reach the flame tip and vanish. Hence, the flame
front surface is first increased so that A′ > 0 and then decreased so that A′ = 0 again.
This increase at t∗ = τc /τr (t = τc ) and decrease t∗ = 1 (t = τr ) can also be seen in the IR of
the convective model ( ), see Figure 3.8. Comparing the FR prediction with results from
a CFD simulation ( ) with a confinement ratio of Cr = 0.4, it can be seen that the phase
aligns reasonable well, but the magnitude is underestimated for small f ∗ and does only slowly
decrease to zero for higher f ∗. In addition to that, the convective model does not satisfy the
local continuity equation.

Therefore, Cuquel et al. [11] proposed the convective incompressible velocity model. This
model is based on the convective model from Schuller et al. [22], as it adopts the velocity in
the axial direction u′

1. The velocity in xL
2 direction is determined so that it fulfills the local

continuity equation:

u′
2 =−xL

2 · ∂u′
2

∂xL
1

. (3.16)

The velocity component in xL
2 increases the local displacement from the impulse compared

to the convective model. This reflects in the IR of the convective incompressible model ( )
in a higher h∗. In addition to that, a negative impulse (•) arises at t∗ = 1.
The FR prediction can now capture the magnitude of the CFD results up to a Strouhal number
of f ∗ = 1.5. For f ∗ > 1.5 the magnitude is highly overestimated. The typical cut off frequency
of the FR is no longer to be able to forecast, due to the impulse at t∗ = 1. The phase prediction
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ur

unburnt gas

burnt gas

∆o

uc

∆g

x2

x1

Figure 3.7: Depicted is a displaced flame front ( ), anchored at the burner rim. The overlap
∆o and the gab ∆g travel along the flame front with the velocities ur and uc , re-
spectively. The unburnt gas is depicted in grey. Diagram is adapted from Birbaud
et al. [2].

improved compared to the convective model.
To obtain the typical cut off frequency, Steinbacher et al. [25] mixed the convective in-

compressible model with a Gaussian kernel (CIG-model) instead of the Dirac-delta function
(CID-model). The velocities then expresses as:

u′
1 = g

(
t −

xL
1,

K · ū1

)
(3.17)

u′
2 =

xL
2

K · ū1
· g ′

(
t − xL

1

K · ū1

)
, (3.18)

with the definition of the Gaussian kernel:

g (τ) = 1p
2 ·π ·σ2

·exp

(
− τ2

2 ·σ2

)
. (3.19)

Here g ′ is the derivative of the Gaussian kernel and σ denotes the standard deviation. K is a
parameter that increases the convection speed of the Gaussian kernel, which can be used to
fit the IR. The advantage of the Gaussian Kernel is that it disperses the impulse at t∗ = 1 from
the CID model in time, and therefore the high magnitude for higher frequencies is damped.
Both the IR and FR predictions of the CIG model improved compared to the CID-model, see
Figure 3.8. The IR can now capture the oscillating IR and also the magnitude of the FR is a
good approximation of the CFD result. It is noted that the CIG model seems to alter the char-
acteristic timescale τr . This is the reason why the oscillating IR is higher and starts at an earlier
t∗. When τr is adjusted so that the CIG-model and the CFD result start oscillating at the same
time, both FTFs are well aligned [25].
Especially for bunsen flames, the convective models have a better prediction of the FTF than
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Figure 3.8: Depicted are FTF of Slit flames from the convective model ( ) (τr = 18.7 [ms]),
the CID model ( ) (τr = 18.7 [ms]) and the CIG model (· · · · ·) (τr = 18.7 [ms]),
compared with results from a CFD simulation ( ) (τr = 15.7 [ms]). The simula-
tion was made by Steinbacher et al. [26] for a backward facing step duct geometry,
with a feed channel height of Ri = 5 [mm] and a confinement ratio of Cr = 0.4.

the acoustic based models, but the question of the dominating effect leading to the convective
waves arises.

22



4 Acoustic Modeling

Before the impact of the gas expansion on the FTF can be analyzed, it is necessary to model
the acoustics. Therefore in Section 4.1 the governing equation for the acoustic velocity field is
derived. With the assumptions of an inviscid flow without flame-flow feedback, the acoustics
obey the Laplace-equation. A technique called mapping is introduced in Section 4.2, which
simplifies the boundary condition treatment of the Laplace-equation for an analytical solu-
tion. A simple duct geometry is given as an example to explain the mapping technique ( Sec-
tion 4.2.1). Furthermore, a more complex mapping is applied to solve the acoustic velocity
field in a duct geometry with a backward facing step (Section 4.2.2). As the resulting velocity
field exhibits a singularity at the flame base, a Kutta-condition, derived by Steinbacher [23], is
applied in the form of a vorticity panel (Section 4.2.3).
It is noted that even though the acoustic velocity field u′

ac is modeled, the derived equations
are valid for every potential velocity field upot . Hence, in the following the term upot is used
instead of u′

ac .

4.1 Governing Equation

According to Chu and Kovasznay [9], every distortion can be separated into three different
modes: the vorticity mode, the sound mode and the entropy mode. In the absence of walls,
those three modes do not interact in terms of linearized theory [9]. As the excitation signal
for the flame front is small and of acoustic type, the vorticity and the entropy mode can be
neglected. That means that an acoustic excitation only leads to an acoustic velocity pertur-
bation. As shown by Steinbacher et al. [26], for the acoustic velocity field, only the potential
part needs to be considered. The acoustic velocity field then obeys a potential Φ and can be
calculated with the gradient of this potential as:

∇·Φ=~upot . (4.1)

For the potentialΦ, a non-dimensional wave equation can be derived, see e.g. [26].

He2 · ∂
2Φ∗

∂t∗2 − ∂2Φ∗

∂x∗
i ∂x∗

j

= 0 , (4.2)

In Equation (4.2), He denotes the Helmholtz number. As it was described by Steinbacher et
al. [26], the Helmholtz number can be expressed with the Mach number M and the Strouhal
number f ∗ as He = M · f ∗. For the Strouhal number, only values up to f ∗ = 10 [26] need to
be considered, as the flame responds to higher frequencies with a diminishing FR magnitude,
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see Figure 3.8. As bulk flow values are small, the Helmholtz number is of the order O (10−1) and
the first term on the left side of Equation (4.2) can be neglected [26]. The resulting governing
equation for the acoustic velocity field then reduces to the Laplace equation [26]:

∇2Φ= 0 . (4.3)

It is denoted that for the derivation of Equation (4.2), it was assumed that there is no interac-
tion between the flame and the acoustics. In general, the heat release of the flame front leads
to a gas expansion subsequently producing pressure waves, which affect the acoustic mode
[9].

The impact of neglecting the influence of the flame front towards the acoustic velocity
field is shortly discussed in Section 4.2.3.

4.2 Solving the Laplace Equation with Conformal Mapping

To solve the Laplace equation, two conformal mappings from Brown and Churchill [7] (Ap-
pendix 2) are applied for two different duct geometries in which the flame front is located.
An important property of the conformal mapping is that potential lines and streamlines are
perpendicular in both the physical and in the mapped domain (also referred to as the image
domain). This means that a potential velocity field stays a potential velocity field, even when
it is mapped. Only the potential function changes due to the different coordinates.
The advantage of using the mapping to solve the Laplace-equation is that the boundary con-
dition treatment is often simplified in the image domain. It is then easier to find a solution for
the potential Φ in the image domain and can afterwards evaluate the velocity in the physical
domain.
In the following, the complex physical domain is described with the coordinates x = x1+ i ·x2

and the mapped complex image domain with ξ= ξ1 + i ·ξ2, see Figure 4.1. The velocity in the
physical domain is defined as u = u1 + i ·u2.

4.2.1 Exponential Function Mapping

Before a conformal mapping can be applied, it is first necessary to define the boundary con-
ditions for the Laplace-equation. In this section, the potential velocity field is searched for in
a simple duct geometry with walls ( ) located at x2 = 0 and x2 = i ·D , with D denoting the
duct diameter, see Figure 4.1.These walls should be non-slip walls and impermeable, hence
they possess the same properties as a streamline. At the inlet of the duct geometry at x1 =−∞
the velocity uE is imposed. As the Laplace equation describes an inviscid and incompressible
flow, the same velocity should be able to leave the duct geometry at x1 = ∞. The expected
solution upot for the potential velocity field is a flow from x1 = −∞ towards x1 =∞, see the
streamlines ( ) in Figure 4.1 (a).
To simplify the boundary condition treatment, an exponential function mapping is used:

ξ= exp
(x ·π

D

)
. (4.4)
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1-1

Figure 4.1: Visualization of the exponential function mapping. The points A-E in the complex
physical domain (a) are mapped to the points A’-E’ in the complex image domain
(b). The duct walls ( ) located at x2 = 0 and x2 = i ·π are mapped to the ξ1 axes in
the image domain. The area in between the duct walls (grey space), is mapped to
the upper half (ξ2 > 0) of the image domain. Also depicted are streamlines ( ) of
the potential velocity field in both domains.

By evaluating the above equation, one can see that the walls are mapped to the real ξ axes in
the image domain, see Figure 4.1. The corresponding boundary condition for the potentialΦξ
in the image domain then reduces that the ξ1 axes should become a streamline. The area in
between the duct geometry in the physical domain (grey space) is mapped to the upper half
of the complex image domain (ξ2 > 0), see Figure 4.1. Everything outside of the duct geometry
is mapped to the lower half of the complex image domain (ξ2 < 0). The inlet and outlet of the
duct geometry in the physical domain are mapped to the origin and to infinity, respectively.
Therefore a stream radiating from the origin towards infinity is expected in the image domain,
see the streamlines ( ) in Figure 4.1(b). The solution for the potential Φξ is a source located
at the origin ξ= 0. The corresponding potential is:

Φξ =
V̇p,s

2 ·π · lnξ . (4.5)

Here, V̇p,s denotes the volume flux that is produced by the source. In general, the streaming
volume flux should be the same in both domains. The volume flux entering the duct geome-
try in the physical domain is V̇E = uE ·D , this would lead to an equal volume flux streaming
towards the upper half of the complex ξ domain (ξ2 > 0). As the source can radiate it’s volume
in both the upper and the lower half of the image domain, it’s strength V̇p,s should be double
the strength of the entering volume flux V̇E in the physical domain:

V̇p,s = 2 ·uE ·D . (4.6)

Once the potential in the image domain is found, the velocity can directly be evaluated in
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the physical domain simply by using the chain rule [7] (Ch. 11) :

ũpot (ξ) = ∂Φξ

∂ξ
· ∂ξ
∂x

= ∂Φξ

∂ξ
·
(
∂x

∂ξ

)−1

. (4.7)

Here, the superscript (̃·) denotes the complex conjugated quantity. With the above equation,
one can simply map a point x from the physical domain to the image domain ξ and subse-
quently evaluate it’s velocity in the physical domain. For the chosen mapping with the poten-
tialΦξ from Equation (4.5), the velocity field is:

upot = ũpot =
Vp,s

2 ·D
. (4.8)

With the source strength of Equation (4.6), the velocity field then reduces to:

upot = uE . (4.9)

The above solution for the velocity field in the duct geometry could also be estimated with-
out the mapping. Despite this, the technique in this section can be applied for other more
complex duct geometries.

4.2.2 Schwarz-Christoffel Mapping

For evaluating the FTF, in general a duct geometry with a backward-facing step is applied, see
Figure 4.2(a). Therefore the Laplace-equation needs to be solved once again, as it was already
done is Section 4.2.1.
Before solving the Laplace-equation, it is first necessary to define the boundary conditions. As
the geometry is symmetric, only half of the duct geometry needs to be solved. The symmetry
line ( ), as well as the walls ( ), should therefore become a streamline. The inlet velocity at
x1 =−∞ is uE . The volume flux V̇E = Ri ·uE , passing through half of the duct, should be able
to leave the duct at x1 =∞.
For the mapping, a Schwarz-Christoffel (SC) transformation is applied, as it was already done
by Steinbacher et al. [26]. The SC transformation is a technique which maps a real axes in a
complex domain to an arbitrary polygon [7] (Ch. 11). Here, the real axes is the ξ1 axes in the
image domain and the polygon is half of a duct geometry (including symmetry line) with a
backward-facing step in the physical domain x, see Figure 4.2. Hence, the Schwarz-Christoffel
transformation gives only an analytical expression for the mapping from the image domain
to the physical domain [26]:

x(ξ) = Ra

π
·
[

cosh−1
(

2 ·C 2
r ·ξ−1−C 2

r

1−C 2
r

)
−Cr ·cosh−1

(
(1+C 2

r ) ·ξ−2

(1−C 2
r ) ·ξ

)]
. (4.10)

Here Cr denotes the confinement ratio Cr = Ri /Ra . If one wants to map from the physical to
the image domain, the above equation needs to be solved numerically.
The boundary conditions reduce in the image domain to the same of Section 4.2.1. The ξ1
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Figure 4.2: Visualization of the Schwarz-Christoffel mapping. The points A-E in the complex
physical domain (a) are mapped to the points A’-E’ in the complex image domain
(b). The duct walls ( ) and the centerline ( ) of the duct geometry are mapped
to the ξ1 axes in the image domain. The area in between the duct walls and the
centerline (grey space) is mapped to the upper half (ξ2 > 0) of the image domain.
Also depicted are streamlines ( ) of the potential velocity field in both domains.

axes should become a streamline. The solution of the Laplace-equation is once again a source
in the origin. The velocity can then be evaluated with Equation (4.7). Therefore the inverse

derivation
(
∂x
∂ξ

)−1
from Equation (4.10) is needed [26]:

(
∂x

∂ξ

)−1

= π

Ra
·
√
ξ− 1

C 2
r√

ξ−1
·ξ . (4.11)

By multiplying the above equation with the derivation ∂·
∂ξ

of the source potential from Equa-
tion (4.5), one obtains the conjugate complex velocity ũpot in the physical domain dependent
of it’s mapped location ξ:

ũpot (ξ) = Ri

Ra
·
√
ξ− 1

C 2
r√

ξ−1
·uE . (4.12)

For the above equation, it was once again used that the strength V̇p,s of the source is double
the entering volume flux V̇E . The corresponding streamlines ( ) in the physical domain as
well as in the image domain can be seen in Figure 4.2.

4.2.3 Kutta-Condition

In a real fluid flow, the fluid is not able to follow the abrupt direction change at the corner A
(Figure 4.2) in the backward facing step duct geometry as predicted by the Laplace-equation
solution. Normally, the fluid streams parallel to the feed channel in the combustion chamber
and vorticity is shed at the corner. This unrealistic behavior can also be seen in the solution
of the potential velocity field from Equation (4.12), as the velocity becomes infinitely high at
the corner A. To correct this, a Kutta-condition was derived by Steinbacher [23]. The Kutta-
condition corrects the potentialΦξ in the image domain so that the fluid leaves the feed duct
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Figure 4.3: Depicted is a vorticity panel ( ) and it’s mirrored vorticity panel ( ) in the im-
age domain of the Schwarz-Christoffel mapping from Figure 4.2. The panel is a
straight line from the point ξ= 1 with length H and angle β towards the ξ1 axes.

in a predefined angle. The correction is applied as a tiny vorticity sheet. In the image domain,
the vorticity sheet is a straight line from the point A’ (ξ = 1) with the length H and the angle
β towards the ξ1 axes, see Figure 4.3. The angle β can be derived by evaluating the angle in
the physical domain and mapping it to the image domain. It is noted that β is influenced by
the flame front. For the length H , further analytical investigation is required. In this thesis,
β= π/8 and H = 2 were chosen to fit the CFD simulations from Steinbacher et al. [26] with a
confinement ratio of Cr = 0.4 and a feed duct radius of Ri = 5 [mm].
To fulfill the boundary condition that the ξ1 axes is a streamline, the vorticity panel needs to
be mirrored in the ξ1 axes so that the induced velocity in ξ2 direction vanishes on the ξ1 axes,
see Figure 4.3.
The integral circulation G of the orignial vorticity panel can be calculated as:

G =Φξ(A′) · i ·π
atan(

p
H) · (e−iβ−e iβ

) . (4.13)

Then the derivation
∂Φξ
∂ξ of the Kutta-panel yields to the expression(

∂Φξ

∂ξ

)
= i

π
· G

(ξ−1) ·e−iβ+1
·[

atan(
p

H)−
√

(1−ξ) ·e−iβ ·atan

(√
H

(1−ξ) ·e−iβ

)]
·e−iβ .

(4.14)

For the effect of the mirrored panel, only the imaginary number i in Equation (4.14) needs
to be replaced with −i . Using the additive property of the Laplace-equation, one can evaluate
the resulting velocity due to the entering velocity uE and the vorticity panels in the physical
domain as:

ũpot (ξ) =
∑

i

∂Φξ,i

∂ξ
·
(
∂x

∂ξ

)−1

. (4.15)
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Figure 4.4: Visualization of the of the normalized acoustic velocity field in the duct geometry
with a confinement ratio of Cr = 0.4. Also depicted are the duct walls ( ), the
centerline ( ) of the duct geometry and streamlines ( ) of the velocity field. A
Kutta-condition is applied at the corner as a vorticity panel ( ). Also can be seen
a flame front ( ).

The potential velocity field with the vorticity panel ( ) can be seen in Figure 4.4. Comparing
the streamlines with the vorticity panel (Figure 4.4), with the streamlines without any panel
(Figure 4.2(a)), one can see that the panel deflects the streamlines close to the point A and
bends them around the panel. Plotting the normalized flame normal velocity u⊥/uE at the
flame front of Figure 4.4 over the normalized flame aligned coordinate xF

1 /L f , the difference
becomes more obvious. The flame normal velocity without Kutta-panel ( ) is infinitely
high at the flame base, whereas the velocity with Kutta-panel ( ) takes a finite value, see
Figure 4.5. The influence of the Kutta-panel is only present in the vicinity of the panel and
diminishes at the flame tip. Also depicted in Figure 4.5 is the result from a CFD simulation
(· · · · ·) from Steinbacher et al. [26]. Up to a value of xF

1 /L f = 0.4, the acoustic modeling with
the Kutta-panel delivers reasonable results compared to the CFD simulation. For xF

1 /L f > 0.4,
the influence of the flame flow feedback towards the acoustic plays an important role as it
seems to dampen the acoustics. This dampening effect can not be captured by the acoustic-
modeling and yields to a higher velocity at the flame tip compared to the CFD results.
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Figure 4.5: Plot of the normalized velocity upot ,⊥/uE perpendicular to the flame front over
the normalized flame aligned coordinate xF

1 /L f , compare Figure 3.2. Compared
are results from a CFD simulation (· · · · ·) with the results from the applied acoustic
modeling with Kutta-condition ( ) and without Kutta-condition ( ). The CFD
results are adopted from Steinbacher et al. [26].
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5 Volume Production Modeling

In Section 2.4 it was already derived that the flame front produces volume and therefore a
velocity acceleration across the flame front is induced.
The goal of this chapter is to model the volume production so that the velocity field uvol is
obtained. Section 5.1 explains that the volume production can be modeled by putting some
sources on the flame front. In combination with the mapping, a velocity jump arises directly
at the flame front with an infinitely high velocity at the source center. As this sudden velocity
jump is quite unrealistic, the potential source is modified so that the volume production V̇p,s

from the potential source is distributed in space, see Section 5.2.1. The new obtained velocity
field uvol with the modified sources is then smoother and the singularity at the source center
vanishes. It is also shown that uvol correlates well with CFD simulations.

5.1 The Laplace-Source

The general formula for the volume production per unit height and unit depth along the flame
front was already derived in Section 2.4, compare Equation (2.14). The volume production is
continuous along the flame front and induces a velocity field ~uvol , which accelerates the fluid
at the flame front (Section 2.3). This induced velocity field is irrotational and the divergence
∇·~uvol = 0 vanishes, except at the flame front where the volume is produced [8]. Hence, ~uvol

obeys a Laplace-equation with a discontinuity at the flame front.
In this section, a discrete approximation of the volume production is derived. A couple of
sources are positioned on the flame front, see Figure 5.1. Each of those sources represents a
part of the flame front with the length ∆si . The volume flux V̇p,si that is produced by each
source, is equal to the produced volume flux of the flame front part. With Equation (2.14),
volume flux V̇p,si can be expressed as:

V̇p,si = sL,u · (E −1) ·∆si . (5.1)

Note that here the generalexpression with sL,u instead of s0
L,u is used. The higher the number

of sources on the flame front, the smaller ∆si becomes (compare Figure 5.1) and therefore,
V̇p,si decreases. At the same time, the volume production along the flame front becomes more
continuous. For an infinite number of sources, the flame front is fully occupied and an exact
volume production by the flame front is obtained. A similar approach was already demon-
strated by Choi et al. [8], who used source panels to model the gas expansion induced velocity
field.
For a flame front in a duct geometry, the duct walls have to be considered when evaluating
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Figure 5.1: Visualization of a flame front ( ), which is occupied with sources (•). Each of
those sources represent the volume production of the flame front length ∆si .
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Figure 5.2: Visualization of a flame front ( ) in a duct geometry (a), which is occupied with
sources (•). Also depicted is the flame front location with the orignial (•) sources
and the mirrored sources (•) in the image domain (b).

the velocity field ~uvol . As the sources fulfill the Laplace-equation a mapping can be applied,
as illustrated in Chapter 4. Therefore the source location in the physical domain (•) needs to
be mapped to the image domain, see Figure 5.2. To retain the boundary condition that the ξ1

axes is a streamline, the sources has to be mirrored (•) at the ξ1 axes, compare Figure 5.2. The
resulting velocity field induced by the modeled gas expansion can then be evaluated in the
physical domain according to Equation (4.15) and Equation (4.5). This is plotted in Figure 5.3.
For an unstretched flame front, uvol vanishes in the unburnt gas. This is due to the fact that
x1 = −∞ reduces in the image domain to a single point (ξ = 0). As the sources and the mir-
rored sources build a closed geometry around the origin in the image domain (Figure 5.2(b)),
no volume flux can stream towards ξ= 0 and hence, towards x1 =−∞ in the physical domain.
Adding a sink at ξ= 0, would lead to the volume produced by the sources being absorbed and
therefore a stream towards x1 =−∞ could arise.
As it can be seen in Figure 5.3, the induced velocity uvol jumps across the flame front ac-
cording to Equation (2.8). The discontinuity in the potential Φ at the flame front leads to an
infinitely high velocity at the source location. Thus, the obtained velocity field uvol can not be
used with the G-equation to model the flame front motion and would need a correction term.
In this thesis, a similar modeling approach with a modified source is used, see Section 5.2.
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Figure 5.3: Plot of the velocity field in a duct geometry (a), which is induced by the potential
sources ( ). The sources are located on the vertical line at x = 0. The velocity on
the horizontal line ( ) is depicted in (b). The result was obtained with a burning
velocity s0

L = 0.25 [m/s], an expansion ratio of E = 7 and 250 sources.

5.2 The Desingularized-Source

The main problem using the classic potential source for modeling the gas expansion induced
velocity field uvol , is the discontinuity in volume production. All the volume flux V̇p,si is pro-
duced in a single point at the source center. This yields to a sudden velocity jump with an
infinitely high velocity at the flame front position, compare Figure 5.3. Furthermore, the ve-
locity jump is quite unrealistic, especially when simulating a flame front with a length in the
range of millimeters. In this case, a smoother velocity profile is expected, similar to the tem-
perature profile from Figure 2.2.
In this section, a modified source is presented. First, the characteristics of the new source are
discussed. It is then explained that the obtained velocity profile through the flame front yields
to another interpretation of the G-equation than previously illustrated in Section 3.1. Finally,
it is discussed how many sources are needed for a precise simulation of uvol .

5.2.1 Characteristics

To correct the modeling with the potential source, a modified source is introduced.This is in
the following called the desingularized source. The velocity induced by a single desingularized
source is:

uvol ,r =
V̇p,si

2 ·π · r︸ ︷︷ ︸
potential source

·
[

1−exp

(
− r 2

(r0/2)2

)]
︸ ︷︷ ︸

additional term

. (5.2)
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Figure 5.4: Plot of the velocity profiles of the desingularized source ( ) and the potential
source ( ) over the radial coordinate r .

Here, the velocity was expressed in cylindrical coordinates and the subscript (·)r denotes the
radial direction. Note the similarity to the expression for the Lamb-Oseen Vortex. The first
term on the right hand side of Equation (5.2) is equal to the velocity field induced by the po-
tential source. The second term is an additional correction term, dependent on the source
radius r0. The influence of r0 on uvol is discussed later.
A comparison between the velocity induced by a potential source ( ) and the desingularized
source ( ) can be seen in Figure 5.4. It is apparent that the correction term only influences
the velocity in the vicinity of the source center (r < r0), where it changes the singularity from
the potential source. For r > r0, both velocities profiles are approaching as the value of the
exponential term decreases for an increasing r .
As the desingularized source only induces a velocity in radial direction, the curl ∇×~uvol = 0
vanishes. Hence, the resulting velocity field is irrotational, as was already the case for the po-
tential source. For the divergence ∇·~uvol , the following expression in cylindrical coordinates
is obtained:

∇·~uvol =
V̇p,si

π · (r0/2)2
·exp

(
− r 2

(r0/2)2

)
. (5.3)

The above equation exhibits that the singular volume production of the potential source is
distributed in space by an expression, similar to the Gaussian-kernel (Equation (3.19)). A vol-
ume production comparison between the potential source and the desingularized source can
be seen in Figure 5.5. The main volume production of the source takes place inside the radius
r0 and the total amount of produced volume is V̇p,si .

To model the gas expansion induced velocity field uvol , the same technique with the map-
ping from Section 5.1 is applied.
First, the sources are placed on the flame front and are then mapped to the image domain. In
the image domain, they need to be mirrored at the ξ1 axes and then the resulting velocity field
can be calculated with Equation (4.15). The complex derivation of the potentialΦξ of a single
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Figure 5.5: Plot of the volume production profiles of the potential source (a) and the desingu-
larized source (b) in cylindrical coordinates over the radial coordinate r .

desingularized source is:

∂Φξ

∂ξ
= V̇p,si

2 ·π · (ξ−ξs)
·
[

1−exp

(
− (ξ−ξs)2

(r0,ξ/2)2

)]
. (5.4)

Here, ξs expresses the position of the source. The volume strength of the source is equal to
the volume strength of the potential source and can be evaluated with Equation (5.1). Special
attention should be given to the length r0, which changes when the source is mapped. The
relation between r0 and r0,ξ is:

r0,ξ = r0 ·
(
∂x

∂ξ
(ξs)

)−1

. (5.5)

The resulting velocity field uvol , induced by the desingularized sources, can be seen in Fig-
ure 5.6. A bulk flow equal to the unstretched unburnt laminar burning speed s0

L,u was added
to the velocity. As it was already the case for the potential sources, the velocity in the unburnt
gas is not altered by the sources. The velocity acceleration through the flame front is now
smoother and the main acceleration begins at x1 = −r0 and ends at x1 = r0, compare Fig-
ure 5.6(b). As a comparison, a velocity profile from a Cantera simulation, produced by Stein-
bacher [23], is plotted. The parameter r0 was adjusted to fit the velocity profile. In general, r0

should be half the flame thickness. It can be seen that the modeled velocity profile with the
desingularized sources ( ) matches the Cantera velocity profile ( ). Only at the end of the
flame front, the velocity profiles differ.

35



Volume Production Modeling

Figure 5.6: Plot of the velocity field in a duct geometry (a), which is induced by the desingu-
larized sources and a bulk flow. The sources (•) are located at the vertical line at
x = 0. The velocity on the horizontal line ( ) is depicted in (b). Also shown is the
velocity profile from a Cantera simulation ( ) (GRI 3.0 mechanism), produced
by Steinbacher [23]. To fit the velocity profile from the Cantera Simulation, the
parameters ubulk = s0

L = 0.269 [m/s], E = 6.4 and r0 = 0.53 [mm] were used. The
number of sources is only 11.

5.2.2 G-Equation Solver Coupling

In Section 3.1, the G-equation was introduced. It was explained that the G-equation can be
understood as an infinitely thin surface, separating the unburnt gas and the burnt gas. This
surface moves according to the gas velocity u and the burning velocity sL .
In contrast to that, the modeled velocity field with the desingularized sources does not nat-
urally feature this infinitely thin flame front property any more. The gas is now accelerating
through a flame front with a defined thickness. The question arises which velocity should now
affect the G = 0 isoline, modeled with the G-equation. This leads to another interpretation of
this infinite surface. The flame front is now modeled as a sheet, consisting of several infinitely
thin surfaces, compare Figure 5.7(a). All those surfaces are parallel to each other and move
with another burning velocity sL . The sources are placed on the surface ( ) which is located
in the center of the flame front, see Figure 5.7(a). The first of those surfaces ( ) represents
the beginning of the flame front and moves with the laminar burning velocity sL,u . It’s dis-
tance from the sources is r0 and therefore, the velocity u is not affected for an unstretched
flame front, compare Figure 5.7(b). The last of those surfaces ( ) represents the end of the
flame front and is positioned at a distance r0 from the sources, moving with the burning ve-
locity sL,b . As sL,b > sL,u , this surface moves faster relative to the unburnt gas. In contrast to
that, the velocity u is also higher at the surface, keeping both surfaces parallel. In general one
could define the G = 0 isoline towards any thin surface in the flame front. As the surfaces are
described by the G = 0 isoline, they are referred as isolines in the following.
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Figure 5.7: Schematic representation of a thick flame front ( ) with several isolines (a).
Due to the gas expansion, the velocity ( ) increases through the flame front (b).
Hence, the different isolines are affected by a different velocity u. The different
isolines and their corresponding position in the velocity plot are depicted in the
same color.

5.2.3 Required Number of Sources

Even though the volume production is distributed in space with the desingularized source,
it is still not totally continuous along the flame front. Hence, the question arises how many
sources should be positioned on the flame front for an appropriate simulation of uvol ?
With an increasing amount of sources, the volume production along the flame front get’s more
continuous. A plot of the volume production by several sources on a line can be seen in Fig-
ure 5.8. In general, the amount of sources needed depends on the flame length L f and the
radius r0, see Figure 5.9 (a). For an increasing flame length, more sources are needed to oc-
cupy the flame front. With an increasing value r0, the area where the volume is produced,
increases. This leads to an overlap of the volume production areas and therefore the volume
production gets more continuous, compare Figure 5.8 (a)-(c).
A simple investigation can be made by putting several sources on the line ( ) and then eval-
uating the induced velocity at different areas. Here, these different areas are two lines par-
allel to the source line in a distance of −r0 ( ) and r0 ( ), compare Figure 5.9 (a). Addi-
tionally, the velocity is evaluated directly at the source line. With an increasing number of
sources, the induced velocity will converge to a specific value ur e f at each line and the differ-
ence in the velocity along the line vanishes. A plot of the non-dimensional velocity difference
∆u∗ = (u −ur e f )/ur e f over the non-dimensional source number n∗ = (N · r0)/L f can be seen
in Figure 5.9 (b). Here, N is the number of sources. For ∆u∗, the maximum value along the
line is plotted. It can be seen that for a value of n∗ = 1, the maximum relative discrepancy is
smaller than 5 % and for n∗ = 2 smaller than 0.1 %. This means for an number of n∗ > 2, no
improvement in uvol is obtained by increasing the number of sources on that straight line. It
should be noted that especially for curved lines, the required number of sources should be
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4 · r0

4 · r0

(a) (b) (c)

Figure 5.8: Comparison of the volume production with a different number of sources along
a line. The brighter the area, the more volume is produced. In all three images,
the investigated domain is a square of 4 · r0 side length. To illustrate the source
position, the source center (• ) is plotted.

higher to capture the impacof the flame front curvature on the velocity field uvol .

L f

(a) (b)

2 · r0

Figure 5.9: In (a), several sources are positioned on the line ( ) with the length L f . The in-
duced velocity is then evaluated along the three different colored lines. In (b), the
relative velocity ∆u∗ = (u −ur e f )/ur e f is plotted over the non-dimensional num-
ber of sources n∗ = (N · r0)/L f . For ∆u∗, the maximum value along each line is
plotted. To obtain the value ur e f , a number of n∗ = 100 sources was taken.
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6 Impact of the Gas Expansion on the
Flame Shape

After deriving the model for the gas expansion induced velocity field uvol in Chapter 5, the
impact on the flame shape is discussed in this chapter. The flame shapes in a simple duct
geometry with and without uvol are compared in Section 6.1. To categorize the influence on
a real flame shape, results from a CFD simulation produced by Steinbacher [23] are shown.
Afterwards the impact of several influencing parameters, for example the Markstein number
Ma, are illustrated in Section 6.2. Section 6.3 goes on to present several flame shapes in a duct
with a backward-facing step. This subsequently leads to an additional influencing parameter
on the flame shape, the confinement ratio Cr .

6.1 Flame Shape Comparison

To simulate the flame shapes, a G-equation solver from Steinbacher [24] is used. Details about
solver can be seen in [6]. This solver is supplemented by the modeled velocity field u = ubulk+
uvol +u′

ac . The bulk flow ubulk is simplified as a potential flow and can be calculated as shown
in Chapter 4. The flames burn in a simple duct with a diameter D = 2 [mm]. The inlet velocity
in the duct is uE = 1 [m/s] and the flames are anchored at the top at x1 = 0, see Figure 6.1. The
perfectly premixed gas is a methane-air mixture with an equivalence ratio of Φ= 0.8, an inlet
temperature of Tu = 300 [K ] and a pressure of pu = 101325 [Pa]. The resulting unburnt burn-
ing velocity is s0

L,u ≈ 0.26 [m/s]. As u > s0
L,u the flame front adjusts to an angle so that u⊥ = sL,u .

For the flame front simulation without gas expansion (uvol = 0), the gas velocity u = const .
along the flame front. Hence, the flame angle towards the horizontal line α= const .. The re-
sulting flame front is a straight line (· · · · ·) with α= sin−1(s0

L,u/u), see Figure 6.1. Compared to
the CFD result ( ), only the flame length is similar. Neither the convex (towards the unburnt
gas) flame shape at the anchor point nor the concave flame shape at the flame tip can be pre-
dicted without the flame-flow feedback.
For the gas expansion modeling, the desingularized sources were positioned on the flame
front. The resulting flame shape ( ) with uvol is depicted in Figure 6.1. It can be seen that
uvol alters the flame front shape as it is not constant along the flame front, compare Figure 6.2.
The induced velocity is higher at the flame tip than at the flame base and hence the angle α is
smaller at the flame tip. Compared to the CFD simulation, both the convex part and the con-
cave part are more curved. It can also be seen that the flame angle in the middle of the flame
front is the same for the CFD results and the G-equation results with uvol . This aligns with
the results from Choi and Shin [8] who said that the gas expansion increases the flame front
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Figure 6.1: Flame shape comparison between a CFD simulation ( ) from Steinbacher [23],
the results of the G-equation solver with ( ) and without the gas expansion (· ·
· · ·). All flames are depicted in a duct geometry ( ). The parameters used for the
simulation are: uE = 1 [m/s]; sL,u = 0.26 [m/s]; sL,u = 0.26 [m/s]; r0 = 0.5 [mm];
E = 6.8; number of sources N = 150 (=̂ n∗ = 9.5). The sources were positioned on
the flame front.
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Figure 6.2: Plot of the gas expansion induced velocity field uvol in a duct. The arrows denote
the flow direction. The desingularized sources were put on the flame front ( ).
The parameters used for the gas expansion modeling are equal to Figure 6.1.

curvature whereas the barocline vorticity tends to counteract that especially in the curved
areas.

6.2 Parameter Study

The flame front shape from Figure 6.1 is obtained by solving the G-equation (Equation (3.1))
which depends on two parameters, the burning velocity sL and the gas velocity u. The burn-
ing velocity itself depends on the Markstein length which is normally adjusted in the range of
the flame thickness (δM ≈ δF ). For the modeled velocity field u, the source radius r0 is of im-
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portance. r0 is also linked to the flame thickness (r0 ≈ δF /2), compare Figure 5.6. In addition,
both sL and u depend on which isoline from the flame front is simulated, see Figure 5.7.
First, the impact of the Markstein length towards the flame shape is investigated. For a simpli-
fied interpretation, the Markstein lengthδM is non-dimensionalized as the Markstein number
Ma. As explained in Section 2.2, sL decreases at a convex (towards the unburnt gas) part of the
flame front and increases before a concave part. This variation in sL counteracts the curvature
of the flame front. The strength of the counteracting effect depends on the Markstein num-
ber. Thus, for a higher Markstein number a less curved flame front is expected. This can also
be observed in the flame shape simulations, see Figure 6.3. The flame front with a Markstein
number Ma = 1.2 ( ) is less curved than a flame front with Ma = 0.8 ( ). The differences
between those two flame shapes are most pronounced at the flame tip where the largest cur-
vature appears. The flame with Ma = 1.2 has a bigger radius than the flame with Ma = 0.8 so
sL becomes equal for both flames. Hence, the Markstein number increases the flame tip sur-
face and therefore the amount of gas which can be burned. This leads to a decrease in flame
length, compare Figure 6.3.
For the parameter r0, a similar behavior as for the Markstein number is expected. The higher
r0 is, the more distributed the volume production is in space and therefore the differences in
u along the flame front decrease, compare Section 7.3. The closer the value of u, the smaller
the curvature of the flame front, see Section 7.3. In contrast to the Markstein length, sL is not
affected and hence the flame tip curvature is only slightly altered. A comparison between two
flames shapes with a different source radius r0 is depicted in Figure 6.3.
When simulating different isolines, different flame shapes are expected. All of the isolines are
parallel to each other in a real flame front and so the curvature is pronounced differently,
compare Figure 5.7 (a). A concave (towards the unburnt gas) curvature is bigger at the isoline
close to the unburnt gas than at the isoline close to the burnt gas. The opposite is the case for
a convex curvature. Hence, the curvature κcur v at the flame tip is biggest at the isoline close
to the unburnt gas, compare Figure 6.4. In contrast to that, the burning velocity sL,b > sL,u .
This means that even though the curvature is smaller in the burnt gas, the change in burning
velocity relative to the bulk flow (sL − s0

L)/ubulk is large. Hence, the flame shape of the isoline
close to the burnt gas is more sensitive to a changing Markstein number than the isoline close
to the unburnt gas. In general, the Markstein number Ma is smaller for the isoline close to the
burnt gas than for the isoline close to the unburnt gas [10]. This is shown in Figure 6.4, where
a higher Markstein number Ma = 1.2 was chosen for all isolines compared to Figure 6.1. It
can be seen that the isoline close to the burnt gas is way shorter than the isoline close to the
unburnt gas. It is also questionable how the effect of barocline vorticity affects the different
isolines.
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Figure 6.3: Depicted is a flame front in a duct geometry ( ) modeled with the gas expan-
sion effect and the G-equation solver ( ). The parameters used are: uE = 1 [m/s];
sL,u = 0.26 [m/s]; Ma=0.8; r0 = 0.5 [mm]; E = 6.8; N = 150 (=̂ n∗ = 9.5). Also shown
is a flame front with Ma=1.2 ( ) and a flame front with r0 = 1 [mm] (· · · · ·). The
sources were positioned on the flame front.

Figure 6.4: Depicted are three flame fronts in a duct geometry ( ) modeled with the gas ex-
pansion effect and the G-equation solver. The difference between the simulations
is the source position: sources before the flame front at a distance r0 (·····); sources
on the flame front ( ); sources behind the flame front at a distance r0

( ). The parameters used for the simulations are: uE = 1 [m/s]; sL,u = 0.26 [m/s];
Ma=1.2; r0 = 0.5 [mm]; E = 6.8; N = 150 (=̂ n∗ = 9.5).

6.3 Impact of the Duct Geometry on the Flame Shape

After analyzing the impact of several flame front parameters on the flame shape in Section 6.2,
Section 6.3 goes on investigating the influence of the duct geometry. Therefore the backward-
facing step duct from Section 4.2.2 is used. The potential bulk flow ubulk differs compared to
the simple duct geometry, with reference to Section 4.2. In the axial direction, ubulk,1 is de-
celerated by virtue of the step. In contrast to that an additional velocity term ubulk,2 in radial
direction arises in the vicinity of the step, compare Figure 4.4. That leads to a bulk flow which
is no more constant along the flame front. The resulting flame shape (· · · · ·) only simulated
with ubulk can be seen in Figure 6.5. Compared to the straight line velocity shape from Sec-
tion 6.1, the flame becomes shorter as ubulk,1 is decreased. However the flame curvature is
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Figure 6.5: Flame shape comparison in a duct ( ) with a backward-facing step. Depicted is
a flame front simulated with ( ) and without (· · · · ·) the gas expansion effect uvol .
Both are compared to a CFD simulation result ( ) from Steinbacher et al. [26].
All three flames burn in a duct with a confinement ratio of Cr = Ri /Ra = 0.4. The
parameters used are: Ri = 5 [mm]; uE = 1 [m/s]; r0 = 0.5 [mm]; E = 6.8; Ma=1;
N = 150 (=̂ n∗ = 9.5). In addition to that, a flame front simulated with uvol in a
duct and a confinement ratio of Cr = 0.66 ( ) is shown.

highly increased due to the ubulk,2 component. As it was already the case in Section 6.1, the
gas expansion uvol induces a high velocity at the flame tip leading to a more concave flame
front ( ), compare Figure 6.6. In Figure 6.7, it can be seen that the streamlines are first de-
flected towards the center line before passing the flame front. This is particularly noticeable
at the flame center. With an increasing confinement ratio Cr = Ri /Ra , the space in the radial
direction for the gas to expand decreases. Thus, the radial velocity ux2 decreases. The flame
shape then becomes more concave, especially at the flame base. This effect can be seen in
Figure 6.5 when comparing the flame shape with Cr = 0.4 ( ) and Cr = 0.66 ( ). For Cr = 1
the flame shapes from Section 6.1 are reproduced.
Compared to the CFD results from Steinbacher et al. [26], the simulated flame shapes are
more curved. This can be once again explained due to the missing effect of barocline vorticity
which counteracts the curvature [8].
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Figure 6.6: Depicted is the induced velocity uvol by the flame front in a duct ( ) with a back-
ward facing step. The flame front ( ) corresponds to the flame front ( ) from
Figure 6.5.

Figure 6.7: Depicted is the velocity field u = ubulk +uvol in a duct ( ) with a backward facing
step. The flame front ( ) corresponds to the flame front ( ) from Figure 6.5.
Also shown are streamlines ( ).
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7 Impact of the Gas Expansion on the FTF

The influence of the gas expansion on the flame shape is discussed in Chapter 6. It is shown
that the gas expansion increases the curvature of the steady state flame shape. However, one
also needs to account for the effect of barocline vorticity production along the flame front to
accurately predict the flame shape. While often precluding from the influence of the gas ex-
pansion, existing literature proves the importance of the barocline vorticity for the FTF With
the derived model in Chapter 5, a systematic investigation of the impact of gas expansion on
the FTF can be done. Previously, the G-equation solver [24] is validated in Section 7.1. This is
done with the convective incompressible velocity model with Gaussian-kernel (CIG-model),
presented in Section 3.3.2. Afterwards, a first comparison between the G-equation solver re-
sults and CFD results from Steinbacher et al. [26] is made in Section 7.2. Section 7.3 investi-
gates the influence of several parameters on the FTF. The chapter finishes by investigating the
impact of gas expansion on the convective waves and the Darrius-Landau mechanism.

7.1 Solver Validation

To validate the G-equation solver [24], a short FTF comparison between the theoretical pre-
diction with the CIG-model and the solver results with the CIG-model is made. For the solver,
a constant burning velocity s0

L is assumed. The bulk flow assumes a jet flow with ubulk =
1 [m/s] and the distortions travel with the bulk flow speed (K = 1). The kernel width for both,
the solver and the theoretical model, was chosen as σ = 2.3 [ms]. The resulting flame trans-
fer functions are depicted in Figure 7.1. It can be seen that both, the IR and the FR, show a
very good alignement for the solver ( ) and the theoretical model ( ). It is noted that the
characteristic timescale τr was increased for the solver so that both IRs start to oscillate at the
same time t∗. The reason for that is that the theoretical model seems to alter the timescale
τr , compare Section 3.3. Overall, the solver delivers reasonable results for the following FTF
analysis.
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Figure 7.1: Comparison of the FTF between the theoretical GIC model ( ) and the G-
equation solver result ( ) based on GIC velocity model. The parameters used
are: σ= 2.3 [ms]; K = 1; solver: τr = 18.7 [ms]; theoretical model: τr = 21 [ms]

7.2 FTF Comparison

When analyzing the acoustic based velocity models for the FTF in Section 3.3.1, it was shown
that an acoustic perturbation alone can not explain the oscillating IR and the high magnitude
in the FR of the CFD FTF. The same conclusions result from the G-equation solver simulations.
When neglecting the gas expansion induced velocity field uvol , the resulting FTF (· · · · ·) does
not feature the oscillation in the IR, see Figure 7.2. It is noted that the bulk flow was modeled
as a jet for the simulation without uvol , to obtain a more similar flame shape compared to the
CFD simulation, compare Figure 6.5. Also a higher timescale τr can be observed due to the
lower bulk flow. The FTF with the modeled velocity field uvol ( ) obtains both, the oscillation
in the IR and the high magnitude in the FR. Hence, the effect of the gas expansion is linked to
the oscillation and the high gain.
Compared to the CFD simulation ( ), the first high peak in the IR is not captured in the G-
equation solver result. This is explained by the different flame shapes, compare Figure 6.5.
The disparity in flame angle at the flame base leads to a different normal acoustic velocity
perturbation u′

ac,⊥ at the flame front Figure 7.3. The perturbation at the flame base of the G-
equation solver flame shape is about half the perturbation of the CFD flame shape. Hence, the
IR of the CFD simulation is higher as well. In addition to that, the timescale τr is reduced due
to the shorter flame length. Despite this, both IR oscillate with a similar frequency. The small
difference in the oscillation frequency vanishes when adjusting the influencing parameters.
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Figure 7.2: Comparison of the FTF between the G-equation solver results and the CFD simu-
lation results ( ) (τr = 15.7 [ms]) from Steinbacher et al. [26]. For the G-equation
solver results two different FTF are depicted, one simulated with the gas expansion
induced velocity field ( ) (τr = 15 [ms]) and one without it (· · · · ·) (τr = 18 [ms]).
With the exception of the Markstein number, which was chosen as M a = 0.3 for
both G-equation solver results, the parameters used correspond to the parame-
ters from Figure 6.5.

Figure 7.3: Plot of the normalized acoustic velocity perturbation u′
ac,⊥/u′

E perpendicular to

the flame front over the normalized flame aligned coordinate xF
1 /L f , compare Fig-

ure 3.2. Compared are results from a CFD simulation (· · · · ·) with the results from
the applied acoustic modeling with Kutta-condition ( ). The flame shapes used
to evaluate the normal velocity correspond to Figure 6.5 with a confinement ratio
of Cr = 0.4.
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Figure 7.4: Comparison of three different FTF modeled with the impact of the gas expansion.
As reference simulation ( ) (Ma = 0.3; r0 = 0.5 [mm]; τr = 15 [ms]) serves the
FTF from Figure 7.2. Also depicted is a FTF with an increased Markstein number
(· · · · ·) (τr = 11.8 [ms]; Ma = 1) and an increased source radius ( ) (τr = 15.7 [ms];
r0 = 1 [mm]).

7.3 Parameter Study

In Chapter 6 the impact of several parameters on the flame shape was investigated. These pa-
rameters are: the Markstein number Ma, the source radius r0 and the confinement ratio Cr of
the duct geometry. It was found that all of them influence the FTF. Thus, a concise parameter
study is done in this section.
First, the impact of the Markstein number is analyzed. When a disturbance travels along the
flame front, it can either be increased or decreased, depending on the growth rate σg . The
latter is negatively correlated with the value of the Markstein number, with reference to Sec-
tion 2.7. Hence, a higher Markstein number suggests a damping effect on the IR. This becomes
evident, when comparing the FTF with Ma = 0.3 ( ) and Ma = 1 (· · · · ·), see Figure 7.4. Espe-
cially the second and the third oscillation peaks are highly damped. The first peak, however,
is only slightly decreased. This can be explained by the higher flame normal acoustic per-
turbation resulting from a less curved flame shape as Ma increases, compare Section 7.2. A
damped IR corresponds to a decreased magnitude in the FR. The oscillation frequency of the
IR increases with increasing Markstein number, whereas the timescale τr is reduced. To ex-
plain both effects, further investigation is required.
For an increasing source radius ( ), a similar behavior can be observed. The IR is damped,
leading to a lower magnitude in the FR. The explanation for that is that the volume production
is more distributed in space and hence gradients in the velocity u decrease. Hence, the growth
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Figure 7.5: Comparison of two FTFs modeled with the impact of the gas expansion. These
FTF are obtained with the parameters from Figure 7.2. The only variation is the
confinement ratio Cr which is Cr = 0.4 ( )(τr = 15 [ms]) and Cr = 0.66 ( )
(τr = 10.5 [ms]) .

rate σg declines, compare Section 2.7. In contrast to the impact of the Markstein number, the
oscillation frequency of the IR decreases. The timescale τr is only slightly increased by the
source radius. This may be explained with an increased flame length, compare Figure 6.3.
The confinement ratio Cr influences the flame base distortion. The flame base angle towards
the horizontal line is affected so that the normal part of the acoustic perturbation u′

ac,⊥ rises.
The growth rate of the disturbance slows due to the smaller velocity u2 in radial direction.
Hence, the second and the third peak of the IR are damped compared to the lower confine-
ment ratio. The oscillation frequency of the IR appears to be unaffected by the Cr variation.
The timescale τr decreases with an increasing Cr . This can be explained by an increased bulk
flow in x1 direction.

Especially the influence of the gas expansion on the frequency of the oscillating IR is not
fully understand yet and requires further investigation.

7.4 Relation to Known Physical Phenomena

To better understand the impact of the gas expansion on the FTF, this section draws a brief
connection to well-known phenomena.

First, the mechanism that leads to the high peak in the IR is discussed. As shown in Fig-
ure 4.5, the normal acoustic velocity perturbation u′

ac,⊥ is high at the flame base and low
at the flame tip. The high perturbation at the flame base then travels along the flame front
and increases due to the Darrius-Landau mechanism [29]. This increase was also observed in
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the FTF modeled with the gas expansion effect. The IR with the gas expansion is higher than
without it. Hence, the gas expansion is related to the Darrius-Landau mechanism. To fur-
ther investigate this relation, a sinusoidal deflected flame front is analyzed. The flame front
is located in a duct geometry and the modeled isoline represents the beginning of the flame
front. The desingularized sources are therefore positioned in a distance r0 behind the isoline,
compare Section 5.2.2. For an unstretched flame front, the induced velocity uvol towards that
isoline vanishes, see Figure 5.6. The velocity field with the disturbed flame front is depicted
in Figure 7.6. It can be seen that the gas expansion induces a negative axial velocity uvol ,1 at
a convex (towards the unburnt gas) part of the flame front and a positive uvol ,1 at a concave
part. This phenomena is less pronounced for a higher source radius r0, compare Figure 7.6
(b). It is interesting to note that the Markstein number reduces the velocity differences along
the flame front as well. The volume production scales with the burning velocity, which itself
depends on Ma. A higher volume production is therefore expected at a concave part of the
flame front. This variation in the volume production counteracts the induced velocity differ-
ences in the unburnt gas. However, for the investigated Markstein numbers the influence on
uvol is vanishingly small.
The second important effect that arises from the flame-flow feedback is the convective waves
in the unburnt gas [2]. These waves dominate the motion of the unburnt fluid in the range of
low Strouhal numbers f ∗ [2]. To analyze the impact of the gas expansion on the convective
waves, a disturbed flame front isoline from the CFD simulations of Steinbacher et al. [26] is
adopted. This isoline denotes the beginning of the flame front. The sources are once again
positioned in a distance r0 to that isoline, so that the velocity field uvol is obtained. To extract
the convective waves, the velocity field ur e f induced by an undisturbed flame shape is sub-
tracted. Both, the modeled result with the gas expansion and the CFD simulation result are
depicted in Figure 7.7. Even though the disturbance is not exactly the same in both pictures, it
can be seen that the shape of the convective waves is similar. The magnitude of the waves cor-
responds reasonable well. In contrast to that a different phase of the waves can be observed.
It is concluded that the gas expansion is linked to the convective waves, but especially the
different phase arises questions.
Even though it was shown in this section that the gas expansion relates the Darrius-Landau
mechanism and the convective waves, further investigation is required.
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Figure 7.6: Comparison of the gas expansion induced velocity field uvol non-dimensionalized
with the unburnt burning velocity sL,u . The sources ( ) are located in a distance
r0 behind the flame front ( ). In (a) the source radius was chosen as r0 = 0.5[mm]
and in (b) as r0 = 1[mm]. Both results are obtained with the parameters: E = 7,
δM = 1 [mm].

(b)

(a)

Figure 7.7: Comparison of the convective waves obtained by a CFD simulation from Stein-
bacher et al. [25] (a) and obtained by the modeled velocity field (b). The parame-
ters used are: excitation velocity u′

E = 0.02 [m/s]; E = 7; s0
L,u = 0.26 [m/s]. Graphic

(a) is adopted from Steinbacher et al. [27].
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8 Conclusion

The aim of this thesis was to develop a velocity model that can capture and characterize the
impact of the gas expansion on the velocity field. This model should be fast to compute, but
at the same time produce a realistic velocity field. The derived model was coupled with a
G-equation solver from Steinbacher to investigate the influence of the gas expansion on the
linear response of premixed flames.
To derive the new model, a new source was introduced. This source is based on the poten-
tial source, but distributes the volume production in space. In combination with conformal
mappings, it was possible to evaluate the induced velocity field by this source in a duct geom-
etry. By modeling several sources on the flame front, a continuous volume production along
the flame front was obtained. This volume production then induced a velocity field. For an
uncurved flame front, the impact on the unburnt gas vanished. However, the fluid through
the flame front accelerated. By comparing the velocity profile through the unstretched flame
front with the velocity profile from Cantera simulations, a very good alignment was detected.
Hence, the task of an realistic velocity field is fulfilled. It was also explained that through the
continuous velocity acceleration, several isolines in the flame front can be simulated with the
G-equation solver. An investigation was conducted to find the optimal number of sources in
order to produce an accurate simulation. It was concluded that (4·L f )/δF sources are optimal
for a simulation of an unstretched flame front. Hence, the task of an easy to compute velocity
model is fulfilled.
By coupling the velocity model with the G-equation solver, an initial investigation of the im-
pact of the gas expansion on the flame shape was conducted. It was determined that the gas
expansion leads to a more curved flame front compared to the CFD simulation flame shapes.
This corresponds well to the results of Choi and Shin [8]. Furthermore the impact of the flame
thickness on the velocity field is captured by the derived model. It was found, that with an
increasing flame thickness gradients in the velocity at the flame front decrease.
Afterwards, the impact on the FTF was investigated. It was found that the gas expansion has
to be accounted for the swinging impulse response and the high magnitude in the frequency
response.
At the end of this thesis it was shown that the gas expansion is linked to the convective waves
and the Darrius-Landau mechanism and has to be accounted for both mechanisms.

For a quantitative statement towards the impact of the gas expansion on the flame shape
and the FTF, further investigation is required to determine the uncertain value of the Mark-
stein number. It would also be interesting to combine the derived model for the gas expansion
with the shear layer model of Blanchard et al. [3] to investigate the interaction of barocline
vorticity and the gas expansion.
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