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Abstract— Dynamic Bayesian networks (DBNs) are a popular
method for driver intention estimation and trajectory predic-
tion. To account for hybrid state spaces and non-linear system
dynamics, sequential Monte Carlo (SMC) methods are often
the inference method of choice. However, in state estimation
problems with high uncertainty, SMC methods typically suffer
from either high complexity (using many samples) or low
accuracy (using an insufficient number of samples). In this
paper, we present a multiple model unscented Kalman filter
based DBN inference method for driver intention estimation
and multi-agent trajectory prediction. This inference method
reduces complexity, while still keeping the benefits of sample-
based evaluation of non-linear and non-continuous transition
models. Firstly, the state of the DBN is approximated as a
mixture of Gaussians and estimated over time by tracking the
multi-agent system. Secondly, a probabilistic forward simula-
tion of the belief is performed to generate interaction-aware
trajectories for all agents and all intention hypotheses. The
proposed method is compared to SMC-based inference methods
in terms of accuracy, variance and runtime in both simulations
and real-world scenarios.

I. INTRODUCTION

To drive in an anticipatory and cooperative manner, au-
tonomous vehicles need to anticipate the future behavior
of surrounding traffic participants and estimate their current
intentions. The trajectories of multiple vehicles in a traffic
scene are often highly interdependent because drivers must
avoid collisions, comply with traffic rules, and thus react to
other drivers’ actions. This introduces the need for combi-
natorial and interaction-aware motion prediction, which still
represents a great challenge today [1].

Dynamic Bayesian networks (DBNs) are commonly used
for driver intention estimation because they allow the def-
inition of domain specific hierarchies within the decision
making process of human drivers and the modeling of inter-
dependencies between multiple agents. In our previous work
[2], we proposed such a framework which applies sequential
Monte Carlo (SMC) inference to estimate intentions and pre-
dict interaction-aware trajectories for all vehicles in a scene.
SMC methods have the advantage that they can represent
arbitrary distributions (hybrid, non-Gaussian, multi-modal)
and can be applied to highly non-linear systems. However,
in state estimation problems with high uncertainty, e.g., as
a result of unknown intentions, varying human behavior
and noisy measurements, they typically suffer from either
high complexity or low accuracy, depending on the number

1Jens Schulz, Constantin Hubmann, and Julian Ldchner are
with  BMW  Group, Munich, Germany {jens.schulz |
constantin.hubmann | julian.loechner}@bmw.de

2Darius Burschka is with the Department of Computer Science, Technical
University of Munich, Germany burschka@tum.de (© 2018 IEEE

Fig. 1. Estimated belief represented by a mixture of Gaussians and

corresponding sigma points and interaction-aware trajectory prediction for
the different possible intentions.

of samples used. Although using fewer samples does not
introduce bias, the variance in the results increases due
to the randomness in the sampling process. Furthermore,
the problems of particle degeneracy (just a few particles
represent the state well) and particle impoverishment (most
particles have the same value) arise because of imprecise
models and importance resampling [3].

In this paper, we propose a multiple model unscented
Kalman filter (MM-UKF) based inference method for our
previously presented intention estimation and trajectory pre-
diction framework. As MM-UKF approximates the belief
using a mixture of Gaussians, it is not associated with
the aforementioned problems of SMC methods, while still
keeping the benefits of sample-based evaluation of complex,
non-linear and non-continuous transition models.

The presented DBN models the development of a traf-
fic situation as a stochastic process comprising multiple
interacting agents. The continuous actions of each agent
are conditioned on the current environment and the agent’s
route and maneuver intentions (see IV-A for definitions).
To account for interdependencies between multiple agents,
each of the discrete modes of the MM-UKEF represents one
of the possible combinations of discrete intentions of all
agents, whereas the continuous states are represented by one
multivariate Gaussian given each mode. A typical scenario is
depicted in Fig. 1, showing the Gaussian mixture distribution
and the corresponding sigma points.

The proposed inference method is evaluated in both sim-
ulations and real world scenarios and compared to the previ-
ously presented SMC inference. The results show that given
the discrete intentions of all agents, the state can reasonably
be approximated by a single multivariate Gaussian. MM-
UKEF achieves lower variance and higher accuracy compared
to SMC inference with a similar runtime.



II. RELATED WORK
A. Intention Estimation and Motion Prediction

Intention estimation and motion prediction of human traf-
fic participants have been widely studied within the field
of autonomous vehicles. Commonly, route and maneuver
intentions are estimated with either discriminative classifiers,
such as support vector machines (SVMs) [4], random forests
(RFs) [5], or artificial neural networks (ANNSs) [6], or with
generative models, such as Bayesian networks [7]. The pre-
diction of continuous trajectories is often based on regression
methods such as Gaussian processes (GPs) [8], [9], RFs [10],
ANNSs [11] or planning-based methods [12].

Modeling the development of a traffic situation as a
stochastic process conditioned on hidden variables repre-
senting the agents’ intentions allows both inferring these
intentions at the current time by incorporating measurements,
and predicting the future by iteratively applying the transition
models to the estimated belief (forward simulation). There-
fore, the problems of intention estimation and motion pre-
diction are handled within a combined framework, utilizing
the same behavior models. In [8], multiple GPs are defined
conditioned on the maneuver intention of a driver (turn-left,
turn-right, go-straight, stop-and-go), allowing the estimation
of his current intention given a set of observations. These
GPs are then used as transition models of a particle filter
in order to predict the continuous trajectory. As contextual
information, such as the existence of surrounding traffic
participants, is not incorporated, the framework is not suited
for multi-agent scenarios. In our previous work [12], we
address the interrelated problems of behavior generation of
the ego vehicle and behavior prediction of the surrounding
vehicles in a combined manner. Multi-agent maneuvers based
on the concept of homotopy are determined and correspond-
ing trajectories are optimized using mixed integer quadratic
programming. A multiple model Kalman filter that uses
the trajectories as a transition model infers the intentions
of surrounding agents. The ego vehicle is then controlled
so that it complies with the most probable prediction. In
[10], a framework is presented that describes the traffic
scene using a DBN consisting of multiple interacting agents.
Learned context-dependent action models are conditioned
on the route intention, allowing a reduction in learning
complexity. Using SMC inference, they are able to estimate
the multi-modal hybrid belief state and predict the future
scene development based on a non-linear model. Although
they do not evaluate the route estimation capabilities, they
show that their trajectory prediction outperforms a constant
turn rate and velocity (CTRV) model in simulation. In our
previous work [2], we also model the development of a traffic
scene with a DBN consisting of multiple interacting agents
using SMC inference. The decision making process of each
traffic participant is divided into three levels: route intention,
maneuver intention and action (see Sec. IV-A for definitions).
Possible routes and maneuvers are queried at runtime given
a digital map, and interdependencies between agents as well
as dependencies on the static context (e.g., road curvature)

are represented within the network structure. By including all
agents within the state space, it is possible to explicitly ac-
count for the combinatorial aspect of interacting agents. We
show that our interaction-aware approach outperforms pure
map-based and CTRV models that neglect other participants.

As this paper focuses on comparing MM-UKF-based
inference to our previous SMC inference, we refer to [2]
for a more detailed review of behavior prediction literature.

B. Inference in hybrid dynamic Bayesian networks

DBNs are probabilistic graphical models that consist of
multiple random variables which are connected via di-
rected arcs representing their dependencies. Each variable
is described by a probability distribution conditioned on its
parents. A detailed overview of different possible inference
algorithms for specific variants of DBNs is presented in [13].

In the special case of discrete-only hidden variables or
when transition and observation models are conjugate (e.g.,
linear-Gaussian), exact inference is generally possible. How-
ever, for non-linear DBNs with hybrid state space (i.e., both
discrete and continuous hidden variables), such as presented
within this work, approximate inference becomes necessary.
A common method for inference in arbitrary DBNs are SMC
methods, as they can represent arbitrary distributions and
cope with non-linear system dynamics. SMC has already
been successfully applied for DBN inference in the context
of behavior prediction, e.g., by [10] and in our previous
work [2]. However, particle-based inference often suffers
from high complexity, as many particles may be needed
to approximate the belief appropriately and to reduce the
variance caused by randomness in the sampling process.
Another trade-off can be found in the problems of degener-
acy and impoverishment: because of inaccurate models and
system noise, most particles will end up with small weights
eventually (because they represent the state poorly) and only
few will have non-negligible weight. A method to reduce
this degeneracy and focus the set of particles to regions
in the state space of high probability is called importance
resampling, which, however, introduces another problem
called impoverishment, meaning that most of the particles
represent exactly the same values. A detailed analysis of
these problems can be found in [3].

In the special case of a switching state space model, it is
possible to represent the belief by a mixture of Gaussians and
apply an (interacting) multiple model extended or unscented
Kalman filter. Then, the discrete variables are represented
by the mode on which the underlying EKFs/e UKFs are
conditioned on. The unscented Kalman filter has often been
shown to be superior to the extended Kalman filter (e.g.,
[14], [15], [16]). Furthermore, the UKF does not require the
analytic evaluation of any derivatives, making it simpler and
more widely applicable than the EKF [13]. A comparison of
EKF, UKF, and SMC was conducted by [16], highlighting
the benefits of UKF-based inference. They employ a two-
step serial process by first sampling the discrete variables
and then applying EKF or UKF for the remaining variables
for each particle (which they refer to as ’non-strict’ Rao-



Blackwellization). In [17], an in-depth analysis of UKF
was conducted, demonstrating that the advantages and dis-
advantages of UKF and SMC in terms of complexity and
accuracy depend on the dimensionality of the state space and
the problem at hand. Furthermore, the authors recommend
selection of sigma points that are not too close to the mean
because otherwise nonlinear effects away from the mean are
not accounted for, although this may be required by the actual
spread of the distribution.

III. PROBLEM STATEMENT

A traffic scene S consists of a set of agents
V={V0. ... VE} with K € Ny, in a static en-
vironment (map) with discrete time, continuous state,
and continuous action space. The map consists of a
road network with topological, geometric and infrastruc-
ture (yield lines, traffic signs, etc.) information as well
as the prevailing traffic rules. At time step ¢, the set
of agents )V is represented by their kinematic states
X, = [0, xK]T, route intentions R, = [r?, - rK]T,
and maneuver intentions M; = [m?,--- mX]T. The kine-
matic state x! = [}, 9!, 0i vi]T of agent V* consists of
the Cartesian position, heading, and absolute velocity. The
agent’s length and width are considered to be given determin-
istically by the most recent measurement and, for the sake
of brevity, are not included within x*. The route intention r?
defines a path through the road network the agent desires to
follow, the maneuver intention m} the desired order relative
to other agents in cases of intersecting or merging routes (see
Sec. IV-A for detailed definitions). Other types of maneuvers
such as lane changes or overtaking are not considered within
this work. At each time step, each agent executes an action
a,i that depends on its intentions, the map and the kinematic
states of all agents, transforming the current kinematic state
x} to a new state ; ;. The actions of all agents are denoted
as A = [aY,---,aX]". The complete dynamic part of
a scene is thus described by Sy = [X;, Ry, My, A]T. At
each time step, a noisy measurement Z; = [2¥,--- zF]T
with 2z} = [zL .20, 2% ,, 2, |7 is observed according to
the distribution p(Z;|X;), containing information about the
kinematic states of all agents. The number of agents, possible
routes and maneuvers is arbitrary and may change over time:
agents may appear or disappear and their possible routes and
maneuvers need to be adapted accordingly.

The objective is to estimate the route and maneuver
intentions (R, M) of all agents at the current time. This work
focuses on an alternative inference method with improved
runtime complexity compared to our previous approach [2]
while keeping high estimation accuracy.

IV. APPROACH

We describe the development of a traffic scene as a Markov
process consisting of all agents in a scene. Modeling this
process in a DBN allows explicit specification of relations
between agents, the definition of causal as well as temporal
dependencies and handling of the uncertainty of measure-
ments and human behavior. The decision making process

time step t

time step ¢t + 1

Fig. 2. dynamic Bayesian network (DBN) showing the interdependencies
between agents V% Random variables are drawn as circles, causal and
temporal dependencies as solid and dashed arrows, respectively. r, m, and
a depend on the map. [2]

of each agent is composed of three hierarchical layers: the
route intention, i.e. the path the agent desires to follow, the
maneuver intention, i.e. whether it is going to pass a conflict
area at an intersection before or after another agent, and
the continuous action comprising acceleration and yaw-rate.
First, the set of possible routes and maneuvers is determined
given a topological map. Each agent’s continuous action is
then derived by context-dependent behavior models given
its route and maneuver intentions. Recurrently updating the
belief of the DBN with observations of the agents’ poses
and velocities allows the drivers’ intentions to be inferred.
A probabilistic trajectory prediction is generated by forward
simulation of the current belief. Thus, the predicted tra-
jectories explicitly incorporate the intentions of drivers and
respect the interdependencies between multiple agents.

Fig. 2 shows two consecutive time slices of the DBN and
the dependencies between the single random variables. In
general, this DBN describes a hybrid, non-linear system with
a multi-modal, non-Gaussian belief. However, in contrast to
our previous work [2], we present multiple model unscented
Kalman filtering for inference, which approximates the belief
with a mixture of Gaussians. To account for changing situ-
ations, the network structure is adapted at runtime (creating
and deleting agents as well as route/maneuver hypotheses).
Thus, it can be applied to varying situations with an arbitrary
number of agents, intention hypotheses and different road
layouts.

A. Transition Models

This section gives an overview of the transition models of
the DBN. As the focus of this work is the comparison of
the MM-UKEF inference to the previously presented SMC
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Fig. 3. (a): Possible routes (green). (b): Conflict areas (yellow) from
V0’5 perspective for turning left and the resulting four possible maneuvers,
representing the sequence of agents passing the conflict areas. [2]

inference, we refer to our previous work [2] for a more
detailed description of the transition models used. For the
sake of brevity, the superscript denoting the single agent is
omitted in this subsection (e.g.,  instead of x?).

1) Vehicle Kinematics: the action @ = [a, 6] of an agent
comprises the longitudinal acceleration a and the yaw rate
0. 1t is the outcome of the agent’s decision making process
(described later in this section) and is conditioned on the
current context and the agent’s intentions. The kinematic
state is predicted according to the probability distribution
p(Tis1|ee, @) = N(241,Q), with

Ty + ’UtAT COS(0t+1) + latATQ COS(0t+1)
Y + UtAT sin(9t+1) + iatATQ Sil’l(@t_i_l)
0 + 6, AT
Ve + atAT

(D

Ti41=

and Q = diag(o7,0;,05,07). Although this model is sim-
plistic, we argue that it is sufficient for prediction purposes.

2) Measurement: high-level cuboid objects representing
the single agents in a scene are used as measurements, thus
low-level sensor specifics are abstracted. The data associ-
ation, i.e., object detection and tracking, is considered to
be given as it is handled by a different software module.
We model the kinematic state of each agent to be measured
with zero-mean Gaussian noise, such that each measurement
z = [2.,9.,0.,v.]" is distributed according to p(z|x) =
N (2, R), with 2 =z and R = diag(02_,0? 02,02 ).

3) Route Intention: the desired route » € R of an agent
represents the first layer of its decision making process.
It is given by a sequence of consecutive lanes and serves
as a path that guides the agent’s behavior. The set of
possible routes R is determined given the agent’s pose,
the topological map, and a specified metric horizon [y
(see Fig. 3a). Initially, the desired route r is considered to
be distributed uniformly across the set of possible routes:
p(rilz, map) = |R|™!, Vr; € R. For the sake of problem
simplification, the decision on a route is considered constant,
i.e., the probability of a route switch is assumed to be zero.

4) Maneuver Intention: the desired maneuver m € M
represents the second layer of the decision making process
and defines the sequence, in which agents desire to merge
or cross at conflict areas (where merging or intersecting
lanes overlap), as shown in Fig. 3b. For all vehicle pairs

(Vi,V7) having a common conflict area, the maneuver
of vehicle V* specifies, whether it will pass this conflict
area before (Vi<V7) or after V7J (Vi>V7). This kind of
maneuver is based on the concept of pseudo-homotopy of
trajectories, which we developed in an earlier work [12].
Our data suggests, that vehicles that have right of way are
typically only insignificantly influenced by other vehicles
approaching the intersection. Thus, different maneuvers are
only considered for vehicles that do not have right of way.

An agent’s set of possible maneuvers M is derived given
its route, the map, and the kinematic states of all agents. The
desired maneuver m is initially distributed uniformly across
the set of possible maneuvers: p(m;|X,r, map) = |M|~L,
Vm; € M. The decision on a maneuver is also considered
constant. However, as we track all hypotheses, it is still
possible to estimate the correct maneuver if a driver changes
his intention and therefore his behavior.

5) Action Model: an agent’s action a = [a,6] de-
pends on its route and maneuver intentions, the kine-
matic states of all agents, and the map. It represents the
third layer of the decision making process. Within this
work, the same heuristics-based probabilistic action model
p(alr,m, X, map) is used as defined in [2]. The acceleration
model is a non-linear mapping from features to a Gaussian
distribution p(a|r,m, X, map) = N (u,,02), where p, is a
function of (r,m, X, map) and o, is constant. The set of
features is derived given the map and the kinematic state of
all agents and describes the current context. The yaw rate
is distributed according to the Gaussian p(9|r, x,a,map) =
N (g, 07), where pg is a function of (r,z,a, map) so that
the agent stays close to the center of its desired lane and o
is constant.

B. Inference Algorithm

Our goal is to estimate all drivers’ route and maneuver
intentions and to predict their future trajectories. The ex-
istence of different possibilities of routes and maneuvers
generally leads to multi-modality in the predicted trajecto-
ries. As agents interact with each other and therefore their
trajectories become interdependent, the discrete intentions of
one agent may also lead to multi-modality in the prediction
of another agent. Fig. 4 depicts a typical motion prediction
situation illustrating this combinatorial aspect: depending
on the intended route and maneuver of one agent, another
agent may completely change its future behavior, resulting in
different high probability clusters of the continuous state. As
each UKF only represents a single Gaussian, this potential
multi-modality creates the need for having multiple modes.

1) Multiple Models: given the route and maneuver of
each agent, our evaluation suggests that the belief can
reasonably be approximated by a single multivariate Gaus-
sian. Thus, we define one UKF per possible combination
of route and maneuver intentions of all agents (R, M).
The number of possible combinations of K agents de-
fines the number of modes of the MM-UKF and is
given by J = Hfio (ZreRi 2 omeMilr 1). Hence, the be-
lief of the DBN is tracked using a set of J weighted
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UKFs U = {(UY,p(UY)), -, (U’,p(U7))}. Bach UKF
U’ = [X7,RI, M7, A’]T represents the complete scene in-
cluding all agents and has attached the corresponding mode
probability p(U7).

The general procedure is exemplarily depicted in Fig. 5:
Initially, a multivariate Gaussian distribution of the kinematic
state X is derived from the first measurement Z, according
to p(X|Z) (step 1). Then, for each agent, the set of possible
routes Ry and the set of possible maneuvers M for each
of its possible routes is determined given its own state,
the map, and all other agents’ states (step 2-3). For each
possible combination of (R}, M{) of all agents, one UKF
Uj is created and initialized to the corresponding R and
M and the Gaussian distribution X = X. Furthermore, it
is assigned with the mode probability p(R}, M) = p(U}) =
p(RY| XY, map)p(Mg| R}, X{, map). ‘

For each UKF, the belief U/ is predicted to U/ e
(step 4-5) and updated to Uth (step 6), as shown in the next
section. The probability of each mode is updated according

to the measurement likelihood £(X; 1 N Zi1):

; p(UNL(X] 3| Zi4)
p(UtJH): t : t+llt ' @)
ZlEJp(Ut)‘C(Xt+1|t‘Zt+l)

The Gaussian mixture that represents all modes, i.e., possible
combinations of routes and maneuvers of all agents, is then
given by the set of UKFs and corresponding probabilities.
As new agents appear in a new measurement or new
routes or maneuvers emerge due to a route split or a new
conflict area within the route horizon, the existing modes
are duplicated accordingly in order to represent the new
agents or the new possible intentions and the probabilities are
split uniformly. If routes or maneuvers become impossible
or agents disappear, the corresponding modes are removed
or merged. Furthermore, unlikely modes can be disregarded
to decrease runtime complexity (however, this option was
disabled within the evaluation of this paper to ensure a fair
comparison with the SMC-based inference). As the number
of modes changes over time, the proposed method is of
the type multiple model with variable structure [18]. To
simplify the problem, the intentions of a driver are modeled

time step O time step 1
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Fig. 5. MM-UKF inference exemplarily shown for a single vehicle
with three different modes: (r1,m1), (12, m2), (r2, m3). Distributions are
depicted simplified as being one dimensional. One UKF represents the
complete state space, i.e., kinematic state, route, maneuver, and action of
all agents in the scene. The steps of the algorithm are marked from 1 to 6.
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Fig. 6. Estimated belief and annotations for the Gaussians of the last
posterior, the current prior and current posterior as well as the sigma points
used for the prediction step. The posterior of the last time step and the prior
of the current time step are drawn at lower height to improve visualization.

as constant over time, i.e., the probability of switching of the
current mode is assumed to be zero. Thus, a non-interacting
multiple model filter is applied. To model the possibility of
mode switches, an interacting multiple model filter could be
applied [19].

2) Single Model UKF: generally a UKF determines a
deterministically chosen set of points that captures the mean
and covariance of the original distribution and propagates
them through the non-linear prediction and update functions.
Then a new distribution is fitted to the resulting transformed
points. As in our case the measurement is Gaussian and
the measurement function is linear, sigma points are only
utilized for the prediction step to be able to capture the
non-linear system dynamics. A Gaussian is fitted directly
after prediction and before the measurement update. Then a
standard Kalman filter correction step is performed using the
predicted Gaussian and the measurement. This procedure is
depicted in Fig. 6 and will be explained in the remainder of
this section. For the sake of brevity, the mode superscript j
is omitted within this section.

Typically, a set of 2L + 1 sigma points is chosen, with L
being the dimensionality of the state, such that one sigma
point is placed at the mean and the others are symmetri-
cally spread around it. If the system is affected by non-
additive process noise, the mean state and the covariance
must be augmented by one dimension per noise term, such
that it can be accounted for by the sigma points. Additive
noise can simply be added to the fitted Gaussian after
the transformation. In this work, for each agent, the mean



state and covariance are augmented by the non-additive
process noing terms vfor acceleration and yaw-rate resulting
in&® =[z" pl pf]" and P = diag(P", oa,073). where
Mo is a function of (r,m,X,map) and p; a function
of (r,&,a, map) (step 4). The overall augmented distri-
bution consisting of all agents is thus given by a Gaus-
sian with mean X¢ = [&%! ... &%%]|T and covariance
P? = diag(P%!, ..., PK),

For K agents, the state has a size of L = K(4+ 2),
resulting in a total of 2L + 1 = 12K + 1 sigma points being
created. The sigma points are given by

Xi = X 3)
Xi=X¢+(/(L+NP8);, i=1,...,L 4)
Xi =X~ (VL + NP, i=L+1,....2L, (5

with (\/(L + \)P¢); being the ith column of the matrix
square root of (L + \)Pg¢. Each sigma point x! is then
propagated through the transition function of the kinematic
state (1) to the new time step (step 5). The resulting weighted
sigma points Xi 41 are then used to derive the predicted
Gaussian with mean and covariance

2L
Xip1t = Z W;Xi+1|t (6)
i=0
2L ‘
P =Q+ Z WelXdiape — X Xy — Xt+1|t]T
i=0
(N
with the state and covariance weights
wo— A W2=W{+(1-a®+p)
S L _"_ )\7 C S )
. . 1
=W =, i=1,...,2L
Wi=Wo=gmoy b ®)

and A =a?(L+ k') — L. The choice of how to spread
sigma points is extensively discussed in [17]. We found we
were able to achieve good results when choosing what the
author refers to as the Gauss set which uses the parameters
a=1, =0, ¥ =3 — L. The measurement step is then
performed according to the standard Kalman filter (step
6), correcting the mean and covariance of the belief and
allowing the determination of the measurement likelihood
E(th+1‘t|Zt+1) of the specific mode.

For the intention estimation process, the DBN is thus ap-
plied as a filter, comparing the different model hypotheses to
the actual observations. As DBNs are generative models, i.e.,
they can generate values of any of their random variables, it
is further possible to do a probabilistic forward simulation
by iteratively predicting the current belief (including the
estimated intentions) into subsequent time steps, applying
the same models as for the filtering. Thus, for each UKF,
one multi-agent trajectory is generated and weighted with
the corresponding probability p(U7).

1E3

Forward simulation of belief to generate multi-agent trajectories.

Fig. 7.

V. EVALUATION

To highlight the differences of SMC-based and MM-UKF-
based inference, their route and maneuver intention estimates
are compared in simulation and real world scenarios. The
data is recorded with a measuring vehicle using GPS/INS,
lidar and radar sensors to detect and track surrounding traffic
participants. We use a standard sequential importance resam-
ple (SIR) particle filter, also known as the bootstrap filter,
with low-variance resampling. As SMC inference converges
to the optimal estimate for n — co, we compare the result
of each estimator to the mean estimate over ten runs of
SMC with a high number of samples (n = 10°), which we
abbreviate as BE for best estimator. The imprecision of each
estimator is measured using the Kullback-Leibler divergence

|R|

DKL(TEEHTi) = ZTEEJ log 3
=1 p(rj)

between the estimate 1 = [p(r{), -~ ,p(r{g)] and the
estimate of the best estimator 75y (analogous for maneuver
estimates).

For each possible combination of routes and maneuvers
of all agents, one forward simulation resulting in a multi-
agent trajectory is executed, as depicted in Fig. 7. Each
forward simulation is initialized to the mean kinematic
state of the given mode. As this procedure is the same
for SMC-based and MM-UKF-based inference, the resulting
trajectories given the same initial belief are identical. For a
detailed evaluation of the forward simulation, we refer to [2].

A statistical evaluation of the mean Dy, of all agents’
route intentions over six different scenes (real and simulated)
with 15 vehicles in total is depicted in Fig. 8. On average, the
MM-UKF outperforms SMC with up to n = 50000 particles,
while having a maximum runtime per time step of 7 = 0.57's
compared to 7 = 7.9s of SMC. As the estimation results are
strongly dependent on the scenario, three different scenes
are evaluated in more detail in Fig. 9. The first scene
consists of three vehicles with human drivers approaching
an intersection. The blue vehicle stops to yield to the green
vehicle. As when turning right, the blue vehicle would not
have to yield, it can be inferred that it either wants to turn
left or go straight ahead (¢t =~ 8s). As soon as the green
vehicle has crossed the intersection, the blue vehicle starts to
drive again and goes straight (¢ ~ 9s). The MM-UKEF has a
runtime comparable to SMC with n = 600 but outperforms
SMC with up to n = 50000. In the second scene, also
using real data, the blue vehicle follows the green vehicle,

i
BE,j

9
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Fig. 8. Comparison of Kullback-Leibler divergence of MM-UKF and SMC

with different number of particles over multiple scenes (15 agents in total).

which approaches the intersection and slows down before
turning left. To maintain the desired headway distance, the
blue vehicle also slows down, irrespective of its desired
route (t =~ 20s). As soon as the green vehicle has left the
intersection, the blue vehicle accelerates again and continues
straight (¢ ~ 30s). The runtime of MM-UKEF is similar to
SMC with n = 300, but it performs even better than SMC
with n = 10°. The third scene shows how maneuvers and
routes are estimated simultaneously. Initially, all three routes
of the simulated blue vehicle have equal probability. As it
only slows down slightly because of the upcoming curvature,
but does not stop in order to yield to the green vehicle, it
is inferred that neither going straight, nor yielding is likely.
As soon as it starts turning, it is correctly inferred that it is
turning left and merges before the green vehicle.

In all scenes, it was shown that SMC can result in high
variances in the estimates depending on how many samples
are used. As MM-UKF chooses its sigma points determinis-
tically, multiple runs of the same scene always result in the
same estimates. Although SMC is naturally able to achieve
higher accuracy, this is usually at the cost of a higher runtime.
In all of the evaluated examples, MM-UKF outperformed
SMC in terms of accuracy per runtime. However, it has to
be noted that the number of needed sigma points and thus
the runtime of MM-UKF is dependent on the number of
modes and vehicles in a scene. The results indicate that the
presented MM-UKF-based inference provides a reasonable
compromise between accuracy and runtime.

VI. CONCLUSIONS

In this work, we propose a multiple model unscented
Kalman filter (MM-UKF) based inference method for the
intention estimation and trajectory prediction DBN presented
in [2]. By including all agents within the state space, it is
possible to account for interactions between multiple agents.
Each possible combination of discrete route and maneuver
intentions of all traffic participants forms one of the multiple
modes of the filter. The comparison to SMC-based filtering
suggests that the continuous belief given a specific mode
can reasonably be approximated by a single multivariate
Gaussian within the presented scenarios given the non-
linear transition models. It is shown that MM-UKF has a
generally lower runtime than SMC with comparable accuracy
or achieves improved accuracy given a similar runtime. The
comparison of multiple runs with different SMC random
initialization highlights the high variance in the estimation
results, which is naturally not the case for MM-UKE. This

ensures reproducible results allowing an easier validation of
the overall framework. However, SMC has the advantage
that the number of samples can be adjusted according to
runtime requirements, whereas the number of sigma points
is defined by the situation. Furthermore, discrete variables
and non-additive noise terms can be added straightforwardly
for SMC, whereas for MM-UKF the modes need to account
for each discrete variable and the state of the sigma points
needs to be augmented for each non-additive noise term.

Future work should focus on a statistical evaluation of an
extensive dataset of urban traffic scenes. Detailed analysis
of the scenes in which SMC achieves superior results will
help in determining the approximation limits using Gaussian
mixtures and sigma points in the current domain.
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(a) Scene 1 (real data): The MM-UKF has a maximum runtime 7 = 0.061 s, which is comparable to SMC with n = 600, but performs as good as SMC
with n = 50000.
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(b) Scene 2 (real data): The MM-UKF has a maximum runtime 7 = 0.020's, which is comparable to SMC with n. = 300, but performs even better than
SMC with . = 100000.
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(c) Scene 3 (simulated data): The MM-UKF has a maximum runtime 7 = 0.037 s, which is comparable to SMC with n = 200, but performs as good as
SMC with n = 40000.

Fig. 9. Comparison of route/maneuver estimation accuracy and variance of MM-UKF and SMC with different number of particles. The plots depict the
route/maneuver probabilities of the blue agent in each scene over ten runs with different random initialization (mean: thick line, min/max: filled areas). As
MM-UKEF has deterministic output, there is no variance in the estimate. Furthermore, the Dy, is plotted over time and its mean Dky, over the number
of used particles. The results of MM-UKEF are depicted as dashed lines, whereas the ones of SMC as solid lines with different grayscale depending on the
number of particles (100, 200, 500, 1000, 5000, 10000, 50000, 100000): the more particles, the darker the line. The maximum runtime 7 for one time
step is based on non-optimized C++ code running on an Intel Core i7-5820K CPU @ 3.30GHz.



